]> Pileus Git - ~andy/linux/blob - drivers/md/md.c
Merge branches 'hidraw', 'magicmouse', 'multitouch', 'roccat', 'suspend-fixes' and...
[~andy/linux] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160         struct mddev *mddev, **mddevp;
161
162         mddevp = (void*)bio;
163         mddev = mddevp[-1];
164
165         bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169                             struct mddev *mddev)
170 {
171         struct bio *b;
172         struct mddev **mddevp;
173
174         if (!mddev || !mddev->bio_set)
175                 return bio_alloc(gfp_mask, nr_iovecs);
176
177         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178                              mddev->bio_set);
179         if (!b)
180                 return NULL;
181         mddevp = (void*)b;
182         mddevp[-1] = mddev;
183         b->bi_destructor = mddev_bio_destructor;
184         return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189                             struct mddev *mddev)
190 {
191         struct bio *b;
192         struct mddev **mddevp;
193
194         if (!mddev || !mddev->bio_set)
195                 return bio_clone(bio, gfp_mask);
196
197         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198                              mddev->bio_set);
199         if (!b)
200                 return NULL;
201         mddevp = (void*)b;
202         mddevp[-1] = mddev;
203         b->bi_destructor = mddev_bio_destructor;
204         __bio_clone(b, bio);
205         if (bio_integrity(bio)) {
206                 int ret;
207
208                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210                 if (ret < 0) {
211                         bio_put(b);
212                         return NULL;
213                 }
214         }
215
216         return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222         /* 'bio' is a cloned bio which we need to trim to match
223          * the given offset and size.
224          * This requires adjusting bi_sector, bi_size, and bi_io_vec
225          */
226         int i;
227         struct bio_vec *bvec;
228         int sofar = 0;
229
230         size <<= 9;
231         if (offset == 0 && size == bio->bi_size)
232                 return;
233
234         bio->bi_sector += offset;
235         bio->bi_size = size;
236         offset <<= 9;
237         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239         while (bio->bi_idx < bio->bi_vcnt &&
240                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241                 /* remove this whole bio_vec */
242                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243                 bio->bi_idx++;
244         }
245         if (bio->bi_idx < bio->bi_vcnt) {
246                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248         }
249         /* avoid any complications with bi_idx being non-zero*/
250         if (bio->bi_idx) {
251                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253                 bio->bi_vcnt -= bio->bi_idx;
254                 bio->bi_idx = 0;
255         }
256         /* Make sure vcnt and last bv are not too big */
257         bio_for_each_segment(bvec, bio, i) {
258                 if (sofar + bvec->bv_len > size)
259                         bvec->bv_len = size - sofar;
260                 if (bvec->bv_len == 0) {
261                         bio->bi_vcnt = i;
262                         break;
263                 }
264                 sofar += bvec->bv_len;
265         }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283         atomic_inc(&md_event_count);
284         wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293         atomic_inc(&md_event_count);
294         wake_up(&md_event_waiters);
295 }
296
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)                                     \
313                                                                         \
314         for (({ spin_lock(&all_mddevs_lock);                            \
315                 _tmp = all_mddevs.next;                                 \
316                 _mddev = NULL;});                                       \
317              ({ if (_tmp != &all_mddevs)                                \
318                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319                 spin_unlock(&all_mddevs_lock);                          \
320                 if (_mddev) mddev_put(_mddev);                          \
321                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
322                 _tmp != &all_mddevs;});                                 \
323              ({ spin_lock(&all_mddevs_lock);                            \
324                 _tmp = _tmp->next;})                                    \
325                 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337         const int rw = bio_data_dir(bio);
338         struct mddev *mddev = q->queuedata;
339         int cpu;
340         unsigned int sectors;
341
342         if (mddev == NULL || mddev->pers == NULL
343             || !mddev->ready) {
344                 bio_io_error(bio);
345                 return;
346         }
347         smp_rmb(); /* Ensure implications of  'active' are visible */
348         rcu_read_lock();
349         if (mddev->suspended) {
350                 DEFINE_WAIT(__wait);
351                 for (;;) {
352                         prepare_to_wait(&mddev->sb_wait, &__wait,
353                                         TASK_UNINTERRUPTIBLE);
354                         if (!mddev->suspended)
355                                 break;
356                         rcu_read_unlock();
357                         schedule();
358                         rcu_read_lock();
359                 }
360                 finish_wait(&mddev->sb_wait, &__wait);
361         }
362         atomic_inc(&mddev->active_io);
363         rcu_read_unlock();
364
365         /*
366          * save the sectors now since our bio can
367          * go away inside make_request
368          */
369         sectors = bio_sectors(bio);
370         mddev->pers->make_request(mddev, bio);
371
372         cpu = part_stat_lock();
373         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375         part_stat_unlock();
376
377         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378                 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389         BUG_ON(mddev->suspended);
390         mddev->suspended = 1;
391         synchronize_rcu();
392         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393         mddev->pers->quiesce(mddev, 1);
394
395         del_timer_sync(&mddev->safemode_timer);
396 }
397 EXPORT_SYMBOL_GPL(mddev_suspend);
398
399 void mddev_resume(struct mddev *mddev)
400 {
401         mddev->suspended = 0;
402         wake_up(&mddev->sb_wait);
403         mddev->pers->quiesce(mddev, 0);
404
405         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
406         md_wakeup_thread(mddev->thread);
407         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 }
409 EXPORT_SYMBOL_GPL(mddev_resume);
410
411 int mddev_congested(struct mddev *mddev, int bits)
412 {
413         return mddev->suspended;
414 }
415 EXPORT_SYMBOL(mddev_congested);
416
417 /*
418  * Generic flush handling for md
419  */
420
421 static void md_end_flush(struct bio *bio, int err)
422 {
423         struct md_rdev *rdev = bio->bi_private;
424         struct mddev *mddev = rdev->mddev;
425
426         rdev_dec_pending(rdev, mddev);
427
428         if (atomic_dec_and_test(&mddev->flush_pending)) {
429                 /* The pre-request flush has finished */
430                 queue_work(md_wq, &mddev->flush_work);
431         }
432         bio_put(bio);
433 }
434
435 static void md_submit_flush_data(struct work_struct *ws);
436
437 static void submit_flushes(struct work_struct *ws)
438 {
439         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440         struct md_rdev *rdev;
441
442         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443         atomic_set(&mddev->flush_pending, 1);
444         rcu_read_lock();
445         rdev_for_each_rcu(rdev, mddev)
446                 if (rdev->raid_disk >= 0 &&
447                     !test_bit(Faulty, &rdev->flags)) {
448                         /* Take two references, one is dropped
449                          * when request finishes, one after
450                          * we reclaim rcu_read_lock
451                          */
452                         struct bio *bi;
453                         atomic_inc(&rdev->nr_pending);
454                         atomic_inc(&rdev->nr_pending);
455                         rcu_read_unlock();
456                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
457                         bi->bi_end_io = md_end_flush;
458                         bi->bi_private = rdev;
459                         bi->bi_bdev = rdev->bdev;
460                         atomic_inc(&mddev->flush_pending);
461                         submit_bio(WRITE_FLUSH, bi);
462                         rcu_read_lock();
463                         rdev_dec_pending(rdev, mddev);
464                 }
465         rcu_read_unlock();
466         if (atomic_dec_and_test(&mddev->flush_pending))
467                 queue_work(md_wq, &mddev->flush_work);
468 }
469
470 static void md_submit_flush_data(struct work_struct *ws)
471 {
472         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473         struct bio *bio = mddev->flush_bio;
474
475         if (bio->bi_size == 0)
476                 /* an empty barrier - all done */
477                 bio_endio(bio, 0);
478         else {
479                 bio->bi_rw &= ~REQ_FLUSH;
480                 mddev->pers->make_request(mddev, bio);
481         }
482
483         mddev->flush_bio = NULL;
484         wake_up(&mddev->sb_wait);
485 }
486
487 void md_flush_request(struct mddev *mddev, struct bio *bio)
488 {
489         spin_lock_irq(&mddev->write_lock);
490         wait_event_lock_irq(mddev->sb_wait,
491                             !mddev->flush_bio,
492                             mddev->write_lock, /*nothing*/);
493         mddev->flush_bio = bio;
494         spin_unlock_irq(&mddev->write_lock);
495
496         INIT_WORK(&mddev->flush_work, submit_flushes);
497         queue_work(md_wq, &mddev->flush_work);
498 }
499 EXPORT_SYMBOL(md_flush_request);
500
501 /* Support for plugging.
502  * This mirrors the plugging support in request_queue, but does not
503  * require having a whole queue or request structures.
504  * We allocate an md_plug_cb for each md device and each thread it gets
505  * plugged on.  This links tot the private plug_handle structure in the
506  * personality data where we keep a count of the number of outstanding
507  * plugs so other code can see if a plug is active.
508  */
509 struct md_plug_cb {
510         struct blk_plug_cb cb;
511         struct mddev *mddev;
512 };
513
514 static void plugger_unplug(struct blk_plug_cb *cb)
515 {
516         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
517         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
518                 md_wakeup_thread(mdcb->mddev->thread);
519         kfree(mdcb);
520 }
521
522 /* Check that an unplug wakeup will come shortly.
523  * If not, wakeup the md thread immediately
524  */
525 int mddev_check_plugged(struct mddev *mddev)
526 {
527         struct blk_plug *plug = current->plug;
528         struct md_plug_cb *mdcb;
529
530         if (!plug)
531                 return 0;
532
533         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
534                 if (mdcb->cb.callback == plugger_unplug &&
535                     mdcb->mddev == mddev) {
536                         /* Already on the list, move to top */
537                         if (mdcb != list_first_entry(&plug->cb_list,
538                                                     struct md_plug_cb,
539                                                     cb.list))
540                                 list_move(&mdcb->cb.list, &plug->cb_list);
541                         return 1;
542                 }
543         }
544         /* Not currently on the callback list */
545         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
546         if (!mdcb)
547                 return 0;
548
549         mdcb->mddev = mddev;
550         mdcb->cb.callback = plugger_unplug;
551         atomic_inc(&mddev->plug_cnt);
552         list_add(&mdcb->cb.list, &plug->cb_list);
553         return 1;
554 }
555 EXPORT_SYMBOL_GPL(mddev_check_plugged);
556
557 static inline struct mddev *mddev_get(struct mddev *mddev)
558 {
559         atomic_inc(&mddev->active);
560         return mddev;
561 }
562
563 static void mddev_delayed_delete(struct work_struct *ws);
564
565 static void mddev_put(struct mddev *mddev)
566 {
567         struct bio_set *bs = NULL;
568
569         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
570                 return;
571         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
572             mddev->ctime == 0 && !mddev->hold_active) {
573                 /* Array is not configured at all, and not held active,
574                  * so destroy it */
575                 list_del_init(&mddev->all_mddevs);
576                 bs = mddev->bio_set;
577                 mddev->bio_set = NULL;
578                 if (mddev->gendisk) {
579                         /* We did a probe so need to clean up.  Call
580                          * queue_work inside the spinlock so that
581                          * flush_workqueue() after mddev_find will
582                          * succeed in waiting for the work to be done.
583                          */
584                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
585                         queue_work(md_misc_wq, &mddev->del_work);
586                 } else
587                         kfree(mddev);
588         }
589         spin_unlock(&all_mddevs_lock);
590         if (bs)
591                 bioset_free(bs);
592 }
593
594 void mddev_init(struct mddev *mddev)
595 {
596         mutex_init(&mddev->open_mutex);
597         mutex_init(&mddev->reconfig_mutex);
598         mutex_init(&mddev->bitmap_info.mutex);
599         INIT_LIST_HEAD(&mddev->disks);
600         INIT_LIST_HEAD(&mddev->all_mddevs);
601         init_timer(&mddev->safemode_timer);
602         atomic_set(&mddev->active, 1);
603         atomic_set(&mddev->openers, 0);
604         atomic_set(&mddev->active_io, 0);
605         atomic_set(&mddev->plug_cnt, 0);
606         spin_lock_init(&mddev->write_lock);
607         atomic_set(&mddev->flush_pending, 0);
608         init_waitqueue_head(&mddev->sb_wait);
609         init_waitqueue_head(&mddev->recovery_wait);
610         mddev->reshape_position = MaxSector;
611         mddev->reshape_backwards = 0;
612         mddev->resync_min = 0;
613         mddev->resync_max = MaxSector;
614         mddev->level = LEVEL_NONE;
615 }
616 EXPORT_SYMBOL_GPL(mddev_init);
617
618 static struct mddev * mddev_find(dev_t unit)
619 {
620         struct mddev *mddev, *new = NULL;
621
622         if (unit && MAJOR(unit) != MD_MAJOR)
623                 unit &= ~((1<<MdpMinorShift)-1);
624
625  retry:
626         spin_lock(&all_mddevs_lock);
627
628         if (unit) {
629                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
630                         if (mddev->unit == unit) {
631                                 mddev_get(mddev);
632                                 spin_unlock(&all_mddevs_lock);
633                                 kfree(new);
634                                 return mddev;
635                         }
636
637                 if (new) {
638                         list_add(&new->all_mddevs, &all_mddevs);
639                         spin_unlock(&all_mddevs_lock);
640                         new->hold_active = UNTIL_IOCTL;
641                         return new;
642                 }
643         } else if (new) {
644                 /* find an unused unit number */
645                 static int next_minor = 512;
646                 int start = next_minor;
647                 int is_free = 0;
648                 int dev = 0;
649                 while (!is_free) {
650                         dev = MKDEV(MD_MAJOR, next_minor);
651                         next_minor++;
652                         if (next_minor > MINORMASK)
653                                 next_minor = 0;
654                         if (next_minor == start) {
655                                 /* Oh dear, all in use. */
656                                 spin_unlock(&all_mddevs_lock);
657                                 kfree(new);
658                                 return NULL;
659                         }
660                                 
661                         is_free = 1;
662                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
663                                 if (mddev->unit == dev) {
664                                         is_free = 0;
665                                         break;
666                                 }
667                 }
668                 new->unit = dev;
669                 new->md_minor = MINOR(dev);
670                 new->hold_active = UNTIL_STOP;
671                 list_add(&new->all_mddevs, &all_mddevs);
672                 spin_unlock(&all_mddevs_lock);
673                 return new;
674         }
675         spin_unlock(&all_mddevs_lock);
676
677         new = kzalloc(sizeof(*new), GFP_KERNEL);
678         if (!new)
679                 return NULL;
680
681         new->unit = unit;
682         if (MAJOR(unit) == MD_MAJOR)
683                 new->md_minor = MINOR(unit);
684         else
685                 new->md_minor = MINOR(unit) >> MdpMinorShift;
686
687         mddev_init(new);
688
689         goto retry;
690 }
691
692 static inline int mddev_lock(struct mddev * mddev)
693 {
694         return mutex_lock_interruptible(&mddev->reconfig_mutex);
695 }
696
697 static inline int mddev_is_locked(struct mddev *mddev)
698 {
699         return mutex_is_locked(&mddev->reconfig_mutex);
700 }
701
702 static inline int mddev_trylock(struct mddev * mddev)
703 {
704         return mutex_trylock(&mddev->reconfig_mutex);
705 }
706
707 static struct attribute_group md_redundancy_group;
708
709 static void mddev_unlock(struct mddev * mddev)
710 {
711         if (mddev->to_remove) {
712                 /* These cannot be removed under reconfig_mutex as
713                  * an access to the files will try to take reconfig_mutex
714                  * while holding the file unremovable, which leads to
715                  * a deadlock.
716                  * So hold set sysfs_active while the remove in happeing,
717                  * and anything else which might set ->to_remove or my
718                  * otherwise change the sysfs namespace will fail with
719                  * -EBUSY if sysfs_active is still set.
720                  * We set sysfs_active under reconfig_mutex and elsewhere
721                  * test it under the same mutex to ensure its correct value
722                  * is seen.
723                  */
724                 struct attribute_group *to_remove = mddev->to_remove;
725                 mddev->to_remove = NULL;
726                 mddev->sysfs_active = 1;
727                 mutex_unlock(&mddev->reconfig_mutex);
728
729                 if (mddev->kobj.sd) {
730                         if (to_remove != &md_redundancy_group)
731                                 sysfs_remove_group(&mddev->kobj, to_remove);
732                         if (mddev->pers == NULL ||
733                             mddev->pers->sync_request == NULL) {
734                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
735                                 if (mddev->sysfs_action)
736                                         sysfs_put(mddev->sysfs_action);
737                                 mddev->sysfs_action = NULL;
738                         }
739                 }
740                 mddev->sysfs_active = 0;
741         } else
742                 mutex_unlock(&mddev->reconfig_mutex);
743
744         /* As we've dropped the mutex we need a spinlock to
745          * make sure the thread doesn't disappear
746          */
747         spin_lock(&pers_lock);
748         md_wakeup_thread(mddev->thread);
749         spin_unlock(&pers_lock);
750 }
751
752 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
753 {
754         struct md_rdev *rdev;
755
756         rdev_for_each(rdev, mddev)
757                 if (rdev->desc_nr == nr)
758                         return rdev;
759
760         return NULL;
761 }
762
763 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
764 {
765         struct md_rdev *rdev;
766
767         rdev_for_each(rdev, mddev)
768                 if (rdev->bdev->bd_dev == dev)
769                         return rdev;
770
771         return NULL;
772 }
773
774 static struct md_personality *find_pers(int level, char *clevel)
775 {
776         struct md_personality *pers;
777         list_for_each_entry(pers, &pers_list, list) {
778                 if (level != LEVEL_NONE && pers->level == level)
779                         return pers;
780                 if (strcmp(pers->name, clevel)==0)
781                         return pers;
782         }
783         return NULL;
784 }
785
786 /* return the offset of the super block in 512byte sectors */
787 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
788 {
789         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
790         return MD_NEW_SIZE_SECTORS(num_sectors);
791 }
792
793 static int alloc_disk_sb(struct md_rdev * rdev)
794 {
795         if (rdev->sb_page)
796                 MD_BUG();
797
798         rdev->sb_page = alloc_page(GFP_KERNEL);
799         if (!rdev->sb_page) {
800                 printk(KERN_ALERT "md: out of memory.\n");
801                 return -ENOMEM;
802         }
803
804         return 0;
805 }
806
807 void md_rdev_clear(struct md_rdev *rdev)
808 {
809         if (rdev->sb_page) {
810                 put_page(rdev->sb_page);
811                 rdev->sb_loaded = 0;
812                 rdev->sb_page = NULL;
813                 rdev->sb_start = 0;
814                 rdev->sectors = 0;
815         }
816         if (rdev->bb_page) {
817                 put_page(rdev->bb_page);
818                 rdev->bb_page = NULL;
819         }
820         kfree(rdev->badblocks.page);
821         rdev->badblocks.page = NULL;
822 }
823 EXPORT_SYMBOL_GPL(md_rdev_clear);
824
825 static void super_written(struct bio *bio, int error)
826 {
827         struct md_rdev *rdev = bio->bi_private;
828         struct mddev *mddev = rdev->mddev;
829
830         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
831                 printk("md: super_written gets error=%d, uptodate=%d\n",
832                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
833                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
834                 md_error(mddev, rdev);
835         }
836
837         if (atomic_dec_and_test(&mddev->pending_writes))
838                 wake_up(&mddev->sb_wait);
839         bio_put(bio);
840 }
841
842 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
843                    sector_t sector, int size, struct page *page)
844 {
845         /* write first size bytes of page to sector of rdev
846          * Increment mddev->pending_writes before returning
847          * and decrement it on completion, waking up sb_wait
848          * if zero is reached.
849          * If an error occurred, call md_error
850          */
851         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
852
853         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
854         bio->bi_sector = sector;
855         bio_add_page(bio, page, size, 0);
856         bio->bi_private = rdev;
857         bio->bi_end_io = super_written;
858
859         atomic_inc(&mddev->pending_writes);
860         submit_bio(WRITE_FLUSH_FUA, bio);
861 }
862
863 void md_super_wait(struct mddev *mddev)
864 {
865         /* wait for all superblock writes that were scheduled to complete */
866         DEFINE_WAIT(wq);
867         for(;;) {
868                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
869                 if (atomic_read(&mddev->pending_writes)==0)
870                         break;
871                 schedule();
872         }
873         finish_wait(&mddev->sb_wait, &wq);
874 }
875
876 static void bi_complete(struct bio *bio, int error)
877 {
878         complete((struct completion*)bio->bi_private);
879 }
880
881 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
882                  struct page *page, int rw, bool metadata_op)
883 {
884         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
885         struct completion event;
886         int ret;
887
888         rw |= REQ_SYNC;
889
890         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
891                 rdev->meta_bdev : rdev->bdev;
892         if (metadata_op)
893                 bio->bi_sector = sector + rdev->sb_start;
894         else if (rdev->mddev->reshape_position != MaxSector &&
895                  (rdev->mddev->reshape_backwards ==
896                   (sector >= rdev->mddev->reshape_position)))
897                 bio->bi_sector = sector + rdev->new_data_offset;
898         else
899                 bio->bi_sector = sector + rdev->data_offset;
900         bio_add_page(bio, page, size, 0);
901         init_completion(&event);
902         bio->bi_private = &event;
903         bio->bi_end_io = bi_complete;
904         submit_bio(rw, bio);
905         wait_for_completion(&event);
906
907         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
908         bio_put(bio);
909         return ret;
910 }
911 EXPORT_SYMBOL_GPL(sync_page_io);
912
913 static int read_disk_sb(struct md_rdev * rdev, int size)
914 {
915         char b[BDEVNAME_SIZE];
916         if (!rdev->sb_page) {
917                 MD_BUG();
918                 return -EINVAL;
919         }
920         if (rdev->sb_loaded)
921                 return 0;
922
923
924         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
925                 goto fail;
926         rdev->sb_loaded = 1;
927         return 0;
928
929 fail:
930         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
931                 bdevname(rdev->bdev,b));
932         return -EINVAL;
933 }
934
935 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
936 {
937         return  sb1->set_uuid0 == sb2->set_uuid0 &&
938                 sb1->set_uuid1 == sb2->set_uuid1 &&
939                 sb1->set_uuid2 == sb2->set_uuid2 &&
940                 sb1->set_uuid3 == sb2->set_uuid3;
941 }
942
943 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
944 {
945         int ret;
946         mdp_super_t *tmp1, *tmp2;
947
948         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
949         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
950
951         if (!tmp1 || !tmp2) {
952                 ret = 0;
953                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
954                 goto abort;
955         }
956
957         *tmp1 = *sb1;
958         *tmp2 = *sb2;
959
960         /*
961          * nr_disks is not constant
962          */
963         tmp1->nr_disks = 0;
964         tmp2->nr_disks = 0;
965
966         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
967 abort:
968         kfree(tmp1);
969         kfree(tmp2);
970         return ret;
971 }
972
973
974 static u32 md_csum_fold(u32 csum)
975 {
976         csum = (csum & 0xffff) + (csum >> 16);
977         return (csum & 0xffff) + (csum >> 16);
978 }
979
980 static unsigned int calc_sb_csum(mdp_super_t * sb)
981 {
982         u64 newcsum = 0;
983         u32 *sb32 = (u32*)sb;
984         int i;
985         unsigned int disk_csum, csum;
986
987         disk_csum = sb->sb_csum;
988         sb->sb_csum = 0;
989
990         for (i = 0; i < MD_SB_BYTES/4 ; i++)
991                 newcsum += sb32[i];
992         csum = (newcsum & 0xffffffff) + (newcsum>>32);
993
994
995 #ifdef CONFIG_ALPHA
996         /* This used to use csum_partial, which was wrong for several
997          * reasons including that different results are returned on
998          * different architectures.  It isn't critical that we get exactly
999          * the same return value as before (we always csum_fold before
1000          * testing, and that removes any differences).  However as we
1001          * know that csum_partial always returned a 16bit value on
1002          * alphas, do a fold to maximise conformity to previous behaviour.
1003          */
1004         sb->sb_csum = md_csum_fold(disk_csum);
1005 #else
1006         sb->sb_csum = disk_csum;
1007 #endif
1008         return csum;
1009 }
1010
1011
1012 /*
1013  * Handle superblock details.
1014  * We want to be able to handle multiple superblock formats
1015  * so we have a common interface to them all, and an array of
1016  * different handlers.
1017  * We rely on user-space to write the initial superblock, and support
1018  * reading and updating of superblocks.
1019  * Interface methods are:
1020  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1021  *      loads and validates a superblock on dev.
1022  *      if refdev != NULL, compare superblocks on both devices
1023  *    Return:
1024  *      0 - dev has a superblock that is compatible with refdev
1025  *      1 - dev has a superblock that is compatible and newer than refdev
1026  *          so dev should be used as the refdev in future
1027  *     -EINVAL superblock incompatible or invalid
1028  *     -othererror e.g. -EIO
1029  *
1030  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1031  *      Verify that dev is acceptable into mddev.
1032  *       The first time, mddev->raid_disks will be 0, and data from
1033  *       dev should be merged in.  Subsequent calls check that dev
1034  *       is new enough.  Return 0 or -EINVAL
1035  *
1036  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1037  *     Update the superblock for rdev with data in mddev
1038  *     This does not write to disc.
1039  *
1040  */
1041
1042 struct super_type  {
1043         char                *name;
1044         struct module       *owner;
1045         int                 (*load_super)(struct md_rdev *rdev,
1046                                           struct md_rdev *refdev,
1047                                           int minor_version);
1048         int                 (*validate_super)(struct mddev *mddev,
1049                                               struct md_rdev *rdev);
1050         void                (*sync_super)(struct mddev *mddev,
1051                                           struct md_rdev *rdev);
1052         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1053                                                 sector_t num_sectors);
1054         int                 (*allow_new_offset)(struct md_rdev *rdev,
1055                                                 unsigned long long new_offset);
1056 };
1057
1058 /*
1059  * Check that the given mddev has no bitmap.
1060  *
1061  * This function is called from the run method of all personalities that do not
1062  * support bitmaps. It prints an error message and returns non-zero if mddev
1063  * has a bitmap. Otherwise, it returns 0.
1064  *
1065  */
1066 int md_check_no_bitmap(struct mddev *mddev)
1067 {
1068         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1069                 return 0;
1070         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1071                 mdname(mddev), mddev->pers->name);
1072         return 1;
1073 }
1074 EXPORT_SYMBOL(md_check_no_bitmap);
1075
1076 /*
1077  * load_super for 0.90.0 
1078  */
1079 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1080 {
1081         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1082         mdp_super_t *sb;
1083         int ret;
1084
1085         /*
1086          * Calculate the position of the superblock (512byte sectors),
1087          * it's at the end of the disk.
1088          *
1089          * It also happens to be a multiple of 4Kb.
1090          */
1091         rdev->sb_start = calc_dev_sboffset(rdev);
1092
1093         ret = read_disk_sb(rdev, MD_SB_BYTES);
1094         if (ret) return ret;
1095
1096         ret = -EINVAL;
1097
1098         bdevname(rdev->bdev, b);
1099         sb = page_address(rdev->sb_page);
1100
1101         if (sb->md_magic != MD_SB_MAGIC) {
1102                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1103                        b);
1104                 goto abort;
1105         }
1106
1107         if (sb->major_version != 0 ||
1108             sb->minor_version < 90 ||
1109             sb->minor_version > 91) {
1110                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1111                         sb->major_version, sb->minor_version,
1112                         b);
1113                 goto abort;
1114         }
1115
1116         if (sb->raid_disks <= 0)
1117                 goto abort;
1118
1119         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1120                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1121                         b);
1122                 goto abort;
1123         }
1124
1125         rdev->preferred_minor = sb->md_minor;
1126         rdev->data_offset = 0;
1127         rdev->new_data_offset = 0;
1128         rdev->sb_size = MD_SB_BYTES;
1129         rdev->badblocks.shift = -1;
1130
1131         if (sb->level == LEVEL_MULTIPATH)
1132                 rdev->desc_nr = -1;
1133         else
1134                 rdev->desc_nr = sb->this_disk.number;
1135
1136         if (!refdev) {
1137                 ret = 1;
1138         } else {
1139                 __u64 ev1, ev2;
1140                 mdp_super_t *refsb = page_address(refdev->sb_page);
1141                 if (!uuid_equal(refsb, sb)) {
1142                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1143                                 b, bdevname(refdev->bdev,b2));
1144                         goto abort;
1145                 }
1146                 if (!sb_equal(refsb, sb)) {
1147                         printk(KERN_WARNING "md: %s has same UUID"
1148                                " but different superblock to %s\n",
1149                                b, bdevname(refdev->bdev, b2));
1150                         goto abort;
1151                 }
1152                 ev1 = md_event(sb);
1153                 ev2 = md_event(refsb);
1154                 if (ev1 > ev2)
1155                         ret = 1;
1156                 else 
1157                         ret = 0;
1158         }
1159         rdev->sectors = rdev->sb_start;
1160         /* Limit to 4TB as metadata cannot record more than that */
1161         if (rdev->sectors >= (2ULL << 32))
1162                 rdev->sectors = (2ULL << 32) - 2;
1163
1164         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1165                 /* "this cannot possibly happen" ... */
1166                 ret = -EINVAL;
1167
1168  abort:
1169         return ret;
1170 }
1171
1172 /*
1173  * validate_super for 0.90.0
1174  */
1175 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1176 {
1177         mdp_disk_t *desc;
1178         mdp_super_t *sb = page_address(rdev->sb_page);
1179         __u64 ev1 = md_event(sb);
1180
1181         rdev->raid_disk = -1;
1182         clear_bit(Faulty, &rdev->flags);
1183         clear_bit(In_sync, &rdev->flags);
1184         clear_bit(WriteMostly, &rdev->flags);
1185
1186         if (mddev->raid_disks == 0) {
1187                 mddev->major_version = 0;
1188                 mddev->minor_version = sb->minor_version;
1189                 mddev->patch_version = sb->patch_version;
1190                 mddev->external = 0;
1191                 mddev->chunk_sectors = sb->chunk_size >> 9;
1192                 mddev->ctime = sb->ctime;
1193                 mddev->utime = sb->utime;
1194                 mddev->level = sb->level;
1195                 mddev->clevel[0] = 0;
1196                 mddev->layout = sb->layout;
1197                 mddev->raid_disks = sb->raid_disks;
1198                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1199                 mddev->events = ev1;
1200                 mddev->bitmap_info.offset = 0;
1201                 mddev->bitmap_info.space = 0;
1202                 /* bitmap can use 60 K after the 4K superblocks */
1203                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1204                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1205                 mddev->reshape_backwards = 0;
1206
1207                 if (mddev->minor_version >= 91) {
1208                         mddev->reshape_position = sb->reshape_position;
1209                         mddev->delta_disks = sb->delta_disks;
1210                         mddev->new_level = sb->new_level;
1211                         mddev->new_layout = sb->new_layout;
1212                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1213                         if (mddev->delta_disks < 0)
1214                                 mddev->reshape_backwards = 1;
1215                 } else {
1216                         mddev->reshape_position = MaxSector;
1217                         mddev->delta_disks = 0;
1218                         mddev->new_level = mddev->level;
1219                         mddev->new_layout = mddev->layout;
1220                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1221                 }
1222
1223                 if (sb->state & (1<<MD_SB_CLEAN))
1224                         mddev->recovery_cp = MaxSector;
1225                 else {
1226                         if (sb->events_hi == sb->cp_events_hi && 
1227                                 sb->events_lo == sb->cp_events_lo) {
1228                                 mddev->recovery_cp = sb->recovery_cp;
1229                         } else
1230                                 mddev->recovery_cp = 0;
1231                 }
1232
1233                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1234                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1235                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1236                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1237
1238                 mddev->max_disks = MD_SB_DISKS;
1239
1240                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1241                     mddev->bitmap_info.file == NULL) {
1242                         mddev->bitmap_info.offset =
1243                                 mddev->bitmap_info.default_offset;
1244                         mddev->bitmap_info.space =
1245                                 mddev->bitmap_info.space;
1246                 }
1247
1248         } else if (mddev->pers == NULL) {
1249                 /* Insist on good event counter while assembling, except
1250                  * for spares (which don't need an event count) */
1251                 ++ev1;
1252                 if (sb->disks[rdev->desc_nr].state & (
1253                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1254                         if (ev1 < mddev->events) 
1255                                 return -EINVAL;
1256         } else if (mddev->bitmap) {
1257                 /* if adding to array with a bitmap, then we can accept an
1258                  * older device ... but not too old.
1259                  */
1260                 if (ev1 < mddev->bitmap->events_cleared)
1261                         return 0;
1262         } else {
1263                 if (ev1 < mddev->events)
1264                         /* just a hot-add of a new device, leave raid_disk at -1 */
1265                         return 0;
1266         }
1267
1268         if (mddev->level != LEVEL_MULTIPATH) {
1269                 desc = sb->disks + rdev->desc_nr;
1270
1271                 if (desc->state & (1<<MD_DISK_FAULTY))
1272                         set_bit(Faulty, &rdev->flags);
1273                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1274                             desc->raid_disk < mddev->raid_disks */) {
1275                         set_bit(In_sync, &rdev->flags);
1276                         rdev->raid_disk = desc->raid_disk;
1277                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1278                         /* active but not in sync implies recovery up to
1279                          * reshape position.  We don't know exactly where
1280                          * that is, so set to zero for now */
1281                         if (mddev->minor_version >= 91) {
1282                                 rdev->recovery_offset = 0;
1283                                 rdev->raid_disk = desc->raid_disk;
1284                         }
1285                 }
1286                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1287                         set_bit(WriteMostly, &rdev->flags);
1288         } else /* MULTIPATH are always insync */
1289                 set_bit(In_sync, &rdev->flags);
1290         return 0;
1291 }
1292
1293 /*
1294  * sync_super for 0.90.0
1295  */
1296 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1297 {
1298         mdp_super_t *sb;
1299         struct md_rdev *rdev2;
1300         int next_spare = mddev->raid_disks;
1301
1302
1303         /* make rdev->sb match mddev data..
1304          *
1305          * 1/ zero out disks
1306          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1307          * 3/ any empty disks < next_spare become removed
1308          *
1309          * disks[0] gets initialised to REMOVED because
1310          * we cannot be sure from other fields if it has
1311          * been initialised or not.
1312          */
1313         int i;
1314         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1315
1316         rdev->sb_size = MD_SB_BYTES;
1317
1318         sb = page_address(rdev->sb_page);
1319
1320         memset(sb, 0, sizeof(*sb));
1321
1322         sb->md_magic = MD_SB_MAGIC;
1323         sb->major_version = mddev->major_version;
1324         sb->patch_version = mddev->patch_version;
1325         sb->gvalid_words  = 0; /* ignored */
1326         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1327         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1328         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1329         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1330
1331         sb->ctime = mddev->ctime;
1332         sb->level = mddev->level;
1333         sb->size = mddev->dev_sectors / 2;
1334         sb->raid_disks = mddev->raid_disks;
1335         sb->md_minor = mddev->md_minor;
1336         sb->not_persistent = 0;
1337         sb->utime = mddev->utime;
1338         sb->state = 0;
1339         sb->events_hi = (mddev->events>>32);
1340         sb->events_lo = (u32)mddev->events;
1341
1342         if (mddev->reshape_position == MaxSector)
1343                 sb->minor_version = 90;
1344         else {
1345                 sb->minor_version = 91;
1346                 sb->reshape_position = mddev->reshape_position;
1347                 sb->new_level = mddev->new_level;
1348                 sb->delta_disks = mddev->delta_disks;
1349                 sb->new_layout = mddev->new_layout;
1350                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1351         }
1352         mddev->minor_version = sb->minor_version;
1353         if (mddev->in_sync)
1354         {
1355                 sb->recovery_cp = mddev->recovery_cp;
1356                 sb->cp_events_hi = (mddev->events>>32);
1357                 sb->cp_events_lo = (u32)mddev->events;
1358                 if (mddev->recovery_cp == MaxSector)
1359                         sb->state = (1<< MD_SB_CLEAN);
1360         } else
1361                 sb->recovery_cp = 0;
1362
1363         sb->layout = mddev->layout;
1364         sb->chunk_size = mddev->chunk_sectors << 9;
1365
1366         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1367                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1368
1369         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1370         rdev_for_each(rdev2, mddev) {
1371                 mdp_disk_t *d;
1372                 int desc_nr;
1373                 int is_active = test_bit(In_sync, &rdev2->flags);
1374
1375                 if (rdev2->raid_disk >= 0 &&
1376                     sb->minor_version >= 91)
1377                         /* we have nowhere to store the recovery_offset,
1378                          * but if it is not below the reshape_position,
1379                          * we can piggy-back on that.
1380                          */
1381                         is_active = 1;
1382                 if (rdev2->raid_disk < 0 ||
1383                     test_bit(Faulty, &rdev2->flags))
1384                         is_active = 0;
1385                 if (is_active)
1386                         desc_nr = rdev2->raid_disk;
1387                 else
1388                         desc_nr = next_spare++;
1389                 rdev2->desc_nr = desc_nr;
1390                 d = &sb->disks[rdev2->desc_nr];
1391                 nr_disks++;
1392                 d->number = rdev2->desc_nr;
1393                 d->major = MAJOR(rdev2->bdev->bd_dev);
1394                 d->minor = MINOR(rdev2->bdev->bd_dev);
1395                 if (is_active)
1396                         d->raid_disk = rdev2->raid_disk;
1397                 else
1398                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1399                 if (test_bit(Faulty, &rdev2->flags))
1400                         d->state = (1<<MD_DISK_FAULTY);
1401                 else if (is_active) {
1402                         d->state = (1<<MD_DISK_ACTIVE);
1403                         if (test_bit(In_sync, &rdev2->flags))
1404                                 d->state |= (1<<MD_DISK_SYNC);
1405                         active++;
1406                         working++;
1407                 } else {
1408                         d->state = 0;
1409                         spare++;
1410                         working++;
1411                 }
1412                 if (test_bit(WriteMostly, &rdev2->flags))
1413                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1414         }
1415         /* now set the "removed" and "faulty" bits on any missing devices */
1416         for (i=0 ; i < mddev->raid_disks ; i++) {
1417                 mdp_disk_t *d = &sb->disks[i];
1418                 if (d->state == 0 && d->number == 0) {
1419                         d->number = i;
1420                         d->raid_disk = i;
1421                         d->state = (1<<MD_DISK_REMOVED);
1422                         d->state |= (1<<MD_DISK_FAULTY);
1423                         failed++;
1424                 }
1425         }
1426         sb->nr_disks = nr_disks;
1427         sb->active_disks = active;
1428         sb->working_disks = working;
1429         sb->failed_disks = failed;
1430         sb->spare_disks = spare;
1431
1432         sb->this_disk = sb->disks[rdev->desc_nr];
1433         sb->sb_csum = calc_sb_csum(sb);
1434 }
1435
1436 /*
1437  * rdev_size_change for 0.90.0
1438  */
1439 static unsigned long long
1440 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1441 {
1442         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1443                 return 0; /* component must fit device */
1444         if (rdev->mddev->bitmap_info.offset)
1445                 return 0; /* can't move bitmap */
1446         rdev->sb_start = calc_dev_sboffset(rdev);
1447         if (!num_sectors || num_sectors > rdev->sb_start)
1448                 num_sectors = rdev->sb_start;
1449         /* Limit to 4TB as metadata cannot record more than that.
1450          * 4TB == 2^32 KB, or 2*2^32 sectors.
1451          */
1452         if (num_sectors >= (2ULL << 32))
1453                 num_sectors = (2ULL << 32) - 2;
1454         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1455                        rdev->sb_page);
1456         md_super_wait(rdev->mddev);
1457         return num_sectors;
1458 }
1459
1460 static int
1461 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1462 {
1463         /* non-zero offset changes not possible with v0.90 */
1464         return new_offset == 0;
1465 }
1466
1467 /*
1468  * version 1 superblock
1469  */
1470
1471 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1472 {
1473         __le32 disk_csum;
1474         u32 csum;
1475         unsigned long long newcsum;
1476         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1477         __le32 *isuper = (__le32*)sb;
1478         int i;
1479
1480         disk_csum = sb->sb_csum;
1481         sb->sb_csum = 0;
1482         newcsum = 0;
1483         for (i=0; size>=4; size -= 4 )
1484                 newcsum += le32_to_cpu(*isuper++);
1485
1486         if (size == 2)
1487                 newcsum += le16_to_cpu(*(__le16*) isuper);
1488
1489         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1490         sb->sb_csum = disk_csum;
1491         return cpu_to_le32(csum);
1492 }
1493
1494 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1495                             int acknowledged);
1496 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1497 {
1498         struct mdp_superblock_1 *sb;
1499         int ret;
1500         sector_t sb_start;
1501         sector_t sectors;
1502         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1503         int bmask;
1504
1505         /*
1506          * Calculate the position of the superblock in 512byte sectors.
1507          * It is always aligned to a 4K boundary and
1508          * depeding on minor_version, it can be:
1509          * 0: At least 8K, but less than 12K, from end of device
1510          * 1: At start of device
1511          * 2: 4K from start of device.
1512          */
1513         switch(minor_version) {
1514         case 0:
1515                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1516                 sb_start -= 8*2;
1517                 sb_start &= ~(sector_t)(4*2-1);
1518                 break;
1519         case 1:
1520                 sb_start = 0;
1521                 break;
1522         case 2:
1523                 sb_start = 8;
1524                 break;
1525         default:
1526                 return -EINVAL;
1527         }
1528         rdev->sb_start = sb_start;
1529
1530         /* superblock is rarely larger than 1K, but it can be larger,
1531          * and it is safe to read 4k, so we do that
1532          */
1533         ret = read_disk_sb(rdev, 4096);
1534         if (ret) return ret;
1535
1536
1537         sb = page_address(rdev->sb_page);
1538
1539         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1540             sb->major_version != cpu_to_le32(1) ||
1541             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1542             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1543             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1544                 return -EINVAL;
1545
1546         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1547                 printk("md: invalid superblock checksum on %s\n",
1548                         bdevname(rdev->bdev,b));
1549                 return -EINVAL;
1550         }
1551         if (le64_to_cpu(sb->data_size) < 10) {
1552                 printk("md: data_size too small on %s\n",
1553                        bdevname(rdev->bdev,b));
1554                 return -EINVAL;
1555         }
1556         if (sb->pad0 ||
1557             sb->pad3[0] ||
1558             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1559                 /* Some padding is non-zero, might be a new feature */
1560                 return -EINVAL;
1561
1562         rdev->preferred_minor = 0xffff;
1563         rdev->data_offset = le64_to_cpu(sb->data_offset);
1564         rdev->new_data_offset = rdev->data_offset;
1565         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1566             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1567                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1568         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1569
1570         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1571         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1572         if (rdev->sb_size & bmask)
1573                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1574
1575         if (minor_version
1576             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1577                 return -EINVAL;
1578         if (minor_version
1579             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1580                 return -EINVAL;
1581
1582         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1583                 rdev->desc_nr = -1;
1584         else
1585                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1586
1587         if (!rdev->bb_page) {
1588                 rdev->bb_page = alloc_page(GFP_KERNEL);
1589                 if (!rdev->bb_page)
1590                         return -ENOMEM;
1591         }
1592         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1593             rdev->badblocks.count == 0) {
1594                 /* need to load the bad block list.
1595                  * Currently we limit it to one page.
1596                  */
1597                 s32 offset;
1598                 sector_t bb_sector;
1599                 u64 *bbp;
1600                 int i;
1601                 int sectors = le16_to_cpu(sb->bblog_size);
1602                 if (sectors > (PAGE_SIZE / 512))
1603                         return -EINVAL;
1604                 offset = le32_to_cpu(sb->bblog_offset);
1605                 if (offset == 0)
1606                         return -EINVAL;
1607                 bb_sector = (long long)offset;
1608                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1609                                   rdev->bb_page, READ, true))
1610                         return -EIO;
1611                 bbp = (u64 *)page_address(rdev->bb_page);
1612                 rdev->badblocks.shift = sb->bblog_shift;
1613                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1614                         u64 bb = le64_to_cpu(*bbp);
1615                         int count = bb & (0x3ff);
1616                         u64 sector = bb >> 10;
1617                         sector <<= sb->bblog_shift;
1618                         count <<= sb->bblog_shift;
1619                         if (bb + 1 == 0)
1620                                 break;
1621                         if (md_set_badblocks(&rdev->badblocks,
1622                                              sector, count, 1) == 0)
1623                                 return -EINVAL;
1624                 }
1625         } else if (sb->bblog_offset == 0)
1626                 rdev->badblocks.shift = -1;
1627
1628         if (!refdev) {
1629                 ret = 1;
1630         } else {
1631                 __u64 ev1, ev2;
1632                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1633
1634                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1635                     sb->level != refsb->level ||
1636                     sb->layout != refsb->layout ||
1637                     sb->chunksize != refsb->chunksize) {
1638                         printk(KERN_WARNING "md: %s has strangely different"
1639                                 " superblock to %s\n",
1640                                 bdevname(rdev->bdev,b),
1641                                 bdevname(refdev->bdev,b2));
1642                         return -EINVAL;
1643                 }
1644                 ev1 = le64_to_cpu(sb->events);
1645                 ev2 = le64_to_cpu(refsb->events);
1646
1647                 if (ev1 > ev2)
1648                         ret = 1;
1649                 else
1650                         ret = 0;
1651         }
1652         if (minor_version) {
1653                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1654                 sectors -= rdev->data_offset;
1655         } else
1656                 sectors = rdev->sb_start;
1657         if (sectors < le64_to_cpu(sb->data_size))
1658                 return -EINVAL;
1659         rdev->sectors = le64_to_cpu(sb->data_size);
1660         return ret;
1661 }
1662
1663 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1664 {
1665         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1666         __u64 ev1 = le64_to_cpu(sb->events);
1667
1668         rdev->raid_disk = -1;
1669         clear_bit(Faulty, &rdev->flags);
1670         clear_bit(In_sync, &rdev->flags);
1671         clear_bit(WriteMostly, &rdev->flags);
1672
1673         if (mddev->raid_disks == 0) {
1674                 mddev->major_version = 1;
1675                 mddev->patch_version = 0;
1676                 mddev->external = 0;
1677                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1678                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1679                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1680                 mddev->level = le32_to_cpu(sb->level);
1681                 mddev->clevel[0] = 0;
1682                 mddev->layout = le32_to_cpu(sb->layout);
1683                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1684                 mddev->dev_sectors = le64_to_cpu(sb->size);
1685                 mddev->events = ev1;
1686                 mddev->bitmap_info.offset = 0;
1687                 mddev->bitmap_info.space = 0;
1688                 /* Default location for bitmap is 1K after superblock
1689                  * using 3K - total of 4K
1690                  */
1691                 mddev->bitmap_info.default_offset = 1024 >> 9;
1692                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1693                 mddev->reshape_backwards = 0;
1694
1695                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1696                 memcpy(mddev->uuid, sb->set_uuid, 16);
1697
1698                 mddev->max_disks =  (4096-256)/2;
1699
1700                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1701                     mddev->bitmap_info.file == NULL) {
1702                         mddev->bitmap_info.offset =
1703                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1704                         /* Metadata doesn't record how much space is available.
1705                          * For 1.0, we assume we can use up to the superblock
1706                          * if before, else to 4K beyond superblock.
1707                          * For others, assume no change is possible.
1708                          */
1709                         if (mddev->minor_version > 0)
1710                                 mddev->bitmap_info.space = 0;
1711                         else if (mddev->bitmap_info.offset > 0)
1712                                 mddev->bitmap_info.space =
1713                                         8 - mddev->bitmap_info.offset;
1714                         else
1715                                 mddev->bitmap_info.space =
1716                                         -mddev->bitmap_info.offset;
1717                 }
1718
1719                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1720                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1721                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1722                         mddev->new_level = le32_to_cpu(sb->new_level);
1723                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1724                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1725                         if (mddev->delta_disks < 0 ||
1726                             (mddev->delta_disks == 0 &&
1727                              (le32_to_cpu(sb->feature_map)
1728                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1729                                 mddev->reshape_backwards = 1;
1730                 } else {
1731                         mddev->reshape_position = MaxSector;
1732                         mddev->delta_disks = 0;
1733                         mddev->new_level = mddev->level;
1734                         mddev->new_layout = mddev->layout;
1735                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1736                 }
1737
1738         } else if (mddev->pers == NULL) {
1739                 /* Insist of good event counter while assembling, except for
1740                  * spares (which don't need an event count) */
1741                 ++ev1;
1742                 if (rdev->desc_nr >= 0 &&
1743                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1744                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1745                         if (ev1 < mddev->events)
1746                                 return -EINVAL;
1747         } else if (mddev->bitmap) {
1748                 /* If adding to array with a bitmap, then we can accept an
1749                  * older device, but not too old.
1750                  */
1751                 if (ev1 < mddev->bitmap->events_cleared)
1752                         return 0;
1753         } else {
1754                 if (ev1 < mddev->events)
1755                         /* just a hot-add of a new device, leave raid_disk at -1 */
1756                         return 0;
1757         }
1758         if (mddev->level != LEVEL_MULTIPATH) {
1759                 int role;
1760                 if (rdev->desc_nr < 0 ||
1761                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1762                         role = 0xffff;
1763                         rdev->desc_nr = -1;
1764                 } else
1765                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1766                 switch(role) {
1767                 case 0xffff: /* spare */
1768                         break;
1769                 case 0xfffe: /* faulty */
1770                         set_bit(Faulty, &rdev->flags);
1771                         break;
1772                 default:
1773                         if ((le32_to_cpu(sb->feature_map) &
1774                              MD_FEATURE_RECOVERY_OFFSET))
1775                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1776                         else
1777                                 set_bit(In_sync, &rdev->flags);
1778                         rdev->raid_disk = role;
1779                         break;
1780                 }
1781                 if (sb->devflags & WriteMostly1)
1782                         set_bit(WriteMostly, &rdev->flags);
1783                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1784                         set_bit(Replacement, &rdev->flags);
1785         } else /* MULTIPATH are always insync */
1786                 set_bit(In_sync, &rdev->flags);
1787
1788         return 0;
1789 }
1790
1791 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1792 {
1793         struct mdp_superblock_1 *sb;
1794         struct md_rdev *rdev2;
1795         int max_dev, i;
1796         /* make rdev->sb match mddev and rdev data. */
1797
1798         sb = page_address(rdev->sb_page);
1799
1800         sb->feature_map = 0;
1801         sb->pad0 = 0;
1802         sb->recovery_offset = cpu_to_le64(0);
1803         memset(sb->pad3, 0, sizeof(sb->pad3));
1804
1805         sb->utime = cpu_to_le64((__u64)mddev->utime);
1806         sb->events = cpu_to_le64(mddev->events);
1807         if (mddev->in_sync)
1808                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1809         else
1810                 sb->resync_offset = cpu_to_le64(0);
1811
1812         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1813
1814         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1815         sb->size = cpu_to_le64(mddev->dev_sectors);
1816         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1817         sb->level = cpu_to_le32(mddev->level);
1818         sb->layout = cpu_to_le32(mddev->layout);
1819
1820         if (test_bit(WriteMostly, &rdev->flags))
1821                 sb->devflags |= WriteMostly1;
1822         else
1823                 sb->devflags &= ~WriteMostly1;
1824         sb->data_offset = cpu_to_le64(rdev->data_offset);
1825         sb->data_size = cpu_to_le64(rdev->sectors);
1826
1827         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1828                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1829                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1830         }
1831
1832         if (rdev->raid_disk >= 0 &&
1833             !test_bit(In_sync, &rdev->flags)) {
1834                 sb->feature_map |=
1835                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1836                 sb->recovery_offset =
1837                         cpu_to_le64(rdev->recovery_offset);
1838         }
1839         if (test_bit(Replacement, &rdev->flags))
1840                 sb->feature_map |=
1841                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1842
1843         if (mddev->reshape_position != MaxSector) {
1844                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1845                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1846                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1847                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1848                 sb->new_level = cpu_to_le32(mddev->new_level);
1849                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1850                 if (mddev->delta_disks == 0 &&
1851                     mddev->reshape_backwards)
1852                         sb->feature_map
1853                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1854                 if (rdev->new_data_offset != rdev->data_offset) {
1855                         sb->feature_map
1856                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1857                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1858                                                              - rdev->data_offset));
1859                 }
1860         }
1861
1862         if (rdev->badblocks.count == 0)
1863                 /* Nothing to do for bad blocks*/ ;
1864         else if (sb->bblog_offset == 0)
1865                 /* Cannot record bad blocks on this device */
1866                 md_error(mddev, rdev);
1867         else {
1868                 struct badblocks *bb = &rdev->badblocks;
1869                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1870                 u64 *p = bb->page;
1871                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1872                 if (bb->changed) {
1873                         unsigned seq;
1874
1875 retry:
1876                         seq = read_seqbegin(&bb->lock);
1877
1878                         memset(bbp, 0xff, PAGE_SIZE);
1879
1880                         for (i = 0 ; i < bb->count ; i++) {
1881                                 u64 internal_bb = *p++;
1882                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1883                                                 | BB_LEN(internal_bb));
1884                                 *bbp++ = cpu_to_le64(store_bb);
1885                         }
1886                         bb->changed = 0;
1887                         if (read_seqretry(&bb->lock, seq))
1888                                 goto retry;
1889
1890                         bb->sector = (rdev->sb_start +
1891                                       (int)le32_to_cpu(sb->bblog_offset));
1892                         bb->size = le16_to_cpu(sb->bblog_size);
1893                 }
1894         }
1895
1896         max_dev = 0;
1897         rdev_for_each(rdev2, mddev)
1898                 if (rdev2->desc_nr+1 > max_dev)
1899                         max_dev = rdev2->desc_nr+1;
1900
1901         if (max_dev > le32_to_cpu(sb->max_dev)) {
1902                 int bmask;
1903                 sb->max_dev = cpu_to_le32(max_dev);
1904                 rdev->sb_size = max_dev * 2 + 256;
1905                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1906                 if (rdev->sb_size & bmask)
1907                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1908         } else
1909                 max_dev = le32_to_cpu(sb->max_dev);
1910
1911         for (i=0; i<max_dev;i++)
1912                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1913         
1914         rdev_for_each(rdev2, mddev) {
1915                 i = rdev2->desc_nr;
1916                 if (test_bit(Faulty, &rdev2->flags))
1917                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1918                 else if (test_bit(In_sync, &rdev2->flags))
1919                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1920                 else if (rdev2->raid_disk >= 0)
1921                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1922                 else
1923                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1924         }
1925
1926         sb->sb_csum = calc_sb_1_csum(sb);
1927 }
1928
1929 static unsigned long long
1930 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1931 {
1932         struct mdp_superblock_1 *sb;
1933         sector_t max_sectors;
1934         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1935                 return 0; /* component must fit device */
1936         if (rdev->data_offset != rdev->new_data_offset)
1937                 return 0; /* too confusing */
1938         if (rdev->sb_start < rdev->data_offset) {
1939                 /* minor versions 1 and 2; superblock before data */
1940                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1941                 max_sectors -= rdev->data_offset;
1942                 if (!num_sectors || num_sectors > max_sectors)
1943                         num_sectors = max_sectors;
1944         } else if (rdev->mddev->bitmap_info.offset) {
1945                 /* minor version 0 with bitmap we can't move */
1946                 return 0;
1947         } else {
1948                 /* minor version 0; superblock after data */
1949                 sector_t sb_start;
1950                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1951                 sb_start &= ~(sector_t)(4*2 - 1);
1952                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1953                 if (!num_sectors || num_sectors > max_sectors)
1954                         num_sectors = max_sectors;
1955                 rdev->sb_start = sb_start;
1956         }
1957         sb = page_address(rdev->sb_page);
1958         sb->data_size = cpu_to_le64(num_sectors);
1959         sb->super_offset = rdev->sb_start;
1960         sb->sb_csum = calc_sb_1_csum(sb);
1961         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1962                        rdev->sb_page);
1963         md_super_wait(rdev->mddev);
1964         return num_sectors;
1965
1966 }
1967
1968 static int
1969 super_1_allow_new_offset(struct md_rdev *rdev,
1970                          unsigned long long new_offset)
1971 {
1972         /* All necessary checks on new >= old have been done */
1973         struct bitmap *bitmap;
1974         if (new_offset >= rdev->data_offset)
1975                 return 1;
1976
1977         /* with 1.0 metadata, there is no metadata to tread on
1978          * so we can always move back */
1979         if (rdev->mddev->minor_version == 0)
1980                 return 1;
1981
1982         /* otherwise we must be sure not to step on
1983          * any metadata, so stay:
1984          * 36K beyond start of superblock
1985          * beyond end of badblocks
1986          * beyond write-intent bitmap
1987          */
1988         if (rdev->sb_start + (32+4)*2 > new_offset)
1989                 return 0;
1990         bitmap = rdev->mddev->bitmap;
1991         if (bitmap && !rdev->mddev->bitmap_info.file &&
1992             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1993             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1994                 return 0;
1995         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1996                 return 0;
1997
1998         return 1;
1999 }
2000
2001 static struct super_type super_types[] = {
2002         [0] = {
2003                 .name   = "0.90.0",
2004                 .owner  = THIS_MODULE,
2005                 .load_super         = super_90_load,
2006                 .validate_super     = super_90_validate,
2007                 .sync_super         = super_90_sync,
2008                 .rdev_size_change   = super_90_rdev_size_change,
2009                 .allow_new_offset   = super_90_allow_new_offset,
2010         },
2011         [1] = {
2012                 .name   = "md-1",
2013                 .owner  = THIS_MODULE,
2014                 .load_super         = super_1_load,
2015                 .validate_super     = super_1_validate,
2016                 .sync_super         = super_1_sync,
2017                 .rdev_size_change   = super_1_rdev_size_change,
2018                 .allow_new_offset   = super_1_allow_new_offset,
2019         },
2020 };
2021
2022 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2023 {
2024         if (mddev->sync_super) {
2025                 mddev->sync_super(mddev, rdev);
2026                 return;
2027         }
2028
2029         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2030
2031         super_types[mddev->major_version].sync_super(mddev, rdev);
2032 }
2033
2034 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2035 {
2036         struct md_rdev *rdev, *rdev2;
2037
2038         rcu_read_lock();
2039         rdev_for_each_rcu(rdev, mddev1)
2040                 rdev_for_each_rcu(rdev2, mddev2)
2041                         if (rdev->bdev->bd_contains ==
2042                             rdev2->bdev->bd_contains) {
2043                                 rcu_read_unlock();
2044                                 return 1;
2045                         }
2046         rcu_read_unlock();
2047         return 0;
2048 }
2049
2050 static LIST_HEAD(pending_raid_disks);
2051
2052 /*
2053  * Try to register data integrity profile for an mddev
2054  *
2055  * This is called when an array is started and after a disk has been kicked
2056  * from the array. It only succeeds if all working and active component devices
2057  * are integrity capable with matching profiles.
2058  */
2059 int md_integrity_register(struct mddev *mddev)
2060 {
2061         struct md_rdev *rdev, *reference = NULL;
2062
2063         if (list_empty(&mddev->disks))
2064                 return 0; /* nothing to do */
2065         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2066                 return 0; /* shouldn't register, or already is */
2067         rdev_for_each(rdev, mddev) {
2068                 /* skip spares and non-functional disks */
2069                 if (test_bit(Faulty, &rdev->flags))
2070                         continue;
2071                 if (rdev->raid_disk < 0)
2072                         continue;
2073                 if (!reference) {
2074                         /* Use the first rdev as the reference */
2075                         reference = rdev;
2076                         continue;
2077                 }
2078                 /* does this rdev's profile match the reference profile? */
2079                 if (blk_integrity_compare(reference->bdev->bd_disk,
2080                                 rdev->bdev->bd_disk) < 0)
2081                         return -EINVAL;
2082         }
2083         if (!reference || !bdev_get_integrity(reference->bdev))
2084                 return 0;
2085         /*
2086          * All component devices are integrity capable and have matching
2087          * profiles, register the common profile for the md device.
2088          */
2089         if (blk_integrity_register(mddev->gendisk,
2090                         bdev_get_integrity(reference->bdev)) != 0) {
2091                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2092                         mdname(mddev));
2093                 return -EINVAL;
2094         }
2095         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2096         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2097                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2098                        mdname(mddev));
2099                 return -EINVAL;
2100         }
2101         return 0;
2102 }
2103 EXPORT_SYMBOL(md_integrity_register);
2104
2105 /* Disable data integrity if non-capable/non-matching disk is being added */
2106 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2107 {
2108         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2109         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2110
2111         if (!bi_mddev) /* nothing to do */
2112                 return;
2113         if (rdev->raid_disk < 0) /* skip spares */
2114                 return;
2115         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2116                                              rdev->bdev->bd_disk) >= 0)
2117                 return;
2118         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2119         blk_integrity_unregister(mddev->gendisk);
2120 }
2121 EXPORT_SYMBOL(md_integrity_add_rdev);
2122
2123 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2124 {
2125         char b[BDEVNAME_SIZE];
2126         struct kobject *ko;
2127         char *s;
2128         int err;
2129
2130         if (rdev->mddev) {
2131                 MD_BUG();
2132                 return -EINVAL;
2133         }
2134
2135         /* prevent duplicates */
2136         if (find_rdev(mddev, rdev->bdev->bd_dev))
2137                 return -EEXIST;
2138
2139         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2140         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2141                         rdev->sectors < mddev->dev_sectors)) {
2142                 if (mddev->pers) {
2143                         /* Cannot change size, so fail
2144                          * If mddev->level <= 0, then we don't care
2145                          * about aligning sizes (e.g. linear)
2146                          */
2147                         if (mddev->level > 0)
2148                                 return -ENOSPC;
2149                 } else
2150                         mddev->dev_sectors = rdev->sectors;
2151         }
2152
2153         /* Verify rdev->desc_nr is unique.
2154          * If it is -1, assign a free number, else
2155          * check number is not in use
2156          */
2157         if (rdev->desc_nr < 0) {
2158                 int choice = 0;
2159                 if (mddev->pers) choice = mddev->raid_disks;
2160                 while (find_rdev_nr(mddev, choice))
2161                         choice++;
2162                 rdev->desc_nr = choice;
2163         } else {
2164                 if (find_rdev_nr(mddev, rdev->desc_nr))
2165                         return -EBUSY;
2166         }
2167         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2168                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2169                        mdname(mddev), mddev->max_disks);
2170                 return -EBUSY;
2171         }
2172         bdevname(rdev->bdev,b);
2173         while ( (s=strchr(b, '/')) != NULL)
2174                 *s = '!';
2175
2176         rdev->mddev = mddev;
2177         printk(KERN_INFO "md: bind<%s>\n", b);
2178
2179         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2180                 goto fail;
2181
2182         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2183         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2184                 /* failure here is OK */;
2185         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2186
2187         list_add_rcu(&rdev->same_set, &mddev->disks);
2188         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2189
2190         /* May as well allow recovery to be retried once */
2191         mddev->recovery_disabled++;
2192
2193         return 0;
2194
2195  fail:
2196         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2197                b, mdname(mddev));
2198         return err;
2199 }
2200
2201 static void md_delayed_delete(struct work_struct *ws)
2202 {
2203         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2204         kobject_del(&rdev->kobj);
2205         kobject_put(&rdev->kobj);
2206 }
2207
2208 static void unbind_rdev_from_array(struct md_rdev * rdev)
2209 {
2210         char b[BDEVNAME_SIZE];
2211         if (!rdev->mddev) {
2212                 MD_BUG();
2213                 return;
2214         }
2215         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2216         list_del_rcu(&rdev->same_set);
2217         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2218         rdev->mddev = NULL;
2219         sysfs_remove_link(&rdev->kobj, "block");
2220         sysfs_put(rdev->sysfs_state);
2221         rdev->sysfs_state = NULL;
2222         rdev->badblocks.count = 0;
2223         /* We need to delay this, otherwise we can deadlock when
2224          * writing to 'remove' to "dev/state".  We also need
2225          * to delay it due to rcu usage.
2226          */
2227         synchronize_rcu();
2228         INIT_WORK(&rdev->del_work, md_delayed_delete);
2229         kobject_get(&rdev->kobj);
2230         queue_work(md_misc_wq, &rdev->del_work);
2231 }
2232
2233 /*
2234  * prevent the device from being mounted, repartitioned or
2235  * otherwise reused by a RAID array (or any other kernel
2236  * subsystem), by bd_claiming the device.
2237  */
2238 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2239 {
2240         int err = 0;
2241         struct block_device *bdev;
2242         char b[BDEVNAME_SIZE];
2243
2244         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2245                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2246         if (IS_ERR(bdev)) {
2247                 printk(KERN_ERR "md: could not open %s.\n",
2248                         __bdevname(dev, b));
2249                 return PTR_ERR(bdev);
2250         }
2251         rdev->bdev = bdev;
2252         return err;
2253 }
2254
2255 static void unlock_rdev(struct md_rdev *rdev)
2256 {
2257         struct block_device *bdev = rdev->bdev;
2258         rdev->bdev = NULL;
2259         if (!bdev)
2260                 MD_BUG();
2261         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2262 }
2263
2264 void md_autodetect_dev(dev_t dev);
2265
2266 static void export_rdev(struct md_rdev * rdev)
2267 {
2268         char b[BDEVNAME_SIZE];
2269         printk(KERN_INFO "md: export_rdev(%s)\n",
2270                 bdevname(rdev->bdev,b));
2271         if (rdev->mddev)
2272                 MD_BUG();
2273         md_rdev_clear(rdev);
2274 #ifndef MODULE
2275         if (test_bit(AutoDetected, &rdev->flags))
2276                 md_autodetect_dev(rdev->bdev->bd_dev);
2277 #endif
2278         unlock_rdev(rdev);
2279         kobject_put(&rdev->kobj);
2280 }
2281
2282 static void kick_rdev_from_array(struct md_rdev * rdev)
2283 {
2284         unbind_rdev_from_array(rdev);
2285         export_rdev(rdev);
2286 }
2287
2288 static void export_array(struct mddev *mddev)
2289 {
2290         struct md_rdev *rdev, *tmp;
2291
2292         rdev_for_each_safe(rdev, tmp, mddev) {
2293                 if (!rdev->mddev) {
2294                         MD_BUG();
2295                         continue;
2296                 }
2297                 kick_rdev_from_array(rdev);
2298         }
2299         if (!list_empty(&mddev->disks))
2300                 MD_BUG();
2301         mddev->raid_disks = 0;
2302         mddev->major_version = 0;
2303 }
2304
2305 static void print_desc(mdp_disk_t *desc)
2306 {
2307         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2308                 desc->major,desc->minor,desc->raid_disk,desc->state);
2309 }
2310
2311 static void print_sb_90(mdp_super_t *sb)
2312 {
2313         int i;
2314
2315         printk(KERN_INFO 
2316                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2317                 sb->major_version, sb->minor_version, sb->patch_version,
2318                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2319                 sb->ctime);
2320         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2321                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2322                 sb->md_minor, sb->layout, sb->chunk_size);
2323         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2324                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2325                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2326                 sb->failed_disks, sb->spare_disks,
2327                 sb->sb_csum, (unsigned long)sb->events_lo);
2328
2329         printk(KERN_INFO);
2330         for (i = 0; i < MD_SB_DISKS; i++) {
2331                 mdp_disk_t *desc;
2332
2333                 desc = sb->disks + i;
2334                 if (desc->number || desc->major || desc->minor ||
2335                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2336                         printk("     D %2d: ", i);
2337                         print_desc(desc);
2338                 }
2339         }
2340         printk(KERN_INFO "md:     THIS: ");
2341         print_desc(&sb->this_disk);
2342 }
2343
2344 static void print_sb_1(struct mdp_superblock_1 *sb)
2345 {
2346         __u8 *uuid;
2347
2348         uuid = sb->set_uuid;
2349         printk(KERN_INFO
2350                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2351                "md:    Name: \"%s\" CT:%llu\n",
2352                 le32_to_cpu(sb->major_version),
2353                 le32_to_cpu(sb->feature_map),
2354                 uuid,
2355                 sb->set_name,
2356                 (unsigned long long)le64_to_cpu(sb->ctime)
2357                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2358
2359         uuid = sb->device_uuid;
2360         printk(KERN_INFO
2361                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2362                         " RO:%llu\n"
2363                "md:     Dev:%08x UUID: %pU\n"
2364                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2365                "md:         (MaxDev:%u) \n",
2366                 le32_to_cpu(sb->level),
2367                 (unsigned long long)le64_to_cpu(sb->size),
2368                 le32_to_cpu(sb->raid_disks),
2369                 le32_to_cpu(sb->layout),
2370                 le32_to_cpu(sb->chunksize),
2371                 (unsigned long long)le64_to_cpu(sb->data_offset),
2372                 (unsigned long long)le64_to_cpu(sb->data_size),
2373                 (unsigned long long)le64_to_cpu(sb->super_offset),
2374                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2375                 le32_to_cpu(sb->dev_number),
2376                 uuid,
2377                 sb->devflags,
2378                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2379                 (unsigned long long)le64_to_cpu(sb->events),
2380                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2381                 le32_to_cpu(sb->sb_csum),
2382                 le32_to_cpu(sb->max_dev)
2383                 );
2384 }
2385
2386 static void print_rdev(struct md_rdev *rdev, int major_version)
2387 {
2388         char b[BDEVNAME_SIZE];
2389         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2390                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2391                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2392                 rdev->desc_nr);
2393         if (rdev->sb_loaded) {
2394                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2395                 switch (major_version) {
2396                 case 0:
2397                         print_sb_90(page_address(rdev->sb_page));
2398                         break;
2399                 case 1:
2400                         print_sb_1(page_address(rdev->sb_page));
2401                         break;
2402                 }
2403         } else
2404                 printk(KERN_INFO "md: no rdev superblock!\n");
2405 }
2406
2407 static void md_print_devices(void)
2408 {
2409         struct list_head *tmp;
2410         struct md_rdev *rdev;
2411         struct mddev *mddev;
2412         char b[BDEVNAME_SIZE];
2413
2414         printk("\n");
2415         printk("md:     **********************************\n");
2416         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2417         printk("md:     **********************************\n");
2418         for_each_mddev(mddev, tmp) {
2419
2420                 if (mddev->bitmap)
2421                         bitmap_print_sb(mddev->bitmap);
2422                 else
2423                         printk("%s: ", mdname(mddev));
2424                 rdev_for_each(rdev, mddev)
2425                         printk("<%s>", bdevname(rdev->bdev,b));
2426                 printk("\n");
2427
2428                 rdev_for_each(rdev, mddev)
2429                         print_rdev(rdev, mddev->major_version);
2430         }
2431         printk("md:     **********************************\n");
2432         printk("\n");
2433 }
2434
2435
2436 static void sync_sbs(struct mddev * mddev, int nospares)
2437 {
2438         /* Update each superblock (in-memory image), but
2439          * if we are allowed to, skip spares which already
2440          * have the right event counter, or have one earlier
2441          * (which would mean they aren't being marked as dirty
2442          * with the rest of the array)
2443          */
2444         struct md_rdev *rdev;
2445         rdev_for_each(rdev, mddev) {
2446                 if (rdev->sb_events == mddev->events ||
2447                     (nospares &&
2448                      rdev->raid_disk < 0 &&
2449                      rdev->sb_events+1 == mddev->events)) {
2450                         /* Don't update this superblock */
2451                         rdev->sb_loaded = 2;
2452                 } else {
2453                         sync_super(mddev, rdev);
2454                         rdev->sb_loaded = 1;
2455                 }
2456         }
2457 }
2458
2459 static void md_update_sb(struct mddev * mddev, int force_change)
2460 {
2461         struct md_rdev *rdev;
2462         int sync_req;
2463         int nospares = 0;
2464         int any_badblocks_changed = 0;
2465
2466 repeat:
2467         /* First make sure individual recovery_offsets are correct */
2468         rdev_for_each(rdev, mddev) {
2469                 if (rdev->raid_disk >= 0 &&
2470                     mddev->delta_disks >= 0 &&
2471                     !test_bit(In_sync, &rdev->flags) &&
2472                     mddev->curr_resync_completed > rdev->recovery_offset)
2473                                 rdev->recovery_offset = mddev->curr_resync_completed;
2474
2475         }       
2476         if (!mddev->persistent) {
2477                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2478                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2479                 if (!mddev->external) {
2480                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2481                         rdev_for_each(rdev, mddev) {
2482                                 if (rdev->badblocks.changed) {
2483                                         rdev->badblocks.changed = 0;
2484                                         md_ack_all_badblocks(&rdev->badblocks);
2485                                         md_error(mddev, rdev);
2486                                 }
2487                                 clear_bit(Blocked, &rdev->flags);
2488                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2489                                 wake_up(&rdev->blocked_wait);
2490                         }
2491                 }
2492                 wake_up(&mddev->sb_wait);
2493                 return;
2494         }
2495
2496         spin_lock_irq(&mddev->write_lock);
2497
2498         mddev->utime = get_seconds();
2499
2500         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2501                 force_change = 1;
2502         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2503                 /* just a clean<-> dirty transition, possibly leave spares alone,
2504                  * though if events isn't the right even/odd, we will have to do
2505                  * spares after all
2506                  */
2507                 nospares = 1;
2508         if (force_change)
2509                 nospares = 0;
2510         if (mddev->degraded)
2511                 /* If the array is degraded, then skipping spares is both
2512                  * dangerous and fairly pointless.
2513                  * Dangerous because a device that was removed from the array
2514                  * might have a event_count that still looks up-to-date,
2515                  * so it can be re-added without a resync.
2516                  * Pointless because if there are any spares to skip,
2517                  * then a recovery will happen and soon that array won't
2518                  * be degraded any more and the spare can go back to sleep then.
2519                  */
2520                 nospares = 0;
2521
2522         sync_req = mddev->in_sync;
2523
2524         /* If this is just a dirty<->clean transition, and the array is clean
2525          * and 'events' is odd, we can roll back to the previous clean state */
2526         if (nospares
2527             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2528             && mddev->can_decrease_events
2529             && mddev->events != 1) {
2530                 mddev->events--;
2531                 mddev->can_decrease_events = 0;
2532         } else {
2533                 /* otherwise we have to go forward and ... */
2534                 mddev->events ++;
2535                 mddev->can_decrease_events = nospares;
2536         }
2537
2538         if (!mddev->events) {
2539                 /*
2540                  * oops, this 64-bit counter should never wrap.
2541                  * Either we are in around ~1 trillion A.C., assuming
2542                  * 1 reboot per second, or we have a bug:
2543                  */
2544                 MD_BUG();
2545                 mddev->events --;
2546         }
2547
2548         rdev_for_each(rdev, mddev) {
2549                 if (rdev->badblocks.changed)
2550                         any_badblocks_changed++;
2551                 if (test_bit(Faulty, &rdev->flags))
2552                         set_bit(FaultRecorded, &rdev->flags);
2553         }
2554
2555         sync_sbs(mddev, nospares);
2556         spin_unlock_irq(&mddev->write_lock);
2557
2558         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2559                  mdname(mddev), mddev->in_sync);
2560
2561         bitmap_update_sb(mddev->bitmap);
2562         rdev_for_each(rdev, mddev) {
2563                 char b[BDEVNAME_SIZE];
2564
2565                 if (rdev->sb_loaded != 1)
2566                         continue; /* no noise on spare devices */
2567
2568                 if (!test_bit(Faulty, &rdev->flags) &&
2569                     rdev->saved_raid_disk == -1) {
2570                         md_super_write(mddev,rdev,
2571                                        rdev->sb_start, rdev->sb_size,
2572                                        rdev->sb_page);
2573                         pr_debug("md: (write) %s's sb offset: %llu\n",
2574                                  bdevname(rdev->bdev, b),
2575                                  (unsigned long long)rdev->sb_start);
2576                         rdev->sb_events = mddev->events;
2577                         if (rdev->badblocks.size) {
2578                                 md_super_write(mddev, rdev,
2579                                                rdev->badblocks.sector,
2580                                                rdev->badblocks.size << 9,
2581                                                rdev->bb_page);
2582                                 rdev->badblocks.size = 0;
2583                         }
2584
2585                 } else if (test_bit(Faulty, &rdev->flags))
2586                         pr_debug("md: %s (skipping faulty)\n",
2587                                  bdevname(rdev->bdev, b));
2588                 else
2589                         pr_debug("(skipping incremental s/r ");
2590
2591                 if (mddev->level == LEVEL_MULTIPATH)
2592                         /* only need to write one superblock... */
2593                         break;
2594         }
2595         md_super_wait(mddev);
2596         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2597
2598         spin_lock_irq(&mddev->write_lock);
2599         if (mddev->in_sync != sync_req ||
2600             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2601                 /* have to write it out again */
2602                 spin_unlock_irq(&mddev->write_lock);
2603                 goto repeat;
2604         }
2605         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2606         spin_unlock_irq(&mddev->write_lock);
2607         wake_up(&mddev->sb_wait);
2608         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2609                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2610
2611         rdev_for_each(rdev, mddev) {
2612                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2613                         clear_bit(Blocked, &rdev->flags);
2614
2615                 if (any_badblocks_changed)
2616                         md_ack_all_badblocks(&rdev->badblocks);
2617                 clear_bit(BlockedBadBlocks, &rdev->flags);
2618                 wake_up(&rdev->blocked_wait);
2619         }
2620 }
2621
2622 /* words written to sysfs files may, or may not, be \n terminated.
2623  * We want to accept with case. For this we use cmd_match.
2624  */
2625 static int cmd_match(const char *cmd, const char *str)
2626 {
2627         /* See if cmd, written into a sysfs file, matches
2628          * str.  They must either be the same, or cmd can
2629          * have a trailing newline
2630          */
2631         while (*cmd && *str && *cmd == *str) {
2632                 cmd++;
2633                 str++;
2634         }
2635         if (*cmd == '\n')
2636                 cmd++;
2637         if (*str || *cmd)
2638                 return 0;
2639         return 1;
2640 }
2641
2642 struct rdev_sysfs_entry {
2643         struct attribute attr;
2644         ssize_t (*show)(struct md_rdev *, char *);
2645         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2646 };
2647
2648 static ssize_t
2649 state_show(struct md_rdev *rdev, char *page)
2650 {
2651         char *sep = "";
2652         size_t len = 0;
2653
2654         if (test_bit(Faulty, &rdev->flags) ||
2655             rdev->badblocks.unacked_exist) {
2656                 len+= sprintf(page+len, "%sfaulty",sep);
2657                 sep = ",";
2658         }
2659         if (test_bit(In_sync, &rdev->flags)) {
2660                 len += sprintf(page+len, "%sin_sync",sep);
2661                 sep = ",";
2662         }
2663         if (test_bit(WriteMostly, &rdev->flags)) {
2664                 len += sprintf(page+len, "%swrite_mostly",sep);
2665                 sep = ",";
2666         }
2667         if (test_bit(Blocked, &rdev->flags) ||
2668             (rdev->badblocks.unacked_exist
2669              && !test_bit(Faulty, &rdev->flags))) {
2670                 len += sprintf(page+len, "%sblocked", sep);
2671                 sep = ",";
2672         }
2673         if (!test_bit(Faulty, &rdev->flags) &&
2674             !test_bit(In_sync, &rdev->flags)) {
2675                 len += sprintf(page+len, "%sspare", sep);
2676                 sep = ",";
2677         }
2678         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2679                 len += sprintf(page+len, "%swrite_error", sep);
2680                 sep = ",";
2681         }
2682         if (test_bit(WantReplacement, &rdev->flags)) {
2683                 len += sprintf(page+len, "%swant_replacement", sep);
2684                 sep = ",";
2685         }
2686         if (test_bit(Replacement, &rdev->flags)) {
2687                 len += sprintf(page+len, "%sreplacement", sep);
2688                 sep = ",";
2689         }
2690
2691         return len+sprintf(page+len, "\n");
2692 }
2693
2694 static ssize_t
2695 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2696 {
2697         /* can write
2698          *  faulty  - simulates an error
2699          *  remove  - disconnects the device
2700          *  writemostly - sets write_mostly
2701          *  -writemostly - clears write_mostly
2702          *  blocked - sets the Blocked flags
2703          *  -blocked - clears the Blocked and possibly simulates an error
2704          *  insync - sets Insync providing device isn't active
2705          *  write_error - sets WriteErrorSeen
2706          *  -write_error - clears WriteErrorSeen
2707          */
2708         int err = -EINVAL;
2709         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2710                 md_error(rdev->mddev, rdev);
2711                 if (test_bit(Faulty, &rdev->flags))
2712                         err = 0;
2713                 else
2714                         err = -EBUSY;
2715         } else if (cmd_match(buf, "remove")) {
2716                 if (rdev->raid_disk >= 0)
2717                         err = -EBUSY;
2718                 else {
2719                         struct mddev *mddev = rdev->mddev;
2720                         kick_rdev_from_array(rdev);
2721                         if (mddev->pers)
2722                                 md_update_sb(mddev, 1);
2723                         md_new_event(mddev);
2724                         err = 0;
2725                 }
2726         } else if (cmd_match(buf, "writemostly")) {
2727                 set_bit(WriteMostly, &rdev->flags);
2728                 err = 0;
2729         } else if (cmd_match(buf, "-writemostly")) {
2730                 clear_bit(WriteMostly, &rdev->flags);
2731                 err = 0;
2732         } else if (cmd_match(buf, "blocked")) {
2733                 set_bit(Blocked, &rdev->flags);
2734                 err = 0;
2735         } else if (cmd_match(buf, "-blocked")) {
2736                 if (!test_bit(Faulty, &rdev->flags) &&
2737                     rdev->badblocks.unacked_exist) {
2738                         /* metadata handler doesn't understand badblocks,
2739                          * so we need to fail the device
2740                          */
2741                         md_error(rdev->mddev, rdev);
2742                 }
2743                 clear_bit(Blocked, &rdev->flags);
2744                 clear_bit(BlockedBadBlocks, &rdev->flags);
2745                 wake_up(&rdev->blocked_wait);
2746                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2747                 md_wakeup_thread(rdev->mddev->thread);
2748
2749                 err = 0;
2750         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2751                 set_bit(In_sync, &rdev->flags);
2752                 err = 0;
2753         } else if (cmd_match(buf, "write_error")) {
2754                 set_bit(WriteErrorSeen, &rdev->flags);
2755                 err = 0;
2756         } else if (cmd_match(buf, "-write_error")) {
2757                 clear_bit(WriteErrorSeen, &rdev->flags);
2758                 err = 0;
2759         } else if (cmd_match(buf, "want_replacement")) {
2760                 /* Any non-spare device that is not a replacement can
2761                  * become want_replacement at any time, but we then need to
2762                  * check if recovery is needed.
2763                  */
2764                 if (rdev->raid_disk >= 0 &&
2765                     !test_bit(Replacement, &rdev->flags))
2766                         set_bit(WantReplacement, &rdev->flags);
2767                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2768                 md_wakeup_thread(rdev->mddev->thread);
2769                 err = 0;
2770         } else if (cmd_match(buf, "-want_replacement")) {
2771                 /* Clearing 'want_replacement' is always allowed.
2772                  * Once replacements starts it is too late though.
2773                  */
2774                 err = 0;
2775                 clear_bit(WantReplacement, &rdev->flags);
2776         } else if (cmd_match(buf, "replacement")) {
2777                 /* Can only set a device as a replacement when array has not
2778                  * yet been started.  Once running, replacement is automatic
2779                  * from spares, or by assigning 'slot'.
2780                  */
2781                 if (rdev->mddev->pers)
2782                         err = -EBUSY;
2783                 else {
2784                         set_bit(Replacement, &rdev->flags);
2785                         err = 0;
2786                 }
2787         } else if (cmd_match(buf, "-replacement")) {
2788                 /* Similarly, can only clear Replacement before start */
2789                 if (rdev->mddev->pers)
2790                         err = -EBUSY;
2791                 else {
2792                         clear_bit(Replacement, &rdev->flags);
2793                         err = 0;
2794                 }
2795         }
2796         if (!err)
2797                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2798         return err ? err : len;
2799 }
2800 static struct rdev_sysfs_entry rdev_state =
2801 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2802
2803 static ssize_t
2804 errors_show(struct md_rdev *rdev, char *page)
2805 {
2806         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2807 }
2808
2809 static ssize_t
2810 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2811 {
2812         char *e;
2813         unsigned long n = simple_strtoul(buf, &e, 10);
2814         if (*buf && (*e == 0 || *e == '\n')) {
2815                 atomic_set(&rdev->corrected_errors, n);
2816                 return len;
2817         }
2818         return -EINVAL;
2819 }
2820 static struct rdev_sysfs_entry rdev_errors =
2821 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2822
2823 static ssize_t
2824 slot_show(struct md_rdev *rdev, char *page)
2825 {
2826         if (rdev->raid_disk < 0)
2827                 return sprintf(page, "none\n");
2828         else
2829                 return sprintf(page, "%d\n", rdev->raid_disk);
2830 }
2831
2832 static ssize_t
2833 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2834 {
2835         char *e;
2836         int err;
2837         int slot = simple_strtoul(buf, &e, 10);
2838         if (strncmp(buf, "none", 4)==0)
2839                 slot = -1;
2840         else if (e==buf || (*e && *e!= '\n'))
2841                 return -EINVAL;
2842         if (rdev->mddev->pers && slot == -1) {
2843                 /* Setting 'slot' on an active array requires also
2844                  * updating the 'rd%d' link, and communicating
2845                  * with the personality with ->hot_*_disk.
2846                  * For now we only support removing
2847                  * failed/spare devices.  This normally happens automatically,
2848                  * but not when the metadata is externally managed.
2849                  */
2850                 if (rdev->raid_disk == -1)
2851                         return -EEXIST;
2852                 /* personality does all needed checks */
2853                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2854                         return -EINVAL;
2855                 err = rdev->mddev->pers->
2856                         hot_remove_disk(rdev->mddev, rdev);
2857                 if (err)
2858                         return err;
2859                 sysfs_unlink_rdev(rdev->mddev, rdev);
2860                 rdev->raid_disk = -1;
2861                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2862                 md_wakeup_thread(rdev->mddev->thread);
2863         } else if (rdev->mddev->pers) {
2864                 /* Activating a spare .. or possibly reactivating
2865                  * if we ever get bitmaps working here.
2866                  */
2867
2868                 if (rdev->raid_disk != -1)
2869                         return -EBUSY;
2870
2871                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2872                         return -EBUSY;
2873
2874                 if (rdev->mddev->pers->hot_add_disk == NULL)
2875                         return -EINVAL;
2876
2877                 if (slot >= rdev->mddev->raid_disks &&
2878                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2879                         return -ENOSPC;
2880
2881                 rdev->raid_disk = slot;
2882                 if (test_bit(In_sync, &rdev->flags))
2883                         rdev->saved_raid_disk = slot;
2884                 else
2885                         rdev->saved_raid_disk = -1;
2886                 clear_bit(In_sync, &rdev->flags);
2887                 err = rdev->mddev->pers->
2888                         hot_add_disk(rdev->mddev, rdev);
2889                 if (err) {
2890                         rdev->raid_disk = -1;
2891                         return err;
2892                 } else
2893                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2894                 if (sysfs_link_rdev(rdev->mddev, rdev))
2895                         /* failure here is OK */;
2896                 /* don't wakeup anyone, leave that to userspace. */
2897         } else {
2898                 if (slot >= rdev->mddev->raid_disks &&
2899                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2900                         return -ENOSPC;
2901                 rdev->raid_disk = slot;
2902                 /* assume it is working */
2903                 clear_bit(Faulty, &rdev->flags);
2904                 clear_bit(WriteMostly, &rdev->flags);
2905                 set_bit(In_sync, &rdev->flags);
2906                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2907         }
2908         return len;
2909 }
2910
2911
2912 static struct rdev_sysfs_entry rdev_slot =
2913 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2914
2915 static ssize_t
2916 offset_show(struct md_rdev *rdev, char *page)
2917 {
2918         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2919 }
2920
2921 static ssize_t
2922 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2923 {
2924         unsigned long long offset;
2925         if (strict_strtoull(buf, 10, &offset) < 0)
2926                 return -EINVAL;
2927         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2928                 return -EBUSY;
2929         if (rdev->sectors && rdev->mddev->external)
2930                 /* Must set offset before size, so overlap checks
2931                  * can be sane */
2932                 return -EBUSY;
2933         rdev->data_offset = offset;
2934         return len;
2935 }
2936
2937 static struct rdev_sysfs_entry rdev_offset =
2938 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2939
2940 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2941 {
2942         return sprintf(page, "%llu\n",
2943                        (unsigned long long)rdev->new_data_offset);
2944 }
2945
2946 static ssize_t new_offset_store(struct md_rdev *rdev,
2947                                 const char *buf, size_t len)
2948 {
2949         unsigned long long new_offset;
2950         struct mddev *mddev = rdev->mddev;
2951
2952         if (strict_strtoull(buf, 10, &new_offset) < 0)
2953                 return -EINVAL;
2954
2955         if (mddev->sync_thread)
2956                 return -EBUSY;
2957         if (new_offset == rdev->data_offset)
2958                 /* reset is always permitted */
2959                 ;
2960         else if (new_offset > rdev->data_offset) {
2961                 /* must not push array size beyond rdev_sectors */
2962                 if (new_offset - rdev->data_offset
2963                     + mddev->dev_sectors > rdev->sectors)
2964                                 return -E2BIG;
2965         }
2966         /* Metadata worries about other space details. */
2967
2968         /* decreasing the offset is inconsistent with a backwards
2969          * reshape.
2970          */
2971         if (new_offset < rdev->data_offset &&
2972             mddev->reshape_backwards)
2973                 return -EINVAL;
2974         /* Increasing offset is inconsistent with forwards
2975          * reshape.  reshape_direction should be set to
2976          * 'backwards' first.
2977          */
2978         if (new_offset > rdev->data_offset &&
2979             !mddev->reshape_backwards)
2980                 return -EINVAL;
2981
2982         if (mddev->pers && mddev->persistent &&
2983             !super_types[mddev->major_version]
2984             .allow_new_offset(rdev, new_offset))
2985                 return -E2BIG;
2986         rdev->new_data_offset = new_offset;
2987         if (new_offset > rdev->data_offset)
2988                 mddev->reshape_backwards = 1;
2989         else if (new_offset < rdev->data_offset)
2990                 mddev->reshape_backwards = 0;
2991
2992         return len;
2993 }
2994 static struct rdev_sysfs_entry rdev_new_offset =
2995 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2996
2997 static ssize_t
2998 rdev_size_show(struct md_rdev *rdev, char *page)
2999 {
3000         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3001 }
3002
3003 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3004 {
3005         /* check if two start/length pairs overlap */
3006         if (s1+l1 <= s2)
3007                 return 0;
3008         if (s2+l2 <= s1)
3009                 return 0;
3010         return 1;
3011 }
3012
3013 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3014 {
3015         unsigned long long blocks;
3016         sector_t new;
3017
3018         if (strict_strtoull(buf, 10, &blocks) < 0)
3019                 return -EINVAL;
3020
3021         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3022                 return -EINVAL; /* sector conversion overflow */
3023
3024         new = blocks * 2;
3025         if (new != blocks * 2)
3026                 return -EINVAL; /* unsigned long long to sector_t overflow */
3027
3028         *sectors = new;
3029         return 0;
3030 }
3031
3032 static ssize_t
3033 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3034 {
3035         struct mddev *my_mddev = rdev->mddev;
3036         sector_t oldsectors = rdev->sectors;
3037         sector_t sectors;
3038
3039         if (strict_blocks_to_sectors(buf, &sectors) < 0)
3040                 return -EINVAL;
3041         if (rdev->data_offset != rdev->new_data_offset)
3042                 return -EINVAL; /* too confusing */
3043         if (my_mddev->pers && rdev->raid_disk >= 0) {
3044                 if (my_mddev->persistent) {
3045                         sectors = super_types[my_mddev->major_version].
3046                                 rdev_size_change(rdev, sectors);
3047                         if (!sectors)
3048                                 return -EBUSY;
3049                 } else if (!sectors)
3050                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3051                                 rdev->data_offset;
3052         }
3053         if (sectors < my_mddev->dev_sectors)
3054                 return -EINVAL; /* component must fit device */
3055
3056         rdev->sectors = sectors;
3057         if (sectors > oldsectors && my_mddev->external) {
3058                 /* need to check that all other rdevs with the same ->bdev
3059                  * do not overlap.  We need to unlock the mddev to avoid
3060                  * a deadlock.  We have already changed rdev->sectors, and if
3061                  * we have to change it back, we will have the lock again.
3062                  */
3063                 struct mddev *mddev;
3064                 int overlap = 0;
3065                 struct list_head *tmp;
3066
3067                 mddev_unlock(my_mddev);
3068                 for_each_mddev(mddev, tmp) {
3069                         struct md_rdev *rdev2;
3070
3071                         mddev_lock(mddev);
3072                         rdev_for_each(rdev2, mddev)
3073                                 if (rdev->bdev == rdev2->bdev &&
3074                                     rdev != rdev2 &&
3075                                     overlaps(rdev->data_offset, rdev->sectors,
3076                                              rdev2->data_offset,
3077                                              rdev2->sectors)) {
3078                                         overlap = 1;
3079                                         break;
3080                                 }
3081                         mddev_unlock(mddev);
3082                         if (overlap) {
3083                                 mddev_put(mddev);
3084                                 break;
3085                         }
3086                 }
3087                 mddev_lock(my_mddev);
3088                 if (overlap) {
3089                         /* Someone else could have slipped in a size
3090                          * change here, but doing so is just silly.
3091                          * We put oldsectors back because we *know* it is
3092                          * safe, and trust userspace not to race with
3093                          * itself
3094                          */
3095                         rdev->sectors = oldsectors;
3096                         return -EBUSY;
3097                 }
3098         }
3099         return len;
3100 }
3101
3102 static struct rdev_sysfs_entry rdev_size =
3103 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3104
3105
3106 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3107 {
3108         unsigned long long recovery_start = rdev->recovery_offset;
3109
3110         if (test_bit(In_sync, &rdev->flags) ||
3111             recovery_start == MaxSector)
3112                 return sprintf(page, "none\n");
3113
3114         return sprintf(page, "%llu\n", recovery_start);
3115 }
3116
3117 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3118 {
3119         unsigned long long recovery_start;
3120
3121         if (cmd_match(buf, "none"))
3122                 recovery_start = MaxSector;
3123         else if (strict_strtoull(buf, 10, &recovery_start))
3124                 return -EINVAL;
3125
3126         if (rdev->mddev->pers &&
3127             rdev->raid_disk >= 0)
3128                 return -EBUSY;
3129
3130         rdev->recovery_offset = recovery_start;
3131         if (recovery_start == MaxSector)
3132                 set_bit(In_sync, &rdev->flags);
3133         else
3134                 clear_bit(In_sync, &rdev->flags);
3135         return len;
3136 }
3137
3138 static struct rdev_sysfs_entry rdev_recovery_start =
3139 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3140
3141
3142 static ssize_t
3143 badblocks_show(struct badblocks *bb, char *page, int unack);
3144 static ssize_t
3145 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3146
3147 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3148 {
3149         return badblocks_show(&rdev->badblocks, page, 0);
3150 }
3151 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3152 {
3153         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3154         /* Maybe that ack was all we needed */
3155         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3156                 wake_up(&rdev->blocked_wait);
3157         return rv;
3158 }
3159 static struct rdev_sysfs_entry rdev_bad_blocks =
3160 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3161
3162
3163 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3164 {
3165         return badblocks_show(&rdev->badblocks, page, 1);
3166 }
3167 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3168 {
3169         return badblocks_store(&rdev->badblocks, page, len, 1);
3170 }
3171 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3172 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3173
3174 static struct attribute *rdev_default_attrs[] = {
3175         &rdev_state.attr,
3176         &rdev_errors.attr,
3177         &rdev_slot.attr,
3178         &rdev_offset.attr,
3179         &rdev_new_offset.attr,
3180         &rdev_size.attr,
3181         &rdev_recovery_start.attr,
3182         &rdev_bad_blocks.attr,
3183         &rdev_unack_bad_blocks.attr,
3184         NULL,
3185 };
3186 static ssize_t
3187 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3188 {
3189         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3190         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3191         struct mddev *mddev = rdev->mddev;
3192         ssize_t rv;
3193
3194         if (!entry->show)
3195                 return -EIO;
3196
3197         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3198         if (!rv) {
3199                 if (rdev->mddev == NULL)
3200                         rv = -EBUSY;
3201                 else
3202                         rv = entry->show(rdev, page);
3203                 mddev_unlock(mddev);
3204         }
3205         return rv;
3206 }
3207
3208 static ssize_t
3209 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3210               const char *page, size_t length)
3211 {
3212         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3213         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3214         ssize_t rv;
3215         struct mddev *mddev = rdev->mddev;
3216
3217         if (!entry->store)
3218                 return -EIO;
3219         if (!capable(CAP_SYS_ADMIN))
3220                 return -EACCES;
3221         rv = mddev ? mddev_lock(mddev): -EBUSY;
3222         if (!rv) {
3223                 if (rdev->mddev == NULL)
3224                         rv = -EBUSY;
3225                 else
3226                         rv = entry->store(rdev, page, length);
3227                 mddev_unlock(mddev);
3228         }
3229         return rv;
3230 }
3231
3232 static void rdev_free(struct kobject *ko)
3233 {
3234         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3235         kfree(rdev);
3236 }
3237 static const struct sysfs_ops rdev_sysfs_ops = {
3238         .show           = rdev_attr_show,
3239         .store          = rdev_attr_store,
3240 };
3241 static struct kobj_type rdev_ktype = {
3242         .release        = rdev_free,
3243         .sysfs_ops      = &rdev_sysfs_ops,
3244         .default_attrs  = rdev_default_attrs,
3245 };
3246
3247 int md_rdev_init(struct md_rdev *rdev)
3248 {
3249         rdev->desc_nr = -1;
3250         rdev->saved_raid_disk = -1;
3251         rdev->raid_disk = -1;
3252         rdev->flags = 0;
3253         rdev->data_offset = 0;
3254         rdev->new_data_offset = 0;
3255         rdev->sb_events = 0;
3256         rdev->last_read_error.tv_sec  = 0;
3257         rdev->last_read_error.tv_nsec = 0;
3258         rdev->sb_loaded = 0;
3259         rdev->bb_page = NULL;
3260         atomic_set(&rdev->nr_pending, 0);
3261         atomic_set(&rdev->read_errors, 0);
3262         atomic_set(&rdev->corrected_errors, 0);
3263
3264         INIT_LIST_HEAD(&rdev->same_set);
3265         init_waitqueue_head(&rdev->blocked_wait);
3266
3267         /* Add space to store bad block list.
3268          * This reserves the space even on arrays where it cannot
3269          * be used - I wonder if that matters
3270          */
3271         rdev->badblocks.count = 0;
3272         rdev->badblocks.shift = 0;
3273         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3274         seqlock_init(&rdev->badblocks.lock);
3275         if (rdev->badblocks.page == NULL)
3276                 return -ENOMEM;
3277
3278         return 0;
3279 }
3280 EXPORT_SYMBOL_GPL(md_rdev_init);
3281 /*
3282  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3283  *
3284  * mark the device faulty if:
3285  *
3286  *   - the device is nonexistent (zero size)
3287  *   - the device has no valid superblock
3288  *
3289  * a faulty rdev _never_ has rdev->sb set.
3290  */
3291 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3292 {
3293         char b[BDEVNAME_SIZE];
3294         int err;
3295         struct md_rdev *rdev;
3296         sector_t size;
3297
3298         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3299         if (!rdev) {
3300                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3301                 return ERR_PTR(-ENOMEM);
3302         }
3303
3304         err = md_rdev_init(rdev);
3305         if (err)
3306                 goto abort_free;
3307         err = alloc_disk_sb(rdev);
3308         if (err)
3309                 goto abort_free;
3310
3311         err = lock_rdev(rdev, newdev, super_format == -2);
3312         if (err)
3313                 goto abort_free;
3314
3315         kobject_init(&rdev->kobj, &rdev_ktype);
3316
3317         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3318         if (!size) {
3319                 printk(KERN_WARNING 
3320                         "md: %s has zero or unknown size, marking faulty!\n",
3321                         bdevname(rdev->bdev,b));
3322                 err = -EINVAL;
3323                 goto abort_free;
3324         }
3325
3326         if (super_format >= 0) {
3327                 err = super_types[super_format].
3328                         load_super(rdev, NULL, super_minor);
3329                 if (err == -EINVAL) {
3330                         printk(KERN_WARNING
3331                                 "md: %s does not have a valid v%d.%d "
3332                                "superblock, not importing!\n",
3333                                 bdevname(rdev->bdev,b),
3334                                super_format, super_minor);
3335                         goto abort_free;
3336                 }
3337                 if (err < 0) {
3338                         printk(KERN_WARNING 
3339                                 "md: could not read %s's sb, not importing!\n",
3340                                 bdevname(rdev->bdev,b));
3341                         goto abort_free;
3342                 }
3343         }
3344         if (super_format == -1)
3345                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3346                 rdev->badblocks.shift = -1;
3347
3348         return rdev;
3349
3350 abort_free:
3351         if (rdev->bdev)
3352                 unlock_rdev(rdev);
3353         md_rdev_clear(rdev);
3354         kfree(rdev);
3355         return ERR_PTR(err);
3356 }
3357
3358 /*
3359  * Check a full RAID array for plausibility
3360  */
3361
3362
3363 static void analyze_sbs(struct mddev * mddev)
3364 {
3365         int i;
3366         struct md_rdev *rdev, *freshest, *tmp;
3367         char b[BDEVNAME_SIZE];
3368
3369         freshest = NULL;
3370         rdev_for_each_safe(rdev, tmp, mddev)
3371                 switch (super_types[mddev->major_version].
3372                         load_super(rdev, freshest, mddev->minor_version)) {
3373                 case 1:
3374                         freshest = rdev;
3375                         break;
3376                 case 0:
3377                         break;
3378                 default:
3379                         printk( KERN_ERR \
3380                                 "md: fatal superblock inconsistency in %s"
3381                                 " -- removing from array\n", 
3382                                 bdevname(rdev->bdev,b));
3383                         kick_rdev_from_array(rdev);
3384                 }
3385
3386
3387         super_types[mddev->major_version].
3388                 validate_super(mddev, freshest);
3389
3390         i = 0;
3391         rdev_for_each_safe(rdev, tmp, mddev) {
3392                 if (mddev->max_disks &&
3393                     (rdev->desc_nr >= mddev->max_disks ||
3394                      i > mddev->max_disks)) {
3395                         printk(KERN_WARNING
3396                                "md: %s: %s: only %d devices permitted\n",
3397                                mdname(mddev), bdevname(rdev->bdev, b),
3398                                mddev->max_disks);
3399                         kick_rdev_from_array(rdev);
3400                         continue;
3401                 }
3402                 if (rdev != freshest)
3403                         if (super_types[mddev->major_version].
3404                             validate_super(mddev, rdev)) {
3405                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3406                                         " from array!\n",
3407                                         bdevname(rdev->bdev,b));
3408                                 kick_rdev_from_array(rdev);
3409                                 continue;
3410                         }
3411                 if (mddev->level == LEVEL_MULTIPATH) {
3412                         rdev->desc_nr = i++;
3413                         rdev->raid_disk = rdev->desc_nr;
3414                         set_bit(In_sync, &rdev->flags);
3415                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3416                         rdev->raid_disk = -1;
3417                         clear_bit(In_sync, &rdev->flags);
3418                 }
3419         }
3420 }
3421
3422 /* Read a fixed-point number.
3423  * Numbers in sysfs attributes should be in "standard" units where
3424  * possible, so time should be in seconds.
3425  * However we internally use a a much smaller unit such as 
3426  * milliseconds or jiffies.
3427  * This function takes a decimal number with a possible fractional
3428  * component, and produces an integer which is the result of
3429  * multiplying that number by 10^'scale'.
3430  * all without any floating-point arithmetic.
3431  */
3432 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3433 {
3434         unsigned long result = 0;
3435         long decimals = -1;
3436         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3437                 if (*cp == '.')
3438                         decimals = 0;
3439                 else if (decimals < scale) {
3440                         unsigned int value;
3441                         value = *cp - '0';
3442                         result = result * 10 + value;
3443                         if (decimals >= 0)
3444                                 decimals++;
3445                 }
3446                 cp++;
3447         }
3448         if (*cp == '\n')
3449                 cp++;
3450         if (*cp)
3451                 return -EINVAL;
3452         if (decimals < 0)
3453                 decimals = 0;
3454         while (decimals < scale) {
3455                 result *= 10;
3456                 decimals ++;
3457         }
3458         *res = result;
3459         return 0;
3460 }
3461
3462
3463 static void md_safemode_timeout(unsigned long data);
3464
3465 static ssize_t
3466 safe_delay_show(struct mddev *mddev, char *page)
3467 {
3468         int msec = (mddev->safemode_delay*1000)/HZ;
3469         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3470 }
3471 static ssize_t
3472 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3473 {
3474         unsigned long msec;
3475
3476         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3477                 return -EINVAL;
3478         if (msec == 0)
3479                 mddev->safemode_delay = 0;
3480         else {
3481                 unsigned long old_delay = mddev->safemode_delay;
3482                 mddev->safemode_delay = (msec*HZ)/1000;
3483                 if (mddev->safemode_delay == 0)
3484                         mddev->safemode_delay = 1;
3485                 if (mddev->safemode_delay < old_delay)
3486                         md_safemode_timeout((unsigned long)mddev);
3487         }
3488         return len;
3489 }
3490 static struct md_sysfs_entry md_safe_delay =
3491 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3492
3493 static ssize_t
3494 level_show(struct mddev *mddev, char *page)
3495 {
3496         struct md_personality *p = mddev->pers;
3497         if (p)
3498                 return sprintf(page, "%s\n", p->name);
3499         else if (mddev->clevel[0])
3500                 return sprintf(page, "%s\n", mddev->clevel);
3501         else if (mddev->level != LEVEL_NONE)
3502                 return sprintf(page, "%d\n", mddev->level);
3503         else
3504                 return 0;
3505 }
3506
3507 static ssize_t
3508 level_store(struct mddev *mddev, const char *buf, size_t len)
3509 {
3510         char clevel[16];
3511         ssize_t rv = len;
3512         struct md_personality *pers;
3513         long level;
3514         void *priv;
3515         struct md_rdev *rdev;
3516
3517         if (mddev->pers == NULL) {
3518                 if (len == 0)
3519                         return 0;
3520                 if (len >= sizeof(mddev->clevel))
3521                         return -ENOSPC;
3522                 strncpy(mddev->clevel, buf, len);
3523                 if (mddev->clevel[len-1] == '\n')
3524                         len--;
3525                 mddev->clevel[len] = 0;
3526                 mddev->level = LEVEL_NONE;
3527                 return rv;
3528         }
3529
3530         /* request to change the personality.  Need to ensure:
3531          *  - array is not engaged in resync/recovery/reshape
3532          *  - old personality can be suspended
3533          *  - new personality will access other array.
3534          */
3535
3536         if (mddev->sync_thread ||
3537             mddev->reshape_position != MaxSector ||
3538             mddev->sysfs_active)
3539                 return -EBUSY;
3540
3541         if (!mddev->pers->quiesce) {
3542                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3543                        mdname(mddev), mddev->pers->name);
3544                 return -EINVAL;
3545         }
3546
3547         /* Now find the new personality */
3548         if (len == 0 || len >= sizeof(clevel))
3549                 return -EINVAL;
3550         strncpy(clevel, buf, len);
3551         if (clevel[len-1] == '\n')
3552                 len--;
3553         clevel[len] = 0;
3554         if (strict_strtol(clevel, 10, &level))
3555                 level = LEVEL_NONE;
3556
3557         if (request_module("md-%s", clevel) != 0)
3558                 request_module("md-level-%s", clevel);
3559         spin_lock(&pers_lock);
3560         pers = find_pers(level, clevel);
3561         if (!pers || !try_module_get(pers->owner)) {
3562                 spin_unlock(&pers_lock);
3563                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3564                 return -EINVAL;
3565         }
3566         spin_unlock(&pers_lock);
3567
3568         if (pers == mddev->pers) {
3569                 /* Nothing to do! */
3570                 module_put(pers->owner);
3571                 return rv;
3572         }
3573         if (!pers->takeover) {
3574                 module_put(pers->owner);
3575                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3576                        mdname(mddev), clevel);
3577                 return -EINVAL;
3578         }
3579
3580         rdev_for_each(rdev, mddev)
3581                 rdev->new_raid_disk = rdev->raid_disk;
3582
3583         /* ->takeover must set new_* and/or delta_disks
3584          * if it succeeds, and may set them when it fails.
3585          */
3586         priv = pers->takeover(mddev);
3587         if (IS_ERR(priv)) {
3588                 mddev->new_level = mddev->level;
3589                 mddev->new_layout = mddev->layout;
3590                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3591                 mddev->raid_disks -= mddev->delta_disks;
3592                 mddev->delta_disks = 0;
3593                 mddev->reshape_backwards = 0;
3594                 module_put(pers->owner);
3595                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3596                        mdname(mddev), clevel);
3597                 return PTR_ERR(priv);
3598         }
3599
3600         /* Looks like we have a winner */
3601         mddev_suspend(mddev);
3602         mddev->pers->stop(mddev);
3603         
3604         if (mddev->pers->sync_request == NULL &&
3605             pers->sync_request != NULL) {
3606                 /* need to add the md_redundancy_group */
3607                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3608                         printk(KERN_WARNING
3609                                "md: cannot register extra attributes for %s\n",
3610                                mdname(mddev));
3611                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3612         }               
3613         if (mddev->pers->sync_request != NULL &&
3614             pers->sync_request == NULL) {
3615                 /* need to remove the md_redundancy_group */
3616                 if (mddev->to_remove == NULL)
3617                         mddev->to_remove = &md_redundancy_group;
3618         }
3619
3620         if (mddev->pers->sync_request == NULL &&
3621             mddev->external) {
3622                 /* We are converting from a no-redundancy array
3623                  * to a redundancy array and metadata is managed
3624                  * externally so we need to be sure that writes
3625                  * won't block due to a need to transition
3626                  *      clean->dirty
3627                  * until external management is started.
3628                  */
3629                 mddev->in_sync = 0;
3630                 mddev->safemode_delay = 0;
3631                 mddev->safemode = 0;
3632         }
3633
3634         rdev_for_each(rdev, mddev) {
3635                 if (rdev->raid_disk < 0)
3636                         continue;
3637                 if (rdev->new_raid_disk >= mddev->raid_disks)
3638                         rdev->new_raid_disk = -1;
3639                 if (rdev->new_raid_disk == rdev->raid_disk)
3640                         continue;
3641                 sysfs_unlink_rdev(mddev, rdev);
3642         }
3643         rdev_for_each(rdev, mddev) {
3644                 if (rdev->raid_disk < 0)
3645                         continue;
3646                 if (rdev->new_raid_disk == rdev->raid_disk)
3647                         continue;
3648                 rdev->raid_disk = rdev->new_raid_disk;
3649                 if (rdev->raid_disk < 0)
3650                         clear_bit(In_sync, &rdev->flags);
3651                 else {
3652                         if (sysfs_link_rdev(mddev, rdev))
3653                                 printk(KERN_WARNING "md: cannot register rd%d"
3654                                        " for %s after level change\n",
3655                                        rdev->raid_disk, mdname(mddev));
3656                 }
3657         }
3658
3659         module_put(mddev->pers->owner);
3660         mddev->pers = pers;
3661         mddev->private = priv;
3662         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3663         mddev->level = mddev->new_level;
3664         mddev->layout = mddev->new_layout;
3665         mddev->chunk_sectors = mddev->new_chunk_sectors;
3666         mddev->delta_disks = 0;
3667         mddev->reshape_backwards = 0;
3668         mddev->degraded = 0;
3669         if (mddev->pers->sync_request == NULL) {
3670                 /* this is now an array without redundancy, so
3671                  * it must always be in_sync
3672                  */
3673                 mddev->in_sync = 1;
3674                 del_timer_sync(&mddev->safemode_timer);
3675         }
3676         pers->run(mddev);
3677         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3678         mddev_resume(mddev);
3679         sysfs_notify(&mddev->kobj, NULL, "level");
3680         md_new_event(mddev);
3681         return rv;
3682 }
3683
3684 static struct md_sysfs_entry md_level =
3685 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3686
3687
3688 static ssize_t
3689 layout_show(struct mddev *mddev, char *page)
3690 {
3691         /* just a number, not meaningful for all levels */
3692         if (mddev->reshape_position != MaxSector &&
3693             mddev->layout != mddev->new_layout)
3694                 return sprintf(page, "%d (%d)\n",
3695                                mddev->new_layout, mddev->layout);
3696         return sprintf(page, "%d\n", mddev->layout);
3697 }
3698
3699 static ssize_t
3700 layout_store(struct mddev *mddev, const char *buf, size_t len)
3701 {
3702         char *e;
3703         unsigned long n = simple_strtoul(buf, &e, 10);
3704
3705         if (!*buf || (*e && *e != '\n'))
3706                 return -EINVAL;
3707
3708         if (mddev->pers) {
3709                 int err;
3710                 if (mddev->pers->check_reshape == NULL)
3711                         return -EBUSY;
3712                 mddev->new_layout = n;
3713                 err = mddev->pers->check_reshape(mddev);
3714                 if (err) {
3715                         mddev->new_layout = mddev->layout;
3716                         return err;
3717                 }
3718         } else {
3719                 mddev->new_layout = n;
3720                 if (mddev->reshape_position == MaxSector)
3721                         mddev->layout = n;
3722         }
3723         return len;
3724 }
3725 static struct md_sysfs_entry md_layout =
3726 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3727
3728
3729 static ssize_t
3730 raid_disks_show(struct mddev *mddev, char *page)
3731 {
3732         if (mddev->raid_disks == 0)
3733                 return 0;
3734         if (mddev->reshape_position != MaxSector &&
3735             mddev->delta_disks != 0)
3736                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3737                                mddev->raid_disks - mddev->delta_disks);
3738         return sprintf(page, "%d\n", mddev->raid_disks);
3739 }
3740
3741 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3742
3743 static ssize_t
3744 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3745 {
3746         char *e;
3747         int rv = 0;
3748         unsigned long n = simple_strtoul(buf, &e, 10);
3749
3750         if (!*buf || (*e && *e != '\n'))
3751                 return -EINVAL;
3752
3753         if (mddev->pers)
3754                 rv = update_raid_disks(mddev, n);
3755         else if (mddev->reshape_position != MaxSector) {
3756                 struct md_rdev *rdev;
3757                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3758
3759                 rdev_for_each(rdev, mddev) {
3760                         if (olddisks < n &&
3761                             rdev->data_offset < rdev->new_data_offset)
3762                                 return -EINVAL;
3763                         if (olddisks > n &&
3764                             rdev->data_offset > rdev->new_data_offset)
3765                                 return -EINVAL;
3766                 }
3767                 mddev->delta_disks = n - olddisks;
3768                 mddev->raid_disks = n;
3769                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3770         } else
3771                 mddev->raid_disks = n;
3772         return rv ? rv : len;
3773 }
3774 static struct md_sysfs_entry md_raid_disks =
3775 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3776
3777 static ssize_t
3778 chunk_size_show(struct mddev *mddev, char *page)
3779 {
3780         if (mddev->reshape_position != MaxSector &&
3781             mddev->chunk_sectors != mddev->new_chunk_sectors)
3782                 return sprintf(page, "%d (%d)\n",
3783                                mddev->new_chunk_sectors << 9,
3784                                mddev->chunk_sectors << 9);
3785         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3786 }
3787
3788 static ssize_t
3789 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3790 {
3791         char *e;
3792         unsigned long n = simple_strtoul(buf, &e, 10);
3793
3794         if (!*buf || (*e && *e != '\n'))
3795                 return -EINVAL;
3796
3797         if (mddev->pers) {
3798                 int err;
3799                 if (mddev->pers->check_reshape == NULL)
3800                         return -EBUSY;
3801                 mddev->new_chunk_sectors = n >> 9;
3802                 err = mddev->pers->check_reshape(mddev);
3803                 if (err) {
3804                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3805                         return err;
3806                 }
3807         } else {
3808                 mddev->new_chunk_sectors = n >> 9;
3809                 if (mddev->reshape_position == MaxSector)
3810                         mddev->chunk_sectors = n >> 9;
3811         }
3812         return len;
3813 }
3814 static struct md_sysfs_entry md_chunk_size =
3815 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3816
3817 static ssize_t
3818 resync_start_show(struct mddev *mddev, char *page)
3819 {
3820         if (mddev->recovery_cp == MaxSector)
3821                 return sprintf(page, "none\n");
3822         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3823 }
3824
3825 static ssize_t
3826 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3827 {
3828         char *e;
3829         unsigned long long n = simple_strtoull(buf, &e, 10);
3830
3831         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3832                 return -EBUSY;
3833         if (cmd_match(buf, "none"))
3834                 n = MaxSector;
3835         else if (!*buf || (*e && *e != '\n'))
3836                 return -EINVAL;
3837
3838         mddev->recovery_cp = n;
3839         return len;
3840 }
3841 static struct md_sysfs_entry md_resync_start =
3842 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3843
3844 /*
3845  * The array state can be:
3846  *
3847  * clear
3848  *     No devices, no size, no level
3849  *     Equivalent to STOP_ARRAY ioctl
3850  * inactive
3851  *     May have some settings, but array is not active
3852  *        all IO results in error
3853  *     When written, doesn't tear down array, but just stops it
3854  * suspended (not supported yet)
3855  *     All IO requests will block. The array can be reconfigured.
3856  *     Writing this, if accepted, will block until array is quiescent
3857  * readonly
3858  *     no resync can happen.  no superblocks get written.
3859  *     write requests fail
3860  * read-auto
3861  *     like readonly, but behaves like 'clean' on a write request.
3862  *
3863  * clean - no pending writes, but otherwise active.
3864  *     When written to inactive array, starts without resync
3865  *     If a write request arrives then
3866  *       if metadata is known, mark 'dirty' and switch to 'active'.
3867  *       if not known, block and switch to write-pending
3868  *     If written to an active array that has pending writes, then fails.
3869  * active
3870  *     fully active: IO and resync can be happening.
3871  *     When written to inactive array, starts with resync
3872  *
3873  * write-pending
3874  *     clean, but writes are blocked waiting for 'active' to be written.
3875  *
3876  * active-idle
3877  *     like active, but no writes have been seen for a while (100msec).
3878  *
3879  */
3880 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3881                    write_pending, active_idle, bad_word};
3882 static char *array_states[] = {
3883         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3884         "write-pending", "active-idle", NULL };
3885
3886 static int match_word(const char *word, char **list)
3887 {
3888         int n;
3889         for (n=0; list[n]; n++)
3890                 if (cmd_match(word, list[n]))
3891                         break;
3892         return n;
3893 }
3894
3895 static ssize_t
3896 array_state_show(struct mddev *mddev, char *page)
3897 {
3898         enum array_state st = inactive;
3899
3900         if (mddev->pers)
3901                 switch(mddev->ro) {
3902                 case 1:
3903                         st = readonly;
3904                         break;
3905                 case 2:
3906                         st = read_auto;
3907                         break;
3908                 case 0:
3909                         if (mddev->in_sync)
3910                                 st = clean;
3911                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3912                                 st = write_pending;
3913                         else if (mddev->safemode)
3914                                 st = active_idle;
3915                         else
3916                                 st = active;
3917                 }
3918         else {
3919                 if (list_empty(&mddev->disks) &&
3920                     mddev->raid_disks == 0 &&
3921                     mddev->dev_sectors == 0)
3922                         st = clear;
3923                 else
3924                         st = inactive;
3925         }
3926         return sprintf(page, "%s\n", array_states[st]);
3927 }
3928
3929 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3930 static int md_set_readonly(struct mddev * mddev, int is_open);
3931 static int do_md_run(struct mddev * mddev);
3932 static int restart_array(struct mddev *mddev);
3933
3934 static ssize_t
3935 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3936 {
3937         int err = -EINVAL;
3938         enum array_state st = match_word(buf, array_states);
3939         switch(st) {
3940         case bad_word:
3941                 break;
3942         case clear:
3943                 /* stopping an active array */
3944                 if (atomic_read(&mddev->openers) > 0)
3945                         return -EBUSY;
3946                 err = do_md_stop(mddev, 0, 0);
3947                 break;
3948         case inactive:
3949                 /* stopping an active array */
3950                 if (mddev->pers) {
3951                         if (atomic_read(&mddev->openers) > 0)
3952                                 return -EBUSY;
3953                         err = do_md_stop(mddev, 2, 0);
3954                 } else
3955                         err = 0; /* already inactive */
3956                 break;
3957         case suspended:
3958                 break; /* not supported yet */
3959         case readonly:
3960                 if (mddev->pers)
3961                         err = md_set_readonly(mddev, 0);
3962                 else {
3963                         mddev->ro = 1;
3964                         set_disk_ro(mddev->gendisk, 1);
3965                         err = do_md_run(mddev);
3966                 }
3967                 break;
3968         case read_auto:
3969                 if (mddev->pers) {
3970                         if (mddev->ro == 0)
3971                                 err = md_set_readonly(mddev, 0);
3972                         else if (mddev->ro == 1)
3973                                 err = restart_array(mddev);
3974                         if (err == 0) {
3975                                 mddev->ro = 2;
3976                                 set_disk_ro(mddev->gendisk, 0);
3977                         }
3978                 } else {
3979                         mddev->ro = 2;
3980                         err = do_md_run(mddev);
3981                 }
3982                 break;
3983         case clean:
3984                 if (mddev->pers) {
3985                         restart_array(mddev);
3986                         spin_lock_irq(&mddev->write_lock);
3987                         if (atomic_read(&mddev->writes_pending) == 0) {
3988                                 if (mddev->in_sync == 0) {
3989                                         mddev->in_sync = 1;
3990                                         if (mddev->safemode == 1)
3991                                                 mddev->safemode = 0;
3992                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3993                                 }
3994                                 err = 0;
3995                         } else
3996                                 err = -EBUSY;
3997                         spin_unlock_irq(&mddev->write_lock);
3998                 } else
3999                         err = -EINVAL;
4000                 break;
4001         case active:
4002                 if (mddev->pers) {
4003                         restart_array(mddev);
4004                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4005                         wake_up(&mddev->sb_wait);
4006                         err = 0;
4007                 } else {
4008                         mddev->ro = 0;
4009                         set_disk_ro(mddev->gendisk, 0);
4010                         err = do_md_run(mddev);
4011                 }
4012                 break;
4013         case write_pending:
4014         case active_idle:
4015                 /* these cannot be set */
4016                 break;
4017         }
4018         if (err)
4019                 return err;
4020         else {
4021                 if (mddev->hold_active == UNTIL_IOCTL)
4022                         mddev->hold_active = 0;
4023                 sysfs_notify_dirent_safe(mddev->sysfs_state);
4024                 return len;
4025         }
4026 }
4027 static struct md_sysfs_entry md_array_state =
4028 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4029
4030 static ssize_t
4031 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4032         return sprintf(page, "%d\n",
4033                        atomic_read(&mddev->max_corr_read_errors));
4034 }
4035
4036 static ssize_t
4037 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4038 {
4039         char *e;
4040         unsigned long n = simple_strtoul(buf, &e, 10);
4041
4042         if (*buf && (*e == 0 || *e == '\n')) {
4043                 atomic_set(&mddev->max_corr_read_errors, n);
4044                 return len;
4045         }
4046         return -EINVAL;
4047 }
4048
4049 static struct md_sysfs_entry max_corr_read_errors =
4050 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4051         max_corrected_read_errors_store);
4052
4053 static ssize_t
4054 null_show(struct mddev *mddev, char *page)
4055 {
4056         return -EINVAL;
4057 }
4058
4059 static ssize_t
4060 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4061 {
4062         /* buf must be %d:%d\n? giving major and minor numbers */
4063         /* The new device is added to the array.
4064          * If the array has a persistent superblock, we read the
4065          * superblock to initialise info and check validity.
4066          * Otherwise, only checking done is that in bind_rdev_to_array,
4067          * which mainly checks size.
4068          */
4069         char *e;
4070         int major = simple_strtoul(buf, &e, 10);
4071         int minor;
4072         dev_t dev;
4073         struct md_rdev *rdev;
4074         int err;
4075
4076         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4077                 return -EINVAL;
4078         minor = simple_strtoul(e+1, &e, 10);
4079         if (*e && *e != '\n')
4080                 return -EINVAL;
4081         dev = MKDEV(major, minor);
4082         if (major != MAJOR(dev) ||
4083             minor != MINOR(dev))
4084                 return -EOVERFLOW;
4085
4086
4087         if (mddev->persistent) {
4088                 rdev = md_import_device(dev, mddev->major_version,
4089                                         mddev->minor_version);
4090                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4091                         struct md_rdev *rdev0
4092                                 = list_entry(mddev->disks.next,
4093                                              struct md_rdev, same_set);
4094                         err = super_types[mddev->major_version]
4095                                 .load_super(rdev, rdev0, mddev->minor_version);
4096                         if (err < 0)
4097                                 goto out;
4098                 }
4099         } else if (mddev->external)
4100                 rdev = md_import_device(dev, -2, -1);
4101         else
4102                 rdev = md_import_device(dev, -1, -1);
4103
4104         if (IS_ERR(rdev))
4105                 return PTR_ERR(rdev);
4106         err = bind_rdev_to_array(rdev, mddev);
4107  out:
4108         if (err)
4109                 export_rdev(rdev);
4110         return err ? err : len;
4111 }
4112
4113 static struct md_sysfs_entry md_new_device =
4114 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4115
4116 static ssize_t
4117 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4118 {
4119         char *end;
4120         unsigned long chunk, end_chunk;
4121
4122         if (!mddev->bitmap)
4123                 goto out;
4124         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4125         while (*buf) {
4126                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4127                 if (buf == end) break;
4128                 if (*end == '-') { /* range */
4129                         buf = end + 1;
4130                         end_chunk = simple_strtoul(buf, &end, 0);
4131                         if (buf == end) break;
4132                 }
4133                 if (*end && !isspace(*end)) break;
4134                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4135                 buf = skip_spaces(end);
4136         }
4137         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4138 out:
4139         return len;
4140 }
4141
4142 static struct md_sysfs_entry md_bitmap =
4143 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4144
4145 static ssize_t
4146 size_show(struct mddev *mddev, char *page)
4147 {
4148         return sprintf(page, "%llu\n",
4149                 (unsigned long long)mddev->dev_sectors / 2);
4150 }
4151
4152 static int update_size(struct mddev *mddev, sector_t num_sectors);
4153
4154 static ssize_t
4155 size_store(struct mddev *mddev, const char *buf, size_t len)
4156 {
4157         /* If array is inactive, we can reduce the component size, but
4158          * not increase it (except from 0).
4159          * If array is active, we can try an on-line resize
4160          */
4161         sector_t sectors;
4162         int err = strict_blocks_to_sectors(buf, &sectors);
4163
4164         if (err < 0)
4165                 return err;
4166         if (mddev->pers) {
4167                 err = update_size(mddev, sectors);
4168                 md_update_sb(mddev, 1);
4169         } else {
4170                 if (mddev->dev_sectors == 0 ||
4171                     mddev->dev_sectors > sectors)
4172                         mddev->dev_sectors = sectors;
4173                 else
4174                         err = -ENOSPC;
4175         }
4176         return err ? err : len;
4177 }
4178
4179 static struct md_sysfs_entry md_size =
4180 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4181
4182
4183 /* Metdata version.
4184  * This is one of
4185  *   'none' for arrays with no metadata (good luck...)
4186  *   'external' for arrays with externally managed metadata,
4187  * or N.M for internally known formats
4188  */
4189 static ssize_t
4190 metadata_show(struct mddev *mddev, char *page)
4191 {
4192         if (mddev->persistent)
4193                 return sprintf(page, "%d.%d\n",
4194                                mddev->major_version, mddev->minor_version);
4195         else if (mddev->external)
4196                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4197         else
4198                 return sprintf(page, "none\n");
4199 }
4200
4201 static ssize_t
4202 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4203 {
4204         int major, minor;
4205         char *e;
4206         /* Changing the details of 'external' metadata is
4207          * always permitted.  Otherwise there must be
4208          * no devices attached to the array.
4209          */
4210         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4211                 ;
4212         else if (!list_empty(&mddev->disks))
4213                 return -EBUSY;
4214
4215         if (cmd_match(buf, "none")) {
4216                 mddev->persistent = 0;
4217                 mddev->external = 0;
4218                 mddev->major_version = 0;
4219                 mddev->minor_version = 90;
4220                 return len;
4221         }
4222         if (strncmp(buf, "external:", 9) == 0) {
4223                 size_t namelen = len-9;
4224                 if (namelen >= sizeof(mddev->metadata_type))
4225                         namelen = sizeof(mddev->metadata_type)-1;
4226                 strncpy(mddev->metadata_type, buf+9, namelen);
4227                 mddev->metadata_type[namelen] = 0;
4228                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4229                         mddev->metadata_type[--namelen] = 0;
4230                 mddev->persistent = 0;
4231                 mddev->external = 1;
4232                 mddev->major_version = 0;
4233                 mddev->minor_version = 90;
4234                 return len;
4235         }
4236         major = simple_strtoul(buf, &e, 10);
4237         if (e==buf || *e != '.')
4238                 return -EINVAL;
4239         buf = e+1;
4240         minor = simple_strtoul(buf, &e, 10);
4241         if (e==buf || (*e && *e != '\n') )
4242                 return -EINVAL;
4243         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4244                 return -ENOENT;
4245         mddev->major_version = major;
4246         mddev->minor_version = minor;
4247         mddev->persistent = 1;
4248         mddev->external = 0;
4249         return len;
4250 }
4251
4252 static struct md_sysfs_entry md_metadata =
4253 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4254
4255 static ssize_t
4256 action_show(struct mddev *mddev, char *page)
4257 {
4258         char *type = "idle";
4259         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4260                 type = "frozen";
4261         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4262             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4263                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4264                         type = "reshape";
4265                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4266                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4267                                 type = "resync";
4268                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4269                                 type = "check";
4270                         else
4271                                 type = "repair";
4272                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4273                         type = "recover";
4274         }
4275         return sprintf(page, "%s\n", type);
4276 }
4277
4278 static void reap_sync_thread(struct mddev *mddev);
4279
4280 static ssize_t
4281 action_store(struct mddev *mddev, const char *page, size_t len)
4282 {
4283         if (!mddev->pers || !mddev->pers->sync_request)
4284                 return -EINVAL;
4285
4286         if (cmd_match(page, "frozen"))
4287                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4288         else
4289                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4290
4291         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4292                 if (mddev->sync_thread) {
4293                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4294                         reap_sync_thread(mddev);
4295                 }
4296         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4297                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4298                 return -EBUSY;
4299         else if (cmd_match(page, "resync"))
4300                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4301         else if (cmd_match(page, "recover")) {
4302                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4303                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4304         } else if (cmd_match(page, "reshape")) {
4305                 int err;
4306                 if (mddev->pers->start_reshape == NULL)
4307                         return -EINVAL;
4308                 err = mddev->pers->start_reshape(mddev);
4309                 if (err)
4310                         return err;
4311                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4312         } else {
4313                 if (cmd_match(page, "check"))
4314                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4315                 else if (!cmd_match(page, "repair"))
4316                         return -EINVAL;
4317                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4318                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4319         }
4320         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4321         md_wakeup_thread(mddev->thread);
4322         sysfs_notify_dirent_safe(mddev->sysfs_action);
4323         return len;
4324 }
4325
4326 static ssize_t
4327 mismatch_cnt_show(struct mddev *mddev, char *page)
4328 {
4329         return sprintf(page, "%llu\n",
4330                        (unsigned long long) mddev->resync_mismatches);
4331 }
4332
4333 static struct md_sysfs_entry md_scan_mode =
4334 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4335
4336
4337 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4338
4339 static ssize_t
4340 sync_min_show(struct mddev *mddev, char *page)
4341 {
4342         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4343                        mddev->sync_speed_min ? "local": "system");
4344 }
4345
4346 static ssize_t
4347 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4348 {
4349         int min;
4350         char *e;
4351         if (strncmp(buf, "system", 6)==0) {
4352                 mddev->sync_speed_min = 0;
4353                 return len;
4354         }
4355         min = simple_strtoul(buf, &e, 10);
4356         if (buf == e || (*e && *e != '\n') || min <= 0)
4357                 return -EINVAL;
4358         mddev->sync_speed_min = min;
4359         return len;
4360 }
4361
4362 static struct md_sysfs_entry md_sync_min =
4363 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4364
4365 static ssize_t
4366 sync_max_show(struct mddev *mddev, char *page)
4367 {
4368         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4369                        mddev->sync_speed_max ? "local": "system");
4370 }
4371
4372 static ssize_t
4373 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4374 {
4375         int max;
4376         char *e;
4377         if (strncmp(buf, "system", 6)==0) {
4378                 mddev->sync_speed_max = 0;
4379                 return len;
4380         }
4381         max = simple_strtoul(buf, &e, 10);
4382         if (buf == e || (*e && *e != '\n') || max <= 0)
4383                 return -EINVAL;
4384         mddev->sync_speed_max = max;
4385         return len;
4386 }
4387
4388 static struct md_sysfs_entry md_sync_max =
4389 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4390
4391 static ssize_t
4392 degraded_show(struct mddev *mddev, char *page)
4393 {
4394         return sprintf(page, "%d\n", mddev->degraded);
4395 }
4396 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4397
4398 static ssize_t
4399 sync_force_parallel_show(struct mddev *mddev, char *page)
4400 {
4401         return sprintf(page, "%d\n", mddev->parallel_resync);
4402 }
4403
4404 static ssize_t
4405 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4406 {
4407         long n;
4408
4409         if (strict_strtol(buf, 10, &n))
4410                 return -EINVAL;
4411
4412         if (n != 0 && n != 1)
4413                 return -EINVAL;
4414
4415         mddev->parallel_resync = n;
4416
4417         if (mddev->sync_thread)
4418                 wake_up(&resync_wait);
4419
4420         return len;
4421 }
4422
4423 /* force parallel resync, even with shared block devices */
4424 static struct md_sysfs_entry md_sync_force_parallel =
4425 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4426        sync_force_parallel_show, sync_force_parallel_store);
4427
4428 static ssize_t
4429 sync_speed_show(struct mddev *mddev, char *page)
4430 {
4431         unsigned long resync, dt, db;
4432         if (mddev->curr_resync == 0)
4433                 return sprintf(page, "none\n");
4434         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4435         dt = (jiffies - mddev->resync_mark) / HZ;
4436         if (!dt) dt++;
4437         db = resync - mddev->resync_mark_cnt;
4438         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4439 }
4440
4441 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4442
4443 static ssize_t
4444 sync_completed_show(struct mddev *mddev, char *page)
4445 {
4446         unsigned long long max_sectors, resync;
4447
4448         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4449                 return sprintf(page, "none\n");
4450
4451         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4452             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4453                 max_sectors = mddev->resync_max_sectors;
4454         else
4455                 max_sectors = mddev->dev_sectors;
4456
4457         resync = mddev->curr_resync_completed;
4458         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4459 }
4460
4461 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4462
4463 static ssize_t
4464 min_sync_show(struct mddev *mddev, char *page)
4465 {
4466         return sprintf(page, "%llu\n",
4467                        (unsigned long long)mddev->resync_min);
4468 }
4469 static ssize_t
4470 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4471 {
4472         unsigned long long min;
4473         if (strict_strtoull(buf, 10, &min))
4474                 return -EINVAL;
4475         if (min > mddev->resync_max)
4476                 return -EINVAL;
4477         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4478                 return -EBUSY;
4479
4480         /* Must be a multiple of chunk_size */
4481         if (mddev->chunk_sectors) {
4482                 sector_t temp = min;
4483                 if (sector_div(temp, mddev->chunk_sectors))
4484                         return -EINVAL;
4485         }
4486         mddev->resync_min = min;
4487
4488         return len;
4489 }
4490
4491 static struct md_sysfs_entry md_min_sync =
4492 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4493
4494 static ssize_t
4495 max_sync_show(struct mddev *mddev, char *page)
4496 {
4497         if (mddev->resync_max == MaxSector)
4498                 return sprintf(page, "max\n");
4499         else
4500                 return sprintf(page, "%llu\n",
4501                                (unsigned long long)mddev->resync_max);
4502 }
4503 static ssize_t
4504 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4505 {
4506         if (strncmp(buf, "max", 3) == 0)
4507                 mddev->resync_max = MaxSector;
4508         else {
4509                 unsigned long long max;
4510                 if (strict_strtoull(buf, 10, &max))
4511                         return -EINVAL;
4512                 if (max < mddev->resync_min)
4513                         return -EINVAL;
4514                 if (max < mddev->resync_max &&
4515                     mddev->ro == 0 &&
4516                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4517                         return -EBUSY;
4518
4519                 /* Must be a multiple of chunk_size */
4520                 if (mddev->chunk_sectors) {
4521                         sector_t temp = max;
4522                         if (sector_div(temp, mddev->chunk_sectors))
4523                                 return -EINVAL;
4524                 }
4525                 mddev->resync_max = max;
4526         }
4527         wake_up(&mddev->recovery_wait);
4528         return len;
4529 }
4530
4531 static struct md_sysfs_entry md_max_sync =
4532 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4533
4534 static ssize_t
4535 suspend_lo_show(struct mddev *mddev, char *page)
4536 {
4537         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4538 }
4539
4540 static ssize_t
4541 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4542 {
4543         char *e;
4544         unsigned long long new = simple_strtoull(buf, &e, 10);
4545         unsigned long long old = mddev->suspend_lo;
4546
4547         if (mddev->pers == NULL || 
4548             mddev->pers->quiesce == NULL)
4549                 return -EINVAL;
4550         if (buf == e || (*e && *e != '\n'))
4551                 return -EINVAL;
4552
4553         mddev->suspend_lo = new;
4554         if (new >= old)
4555                 /* Shrinking suspended region */
4556                 mddev->pers->quiesce(mddev, 2);
4557         else {
4558                 /* Expanding suspended region - need to wait */
4559                 mddev->pers->quiesce(mddev, 1);
4560                 mddev->pers->quiesce(mddev, 0);
4561         }
4562         return len;
4563 }
4564 static struct md_sysfs_entry md_suspend_lo =
4565 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4566
4567
4568 static ssize_t
4569 suspend_hi_show(struct mddev *mddev, char *page)
4570 {
4571         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4572 }
4573
4574 static ssize_t
4575 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4576 {
4577         char *e;
4578         unsigned long long new = simple_strtoull(buf, &e, 10);
4579         unsigned long long old = mddev->suspend_hi;
4580
4581         if (mddev->pers == NULL ||
4582             mddev->pers->quiesce == NULL)
4583                 return -EINVAL;
4584         if (buf == e || (*e && *e != '\n'))
4585                 return -EINVAL;
4586
4587         mddev->suspend_hi = new;
4588         if (new <= old)
4589                 /* Shrinking suspended region */
4590                 mddev->pers->quiesce(mddev, 2);
4591         else {
4592                 /* Expanding suspended region - need to wait */
4593                 mddev->pers->quiesce(mddev, 1);
4594                 mddev->pers->quiesce(mddev, 0);
4595         }
4596         return len;
4597 }
4598 static struct md_sysfs_entry md_suspend_hi =
4599 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4600
4601 static ssize_t
4602 reshape_position_show(struct mddev *mddev, char *page)
4603 {
4604         if (mddev->reshape_position != MaxSector)
4605                 return sprintf(page, "%llu\n",
4606                                (unsigned long long)mddev->reshape_position);
4607         strcpy(page, "none\n");
4608         return 5;
4609 }
4610
4611 static ssize_t
4612 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4613 {
4614         struct md_rdev *rdev;
4615         char *e;
4616         unsigned long long new = simple_strtoull(buf, &e, 10);
4617         if (mddev->pers)
4618                 return -EBUSY;
4619         if (buf == e || (*e && *e != '\n'))
4620                 return -EINVAL;
4621         mddev->reshape_position = new;
4622         mddev->delta_disks = 0;
4623         mddev->reshape_backwards = 0;
4624         mddev->new_level = mddev->level;
4625         mddev->new_layout = mddev->layout;
4626         mddev->new_chunk_sectors = mddev->chunk_sectors;
4627         rdev_for_each(rdev, mddev)
4628                 rdev->new_data_offset = rdev->data_offset;
4629         return len;
4630 }
4631
4632 static struct md_sysfs_entry md_reshape_position =
4633 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4634        reshape_position_store);
4635
4636 static ssize_t
4637 reshape_direction_show(struct mddev *mddev, char *page)
4638 {
4639         return sprintf(page, "%s\n",
4640                        mddev->reshape_backwards ? "backwards" : "forwards");
4641 }
4642
4643 static ssize_t
4644 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4645 {
4646         int backwards = 0;
4647         if (cmd_match(buf, "forwards"))
4648                 backwards = 0;
4649         else if (cmd_match(buf, "backwards"))
4650                 backwards = 1;
4651         else
4652                 return -EINVAL;
4653         if (mddev->reshape_backwards == backwards)
4654                 return len;
4655
4656         /* check if we are allowed to change */
4657         if (mddev->delta_disks)
4658                 return -EBUSY;
4659
4660         if (mddev->persistent &&
4661             mddev->major_version == 0)
4662                 return -EINVAL;
4663
4664         mddev->reshape_backwards = backwards;
4665         return len;
4666 }
4667
4668 static struct md_sysfs_entry md_reshape_direction =
4669 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4670        reshape_direction_store);
4671
4672 static ssize_t
4673 array_size_show(struct mddev *mddev, char *page)
4674 {
4675         if (mddev->external_size)
4676                 return sprintf(page, "%llu\n",
4677                                (unsigned long long)mddev->array_sectors/2);
4678         else
4679                 return sprintf(page, "default\n");
4680 }
4681
4682 static ssize_t
4683 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4684 {
4685         sector_t sectors;
4686
4687         if (strncmp(buf, "default", 7) == 0) {
4688                 if (mddev->pers)
4689                         sectors = mddev->pers->size(mddev, 0, 0);
4690                 else
4691                         sectors = mddev->array_sectors;
4692
4693                 mddev->external_size = 0;
4694         } else {
4695                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4696                         return -EINVAL;
4697                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4698                         return -E2BIG;
4699
4700                 mddev->external_size = 1;
4701         }
4702
4703         mddev->array_sectors = sectors;
4704         if (mddev->pers) {
4705                 set_capacity(mddev->gendisk, mddev->array_sectors);
4706                 revalidate_disk(mddev->gendisk);
4707         }
4708         return len;
4709 }
4710
4711 static struct md_sysfs_entry md_array_size =
4712 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4713        array_size_store);
4714
4715 static struct attribute *md_default_attrs[] = {
4716         &md_level.attr,
4717         &md_layout.attr,
4718         &md_raid_disks.attr,
4719         &md_chunk_size.attr,
4720         &md_size.attr,
4721         &md_resync_start.attr,
4722         &md_metadata.attr,
4723         &md_new_device.attr,
4724         &md_safe_delay.attr,
4725         &md_array_state.attr,
4726         &md_reshape_position.attr,
4727         &md_reshape_direction.attr,
4728         &md_array_size.attr,
4729         &max_corr_read_errors.attr,
4730         NULL,
4731 };
4732
4733 static struct attribute *md_redundancy_attrs[] = {
4734         &md_scan_mode.attr,
4735         &md_mismatches.attr,
4736         &md_sync_min.attr,
4737         &md_sync_max.attr,
4738         &md_sync_speed.attr,
4739         &md_sync_force_parallel.attr,
4740         &md_sync_completed.attr,
4741         &md_min_sync.attr,
4742         &md_max_sync.attr,
4743         &md_suspend_lo.attr,
4744         &md_suspend_hi.attr,
4745         &md_bitmap.attr,
4746         &md_degraded.attr,
4747         NULL,
4748 };
4749 static struct attribute_group md_redundancy_group = {
4750         .name = NULL,
4751         .attrs = md_redundancy_attrs,
4752 };
4753
4754
4755 static ssize_t
4756 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4757 {
4758         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4759         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4760         ssize_t rv;
4761
4762         if (!entry->show)
4763                 return -EIO;
4764         spin_lock(&all_mddevs_lock);
4765         if (list_empty(&mddev->all_mddevs)) {
4766                 spin_unlock(&all_mddevs_lock);
4767                 return -EBUSY;
4768         }
4769         mddev_get(mddev);
4770         spin_unlock(&all_mddevs_lock);
4771
4772         rv = mddev_lock(mddev);
4773         if (!rv) {
4774                 rv = entry->show(mddev, page);
4775                 mddev_unlock(mddev);
4776         }
4777         mddev_put(mddev);
4778         return rv;
4779 }
4780
4781 static ssize_t
4782 md_attr_store(struct kobject *kobj, struct attribute *attr,
4783               const char *page, size_t length)
4784 {
4785         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4786         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4787         ssize_t rv;
4788
4789         if (!entry->store)
4790                 return -EIO;
4791         if (!capable(CAP_SYS_ADMIN))
4792                 return -EACCES;
4793         spin_lock(&all_mddevs_lock);
4794         if (list_empty(&mddev->all_mddevs)) {
4795                 spin_unlock(&all_mddevs_lock);
4796                 return -EBUSY;
4797         }
4798         mddev_get(mddev);
4799         spin_unlock(&all_mddevs_lock);
4800         rv = mddev_lock(mddev);
4801         if (!rv) {
4802                 rv = entry->store(mddev, page, length);
4803                 mddev_unlock(mddev);
4804         }
4805         mddev_put(mddev);
4806         return rv;
4807 }
4808
4809 static void md_free(struct kobject *ko)
4810 {
4811         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4812
4813         if (mddev->sysfs_state)
4814                 sysfs_put(mddev->sysfs_state);
4815
4816         if (mddev->gendisk) {
4817                 del_gendisk(mddev->gendisk);
4818                 put_disk(mddev->gendisk);
4819         }
4820         if (mddev->queue)
4821                 blk_cleanup_queue(mddev->queue);
4822
4823         kfree(mddev);
4824 }
4825
4826 static const struct sysfs_ops md_sysfs_ops = {
4827         .show   = md_attr_show,
4828         .store  = md_attr_store,
4829 };
4830 static struct kobj_type md_ktype = {
4831         .release        = md_free,
4832         .sysfs_ops      = &md_sysfs_ops,
4833         .default_attrs  = md_default_attrs,
4834 };
4835
4836 int mdp_major = 0;
4837
4838 static void mddev_delayed_delete(struct work_struct *ws)
4839 {
4840         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4841
4842         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4843         kobject_del(&mddev->kobj);
4844         kobject_put(&mddev->kobj);
4845 }
4846
4847 static int md_alloc(dev_t dev, char *name)
4848 {
4849         static DEFINE_MUTEX(disks_mutex);
4850         struct mddev *mddev = mddev_find(dev);
4851         struct gendisk *disk;
4852         int partitioned;
4853         int shift;
4854         int unit;
4855         int error;
4856
4857         if (!mddev)
4858                 return -ENODEV;
4859
4860         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4861         shift = partitioned ? MdpMinorShift : 0;
4862         unit = MINOR(mddev->unit) >> shift;
4863
4864         /* wait for any previous instance of this device to be
4865          * completely removed (mddev_delayed_delete).
4866          */
4867         flush_workqueue(md_misc_wq);
4868
4869         mutex_lock(&disks_mutex);
4870         error = -EEXIST;
4871         if (mddev->gendisk)
4872                 goto abort;
4873
4874         if (name) {
4875                 /* Need to ensure that 'name' is not a duplicate.
4876                  */
4877                 struct mddev *mddev2;
4878                 spin_lock(&all_mddevs_lock);
4879
4880                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4881                         if (mddev2->gendisk &&
4882                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4883                                 spin_unlock(&all_mddevs_lock);
4884                                 goto abort;
4885                         }
4886                 spin_unlock(&all_mddevs_lock);
4887         }
4888
4889         error = -ENOMEM;
4890         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4891         if (!mddev->queue)
4892                 goto abort;
4893         mddev->queue->queuedata = mddev;
4894
4895         blk_queue_make_request(mddev->queue, md_make_request);
4896         blk_set_stacking_limits(&mddev->queue->limits);
4897
4898         disk = alloc_disk(1 << shift);
4899         if (!disk) {
4900                 blk_cleanup_queue(mddev->queue);
4901                 mddev->queue = NULL;
4902                 goto abort;
4903         }
4904         disk->major = MAJOR(mddev->unit);
4905         disk->first_minor = unit << shift;
4906         if (name)
4907                 strcpy(disk->disk_name, name);
4908         else if (partitioned)
4909                 sprintf(disk->disk_name, "md_d%d", unit);
4910         else
4911                 sprintf(disk->disk_name, "md%d", unit);
4912         disk->fops = &md_fops;
4913         disk->private_data = mddev;
4914         disk->queue = mddev->queue;
4915         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4916         /* Allow extended partitions.  This makes the
4917          * 'mdp' device redundant, but we can't really
4918          * remove it now.
4919          */
4920         disk->flags |= GENHD_FL_EXT_DEVT;
4921         mddev->gendisk = disk;
4922         /* As soon as we call add_disk(), another thread could get
4923          * through to md_open, so make sure it doesn't get too far
4924          */
4925         mutex_lock(&mddev->open_mutex);
4926         add_disk(disk);
4927
4928         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4929                                      &disk_to_dev(disk)->kobj, "%s", "md");
4930         if (error) {
4931                 /* This isn't possible, but as kobject_init_and_add is marked
4932                  * __must_check, we must do something with the result
4933                  */
4934                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4935                        disk->disk_name);
4936                 error = 0;
4937         }
4938         if (mddev->kobj.sd &&
4939             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4940                 printk(KERN_DEBUG "pointless warning\n");
4941         mutex_unlock(&mddev->open_mutex);
4942  abort:
4943         mutex_unlock(&disks_mutex);
4944         if (!error && mddev->kobj.sd) {
4945                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4946                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4947         }
4948         mddev_put(mddev);
4949         return error;
4950 }
4951
4952 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4953 {
4954         md_alloc(dev, NULL);
4955         return NULL;
4956 }
4957
4958 static int add_named_array(const char *val, struct kernel_param *kp)
4959 {
4960         /* val must be "md_*" where * is not all digits.
4961          * We allocate an array with a large free minor number, and
4962          * set the name to val.  val must not already be an active name.
4963          */
4964         int len = strlen(val);
4965         char buf[DISK_NAME_LEN];
4966
4967         while (len && val[len-1] == '\n')
4968                 len--;
4969         if (len >= DISK_NAME_LEN)
4970                 return -E2BIG;
4971         strlcpy(buf, val, len+1);
4972         if (strncmp(buf, "md_", 3) != 0)
4973                 return -EINVAL;
4974         return md_alloc(0, buf);
4975 }
4976
4977 static void md_safemode_timeout(unsigned long data)
4978 {
4979         struct mddev *mddev = (struct mddev *) data;
4980
4981         if (!atomic_read(&mddev->writes_pending)) {
4982                 mddev->safemode = 1;
4983                 if (mddev->external)
4984                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4985         }
4986         md_wakeup_thread(mddev->thread);
4987 }
4988
4989 static int start_dirty_degraded;
4990
4991 int md_run(struct mddev *mddev)
4992 {
4993         int err;
4994         struct md_rdev *rdev;
4995         struct md_personality *pers;
4996
4997         if (list_empty(&mddev->disks))
4998                 /* cannot run an array with no devices.. */
4999                 return -EINVAL;
5000
5001         if (mddev->pers)
5002                 return -EBUSY;
5003         /* Cannot run until previous stop completes properly */
5004         if (mddev->sysfs_active)
5005                 return -EBUSY;
5006
5007         /*
5008          * Analyze all RAID superblock(s)
5009          */
5010         if (!mddev->raid_disks) {
5011                 if (!mddev->persistent)
5012                         return -EINVAL;
5013                 analyze_sbs(mddev);
5014         }
5015
5016         if (mddev->level != LEVEL_NONE)
5017                 request_module("md-level-%d", mddev->level);
5018         else if (mddev->clevel[0])
5019                 request_module("md-%s", mddev->clevel);
5020
5021         /*
5022          * Drop all container device buffers, from now on
5023          * the only valid external interface is through the md
5024          * device.
5025          */
5026         rdev_for_each(rdev, mddev) {
5027                 if (test_bit(Faulty, &rdev->flags))
5028                         continue;
5029                 sync_blockdev(rdev->bdev);
5030                 invalidate_bdev(rdev->bdev);
5031
5032                 /* perform some consistency tests on the device.
5033                  * We don't want the data to overlap the metadata,
5034                  * Internal Bitmap issues have been handled elsewhere.
5035                  */
5036                 if (rdev->meta_bdev) {
5037                         /* Nothing to check */;
5038                 } else if (rdev->data_offset < rdev->sb_start) {
5039                         if (mddev->dev_sectors &&
5040                             rdev->data_offset + mddev->dev_sectors
5041                             > rdev->sb_start) {
5042                                 printk("md: %s: data overlaps metadata\n",
5043                                        mdname(mddev));
5044                                 return -EINVAL;
5045                         }
5046                 } else {
5047                         if (rdev->sb_start + rdev->sb_size/512
5048                             > rdev->data_offset) {
5049                                 printk("md: %s: metadata overlaps data\n",
5050                                        mdname(mddev));
5051                                 return -EINVAL;
5052                         }
5053                 }
5054                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5055         }
5056
5057         if (mddev->bio_set == NULL)
5058                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
5059                                                sizeof(struct mddev *));
5060
5061         spin_lock(&pers_lock);
5062         pers = find_pers(mddev->level, mddev->clevel);
5063         if (!pers || !try_module_get(pers->owner)) {
5064                 spin_unlock(&pers_lock);
5065                 if (mddev->level != LEVEL_NONE)
5066                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5067                                mddev->level);
5068                 else
5069                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5070                                mddev->clevel);
5071                 return -EINVAL;
5072         }
5073         mddev->pers = pers;
5074         spin_unlock(&pers_lock);
5075         if (mddev->level != pers->level) {
5076                 mddev->level = pers->level;
5077                 mddev->new_level = pers->level;
5078         }
5079         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5080
5081         if (mddev->reshape_position != MaxSector &&
5082             pers->start_reshape == NULL) {
5083                 /* This personality cannot handle reshaping... */
5084                 mddev->pers = NULL;
5085                 module_put(pers->owner);
5086                 return -EINVAL;
5087         }
5088
5089         if (pers->sync_request) {
5090                 /* Warn if this is a potentially silly
5091                  * configuration.
5092                  */
5093                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5094                 struct md_rdev *rdev2;
5095                 int warned = 0;
5096
5097                 rdev_for_each(rdev, mddev)
5098                         rdev_for_each(rdev2, mddev) {
5099                                 if (rdev < rdev2 &&
5100                                     rdev->bdev->bd_contains ==
5101                                     rdev2->bdev->bd_contains) {
5102                                         printk(KERN_WARNING
5103                                                "%s: WARNING: %s appears to be"
5104                                                " on the same physical disk as"
5105                                                " %s.\n",
5106                                                mdname(mddev),
5107                                                bdevname(rdev->bdev,b),
5108                                                bdevname(rdev2->bdev,b2));
5109                                         warned = 1;
5110                                 }
5111                         }
5112
5113                 if (warned)
5114                         printk(KERN_WARNING
5115                                "True protection against single-disk"
5116                                " failure might be compromised.\n");
5117         }
5118
5119         mddev->recovery = 0;
5120         /* may be over-ridden by personality */
5121         mddev->resync_max_sectors = mddev->dev_sectors;
5122
5123         mddev->ok_start_degraded = start_dirty_degraded;
5124
5125         if (start_readonly && mddev->ro == 0)
5126                 mddev->ro = 2; /* read-only, but switch on first write */
5127
5128         err = mddev->pers->run(mddev);
5129         if (err)
5130                 printk(KERN_ERR "md: pers->run() failed ...\n");
5131         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5132                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5133                           " but 'external_size' not in effect?\n", __func__);
5134                 printk(KERN_ERR
5135                        "md: invalid array_size %llu > default size %llu\n",
5136                        (unsigned long long)mddev->array_sectors / 2,
5137                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5138                 err = -EINVAL;
5139                 mddev->pers->stop(mddev);
5140         }
5141         if (err == 0 && mddev->pers->sync_request &&
5142             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5143                 err = bitmap_create(mddev);
5144                 if (err) {
5145                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5146                                mdname(mddev), err);
5147                         mddev->pers->stop(mddev);
5148                 }
5149         }
5150         if (err) {
5151                 module_put(mddev->pers->owner);
5152                 mddev->pers = NULL;
5153                 bitmap_destroy(mddev);
5154                 return err;
5155         }
5156         if (mddev->pers->sync_request) {
5157                 if (mddev->kobj.sd &&
5158                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5159                         printk(KERN_WARNING
5160                                "md: cannot register extra attributes for %s\n",
5161                                mdname(mddev));
5162                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5163         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5164                 mddev->ro = 0;
5165
5166         atomic_set(&mddev->writes_pending,0);
5167         atomic_set(&mddev->max_corr_read_errors,
5168                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5169         mddev->safemode = 0;
5170         mddev->safemode_timer.function = md_safemode_timeout;
5171         mddev->safemode_timer.data = (unsigned long) mddev;
5172         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5173         mddev->in_sync = 1;
5174         smp_wmb();
5175         mddev->ready = 1;
5176         rdev_for_each(rdev, mddev)
5177                 if (rdev->raid_disk >= 0)
5178                         if (sysfs_link_rdev(mddev, rdev))
5179                                 /* failure here is OK */;
5180         
5181         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5182         
5183         if (mddev->flags)
5184                 md_update_sb(mddev, 0);
5185
5186         md_new_event(mddev);
5187         sysfs_notify_dirent_safe(mddev->sysfs_state);
5188         sysfs_notify_dirent_safe(mddev->sysfs_action);
5189         sysfs_notify(&mddev->kobj, NULL, "degraded");
5190         return 0;
5191 }
5192 EXPORT_SYMBOL_GPL(md_run);
5193
5194 static int do_md_run(struct mddev *mddev)
5195 {
5196         int err;
5197
5198         err = md_run(mddev);
5199         if (err)
5200                 goto out;
5201         err = bitmap_load(mddev);
5202         if (err) {
5203                 bitmap_destroy(mddev);
5204                 goto out;
5205         }
5206
5207         md_wakeup_thread(mddev->thread);
5208         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5209
5210         set_capacity(mddev->gendisk, mddev->array_sectors);
5211         revalidate_disk(mddev->gendisk);
5212         mddev->changed = 1;
5213         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5214 out:
5215         return err;
5216 }
5217
5218 static int restart_array(struct mddev *mddev)
5219 {
5220         struct gendisk *disk = mddev->gendisk;
5221
5222         /* Complain if it has no devices */
5223         if (list_empty(&mddev->disks))
5224                 return -ENXIO;
5225         if (!mddev->pers)
5226                 return -EINVAL;
5227         if (!mddev->ro)
5228                 return -EBUSY;
5229         mddev->safemode = 0;
5230         mddev->ro = 0;
5231         set_disk_ro(disk, 0);
5232         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5233                 mdname(mddev));
5234         /* Kick recovery or resync if necessary */
5235         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5236         md_wakeup_thread(mddev->thread);
5237         md_wakeup_thread(mddev->sync_thread);
5238         sysfs_notify_dirent_safe(mddev->sysfs_state);
5239         return 0;
5240 }
5241
5242 /* similar to deny_write_access, but accounts for our holding a reference
5243  * to the file ourselves */
5244 static int deny_bitmap_write_access(struct file * file)
5245 {
5246         struct inode *inode = file->f_mapping->host;
5247
5248         spin_lock(&inode->i_lock);
5249         if (atomic_read(&inode->i_writecount) > 1) {
5250                 spin_unlock(&inode->i_lock);
5251                 return -ETXTBSY;
5252         }
5253         atomic_set(&inode->i_writecount, -1);
5254         spin_unlock(&inode->i_lock);
5255
5256         return 0;
5257 }
5258
5259 void restore_bitmap_write_access(struct file *file)
5260 {
5261         struct inode *inode = file->f_mapping->host;
5262
5263         spin_lock(&inode->i_lock);
5264         atomic_set(&inode->i_writecount, 1);
5265         spin_unlock(&inode->i_lock);
5266 }
5267
5268 static void md_clean(struct mddev *mddev)
5269 {
5270         mddev->array_sectors = 0;
5271         mddev->external_size = 0;
5272         mddev->dev_sectors = 0;
5273         mddev->raid_disks = 0;
5274         mddev->recovery_cp = 0;
5275         mddev->resync_min = 0;
5276         mddev->resync_max = MaxSector;
5277         mddev->reshape_position = MaxSector;
5278         mddev->external = 0;
5279         mddev->persistent = 0;
5280         mddev->level = LEVEL_NONE;
5281         mddev->clevel[0] = 0;
5282         mddev->flags = 0;
5283         mddev->ro = 0;
5284         mddev->metadata_type[0] = 0;
5285         mddev->chunk_sectors = 0;
5286         mddev->ctime = mddev->utime = 0;
5287         mddev->layout = 0;
5288         mddev->max_disks = 0;
5289         mddev->events = 0;
5290         mddev->can_decrease_events = 0;
5291         mddev->delta_disks = 0;
5292         mddev->reshape_backwards = 0;
5293         mddev->new_level = LEVEL_NONE;
5294         mddev->new_layout = 0;
5295         mddev->new_chunk_sectors = 0;
5296         mddev->curr_resync = 0;
5297         mddev->resync_mismatches = 0;
5298         mddev->suspend_lo = mddev->suspend_hi = 0;
5299         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5300         mddev->recovery = 0;
5301         mddev->in_sync = 0;
5302         mddev->changed = 0;
5303         mddev->degraded = 0;
5304         mddev->safemode = 0;
5305         mddev->merge_check_needed = 0;
5306         mddev->bitmap_info.offset = 0;
5307         mddev->bitmap_info.default_offset = 0;
5308         mddev->bitmap_info.default_space = 0;
5309         mddev->bitmap_info.chunksize = 0;
5310         mddev->bitmap_info.daemon_sleep = 0;
5311         mddev->bitmap_info.max_write_behind = 0;
5312 }
5313
5314 static void __md_stop_writes(struct mddev *mddev)
5315 {
5316         if (mddev->sync_thread) {
5317                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5318                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5319                 reap_sync_thread(mddev);
5320         }
5321
5322         del_timer_sync(&mddev->safemode_timer);
5323
5324         bitmap_flush(mddev);
5325         md_super_wait(mddev);
5326
5327         if (!mddev->in_sync || mddev->flags) {
5328                 /* mark array as shutdown cleanly */
5329                 mddev->in_sync = 1;
5330                 md_update_sb(mddev, 1);
5331         }
5332 }
5333
5334 void md_stop_writes(struct mddev *mddev)
5335 {
5336         mddev_lock(mddev);
5337         __md_stop_writes(mddev);
5338         mddev_unlock(mddev);
5339 }
5340 EXPORT_SYMBOL_GPL(md_stop_writes);
5341
5342 void md_stop(struct mddev *mddev)
5343 {
5344         mddev->ready = 0;
5345         mddev->pers->stop(mddev);
5346         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5347                 mddev->to_remove = &md_redundancy_group;
5348         module_put(mddev->pers->owner);
5349         mddev->pers = NULL;
5350         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5351 }
5352 EXPORT_SYMBOL_GPL(md_stop);
5353
5354 static int md_set_readonly(struct mddev *mddev, int is_open)
5355 {
5356         int err = 0;
5357         mutex_lock(&mddev->open_mutex);
5358         if (atomic_read(&mddev->openers) > is_open) {
5359                 printk("md: %s still in use.\n",mdname(mddev));
5360                 err = -EBUSY;
5361                 goto out;
5362         }
5363         if (mddev->pers) {
5364                 __md_stop_writes(mddev);
5365
5366                 err  = -ENXIO;
5367                 if (mddev->ro==1)
5368                         goto out;
5369                 mddev->ro = 1;
5370                 set_disk_ro(mddev->gendisk, 1);
5371                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5372                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5373                 err = 0;        
5374         }
5375 out:
5376         mutex_unlock(&mddev->open_mutex);
5377         return err;
5378 }
5379
5380 /* mode:
5381  *   0 - completely stop and dis-assemble array
5382  *   2 - stop but do not disassemble array
5383  */
5384 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5385 {
5386         struct gendisk *disk = mddev->gendisk;
5387         struct md_rdev *rdev;
5388
5389         mutex_lock(&mddev->open_mutex);
5390         if (atomic_read(&mddev->openers) > is_open ||
5391             mddev->sysfs_active) {
5392                 printk("md: %s still in use.\n",mdname(mddev));
5393                 mutex_unlock(&mddev->open_mutex);
5394                 return -EBUSY;
5395         }
5396
5397         if (mddev->pers) {
5398                 if (mddev->ro)
5399                         set_disk_ro(disk, 0);
5400
5401                 __md_stop_writes(mddev);
5402                 md_stop(mddev);
5403                 mddev->queue->merge_bvec_fn = NULL;
5404                 mddev->queue->backing_dev_info.congested_fn = NULL;
5405
5406                 /* tell userspace to handle 'inactive' */
5407                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5408
5409                 rdev_for_each(rdev, mddev)
5410                         if (rdev->raid_disk >= 0)
5411                                 sysfs_unlink_rdev(mddev, rdev);
5412
5413                 set_capacity(disk, 0);
5414                 mutex_unlock(&mddev->open_mutex);
5415                 mddev->changed = 1;
5416                 revalidate_disk(disk);
5417
5418                 if (mddev->ro)
5419                         mddev->ro = 0;
5420         } else
5421                 mutex_unlock(&mddev->open_mutex);
5422         /*
5423          * Free resources if final stop
5424          */
5425         if (mode == 0) {
5426                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5427
5428                 bitmap_destroy(mddev);
5429                 if (mddev->bitmap_info.file) {
5430                         restore_bitmap_write_access(mddev->bitmap_info.file);
5431                         fput(mddev->bitmap_info.file);
5432                         mddev->bitmap_info.file = NULL;
5433                 }
5434                 mddev->bitmap_info.offset = 0;
5435
5436                 export_array(mddev);
5437
5438                 md_clean(mddev);
5439                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5440                 if (mddev->hold_active == UNTIL_STOP)
5441                         mddev->hold_active = 0;
5442         }
5443         blk_integrity_unregister(disk);
5444         md_new_event(mddev);
5445         sysfs_notify_dirent_safe(mddev->sysfs_state);
5446         return 0;
5447 }
5448
5449 #ifndef MODULE
5450 static void autorun_array(struct mddev *mddev)
5451 {
5452         struct md_rdev *rdev;
5453         int err;
5454
5455         if (list_empty(&mddev->disks))
5456                 return;
5457
5458         printk(KERN_INFO "md: running: ");
5459
5460         rdev_for_each(rdev, mddev) {
5461                 char b[BDEVNAME_SIZE];
5462                 printk("<%s>", bdevname(rdev->bdev,b));
5463         }
5464         printk("\n");
5465
5466         err = do_md_run(mddev);
5467         if (err) {
5468                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5469                 do_md_stop(mddev, 0, 0);
5470         }
5471 }
5472
5473 /*
5474  * lets try to run arrays based on all disks that have arrived
5475  * until now. (those are in pending_raid_disks)
5476  *
5477  * the method: pick the first pending disk, collect all disks with
5478  * the same UUID, remove all from the pending list and put them into
5479  * the 'same_array' list. Then order this list based on superblock
5480  * update time (freshest comes first), kick out 'old' disks and
5481  * compare superblocks. If everything's fine then run it.
5482  *
5483  * If "unit" is allocated, then bump its reference count
5484  */
5485 static void autorun_devices(int part)
5486 {
5487         struct md_rdev *rdev0, *rdev, *tmp;
5488         struct mddev *mddev;
5489         char b[BDEVNAME_SIZE];
5490
5491         printk(KERN_INFO "md: autorun ...\n");
5492         while (!list_empty(&pending_raid_disks)) {
5493                 int unit;
5494                 dev_t dev;
5495                 LIST_HEAD(candidates);
5496                 rdev0 = list_entry(pending_raid_disks.next,
5497                                          struct md_rdev, same_set);
5498
5499                 printk(KERN_INFO "md: considering %s ...\n",
5500                         bdevname(rdev0->bdev,b));
5501                 INIT_LIST_HEAD(&candidates);
5502                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5503                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5504                                 printk(KERN_INFO "md:  adding %s ...\n",
5505                                         bdevname(rdev->bdev,b));
5506                                 list_move(&rdev->same_set, &candidates);
5507                         }
5508                 /*
5509                  * now we have a set of devices, with all of them having
5510                  * mostly sane superblocks. It's time to allocate the
5511                  * mddev.
5512                  */
5513                 if (part) {
5514                         dev = MKDEV(mdp_major,
5515                                     rdev0->preferred_minor << MdpMinorShift);
5516                         unit = MINOR(dev) >> MdpMinorShift;
5517                 } else {
5518                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5519                         unit = MINOR(dev);
5520                 }
5521                 if (rdev0->preferred_minor != unit) {
5522                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5523                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5524                         break;
5525                 }
5526
5527                 md_probe(dev, NULL, NULL);
5528                 mddev = mddev_find(dev);
5529                 if (!mddev || !mddev->gendisk) {
5530                         if (mddev)
5531                                 mddev_put(mddev);
5532                         printk(KERN_ERR
5533                                 "md: cannot allocate memory for md drive.\n");
5534                         break;
5535                 }
5536                 if (mddev_lock(mddev)) 
5537                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5538                                mdname(mddev));
5539                 else if (mddev->raid_disks || mddev->major_version
5540                          || !list_empty(&mddev->disks)) {
5541                         printk(KERN_WARNING 
5542                                 "md: %s already running, cannot run %s\n",
5543                                 mdname(mddev), bdevname(rdev0->bdev,b));
5544                         mddev_unlock(mddev);
5545                 } else {
5546                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5547                         mddev->persistent = 1;
5548                         rdev_for_each_list(rdev, tmp, &candidates) {
5549                                 list_del_init(&rdev->same_set);
5550                                 if (bind_rdev_to_array(rdev, mddev))
5551                                         export_rdev(rdev);
5552                         }
5553                         autorun_array(mddev);
5554                         mddev_unlock(mddev);
5555                 }
5556                 /* on success, candidates will be empty, on error
5557                  * it won't...
5558                  */
5559                 rdev_for_each_list(rdev, tmp, &candidates) {
5560                         list_del_init(&rdev->same_set);
5561                         export_rdev(rdev);
5562                 }
5563                 mddev_put(mddev);
5564         }
5565         printk(KERN_INFO "md: ... autorun DONE.\n");
5566 }
5567 #endif /* !MODULE */
5568
5569 static int get_version(void __user * arg)
5570 {
5571         mdu_version_t ver;
5572
5573         ver.major = MD_MAJOR_VERSION;
5574         ver.minor = MD_MINOR_VERSION;
5575         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5576
5577         if (copy_to_user(arg, &ver, sizeof(ver)))
5578                 return -EFAULT;
5579
5580         return 0;
5581 }
5582
5583 static int get_array_info(struct mddev * mddev, void __user * arg)
5584 {
5585         mdu_array_info_t info;
5586         int nr,working,insync,failed,spare;
5587         struct md_rdev *rdev;
5588
5589         nr=working=insync=failed=spare=0;
5590         rdev_for_each(rdev, mddev) {
5591                 nr++;
5592                 if (test_bit(Faulty, &rdev->flags))
5593                         failed++;
5594                 else {
5595                         working++;
5596                         if (test_bit(In_sync, &rdev->flags))
5597                                 insync++;       
5598                         else
5599                                 spare++;
5600                 }
5601         }
5602
5603         info.major_version = mddev->major_version;
5604         info.minor_version = mddev->minor_version;
5605         info.patch_version = MD_PATCHLEVEL_VERSION;
5606         info.ctime         = mddev->ctime;
5607         info.level         = mddev->level;
5608         info.size          = mddev->dev_sectors / 2;
5609         if (info.size != mddev->dev_sectors / 2) /* overflow */
5610                 info.size = -1;
5611         info.nr_disks      = nr;
5612         info.raid_disks    = mddev->raid_disks;
5613         info.md_minor      = mddev->md_minor;
5614         info.not_persistent= !mddev->persistent;
5615
5616         info.utime         = mddev->utime;
5617         info.state         = 0;
5618         if (mddev->in_sync)
5619                 info.state = (1<<MD_SB_CLEAN);
5620         if (mddev->bitmap && mddev->bitmap_info.offset)
5621                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5622         info.active_disks  = insync;
5623         info.working_disks = working;
5624         info.failed_disks  = failed;
5625         info.spare_disks   = spare;
5626
5627         info.layout        = mddev->layout;
5628         info.chunk_size    = mddev->chunk_sectors << 9;
5629
5630         if (copy_to_user(arg, &info, sizeof(info)))
5631                 return -EFAULT;
5632
5633         return 0;
5634 }
5635
5636 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5637 {
5638         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5639         char *ptr, *buf = NULL;
5640         int err = -ENOMEM;
5641
5642         if (md_allow_write(mddev))
5643                 file = kmalloc(sizeof(*file), GFP_NOIO);
5644         else
5645                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5646
5647         if (!file)
5648                 goto out;
5649
5650         /* bitmap disabled, zero the first byte and copy out */
5651         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5652                 file->pathname[0] = '\0';
5653                 goto copy_out;
5654         }
5655
5656         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5657         if (!buf)
5658                 goto out;
5659
5660         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5661                      buf, sizeof(file->pathname));
5662         if (IS_ERR(ptr))
5663                 goto out;
5664
5665         strcpy(file->pathname, ptr);
5666
5667 copy_out:
5668         err = 0;
5669         if (copy_to_user(arg, file, sizeof(*file)))
5670                 err = -EFAULT;
5671 out:
5672         kfree(buf);
5673         kfree(file);
5674         return err;
5675 }
5676
5677 static int get_disk_info(struct mddev * mddev, void __user * arg)
5678 {
5679         mdu_disk_info_t info;
5680         struct md_rdev *rdev;
5681
5682         if (copy_from_user(&info, arg, sizeof(info)))
5683                 return -EFAULT;
5684
5685         rdev = find_rdev_nr(mddev, info.number);
5686         if (rdev) {
5687                 info.major = MAJOR(rdev->bdev->bd_dev);
5688                 info.minor = MINOR(rdev->bdev->bd_dev);
5689                 info.raid_disk = rdev->raid_disk;
5690                 info.state = 0;
5691                 if (test_bit(Faulty, &rdev->flags))
5692                         info.state |= (1<<MD_DISK_FAULTY);
5693                 else if (test_bit(In_sync, &rdev->flags)) {
5694                         info.state |= (1<<MD_DISK_ACTIVE);
5695                         info.state |= (1<<MD_DISK_SYNC);
5696                 }
5697                 if (test_bit(WriteMostly, &rdev->flags))
5698                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5699         } else {
5700                 info.major = info.minor = 0;
5701                 info.raid_disk = -1;
5702                 info.state = (1<<MD_DISK_REMOVED);
5703         }
5704
5705         if (copy_to_user(arg, &info, sizeof(info)))
5706                 return -EFAULT;
5707
5708         return 0;
5709 }
5710
5711 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5712 {
5713         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5714         struct md_rdev *rdev;
5715         dev_t dev = MKDEV(info->major,info->minor);
5716
5717         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5718                 return -EOVERFLOW;
5719
5720         if (!mddev->raid_disks) {
5721                 int err;
5722                 /* expecting a device which has a superblock */
5723                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5724                 if (IS_ERR(rdev)) {
5725                         printk(KERN_WARNING 
5726                                 "md: md_import_device returned %ld\n",
5727                                 PTR_ERR(rdev));
5728                         return PTR_ERR(rdev);
5729                 }
5730                 if (!list_empty(&mddev->disks)) {
5731                         struct md_rdev *rdev0
5732                                 = list_entry(mddev->disks.next,
5733                                              struct md_rdev, same_set);
5734                         err = super_types[mddev->major_version]
5735                                 .load_super(rdev, rdev0, mddev->minor_version);
5736                         if (err < 0) {
5737                                 printk(KERN_WARNING 
5738                                         "md: %s has different UUID to %s\n",
5739                                         bdevname(rdev->bdev,b), 
5740                                         bdevname(rdev0->bdev,b2));
5741                                 export_rdev(rdev);
5742                                 return -EINVAL;
5743                         }
5744                 }
5745                 err = bind_rdev_to_array(rdev, mddev);
5746                 if (err)
5747                         export_rdev(rdev);
5748                 return err;
5749         }
5750
5751         /*
5752          * add_new_disk can be used once the array is assembled
5753          * to add "hot spares".  They must already have a superblock
5754          * written
5755          */
5756         if (mddev->pers) {
5757                 int err;
5758                 if (!mddev->pers->hot_add_disk) {
5759                         printk(KERN_WARNING 
5760                                 "%s: personality does not support diskops!\n",
5761                                mdname(mddev));
5762                         return -EINVAL;
5763                 }
5764                 if (mddev->persistent)
5765                         rdev = md_import_device(dev, mddev->major_version,
5766                                                 mddev->minor_version);
5767                 else
5768                         rdev = md_import_device(dev, -1, -1);
5769                 if (IS_ERR(rdev)) {
5770                         printk(KERN_WARNING 
5771                                 "md: md_import_device returned %ld\n",
5772                                 PTR_ERR(rdev));
5773                         return PTR_ERR(rdev);
5774                 }
5775                 /* set saved_raid_disk if appropriate */
5776                 if (!mddev->persistent) {
5777                         if (info->state & (1<<MD_DISK_SYNC)  &&
5778                             info->raid_disk < mddev->raid_disks) {
5779                                 rdev->raid_disk = info->raid_disk;
5780                                 set_bit(In_sync, &rdev->flags);
5781                         } else
5782                                 rdev->raid_disk = -1;
5783                 } else
5784                         super_types[mddev->major_version].
5785                                 validate_super(mddev, rdev);
5786                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5787                      rdev->raid_disk != info->raid_disk) {
5788                         /* This was a hot-add request, but events doesn't
5789                          * match, so reject it.
5790                          */
5791                         export_rdev(rdev);
5792                         return -EINVAL;
5793                 }
5794
5795                 if (test_bit(In_sync, &rdev->flags))
5796                         rdev->saved_raid_disk = rdev->raid_disk;
5797                 else
5798                         rdev->saved_raid_disk = -1;
5799
5800                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5801                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5802                         set_bit(WriteMostly, &rdev->flags);
5803                 else
5804                         clear_bit(WriteMostly, &rdev->flags);
5805
5806                 rdev->raid_disk = -1;
5807                 err = bind_rdev_to_array(rdev, mddev);
5808                 if (!err && !mddev->pers->hot_remove_disk) {
5809                         /* If there is hot_add_disk but no hot_remove_disk
5810                          * then added disks for geometry changes,
5811                          * and should be added immediately.
5812                          */
5813                         super_types[mddev->major_version].
5814                                 validate_super(mddev, rdev);
5815                         err = mddev->pers->hot_add_disk(mddev, rdev);
5816                         if (err)
5817                                 unbind_rdev_from_array(rdev);
5818                 }
5819                 if (err)
5820                         export_rdev(rdev);
5821                 else
5822                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5823
5824                 md_update_sb(mddev, 1);
5825                 if (mddev->degraded)
5826                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5827                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5828                 if (!err)
5829                         md_new_event(mddev);
5830                 md_wakeup_thread(mddev->thread);
5831                 return err;
5832         }
5833
5834         /* otherwise, add_new_disk is only allowed
5835          * for major_version==0 superblocks
5836          */
5837         if (mddev->major_version != 0) {
5838                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5839                        mdname(mddev));
5840                 return -EINVAL;
5841         }
5842
5843         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5844                 int err;
5845                 rdev = md_import_device(dev, -1, 0);
5846                 if (IS_ERR(rdev)) {
5847                         printk(KERN_WARNING 
5848                                 "md: error, md_import_device() returned %ld\n",
5849                                 PTR_ERR(rdev));
5850                         return PTR_ERR(rdev);
5851                 }
5852                 rdev->desc_nr = info->number;
5853                 if (info->raid_disk < mddev->raid_disks)
5854                         rdev->raid_disk = info->raid_disk;
5855                 else
5856                         rdev->raid_disk = -1;
5857
5858                 if (rdev->raid_disk < mddev->raid_disks)
5859                         if (info->state & (1<<MD_DISK_SYNC))
5860                                 set_bit(In_sync, &rdev->flags);
5861
5862                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5863                         set_bit(WriteMostly, &rdev->flags);
5864
5865                 if (!mddev->persistent) {
5866                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5867                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5868                 } else
5869                         rdev->sb_start = calc_dev_sboffset(rdev);
5870                 rdev->sectors = rdev->sb_start;
5871
5872                 err = bind_rdev_to_array(rdev, mddev);
5873                 if (err) {
5874                         export_rdev(rdev);
5875                         return err;
5876                 }
5877         }
5878
5879         return 0;
5880 }
5881
5882 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5883 {
5884         char b[BDEVNAME_SIZE];
5885         struct md_rdev *rdev;
5886
5887         rdev = find_rdev(mddev, dev);
5888         if (!rdev)
5889                 return -ENXIO;
5890
5891         if (rdev->raid_disk >= 0)
5892                 goto busy;
5893
5894         kick_rdev_from_array(rdev);
5895         md_update_sb(mddev, 1);
5896         md_new_event(mddev);
5897
5898         return 0;
5899 busy:
5900         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5901                 bdevname(rdev->bdev,b), mdname(mddev));
5902         return -EBUSY;
5903 }
5904
5905 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5906 {
5907         char b[BDEVNAME_SIZE];
5908         int err;
5909         struct md_rdev *rdev;
5910
5911         if (!mddev->pers)
5912                 return -ENODEV;
5913
5914         if (mddev->major_version != 0) {
5915                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5916                         " version-0 superblocks.\n",
5917                         mdname(mddev));
5918                 return -EINVAL;
5919         }
5920         if (!mddev->pers->hot_add_disk) {
5921                 printk(KERN_WARNING 
5922                         "%s: personality does not support diskops!\n",
5923                         mdname(mddev));
5924                 return -EINVAL;
5925         }
5926
5927         rdev = md_import_device(dev, -1, 0);
5928         if (IS_ERR(rdev)) {
5929                 printk(KERN_WARNING 
5930                         "md: error, md_import_device() returned %ld\n",
5931                         PTR_ERR(rdev));
5932                 return -EINVAL;
5933         }
5934
5935         if (mddev->persistent)
5936                 rdev->sb_start = calc_dev_sboffset(rdev);
5937         else
5938                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5939
5940         rdev->sectors = rdev->sb_start;
5941
5942         if (test_bit(Faulty, &rdev->flags)) {
5943                 printk(KERN_WARNING 
5944                         "md: can not hot-add faulty %s disk to %s!\n",
5945                         bdevname(rdev->bdev,b), mdname(mddev));
5946                 err = -EINVAL;
5947                 goto abort_export;
5948         }
5949         clear_bit(In_sync, &rdev->flags);
5950         rdev->desc_nr = -1;
5951         rdev->saved_raid_disk = -1;
5952         err = bind_rdev_to_array(rdev, mddev);
5953         if (err)
5954                 goto abort_export;
5955
5956         /*
5957          * The rest should better be atomic, we can have disk failures
5958          * noticed in interrupt contexts ...
5959          */
5960
5961         rdev->raid_disk = -1;
5962
5963         md_update_sb(mddev, 1);
5964
5965         /*
5966          * Kick recovery, maybe this spare has to be added to the
5967          * array immediately.
5968          */
5969         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5970         md_wakeup_thread(mddev->thread);
5971         md_new_event(mddev);
5972         return 0;
5973
5974 abort_export:
5975         export_rdev(rdev);
5976         return err;
5977 }
5978
5979 static int set_bitmap_file(struct mddev *mddev, int fd)
5980 {
5981         int err;
5982
5983         if (mddev->pers) {
5984                 if (!mddev->pers->quiesce)
5985                         return -EBUSY;
5986                 if (mddev->recovery || mddev->sync_thread)
5987                         return -EBUSY;
5988                 /* we should be able to change the bitmap.. */
5989         }
5990
5991
5992         if (fd >= 0) {
5993                 if (mddev->bitmap)
5994                         return -EEXIST; /* cannot add when bitmap is present */
5995                 mddev->bitmap_info.file = fget(fd);
5996
5997                 if (mddev->bitmap_info.file == NULL) {
5998                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5999                                mdname(mddev));
6000                         return -EBADF;
6001                 }
6002
6003                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6004                 if (err) {
6005                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6006                                mdname(mddev));
6007                         fput(mddev->bitmap_info.file);
6008                         mddev->bitmap_info.file = NULL;
6009                         return err;
6010                 }
6011                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6012         } else if (mddev->bitmap == NULL)
6013                 return -ENOENT; /* cannot remove what isn't there */
6014         err = 0;
6015         if (mddev->pers) {
6016                 mddev->pers->quiesce(mddev, 1);
6017                 if (fd >= 0) {
6018                         err = bitmap_create(mddev);
6019                         if (!err)
6020                                 err = bitmap_load(mddev);
6021                 }
6022                 if (fd < 0 || err) {
6023                         bitmap_destroy(mddev);
6024                         fd = -1; /* make sure to put the file */
6025                 }
6026                 mddev->pers->quiesce(mddev, 0);
6027         }
6028         if (fd < 0) {
6029                 if (mddev->bitmap_info.file) {
6030                         restore_bitmap_write_access(mddev->bitmap_info.file);
6031                         fput(mddev->bitmap_info.file);
6032                 }
6033                 mddev->bitmap_info.file = NULL;
6034         }
6035
6036         return err;
6037 }
6038
6039 /*
6040  * set_array_info is used two different ways
6041  * The original usage is when creating a new array.
6042  * In this usage, raid_disks is > 0 and it together with
6043  *  level, size, not_persistent,layout,chunksize determine the
6044  *  shape of the array.
6045  *  This will always create an array with a type-0.90.0 superblock.
6046  * The newer usage is when assembling an array.
6047  *  In this case raid_disks will be 0, and the major_version field is
6048  *  use to determine which style super-blocks are to be found on the devices.
6049  *  The minor and patch _version numbers are also kept incase the
6050  *  super_block handler wishes to interpret them.
6051  */
6052 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6053 {
6054
6055         if (info->raid_disks == 0) {
6056                 /* just setting version number for superblock loading */
6057                 if (info->major_version < 0 ||
6058                     info->major_version >= ARRAY_SIZE(super_types) ||
6059                     super_types[info->major_version].name == NULL) {
6060                         /* maybe try to auto-load a module? */
6061                         printk(KERN_INFO 
6062                                 "md: superblock version %d not known\n",
6063                                 info->major_version);
6064                         return -EINVAL;
6065                 }
6066                 mddev->major_version = info->major_version;
6067                 mddev->minor_version = info->minor_version;
6068                 mddev->patch_version = info->patch_version;
6069                 mddev->persistent = !info->not_persistent;
6070                 /* ensure mddev_put doesn't delete this now that there
6071                  * is some minimal configuration.
6072                  */
6073                 mddev->ctime         = get_seconds();
6074                 return 0;
6075         }
6076         mddev->major_version = MD_MAJOR_VERSION;
6077         mddev->minor_version = MD_MINOR_VERSION;
6078         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6079         mddev->ctime         = get_seconds();
6080
6081         mddev->level         = info->level;
6082         mddev->clevel[0]     = 0;
6083         mddev->dev_sectors   = 2 * (sector_t)info->size;
6084         mddev->raid_disks    = info->raid_disks;
6085         /* don't set md_minor, it is determined by which /dev/md* was
6086          * openned
6087          */
6088         if (info->state & (1<<MD_SB_CLEAN))
6089                 mddev->recovery_cp = MaxSector;
6090         else
6091                 mddev->recovery_cp = 0;
6092         mddev->persistent    = ! info->not_persistent;
6093         mddev->external      = 0;
6094
6095         mddev->layout        = info->layout;
6096         mddev->chunk_sectors = info->chunk_size >> 9;
6097
6098         mddev->max_disks     = MD_SB_DISKS;
6099
6100         if (mddev->persistent)
6101                 mddev->flags         = 0;
6102         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6103
6104         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6105         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6106         mddev->bitmap_info.offset = 0;
6107
6108         mddev->reshape_position = MaxSector;
6109
6110         /*
6111          * Generate a 128 bit UUID
6112          */
6113         get_random_bytes(mddev->uuid, 16);
6114
6115         mddev->new_level = mddev->level;
6116         mddev->new_chunk_sectors = mddev->chunk_sectors;
6117         mddev->new_layout = mddev->layout;
6118         mddev->delta_disks = 0;
6119         mddev->reshape_backwards = 0;
6120
6121         return 0;
6122 }
6123
6124 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6125 {
6126         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6127
6128         if (mddev->external_size)
6129                 return;
6130
6131         mddev->array_sectors = array_sectors;
6132 }
6133 EXPORT_SYMBOL(md_set_array_sectors);
6134
6135 static int update_size(struct mddev *mddev, sector_t num_sectors)
6136 {
6137         struct md_rdev *rdev;
6138         int rv;
6139         int fit = (num_sectors == 0);
6140
6141         if (mddev->pers->resize == NULL)
6142                 return -EINVAL;
6143         /* The "num_sectors" is the number of sectors of each device that
6144          * is used.  This can only make sense for arrays with redundancy.
6145          * linear and raid0 always use whatever space is available. We can only
6146          * consider changing this number if no resync or reconstruction is
6147          * happening, and if the new size is acceptable. It must fit before the
6148          * sb_start or, if that is <data_offset, it must fit before the size
6149          * of each device.  If num_sectors is zero, we find the largest size
6150          * that fits.
6151          */
6152         if (mddev->sync_thread)
6153                 return -EBUSY;
6154
6155         rdev_for_each(rdev, mddev) {
6156                 sector_t avail = rdev->sectors;
6157
6158                 if (fit && (num_sectors == 0 || num_sectors > avail))
6159                         num_sectors = avail;
6160                 if (avail < num_sectors)
6161                         return -ENOSPC;
6162         }
6163         rv = mddev->pers->resize(mddev, num_sectors);
6164         if (!rv)
6165                 revalidate_disk(mddev->gendisk);
6166         return rv;
6167 }
6168
6169 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6170 {
6171         int rv;
6172         struct md_rdev *rdev;
6173         /* change the number of raid disks */
6174         if (mddev->pers->check_reshape == NULL)
6175                 return -EINVAL;
6176         if (raid_disks <= 0 ||
6177             (mddev->max_disks && raid_disks >= mddev->max_disks))
6178                 return -EINVAL;
6179         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6180                 return -EBUSY;
6181
6182         rdev_for_each(rdev, mddev) {
6183                 if (mddev->raid_disks < raid_disks &&
6184                     rdev->data_offset < rdev->new_data_offset)
6185                         return -EINVAL;
6186                 if (mddev->raid_disks > raid_disks &&
6187                     rdev->data_offset > rdev->new_data_offset)
6188                         return -EINVAL;
6189         }
6190
6191         mddev->delta_disks = raid_disks - mddev->raid_disks;
6192         if (mddev->delta_disks < 0)
6193                 mddev->reshape_backwards = 1;
6194         else if (mddev->delta_disks > 0)
6195                 mddev->reshape_backwards = 0;
6196
6197         rv = mddev->pers->check_reshape(mddev);
6198         if (rv < 0) {
6199                 mddev->delta_disks = 0;
6200                 mddev->reshape_backwards = 0;
6201         }
6202         return rv;
6203 }
6204
6205
6206 /*
6207  * update_array_info is used to change the configuration of an
6208  * on-line array.
6209  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6210  * fields in the info are checked against the array.
6211  * Any differences that cannot be handled will cause an error.
6212  * Normally, only one change can be managed at a time.
6213  */
6214 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6215 {
6216         int rv = 0;
6217         int cnt = 0;
6218         int state = 0;
6219
6220         /* calculate expected state,ignoring low bits */
6221         if (mddev->bitmap && mddev->bitmap_info.offset)
6222                 state |= (1 << MD_SB_BITMAP_PRESENT);
6223
6224         if (mddev->major_version != info->major_version ||
6225             mddev->minor_version != info->minor_version ||
6226 /*          mddev->patch_version != info->patch_version || */
6227             mddev->ctime         != info->ctime         ||
6228             mddev->level         != info->level         ||
6229 /*          mddev->layout        != info->layout        || */
6230             !mddev->persistent   != info->not_persistent||
6231             mddev->chunk_sectors != info->chunk_size >> 9 ||
6232             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6233             ((state^info->state) & 0xfffffe00)
6234                 )
6235                 return -EINVAL;
6236         /* Check there is only one change */
6237         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6238                 cnt++;
6239         if (mddev->raid_disks != info->raid_disks)
6240                 cnt++;
6241         if (mddev->layout != info->layout)
6242                 cnt++;
6243         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6244                 cnt++;
6245         if (cnt == 0)
6246                 return 0;
6247         if (cnt > 1)
6248                 return -EINVAL;
6249
6250         if (mddev->layout != info->layout) {
6251                 /* Change layout
6252                  * we don't need to do anything at the md level, the
6253                  * personality will take care of it all.
6254                  */
6255                 if (mddev->pers->check_reshape == NULL)
6256                         return -EINVAL;
6257                 else {
6258                         mddev->new_layout = info->layout;
6259                         rv = mddev->pers->check_reshape(mddev);
6260                         if (rv)
6261                                 mddev->new_layout = mddev->layout;
6262                         return rv;
6263                 }
6264         }
6265         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6266                 rv = update_size(mddev, (sector_t)info->size * 2);
6267
6268         if (mddev->raid_disks    != info->raid_disks)
6269                 rv = update_raid_disks(mddev, info->raid_disks);
6270
6271         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6272                 if (mddev->pers->quiesce == NULL)
6273                         return -EINVAL;
6274                 if (mddev->recovery || mddev->sync_thread)
6275                         return -EBUSY;
6276                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6277                         /* add the bitmap */
6278                         if (mddev->bitmap)
6279                                 return -EEXIST;
6280                         if (mddev->bitmap_info.default_offset == 0)
6281                                 return -EINVAL;
6282                         mddev->bitmap_info.offset =
6283                                 mddev->bitmap_info.default_offset;
6284                         mddev->bitmap_info.space =
6285                                 mddev->bitmap_info.default_space;
6286                         mddev->pers->quiesce(mddev, 1);
6287                         rv = bitmap_create(mddev);
6288                         if (!rv)
6289                                 rv = bitmap_load(mddev);
6290                         if (rv)
6291                                 bitmap_destroy(mddev);
6292                         mddev->pers->quiesce(mddev, 0);
6293                 } else {
6294                         /* remove the bitmap */
6295                         if (!mddev->bitmap)
6296                                 return -ENOENT;
6297                         if (mddev->bitmap->storage.file)
6298                                 return -EINVAL;
6299                         mddev->pers->quiesce(mddev, 1);
6300                         bitmap_destroy(mddev);
6301                         mddev->pers->quiesce(mddev, 0);
6302                         mddev->bitmap_info.offset = 0;
6303                 }
6304         }
6305         md_update_sb(mddev, 1);
6306         return rv;
6307 }
6308
6309 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6310 {
6311         struct md_rdev *rdev;
6312
6313         if (mddev->pers == NULL)
6314                 return -ENODEV;
6315
6316         rdev = find_rdev(mddev, dev);
6317         if (!rdev)
6318                 return -ENODEV;
6319
6320         md_error(mddev, rdev);
6321         if (!test_bit(Faulty, &rdev->flags))
6322                 return -EBUSY;
6323         return 0;
6324 }
6325
6326 /*
6327  * We have a problem here : there is no easy way to give a CHS
6328  * virtual geometry. We currently pretend that we have a 2 heads
6329  * 4 sectors (with a BIG number of cylinders...). This drives
6330  * dosfs just mad... ;-)
6331  */
6332 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6333 {
6334         struct mddev *mddev = bdev->bd_disk->private_data;
6335
6336         geo->heads = 2;
6337         geo->sectors = 4;
6338         geo->cylinders = mddev->array_sectors / 8;
6339         return 0;
6340 }
6341
6342 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6343                         unsigned int cmd, unsigned long arg)
6344 {
6345         int err = 0;
6346         void __user *argp = (void __user *)arg;
6347         struct mddev *mddev = NULL;
6348         int ro;
6349
6350         switch (cmd) {
6351         case RAID_VERSION:
6352         case GET_ARRAY_INFO:
6353         case GET_DISK_INFO:
6354                 break;
6355         default:
6356                 if (!capable(CAP_SYS_ADMIN))
6357                         return -EACCES;
6358         }
6359
6360         /*
6361          * Commands dealing with the RAID driver but not any
6362          * particular array:
6363          */
6364         switch (cmd)
6365         {
6366                 case RAID_VERSION:
6367                         err = get_version(argp);
6368                         goto done;
6369
6370                 case PRINT_RAID_DEBUG:
6371                         err = 0;
6372                         md_print_devices();
6373                         goto done;
6374
6375 #ifndef MODULE
6376                 case RAID_AUTORUN:
6377                         err = 0;
6378                         autostart_arrays(arg);
6379                         goto done;
6380 #endif
6381                 default:;
6382         }
6383
6384         /*
6385          * Commands creating/starting a new array:
6386          */
6387
6388         mddev = bdev->bd_disk->private_data;
6389
6390         if (!mddev) {
6391                 BUG();
6392                 goto abort;
6393         }
6394
6395         err = mddev_lock(mddev);
6396         if (err) {
6397                 printk(KERN_INFO 
6398                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6399                         err, cmd);
6400                 goto abort;
6401         }
6402
6403         switch (cmd)
6404         {
6405                 case SET_ARRAY_INFO:
6406                         {
6407                                 mdu_array_info_t info;
6408                                 if (!arg)
6409                                         memset(&info, 0, sizeof(info));
6410                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6411                                         err = -EFAULT;
6412                                         goto abort_unlock;
6413                                 }
6414                                 if (mddev->pers) {
6415                                         err = update_array_info(mddev, &info);
6416                                         if (err) {
6417                                                 printk(KERN_WARNING "md: couldn't update"
6418                                                        " array info. %d\n", err);
6419                                                 goto abort_unlock;
6420                                         }
6421                                         goto done_unlock;
6422                                 }
6423                                 if (!list_empty(&mddev->disks)) {
6424                                         printk(KERN_WARNING
6425                                                "md: array %s already has disks!\n",
6426                                                mdname(mddev));
6427                                         err = -EBUSY;
6428                                         goto abort_unlock;
6429                                 }
6430                                 if (mddev->raid_disks) {
6431                                         printk(KERN_WARNING
6432                                                "md: array %s already initialised!\n",
6433                                                mdname(mddev));
6434                                         err = -EBUSY;
6435                                         goto abort_unlock;
6436                                 }
6437                                 err = set_array_info(mddev, &info);
6438                                 if (err) {
6439                                         printk(KERN_WARNING "md: couldn't set"
6440                                                " array info. %d\n", err);
6441                                         goto abort_unlock;
6442                                 }
6443                         }
6444                         goto done_unlock;
6445
6446                 default:;
6447         }
6448
6449         /*
6450          * Commands querying/configuring an existing array:
6451          */
6452         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6453          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6454         if ((!mddev->raid_disks && !mddev->external)
6455             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6456             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6457             && cmd != GET_BITMAP_FILE) {
6458                 err = -ENODEV;
6459                 goto abort_unlock;
6460         }
6461
6462         /*
6463          * Commands even a read-only array can execute:
6464          */
6465         switch (cmd)
6466         {
6467                 case GET_ARRAY_INFO:
6468                         err = get_array_info(mddev, argp);
6469                         goto done_unlock;
6470
6471                 case GET_BITMAP_FILE:
6472                         err = get_bitmap_file(mddev, argp);
6473                         goto done_unlock;
6474
6475                 case GET_DISK_INFO:
6476                         err = get_disk_info(mddev, argp);
6477                         goto done_unlock;
6478
6479                 case RESTART_ARRAY_RW:
6480                         err = restart_array(mddev);
6481                         goto done_unlock;
6482
6483                 case STOP_ARRAY:
6484                         err = do_md_stop(mddev, 0, 1);
6485                         goto done_unlock;
6486
6487                 case STOP_ARRAY_RO:
6488                         err = md_set_readonly(mddev, 1);
6489                         goto done_unlock;
6490
6491                 case BLKROSET:
6492                         if (get_user(ro, (int __user *)(arg))) {
6493                                 err = -EFAULT;
6494                                 goto done_unlock;
6495                         }
6496                         err = -EINVAL;
6497
6498                         /* if the bdev is going readonly the value of mddev->ro
6499                          * does not matter, no writes are coming
6500                          */
6501                         if (ro)
6502                                 goto done_unlock;
6503
6504                         /* are we are already prepared for writes? */
6505                         if (mddev->ro != 1)
6506                                 goto done_unlock;
6507
6508                         /* transitioning to readauto need only happen for
6509                          * arrays that call md_write_start
6510                          */
6511                         if (mddev->pers) {
6512                                 err = restart_array(mddev);
6513                                 if (err == 0) {
6514                                         mddev->ro = 2;
6515                                         set_disk_ro(mddev->gendisk, 0);
6516                                 }
6517                         }
6518                         goto done_unlock;
6519         }
6520
6521         /*
6522          * The remaining ioctls are changing the state of the
6523          * superblock, so we do not allow them on read-only arrays.
6524          * However non-MD ioctls (e.g. get-size) will still come through
6525          * here and hit the 'default' below, so only disallow
6526          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6527          */
6528         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6529                 if (mddev->ro == 2) {
6530                         mddev->ro = 0;
6531                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6532                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6533                         md_wakeup_thread(mddev->thread);
6534                 } else {
6535                         err = -EROFS;
6536                         goto abort_unlock;
6537                 }
6538         }
6539
6540         switch (cmd)
6541         {
6542                 case ADD_NEW_DISK:
6543                 {
6544                         mdu_disk_info_t info;
6545                         if (copy_from_user(&info, argp, sizeof(info)))
6546                                 err = -EFAULT;
6547                         else
6548                                 err = add_new_disk(mddev, &info);
6549                         goto done_unlock;
6550                 }
6551
6552                 case HOT_REMOVE_DISK:
6553                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6554                         goto done_unlock;
6555
6556                 case HOT_ADD_DISK:
6557                         err = hot_add_disk(mddev, new_decode_dev(arg));
6558                         goto done_unlock;
6559
6560                 case SET_DISK_FAULTY:
6561                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6562                         goto done_unlock;
6563
6564                 case RUN_ARRAY:
6565                         err = do_md_run(mddev);
6566                         goto done_unlock;
6567
6568                 case SET_BITMAP_FILE:
6569                         err = set_bitmap_file(mddev, (int)arg);
6570                         goto done_unlock;
6571
6572                 default:
6573                         err = -EINVAL;
6574                         goto abort_unlock;
6575         }
6576
6577 done_unlock:
6578 abort_unlock:
6579         if (mddev->hold_active == UNTIL_IOCTL &&
6580             err != -EINVAL)
6581                 mddev->hold_active = 0;
6582         mddev_unlock(mddev);
6583
6584         return err;
6585 done:
6586         if (err)
6587                 MD_BUG();
6588 abort:
6589         return err;
6590 }
6591 #ifdef CONFIG_COMPAT
6592 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6593                     unsigned int cmd, unsigned long arg)
6594 {
6595         switch (cmd) {
6596         case HOT_REMOVE_DISK:
6597         case HOT_ADD_DISK:
6598         case SET_DISK_FAULTY:
6599         case SET_BITMAP_FILE:
6600                 /* These take in integer arg, do not convert */
6601                 break;
6602         default:
6603                 arg = (unsigned long)compat_ptr(arg);
6604                 break;
6605         }
6606
6607         return md_ioctl(bdev, mode, cmd, arg);
6608 }
6609 #endif /* CONFIG_COMPAT */
6610
6611 static int md_open(struct block_device *bdev, fmode_t mode)
6612 {
6613         /*
6614          * Succeed if we can lock the mddev, which confirms that
6615          * it isn't being stopped right now.
6616          */
6617         struct mddev *mddev = mddev_find(bdev->bd_dev);
6618         int err;
6619
6620         if (!mddev)
6621                 return -ENODEV;
6622
6623         if (mddev->gendisk != bdev->bd_disk) {
6624                 /* we are racing with mddev_put which is discarding this
6625                  * bd_disk.
6626                  */
6627                 mddev_put(mddev);
6628                 /* Wait until bdev->bd_disk is definitely gone */
6629                 flush_workqueue(md_misc_wq);
6630                 /* Then retry the open from the top */
6631                 return -ERESTARTSYS;
6632         }
6633         BUG_ON(mddev != bdev->bd_disk->private_data);
6634
6635         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6636                 goto out;
6637
6638         err = 0;
6639         atomic_inc(&mddev->openers);
6640         mutex_unlock(&mddev->open_mutex);
6641
6642         check_disk_change(bdev);
6643  out:
6644         return err;
6645 }
6646
6647 static int md_release(struct gendisk *disk, fmode_t mode)
6648 {
6649         struct mddev *mddev = disk->private_data;
6650
6651         BUG_ON(!mddev);
6652         atomic_dec(&mddev->openers);
6653         mddev_put(mddev);
6654
6655         return 0;
6656 }
6657
6658 static int md_media_changed(struct gendisk *disk)
6659 {
6660         struct mddev *mddev = disk->private_data;
6661
6662         return mddev->changed;
6663 }
6664
6665 static int md_revalidate(struct gendisk *disk)
6666 {
6667         struct mddev *mddev = disk->private_data;
6668
6669         mddev->changed = 0;
6670         return 0;
6671 }
6672 static const struct block_device_operations md_fops =
6673 {
6674         .owner          = THIS_MODULE,
6675         .open           = md_open,
6676         .release        = md_release,
6677         .ioctl          = md_ioctl,
6678 #ifdef CONFIG_COMPAT
6679         .compat_ioctl   = md_compat_ioctl,
6680 #endif
6681         .getgeo         = md_getgeo,
6682         .media_changed  = md_media_changed,
6683         .revalidate_disk= md_revalidate,
6684 };
6685
6686 static int md_thread(void * arg)
6687 {
6688         struct md_thread *thread = arg;
6689
6690         /*
6691          * md_thread is a 'system-thread', it's priority should be very
6692          * high. We avoid resource deadlocks individually in each
6693          * raid personality. (RAID5 does preallocation) We also use RR and
6694          * the very same RT priority as kswapd, thus we will never get
6695          * into a priority inversion deadlock.
6696          *
6697          * we definitely have to have equal or higher priority than
6698          * bdflush, otherwise bdflush will deadlock if there are too
6699          * many dirty RAID5 blocks.
6700          */
6701
6702         allow_signal(SIGKILL);
6703         while (!kthread_should_stop()) {
6704
6705                 /* We need to wait INTERRUPTIBLE so that
6706                  * we don't add to the load-average.
6707                  * That means we need to be sure no signals are
6708                  * pending
6709                  */
6710                 if (signal_pending(current))
6711                         flush_signals(current);
6712
6713                 wait_event_interruptible_timeout
6714                         (thread->wqueue,
6715                          test_bit(THREAD_WAKEUP, &thread->flags)
6716                          || kthread_should_stop(),
6717                          thread->timeout);
6718
6719                 clear_bit(THREAD_WAKEUP, &thread->flags);
6720                 if (!kthread_should_stop())
6721                         thread->run(thread->mddev);
6722         }
6723
6724         return 0;
6725 }
6726
6727 void md_wakeup_thread(struct md_thread *thread)
6728 {
6729         if (thread) {
6730                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6731                 set_bit(THREAD_WAKEUP, &thread->flags);
6732                 wake_up(&thread->wqueue);
6733         }
6734 }
6735
6736 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6737                                  const char *name)
6738 {
6739         struct md_thread *thread;
6740
6741         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6742         if (!thread)
6743                 return NULL;
6744
6745         init_waitqueue_head(&thread->wqueue);
6746
6747         thread->run = run;
6748         thread->mddev = mddev;
6749         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6750         thread->tsk = kthread_run(md_thread, thread,
6751                                   "%s_%s",
6752                                   mdname(thread->mddev),
6753                                   name);
6754         if (IS_ERR(thread->tsk)) {
6755                 kfree(thread);
6756                 return NULL;
6757         }
6758         return thread;
6759 }
6760
6761 void md_unregister_thread(struct md_thread **threadp)
6762 {
6763         struct md_thread *thread = *threadp;
6764         if (!thread)
6765                 return;
6766         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6767         /* Locking ensures that mddev_unlock does not wake_up a
6768          * non-existent thread
6769          */
6770         spin_lock(&pers_lock);
6771         *threadp = NULL;
6772         spin_unlock(&pers_lock);
6773
6774         kthread_stop(thread->tsk);
6775         kfree(thread);
6776 }
6777
6778 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6779 {
6780         if (!mddev) {
6781                 MD_BUG();
6782                 return;
6783         }
6784
6785         if (!rdev || test_bit(Faulty, &rdev->flags))
6786                 return;
6787
6788         if (!mddev->pers || !mddev->pers->error_handler)
6789                 return;
6790         mddev->pers->error_handler(mddev,rdev);
6791         if (mddev->degraded)
6792                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6793         sysfs_notify_dirent_safe(rdev->sysfs_state);
6794         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6795         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6796         md_wakeup_thread(mddev->thread);
6797         if (mddev->event_work.func)
6798                 queue_work(md_misc_wq, &mddev->event_work);
6799         md_new_event_inintr(mddev);
6800 }
6801
6802 /* seq_file implementation /proc/mdstat */
6803
6804 static void status_unused(struct seq_file *seq)
6805 {
6806         int i = 0;
6807         struct md_rdev *rdev;
6808
6809         seq_printf(seq, "unused devices: ");
6810
6811         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6812                 char b[BDEVNAME_SIZE];
6813                 i++;
6814                 seq_printf(seq, "%s ",
6815                               bdevname(rdev->bdev,b));
6816         }
6817         if (!i)
6818                 seq_printf(seq, "<none>");
6819
6820         seq_printf(seq, "\n");
6821 }
6822
6823
6824 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6825 {
6826         sector_t max_sectors, resync, res;
6827         unsigned long dt, db;
6828         sector_t rt;
6829         int scale;
6830         unsigned int per_milli;
6831
6832         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6833
6834         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6835             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6836                 max_sectors = mddev->resync_max_sectors;
6837         else
6838                 max_sectors = mddev->dev_sectors;
6839
6840         /*
6841          * Should not happen.
6842          */
6843         if (!max_sectors) {
6844                 MD_BUG();
6845                 return;
6846         }
6847         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6848          * in a sector_t, and (max_sectors>>scale) will fit in a
6849          * u32, as those are the requirements for sector_div.
6850          * Thus 'scale' must be at least 10
6851          */
6852         scale = 10;
6853         if (sizeof(sector_t) > sizeof(unsigned long)) {
6854                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6855                         scale++;
6856         }
6857         res = (resync>>scale)*1000;
6858         sector_div(res, (u32)((max_sectors>>scale)+1));
6859
6860         per_milli = res;
6861         {
6862                 int i, x = per_milli/50, y = 20-x;
6863                 seq_printf(seq, "[");
6864                 for (i = 0; i < x; i++)
6865                         seq_printf(seq, "=");
6866                 seq_printf(seq, ">");
6867                 for (i = 0; i < y; i++)
6868                         seq_printf(seq, ".");
6869                 seq_printf(seq, "] ");
6870         }
6871         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6872                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6873                     "reshape" :
6874                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6875                      "check" :
6876                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6877                       "resync" : "recovery"))),
6878                    per_milli/10, per_milli % 10,
6879                    (unsigned long long) resync/2,
6880                    (unsigned long long) max_sectors/2);
6881
6882         /*
6883          * dt: time from mark until now
6884          * db: blocks written from mark until now
6885          * rt: remaining time
6886          *
6887          * rt is a sector_t, so could be 32bit or 64bit.
6888          * So we divide before multiply in case it is 32bit and close
6889          * to the limit.
6890          * We scale the divisor (db) by 32 to avoid losing precision
6891          * near the end of resync when the number of remaining sectors
6892          * is close to 'db'.
6893          * We then divide rt by 32 after multiplying by db to compensate.
6894          * The '+1' avoids division by zero if db is very small.
6895          */
6896         dt = ((jiffies - mddev->resync_mark) / HZ);
6897         if (!dt) dt++;
6898         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6899                 - mddev->resync_mark_cnt;
6900
6901         rt = max_sectors - resync;    /* number of remaining sectors */
6902         sector_div(rt, db/32+1);
6903         rt *= dt;
6904         rt >>= 5;
6905
6906         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6907                    ((unsigned long)rt % 60)/6);
6908
6909         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6910 }
6911
6912 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6913 {
6914         struct list_head *tmp;
6915         loff_t l = *pos;
6916         struct mddev *mddev;
6917
6918         if (l >= 0x10000)
6919                 return NULL;
6920         if (!l--)
6921                 /* header */
6922                 return (void*)1;
6923
6924         spin_lock(&all_mddevs_lock);
6925         list_for_each(tmp,&all_mddevs)
6926                 if (!l--) {
6927                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6928                         mddev_get(mddev);
6929                         spin_unlock(&all_mddevs_lock);
6930                         return mddev;
6931                 }
6932         spin_unlock(&all_mddevs_lock);
6933         if (!l--)
6934                 return (void*)2;/* tail */
6935         return NULL;
6936 }
6937
6938 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6939 {
6940         struct list_head *tmp;
6941         struct mddev *next_mddev, *mddev = v;
6942         
6943         ++*pos;
6944         if (v == (void*)2)
6945                 return NULL;
6946
6947         spin_lock(&all_mddevs_lock);
6948         if (v == (void*)1)
6949                 tmp = all_mddevs.next;
6950         else
6951                 tmp = mddev->all_mddevs.next;
6952         if (tmp != &all_mddevs)
6953                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6954         else {
6955                 next_mddev = (void*)2;
6956                 *pos = 0x10000;
6957         }               
6958         spin_unlock(&all_mddevs_lock);
6959
6960         if (v != (void*)1)
6961                 mddev_put(mddev);
6962         return next_mddev;
6963
6964 }
6965
6966 static void md_seq_stop(struct seq_file *seq, void *v)
6967 {
6968         struct mddev *mddev = v;
6969
6970         if (mddev && v != (void*)1 && v != (void*)2)
6971                 mddev_put(mddev);
6972 }
6973
6974 static int md_seq_show(struct seq_file *seq, void *v)
6975 {
6976         struct mddev *mddev = v;
6977         sector_t sectors;
6978         struct md_rdev *rdev;
6979
6980         if (v == (void*)1) {
6981                 struct md_personality *pers;
6982                 seq_printf(seq, "Personalities : ");
6983                 spin_lock(&pers_lock);
6984                 list_for_each_entry(pers, &pers_list, list)
6985                         seq_printf(seq, "[%s] ", pers->name);
6986
6987                 spin_unlock(&pers_lock);
6988                 seq_printf(seq, "\n");
6989                 seq->poll_event = atomic_read(&md_event_count);
6990                 return 0;
6991         }
6992         if (v == (void*)2) {
6993                 status_unused(seq);
6994                 return 0;
6995         }
6996
6997         if (mddev_lock(mddev) < 0)
6998                 return -EINTR;
6999
7000         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7001                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7002                                                 mddev->pers ? "" : "in");
7003                 if (mddev->pers) {
7004                         if (mddev->ro==1)
7005                                 seq_printf(seq, " (read-only)");
7006                         if (mddev->ro==2)
7007                                 seq_printf(seq, " (auto-read-only)");
7008                         seq_printf(seq, " %s", mddev->pers->name);
7009                 }
7010
7011                 sectors = 0;
7012                 rdev_for_each(rdev, mddev) {
7013                         char b[BDEVNAME_SIZE];
7014                         seq_printf(seq, " %s[%d]",
7015                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7016                         if (test_bit(WriteMostly, &rdev->flags))
7017                                 seq_printf(seq, "(W)");
7018                         if (test_bit(Faulty, &rdev->flags)) {
7019                                 seq_printf(seq, "(F)");
7020                                 continue;
7021                         }
7022                         if (rdev->raid_disk < 0)
7023                                 seq_printf(seq, "(S)"); /* spare */
7024                         if (test_bit(Replacement, &rdev->flags))
7025                                 seq_printf(seq, "(R)");
7026                         sectors += rdev->sectors;
7027                 }
7028
7029                 if (!list_empty(&mddev->disks)) {
7030                         if (mddev->pers)
7031                                 seq_printf(seq, "\n      %llu blocks",
7032                                            (unsigned long long)
7033                                            mddev->array_sectors / 2);
7034                         else
7035                                 seq_printf(seq, "\n      %llu blocks",
7036                                            (unsigned long long)sectors / 2);
7037                 }
7038                 if (mddev->persistent) {
7039                         if (mddev->major_version != 0 ||
7040                             mddev->minor_version != 90) {
7041                                 seq_printf(seq," super %d.%d",
7042                                            mddev->major_version,
7043                                            mddev->minor_version);
7044                         }
7045                 } else if (mddev->external)
7046                         seq_printf(seq, " super external:%s",
7047                                    mddev->metadata_type);
7048                 else
7049                         seq_printf(seq, " super non-persistent");
7050
7051                 if (mddev->pers) {
7052                         mddev->pers->status(seq, mddev);
7053                         seq_printf(seq, "\n      ");
7054                         if (mddev->pers->sync_request) {
7055                                 if (mddev->curr_resync > 2) {
7056                                         status_resync(seq, mddev);
7057                                         seq_printf(seq, "\n      ");
7058                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7059                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7060                                 else if (mddev->recovery_cp < MaxSector)
7061                                         seq_printf(seq, "\tresync=PENDING\n      ");
7062                         }
7063                 } else
7064                         seq_printf(seq, "\n       ");
7065
7066                 bitmap_status(seq, mddev->bitmap);
7067
7068                 seq_printf(seq, "\n");
7069         }
7070         mddev_unlock(mddev);
7071         
7072         return 0;
7073 }
7074
7075 static const struct seq_operations md_seq_ops = {
7076         .start  = md_seq_start,
7077         .next   = md_seq_next,
7078         .stop   = md_seq_stop,
7079         .show   = md_seq_show,
7080 };
7081
7082 static int md_seq_open(struct inode *inode, struct file *file)
7083 {
7084         struct seq_file *seq;
7085         int error;
7086
7087         error = seq_open(file, &md_seq_ops);
7088         if (error)
7089                 return error;
7090
7091         seq = file->private_data;
7092         seq->poll_event = atomic_read(&md_event_count);
7093         return error;
7094 }
7095
7096 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7097 {
7098         struct seq_file *seq = filp->private_data;
7099         int mask;
7100
7101         poll_wait(filp, &md_event_waiters, wait);
7102
7103         /* always allow read */
7104         mask = POLLIN | POLLRDNORM;
7105
7106         if (seq->poll_event != atomic_read(&md_event_count))
7107                 mask |= POLLERR | POLLPRI;
7108         return mask;
7109 }
7110
7111 static const struct file_operations md_seq_fops = {
7112         .owner          = THIS_MODULE,
7113         .open           = md_seq_open,
7114         .read           = seq_read,
7115         .llseek         = seq_lseek,
7116         .release        = seq_release_private,
7117         .poll           = mdstat_poll,
7118 };
7119
7120 int register_md_personality(struct md_personality *p)
7121 {
7122         spin_lock(&pers_lock);
7123         list_add_tail(&p->list, &pers_list);
7124         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7125         spin_unlock(&pers_lock);
7126         return 0;
7127 }
7128
7129 int unregister_md_personality(struct md_personality *p)
7130 {
7131         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7132         spin_lock(&pers_lock);
7133         list_del_init(&p->list);
7134         spin_unlock(&pers_lock);
7135         return 0;
7136 }
7137
7138 static int is_mddev_idle(struct mddev *mddev, int init)
7139 {
7140         struct md_rdev * rdev;
7141         int idle;
7142         int curr_events;
7143
7144         idle = 1;
7145         rcu_read_lock();
7146         rdev_for_each_rcu(rdev, mddev) {
7147                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7148                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7149                               (int)part_stat_read(&disk->part0, sectors[1]) -
7150                               atomic_read(&disk->sync_io);
7151                 /* sync IO will cause sync_io to increase before the disk_stats
7152                  * as sync_io is counted when a request starts, and
7153                  * disk_stats is counted when it completes.
7154                  * So resync activity will cause curr_events to be smaller than
7155                  * when there was no such activity.
7156                  * non-sync IO will cause disk_stat to increase without
7157                  * increasing sync_io so curr_events will (eventually)
7158                  * be larger than it was before.  Once it becomes
7159                  * substantially larger, the test below will cause
7160                  * the array to appear non-idle, and resync will slow
7161                  * down.
7162                  * If there is a lot of outstanding resync activity when
7163                  * we set last_event to curr_events, then all that activity
7164                  * completing might cause the array to appear non-idle
7165                  * and resync will be slowed down even though there might
7166                  * not have been non-resync activity.  This will only
7167                  * happen once though.  'last_events' will soon reflect
7168                  * the state where there is little or no outstanding
7169                  * resync requests, and further resync activity will
7170                  * always make curr_events less than last_events.
7171                  *
7172                  */
7173                 if (init || curr_events - rdev->last_events > 64) {
7174                         rdev->last_events = curr_events;
7175                         idle = 0;
7176                 }
7177         }
7178         rcu_read_unlock();
7179         return idle;
7180 }
7181
7182 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7183 {
7184         /* another "blocks" (512byte) blocks have been synced */
7185         atomic_sub(blocks, &mddev->recovery_active);
7186         wake_up(&mddev->recovery_wait);
7187         if (!ok) {
7188                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7189                 md_wakeup_thread(mddev->thread);
7190                 // stop recovery, signal do_sync ....
7191         }
7192 }
7193
7194
7195 /* md_write_start(mddev, bi)
7196  * If we need to update some array metadata (e.g. 'active' flag
7197  * in superblock) before writing, schedule a superblock update
7198  * and wait for it to complete.
7199  */
7200 void md_write_start(struct mddev *mddev, struct bio *bi)
7201 {
7202         int did_change = 0;
7203         if (bio_data_dir(bi) != WRITE)
7204                 return;
7205
7206         BUG_ON(mddev->ro == 1);
7207         if (mddev->ro == 2) {
7208                 /* need to switch to read/write */
7209                 mddev->ro = 0;
7210                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7211                 md_wakeup_thread(mddev->thread);
7212                 md_wakeup_thread(mddev->sync_thread);
7213                 did_change = 1;
7214         }
7215         atomic_inc(&mddev->writes_pending);
7216         if (mddev->safemode == 1)
7217                 mddev->safemode = 0;
7218         if (mddev->in_sync) {
7219                 spin_lock_irq(&mddev->write_lock);
7220                 if (mddev->in_sync) {
7221                         mddev->in_sync = 0;
7222                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7223                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7224                         md_wakeup_thread(mddev->thread);
7225                         did_change = 1;
7226                 }
7227                 spin_unlock_irq(&mddev->write_lock);
7228         }
7229         if (did_change)
7230                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7231         wait_event(mddev->sb_wait,
7232                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7233 }
7234
7235 void md_write_end(struct mddev *mddev)
7236 {
7237         if (atomic_dec_and_test(&mddev->writes_pending)) {
7238                 if (mddev->safemode == 2)
7239                         md_wakeup_thread(mddev->thread);
7240                 else if (mddev->safemode_delay)
7241                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7242         }
7243 }
7244
7245 /* md_allow_write(mddev)
7246  * Calling this ensures that the array is marked 'active' so that writes
7247  * may proceed without blocking.  It is important to call this before
7248  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7249  * Must be called with mddev_lock held.
7250  *
7251  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7252  * is dropped, so return -EAGAIN after notifying userspace.
7253  */
7254 int md_allow_write(struct mddev *mddev)
7255 {
7256         if (!mddev->pers)
7257                 return 0;
7258         if (mddev->ro)
7259                 return 0;
7260         if (!mddev->pers->sync_request)
7261                 return 0;
7262
7263         spin_lock_irq(&mddev->write_lock);
7264         if (mddev->in_sync) {
7265                 mddev->in_sync = 0;
7266                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7267                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7268                 if (mddev->safemode_delay &&
7269                     mddev->safemode == 0)
7270                         mddev->safemode = 1;
7271                 spin_unlock_irq(&mddev->write_lock);
7272                 md_update_sb(mddev, 0);
7273                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7274         } else
7275                 spin_unlock_irq(&mddev->write_lock);
7276
7277         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7278                 return -EAGAIN;
7279         else
7280                 return 0;
7281 }
7282 EXPORT_SYMBOL_GPL(md_allow_write);
7283
7284 #define SYNC_MARKS      10
7285 #define SYNC_MARK_STEP  (3*HZ)
7286 void md_do_sync(struct mddev *mddev)
7287 {
7288         struct mddev *mddev2;
7289         unsigned int currspeed = 0,
7290                  window;
7291         sector_t max_sectors,j, io_sectors;
7292         unsigned long mark[SYNC_MARKS];
7293         sector_t mark_cnt[SYNC_MARKS];
7294         int last_mark,m;
7295         struct list_head *tmp;
7296         sector_t last_check;
7297         int skipped = 0;
7298         struct md_rdev *rdev;
7299         char *desc;
7300         struct blk_plug plug;
7301
7302         /* just incase thread restarts... */
7303         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7304                 return;
7305         if (mddev->ro) /* never try to sync a read-only array */
7306                 return;
7307
7308         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7309                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7310                         desc = "data-check";
7311                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7312                         desc = "requested-resync";
7313                 else
7314                         desc = "resync";
7315         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7316                 desc = "reshape";
7317         else
7318                 desc = "recovery";
7319
7320         /* we overload curr_resync somewhat here.
7321          * 0 == not engaged in resync at all
7322          * 2 == checking that there is no conflict with another sync
7323          * 1 == like 2, but have yielded to allow conflicting resync to
7324          *              commense
7325          * other == active in resync - this many blocks
7326          *
7327          * Before starting a resync we must have set curr_resync to
7328          * 2, and then checked that every "conflicting" array has curr_resync
7329          * less than ours.  When we find one that is the same or higher
7330          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7331          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7332          * This will mean we have to start checking from the beginning again.
7333          *
7334          */
7335
7336         do {
7337                 mddev->curr_resync = 2;
7338
7339         try_again:
7340                 if (kthread_should_stop())
7341                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7342
7343                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7344                         goto skip;
7345                 for_each_mddev(mddev2, tmp) {
7346                         if (mddev2 == mddev)
7347                                 continue;
7348                         if (!mddev->parallel_resync
7349                         &&  mddev2->curr_resync
7350                         &&  match_mddev_units(mddev, mddev2)) {
7351                                 DEFINE_WAIT(wq);
7352                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7353                                         /* arbitrarily yield */
7354                                         mddev->curr_resync = 1;
7355                                         wake_up(&resync_wait);
7356                                 }
7357                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7358                                         /* no need to wait here, we can wait the next
7359                                          * time 'round when curr_resync == 2
7360                                          */
7361                                         continue;
7362                                 /* We need to wait 'interruptible' so as not to
7363                                  * contribute to the load average, and not to
7364                                  * be caught by 'softlockup'
7365                                  */
7366                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7367                                 if (!kthread_should_stop() &&
7368                                     mddev2->curr_resync >= mddev->curr_resync) {
7369                                         printk(KERN_INFO "md: delaying %s of %s"
7370                                                " until %s has finished (they"
7371                                                " share one or more physical units)\n",
7372                                                desc, mdname(mddev), mdname(mddev2));
7373                                         mddev_put(mddev2);
7374                                         if (signal_pending(current))
7375                                                 flush_signals(current);
7376                                         schedule();
7377                                         finish_wait(&resync_wait, &wq);
7378                                         goto try_again;
7379                                 }
7380                                 finish_wait(&resync_wait, &wq);
7381                         }
7382                 }
7383         } while (mddev->curr_resync < 2);
7384
7385         j = 0;
7386         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7387                 /* resync follows the size requested by the personality,
7388                  * which defaults to physical size, but can be virtual size
7389                  */
7390                 max_sectors = mddev->resync_max_sectors;
7391                 mddev->resync_mismatches = 0;
7392                 /* we don't use the checkpoint if there's a bitmap */
7393                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7394                         j = mddev->resync_min;
7395                 else if (!mddev->bitmap)
7396                         j = mddev->recovery_cp;
7397
7398         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7399                 max_sectors = mddev->resync_max_sectors;
7400         else {
7401                 /* recovery follows the physical size of devices */
7402                 max_sectors = mddev->dev_sectors;
7403                 j = MaxSector;
7404                 rcu_read_lock();
7405                 rdev_for_each_rcu(rdev, mddev)
7406                         if (rdev->raid_disk >= 0 &&
7407                             !test_bit(Faulty, &rdev->flags) &&
7408                             !test_bit(In_sync, &rdev->flags) &&
7409                             rdev->recovery_offset < j)
7410                                 j = rdev->recovery_offset;
7411                 rcu_read_unlock();
7412         }
7413
7414         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7415         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7416                 " %d KB/sec/disk.\n", speed_min(mddev));
7417         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7418                "(but not more than %d KB/sec) for %s.\n",
7419                speed_max(mddev), desc);
7420
7421         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7422
7423         io_sectors = 0;
7424         for (m = 0; m < SYNC_MARKS; m++) {
7425                 mark[m] = jiffies;
7426                 mark_cnt[m] = io_sectors;
7427         }
7428         last_mark = 0;
7429         mddev->resync_mark = mark[last_mark];
7430         mddev->resync_mark_cnt = mark_cnt[last_mark];
7431
7432         /*
7433          * Tune reconstruction:
7434          */
7435         window = 32*(PAGE_SIZE/512);
7436         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7437                 window/2, (unsigned long long)max_sectors/2);
7438
7439         atomic_set(&mddev->recovery_active, 0);
7440         last_check = 0;
7441
7442         if (j>2) {
7443                 printk(KERN_INFO 
7444                        "md: resuming %s of %s from checkpoint.\n",
7445                        desc, mdname(mddev));
7446                 mddev->curr_resync = j;
7447         }
7448         mddev->curr_resync_completed = j;
7449
7450         blk_start_plug(&plug);
7451         while (j < max_sectors) {
7452                 sector_t sectors;
7453
7454                 skipped = 0;
7455
7456                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7457                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7458                       (mddev->curr_resync - mddev->curr_resync_completed)
7459                       > (max_sectors >> 4)) ||
7460                      (j - mddev->curr_resync_completed)*2
7461                      >= mddev->resync_max - mddev->curr_resync_completed
7462                             )) {
7463                         /* time to update curr_resync_completed */
7464                         wait_event(mddev->recovery_wait,
7465                                    atomic_read(&mddev->recovery_active) == 0);
7466                         mddev->curr_resync_completed = j;
7467                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7468                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7469                 }
7470
7471                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7472                         /* As this condition is controlled by user-space,
7473                          * we can block indefinitely, so use '_interruptible'
7474                          * to avoid triggering warnings.
7475                          */
7476                         flush_signals(current); /* just in case */
7477                         wait_event_interruptible(mddev->recovery_wait,
7478                                                  mddev->resync_max > j
7479                                                  || kthread_should_stop());
7480                 }
7481
7482                 if (kthread_should_stop())
7483                         goto interrupted;
7484
7485                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7486                                                   currspeed < speed_min(mddev));
7487                 if (sectors == 0) {
7488                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7489                         goto out;
7490                 }
7491
7492                 if (!skipped) { /* actual IO requested */
7493                         io_sectors += sectors;
7494                         atomic_add(sectors, &mddev->recovery_active);
7495                 }
7496
7497                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7498                         break;
7499
7500                 j += sectors;
7501                 if (j>1) mddev->curr_resync = j;
7502                 mddev->curr_mark_cnt = io_sectors;
7503                 if (last_check == 0)
7504                         /* this is the earliest that rebuild will be
7505                          * visible in /proc/mdstat
7506                          */
7507                         md_new_event(mddev);
7508
7509                 if (last_check + window > io_sectors || j == max_sectors)
7510                         continue;
7511
7512                 last_check = io_sectors;
7513         repeat:
7514                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7515                         /* step marks */
7516                         int next = (last_mark+1) % SYNC_MARKS;
7517
7518                         mddev->resync_mark = mark[next];
7519                         mddev->resync_mark_cnt = mark_cnt[next];
7520                         mark[next] = jiffies;
7521                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7522                         last_mark = next;
7523                 }
7524
7525
7526                 if (kthread_should_stop())
7527                         goto interrupted;
7528
7529
7530                 /*
7531                  * this loop exits only if either when we are slower than
7532                  * the 'hard' speed limit, or the system was IO-idle for
7533                  * a jiffy.
7534                  * the system might be non-idle CPU-wise, but we only care
7535                  * about not overloading the IO subsystem. (things like an
7536                  * e2fsck being done on the RAID array should execute fast)
7537                  */
7538                 cond_resched();
7539
7540                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7541                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7542
7543                 if (currspeed > speed_min(mddev)) {
7544                         if ((currspeed > speed_max(mddev)) ||
7545                                         !is_mddev_idle(mddev, 0)) {
7546                                 msleep(500);
7547                                 goto repeat;
7548                         }
7549                 }
7550         }
7551         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7552         /*
7553          * this also signals 'finished resyncing' to md_stop
7554          */
7555  out:
7556         blk_finish_plug(&plug);
7557         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7558
7559         /* tell personality that we are finished */
7560         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7561
7562         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7563             mddev->curr_resync > 2) {
7564                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7565                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7566                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7567                                         printk(KERN_INFO
7568                                                "md: checkpointing %s of %s.\n",
7569                                                desc, mdname(mddev));
7570                                         mddev->recovery_cp =
7571                                                 mddev->curr_resync_completed;
7572                                 }
7573                         } else
7574                                 mddev->recovery_cp = MaxSector;
7575                 } else {
7576                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7577                                 mddev->curr_resync = MaxSector;
7578                         rcu_read_lock();
7579                         rdev_for_each_rcu(rdev, mddev)
7580                                 if (rdev->raid_disk >= 0 &&
7581                                     mddev->delta_disks >= 0 &&
7582                                     !test_bit(Faulty, &rdev->flags) &&
7583                                     !test_bit(In_sync, &rdev->flags) &&
7584                                     rdev->recovery_offset < mddev->curr_resync)
7585                                         rdev->recovery_offset = mddev->curr_resync;
7586                         rcu_read_unlock();
7587                 }
7588         }
7589  skip:
7590         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7591
7592         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7593                 /* We completed so min/max setting can be forgotten if used. */
7594                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7595                         mddev->resync_min = 0;
7596                 mddev->resync_max = MaxSector;
7597         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7598                 mddev->resync_min = mddev->curr_resync_completed;
7599         mddev->curr_resync = 0;
7600         wake_up(&resync_wait);
7601         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7602         md_wakeup_thread(mddev->thread);
7603         return;
7604
7605  interrupted:
7606         /*
7607          * got a signal, exit.
7608          */
7609         printk(KERN_INFO
7610                "md: md_do_sync() got signal ... exiting\n");
7611         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7612         goto out;
7613
7614 }
7615 EXPORT_SYMBOL_GPL(md_do_sync);
7616
7617 static int remove_and_add_spares(struct mddev *mddev)
7618 {
7619         struct md_rdev *rdev;
7620         int spares = 0;
7621         int removed = 0;
7622
7623         mddev->curr_resync_completed = 0;
7624
7625         rdev_for_each(rdev, mddev)
7626                 if (rdev->raid_disk >= 0 &&
7627                     !test_bit(Blocked, &rdev->flags) &&
7628                     (test_bit(Faulty, &rdev->flags) ||
7629                      ! test_bit(In_sync, &rdev->flags)) &&
7630                     atomic_read(&rdev->nr_pending)==0) {
7631                         if (mddev->pers->hot_remove_disk(
7632                                     mddev, rdev) == 0) {
7633                                 sysfs_unlink_rdev(mddev, rdev);
7634                                 rdev->raid_disk = -1;
7635                                 removed++;
7636                         }
7637                 }
7638         if (removed)
7639                 sysfs_notify(&mddev->kobj, NULL,
7640                              "degraded");
7641
7642
7643         rdev_for_each(rdev, mddev) {
7644                 if (rdev->raid_disk >= 0 &&
7645                     !test_bit(In_sync, &rdev->flags) &&
7646                     !test_bit(Faulty, &rdev->flags))
7647                         spares++;
7648                 if (rdev->raid_disk < 0
7649                     && !test_bit(Faulty, &rdev->flags)) {
7650                         rdev->recovery_offset = 0;
7651                         if (mddev->pers->
7652                             hot_add_disk(mddev, rdev) == 0) {
7653                                 if (sysfs_link_rdev(mddev, rdev))
7654                                         /* failure here is OK */;
7655                                 spares++;
7656                                 md_new_event(mddev);
7657                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7658                         }
7659                 }
7660         }
7661         return spares;
7662 }
7663
7664 static void reap_sync_thread(struct mddev *mddev)
7665 {
7666         struct md_rdev *rdev;
7667
7668         /* resync has finished, collect result */
7669         md_unregister_thread(&mddev->sync_thread);
7670         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7671             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7672                 /* success...*/
7673                 /* activate any spares */
7674                 if (mddev->pers->spare_active(mddev))
7675                         sysfs_notify(&mddev->kobj, NULL,
7676                                      "degraded");
7677         }
7678         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7679             mddev->pers->finish_reshape)
7680                 mddev->pers->finish_reshape(mddev);
7681
7682         /* If array is no-longer degraded, then any saved_raid_disk
7683          * information must be scrapped.  Also if any device is now
7684          * In_sync we must scrape the saved_raid_disk for that device
7685          * do the superblock for an incrementally recovered device
7686          * written out.
7687          */
7688         rdev_for_each(rdev, mddev)
7689                 if (!mddev->degraded ||
7690                     test_bit(In_sync, &rdev->flags))
7691                         rdev->saved_raid_disk = -1;
7692
7693         md_update_sb(mddev, 1);
7694         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7695         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7696         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7697         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7698         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7699         /* flag recovery needed just to double check */
7700         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7701         sysfs_notify_dirent_safe(mddev->sysfs_action);
7702         md_new_event(mddev);
7703         if (mddev->event_work.func)
7704                 queue_work(md_misc_wq, &mddev->event_work);
7705 }
7706
7707 /*
7708  * This routine is regularly called by all per-raid-array threads to
7709  * deal with generic issues like resync and super-block update.
7710  * Raid personalities that don't have a thread (linear/raid0) do not
7711  * need this as they never do any recovery or update the superblock.
7712  *
7713  * It does not do any resync itself, but rather "forks" off other threads
7714  * to do that as needed.
7715  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7716  * "->recovery" and create a thread at ->sync_thread.
7717  * When the thread finishes it sets MD_RECOVERY_DONE
7718  * and wakeups up this thread which will reap the thread and finish up.
7719  * This thread also removes any faulty devices (with nr_pending == 0).
7720  *
7721  * The overall approach is:
7722  *  1/ if the superblock needs updating, update it.
7723  *  2/ If a recovery thread is running, don't do anything else.
7724  *  3/ If recovery has finished, clean up, possibly marking spares active.
7725  *  4/ If there are any faulty devices, remove them.
7726  *  5/ If array is degraded, try to add spares devices
7727  *  6/ If array has spares or is not in-sync, start a resync thread.
7728  */
7729 void md_check_recovery(struct mddev *mddev)
7730 {
7731         if (mddev->suspended)
7732                 return;
7733
7734         if (mddev->bitmap)
7735                 bitmap_daemon_work(mddev);
7736
7737         if (signal_pending(current)) {
7738                 if (mddev->pers->sync_request && !mddev->external) {
7739                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7740                                mdname(mddev));
7741                         mddev->safemode = 2;
7742                 }
7743                 flush_signals(current);
7744         }
7745
7746         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7747                 return;
7748         if ( ! (
7749                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7750                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7751                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7752                 (mddev->external == 0 && mddev->safemode == 1) ||
7753                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7754                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7755                 ))
7756                 return;
7757
7758         if (mddev_trylock(mddev)) {
7759                 int spares = 0;
7760
7761                 if (mddev->ro) {
7762                         /* Only thing we do on a ro array is remove
7763                          * failed devices.
7764                          */
7765                         struct md_rdev *rdev;
7766                         rdev_for_each(rdev, mddev)
7767                                 if (rdev->raid_disk >= 0 &&
7768                                     !test_bit(Blocked, &rdev->flags) &&
7769                                     test_bit(Faulty, &rdev->flags) &&
7770                                     atomic_read(&rdev->nr_pending)==0) {
7771                                         if (mddev->pers->hot_remove_disk(
7772                                                     mddev, rdev) == 0) {
7773                                                 sysfs_unlink_rdev(mddev, rdev);
7774                                                 rdev->raid_disk = -1;
7775                                         }
7776                                 }
7777                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7778                         goto unlock;
7779                 }
7780
7781                 if (!mddev->external) {
7782                         int did_change = 0;
7783                         spin_lock_irq(&mddev->write_lock);
7784                         if (mddev->safemode &&
7785                             !atomic_read(&mddev->writes_pending) &&
7786                             !mddev->in_sync &&
7787                             mddev->recovery_cp == MaxSector) {
7788                                 mddev->in_sync = 1;
7789                                 did_change = 1;
7790                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7791                         }
7792                         if (mddev->safemode == 1)
7793                                 mddev->safemode = 0;
7794                         spin_unlock_irq(&mddev->write_lock);
7795                         if (did_change)
7796                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7797                 }
7798
7799                 if (mddev->flags)
7800                         md_update_sb(mddev, 0);
7801
7802                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7803                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7804                         /* resync/recovery still happening */
7805                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7806                         goto unlock;
7807                 }
7808                 if (mddev->sync_thread) {
7809                         reap_sync_thread(mddev);
7810                         goto unlock;
7811                 }
7812                 /* Set RUNNING before clearing NEEDED to avoid
7813                  * any transients in the value of "sync_action".
7814                  */
7815                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7816                 /* Clear some bits that don't mean anything, but
7817                  * might be left set
7818                  */
7819                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7820                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7821
7822                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7823                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7824                         goto unlock;
7825                 /* no recovery is running.
7826                  * remove any failed drives, then
7827                  * add spares if possible.
7828                  * Spare are also removed and re-added, to allow
7829                  * the personality to fail the re-add.
7830                  */
7831
7832                 if (mddev->reshape_position != MaxSector) {
7833                         if (mddev->pers->check_reshape == NULL ||
7834                             mddev->pers->check_reshape(mddev) != 0)
7835                                 /* Cannot proceed */
7836                                 goto unlock;
7837                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7838                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7839                 } else if ((spares = remove_and_add_spares(mddev))) {
7840                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7841                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7842                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7843                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7844                 } else if (mddev->recovery_cp < MaxSector) {
7845                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7846                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7847                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7848                         /* nothing to be done ... */
7849                         goto unlock;
7850
7851                 if (mddev->pers->sync_request) {
7852                         if (spares) {
7853                                 /* We are adding a device or devices to an array
7854                                  * which has the bitmap stored on all devices.
7855                                  * So make sure all bitmap pages get written
7856                                  */
7857                                 bitmap_write_all(mddev->bitmap);
7858                         }
7859                         mddev->sync_thread = md_register_thread(md_do_sync,
7860                                                                 mddev,
7861                                                                 "resync");
7862                         if (!mddev->sync_thread) {
7863                                 printk(KERN_ERR "%s: could not start resync"
7864                                         " thread...\n", 
7865                                         mdname(mddev));
7866                                 /* leave the spares where they are, it shouldn't hurt */
7867                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7868                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7869                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7870                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7871                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7872                         } else
7873                                 md_wakeup_thread(mddev->sync_thread);
7874                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7875                         md_new_event(mddev);
7876                 }
7877         unlock:
7878                 if (!mddev->sync_thread) {
7879                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7880                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7881                                                &mddev->recovery))
7882                                 if (mddev->sysfs_action)
7883                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7884                 }
7885                 mddev_unlock(mddev);
7886         }
7887 }
7888
7889 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7890 {
7891         sysfs_notify_dirent_safe(rdev->sysfs_state);
7892         wait_event_timeout(rdev->blocked_wait,
7893                            !test_bit(Blocked, &rdev->flags) &&
7894                            !test_bit(BlockedBadBlocks, &rdev->flags),
7895                            msecs_to_jiffies(5000));
7896         rdev_dec_pending(rdev, mddev);
7897 }
7898 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7899
7900 void md_finish_reshape(struct mddev *mddev)
7901 {
7902         /* called be personality module when reshape completes. */
7903         struct md_rdev *rdev;
7904
7905         rdev_for_each(rdev, mddev) {
7906                 if (rdev->data_offset > rdev->new_data_offset)
7907                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7908                 else
7909                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7910                 rdev->data_offset = rdev->new_data_offset;
7911         }
7912 }
7913 EXPORT_SYMBOL(md_finish_reshape);
7914
7915 /* Bad block management.
7916  * We can record which blocks on each device are 'bad' and so just
7917  * fail those blocks, or that stripe, rather than the whole device.
7918  * Entries in the bad-block table are 64bits wide.  This comprises:
7919  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7920  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7921  *  A 'shift' can be set so that larger blocks are tracked and
7922  *  consequently larger devices can be covered.
7923  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7924  *
7925  * Locking of the bad-block table uses a seqlock so md_is_badblock
7926  * might need to retry if it is very unlucky.
7927  * We will sometimes want to check for bad blocks in a bi_end_io function,
7928  * so we use the write_seqlock_irq variant.
7929  *
7930  * When looking for a bad block we specify a range and want to
7931  * know if any block in the range is bad.  So we binary-search
7932  * to the last range that starts at-or-before the given endpoint,
7933  * (or "before the sector after the target range")
7934  * then see if it ends after the given start.
7935  * We return
7936  *  0 if there are no known bad blocks in the range
7937  *  1 if there are known bad block which are all acknowledged
7938  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7939  * plus the start/length of the first bad section we overlap.
7940  */
7941 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7942                    sector_t *first_bad, int *bad_sectors)
7943 {
7944         int hi;
7945         int lo = 0;
7946         u64 *p = bb->page;
7947         int rv = 0;
7948         sector_t target = s + sectors;
7949         unsigned seq;
7950
7951         if (bb->shift > 0) {
7952                 /* round the start down, and the end up */
7953                 s >>= bb->shift;
7954                 target += (1<<bb->shift) - 1;
7955                 target >>= bb->shift;
7956                 sectors = target - s;
7957         }
7958         /* 'target' is now the first block after the bad range */
7959
7960 retry:
7961         seq = read_seqbegin(&bb->lock);
7962
7963         hi = bb->count;
7964
7965         /* Binary search between lo and hi for 'target'
7966          * i.e. for the last range that starts before 'target'
7967          */
7968         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7969          * are known not to be the last range before target.
7970          * VARIANT: hi-lo is the number of possible
7971          * ranges, and decreases until it reaches 1
7972          */
7973         while (hi - lo > 1) {
7974                 int mid = (lo + hi) / 2;
7975                 sector_t a = BB_OFFSET(p[mid]);
7976                 if (a < target)
7977                         /* This could still be the one, earlier ranges
7978                          * could not. */
7979                         lo = mid;
7980                 else
7981                         /* This and later ranges are definitely out. */
7982                         hi = mid;
7983         }
7984         /* 'lo' might be the last that started before target, but 'hi' isn't */
7985         if (hi > lo) {
7986                 /* need to check all range that end after 's' to see if
7987                  * any are unacknowledged.
7988                  */
7989                 while (lo >= 0 &&
7990                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7991                         if (BB_OFFSET(p[lo]) < target) {
7992                                 /* starts before the end, and finishes after
7993                                  * the start, so they must overlap
7994                                  */
7995                                 if (rv != -1 && BB_ACK(p[lo]))
7996                                         rv = 1;
7997                                 else
7998                                         rv = -1;
7999                                 *first_bad = BB_OFFSET(p[lo]);
8000                                 *bad_sectors = BB_LEN(p[lo]);
8001                         }
8002                         lo--;
8003                 }
8004         }
8005
8006         if (read_seqretry(&bb->lock, seq))
8007                 goto retry;
8008
8009         return rv;
8010 }
8011 EXPORT_SYMBOL_GPL(md_is_badblock);
8012
8013 /*
8014  * Add a range of bad blocks to the table.
8015  * This might extend the table, or might contract it
8016  * if two adjacent ranges can be merged.
8017  * We binary-search to find the 'insertion' point, then
8018  * decide how best to handle it.
8019  */
8020 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8021                             int acknowledged)
8022 {
8023         u64 *p;
8024         int lo, hi;
8025         int rv = 1;
8026
8027         if (bb->shift < 0)
8028                 /* badblocks are disabled */
8029                 return 0;
8030
8031         if (bb->shift) {
8032                 /* round the start down, and the end up */
8033                 sector_t next = s + sectors;
8034                 s >>= bb->shift;
8035                 next += (1<<bb->shift) - 1;
8036                 next >>= bb->shift;
8037                 sectors = next - s;
8038         }
8039
8040         write_seqlock_irq(&bb->lock);
8041
8042         p = bb->page;
8043         lo = 0;
8044         hi = bb->count;
8045         /* Find the last range that starts at-or-before 's' */
8046         while (hi - lo > 1) {
8047                 int mid = (lo + hi) / 2;
8048                 sector_t a = BB_OFFSET(p[mid]);
8049                 if (a <= s)
8050                         lo = mid;
8051                 else
8052                         hi = mid;
8053         }
8054         if (hi > lo && BB_OFFSET(p[lo]) > s)
8055                 hi = lo;
8056
8057         if (hi > lo) {
8058                 /* we found a range that might merge with the start
8059                  * of our new range
8060                  */
8061                 sector_t a = BB_OFFSET(p[lo]);
8062                 sector_t e = a + BB_LEN(p[lo]);
8063                 int ack = BB_ACK(p[lo]);
8064                 if (e >= s) {
8065                         /* Yes, we can merge with a previous range */
8066                         if (s == a && s + sectors >= e)
8067                                 /* new range covers old */
8068                                 ack = acknowledged;
8069                         else
8070                                 ack = ack && acknowledged;
8071
8072                         if (e < s + sectors)
8073                                 e = s + sectors;
8074                         if (e - a <= BB_MAX_LEN) {
8075                                 p[lo] = BB_MAKE(a, e-a, ack);
8076                                 s = e;
8077                         } else {
8078                                 /* does not all fit in one range,
8079                                  * make p[lo] maximal
8080                                  */
8081                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8082                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8083                                 s = a + BB_MAX_LEN;
8084                         }
8085                         sectors = e - s;
8086                 }
8087         }
8088         if (sectors && hi < bb->count) {
8089                 /* 'hi' points to the first range that starts after 's'.
8090                  * Maybe we can merge with the start of that range */
8091                 sector_t a = BB_OFFSET(p[hi]);
8092                 sector_t e = a + BB_LEN(p[hi]);
8093                 int ack = BB_ACK(p[hi]);
8094                 if (a <= s + sectors) {
8095                         /* merging is possible */
8096                         if (e <= s + sectors) {
8097                                 /* full overlap */
8098                                 e = s + sectors;
8099                                 ack = acknowledged;
8100                         } else
8101                                 ack = ack && acknowledged;
8102
8103                         a = s;
8104                         if (e - a <= BB_MAX_LEN) {
8105                                 p[hi] = BB_MAKE(a, e-a, ack);
8106                                 s = e;
8107                         } else {
8108                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8109                                 s = a + BB_MAX_LEN;
8110                         }
8111                         sectors = e - s;
8112                         lo = hi;
8113                         hi++;
8114                 }
8115         }
8116         if (sectors == 0 && hi < bb->count) {
8117                 /* we might be able to combine lo and hi */
8118                 /* Note: 's' is at the end of 'lo' */
8119                 sector_t a = BB_OFFSET(p[hi]);
8120                 int lolen = BB_LEN(p[lo]);
8121                 int hilen = BB_LEN(p[hi]);
8122                 int newlen = lolen + hilen - (s - a);
8123                 if (s >= a && newlen < BB_MAX_LEN) {
8124                         /* yes, we can combine them */
8125                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8126                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8127                         memmove(p + hi, p + hi + 1,
8128                                 (bb->count - hi - 1) * 8);
8129                         bb->count--;
8130                 }
8131         }
8132         while (sectors) {
8133                 /* didn't merge (it all).
8134                  * Need to add a range just before 'hi' */
8135                 if (bb->count >= MD_MAX_BADBLOCKS) {
8136                         /* No room for more */
8137                         rv = 0;
8138                         break;
8139                 } else {
8140                         int this_sectors = sectors;
8141                         memmove(p + hi + 1, p + hi,
8142                                 (bb->count - hi) * 8);
8143                         bb->count++;
8144
8145                         if (this_sectors > BB_MAX_LEN)
8146                                 this_sectors = BB_MAX_LEN;
8147                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8148                         sectors -= this_sectors;
8149                         s += this_sectors;
8150                 }
8151         }
8152
8153         bb->changed = 1;
8154         if (!acknowledged)
8155                 bb->unacked_exist = 1;
8156         write_sequnlock_irq(&bb->lock);
8157
8158         return rv;
8159 }
8160
8161 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8162                        int is_new)
8163 {
8164         int rv;
8165         if (is_new)
8166                 s += rdev->new_data_offset;
8167         else
8168                 s += rdev->data_offset;
8169         rv = md_set_badblocks(&rdev->badblocks,
8170                               s, sectors, 0);
8171         if (rv) {
8172                 /* Make sure they get written out promptly */
8173                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8174                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8175                 md_wakeup_thread(rdev->mddev->thread);
8176         }
8177         return rv;
8178 }
8179 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8180
8181 /*
8182  * Remove a range of bad blocks from the table.
8183  * This may involve extending the table if we spilt a region,
8184  * but it must not fail.  So if the table becomes full, we just
8185  * drop the remove request.
8186  */
8187 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8188 {
8189         u64 *p;
8190         int lo, hi;
8191         sector_t target = s + sectors;
8192         int rv = 0;
8193
8194         if (bb->shift > 0) {
8195                 /* When clearing we round the start up and the end down.
8196                  * This should not matter as the shift should align with
8197                  * the block size and no rounding should ever be needed.
8198                  * However it is better the think a block is bad when it
8199                  * isn't than to think a block is not bad when it is.
8200                  */
8201                 s += (1<<bb->shift) - 1;
8202                 s >>= bb->shift;
8203                 target >>= bb->shift;
8204                 sectors = target - s;
8205         }
8206
8207         write_seqlock_irq(&bb->lock);
8208
8209         p = bb->page;
8210         lo = 0;
8211         hi = bb->count;
8212         /* Find the last range that starts before 'target' */
8213         while (hi - lo > 1) {
8214                 int mid = (lo + hi) / 2;
8215                 sector_t a = BB_OFFSET(p[mid]);
8216                 if (a < target)
8217                         lo = mid;
8218                 else
8219                         hi = mid;
8220         }
8221         if (hi > lo) {
8222                 /* p[lo] is the last range that could overlap the
8223                  * current range.  Earlier ranges could also overlap,
8224                  * but only this one can overlap the end of the range.
8225                  */
8226                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8227                         /* Partial overlap, leave the tail of this range */
8228                         int ack = BB_ACK(p[lo]);
8229                         sector_t a = BB_OFFSET(p[lo]);
8230                         sector_t end = a + BB_LEN(p[lo]);
8231
8232                         if (a < s) {
8233                                 /* we need to split this range */
8234                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8235                                         rv = 0;
8236                                         goto out;
8237                                 }
8238                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8239                                 bb->count++;
8240                                 p[lo] = BB_MAKE(a, s-a, ack);
8241                                 lo++;
8242                         }
8243                         p[lo] = BB_MAKE(target, end - target, ack);
8244                         /* there is no longer an overlap */
8245                         hi = lo;
8246                         lo--;
8247                 }
8248                 while (lo >= 0 &&
8249                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8250                         /* This range does overlap */
8251                         if (BB_OFFSET(p[lo]) < s) {
8252                                 /* Keep the early parts of this range. */
8253                                 int ack = BB_ACK(p[lo]);
8254                                 sector_t start = BB_OFFSET(p[lo]);
8255                                 p[lo] = BB_MAKE(start, s - start, ack);
8256                                 /* now low doesn't overlap, so.. */
8257                                 break;
8258                         }
8259                         lo--;
8260                 }
8261                 /* 'lo' is strictly before, 'hi' is strictly after,
8262                  * anything between needs to be discarded
8263                  */
8264                 if (hi - lo > 1) {
8265                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8266                         bb->count -= (hi - lo - 1);
8267                 }
8268         }
8269
8270         bb->changed = 1;
8271 out:
8272         write_sequnlock_irq(&bb->lock);
8273         return rv;
8274 }
8275
8276 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8277                          int is_new)
8278 {
8279         if (is_new)
8280                 s += rdev->new_data_offset;
8281         else
8282                 s += rdev->data_offset;
8283         return md_clear_badblocks(&rdev->badblocks,
8284                                   s, sectors);
8285 }
8286 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8287
8288 /*
8289  * Acknowledge all bad blocks in a list.
8290  * This only succeeds if ->changed is clear.  It is used by
8291  * in-kernel metadata updates
8292  */
8293 void md_ack_all_badblocks(struct badblocks *bb)
8294 {
8295         if (bb->page == NULL || bb->changed)
8296                 /* no point even trying */
8297                 return;
8298         write_seqlock_irq(&bb->lock);
8299
8300         if (bb->changed == 0 && bb->unacked_exist) {
8301                 u64 *p = bb->page;
8302                 int i;
8303                 for (i = 0; i < bb->count ; i++) {
8304                         if (!BB_ACK(p[i])) {
8305                                 sector_t start = BB_OFFSET(p[i]);
8306                                 int len = BB_LEN(p[i]);
8307                                 p[i] = BB_MAKE(start, len, 1);
8308                         }
8309                 }
8310                 bb->unacked_exist = 0;
8311         }
8312         write_sequnlock_irq(&bb->lock);
8313 }
8314 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8315
8316 /* sysfs access to bad-blocks list.
8317  * We present two files.
8318  * 'bad-blocks' lists sector numbers and lengths of ranges that
8319  *    are recorded as bad.  The list is truncated to fit within
8320  *    the one-page limit of sysfs.
8321  *    Writing "sector length" to this file adds an acknowledged
8322  *    bad block list.
8323  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8324  *    been acknowledged.  Writing to this file adds bad blocks
8325  *    without acknowledging them.  This is largely for testing.
8326  */
8327
8328 static ssize_t
8329 badblocks_show(struct badblocks *bb, char *page, int unack)
8330 {
8331         size_t len;
8332         int i;
8333         u64 *p = bb->page;
8334         unsigned seq;
8335
8336         if (bb->shift < 0)
8337                 return 0;
8338
8339 retry:
8340         seq = read_seqbegin(&bb->lock);
8341
8342         len = 0;
8343         i = 0;
8344
8345         while (len < PAGE_SIZE && i < bb->count) {
8346                 sector_t s = BB_OFFSET(p[i]);
8347                 unsigned int length = BB_LEN(p[i]);
8348                 int ack = BB_ACK(p[i]);
8349                 i++;
8350
8351                 if (unack && ack)
8352                         continue;
8353
8354                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8355                                 (unsigned long long)s << bb->shift,
8356                                 length << bb->shift);
8357         }
8358         if (unack && len == 0)
8359                 bb->unacked_exist = 0;
8360
8361         if (read_seqretry(&bb->lock, seq))
8362                 goto retry;
8363
8364         return len;
8365 }
8366
8367 #define DO_DEBUG 1
8368
8369 static ssize_t
8370 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8371 {
8372         unsigned long long sector;
8373         int length;
8374         char newline;
8375 #ifdef DO_DEBUG
8376         /* Allow clearing via sysfs *only* for testing/debugging.
8377          * Normally only a successful write may clear a badblock
8378          */
8379         int clear = 0;
8380         if (page[0] == '-') {
8381                 clear = 1;
8382                 page++;
8383         }
8384 #endif /* DO_DEBUG */
8385
8386         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8387         case 3:
8388                 if (newline != '\n')
8389                         return -EINVAL;
8390         case 2:
8391                 if (length <= 0)
8392                         return -EINVAL;
8393                 break;
8394         default:
8395                 return -EINVAL;
8396         }
8397
8398 #ifdef DO_DEBUG
8399         if (clear) {
8400                 md_clear_badblocks(bb, sector, length);
8401                 return len;
8402         }
8403 #endif /* DO_DEBUG */
8404         if (md_set_badblocks(bb, sector, length, !unack))
8405                 return len;
8406         else
8407                 return -ENOSPC;
8408 }
8409
8410 static int md_notify_reboot(struct notifier_block *this,
8411                             unsigned long code, void *x)
8412 {
8413         struct list_head *tmp;
8414         struct mddev *mddev;
8415         int need_delay = 0;
8416
8417         for_each_mddev(mddev, tmp) {
8418                 if (mddev_trylock(mddev)) {
8419                         if (mddev->pers)
8420                                 __md_stop_writes(mddev);
8421                         mddev->safemode = 2;
8422                         mddev_unlock(mddev);
8423                 }
8424                 need_delay = 1;
8425         }
8426         /*
8427          * certain more exotic SCSI devices are known to be
8428          * volatile wrt too early system reboots. While the
8429          * right place to handle this issue is the given
8430          * driver, we do want to have a safe RAID driver ...
8431          */
8432         if (need_delay)
8433                 mdelay(1000*1);
8434
8435         return NOTIFY_DONE;
8436 }
8437
8438 static struct notifier_block md_notifier = {
8439         .notifier_call  = md_notify_reboot,
8440         .next           = NULL,
8441         .priority       = INT_MAX, /* before any real devices */
8442 };
8443
8444 static void md_geninit(void)
8445 {
8446         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8447
8448         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8449 }
8450
8451 static int __init md_init(void)
8452 {
8453         int ret = -ENOMEM;
8454
8455         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8456         if (!md_wq)
8457                 goto err_wq;
8458
8459         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8460         if (!md_misc_wq)
8461                 goto err_misc_wq;
8462
8463         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8464                 goto err_md;
8465
8466         if ((ret = register_blkdev(0, "mdp")) < 0)
8467                 goto err_mdp;
8468         mdp_major = ret;
8469
8470         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8471                             md_probe, NULL, NULL);
8472         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8473                             md_probe, NULL, NULL);
8474
8475         register_reboot_notifier(&md_notifier);
8476         raid_table_header = register_sysctl_table(raid_root_table);
8477
8478         md_geninit();
8479         return 0;
8480
8481 err_mdp:
8482         unregister_blkdev(MD_MAJOR, "md");
8483 err_md:
8484         destroy_workqueue(md_misc_wq);
8485 err_misc_wq:
8486         destroy_workqueue(md_wq);
8487 err_wq:
8488         return ret;
8489 }
8490
8491 #ifndef MODULE
8492
8493 /*
8494  * Searches all registered partitions for autorun RAID arrays
8495  * at boot time.
8496  */
8497
8498 static LIST_HEAD(all_detected_devices);
8499 struct detected_devices_node {
8500         struct list_head list;
8501         dev_t dev;
8502 };
8503
8504 void md_autodetect_dev(dev_t dev)
8505 {
8506         struct detected_devices_node *node_detected_dev;
8507
8508         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8509         if (node_detected_dev) {
8510                 node_detected_dev->dev = dev;
8511                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8512         } else {
8513                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8514                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8515         }
8516 }
8517
8518
8519 static void autostart_arrays(int part)
8520 {
8521         struct md_rdev *rdev;
8522         struct detected_devices_node *node_detected_dev;
8523         dev_t dev;
8524         int i_scanned, i_passed;
8525
8526         i_scanned = 0;
8527         i_passed = 0;
8528
8529         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8530
8531         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8532                 i_scanned++;
8533                 node_detected_dev = list_entry(all_detected_devices.next,
8534                                         struct detected_devices_node, list);
8535                 list_del(&node_detected_dev->list);
8536                 dev = node_detected_dev->dev;
8537                 kfree(node_detected_dev);
8538                 rdev = md_import_device(dev,0, 90);
8539                 if (IS_ERR(rdev))
8540                         continue;
8541
8542                 if (test_bit(Faulty, &rdev->flags)) {
8543                         MD_BUG();
8544                         continue;
8545                 }
8546                 set_bit(AutoDetected, &rdev->flags);
8547                 list_add(&rdev->same_set, &pending_raid_disks);
8548                 i_passed++;
8549         }
8550
8551         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8552                                                 i_scanned, i_passed);
8553
8554         autorun_devices(part);
8555 }
8556
8557 #endif /* !MODULE */
8558
8559 static __exit void md_exit(void)
8560 {
8561         struct mddev *mddev;
8562         struct list_head *tmp;
8563
8564         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8565         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8566
8567         unregister_blkdev(MD_MAJOR,"md");
8568         unregister_blkdev(mdp_major, "mdp");
8569         unregister_reboot_notifier(&md_notifier);
8570         unregister_sysctl_table(raid_table_header);
8571         remove_proc_entry("mdstat", NULL);
8572         for_each_mddev(mddev, tmp) {
8573                 export_array(mddev);
8574                 mddev->hold_active = 0;
8575         }
8576         destroy_workqueue(md_misc_wq);
8577         destroy_workqueue(md_wq);
8578 }
8579
8580 subsys_initcall(md_init);
8581 module_exit(md_exit)
8582
8583 static int get_ro(char *buffer, struct kernel_param *kp)
8584 {
8585         return sprintf(buffer, "%d", start_readonly);
8586 }
8587 static int set_ro(const char *val, struct kernel_param *kp)
8588 {
8589         char *e;
8590         int num = simple_strtoul(val, &e, 10);
8591         if (*val && (*e == '\0' || *e == '\n')) {
8592                 start_readonly = num;
8593                 return 0;
8594         }
8595         return -EINVAL;
8596 }
8597
8598 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8599 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8600
8601 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8602
8603 EXPORT_SYMBOL(register_md_personality);
8604 EXPORT_SYMBOL(unregister_md_personality);
8605 EXPORT_SYMBOL(md_error);
8606 EXPORT_SYMBOL(md_done_sync);
8607 EXPORT_SYMBOL(md_write_start);
8608 EXPORT_SYMBOL(md_write_end);
8609 EXPORT_SYMBOL(md_register_thread);
8610 EXPORT_SYMBOL(md_unregister_thread);
8611 EXPORT_SYMBOL(md_wakeup_thread);
8612 EXPORT_SYMBOL(md_check_recovery);
8613 MODULE_LICENSE("GPL");
8614 MODULE_DESCRIPTION("MD RAID framework");
8615 MODULE_ALIAS("md");
8616 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);