]> Pileus Git - ~andy/linux/blob - drivers/md/md.c
47e7bc74ed3842ca89b49528a9af9ff5caba3b36
[~andy/linux] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76                                  struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103         return mddev->sync_speed_min ?
104                 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109         return mddev->sync_speed_max ?
110                 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static ctl_table raid_table[] = {
116         {
117                 .procname       = "speed_limit_min",
118                 .data           = &sysctl_speed_limit_min,
119                 .maxlen         = sizeof(int),
120                 .mode           = S_IRUGO|S_IWUSR,
121                 .proc_handler   = proc_dointvec,
122         },
123         {
124                 .procname       = "speed_limit_max",
125                 .data           = &sysctl_speed_limit_max,
126                 .maxlen         = sizeof(int),
127                 .mode           = S_IRUGO|S_IWUSR,
128                 .proc_handler   = proc_dointvec,
129         },
130         { }
131 };
132
133 static ctl_table raid_dir_table[] = {
134         {
135                 .procname       = "raid",
136                 .maxlen         = 0,
137                 .mode           = S_IRUGO|S_IXUGO,
138                 .child          = raid_table,
139         },
140         { }
141 };
142
143 static ctl_table raid_root_table[] = {
144         {
145                 .procname       = "dev",
146                 .maxlen         = 0,
147                 .mode           = 0555,
148                 .child          = raid_dir_table,
149         },
150         {  }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162                             struct mddev *mddev)
163 {
164         struct bio *b;
165
166         if (!mddev || !mddev->bio_set)
167                 return bio_alloc(gfp_mask, nr_iovecs);
168
169         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170         if (!b)
171                 return NULL;
172         return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177                             struct mddev *mddev)
178 {
179         if (!mddev || !mddev->bio_set)
180                 return bio_clone(bio, gfp_mask);
181
182         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 void md_trim_bio(struct bio *bio, int offset, int size)
187 {
188         /* 'bio' is a cloned bio which we need to trim to match
189          * the given offset and size.
190          * This requires adjusting bi_sector, bi_size, and bi_io_vec
191          */
192         int i;
193         struct bio_vec *bvec;
194         int sofar = 0;
195
196         size <<= 9;
197         if (offset == 0 && size == bio->bi_size)
198                 return;
199
200         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202         bio_advance(bio, offset << 9);
203
204         bio->bi_size = size;
205
206         /* avoid any complications with bi_idx being non-zero*/
207         if (bio->bi_idx) {
208                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
209                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
210                 bio->bi_vcnt -= bio->bi_idx;
211                 bio->bi_idx = 0;
212         }
213         /* Make sure vcnt and last bv are not too big */
214         bio_for_each_segment(bvec, bio, i) {
215                 if (sofar + bvec->bv_len > size)
216                         bvec->bv_len = size - sofar;
217                 if (bvec->bv_len == 0) {
218                         bio->bi_vcnt = i;
219                         break;
220                 }
221                 sofar += bvec->bv_len;
222         }
223 }
224 EXPORT_SYMBOL_GPL(md_trim_bio);
225
226 /*
227  * We have a system wide 'event count' that is incremented
228  * on any 'interesting' event, and readers of /proc/mdstat
229  * can use 'poll' or 'select' to find out when the event
230  * count increases.
231  *
232  * Events are:
233  *  start array, stop array, error, add device, remove device,
234  *  start build, activate spare
235  */
236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
237 static atomic_t md_event_count;
238 void md_new_event(struct mddev *mddev)
239 {
240         atomic_inc(&md_event_count);
241         wake_up(&md_event_waiters);
242 }
243 EXPORT_SYMBOL_GPL(md_new_event);
244
245 /* Alternate version that can be called from interrupts
246  * when calling sysfs_notify isn't needed.
247  */
248 static void md_new_event_inintr(struct mddev *mddev)
249 {
250         atomic_inc(&md_event_count);
251         wake_up(&md_event_waiters);
252 }
253
254 /*
255  * Enables to iterate over all existing md arrays
256  * all_mddevs_lock protects this list.
257  */
258 static LIST_HEAD(all_mddevs);
259 static DEFINE_SPINLOCK(all_mddevs_lock);
260
261
262 /*
263  * iterates through all used mddevs in the system.
264  * We take care to grab the all_mddevs_lock whenever navigating
265  * the list, and to always hold a refcount when unlocked.
266  * Any code which breaks out of this loop while own
267  * a reference to the current mddev and must mddev_put it.
268  */
269 #define for_each_mddev(_mddev,_tmp)                                     \
270                                                                         \
271         for (({ spin_lock(&all_mddevs_lock);                            \
272                 _tmp = all_mddevs.next;                                 \
273                 _mddev = NULL;});                                       \
274              ({ if (_tmp != &all_mddevs)                                \
275                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
276                 spin_unlock(&all_mddevs_lock);                          \
277                 if (_mddev) mddev_put(_mddev);                          \
278                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
279                 _tmp != &all_mddevs;});                                 \
280              ({ spin_lock(&all_mddevs_lock);                            \
281                 _tmp = _tmp->next;})                                    \
282                 )
283
284
285 /* Rather than calling directly into the personality make_request function,
286  * IO requests come here first so that we can check if the device is
287  * being suspended pending a reconfiguration.
288  * We hold a refcount over the call to ->make_request.  By the time that
289  * call has finished, the bio has been linked into some internal structure
290  * and so is visible to ->quiesce(), so we don't need the refcount any more.
291  */
292 static void md_make_request(struct request_queue *q, struct bio *bio)
293 {
294         const int rw = bio_data_dir(bio);
295         struct mddev *mddev = q->queuedata;
296         int cpu;
297         unsigned int sectors;
298
299         if (mddev == NULL || mddev->pers == NULL
300             || !mddev->ready) {
301                 bio_io_error(bio);
302                 return;
303         }
304         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
305                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
306                 return;
307         }
308         smp_rmb(); /* Ensure implications of  'active' are visible */
309         rcu_read_lock();
310         if (mddev->suspended) {
311                 DEFINE_WAIT(__wait);
312                 for (;;) {
313                         prepare_to_wait(&mddev->sb_wait, &__wait,
314                                         TASK_UNINTERRUPTIBLE);
315                         if (!mddev->suspended)
316                                 break;
317                         rcu_read_unlock();
318                         schedule();
319                         rcu_read_lock();
320                 }
321                 finish_wait(&mddev->sb_wait, &__wait);
322         }
323         atomic_inc(&mddev->active_io);
324         rcu_read_unlock();
325
326         /*
327          * save the sectors now since our bio can
328          * go away inside make_request
329          */
330         sectors = bio_sectors(bio);
331         mddev->pers->make_request(mddev, bio);
332
333         cpu = part_stat_lock();
334         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
335         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
336         part_stat_unlock();
337
338         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
339                 wake_up(&mddev->sb_wait);
340 }
341
342 /* mddev_suspend makes sure no new requests are submitted
343  * to the device, and that any requests that have been submitted
344  * are completely handled.
345  * Once ->stop is called and completes, the module will be completely
346  * unused.
347  */
348 void mddev_suspend(struct mddev *mddev)
349 {
350         BUG_ON(mddev->suspended);
351         mddev->suspended = 1;
352         synchronize_rcu();
353         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
354         mddev->pers->quiesce(mddev, 1);
355
356         del_timer_sync(&mddev->safemode_timer);
357 }
358 EXPORT_SYMBOL_GPL(mddev_suspend);
359
360 void mddev_resume(struct mddev *mddev)
361 {
362         mddev->suspended = 0;
363         wake_up(&mddev->sb_wait);
364         mddev->pers->quiesce(mddev, 0);
365
366         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
367         md_wakeup_thread(mddev->thread);
368         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
369 }
370 EXPORT_SYMBOL_GPL(mddev_resume);
371
372 int mddev_congested(struct mddev *mddev, int bits)
373 {
374         return mddev->suspended;
375 }
376 EXPORT_SYMBOL(mddev_congested);
377
378 /*
379  * Generic flush handling for md
380  */
381
382 static void md_end_flush(struct bio *bio, int err)
383 {
384         struct md_rdev *rdev = bio->bi_private;
385         struct mddev *mddev = rdev->mddev;
386
387         rdev_dec_pending(rdev, mddev);
388
389         if (atomic_dec_and_test(&mddev->flush_pending)) {
390                 /* The pre-request flush has finished */
391                 queue_work(md_wq, &mddev->flush_work);
392         }
393         bio_put(bio);
394 }
395
396 static void md_submit_flush_data(struct work_struct *ws);
397
398 static void submit_flushes(struct work_struct *ws)
399 {
400         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401         struct md_rdev *rdev;
402
403         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404         atomic_set(&mddev->flush_pending, 1);
405         rcu_read_lock();
406         rdev_for_each_rcu(rdev, mddev)
407                 if (rdev->raid_disk >= 0 &&
408                     !test_bit(Faulty, &rdev->flags)) {
409                         /* Take two references, one is dropped
410                          * when request finishes, one after
411                          * we reclaim rcu_read_lock
412                          */
413                         struct bio *bi;
414                         atomic_inc(&rdev->nr_pending);
415                         atomic_inc(&rdev->nr_pending);
416                         rcu_read_unlock();
417                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418                         bi->bi_end_io = md_end_flush;
419                         bi->bi_private = rdev;
420                         bi->bi_bdev = rdev->bdev;
421                         atomic_inc(&mddev->flush_pending);
422                         submit_bio(WRITE_FLUSH, bi);
423                         rcu_read_lock();
424                         rdev_dec_pending(rdev, mddev);
425                 }
426         rcu_read_unlock();
427         if (atomic_dec_and_test(&mddev->flush_pending))
428                 queue_work(md_wq, &mddev->flush_work);
429 }
430
431 static void md_submit_flush_data(struct work_struct *ws)
432 {
433         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434         struct bio *bio = mddev->flush_bio;
435
436         if (bio->bi_size == 0)
437                 /* an empty barrier - all done */
438                 bio_endio(bio, 0);
439         else {
440                 bio->bi_rw &= ~REQ_FLUSH;
441                 mddev->pers->make_request(mddev, bio);
442         }
443
444         mddev->flush_bio = NULL;
445         wake_up(&mddev->sb_wait);
446 }
447
448 void md_flush_request(struct mddev *mddev, struct bio *bio)
449 {
450         spin_lock_irq(&mddev->write_lock);
451         wait_event_lock_irq(mddev->sb_wait,
452                             !mddev->flush_bio,
453                             mddev->write_lock);
454         mddev->flush_bio = bio;
455         spin_unlock_irq(&mddev->write_lock);
456
457         INIT_WORK(&mddev->flush_work, submit_flushes);
458         queue_work(md_wq, &mddev->flush_work);
459 }
460 EXPORT_SYMBOL(md_flush_request);
461
462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
463 {
464         struct mddev *mddev = cb->data;
465         md_wakeup_thread(mddev->thread);
466         kfree(cb);
467 }
468 EXPORT_SYMBOL(md_unplug);
469
470 static inline struct mddev *mddev_get(struct mddev *mddev)
471 {
472         atomic_inc(&mddev->active);
473         return mddev;
474 }
475
476 static void mddev_delayed_delete(struct work_struct *ws);
477
478 static void mddev_put(struct mddev *mddev)
479 {
480         struct bio_set *bs = NULL;
481
482         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483                 return;
484         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485             mddev->ctime == 0 && !mddev->hold_active) {
486                 /* Array is not configured at all, and not held active,
487                  * so destroy it */
488                 list_del_init(&mddev->all_mddevs);
489                 bs = mddev->bio_set;
490                 mddev->bio_set = NULL;
491                 if (mddev->gendisk) {
492                         /* We did a probe so need to clean up.  Call
493                          * queue_work inside the spinlock so that
494                          * flush_workqueue() after mddev_find will
495                          * succeed in waiting for the work to be done.
496                          */
497                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498                         queue_work(md_misc_wq, &mddev->del_work);
499                 } else
500                         kfree(mddev);
501         }
502         spin_unlock(&all_mddevs_lock);
503         if (bs)
504                 bioset_free(bs);
505 }
506
507 void mddev_init(struct mddev *mddev)
508 {
509         mutex_init(&mddev->open_mutex);
510         mutex_init(&mddev->reconfig_mutex);
511         mutex_init(&mddev->bitmap_info.mutex);
512         INIT_LIST_HEAD(&mddev->disks);
513         INIT_LIST_HEAD(&mddev->all_mddevs);
514         init_timer(&mddev->safemode_timer);
515         atomic_set(&mddev->active, 1);
516         atomic_set(&mddev->openers, 0);
517         atomic_set(&mddev->active_io, 0);
518         spin_lock_init(&mddev->write_lock);
519         atomic_set(&mddev->flush_pending, 0);
520         init_waitqueue_head(&mddev->sb_wait);
521         init_waitqueue_head(&mddev->recovery_wait);
522         mddev->reshape_position = MaxSector;
523         mddev->reshape_backwards = 0;
524         mddev->last_sync_action = "none";
525         mddev->resync_min = 0;
526         mddev->resync_max = MaxSector;
527         mddev->level = LEVEL_NONE;
528 }
529 EXPORT_SYMBOL_GPL(mddev_init);
530
531 static struct mddev * mddev_find(dev_t unit)
532 {
533         struct mddev *mddev, *new = NULL;
534
535         if (unit && MAJOR(unit) != MD_MAJOR)
536                 unit &= ~((1<<MdpMinorShift)-1);
537
538  retry:
539         spin_lock(&all_mddevs_lock);
540
541         if (unit) {
542                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
543                         if (mddev->unit == unit) {
544                                 mddev_get(mddev);
545                                 spin_unlock(&all_mddevs_lock);
546                                 kfree(new);
547                                 return mddev;
548                         }
549
550                 if (new) {
551                         list_add(&new->all_mddevs, &all_mddevs);
552                         spin_unlock(&all_mddevs_lock);
553                         new->hold_active = UNTIL_IOCTL;
554                         return new;
555                 }
556         } else if (new) {
557                 /* find an unused unit number */
558                 static int next_minor = 512;
559                 int start = next_minor;
560                 int is_free = 0;
561                 int dev = 0;
562                 while (!is_free) {
563                         dev = MKDEV(MD_MAJOR, next_minor);
564                         next_minor++;
565                         if (next_minor > MINORMASK)
566                                 next_minor = 0;
567                         if (next_minor == start) {
568                                 /* Oh dear, all in use. */
569                                 spin_unlock(&all_mddevs_lock);
570                                 kfree(new);
571                                 return NULL;
572                         }
573                                 
574                         is_free = 1;
575                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
576                                 if (mddev->unit == dev) {
577                                         is_free = 0;
578                                         break;
579                                 }
580                 }
581                 new->unit = dev;
582                 new->md_minor = MINOR(dev);
583                 new->hold_active = UNTIL_STOP;
584                 list_add(&new->all_mddevs, &all_mddevs);
585                 spin_unlock(&all_mddevs_lock);
586                 return new;
587         }
588         spin_unlock(&all_mddevs_lock);
589
590         new = kzalloc(sizeof(*new), GFP_KERNEL);
591         if (!new)
592                 return NULL;
593
594         new->unit = unit;
595         if (MAJOR(unit) == MD_MAJOR)
596                 new->md_minor = MINOR(unit);
597         else
598                 new->md_minor = MINOR(unit) >> MdpMinorShift;
599
600         mddev_init(new);
601
602         goto retry;
603 }
604
605 static inline int __must_check mddev_lock(struct mddev * mddev)
606 {
607         return mutex_lock_interruptible(&mddev->reconfig_mutex);
608 }
609
610 /* Sometimes we need to take the lock in a situation where
611  * failure due to interrupts is not acceptable.
612  */
613 static inline void mddev_lock_nointr(struct mddev * mddev)
614 {
615         mutex_lock(&mddev->reconfig_mutex);
616 }
617
618 static inline int mddev_is_locked(struct mddev *mddev)
619 {
620         return mutex_is_locked(&mddev->reconfig_mutex);
621 }
622
623 static inline int mddev_trylock(struct mddev * mddev)
624 {
625         return mutex_trylock(&mddev->reconfig_mutex);
626 }
627
628 static struct attribute_group md_redundancy_group;
629
630 static void mddev_unlock(struct mddev * mddev)
631 {
632         if (mddev->to_remove) {
633                 /* These cannot be removed under reconfig_mutex as
634                  * an access to the files will try to take reconfig_mutex
635                  * while holding the file unremovable, which leads to
636                  * a deadlock.
637                  * So hold set sysfs_active while the remove in happeing,
638                  * and anything else which might set ->to_remove or my
639                  * otherwise change the sysfs namespace will fail with
640                  * -EBUSY if sysfs_active is still set.
641                  * We set sysfs_active under reconfig_mutex and elsewhere
642                  * test it under the same mutex to ensure its correct value
643                  * is seen.
644                  */
645                 struct attribute_group *to_remove = mddev->to_remove;
646                 mddev->to_remove = NULL;
647                 mddev->sysfs_active = 1;
648                 mutex_unlock(&mddev->reconfig_mutex);
649
650                 if (mddev->kobj.sd) {
651                         if (to_remove != &md_redundancy_group)
652                                 sysfs_remove_group(&mddev->kobj, to_remove);
653                         if (mddev->pers == NULL ||
654                             mddev->pers->sync_request == NULL) {
655                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
656                                 if (mddev->sysfs_action)
657                                         sysfs_put(mddev->sysfs_action);
658                                 mddev->sysfs_action = NULL;
659                         }
660                 }
661                 mddev->sysfs_active = 0;
662         } else
663                 mutex_unlock(&mddev->reconfig_mutex);
664
665         /* As we've dropped the mutex we need a spinlock to
666          * make sure the thread doesn't disappear
667          */
668         spin_lock(&pers_lock);
669         md_wakeup_thread(mddev->thread);
670         spin_unlock(&pers_lock);
671 }
672
673 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
674 {
675         struct md_rdev *rdev;
676
677         rdev_for_each(rdev, mddev)
678                 if (rdev->desc_nr == nr)
679                         return rdev;
680
681         return NULL;
682 }
683
684 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
685 {
686         struct md_rdev *rdev;
687
688         rdev_for_each_rcu(rdev, mddev)
689                 if (rdev->desc_nr == nr)
690                         return rdev;
691
692         return NULL;
693 }
694
695 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
696 {
697         struct md_rdev *rdev;
698
699         rdev_for_each(rdev, mddev)
700                 if (rdev->bdev->bd_dev == dev)
701                         return rdev;
702
703         return NULL;
704 }
705
706 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
707 {
708         struct md_rdev *rdev;
709
710         rdev_for_each_rcu(rdev, mddev)
711                 if (rdev->bdev->bd_dev == dev)
712                         return rdev;
713
714         return NULL;
715 }
716
717 static struct md_personality *find_pers(int level, char *clevel)
718 {
719         struct md_personality *pers;
720         list_for_each_entry(pers, &pers_list, list) {
721                 if (level != LEVEL_NONE && pers->level == level)
722                         return pers;
723                 if (strcmp(pers->name, clevel)==0)
724                         return pers;
725         }
726         return NULL;
727 }
728
729 /* return the offset of the super block in 512byte sectors */
730 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
731 {
732         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
733         return MD_NEW_SIZE_SECTORS(num_sectors);
734 }
735
736 static int alloc_disk_sb(struct md_rdev * rdev)
737 {
738         if (rdev->sb_page)
739                 MD_BUG();
740
741         rdev->sb_page = alloc_page(GFP_KERNEL);
742         if (!rdev->sb_page) {
743                 printk(KERN_ALERT "md: out of memory.\n");
744                 return -ENOMEM;
745         }
746
747         return 0;
748 }
749
750 void md_rdev_clear(struct md_rdev *rdev)
751 {
752         if (rdev->sb_page) {
753                 put_page(rdev->sb_page);
754                 rdev->sb_loaded = 0;
755                 rdev->sb_page = NULL;
756                 rdev->sb_start = 0;
757                 rdev->sectors = 0;
758         }
759         if (rdev->bb_page) {
760                 put_page(rdev->bb_page);
761                 rdev->bb_page = NULL;
762         }
763         kfree(rdev->badblocks.page);
764         rdev->badblocks.page = NULL;
765 }
766 EXPORT_SYMBOL_GPL(md_rdev_clear);
767
768 static void super_written(struct bio *bio, int error)
769 {
770         struct md_rdev *rdev = bio->bi_private;
771         struct mddev *mddev = rdev->mddev;
772
773         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
774                 printk("md: super_written gets error=%d, uptodate=%d\n",
775                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
776                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
777                 md_error(mddev, rdev);
778         }
779
780         if (atomic_dec_and_test(&mddev->pending_writes))
781                 wake_up(&mddev->sb_wait);
782         bio_put(bio);
783 }
784
785 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
786                    sector_t sector, int size, struct page *page)
787 {
788         /* write first size bytes of page to sector of rdev
789          * Increment mddev->pending_writes before returning
790          * and decrement it on completion, waking up sb_wait
791          * if zero is reached.
792          * If an error occurred, call md_error
793          */
794         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
795
796         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
797         bio->bi_sector = sector;
798         bio_add_page(bio, page, size, 0);
799         bio->bi_private = rdev;
800         bio->bi_end_io = super_written;
801
802         atomic_inc(&mddev->pending_writes);
803         submit_bio(WRITE_FLUSH_FUA, bio);
804 }
805
806 void md_super_wait(struct mddev *mddev)
807 {
808         /* wait for all superblock writes that were scheduled to complete */
809         DEFINE_WAIT(wq);
810         for(;;) {
811                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
812                 if (atomic_read(&mddev->pending_writes)==0)
813                         break;
814                 schedule();
815         }
816         finish_wait(&mddev->sb_wait, &wq);
817 }
818
819 static void bi_complete(struct bio *bio, int error)
820 {
821         complete((struct completion*)bio->bi_private);
822 }
823
824 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
825                  struct page *page, int rw, bool metadata_op)
826 {
827         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
828         struct completion event;
829         int ret;
830
831         rw |= REQ_SYNC;
832
833         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
834                 rdev->meta_bdev : rdev->bdev;
835         if (metadata_op)
836                 bio->bi_sector = sector + rdev->sb_start;
837         else if (rdev->mddev->reshape_position != MaxSector &&
838                  (rdev->mddev->reshape_backwards ==
839                   (sector >= rdev->mddev->reshape_position)))
840                 bio->bi_sector = sector + rdev->new_data_offset;
841         else
842                 bio->bi_sector = sector + rdev->data_offset;
843         bio_add_page(bio, page, size, 0);
844         init_completion(&event);
845         bio->bi_private = &event;
846         bio->bi_end_io = bi_complete;
847         submit_bio(rw, bio);
848         wait_for_completion(&event);
849
850         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
851         bio_put(bio);
852         return ret;
853 }
854 EXPORT_SYMBOL_GPL(sync_page_io);
855
856 static int read_disk_sb(struct md_rdev * rdev, int size)
857 {
858         char b[BDEVNAME_SIZE];
859         if (!rdev->sb_page) {
860                 MD_BUG();
861                 return -EINVAL;
862         }
863         if (rdev->sb_loaded)
864                 return 0;
865
866
867         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
868                 goto fail;
869         rdev->sb_loaded = 1;
870         return 0;
871
872 fail:
873         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
874                 bdevname(rdev->bdev,b));
875         return -EINVAL;
876 }
877
878 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
879 {
880         return  sb1->set_uuid0 == sb2->set_uuid0 &&
881                 sb1->set_uuid1 == sb2->set_uuid1 &&
882                 sb1->set_uuid2 == sb2->set_uuid2 &&
883                 sb1->set_uuid3 == sb2->set_uuid3;
884 }
885
886 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
887 {
888         int ret;
889         mdp_super_t *tmp1, *tmp2;
890
891         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
892         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
893
894         if (!tmp1 || !tmp2) {
895                 ret = 0;
896                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
897                 goto abort;
898         }
899
900         *tmp1 = *sb1;
901         *tmp2 = *sb2;
902
903         /*
904          * nr_disks is not constant
905          */
906         tmp1->nr_disks = 0;
907         tmp2->nr_disks = 0;
908
909         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
910 abort:
911         kfree(tmp1);
912         kfree(tmp2);
913         return ret;
914 }
915
916
917 static u32 md_csum_fold(u32 csum)
918 {
919         csum = (csum & 0xffff) + (csum >> 16);
920         return (csum & 0xffff) + (csum >> 16);
921 }
922
923 static unsigned int calc_sb_csum(mdp_super_t * sb)
924 {
925         u64 newcsum = 0;
926         u32 *sb32 = (u32*)sb;
927         int i;
928         unsigned int disk_csum, csum;
929
930         disk_csum = sb->sb_csum;
931         sb->sb_csum = 0;
932
933         for (i = 0; i < MD_SB_BYTES/4 ; i++)
934                 newcsum += sb32[i];
935         csum = (newcsum & 0xffffffff) + (newcsum>>32);
936
937
938 #ifdef CONFIG_ALPHA
939         /* This used to use csum_partial, which was wrong for several
940          * reasons including that different results are returned on
941          * different architectures.  It isn't critical that we get exactly
942          * the same return value as before (we always csum_fold before
943          * testing, and that removes any differences).  However as we
944          * know that csum_partial always returned a 16bit value on
945          * alphas, do a fold to maximise conformity to previous behaviour.
946          */
947         sb->sb_csum = md_csum_fold(disk_csum);
948 #else
949         sb->sb_csum = disk_csum;
950 #endif
951         return csum;
952 }
953
954
955 /*
956  * Handle superblock details.
957  * We want to be able to handle multiple superblock formats
958  * so we have a common interface to them all, and an array of
959  * different handlers.
960  * We rely on user-space to write the initial superblock, and support
961  * reading and updating of superblocks.
962  * Interface methods are:
963  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
964  *      loads and validates a superblock on dev.
965  *      if refdev != NULL, compare superblocks on both devices
966  *    Return:
967  *      0 - dev has a superblock that is compatible with refdev
968  *      1 - dev has a superblock that is compatible and newer than refdev
969  *          so dev should be used as the refdev in future
970  *     -EINVAL superblock incompatible or invalid
971  *     -othererror e.g. -EIO
972  *
973  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
974  *      Verify that dev is acceptable into mddev.
975  *       The first time, mddev->raid_disks will be 0, and data from
976  *       dev should be merged in.  Subsequent calls check that dev
977  *       is new enough.  Return 0 or -EINVAL
978  *
979  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
980  *     Update the superblock for rdev with data in mddev
981  *     This does not write to disc.
982  *
983  */
984
985 struct super_type  {
986         char                *name;
987         struct module       *owner;
988         int                 (*load_super)(struct md_rdev *rdev,
989                                           struct md_rdev *refdev,
990                                           int minor_version);
991         int                 (*validate_super)(struct mddev *mddev,
992                                               struct md_rdev *rdev);
993         void                (*sync_super)(struct mddev *mddev,
994                                           struct md_rdev *rdev);
995         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
996                                                 sector_t num_sectors);
997         int                 (*allow_new_offset)(struct md_rdev *rdev,
998                                                 unsigned long long new_offset);
999 };
1000
1001 /*
1002  * Check that the given mddev has no bitmap.
1003  *
1004  * This function is called from the run method of all personalities that do not
1005  * support bitmaps. It prints an error message and returns non-zero if mddev
1006  * has a bitmap. Otherwise, it returns 0.
1007  *
1008  */
1009 int md_check_no_bitmap(struct mddev *mddev)
1010 {
1011         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1012                 return 0;
1013         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1014                 mdname(mddev), mddev->pers->name);
1015         return 1;
1016 }
1017 EXPORT_SYMBOL(md_check_no_bitmap);
1018
1019 /*
1020  * load_super for 0.90.0 
1021  */
1022 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1023 {
1024         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1025         mdp_super_t *sb;
1026         int ret;
1027
1028         /*
1029          * Calculate the position of the superblock (512byte sectors),
1030          * it's at the end of the disk.
1031          *
1032          * It also happens to be a multiple of 4Kb.
1033          */
1034         rdev->sb_start = calc_dev_sboffset(rdev);
1035
1036         ret = read_disk_sb(rdev, MD_SB_BYTES);
1037         if (ret) return ret;
1038
1039         ret = -EINVAL;
1040
1041         bdevname(rdev->bdev, b);
1042         sb = page_address(rdev->sb_page);
1043
1044         if (sb->md_magic != MD_SB_MAGIC) {
1045                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1046                        b);
1047                 goto abort;
1048         }
1049
1050         if (sb->major_version != 0 ||
1051             sb->minor_version < 90 ||
1052             sb->minor_version > 91) {
1053                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1054                         sb->major_version, sb->minor_version,
1055                         b);
1056                 goto abort;
1057         }
1058
1059         if (sb->raid_disks <= 0)
1060                 goto abort;
1061
1062         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1063                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1064                         b);
1065                 goto abort;
1066         }
1067
1068         rdev->preferred_minor = sb->md_minor;
1069         rdev->data_offset = 0;
1070         rdev->new_data_offset = 0;
1071         rdev->sb_size = MD_SB_BYTES;
1072         rdev->badblocks.shift = -1;
1073
1074         if (sb->level == LEVEL_MULTIPATH)
1075                 rdev->desc_nr = -1;
1076         else
1077                 rdev->desc_nr = sb->this_disk.number;
1078
1079         if (!refdev) {
1080                 ret = 1;
1081         } else {
1082                 __u64 ev1, ev2;
1083                 mdp_super_t *refsb = page_address(refdev->sb_page);
1084                 if (!uuid_equal(refsb, sb)) {
1085                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1086                                 b, bdevname(refdev->bdev,b2));
1087                         goto abort;
1088                 }
1089                 if (!sb_equal(refsb, sb)) {
1090                         printk(KERN_WARNING "md: %s has same UUID"
1091                                " but different superblock to %s\n",
1092                                b, bdevname(refdev->bdev, b2));
1093                         goto abort;
1094                 }
1095                 ev1 = md_event(sb);
1096                 ev2 = md_event(refsb);
1097                 if (ev1 > ev2)
1098                         ret = 1;
1099                 else 
1100                         ret = 0;
1101         }
1102         rdev->sectors = rdev->sb_start;
1103         /* Limit to 4TB as metadata cannot record more than that.
1104          * (not needed for Linear and RAID0 as metadata doesn't
1105          * record this size)
1106          */
1107         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1108                 rdev->sectors = (2ULL << 32) - 2;
1109
1110         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1111                 /* "this cannot possibly happen" ... */
1112                 ret = -EINVAL;
1113
1114  abort:
1115         return ret;
1116 }
1117
1118 /*
1119  * validate_super for 0.90.0
1120  */
1121 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1122 {
1123         mdp_disk_t *desc;
1124         mdp_super_t *sb = page_address(rdev->sb_page);
1125         __u64 ev1 = md_event(sb);
1126
1127         rdev->raid_disk = -1;
1128         clear_bit(Faulty, &rdev->flags);
1129         clear_bit(In_sync, &rdev->flags);
1130         clear_bit(WriteMostly, &rdev->flags);
1131
1132         if (mddev->raid_disks == 0) {
1133                 mddev->major_version = 0;
1134                 mddev->minor_version = sb->minor_version;
1135                 mddev->patch_version = sb->patch_version;
1136                 mddev->external = 0;
1137                 mddev->chunk_sectors = sb->chunk_size >> 9;
1138                 mddev->ctime = sb->ctime;
1139                 mddev->utime = sb->utime;
1140                 mddev->level = sb->level;
1141                 mddev->clevel[0] = 0;
1142                 mddev->layout = sb->layout;
1143                 mddev->raid_disks = sb->raid_disks;
1144                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1145                 mddev->events = ev1;
1146                 mddev->bitmap_info.offset = 0;
1147                 mddev->bitmap_info.space = 0;
1148                 /* bitmap can use 60 K after the 4K superblocks */
1149                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1150                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1151                 mddev->reshape_backwards = 0;
1152
1153                 if (mddev->minor_version >= 91) {
1154                         mddev->reshape_position = sb->reshape_position;
1155                         mddev->delta_disks = sb->delta_disks;
1156                         mddev->new_level = sb->new_level;
1157                         mddev->new_layout = sb->new_layout;
1158                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1159                         if (mddev->delta_disks < 0)
1160                                 mddev->reshape_backwards = 1;
1161                 } else {
1162                         mddev->reshape_position = MaxSector;
1163                         mddev->delta_disks = 0;
1164                         mddev->new_level = mddev->level;
1165                         mddev->new_layout = mddev->layout;
1166                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1167                 }
1168
1169                 if (sb->state & (1<<MD_SB_CLEAN))
1170                         mddev->recovery_cp = MaxSector;
1171                 else {
1172                         if (sb->events_hi == sb->cp_events_hi && 
1173                                 sb->events_lo == sb->cp_events_lo) {
1174                                 mddev->recovery_cp = sb->recovery_cp;
1175                         } else
1176                                 mddev->recovery_cp = 0;
1177                 }
1178
1179                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1180                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1181                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1182                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1183
1184                 mddev->max_disks = MD_SB_DISKS;
1185
1186                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1187                     mddev->bitmap_info.file == NULL) {
1188                         mddev->bitmap_info.offset =
1189                                 mddev->bitmap_info.default_offset;
1190                         mddev->bitmap_info.space =
1191                                 mddev->bitmap_info.default_space;
1192                 }
1193
1194         } else if (mddev->pers == NULL) {
1195                 /* Insist on good event counter while assembling, except
1196                  * for spares (which don't need an event count) */
1197                 ++ev1;
1198                 if (sb->disks[rdev->desc_nr].state & (
1199                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1200                         if (ev1 < mddev->events) 
1201                                 return -EINVAL;
1202         } else if (mddev->bitmap) {
1203                 /* if adding to array with a bitmap, then we can accept an
1204                  * older device ... but not too old.
1205                  */
1206                 if (ev1 < mddev->bitmap->events_cleared)
1207                         return 0;
1208         } else {
1209                 if (ev1 < mddev->events)
1210                         /* just a hot-add of a new device, leave raid_disk at -1 */
1211                         return 0;
1212         }
1213
1214         if (mddev->level != LEVEL_MULTIPATH) {
1215                 desc = sb->disks + rdev->desc_nr;
1216
1217                 if (desc->state & (1<<MD_DISK_FAULTY))
1218                         set_bit(Faulty, &rdev->flags);
1219                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1220                             desc->raid_disk < mddev->raid_disks */) {
1221                         set_bit(In_sync, &rdev->flags);
1222                         rdev->raid_disk = desc->raid_disk;
1223                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1224                         /* active but not in sync implies recovery up to
1225                          * reshape position.  We don't know exactly where
1226                          * that is, so set to zero for now */
1227                         if (mddev->minor_version >= 91) {
1228                                 rdev->recovery_offset = 0;
1229                                 rdev->raid_disk = desc->raid_disk;
1230                         }
1231                 }
1232                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1233                         set_bit(WriteMostly, &rdev->flags);
1234         } else /* MULTIPATH are always insync */
1235                 set_bit(In_sync, &rdev->flags);
1236         return 0;
1237 }
1238
1239 /*
1240  * sync_super for 0.90.0
1241  */
1242 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1243 {
1244         mdp_super_t *sb;
1245         struct md_rdev *rdev2;
1246         int next_spare = mddev->raid_disks;
1247
1248
1249         /* make rdev->sb match mddev data..
1250          *
1251          * 1/ zero out disks
1252          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1253          * 3/ any empty disks < next_spare become removed
1254          *
1255          * disks[0] gets initialised to REMOVED because
1256          * we cannot be sure from other fields if it has
1257          * been initialised or not.
1258          */
1259         int i;
1260         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1261
1262         rdev->sb_size = MD_SB_BYTES;
1263
1264         sb = page_address(rdev->sb_page);
1265
1266         memset(sb, 0, sizeof(*sb));
1267
1268         sb->md_magic = MD_SB_MAGIC;
1269         sb->major_version = mddev->major_version;
1270         sb->patch_version = mddev->patch_version;
1271         sb->gvalid_words  = 0; /* ignored */
1272         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1273         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1274         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1275         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1276
1277         sb->ctime = mddev->ctime;
1278         sb->level = mddev->level;
1279         sb->size = mddev->dev_sectors / 2;
1280         sb->raid_disks = mddev->raid_disks;
1281         sb->md_minor = mddev->md_minor;
1282         sb->not_persistent = 0;
1283         sb->utime = mddev->utime;
1284         sb->state = 0;
1285         sb->events_hi = (mddev->events>>32);
1286         sb->events_lo = (u32)mddev->events;
1287
1288         if (mddev->reshape_position == MaxSector)
1289                 sb->minor_version = 90;
1290         else {
1291                 sb->minor_version = 91;
1292                 sb->reshape_position = mddev->reshape_position;
1293                 sb->new_level = mddev->new_level;
1294                 sb->delta_disks = mddev->delta_disks;
1295                 sb->new_layout = mddev->new_layout;
1296                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1297         }
1298         mddev->minor_version = sb->minor_version;
1299         if (mddev->in_sync)
1300         {
1301                 sb->recovery_cp = mddev->recovery_cp;
1302                 sb->cp_events_hi = (mddev->events>>32);
1303                 sb->cp_events_lo = (u32)mddev->events;
1304                 if (mddev->recovery_cp == MaxSector)
1305                         sb->state = (1<< MD_SB_CLEAN);
1306         } else
1307                 sb->recovery_cp = 0;
1308
1309         sb->layout = mddev->layout;
1310         sb->chunk_size = mddev->chunk_sectors << 9;
1311
1312         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1313                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1314
1315         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1316         rdev_for_each(rdev2, mddev) {
1317                 mdp_disk_t *d;
1318                 int desc_nr;
1319                 int is_active = test_bit(In_sync, &rdev2->flags);
1320
1321                 if (rdev2->raid_disk >= 0 &&
1322                     sb->minor_version >= 91)
1323                         /* we have nowhere to store the recovery_offset,
1324                          * but if it is not below the reshape_position,
1325                          * we can piggy-back on that.
1326                          */
1327                         is_active = 1;
1328                 if (rdev2->raid_disk < 0 ||
1329                     test_bit(Faulty, &rdev2->flags))
1330                         is_active = 0;
1331                 if (is_active)
1332                         desc_nr = rdev2->raid_disk;
1333                 else
1334                         desc_nr = next_spare++;
1335                 rdev2->desc_nr = desc_nr;
1336                 d = &sb->disks[rdev2->desc_nr];
1337                 nr_disks++;
1338                 d->number = rdev2->desc_nr;
1339                 d->major = MAJOR(rdev2->bdev->bd_dev);
1340                 d->minor = MINOR(rdev2->bdev->bd_dev);
1341                 if (is_active)
1342                         d->raid_disk = rdev2->raid_disk;
1343                 else
1344                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1345                 if (test_bit(Faulty, &rdev2->flags))
1346                         d->state = (1<<MD_DISK_FAULTY);
1347                 else if (is_active) {
1348                         d->state = (1<<MD_DISK_ACTIVE);
1349                         if (test_bit(In_sync, &rdev2->flags))
1350                                 d->state |= (1<<MD_DISK_SYNC);
1351                         active++;
1352                         working++;
1353                 } else {
1354                         d->state = 0;
1355                         spare++;
1356                         working++;
1357                 }
1358                 if (test_bit(WriteMostly, &rdev2->flags))
1359                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1360         }
1361         /* now set the "removed" and "faulty" bits on any missing devices */
1362         for (i=0 ; i < mddev->raid_disks ; i++) {
1363                 mdp_disk_t *d = &sb->disks[i];
1364                 if (d->state == 0 && d->number == 0) {
1365                         d->number = i;
1366                         d->raid_disk = i;
1367                         d->state = (1<<MD_DISK_REMOVED);
1368                         d->state |= (1<<MD_DISK_FAULTY);
1369                         failed++;
1370                 }
1371         }
1372         sb->nr_disks = nr_disks;
1373         sb->active_disks = active;
1374         sb->working_disks = working;
1375         sb->failed_disks = failed;
1376         sb->spare_disks = spare;
1377
1378         sb->this_disk = sb->disks[rdev->desc_nr];
1379         sb->sb_csum = calc_sb_csum(sb);
1380 }
1381
1382 /*
1383  * rdev_size_change for 0.90.0
1384  */
1385 static unsigned long long
1386 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1387 {
1388         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1389                 return 0; /* component must fit device */
1390         if (rdev->mddev->bitmap_info.offset)
1391                 return 0; /* can't move bitmap */
1392         rdev->sb_start = calc_dev_sboffset(rdev);
1393         if (!num_sectors || num_sectors > rdev->sb_start)
1394                 num_sectors = rdev->sb_start;
1395         /* Limit to 4TB as metadata cannot record more than that.
1396          * 4TB == 2^32 KB, or 2*2^32 sectors.
1397          */
1398         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1399                 num_sectors = (2ULL << 32) - 2;
1400         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1401                        rdev->sb_page);
1402         md_super_wait(rdev->mddev);
1403         return num_sectors;
1404 }
1405
1406 static int
1407 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1408 {
1409         /* non-zero offset changes not possible with v0.90 */
1410         return new_offset == 0;
1411 }
1412
1413 /*
1414  * version 1 superblock
1415  */
1416
1417 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1418 {
1419         __le32 disk_csum;
1420         u32 csum;
1421         unsigned long long newcsum;
1422         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1423         __le32 *isuper = (__le32*)sb;
1424
1425         disk_csum = sb->sb_csum;
1426         sb->sb_csum = 0;
1427         newcsum = 0;
1428         for (; size >= 4; size -= 4)
1429                 newcsum += le32_to_cpu(*isuper++);
1430
1431         if (size == 2)
1432                 newcsum += le16_to_cpu(*(__le16*) isuper);
1433
1434         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1435         sb->sb_csum = disk_csum;
1436         return cpu_to_le32(csum);
1437 }
1438
1439 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1440                             int acknowledged);
1441 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1442 {
1443         struct mdp_superblock_1 *sb;
1444         int ret;
1445         sector_t sb_start;
1446         sector_t sectors;
1447         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1448         int bmask;
1449
1450         /*
1451          * Calculate the position of the superblock in 512byte sectors.
1452          * It is always aligned to a 4K boundary and
1453          * depeding on minor_version, it can be:
1454          * 0: At least 8K, but less than 12K, from end of device
1455          * 1: At start of device
1456          * 2: 4K from start of device.
1457          */
1458         switch(minor_version) {
1459         case 0:
1460                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1461                 sb_start -= 8*2;
1462                 sb_start &= ~(sector_t)(4*2-1);
1463                 break;
1464         case 1:
1465                 sb_start = 0;
1466                 break;
1467         case 2:
1468                 sb_start = 8;
1469                 break;
1470         default:
1471                 return -EINVAL;
1472         }
1473         rdev->sb_start = sb_start;
1474
1475         /* superblock is rarely larger than 1K, but it can be larger,
1476          * and it is safe to read 4k, so we do that
1477          */
1478         ret = read_disk_sb(rdev, 4096);
1479         if (ret) return ret;
1480
1481
1482         sb = page_address(rdev->sb_page);
1483
1484         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1485             sb->major_version != cpu_to_le32(1) ||
1486             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1487             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1488             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1489                 return -EINVAL;
1490
1491         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1492                 printk("md: invalid superblock checksum on %s\n",
1493                         bdevname(rdev->bdev,b));
1494                 return -EINVAL;
1495         }
1496         if (le64_to_cpu(sb->data_size) < 10) {
1497                 printk("md: data_size too small on %s\n",
1498                        bdevname(rdev->bdev,b));
1499                 return -EINVAL;
1500         }
1501         if (sb->pad0 ||
1502             sb->pad3[0] ||
1503             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1504                 /* Some padding is non-zero, might be a new feature */
1505                 return -EINVAL;
1506
1507         rdev->preferred_minor = 0xffff;
1508         rdev->data_offset = le64_to_cpu(sb->data_offset);
1509         rdev->new_data_offset = rdev->data_offset;
1510         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1511             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1512                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1513         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1514
1515         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1516         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1517         if (rdev->sb_size & bmask)
1518                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1519
1520         if (minor_version
1521             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1522                 return -EINVAL;
1523         if (minor_version
1524             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1525                 return -EINVAL;
1526
1527         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1528                 rdev->desc_nr = -1;
1529         else
1530                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1531
1532         if (!rdev->bb_page) {
1533                 rdev->bb_page = alloc_page(GFP_KERNEL);
1534                 if (!rdev->bb_page)
1535                         return -ENOMEM;
1536         }
1537         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1538             rdev->badblocks.count == 0) {
1539                 /* need to load the bad block list.
1540                  * Currently we limit it to one page.
1541                  */
1542                 s32 offset;
1543                 sector_t bb_sector;
1544                 u64 *bbp;
1545                 int i;
1546                 int sectors = le16_to_cpu(sb->bblog_size);
1547                 if (sectors > (PAGE_SIZE / 512))
1548                         return -EINVAL;
1549                 offset = le32_to_cpu(sb->bblog_offset);
1550                 if (offset == 0)
1551                         return -EINVAL;
1552                 bb_sector = (long long)offset;
1553                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1554                                   rdev->bb_page, READ, true))
1555                         return -EIO;
1556                 bbp = (u64 *)page_address(rdev->bb_page);
1557                 rdev->badblocks.shift = sb->bblog_shift;
1558                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1559                         u64 bb = le64_to_cpu(*bbp);
1560                         int count = bb & (0x3ff);
1561                         u64 sector = bb >> 10;
1562                         sector <<= sb->bblog_shift;
1563                         count <<= sb->bblog_shift;
1564                         if (bb + 1 == 0)
1565                                 break;
1566                         if (md_set_badblocks(&rdev->badblocks,
1567                                              sector, count, 1) == 0)
1568                                 return -EINVAL;
1569                 }
1570         } else if (sb->bblog_offset != 0)
1571                 rdev->badblocks.shift = 0;
1572
1573         if (!refdev) {
1574                 ret = 1;
1575         } else {
1576                 __u64 ev1, ev2;
1577                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1578
1579                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1580                     sb->level != refsb->level ||
1581                     sb->layout != refsb->layout ||
1582                     sb->chunksize != refsb->chunksize) {
1583                         printk(KERN_WARNING "md: %s has strangely different"
1584                                 " superblock to %s\n",
1585                                 bdevname(rdev->bdev,b),
1586                                 bdevname(refdev->bdev,b2));
1587                         return -EINVAL;
1588                 }
1589                 ev1 = le64_to_cpu(sb->events);
1590                 ev2 = le64_to_cpu(refsb->events);
1591
1592                 if (ev1 > ev2)
1593                         ret = 1;
1594                 else
1595                         ret = 0;
1596         }
1597         if (minor_version) {
1598                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1599                 sectors -= rdev->data_offset;
1600         } else
1601                 sectors = rdev->sb_start;
1602         if (sectors < le64_to_cpu(sb->data_size))
1603                 return -EINVAL;
1604         rdev->sectors = le64_to_cpu(sb->data_size);
1605         return ret;
1606 }
1607
1608 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1609 {
1610         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1611         __u64 ev1 = le64_to_cpu(sb->events);
1612
1613         rdev->raid_disk = -1;
1614         clear_bit(Faulty, &rdev->flags);
1615         clear_bit(In_sync, &rdev->flags);
1616         clear_bit(WriteMostly, &rdev->flags);
1617
1618         if (mddev->raid_disks == 0) {
1619                 mddev->major_version = 1;
1620                 mddev->patch_version = 0;
1621                 mddev->external = 0;
1622                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1623                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1624                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1625                 mddev->level = le32_to_cpu(sb->level);
1626                 mddev->clevel[0] = 0;
1627                 mddev->layout = le32_to_cpu(sb->layout);
1628                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1629                 mddev->dev_sectors = le64_to_cpu(sb->size);
1630                 mddev->events = ev1;
1631                 mddev->bitmap_info.offset = 0;
1632                 mddev->bitmap_info.space = 0;
1633                 /* Default location for bitmap is 1K after superblock
1634                  * using 3K - total of 4K
1635                  */
1636                 mddev->bitmap_info.default_offset = 1024 >> 9;
1637                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1638                 mddev->reshape_backwards = 0;
1639
1640                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1641                 memcpy(mddev->uuid, sb->set_uuid, 16);
1642
1643                 mddev->max_disks =  (4096-256)/2;
1644
1645                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1646                     mddev->bitmap_info.file == NULL) {
1647                         mddev->bitmap_info.offset =
1648                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1649                         /* Metadata doesn't record how much space is available.
1650                          * For 1.0, we assume we can use up to the superblock
1651                          * if before, else to 4K beyond superblock.
1652                          * For others, assume no change is possible.
1653                          */
1654                         if (mddev->minor_version > 0)
1655                                 mddev->bitmap_info.space = 0;
1656                         else if (mddev->bitmap_info.offset > 0)
1657                                 mddev->bitmap_info.space =
1658                                         8 - mddev->bitmap_info.offset;
1659                         else
1660                                 mddev->bitmap_info.space =
1661                                         -mddev->bitmap_info.offset;
1662                 }
1663
1664                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1665                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1666                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1667                         mddev->new_level = le32_to_cpu(sb->new_level);
1668                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1669                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1670                         if (mddev->delta_disks < 0 ||
1671                             (mddev->delta_disks == 0 &&
1672                              (le32_to_cpu(sb->feature_map)
1673                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1674                                 mddev->reshape_backwards = 1;
1675                 } else {
1676                         mddev->reshape_position = MaxSector;
1677                         mddev->delta_disks = 0;
1678                         mddev->new_level = mddev->level;
1679                         mddev->new_layout = mddev->layout;
1680                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1681                 }
1682
1683         } else if (mddev->pers == NULL) {
1684                 /* Insist of good event counter while assembling, except for
1685                  * spares (which don't need an event count) */
1686                 ++ev1;
1687                 if (rdev->desc_nr >= 0 &&
1688                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1689                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1690                         if (ev1 < mddev->events)
1691                                 return -EINVAL;
1692         } else if (mddev->bitmap) {
1693                 /* If adding to array with a bitmap, then we can accept an
1694                  * older device, but not too old.
1695                  */
1696                 if (ev1 < mddev->bitmap->events_cleared)
1697                         return 0;
1698         } else {
1699                 if (ev1 < mddev->events)
1700                         /* just a hot-add of a new device, leave raid_disk at -1 */
1701                         return 0;
1702         }
1703         if (mddev->level != LEVEL_MULTIPATH) {
1704                 int role;
1705                 if (rdev->desc_nr < 0 ||
1706                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1707                         role = 0xffff;
1708                         rdev->desc_nr = -1;
1709                 } else
1710                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1711                 switch(role) {
1712                 case 0xffff: /* spare */
1713                         break;
1714                 case 0xfffe: /* faulty */
1715                         set_bit(Faulty, &rdev->flags);
1716                         break;
1717                 default:
1718                         if ((le32_to_cpu(sb->feature_map) &
1719                              MD_FEATURE_RECOVERY_OFFSET))
1720                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1721                         else
1722                                 set_bit(In_sync, &rdev->flags);
1723                         rdev->raid_disk = role;
1724                         break;
1725                 }
1726                 if (sb->devflags & WriteMostly1)
1727                         set_bit(WriteMostly, &rdev->flags);
1728                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1729                         set_bit(Replacement, &rdev->flags);
1730         } else /* MULTIPATH are always insync */
1731                 set_bit(In_sync, &rdev->flags);
1732
1733         return 0;
1734 }
1735
1736 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1737 {
1738         struct mdp_superblock_1 *sb;
1739         struct md_rdev *rdev2;
1740         int max_dev, i;
1741         /* make rdev->sb match mddev and rdev data. */
1742
1743         sb = page_address(rdev->sb_page);
1744
1745         sb->feature_map = 0;
1746         sb->pad0 = 0;
1747         sb->recovery_offset = cpu_to_le64(0);
1748         memset(sb->pad3, 0, sizeof(sb->pad3));
1749
1750         sb->utime = cpu_to_le64((__u64)mddev->utime);
1751         sb->events = cpu_to_le64(mddev->events);
1752         if (mddev->in_sync)
1753                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1754         else
1755                 sb->resync_offset = cpu_to_le64(0);
1756
1757         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1758
1759         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1760         sb->size = cpu_to_le64(mddev->dev_sectors);
1761         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1762         sb->level = cpu_to_le32(mddev->level);
1763         sb->layout = cpu_to_le32(mddev->layout);
1764
1765         if (test_bit(WriteMostly, &rdev->flags))
1766                 sb->devflags |= WriteMostly1;
1767         else
1768                 sb->devflags &= ~WriteMostly1;
1769         sb->data_offset = cpu_to_le64(rdev->data_offset);
1770         sb->data_size = cpu_to_le64(rdev->sectors);
1771
1772         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1773                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1774                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1775         }
1776
1777         if (rdev->raid_disk >= 0 &&
1778             !test_bit(In_sync, &rdev->flags)) {
1779                 sb->feature_map |=
1780                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1781                 sb->recovery_offset =
1782                         cpu_to_le64(rdev->recovery_offset);
1783         }
1784         if (test_bit(Replacement, &rdev->flags))
1785                 sb->feature_map |=
1786                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1787
1788         if (mddev->reshape_position != MaxSector) {
1789                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1790                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1791                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1792                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1793                 sb->new_level = cpu_to_le32(mddev->new_level);
1794                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1795                 if (mddev->delta_disks == 0 &&
1796                     mddev->reshape_backwards)
1797                         sb->feature_map
1798                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1799                 if (rdev->new_data_offset != rdev->data_offset) {
1800                         sb->feature_map
1801                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1802                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1803                                                              - rdev->data_offset));
1804                 }
1805         }
1806
1807         if (rdev->badblocks.count == 0)
1808                 /* Nothing to do for bad blocks*/ ;
1809         else if (sb->bblog_offset == 0)
1810                 /* Cannot record bad blocks on this device */
1811                 md_error(mddev, rdev);
1812         else {
1813                 struct badblocks *bb = &rdev->badblocks;
1814                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1815                 u64 *p = bb->page;
1816                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1817                 if (bb->changed) {
1818                         unsigned seq;
1819
1820 retry:
1821                         seq = read_seqbegin(&bb->lock);
1822
1823                         memset(bbp, 0xff, PAGE_SIZE);
1824
1825                         for (i = 0 ; i < bb->count ; i++) {
1826                                 u64 internal_bb = p[i];
1827                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1828                                                 | BB_LEN(internal_bb));
1829                                 bbp[i] = cpu_to_le64(store_bb);
1830                         }
1831                         bb->changed = 0;
1832                         if (read_seqretry(&bb->lock, seq))
1833                                 goto retry;
1834
1835                         bb->sector = (rdev->sb_start +
1836                                       (int)le32_to_cpu(sb->bblog_offset));
1837                         bb->size = le16_to_cpu(sb->bblog_size);
1838                 }
1839         }
1840
1841         max_dev = 0;
1842         rdev_for_each(rdev2, mddev)
1843                 if (rdev2->desc_nr+1 > max_dev)
1844                         max_dev = rdev2->desc_nr+1;
1845
1846         if (max_dev > le32_to_cpu(sb->max_dev)) {
1847                 int bmask;
1848                 sb->max_dev = cpu_to_le32(max_dev);
1849                 rdev->sb_size = max_dev * 2 + 256;
1850                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1851                 if (rdev->sb_size & bmask)
1852                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1853         } else
1854                 max_dev = le32_to_cpu(sb->max_dev);
1855
1856         for (i=0; i<max_dev;i++)
1857                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1858         
1859         rdev_for_each(rdev2, mddev) {
1860                 i = rdev2->desc_nr;
1861                 if (test_bit(Faulty, &rdev2->flags))
1862                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1863                 else if (test_bit(In_sync, &rdev2->flags))
1864                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1865                 else if (rdev2->raid_disk >= 0)
1866                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1867                 else
1868                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1869         }
1870
1871         sb->sb_csum = calc_sb_1_csum(sb);
1872 }
1873
1874 static unsigned long long
1875 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1876 {
1877         struct mdp_superblock_1 *sb;
1878         sector_t max_sectors;
1879         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1880                 return 0; /* component must fit device */
1881         if (rdev->data_offset != rdev->new_data_offset)
1882                 return 0; /* too confusing */
1883         if (rdev->sb_start < rdev->data_offset) {
1884                 /* minor versions 1 and 2; superblock before data */
1885                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1886                 max_sectors -= rdev->data_offset;
1887                 if (!num_sectors || num_sectors > max_sectors)
1888                         num_sectors = max_sectors;
1889         } else if (rdev->mddev->bitmap_info.offset) {
1890                 /* minor version 0 with bitmap we can't move */
1891                 return 0;
1892         } else {
1893                 /* minor version 0; superblock after data */
1894                 sector_t sb_start;
1895                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1896                 sb_start &= ~(sector_t)(4*2 - 1);
1897                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1898                 if (!num_sectors || num_sectors > max_sectors)
1899                         num_sectors = max_sectors;
1900                 rdev->sb_start = sb_start;
1901         }
1902         sb = page_address(rdev->sb_page);
1903         sb->data_size = cpu_to_le64(num_sectors);
1904         sb->super_offset = rdev->sb_start;
1905         sb->sb_csum = calc_sb_1_csum(sb);
1906         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1907                        rdev->sb_page);
1908         md_super_wait(rdev->mddev);
1909         return num_sectors;
1910
1911 }
1912
1913 static int
1914 super_1_allow_new_offset(struct md_rdev *rdev,
1915                          unsigned long long new_offset)
1916 {
1917         /* All necessary checks on new >= old have been done */
1918         struct bitmap *bitmap;
1919         if (new_offset >= rdev->data_offset)
1920                 return 1;
1921
1922         /* with 1.0 metadata, there is no metadata to tread on
1923          * so we can always move back */
1924         if (rdev->mddev->minor_version == 0)
1925                 return 1;
1926
1927         /* otherwise we must be sure not to step on
1928          * any metadata, so stay:
1929          * 36K beyond start of superblock
1930          * beyond end of badblocks
1931          * beyond write-intent bitmap
1932          */
1933         if (rdev->sb_start + (32+4)*2 > new_offset)
1934                 return 0;
1935         bitmap = rdev->mddev->bitmap;
1936         if (bitmap && !rdev->mddev->bitmap_info.file &&
1937             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1938             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1939                 return 0;
1940         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1941                 return 0;
1942
1943         return 1;
1944 }
1945
1946 static struct super_type super_types[] = {
1947         [0] = {
1948                 .name   = "0.90.0",
1949                 .owner  = THIS_MODULE,
1950                 .load_super         = super_90_load,
1951                 .validate_super     = super_90_validate,
1952                 .sync_super         = super_90_sync,
1953                 .rdev_size_change   = super_90_rdev_size_change,
1954                 .allow_new_offset   = super_90_allow_new_offset,
1955         },
1956         [1] = {
1957                 .name   = "md-1",
1958                 .owner  = THIS_MODULE,
1959                 .load_super         = super_1_load,
1960                 .validate_super     = super_1_validate,
1961                 .sync_super         = super_1_sync,
1962                 .rdev_size_change   = super_1_rdev_size_change,
1963                 .allow_new_offset   = super_1_allow_new_offset,
1964         },
1965 };
1966
1967 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1968 {
1969         if (mddev->sync_super) {
1970                 mddev->sync_super(mddev, rdev);
1971                 return;
1972         }
1973
1974         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1975
1976         super_types[mddev->major_version].sync_super(mddev, rdev);
1977 }
1978
1979 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1980 {
1981         struct md_rdev *rdev, *rdev2;
1982
1983         rcu_read_lock();
1984         rdev_for_each_rcu(rdev, mddev1)
1985                 rdev_for_each_rcu(rdev2, mddev2)
1986                         if (rdev->bdev->bd_contains ==
1987                             rdev2->bdev->bd_contains) {
1988                                 rcu_read_unlock();
1989                                 return 1;
1990                         }
1991         rcu_read_unlock();
1992         return 0;
1993 }
1994
1995 static LIST_HEAD(pending_raid_disks);
1996
1997 /*
1998  * Try to register data integrity profile for an mddev
1999  *
2000  * This is called when an array is started and after a disk has been kicked
2001  * from the array. It only succeeds if all working and active component devices
2002  * are integrity capable with matching profiles.
2003  */
2004 int md_integrity_register(struct mddev *mddev)
2005 {
2006         struct md_rdev *rdev, *reference = NULL;
2007
2008         if (list_empty(&mddev->disks))
2009                 return 0; /* nothing to do */
2010         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2011                 return 0; /* shouldn't register, or already is */
2012         rdev_for_each(rdev, mddev) {
2013                 /* skip spares and non-functional disks */
2014                 if (test_bit(Faulty, &rdev->flags))
2015                         continue;
2016                 if (rdev->raid_disk < 0)
2017                         continue;
2018                 if (!reference) {
2019                         /* Use the first rdev as the reference */
2020                         reference = rdev;
2021                         continue;
2022                 }
2023                 /* does this rdev's profile match the reference profile? */
2024                 if (blk_integrity_compare(reference->bdev->bd_disk,
2025                                 rdev->bdev->bd_disk) < 0)
2026                         return -EINVAL;
2027         }
2028         if (!reference || !bdev_get_integrity(reference->bdev))
2029                 return 0;
2030         /*
2031          * All component devices are integrity capable and have matching
2032          * profiles, register the common profile for the md device.
2033          */
2034         if (blk_integrity_register(mddev->gendisk,
2035                         bdev_get_integrity(reference->bdev)) != 0) {
2036                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2037                         mdname(mddev));
2038                 return -EINVAL;
2039         }
2040         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2041         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2042                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2043                        mdname(mddev));
2044                 return -EINVAL;
2045         }
2046         return 0;
2047 }
2048 EXPORT_SYMBOL(md_integrity_register);
2049
2050 /* Disable data integrity if non-capable/non-matching disk is being added */
2051 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2052 {
2053         struct blk_integrity *bi_rdev;
2054         struct blk_integrity *bi_mddev;
2055
2056         if (!mddev->gendisk)
2057                 return;
2058
2059         bi_rdev = bdev_get_integrity(rdev->bdev);
2060         bi_mddev = blk_get_integrity(mddev->gendisk);
2061
2062         if (!bi_mddev) /* nothing to do */
2063                 return;
2064         if (rdev->raid_disk < 0) /* skip spares */
2065                 return;
2066         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2067                                              rdev->bdev->bd_disk) >= 0)
2068                 return;
2069         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2070         blk_integrity_unregister(mddev->gendisk);
2071 }
2072 EXPORT_SYMBOL(md_integrity_add_rdev);
2073
2074 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2075 {
2076         char b[BDEVNAME_SIZE];
2077         struct kobject *ko;
2078         char *s;
2079         int err;
2080
2081         if (rdev->mddev) {
2082                 MD_BUG();
2083                 return -EINVAL;
2084         }
2085
2086         /* prevent duplicates */
2087         if (find_rdev(mddev, rdev->bdev->bd_dev))
2088                 return -EEXIST;
2089
2090         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2091         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2092                         rdev->sectors < mddev->dev_sectors)) {
2093                 if (mddev->pers) {
2094                         /* Cannot change size, so fail
2095                          * If mddev->level <= 0, then we don't care
2096                          * about aligning sizes (e.g. linear)
2097                          */
2098                         if (mddev->level > 0)
2099                                 return -ENOSPC;
2100                 } else
2101                         mddev->dev_sectors = rdev->sectors;
2102         }
2103
2104         /* Verify rdev->desc_nr is unique.
2105          * If it is -1, assign a free number, else
2106          * check number is not in use
2107          */
2108         if (rdev->desc_nr < 0) {
2109                 int choice = 0;
2110                 if (mddev->pers) choice = mddev->raid_disks;
2111                 while (find_rdev_nr(mddev, choice))
2112                         choice++;
2113                 rdev->desc_nr = choice;
2114         } else {
2115                 if (find_rdev_nr(mddev, rdev->desc_nr))
2116                         return -EBUSY;
2117         }
2118         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2119                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2120                        mdname(mddev), mddev->max_disks);
2121                 return -EBUSY;
2122         }
2123         bdevname(rdev->bdev,b);
2124         while ( (s=strchr(b, '/')) != NULL)
2125                 *s = '!';
2126
2127         rdev->mddev = mddev;
2128         printk(KERN_INFO "md: bind<%s>\n", b);
2129
2130         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2131                 goto fail;
2132
2133         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2134         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2135                 /* failure here is OK */;
2136         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2137
2138         list_add_rcu(&rdev->same_set, &mddev->disks);
2139         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2140
2141         /* May as well allow recovery to be retried once */
2142         mddev->recovery_disabled++;
2143
2144         return 0;
2145
2146  fail:
2147         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2148                b, mdname(mddev));
2149         return err;
2150 }
2151
2152 static void md_delayed_delete(struct work_struct *ws)
2153 {
2154         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2155         kobject_del(&rdev->kobj);
2156         kobject_put(&rdev->kobj);
2157 }
2158
2159 static void unbind_rdev_from_array(struct md_rdev * rdev)
2160 {
2161         char b[BDEVNAME_SIZE];
2162         if (!rdev->mddev) {
2163                 MD_BUG();
2164                 return;
2165         }
2166         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2167         list_del_rcu(&rdev->same_set);
2168         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2169         rdev->mddev = NULL;
2170         sysfs_remove_link(&rdev->kobj, "block");
2171         sysfs_put(rdev->sysfs_state);
2172         rdev->sysfs_state = NULL;
2173         rdev->badblocks.count = 0;
2174         /* We need to delay this, otherwise we can deadlock when
2175          * writing to 'remove' to "dev/state".  We also need
2176          * to delay it due to rcu usage.
2177          */
2178         synchronize_rcu();
2179         INIT_WORK(&rdev->del_work, md_delayed_delete);
2180         kobject_get(&rdev->kobj);
2181         queue_work(md_misc_wq, &rdev->del_work);
2182 }
2183
2184 /*
2185  * prevent the device from being mounted, repartitioned or
2186  * otherwise reused by a RAID array (or any other kernel
2187  * subsystem), by bd_claiming the device.
2188  */
2189 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2190 {
2191         int err = 0;
2192         struct block_device *bdev;
2193         char b[BDEVNAME_SIZE];
2194
2195         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2196                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2197         if (IS_ERR(bdev)) {
2198                 printk(KERN_ERR "md: could not open %s.\n",
2199                         __bdevname(dev, b));
2200                 return PTR_ERR(bdev);
2201         }
2202         rdev->bdev = bdev;
2203         return err;
2204 }
2205
2206 static void unlock_rdev(struct md_rdev *rdev)
2207 {
2208         struct block_device *bdev = rdev->bdev;
2209         rdev->bdev = NULL;
2210         if (!bdev)
2211                 MD_BUG();
2212         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2213 }
2214
2215 void md_autodetect_dev(dev_t dev);
2216
2217 static void export_rdev(struct md_rdev * rdev)
2218 {
2219         char b[BDEVNAME_SIZE];
2220         printk(KERN_INFO "md: export_rdev(%s)\n",
2221                 bdevname(rdev->bdev,b));
2222         if (rdev->mddev)
2223                 MD_BUG();
2224         md_rdev_clear(rdev);
2225 #ifndef MODULE
2226         if (test_bit(AutoDetected, &rdev->flags))
2227                 md_autodetect_dev(rdev->bdev->bd_dev);
2228 #endif
2229         unlock_rdev(rdev);
2230         kobject_put(&rdev->kobj);
2231 }
2232
2233 static void kick_rdev_from_array(struct md_rdev * rdev)
2234 {
2235         unbind_rdev_from_array(rdev);
2236         export_rdev(rdev);
2237 }
2238
2239 static void export_array(struct mddev *mddev)
2240 {
2241         struct md_rdev *rdev, *tmp;
2242
2243         rdev_for_each_safe(rdev, tmp, mddev) {
2244                 if (!rdev->mddev) {
2245                         MD_BUG();
2246                         continue;
2247                 }
2248                 kick_rdev_from_array(rdev);
2249         }
2250         if (!list_empty(&mddev->disks))
2251                 MD_BUG();
2252         mddev->raid_disks = 0;
2253         mddev->major_version = 0;
2254 }
2255
2256 static void print_desc(mdp_disk_t *desc)
2257 {
2258         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2259                 desc->major,desc->minor,desc->raid_disk,desc->state);
2260 }
2261
2262 static void print_sb_90(mdp_super_t *sb)
2263 {
2264         int i;
2265
2266         printk(KERN_INFO 
2267                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2268                 sb->major_version, sb->minor_version, sb->patch_version,
2269                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2270                 sb->ctime);
2271         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2272                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2273                 sb->md_minor, sb->layout, sb->chunk_size);
2274         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2275                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2276                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2277                 sb->failed_disks, sb->spare_disks,
2278                 sb->sb_csum, (unsigned long)sb->events_lo);
2279
2280         printk(KERN_INFO);
2281         for (i = 0; i < MD_SB_DISKS; i++) {
2282                 mdp_disk_t *desc;
2283
2284                 desc = sb->disks + i;
2285                 if (desc->number || desc->major || desc->minor ||
2286                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2287                         printk("     D %2d: ", i);
2288                         print_desc(desc);
2289                 }
2290         }
2291         printk(KERN_INFO "md:     THIS: ");
2292         print_desc(&sb->this_disk);
2293 }
2294
2295 static void print_sb_1(struct mdp_superblock_1 *sb)
2296 {
2297         __u8 *uuid;
2298
2299         uuid = sb->set_uuid;
2300         printk(KERN_INFO
2301                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2302                "md:    Name: \"%s\" CT:%llu\n",
2303                 le32_to_cpu(sb->major_version),
2304                 le32_to_cpu(sb->feature_map),
2305                 uuid,
2306                 sb->set_name,
2307                 (unsigned long long)le64_to_cpu(sb->ctime)
2308                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2309
2310         uuid = sb->device_uuid;
2311         printk(KERN_INFO
2312                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2313                         " RO:%llu\n"
2314                "md:     Dev:%08x UUID: %pU\n"
2315                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2316                "md:         (MaxDev:%u) \n",
2317                 le32_to_cpu(sb->level),
2318                 (unsigned long long)le64_to_cpu(sb->size),
2319                 le32_to_cpu(sb->raid_disks),
2320                 le32_to_cpu(sb->layout),
2321                 le32_to_cpu(sb->chunksize),
2322                 (unsigned long long)le64_to_cpu(sb->data_offset),
2323                 (unsigned long long)le64_to_cpu(sb->data_size),
2324                 (unsigned long long)le64_to_cpu(sb->super_offset),
2325                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2326                 le32_to_cpu(sb->dev_number),
2327                 uuid,
2328                 sb->devflags,
2329                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2330                 (unsigned long long)le64_to_cpu(sb->events),
2331                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2332                 le32_to_cpu(sb->sb_csum),
2333                 le32_to_cpu(sb->max_dev)
2334                 );
2335 }
2336
2337 static void print_rdev(struct md_rdev *rdev, int major_version)
2338 {
2339         char b[BDEVNAME_SIZE];
2340         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2341                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2342                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2343                 rdev->desc_nr);
2344         if (rdev->sb_loaded) {
2345                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2346                 switch (major_version) {
2347                 case 0:
2348                         print_sb_90(page_address(rdev->sb_page));
2349                         break;
2350                 case 1:
2351                         print_sb_1(page_address(rdev->sb_page));
2352                         break;
2353                 }
2354         } else
2355                 printk(KERN_INFO "md: no rdev superblock!\n");
2356 }
2357
2358 static void md_print_devices(void)
2359 {
2360         struct list_head *tmp;
2361         struct md_rdev *rdev;
2362         struct mddev *mddev;
2363         char b[BDEVNAME_SIZE];
2364
2365         printk("\n");
2366         printk("md:     **********************************\n");
2367         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2368         printk("md:     **********************************\n");
2369         for_each_mddev(mddev, tmp) {
2370
2371                 if (mddev->bitmap)
2372                         bitmap_print_sb(mddev->bitmap);
2373                 else
2374                         printk("%s: ", mdname(mddev));
2375                 rdev_for_each(rdev, mddev)
2376                         printk("<%s>", bdevname(rdev->bdev,b));
2377                 printk("\n");
2378
2379                 rdev_for_each(rdev, mddev)
2380                         print_rdev(rdev, mddev->major_version);
2381         }
2382         printk("md:     **********************************\n");
2383         printk("\n");
2384 }
2385
2386
2387 static void sync_sbs(struct mddev * mddev, int nospares)
2388 {
2389         /* Update each superblock (in-memory image), but
2390          * if we are allowed to, skip spares which already
2391          * have the right event counter, or have one earlier
2392          * (which would mean they aren't being marked as dirty
2393          * with the rest of the array)
2394          */
2395         struct md_rdev *rdev;
2396         rdev_for_each(rdev, mddev) {
2397                 if (rdev->sb_events == mddev->events ||
2398                     (nospares &&
2399                      rdev->raid_disk < 0 &&
2400                      rdev->sb_events+1 == mddev->events)) {
2401                         /* Don't update this superblock */
2402                         rdev->sb_loaded = 2;
2403                 } else {
2404                         sync_super(mddev, rdev);
2405                         rdev->sb_loaded = 1;
2406                 }
2407         }
2408 }
2409
2410 static void md_update_sb(struct mddev * mddev, int force_change)
2411 {
2412         struct md_rdev *rdev;
2413         int sync_req;
2414         int nospares = 0;
2415         int any_badblocks_changed = 0;
2416
2417         if (mddev->ro) {
2418                 if (force_change)
2419                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2420                 return;
2421         }
2422 repeat:
2423         /* First make sure individual recovery_offsets are correct */
2424         rdev_for_each(rdev, mddev) {
2425                 if (rdev->raid_disk >= 0 &&
2426                     mddev->delta_disks >= 0 &&
2427                     !test_bit(In_sync, &rdev->flags) &&
2428                     mddev->curr_resync_completed > rdev->recovery_offset)
2429                                 rdev->recovery_offset = mddev->curr_resync_completed;
2430
2431         }       
2432         if (!mddev->persistent) {
2433                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2434                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2435                 if (!mddev->external) {
2436                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2437                         rdev_for_each(rdev, mddev) {
2438                                 if (rdev->badblocks.changed) {
2439                                         rdev->badblocks.changed = 0;
2440                                         md_ack_all_badblocks(&rdev->badblocks);
2441                                         md_error(mddev, rdev);
2442                                 }
2443                                 clear_bit(Blocked, &rdev->flags);
2444                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2445                                 wake_up(&rdev->blocked_wait);
2446                         }
2447                 }
2448                 wake_up(&mddev->sb_wait);
2449                 return;
2450         }
2451
2452         spin_lock_irq(&mddev->write_lock);
2453
2454         mddev->utime = get_seconds();
2455
2456         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2457                 force_change = 1;
2458         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2459                 /* just a clean<-> dirty transition, possibly leave spares alone,
2460                  * though if events isn't the right even/odd, we will have to do
2461                  * spares after all
2462                  */
2463                 nospares = 1;
2464         if (force_change)
2465                 nospares = 0;
2466         if (mddev->degraded)
2467                 /* If the array is degraded, then skipping spares is both
2468                  * dangerous and fairly pointless.
2469                  * Dangerous because a device that was removed from the array
2470                  * might have a event_count that still looks up-to-date,
2471                  * so it can be re-added without a resync.
2472                  * Pointless because if there are any spares to skip,
2473                  * then a recovery will happen and soon that array won't
2474                  * be degraded any more and the spare can go back to sleep then.
2475                  */
2476                 nospares = 0;
2477
2478         sync_req = mddev->in_sync;
2479
2480         /* If this is just a dirty<->clean transition, and the array is clean
2481          * and 'events' is odd, we can roll back to the previous clean state */
2482         if (nospares
2483             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2484             && mddev->can_decrease_events
2485             && mddev->events != 1) {
2486                 mddev->events--;
2487                 mddev->can_decrease_events = 0;
2488         } else {
2489                 /* otherwise we have to go forward and ... */
2490                 mddev->events ++;
2491                 mddev->can_decrease_events = nospares;
2492         }
2493
2494         if (!mddev->events) {
2495                 /*
2496                  * oops, this 64-bit counter should never wrap.
2497                  * Either we are in around ~1 trillion A.C., assuming
2498                  * 1 reboot per second, or we have a bug:
2499                  */
2500                 MD_BUG();
2501                 mddev->events --;
2502         }
2503
2504         rdev_for_each(rdev, mddev) {
2505                 if (rdev->badblocks.changed)
2506                         any_badblocks_changed++;
2507                 if (test_bit(Faulty, &rdev->flags))
2508                         set_bit(FaultRecorded, &rdev->flags);
2509         }
2510
2511         sync_sbs(mddev, nospares);
2512         spin_unlock_irq(&mddev->write_lock);
2513
2514         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2515                  mdname(mddev), mddev->in_sync);
2516
2517         bitmap_update_sb(mddev->bitmap);
2518         rdev_for_each(rdev, mddev) {
2519                 char b[BDEVNAME_SIZE];
2520
2521                 if (rdev->sb_loaded != 1)
2522                         continue; /* no noise on spare devices */
2523
2524                 if (!test_bit(Faulty, &rdev->flags) &&
2525                     rdev->saved_raid_disk == -1) {
2526                         md_super_write(mddev,rdev,
2527                                        rdev->sb_start, rdev->sb_size,
2528                                        rdev->sb_page);
2529                         pr_debug("md: (write) %s's sb offset: %llu\n",
2530                                  bdevname(rdev->bdev, b),
2531                                  (unsigned long long)rdev->sb_start);
2532                         rdev->sb_events = mddev->events;
2533                         if (rdev->badblocks.size) {
2534                                 md_super_write(mddev, rdev,
2535                                                rdev->badblocks.sector,
2536                                                rdev->badblocks.size << 9,
2537                                                rdev->bb_page);
2538                                 rdev->badblocks.size = 0;
2539                         }
2540
2541                 } else if (test_bit(Faulty, &rdev->flags))
2542                         pr_debug("md: %s (skipping faulty)\n",
2543                                  bdevname(rdev->bdev, b));
2544                 else
2545                         pr_debug("(skipping incremental s/r ");
2546
2547                 if (mddev->level == LEVEL_MULTIPATH)
2548                         /* only need to write one superblock... */
2549                         break;
2550         }
2551         md_super_wait(mddev);
2552         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2553
2554         spin_lock_irq(&mddev->write_lock);
2555         if (mddev->in_sync != sync_req ||
2556             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2557                 /* have to write it out again */
2558                 spin_unlock_irq(&mddev->write_lock);
2559                 goto repeat;
2560         }
2561         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2562         spin_unlock_irq(&mddev->write_lock);
2563         wake_up(&mddev->sb_wait);
2564         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2565                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2566
2567         rdev_for_each(rdev, mddev) {
2568                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2569                         clear_bit(Blocked, &rdev->flags);
2570
2571                 if (any_badblocks_changed)
2572                         md_ack_all_badblocks(&rdev->badblocks);
2573                 clear_bit(BlockedBadBlocks, &rdev->flags);
2574                 wake_up(&rdev->blocked_wait);
2575         }
2576 }
2577
2578 /* words written to sysfs files may, or may not, be \n terminated.
2579  * We want to accept with case. For this we use cmd_match.
2580  */
2581 static int cmd_match(const char *cmd, const char *str)
2582 {
2583         /* See if cmd, written into a sysfs file, matches
2584          * str.  They must either be the same, or cmd can
2585          * have a trailing newline
2586          */
2587         while (*cmd && *str && *cmd == *str) {
2588                 cmd++;
2589                 str++;
2590         }
2591         if (*cmd == '\n')
2592                 cmd++;
2593         if (*str || *cmd)
2594                 return 0;
2595         return 1;
2596 }
2597
2598 struct rdev_sysfs_entry {
2599         struct attribute attr;
2600         ssize_t (*show)(struct md_rdev *, char *);
2601         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2602 };
2603
2604 static ssize_t
2605 state_show(struct md_rdev *rdev, char *page)
2606 {
2607         char *sep = "";
2608         size_t len = 0;
2609
2610         if (test_bit(Faulty, &rdev->flags) ||
2611             rdev->badblocks.unacked_exist) {
2612                 len+= sprintf(page+len, "%sfaulty",sep);
2613                 sep = ",";
2614         }
2615         if (test_bit(In_sync, &rdev->flags)) {
2616                 len += sprintf(page+len, "%sin_sync",sep);
2617                 sep = ",";
2618         }
2619         if (test_bit(WriteMostly, &rdev->flags)) {
2620                 len += sprintf(page+len, "%swrite_mostly",sep);
2621                 sep = ",";
2622         }
2623         if (test_bit(Blocked, &rdev->flags) ||
2624             (rdev->badblocks.unacked_exist
2625              && !test_bit(Faulty, &rdev->flags))) {
2626                 len += sprintf(page+len, "%sblocked", sep);
2627                 sep = ",";
2628         }
2629         if (!test_bit(Faulty, &rdev->flags) &&
2630             !test_bit(In_sync, &rdev->flags)) {
2631                 len += sprintf(page+len, "%sspare", sep);
2632                 sep = ",";
2633         }
2634         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2635                 len += sprintf(page+len, "%swrite_error", sep);
2636                 sep = ",";
2637         }
2638         if (test_bit(WantReplacement, &rdev->flags)) {
2639                 len += sprintf(page+len, "%swant_replacement", sep);
2640                 sep = ",";
2641         }
2642         if (test_bit(Replacement, &rdev->flags)) {
2643                 len += sprintf(page+len, "%sreplacement", sep);
2644                 sep = ",";
2645         }
2646
2647         return len+sprintf(page+len, "\n");
2648 }
2649
2650 static ssize_t
2651 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2652 {
2653         /* can write
2654          *  faulty  - simulates an error
2655          *  remove  - disconnects the device
2656          *  writemostly - sets write_mostly
2657          *  -writemostly - clears write_mostly
2658          *  blocked - sets the Blocked flags
2659          *  -blocked - clears the Blocked and possibly simulates an error
2660          *  insync - sets Insync providing device isn't active
2661          *  write_error - sets WriteErrorSeen
2662          *  -write_error - clears WriteErrorSeen
2663          */
2664         int err = -EINVAL;
2665         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2666                 md_error(rdev->mddev, rdev);
2667                 if (test_bit(Faulty, &rdev->flags))
2668                         err = 0;
2669                 else
2670                         err = -EBUSY;
2671         } else if (cmd_match(buf, "remove")) {
2672                 if (rdev->raid_disk >= 0)
2673                         err = -EBUSY;
2674                 else {
2675                         struct mddev *mddev = rdev->mddev;
2676                         kick_rdev_from_array(rdev);
2677                         if (mddev->pers)
2678                                 md_update_sb(mddev, 1);
2679                         md_new_event(mddev);
2680                         err = 0;
2681                 }
2682         } else if (cmd_match(buf, "writemostly")) {
2683                 set_bit(WriteMostly, &rdev->flags);
2684                 err = 0;
2685         } else if (cmd_match(buf, "-writemostly")) {
2686                 clear_bit(WriteMostly, &rdev->flags);
2687                 err = 0;
2688         } else if (cmd_match(buf, "blocked")) {
2689                 set_bit(Blocked, &rdev->flags);
2690                 err = 0;
2691         } else if (cmd_match(buf, "-blocked")) {
2692                 if (!test_bit(Faulty, &rdev->flags) &&
2693                     rdev->badblocks.unacked_exist) {
2694                         /* metadata handler doesn't understand badblocks,
2695                          * so we need to fail the device
2696                          */
2697                         md_error(rdev->mddev, rdev);
2698                 }
2699                 clear_bit(Blocked, &rdev->flags);
2700                 clear_bit(BlockedBadBlocks, &rdev->flags);
2701                 wake_up(&rdev->blocked_wait);
2702                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2703                 md_wakeup_thread(rdev->mddev->thread);
2704
2705                 err = 0;
2706         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2707                 set_bit(In_sync, &rdev->flags);
2708                 err = 0;
2709         } else if (cmd_match(buf, "write_error")) {
2710                 set_bit(WriteErrorSeen, &rdev->flags);
2711                 err = 0;
2712         } else if (cmd_match(buf, "-write_error")) {
2713                 clear_bit(WriteErrorSeen, &rdev->flags);
2714                 err = 0;
2715         } else if (cmd_match(buf, "want_replacement")) {
2716                 /* Any non-spare device that is not a replacement can
2717                  * become want_replacement at any time, but we then need to
2718                  * check if recovery is needed.
2719                  */
2720                 if (rdev->raid_disk >= 0 &&
2721                     !test_bit(Replacement, &rdev->flags))
2722                         set_bit(WantReplacement, &rdev->flags);
2723                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2724                 md_wakeup_thread(rdev->mddev->thread);
2725                 err = 0;
2726         } else if (cmd_match(buf, "-want_replacement")) {
2727                 /* Clearing 'want_replacement' is always allowed.
2728                  * Once replacements starts it is too late though.
2729                  */
2730                 err = 0;
2731                 clear_bit(WantReplacement, &rdev->flags);
2732         } else if (cmd_match(buf, "replacement")) {
2733                 /* Can only set a device as a replacement when array has not
2734                  * yet been started.  Once running, replacement is automatic
2735                  * from spares, or by assigning 'slot'.
2736                  */
2737                 if (rdev->mddev->pers)
2738                         err = -EBUSY;
2739                 else {
2740                         set_bit(Replacement, &rdev->flags);
2741                         err = 0;
2742                 }
2743         } else if (cmd_match(buf, "-replacement")) {
2744                 /* Similarly, can only clear Replacement before start */
2745                 if (rdev->mddev->pers)
2746                         err = -EBUSY;
2747                 else {
2748                         clear_bit(Replacement, &rdev->flags);
2749                         err = 0;
2750                 }
2751         }
2752         if (!err)
2753                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2754         return err ? err : len;
2755 }
2756 static struct rdev_sysfs_entry rdev_state =
2757 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2758
2759 static ssize_t
2760 errors_show(struct md_rdev *rdev, char *page)
2761 {
2762         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2763 }
2764
2765 static ssize_t
2766 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2767 {
2768         char *e;
2769         unsigned long n = simple_strtoul(buf, &e, 10);
2770         if (*buf && (*e == 0 || *e == '\n')) {
2771                 atomic_set(&rdev->corrected_errors, n);
2772                 return len;
2773         }
2774         return -EINVAL;
2775 }
2776 static struct rdev_sysfs_entry rdev_errors =
2777 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2778
2779 static ssize_t
2780 slot_show(struct md_rdev *rdev, char *page)
2781 {
2782         if (rdev->raid_disk < 0)
2783                 return sprintf(page, "none\n");
2784         else
2785                 return sprintf(page, "%d\n", rdev->raid_disk);
2786 }
2787
2788 static ssize_t
2789 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2790 {
2791         char *e;
2792         int err;
2793         int slot = simple_strtoul(buf, &e, 10);
2794         if (strncmp(buf, "none", 4)==0)
2795                 slot = -1;
2796         else if (e==buf || (*e && *e!= '\n'))
2797                 return -EINVAL;
2798         if (rdev->mddev->pers && slot == -1) {
2799                 /* Setting 'slot' on an active array requires also
2800                  * updating the 'rd%d' link, and communicating
2801                  * with the personality with ->hot_*_disk.
2802                  * For now we only support removing
2803                  * failed/spare devices.  This normally happens automatically,
2804                  * but not when the metadata is externally managed.
2805                  */
2806                 if (rdev->raid_disk == -1)
2807                         return -EEXIST;
2808                 /* personality does all needed checks */
2809                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2810                         return -EINVAL;
2811                 clear_bit(Blocked, &rdev->flags);
2812                 remove_and_add_spares(rdev->mddev, rdev);
2813                 if (rdev->raid_disk >= 0)
2814                         return -EBUSY;
2815                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2816                 md_wakeup_thread(rdev->mddev->thread);
2817         } else if (rdev->mddev->pers) {
2818                 /* Activating a spare .. or possibly reactivating
2819                  * if we ever get bitmaps working here.
2820                  */
2821
2822                 if (rdev->raid_disk != -1)
2823                         return -EBUSY;
2824
2825                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2826                         return -EBUSY;
2827
2828                 if (rdev->mddev->pers->hot_add_disk == NULL)
2829                         return -EINVAL;
2830
2831                 if (slot >= rdev->mddev->raid_disks &&
2832                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2833                         return -ENOSPC;
2834
2835                 rdev->raid_disk = slot;
2836                 if (test_bit(In_sync, &rdev->flags))
2837                         rdev->saved_raid_disk = slot;
2838                 else
2839                         rdev->saved_raid_disk = -1;
2840                 clear_bit(In_sync, &rdev->flags);
2841                 err = rdev->mddev->pers->
2842                         hot_add_disk(rdev->mddev, rdev);
2843                 if (err) {
2844                         rdev->raid_disk = -1;
2845                         return err;
2846                 } else
2847                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2848                 if (sysfs_link_rdev(rdev->mddev, rdev))
2849                         /* failure here is OK */;
2850                 /* don't wakeup anyone, leave that to userspace. */
2851         } else {
2852                 if (slot >= rdev->mddev->raid_disks &&
2853                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2854                         return -ENOSPC;
2855                 rdev->raid_disk = slot;
2856                 /* assume it is working */
2857                 clear_bit(Faulty, &rdev->flags);
2858                 clear_bit(WriteMostly, &rdev->flags);
2859                 set_bit(In_sync, &rdev->flags);
2860                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2861         }
2862         return len;
2863 }
2864
2865
2866 static struct rdev_sysfs_entry rdev_slot =
2867 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2868
2869 static ssize_t
2870 offset_show(struct md_rdev *rdev, char *page)
2871 {
2872         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2873 }
2874
2875 static ssize_t
2876 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2877 {
2878         unsigned long long offset;
2879         if (kstrtoull(buf, 10, &offset) < 0)
2880                 return -EINVAL;
2881         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2882                 return -EBUSY;
2883         if (rdev->sectors && rdev->mddev->external)
2884                 /* Must set offset before size, so overlap checks
2885                  * can be sane */
2886                 return -EBUSY;
2887         rdev->data_offset = offset;
2888         rdev->new_data_offset = offset;
2889         return len;
2890 }
2891
2892 static struct rdev_sysfs_entry rdev_offset =
2893 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2894
2895 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2896 {
2897         return sprintf(page, "%llu\n",
2898                        (unsigned long long)rdev->new_data_offset);
2899 }
2900
2901 static ssize_t new_offset_store(struct md_rdev *rdev,
2902                                 const char *buf, size_t len)
2903 {
2904         unsigned long long new_offset;
2905         struct mddev *mddev = rdev->mddev;
2906
2907         if (kstrtoull(buf, 10, &new_offset) < 0)
2908                 return -EINVAL;
2909
2910         if (mddev->sync_thread)
2911                 return -EBUSY;
2912         if (new_offset == rdev->data_offset)
2913                 /* reset is always permitted */
2914                 ;
2915         else if (new_offset > rdev->data_offset) {
2916                 /* must not push array size beyond rdev_sectors */
2917                 if (new_offset - rdev->data_offset
2918                     + mddev->dev_sectors > rdev->sectors)
2919                                 return -E2BIG;
2920         }
2921         /* Metadata worries about other space details. */
2922
2923         /* decreasing the offset is inconsistent with a backwards
2924          * reshape.
2925          */
2926         if (new_offset < rdev->data_offset &&
2927             mddev->reshape_backwards)
2928                 return -EINVAL;
2929         /* Increasing offset is inconsistent with forwards
2930          * reshape.  reshape_direction should be set to
2931          * 'backwards' first.
2932          */
2933         if (new_offset > rdev->data_offset &&
2934             !mddev->reshape_backwards)
2935                 return -EINVAL;
2936
2937         if (mddev->pers && mddev->persistent &&
2938             !super_types[mddev->major_version]
2939             .allow_new_offset(rdev, new_offset))
2940                 return -E2BIG;
2941         rdev->new_data_offset = new_offset;
2942         if (new_offset > rdev->data_offset)
2943                 mddev->reshape_backwards = 1;
2944         else if (new_offset < rdev->data_offset)
2945                 mddev->reshape_backwards = 0;
2946
2947         return len;
2948 }
2949 static struct rdev_sysfs_entry rdev_new_offset =
2950 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2951
2952 static ssize_t
2953 rdev_size_show(struct md_rdev *rdev, char *page)
2954 {
2955         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2956 }
2957
2958 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2959 {
2960         /* check if two start/length pairs overlap */
2961         if (s1+l1 <= s2)
2962                 return 0;
2963         if (s2+l2 <= s1)
2964                 return 0;
2965         return 1;
2966 }
2967
2968 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2969 {
2970         unsigned long long blocks;
2971         sector_t new;
2972
2973         if (kstrtoull(buf, 10, &blocks) < 0)
2974                 return -EINVAL;
2975
2976         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2977                 return -EINVAL; /* sector conversion overflow */
2978
2979         new = blocks * 2;
2980         if (new != blocks * 2)
2981                 return -EINVAL; /* unsigned long long to sector_t overflow */
2982
2983         *sectors = new;
2984         return 0;
2985 }
2986
2987 static ssize_t
2988 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2989 {
2990         struct mddev *my_mddev = rdev->mddev;
2991         sector_t oldsectors = rdev->sectors;
2992         sector_t sectors;
2993
2994         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2995                 return -EINVAL;
2996         if (rdev->data_offset != rdev->new_data_offset)
2997                 return -EINVAL; /* too confusing */
2998         if (my_mddev->pers && rdev->raid_disk >= 0) {
2999                 if (my_mddev->persistent) {
3000                         sectors = super_types[my_mddev->major_version].
3001                                 rdev_size_change(rdev, sectors);
3002                         if (!sectors)
3003                                 return -EBUSY;
3004                 } else if (!sectors)
3005                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3006                                 rdev->data_offset;
3007                 if (!my_mddev->pers->resize)
3008                         /* Cannot change size for RAID0 or Linear etc */
3009                         return -EINVAL;
3010         }
3011         if (sectors < my_mddev->dev_sectors)
3012                 return -EINVAL; /* component must fit device */
3013
3014         rdev->sectors = sectors;
3015         if (sectors > oldsectors && my_mddev->external) {
3016                 /* need to check that all other rdevs with the same ->bdev
3017                  * do not overlap.  We need to unlock the mddev to avoid
3018                  * a deadlock.  We have already changed rdev->sectors, and if
3019                  * we have to change it back, we will have the lock again.
3020                  */
3021                 struct mddev *mddev;
3022                 int overlap = 0;
3023                 struct list_head *tmp;
3024
3025                 mddev_unlock(my_mddev);
3026                 for_each_mddev(mddev, tmp) {
3027                         struct md_rdev *rdev2;
3028
3029                         mddev_lock_nointr(mddev);
3030                         rdev_for_each(rdev2, mddev)
3031                                 if (rdev->bdev == rdev2->bdev &&
3032                                     rdev != rdev2 &&
3033                                     overlaps(rdev->data_offset, rdev->sectors,
3034                                              rdev2->data_offset,
3035                                              rdev2->sectors)) {
3036                                         overlap = 1;
3037                                         break;
3038                                 }
3039                         mddev_unlock(mddev);
3040                         if (overlap) {
3041                                 mddev_put(mddev);
3042                                 break;
3043                         }
3044                 }
3045                 mddev_lock_nointr(my_mddev);
3046                 if (overlap) {
3047                         /* Someone else could have slipped in a size
3048                          * change here, but doing so is just silly.
3049                          * We put oldsectors back because we *know* it is
3050                          * safe, and trust userspace not to race with
3051                          * itself
3052                          */
3053                         rdev->sectors = oldsectors;
3054                         return -EBUSY;
3055                 }
3056         }
3057         return len;
3058 }
3059
3060 static struct rdev_sysfs_entry rdev_size =
3061 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3062
3063
3064 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3065 {
3066         unsigned long long recovery_start = rdev->recovery_offset;
3067
3068         if (test_bit(In_sync, &rdev->flags) ||
3069             recovery_start == MaxSector)
3070                 return sprintf(page, "none\n");
3071
3072         return sprintf(page, "%llu\n", recovery_start);
3073 }
3074
3075 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3076 {
3077         unsigned long long recovery_start;
3078
3079         if (cmd_match(buf, "none"))
3080                 recovery_start = MaxSector;
3081         else if (kstrtoull(buf, 10, &recovery_start))
3082                 return -EINVAL;
3083
3084         if (rdev->mddev->pers &&
3085             rdev->raid_disk >= 0)
3086                 return -EBUSY;
3087
3088         rdev->recovery_offset = recovery_start;
3089         if (recovery_start == MaxSector)
3090                 set_bit(In_sync, &rdev->flags);
3091         else
3092                 clear_bit(In_sync, &rdev->flags);
3093         return len;
3094 }
3095
3096 static struct rdev_sysfs_entry rdev_recovery_start =
3097 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3098
3099
3100 static ssize_t
3101 badblocks_show(struct badblocks *bb, char *page, int unack);
3102 static ssize_t
3103 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3104
3105 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3106 {
3107         return badblocks_show(&rdev->badblocks, page, 0);
3108 }
3109 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3110 {
3111         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3112         /* Maybe that ack was all we needed */
3113         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3114                 wake_up(&rdev->blocked_wait);
3115         return rv;
3116 }
3117 static struct rdev_sysfs_entry rdev_bad_blocks =
3118 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3119
3120
3121 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3122 {
3123         return badblocks_show(&rdev->badblocks, page, 1);
3124 }
3125 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3126 {
3127         return badblocks_store(&rdev->badblocks, page, len, 1);
3128 }
3129 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3130 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3131
3132 static struct attribute *rdev_default_attrs[] = {
3133         &rdev_state.attr,
3134         &rdev_errors.attr,
3135         &rdev_slot.attr,
3136         &rdev_offset.attr,
3137         &rdev_new_offset.attr,
3138         &rdev_size.attr,
3139         &rdev_recovery_start.attr,
3140         &rdev_bad_blocks.attr,
3141         &rdev_unack_bad_blocks.attr,
3142         NULL,
3143 };
3144 static ssize_t
3145 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3146 {
3147         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3148         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3149         struct mddev *mddev = rdev->mddev;
3150         ssize_t rv;
3151
3152         if (!entry->show)
3153                 return -EIO;
3154
3155         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3156         if (!rv) {
3157                 if (rdev->mddev == NULL)
3158                         rv = -EBUSY;
3159                 else
3160                         rv = entry->show(rdev, page);
3161                 mddev_unlock(mddev);
3162         }
3163         return rv;
3164 }
3165
3166 static ssize_t
3167 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3168               const char *page, size_t length)
3169 {
3170         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3171         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3172         ssize_t rv;
3173         struct mddev *mddev = rdev->mddev;
3174
3175         if (!entry->store)
3176                 return -EIO;
3177         if (!capable(CAP_SYS_ADMIN))
3178                 return -EACCES;
3179         rv = mddev ? mddev_lock(mddev): -EBUSY;
3180         if (!rv) {
3181                 if (rdev->mddev == NULL)
3182                         rv = -EBUSY;
3183                 else
3184                         rv = entry->store(rdev, page, length);
3185                 mddev_unlock(mddev);
3186         }
3187         return rv;
3188 }
3189
3190 static void rdev_free(struct kobject *ko)
3191 {
3192         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3193         kfree(rdev);
3194 }
3195 static const struct sysfs_ops rdev_sysfs_ops = {
3196         .show           = rdev_attr_show,
3197         .store          = rdev_attr_store,
3198 };
3199 static struct kobj_type rdev_ktype = {
3200         .release        = rdev_free,
3201         .sysfs_ops      = &rdev_sysfs_ops,
3202         .default_attrs  = rdev_default_attrs,
3203 };
3204
3205 int md_rdev_init(struct md_rdev *rdev)
3206 {
3207         rdev->desc_nr = -1;
3208         rdev->saved_raid_disk = -1;
3209         rdev->raid_disk = -1;
3210         rdev->flags = 0;
3211         rdev->data_offset = 0;
3212         rdev->new_data_offset = 0;
3213         rdev->sb_events = 0;
3214         rdev->last_read_error.tv_sec  = 0;
3215         rdev->last_read_error.tv_nsec = 0;
3216         rdev->sb_loaded = 0;
3217         rdev->bb_page = NULL;
3218         atomic_set(&rdev->nr_pending, 0);
3219         atomic_set(&rdev->read_errors, 0);
3220         atomic_set(&rdev->corrected_errors, 0);
3221
3222         INIT_LIST_HEAD(&rdev->same_set);
3223         init_waitqueue_head(&rdev->blocked_wait);
3224
3225         /* Add space to store bad block list.
3226          * This reserves the space even on arrays where it cannot
3227          * be used - I wonder if that matters
3228          */
3229         rdev->badblocks.count = 0;
3230         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3231         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3232         seqlock_init(&rdev->badblocks.lock);
3233         if (rdev->badblocks.page == NULL)
3234                 return -ENOMEM;
3235
3236         return 0;
3237 }
3238 EXPORT_SYMBOL_GPL(md_rdev_init);
3239 /*
3240  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3241  *
3242  * mark the device faulty if:
3243  *
3244  *   - the device is nonexistent (zero size)
3245  *   - the device has no valid superblock
3246  *
3247  * a faulty rdev _never_ has rdev->sb set.
3248  */
3249 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3250 {
3251         char b[BDEVNAME_SIZE];
3252         int err;
3253         struct md_rdev *rdev;
3254         sector_t size;
3255
3256         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3257         if (!rdev) {
3258                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3259                 return ERR_PTR(-ENOMEM);
3260         }
3261
3262         err = md_rdev_init(rdev);
3263         if (err)
3264                 goto abort_free;
3265         err = alloc_disk_sb(rdev);
3266         if (err)
3267                 goto abort_free;
3268
3269         err = lock_rdev(rdev, newdev, super_format == -2);
3270         if (err)
3271                 goto abort_free;
3272
3273         kobject_init(&rdev->kobj, &rdev_ktype);
3274
3275         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3276         if (!size) {
3277                 printk(KERN_WARNING 
3278                         "md: %s has zero or unknown size, marking faulty!\n",
3279                         bdevname(rdev->bdev,b));
3280                 err = -EINVAL;
3281                 goto abort_free;
3282         }
3283
3284         if (super_format >= 0) {
3285                 err = super_types[super_format].
3286                         load_super(rdev, NULL, super_minor);
3287                 if (err == -EINVAL) {
3288                         printk(KERN_WARNING
3289                                 "md: %s does not have a valid v%d.%d "
3290                                "superblock, not importing!\n",
3291                                 bdevname(rdev->bdev,b),
3292                                super_format, super_minor);
3293                         goto abort_free;
3294                 }
3295                 if (err < 0) {
3296                         printk(KERN_WARNING 
3297                                 "md: could not read %s's sb, not importing!\n",
3298                                 bdevname(rdev->bdev,b));
3299                         goto abort_free;
3300                 }
3301         }
3302
3303         return rdev;
3304
3305 abort_free:
3306         if (rdev->bdev)
3307                 unlock_rdev(rdev);
3308         md_rdev_clear(rdev);
3309         kfree(rdev);
3310         return ERR_PTR(err);
3311 }
3312
3313 /*
3314  * Check a full RAID array for plausibility
3315  */
3316
3317
3318 static void analyze_sbs(struct mddev * mddev)
3319 {
3320         int i;
3321         struct md_rdev *rdev, *freshest, *tmp;
3322         char b[BDEVNAME_SIZE];
3323
3324         freshest = NULL;
3325         rdev_for_each_safe(rdev, tmp, mddev)
3326                 switch (super_types[mddev->major_version].
3327                         load_super(rdev, freshest, mddev->minor_version)) {
3328                 case 1:
3329                         freshest = rdev;
3330                         break;
3331                 case 0:
3332                         break;
3333                 default:
3334                         printk( KERN_ERR \
3335                                 "md: fatal superblock inconsistency in %s"
3336                                 " -- removing from array\n", 
3337                                 bdevname(rdev->bdev,b));
3338                         kick_rdev_from_array(rdev);
3339                 }
3340
3341
3342         super_types[mddev->major_version].
3343                 validate_super(mddev, freshest);
3344
3345         i = 0;
3346         rdev_for_each_safe(rdev, tmp, mddev) {
3347                 if (mddev->max_disks &&
3348                     (rdev->desc_nr >= mddev->max_disks ||
3349                      i > mddev->max_disks)) {
3350                         printk(KERN_WARNING
3351                                "md: %s: %s: only %d devices permitted\n",
3352                                mdname(mddev), bdevname(rdev->bdev, b),
3353                                mddev->max_disks);
3354                         kick_rdev_from_array(rdev);
3355                         continue;
3356                 }
3357                 if (rdev != freshest)
3358                         if (super_types[mddev->major_version].
3359                             validate_super(mddev, rdev)) {
3360                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3361                                         " from array!\n",
3362                                         bdevname(rdev->bdev,b));
3363                                 kick_rdev_from_array(rdev);
3364                                 continue;
3365                         }
3366                 if (mddev->level == LEVEL_MULTIPATH) {
3367                         rdev->desc_nr = i++;
3368                         rdev->raid_disk = rdev->desc_nr;
3369                         set_bit(In_sync, &rdev->flags);
3370                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3371                         rdev->raid_disk = -1;
3372                         clear_bit(In_sync, &rdev->flags);
3373                 }
3374         }
3375 }
3376
3377 /* Read a fixed-point number.
3378  * Numbers in sysfs attributes should be in "standard" units where
3379  * possible, so time should be in seconds.
3380  * However we internally use a a much smaller unit such as 
3381  * milliseconds or jiffies.
3382  * This function takes a decimal number with a possible fractional
3383  * component, and produces an integer which is the result of
3384  * multiplying that number by 10^'scale'.
3385  * all without any floating-point arithmetic.
3386  */
3387 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3388 {
3389         unsigned long result = 0;
3390         long decimals = -1;
3391         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3392                 if (*cp == '.')
3393                         decimals = 0;
3394                 else if (decimals < scale) {
3395                         unsigned int value;
3396                         value = *cp - '0';
3397                         result = result * 10 + value;
3398                         if (decimals >= 0)
3399                                 decimals++;
3400                 }
3401                 cp++;
3402         }
3403         if (*cp == '\n')
3404                 cp++;
3405         if (*cp)
3406                 return -EINVAL;
3407         if (decimals < 0)
3408                 decimals = 0;
3409         while (decimals < scale) {
3410                 result *= 10;
3411                 decimals ++;
3412         }
3413         *res = result;
3414         return 0;
3415 }
3416
3417
3418 static void md_safemode_timeout(unsigned long data);
3419
3420 static ssize_t
3421 safe_delay_show(struct mddev *mddev, char *page)
3422 {
3423         int msec = (mddev->safemode_delay*1000)/HZ;
3424         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3425 }
3426 static ssize_t
3427 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3428 {
3429         unsigned long msec;
3430
3431         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3432                 return -EINVAL;
3433         if (msec == 0)
3434                 mddev->safemode_delay = 0;
3435         else {
3436                 unsigned long old_delay = mddev->safemode_delay;
3437                 mddev->safemode_delay = (msec*HZ)/1000;
3438                 if (mddev->safemode_delay == 0)
3439                         mddev->safemode_delay = 1;
3440                 if (mddev->safemode_delay < old_delay || old_delay == 0)
3441                         md_safemode_timeout((unsigned long)mddev);
3442         }
3443         return len;
3444 }
3445 static struct md_sysfs_entry md_safe_delay =
3446 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3447
3448 static ssize_t
3449 level_show(struct mddev *mddev, char *page)
3450 {
3451         struct md_personality *p = mddev->pers;
3452         if (p)
3453                 return sprintf(page, "%s\n", p->name);
3454         else if (mddev->clevel[0])
3455                 return sprintf(page, "%s\n", mddev->clevel);
3456         else if (mddev->level != LEVEL_NONE)
3457                 return sprintf(page, "%d\n", mddev->level);
3458         else
3459                 return 0;
3460 }
3461
3462 static ssize_t
3463 level_store(struct mddev *mddev, const char *buf, size_t len)
3464 {
3465         char clevel[16];
3466         ssize_t rv = len;
3467         struct md_personality *pers;
3468         long level;
3469         void *priv;
3470         struct md_rdev *rdev;
3471
3472         if (mddev->pers == NULL) {
3473                 if (len == 0)
3474                         return 0;
3475                 if (len >= sizeof(mddev->clevel))
3476                         return -ENOSPC;
3477                 strncpy(mddev->clevel, buf, len);
3478                 if (mddev->clevel[len-1] == '\n')
3479                         len--;
3480                 mddev->clevel[len] = 0;
3481                 mddev->level = LEVEL_NONE;
3482                 return rv;
3483         }
3484
3485         /* request to change the personality.  Need to ensure:
3486          *  - array is not engaged in resync/recovery/reshape
3487          *  - old personality can be suspended
3488          *  - new personality will access other array.
3489          */
3490
3491         if (mddev->sync_thread ||
3492             mddev->reshape_position != MaxSector ||
3493             mddev->sysfs_active)
3494                 return -EBUSY;
3495
3496         if (!mddev->pers->quiesce) {
3497                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3498                        mdname(mddev), mddev->pers->name);
3499                 return -EINVAL;
3500         }
3501
3502         /* Now find the new personality */
3503         if (len == 0 || len >= sizeof(clevel))
3504                 return -EINVAL;
3505         strncpy(clevel, buf, len);
3506         if (clevel[len-1] == '\n')
3507                 len--;
3508         clevel[len] = 0;
3509         if (kstrtol(clevel, 10, &level))
3510                 level = LEVEL_NONE;
3511
3512         if (request_module("md-%s", clevel) != 0)
3513                 request_module("md-level-%s", clevel);
3514         spin_lock(&pers_lock);
3515         pers = find_pers(level, clevel);
3516         if (!pers || !try_module_get(pers->owner)) {
3517                 spin_unlock(&pers_lock);
3518                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3519                 return -EINVAL;
3520         }
3521         spin_unlock(&pers_lock);
3522
3523         if (pers == mddev->pers) {
3524                 /* Nothing to do! */
3525                 module_put(pers->owner);
3526                 return rv;
3527         }
3528         if (!pers->takeover) {
3529                 module_put(pers->owner);
3530                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3531                        mdname(mddev), clevel);
3532                 return -EINVAL;
3533         }
3534
3535         rdev_for_each(rdev, mddev)
3536                 rdev->new_raid_disk = rdev->raid_disk;
3537
3538         /* ->takeover must set new_* and/or delta_disks
3539          * if it succeeds, and may set them when it fails.
3540          */
3541         priv = pers->takeover(mddev);
3542         if (IS_ERR(priv)) {
3543                 mddev->new_level = mddev->level;
3544                 mddev->new_layout = mddev->layout;
3545                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3546                 mddev->raid_disks -= mddev->delta_disks;
3547                 mddev->delta_disks = 0;
3548                 mddev->reshape_backwards = 0;
3549                 module_put(pers->owner);
3550                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3551                        mdname(mddev), clevel);
3552                 return PTR_ERR(priv);
3553         }
3554
3555         /* Looks like we have a winner */
3556         mddev_suspend(mddev);
3557         mddev->pers->stop(mddev);
3558         
3559         if (mddev->pers->sync_request == NULL &&
3560             pers->sync_request != NULL) {
3561                 /* need to add the md_redundancy_group */
3562                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3563                         printk(KERN_WARNING
3564                                "md: cannot register extra attributes for %s\n",
3565                                mdname(mddev));
3566                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3567         }               
3568         if (mddev->pers->sync_request != NULL &&
3569             pers->sync_request == NULL) {
3570                 /* need to remove the md_redundancy_group */
3571                 if (mddev->to_remove == NULL)
3572                         mddev->to_remove = &md_redundancy_group;
3573         }
3574
3575         if (mddev->pers->sync_request == NULL &&
3576             mddev->external) {
3577                 /* We are converting from a no-redundancy array
3578                  * to a redundancy array and metadata is managed
3579                  * externally so we need to be sure that writes
3580                  * won't block due to a need to transition
3581                  *      clean->dirty
3582                  * until external management is started.
3583                  */
3584                 mddev->in_sync = 0;
3585                 mddev->safemode_delay = 0;
3586                 mddev->safemode = 0;
3587         }
3588
3589         rdev_for_each(rdev, mddev) {
3590                 if (rdev->raid_disk < 0)
3591                         continue;
3592                 if (rdev->new_raid_disk >= mddev->raid_disks)
3593                         rdev->new_raid_disk = -1;
3594                 if (rdev->new_raid_disk == rdev->raid_disk)
3595                         continue;
3596                 sysfs_unlink_rdev(mddev, rdev);
3597         }
3598         rdev_for_each(rdev, mddev) {
3599                 if (rdev->raid_disk < 0)
3600                         continue;
3601                 if (rdev->new_raid_disk == rdev->raid_disk)
3602                         continue;
3603                 rdev->raid_disk = rdev->new_raid_disk;
3604                 if (rdev->raid_disk < 0)
3605                         clear_bit(In_sync, &rdev->flags);
3606                 else {
3607                         if (sysfs_link_rdev(mddev, rdev))
3608                                 printk(KERN_WARNING "md: cannot register rd%d"
3609                                        " for %s after level change\n",
3610                                        rdev->raid_disk, mdname(mddev));
3611                 }
3612         }
3613
3614         module_put(mddev->pers->owner);
3615         mddev->pers = pers;
3616         mddev->private = priv;
3617         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3618         mddev->level = mddev->new_level;
3619         mddev->layout = mddev->new_layout;
3620         mddev->chunk_sectors = mddev->new_chunk_sectors;
3621         mddev->delta_disks = 0;
3622         mddev->reshape_backwards = 0;
3623         mddev->degraded = 0;
3624         if (mddev->pers->sync_request == NULL) {
3625                 /* this is now an array without redundancy, so
3626                  * it must always be in_sync
3627                  */
3628                 mddev->in_sync = 1;
3629                 del_timer_sync(&mddev->safemode_timer);
3630         }
3631         blk_set_stacking_limits(&mddev->queue->limits);
3632         pers->run(mddev);
3633         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3634         mddev_resume(mddev);
3635         sysfs_notify(&mddev->kobj, NULL, "level");
3636         md_new_event(mddev);
3637         return rv;
3638 }
3639
3640 static struct md_sysfs_entry md_level =
3641 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3642
3643
3644 static ssize_t
3645 layout_show(struct mddev *mddev, char *page)
3646 {
3647         /* just a number, not meaningful for all levels */
3648         if (mddev->reshape_position != MaxSector &&
3649             mddev->layout != mddev->new_layout)
3650                 return sprintf(page, "%d (%d)\n",
3651                                mddev->new_layout, mddev->layout);
3652         return sprintf(page, "%d\n", mddev->layout);
3653 }
3654
3655 static ssize_t
3656 layout_store(struct mddev *mddev, const char *buf, size_t len)
3657 {
3658         char *e;
3659         unsigned long n = simple_strtoul(buf, &e, 10);
3660
3661         if (!*buf || (*e && *e != '\n'))
3662                 return -EINVAL;
3663
3664         if (mddev->pers) {
3665                 int err;
3666                 if (mddev->pers->check_reshape == NULL)
3667                         return -EBUSY;
3668                 mddev->new_layout = n;
3669                 err = mddev->pers->check_reshape(mddev);
3670                 if (err) {
3671                         mddev->new_layout = mddev->layout;
3672                         return err;
3673                 }
3674         } else {
3675                 mddev->new_layout = n;
3676                 if (mddev->reshape_position == MaxSector)
3677                         mddev->layout = n;
3678         }
3679         return len;
3680 }
3681 static struct md_sysfs_entry md_layout =
3682 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3683
3684
3685 static ssize_t
3686 raid_disks_show(struct mddev *mddev, char *page)
3687 {
3688         if (mddev->raid_disks == 0)
3689                 return 0;
3690         if (mddev->reshape_position != MaxSector &&
3691             mddev->delta_disks != 0)
3692                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3693                                mddev->raid_disks - mddev->delta_disks);
3694         return sprintf(page, "%d\n", mddev->raid_disks);
3695 }
3696
3697 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3698
3699 static ssize_t
3700 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3701 {
3702         char *e;
3703         int rv = 0;
3704         unsigned long n = simple_strtoul(buf, &e, 10);
3705
3706         if (!*buf || (*e && *e != '\n'))
3707                 return -EINVAL;
3708
3709         if (mddev->pers)
3710                 rv = update_raid_disks(mddev, n);
3711         else if (mddev->reshape_position != MaxSector) {
3712                 struct md_rdev *rdev;
3713                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3714
3715                 rdev_for_each(rdev, mddev) {
3716                         if (olddisks < n &&
3717                             rdev->data_offset < rdev->new_data_offset)
3718                                 return -EINVAL;
3719                         if (olddisks > n &&
3720                             rdev->data_offset > rdev->new_data_offset)
3721                                 return -EINVAL;
3722                 }
3723                 mddev->delta_disks = n - olddisks;
3724                 mddev->raid_disks = n;
3725                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3726         } else
3727                 mddev->raid_disks = n;
3728         return rv ? rv : len;
3729 }
3730 static struct md_sysfs_entry md_raid_disks =
3731 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3732
3733 static ssize_t
3734 chunk_size_show(struct mddev *mddev, char *page)
3735 {
3736         if (mddev->reshape_position != MaxSector &&
3737             mddev->chunk_sectors != mddev->new_chunk_sectors)
3738                 return sprintf(page, "%d (%d)\n",
3739                                mddev->new_chunk_sectors << 9,
3740                                mddev->chunk_sectors << 9);
3741         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3742 }
3743
3744 static ssize_t
3745 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3746 {
3747         char *e;
3748         unsigned long n = simple_strtoul(buf, &e, 10);
3749
3750         if (!*buf || (*e && *e != '\n'))
3751                 return -EINVAL;
3752
3753         if (mddev->pers) {
3754                 int err;
3755                 if (mddev->pers->check_reshape == NULL)
3756                         return -EBUSY;
3757                 mddev->new_chunk_sectors = n >> 9;
3758                 err = mddev->pers->check_reshape(mddev);
3759                 if (err) {
3760                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3761                         return err;
3762                 }
3763         } else {
3764                 mddev->new_chunk_sectors = n >> 9;
3765                 if (mddev->reshape_position == MaxSector)
3766                         mddev->chunk_sectors = n >> 9;
3767         }
3768         return len;
3769 }
3770 static struct md_sysfs_entry md_chunk_size =
3771 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3772
3773 static ssize_t
3774 resync_start_show(struct mddev *mddev, char *page)
3775 {
3776         if (mddev->recovery_cp == MaxSector)
3777                 return sprintf(page, "none\n");
3778         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3779 }
3780
3781 static ssize_t
3782 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3783 {
3784         char *e;
3785         unsigned long long n = simple_strtoull(buf, &e, 10);
3786
3787         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3788                 return -EBUSY;
3789         if (cmd_match(buf, "none"))
3790                 n = MaxSector;
3791         else if (!*buf || (*e && *e != '\n'))
3792                 return -EINVAL;
3793
3794         mddev->recovery_cp = n;
3795         if (mddev->pers)
3796                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3797         return len;
3798 }
3799 static struct md_sysfs_entry md_resync_start =
3800 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3801
3802 /*
3803  * The array state can be:
3804  *
3805  * clear
3806  *     No devices, no size, no level
3807  *     Equivalent to STOP_ARRAY ioctl
3808  * inactive
3809  *     May have some settings, but array is not active
3810  *        all IO results in error
3811  *     When written, doesn't tear down array, but just stops it
3812  * suspended (not supported yet)
3813  *     All IO requests will block. The array can be reconfigured.
3814  *     Writing this, if accepted, will block until array is quiescent
3815  * readonly
3816  *     no resync can happen.  no superblocks get written.
3817  *     write requests fail
3818  * read-auto
3819  *     like readonly, but behaves like 'clean' on a write request.
3820  *
3821  * clean - no pending writes, but otherwise active.
3822  *     When written to inactive array, starts without resync
3823  *     If a write request arrives then
3824  *       if metadata is known, mark 'dirty' and switch to 'active'.
3825  *       if not known, block and switch to write-pending
3826  *     If written to an active array that has pending writes, then fails.
3827  * active
3828  *     fully active: IO and resync can be happening.
3829  *     When written to inactive array, starts with resync
3830  *
3831  * write-pending
3832  *     clean, but writes are blocked waiting for 'active' to be written.
3833  *
3834  * active-idle
3835  *     like active, but no writes have been seen for a while (100msec).
3836  *
3837  */
3838 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3839                    write_pending, active_idle, bad_word};
3840 static char *array_states[] = {
3841         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3842         "write-pending", "active-idle", NULL };
3843
3844 static int match_word(const char *word, char **list)
3845 {
3846         int n;
3847         for (n=0; list[n]; n++)
3848                 if (cmd_match(word, list[n]))
3849                         break;
3850         return n;
3851 }
3852
3853 static ssize_t
3854 array_state_show(struct mddev *mddev, char *page)
3855 {
3856         enum array_state st = inactive;
3857
3858         if (mddev->pers)
3859                 switch(mddev->ro) {
3860                 case 1:
3861                         st = readonly;
3862                         break;
3863                 case 2:
3864                         st = read_auto;
3865                         break;
3866                 case 0:
3867                         if (mddev->in_sync)
3868                                 st = clean;
3869                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3870                                 st = write_pending;
3871                         else if (mddev->safemode)
3872                                 st = active_idle;
3873                         else
3874                                 st = active;
3875                 }
3876         else {
3877                 if (list_empty(&mddev->disks) &&
3878                     mddev->raid_disks == 0 &&
3879                     mddev->dev_sectors == 0)
3880                         st = clear;
3881                 else
3882                         st = inactive;
3883         }
3884         return sprintf(page, "%s\n", array_states[st]);
3885 }
3886
3887 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3888 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3889 static int do_md_run(struct mddev * mddev);
3890 static int restart_array(struct mddev *mddev);
3891
3892 static ssize_t
3893 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3894 {
3895         int err = -EINVAL;
3896         enum array_state st = match_word(buf, array_states);
3897         switch(st) {
3898         case bad_word:
3899                 break;
3900         case clear:
3901                 /* stopping an active array */
3902                 err = do_md_stop(mddev, 0, NULL);
3903                 break;
3904         case inactive:
3905                 /* stopping an active array */
3906                 if (mddev->pers)
3907                         err = do_md_stop(mddev, 2, NULL);
3908                 else
3909                         err = 0; /* already inactive */
3910                 break;
3911         case suspended:
3912                 break; /* not supported yet */
3913         case readonly:
3914                 if (mddev->pers)
3915                         err = md_set_readonly(mddev, NULL);
3916                 else {
3917                         mddev->ro = 1;
3918                         set_disk_ro(mddev->gendisk, 1);
3919                         err = do_md_run(mddev);
3920                 }
3921                 break;
3922         case read_auto:
3923                 if (mddev->pers) {
3924                         if (mddev->ro == 0)
3925                                 err = md_set_readonly(mddev, NULL);
3926                         else if (mddev->ro == 1)
3927                                 err = restart_array(mddev);
3928                         if (err == 0) {
3929                                 mddev->ro = 2;
3930                                 set_disk_ro(mddev->gendisk, 0);
3931                         }
3932                 } else {
3933                         mddev->ro = 2;
3934                         err = do_md_run(mddev);
3935                 }
3936                 break;
3937         case clean:
3938                 if (mddev->pers) {
3939                         restart_array(mddev);
3940                         spin_lock_irq(&mddev->write_lock);
3941                         if (atomic_read(&mddev->writes_pending) == 0) {
3942                                 if (mddev->in_sync == 0) {
3943                                         mddev->in_sync = 1;
3944                                         if (mddev->safemode == 1)
3945                                                 mddev->safemode = 0;
3946                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3947                                 }
3948                                 err = 0;
3949                         } else
3950                                 err = -EBUSY;
3951                         spin_unlock_irq(&mddev->write_lock);
3952                 } else
3953                         err = -EINVAL;
3954                 break;
3955         case active:
3956                 if (mddev->pers) {
3957                         restart_array(mddev);
3958                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3959                         wake_up(&mddev->sb_wait);
3960                         err = 0;
3961                 } else {
3962                         mddev->ro = 0;
3963                         set_disk_ro(mddev->gendisk, 0);
3964                         err = do_md_run(mddev);
3965                 }
3966                 break;
3967         case write_pending:
3968         case active_idle:
3969                 /* these cannot be set */
3970                 break;
3971         }
3972         if (err)
3973                 return err;
3974         else {
3975                 if (mddev->hold_active == UNTIL_IOCTL)
3976                         mddev->hold_active = 0;
3977                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3978                 return len;
3979         }
3980 }
3981 static struct md_sysfs_entry md_array_state =
3982 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3983
3984 static ssize_t
3985 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3986         return sprintf(page, "%d\n",
3987                        atomic_read(&mddev->max_corr_read_errors));
3988 }
3989
3990 static ssize_t
3991 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3992 {
3993         char *e;
3994         unsigned long n = simple_strtoul(buf, &e, 10);
3995
3996         if (*buf && (*e == 0 || *e == '\n')) {
3997                 atomic_set(&mddev->max_corr_read_errors, n);
3998                 return len;
3999         }
4000         return -EINVAL;
4001 }
4002
4003 static struct md_sysfs_entry max_corr_read_errors =
4004 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4005         max_corrected_read_errors_store);
4006
4007 static ssize_t
4008 null_show(struct mddev *mddev, char *page)
4009 {
4010         return -EINVAL;
4011 }
4012
4013 static ssize_t
4014 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4015 {
4016         /* buf must be %d:%d\n? giving major and minor numbers */
4017         /* The new device is added to the array.
4018          * If the array has a persistent superblock, we read the
4019          * superblock to initialise info and check validity.
4020          * Otherwise, only checking done is that in bind_rdev_to_array,
4021          * which mainly checks size.
4022          */
4023         char *e;
4024         int major = simple_strtoul(buf, &e, 10);
4025         int minor;
4026         dev_t dev;
4027         struct md_rdev *rdev;
4028         int err;
4029
4030         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4031                 return -EINVAL;
4032         minor = simple_strtoul(e+1, &e, 10);
4033         if (*e && *e != '\n')
4034                 return -EINVAL;
4035         dev = MKDEV(major, minor);
4036         if (major != MAJOR(dev) ||
4037             minor != MINOR(dev))
4038                 return -EOVERFLOW;
4039
4040
4041         if (mddev->persistent) {
4042                 rdev = md_import_device(dev, mddev->major_version,
4043                                         mddev->minor_version);
4044                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4045                         struct md_rdev *rdev0
4046                                 = list_entry(mddev->disks.next,
4047                                              struct md_rdev, same_set);
4048                         err = super_types[mddev->major_version]
4049                                 .load_super(rdev, rdev0, mddev->minor_version);
4050                         if (err < 0)
4051                                 goto out;
4052                 }
4053         } else if (mddev->external)
4054                 rdev = md_import_device(dev, -2, -1);
4055         else
4056                 rdev = md_import_device(dev, -1, -1);
4057
4058         if (IS_ERR(rdev))
4059                 return PTR_ERR(rdev);
4060         err = bind_rdev_to_array(rdev, mddev);
4061  out:
4062         if (err)
4063                 export_rdev(rdev);
4064         return err ? err : len;
4065 }
4066
4067 static struct md_sysfs_entry md_new_device =
4068 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4069
4070 static ssize_t
4071 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4072 {
4073         char *end;
4074         unsigned long chunk, end_chunk;
4075
4076         if (!mddev->bitmap)
4077                 goto out;
4078         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4079         while (*buf) {
4080                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4081                 if (buf == end) break;
4082                 if (*end == '-') { /* range */
4083                         buf = end + 1;
4084                         end_chunk = simple_strtoul(buf, &end, 0);
4085                         if (buf == end) break;
4086                 }
4087                 if (*end && !isspace(*end)) break;
4088                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4089                 buf = skip_spaces(end);
4090         }
4091         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4092 out:
4093         return len;
4094 }
4095
4096 static struct md_sysfs_entry md_bitmap =
4097 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4098
4099 static ssize_t
4100 size_show(struct mddev *mddev, char *page)
4101 {
4102         return sprintf(page, "%llu\n",
4103                 (unsigned long long)mddev->dev_sectors / 2);
4104 }
4105
4106 static int update_size(struct mddev *mddev, sector_t num_sectors);
4107
4108 static ssize_t
4109 size_store(struct mddev *mddev, const char *buf, size_t len)
4110 {
4111         /* If array is inactive, we can reduce the component size, but
4112          * not increase it (except from 0).
4113          * If array is active, we can try an on-line resize
4114          */
4115         sector_t sectors;
4116         int err = strict_blocks_to_sectors(buf, &sectors);
4117
4118         if (err < 0)
4119                 return err;
4120         if (mddev->pers) {
4121                 err = update_size(mddev, sectors);
4122                 md_update_sb(mddev, 1);
4123         } else {
4124                 if (mddev->dev_sectors == 0 ||
4125                     mddev->dev_sectors > sectors)
4126                         mddev->dev_sectors = sectors;
4127                 else
4128                         err = -ENOSPC;
4129         }
4130         return err ? err : len;
4131 }
4132
4133 static struct md_sysfs_entry md_size =
4134 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4135
4136
4137 /* Metadata version.
4138  * This is one of
4139  *   'none' for arrays with no metadata (good luck...)
4140  *   'external' for arrays with externally managed metadata,
4141  * or N.M for internally known formats
4142  */
4143 static ssize_t
4144 metadata_show(struct mddev *mddev, char *page)
4145 {
4146         if (mddev->persistent)
4147                 return sprintf(page, "%d.%d\n",
4148                                mddev->major_version, mddev->minor_version);
4149         else if (mddev->external)
4150                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4151         else
4152                 return sprintf(page, "none\n");
4153 }
4154
4155 static ssize_t
4156 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4157 {
4158         int major, minor;
4159         char *e;
4160         /* Changing the details of 'external' metadata is
4161          * always permitted.  Otherwise there must be
4162          * no devices attached to the array.
4163          */
4164         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4165                 ;
4166         else if (!list_empty(&mddev->disks))
4167                 return -EBUSY;
4168
4169         if (cmd_match(buf, "none")) {
4170                 mddev->persistent = 0;
4171                 mddev->external = 0;
4172                 mddev->major_version = 0;
4173                 mddev->minor_version = 90;
4174                 return len;
4175         }
4176         if (strncmp(buf, "external:", 9) == 0) {
4177                 size_t namelen = len-9;
4178                 if (namelen >= sizeof(mddev->metadata_type))
4179                         namelen = sizeof(mddev->metadata_type)-1;
4180                 strncpy(mddev->metadata_type, buf+9, namelen);
4181                 mddev->metadata_type[namelen] = 0;
4182                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4183                         mddev->metadata_type[--namelen] = 0;
4184                 mddev->persistent = 0;
4185                 mddev->external = 1;
4186                 mddev->major_version = 0;
4187                 mddev->minor_version = 90;
4188                 return len;
4189         }
4190         major = simple_strtoul(buf, &e, 10);
4191         if (e==buf || *e != '.')
4192                 return -EINVAL;
4193         buf = e+1;
4194         minor = simple_strtoul(buf, &e, 10);
4195         if (e==buf || (*e && *e != '\n') )
4196                 return -EINVAL;
4197         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4198                 return -ENOENT;
4199         mddev->major_version = major;
4200         mddev->minor_version = minor;
4201         mddev->persistent = 1;
4202         mddev->external = 0;
4203         return len;
4204 }
4205
4206 static struct md_sysfs_entry md_metadata =
4207 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4208
4209 static ssize_t
4210 action_show(struct mddev *mddev, char *page)
4211 {
4212         char *type = "idle";
4213         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4214                 type = "frozen";
4215         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4216             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4217                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4218                         type = "reshape";
4219                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4220                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4221                                 type = "resync";
4222                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4223                                 type = "check";
4224                         else
4225                                 type = "repair";
4226                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4227                         type = "recover";
4228         }
4229         return sprintf(page, "%s\n", type);
4230 }
4231
4232 static ssize_t
4233 action_store(struct mddev *mddev, const char *page, size_t len)
4234 {
4235         if (!mddev->pers || !mddev->pers->sync_request)
4236                 return -EINVAL;
4237
4238         if (cmd_match(page, "frozen"))
4239                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4240         else
4241                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4242
4243         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4244                 if (mddev->sync_thread) {
4245                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4246                         md_reap_sync_thread(mddev);
4247                 }
4248         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4249                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4250                 return -EBUSY;
4251         else if (cmd_match(page, "resync"))
4252                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4253         else if (cmd_match(page, "recover")) {
4254                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4255                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4256         } else if (cmd_match(page, "reshape")) {
4257                 int err;
4258                 if (mddev->pers->start_reshape == NULL)
4259                         return -EINVAL;
4260                 err = mddev->pers->start_reshape(mddev);
4261                 if (err)
4262                         return err;
4263                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4264         } else {
4265                 if (cmd_match(page, "check"))
4266                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4267                 else if (!cmd_match(page, "repair"))
4268                         return -EINVAL;
4269                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4270                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4271         }
4272         if (mddev->ro == 2) {
4273                 /* A write to sync_action is enough to justify
4274                  * canceling read-auto mode
4275                  */
4276                 mddev->ro = 0;
4277                 md_wakeup_thread(mddev->sync_thread);
4278         }
4279         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4280         md_wakeup_thread(mddev->thread);
4281         sysfs_notify_dirent_safe(mddev->sysfs_action);
4282         return len;
4283 }
4284
4285 static struct md_sysfs_entry md_scan_mode =
4286 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4287
4288 static ssize_t
4289 last_sync_action_show(struct mddev *mddev, char *page)
4290 {
4291         return sprintf(page, "%s\n", mddev->last_sync_action);
4292 }
4293
4294 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4295
4296 static ssize_t
4297 mismatch_cnt_show(struct mddev *mddev, char *page)
4298 {
4299         return sprintf(page, "%llu\n",
4300                        (unsigned long long)
4301                        atomic64_read(&mddev->resync_mismatches));
4302 }
4303
4304 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4305
4306 static ssize_t
4307 sync_min_show(struct mddev *mddev, char *page)
4308 {
4309         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4310                        mddev->sync_speed_min ? "local": "system");
4311 }
4312
4313 static ssize_t
4314 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4315 {
4316         int min;
4317         char *e;
4318         if (strncmp(buf, "system", 6)==0) {
4319                 mddev->sync_speed_min = 0;
4320                 return len;
4321         }
4322         min = simple_strtoul(buf, &e, 10);
4323         if (buf == e || (*e && *e != '\n') || min <= 0)
4324                 return -EINVAL;
4325         mddev->sync_speed_min = min;
4326         return len;
4327 }
4328
4329 static struct md_sysfs_entry md_sync_min =
4330 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4331
4332 static ssize_t
4333 sync_max_show(struct mddev *mddev, char *page)
4334 {
4335         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4336                        mddev->sync_speed_max ? "local": "system");
4337 }
4338
4339 static ssize_t
4340 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4341 {
4342         int max;
4343         char *e;
4344         if (strncmp(buf, "system", 6)==0) {
4345                 mddev->sync_speed_max = 0;
4346                 return len;
4347         }
4348         max = simple_strtoul(buf, &e, 10);
4349         if (buf == e || (*e && *e != '\n') || max <= 0)
4350                 return -EINVAL;
4351         mddev->sync_speed_max = max;
4352         return len;
4353 }
4354
4355 static struct md_sysfs_entry md_sync_max =
4356 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4357
4358 static ssize_t
4359 degraded_show(struct mddev *mddev, char *page)
4360 {
4361         return sprintf(page, "%d\n", mddev->degraded);
4362 }
4363 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4364
4365 static ssize_t
4366 sync_force_parallel_show(struct mddev *mddev, char *page)
4367 {
4368         return sprintf(page, "%d\n", mddev->parallel_resync);
4369 }
4370
4371 static ssize_t
4372 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4373 {
4374         long n;
4375
4376         if (kstrtol(buf, 10, &n))
4377                 return -EINVAL;
4378
4379         if (n != 0 && n != 1)
4380                 return -EINVAL;
4381
4382         mddev->parallel_resync = n;
4383
4384         if (mddev->sync_thread)
4385                 wake_up(&resync_wait);
4386
4387         return len;
4388 }
4389
4390 /* force parallel resync, even with shared block devices */
4391 static struct md_sysfs_entry md_sync_force_parallel =
4392 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4393        sync_force_parallel_show, sync_force_parallel_store);
4394
4395 static ssize_t
4396 sync_speed_show(struct mddev *mddev, char *page)
4397 {
4398         unsigned long resync, dt, db;
4399         if (mddev->curr_resync == 0)
4400                 return sprintf(page, "none\n");
4401         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4402         dt = (jiffies - mddev->resync_mark) / HZ;
4403         if (!dt) dt++;
4404         db = resync - mddev->resync_mark_cnt;
4405         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4406 }
4407
4408 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4409
4410 static ssize_t
4411 sync_completed_show(struct mddev *mddev, char *page)
4412 {
4413         unsigned long long max_sectors, resync;
4414
4415         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4416                 return sprintf(page, "none\n");
4417
4418         if (mddev->curr_resync == 1 ||
4419             mddev->curr_resync == 2)
4420                 return sprintf(page, "delayed\n");
4421
4422         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4423             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4424                 max_sectors = mddev->resync_max_sectors;
4425         else
4426                 max_sectors = mddev->dev_sectors;
4427
4428         resync = mddev->curr_resync_completed;
4429         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4430 }
4431
4432 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4433
4434 static ssize_t
4435 min_sync_show(struct mddev *mddev, char *page)
4436 {
4437         return sprintf(page, "%llu\n",
4438                        (unsigned long long)mddev->resync_min);
4439 }
4440 static ssize_t
4441 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4442 {
4443         unsigned long long min;
4444         if (kstrtoull(buf, 10, &min))
4445                 return -EINVAL;
4446         if (min > mddev->resync_max)
4447                 return -EINVAL;
4448         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4449                 return -EBUSY;
4450
4451         /* Must be a multiple of chunk_size */
4452         if (mddev->chunk_sectors) {
4453                 sector_t temp = min;
4454                 if (sector_div(temp, mddev->chunk_sectors))
4455                         return -EINVAL;
4456         }
4457         mddev->resync_min = min;
4458
4459         return len;
4460 }
4461
4462 static struct md_sysfs_entry md_min_sync =
4463 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4464
4465 static ssize_t
4466 max_sync_show(struct mddev *mddev, char *page)
4467 {
4468         if (mddev->resync_max == MaxSector)
4469                 return sprintf(page, "max\n");
4470         else
4471                 return sprintf(page, "%llu\n",
4472                                (unsigned long long)mddev->resync_max);
4473 }
4474 static ssize_t
4475 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4476 {
4477         if (strncmp(buf, "max", 3) == 0)
4478                 mddev->resync_max = MaxSector;
4479         else {
4480                 unsigned long long max;
4481                 if (kstrtoull(buf, 10, &max))
4482                         return -EINVAL;
4483                 if (max < mddev->resync_min)
4484                         return -EINVAL;
4485                 if (max < mddev->resync_max &&
4486                     mddev->ro == 0 &&
4487                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4488                         return -EBUSY;
4489
4490                 /* Must be a multiple of chunk_size */
4491                 if (mddev->chunk_sectors) {
4492                         sector_t temp = max;
4493                         if (sector_div(temp, mddev->chunk_sectors))
4494                                 return -EINVAL;
4495                 }
4496                 mddev->resync_max = max;
4497         }
4498         wake_up(&mddev->recovery_wait);
4499         return len;
4500 }
4501
4502 static struct md_sysfs_entry md_max_sync =
4503 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4504
4505 static ssize_t
4506 suspend_lo_show(struct mddev *mddev, char *page)
4507 {
4508         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4509 }
4510
4511 static ssize_t
4512 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4513 {
4514         char *e;
4515         unsigned long long new = simple_strtoull(buf, &e, 10);
4516         unsigned long long old = mddev->suspend_lo;
4517
4518         if (mddev->pers == NULL || 
4519             mddev->pers->quiesce == NULL)
4520                 return -EINVAL;
4521         if (buf == e || (*e && *e != '\n'))
4522                 return -EINVAL;
4523
4524         mddev->suspend_lo = new;
4525         if (new >= old)
4526                 /* Shrinking suspended region */
4527                 mddev->pers->quiesce(mddev, 2);
4528         else {
4529                 /* Expanding suspended region - need to wait */
4530                 mddev->pers->quiesce(mddev, 1);
4531                 mddev->pers->quiesce(mddev, 0);
4532         }
4533         return len;
4534 }
4535 static struct md_sysfs_entry md_suspend_lo =
4536 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4537
4538
4539 static ssize_t
4540 suspend_hi_show(struct mddev *mddev, char *page)
4541 {
4542         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4543 }
4544
4545 static ssize_t
4546 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4547 {
4548         char *e;
4549         unsigned long long new = simple_strtoull(buf, &e, 10);
4550         unsigned long long old = mddev->suspend_hi;
4551
4552         if (mddev->pers == NULL ||
4553             mddev->pers->quiesce == NULL)
4554                 return -EINVAL;
4555         if (buf == e || (*e && *e != '\n'))
4556                 return -EINVAL;
4557
4558         mddev->suspend_hi = new;
4559         if (new <= old)
4560                 /* Shrinking suspended region */
4561                 mddev->pers->quiesce(mddev, 2);
4562         else {
4563                 /* Expanding suspended region - need to wait */
4564                 mddev->pers->quiesce(mddev, 1);
4565                 mddev->pers->quiesce(mddev, 0);
4566         }
4567         return len;
4568 }
4569 static struct md_sysfs_entry md_suspend_hi =
4570 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4571
4572 static ssize_t
4573 reshape_position_show(struct mddev *mddev, char *page)
4574 {
4575         if (mddev->reshape_position != MaxSector)
4576                 return sprintf(page, "%llu\n",
4577                                (unsigned long long)mddev->reshape_position);
4578         strcpy(page, "none\n");
4579         return 5;
4580 }
4581
4582 static ssize_t
4583 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4584 {
4585         struct md_rdev *rdev;
4586         char *e;
4587         unsigned long long new = simple_strtoull(buf, &e, 10);
4588         if (mddev->pers)
4589                 return -EBUSY;
4590         if (buf == e || (*e && *e != '\n'))
4591                 return -EINVAL;
4592         mddev->reshape_position = new;
4593         mddev->delta_disks = 0;
4594         mddev->reshape_backwards = 0;
4595         mddev->new_level = mddev->level;
4596         mddev->new_layout = mddev->layout;
4597         mddev->new_chunk_sectors = mddev->chunk_sectors;
4598         rdev_for_each(rdev, mddev)
4599                 rdev->new_data_offset = rdev->data_offset;
4600         return len;
4601 }
4602
4603 static struct md_sysfs_entry md_reshape_position =
4604 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4605        reshape_position_store);
4606
4607 static ssize_t
4608 reshape_direction_show(struct mddev *mddev, char *page)
4609 {
4610         return sprintf(page, "%s\n",
4611                        mddev->reshape_backwards ? "backwards" : "forwards");
4612 }
4613
4614 static ssize_t
4615 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4616 {
4617         int backwards = 0;
4618         if (cmd_match(buf, "forwards"))
4619                 backwards = 0;
4620         else if (cmd_match(buf, "backwards"))
4621                 backwards = 1;
4622         else
4623                 return -EINVAL;
4624         if (mddev->reshape_backwards == backwards)
4625                 return len;
4626
4627         /* check if we are allowed to change */
4628         if (mddev->delta_disks)
4629                 return -EBUSY;
4630
4631         if (mddev->persistent &&
4632             mddev->major_version == 0)
4633                 return -EINVAL;
4634
4635         mddev->reshape_backwards = backwards;
4636         return len;
4637 }
4638
4639 static struct md_sysfs_entry md_reshape_direction =
4640 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4641        reshape_direction_store);
4642
4643 static ssize_t
4644 array_size_show(struct mddev *mddev, char *page)
4645 {
4646         if (mddev->external_size)
4647                 return sprintf(page, "%llu\n",
4648                                (unsigned long long)mddev->array_sectors/2);
4649         else
4650                 return sprintf(page, "default\n");
4651 }
4652
4653 static ssize_t
4654 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4655 {
4656         sector_t sectors;
4657
4658         if (strncmp(buf, "default", 7) == 0) {
4659                 if (mddev->pers)
4660                         sectors = mddev->pers->size(mddev, 0, 0);
4661                 else
4662                         sectors = mddev->array_sectors;
4663
4664                 mddev->external_size = 0;
4665         } else {
4666                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4667                         return -EINVAL;
4668                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4669                         return -E2BIG;
4670
4671                 mddev->external_size = 1;
4672         }
4673
4674         mddev->array_sectors = sectors;
4675         if (mddev->pers) {
4676                 set_capacity(mddev->gendisk, mddev->array_sectors);
4677                 revalidate_disk(mddev->gendisk);
4678         }
4679         return len;
4680 }
4681
4682 static struct md_sysfs_entry md_array_size =
4683 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4684        array_size_store);
4685
4686 static struct attribute *md_default_attrs[] = {
4687         &md_level.attr,
4688         &md_layout.attr,
4689         &md_raid_disks.attr,
4690         &md_chunk_size.attr,
4691         &md_size.attr,
4692         &md_resync_start.attr,
4693         &md_metadata.attr,
4694         &md_new_device.attr,
4695         &md_safe_delay.attr,
4696         &md_array_state.attr,
4697         &md_reshape_position.attr,
4698         &md_reshape_direction.attr,
4699         &md_array_size.attr,
4700         &max_corr_read_errors.attr,
4701         NULL,
4702 };
4703
4704 static struct attribute *md_redundancy_attrs[] = {
4705         &md_scan_mode.attr,
4706         &md_last_scan_mode.attr,
4707         &md_mismatches.attr,
4708         &md_sync_min.attr,
4709         &md_sync_max.attr,
4710         &md_sync_speed.attr,
4711         &md_sync_force_parallel.attr,
4712         &md_sync_completed.attr,
4713         &md_min_sync.attr,
4714         &md_max_sync.attr,
4715         &md_suspend_lo.attr,
4716         &md_suspend_hi.attr,
4717         &md_bitmap.attr,
4718         &md_degraded.attr,
4719         NULL,
4720 };
4721 static struct attribute_group md_redundancy_group = {
4722         .name = NULL,
4723         .attrs = md_redundancy_attrs,
4724 };
4725
4726
4727 static ssize_t
4728 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4729 {
4730         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4731         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4732         ssize_t rv;
4733
4734         if (!entry->show)
4735                 return -EIO;
4736         spin_lock(&all_mddevs_lock);
4737         if (list_empty(&mddev->all_mddevs)) {
4738                 spin_unlock(&all_mddevs_lock);
4739                 return -EBUSY;
4740         }
4741         mddev_get(mddev);
4742         spin_unlock(&all_mddevs_lock);
4743
4744         rv = mddev_lock(mddev);
4745         if (!rv) {
4746                 rv = entry->show(mddev, page);
4747                 mddev_unlock(mddev);
4748         }
4749         mddev_put(mddev);
4750         return rv;
4751 }
4752
4753 static ssize_t
4754 md_attr_store(struct kobject *kobj, struct attribute *attr,
4755               const char *page, size_t length)
4756 {
4757         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4758         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4759         ssize_t rv;
4760
4761         if (!entry->store)
4762                 return -EIO;
4763         if (!capable(CAP_SYS_ADMIN))
4764                 return -EACCES;
4765         spin_lock(&all_mddevs_lock);
4766         if (list_empty(&mddev->all_mddevs)) {
4767                 spin_unlock(&all_mddevs_lock);
4768                 return -EBUSY;
4769         }
4770         mddev_get(mddev);
4771         spin_unlock(&all_mddevs_lock);
4772         if (entry->store == new_dev_store)
4773                 flush_workqueue(md_misc_wq);
4774         rv = mddev_lock(mddev);
4775         if (!rv) {
4776                 rv = entry->store(mddev, page, length);
4777                 mddev_unlock(mddev);
4778         }
4779         mddev_put(mddev);
4780         return rv;
4781 }
4782
4783 static void md_free(struct kobject *ko)
4784 {
4785         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4786
4787         if (mddev->sysfs_state)
4788                 sysfs_put(mddev->sysfs_state);
4789
4790         if (mddev->gendisk) {
4791                 del_gendisk(mddev->gendisk);
4792                 put_disk(mddev->gendisk);
4793         }
4794         if (mddev->queue)
4795                 blk_cleanup_queue(mddev->queue);
4796
4797         kfree(mddev);
4798 }
4799
4800 static const struct sysfs_ops md_sysfs_ops = {
4801         .show   = md_attr_show,
4802         .store  = md_attr_store,
4803 };
4804 static struct kobj_type md_ktype = {
4805         .release        = md_free,
4806         .sysfs_ops      = &md_sysfs_ops,
4807         .default_attrs  = md_default_attrs,
4808 };
4809
4810 int mdp_major = 0;
4811
4812 static void mddev_delayed_delete(struct work_struct *ws)
4813 {
4814         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4815
4816         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4817         kobject_del(&mddev->kobj);
4818         kobject_put(&mddev->kobj);
4819 }
4820
4821 static int md_alloc(dev_t dev, char *name)
4822 {
4823         static DEFINE_MUTEX(disks_mutex);
4824         struct mddev *mddev = mddev_find(dev);
4825         struct gendisk *disk;
4826         int partitioned;
4827         int shift;
4828         int unit;
4829         int error;
4830
4831         if (!mddev)
4832                 return -ENODEV;
4833
4834         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4835         shift = partitioned ? MdpMinorShift : 0;
4836         unit = MINOR(mddev->unit) >> shift;
4837
4838         /* wait for any previous instance of this device to be
4839          * completely removed (mddev_delayed_delete).
4840          */
4841         flush_workqueue(md_misc_wq);
4842
4843         mutex_lock(&disks_mutex);
4844         error = -EEXIST;
4845         if (mddev->gendisk)
4846                 goto abort;
4847
4848         if (name) {
4849                 /* Need to ensure that 'name' is not a duplicate.
4850                  */
4851                 struct mddev *mddev2;
4852                 spin_lock(&all_mddevs_lock);
4853
4854                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4855                         if (mddev2->gendisk &&
4856                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4857                                 spin_unlock(&all_mddevs_lock);
4858                                 goto abort;
4859                         }
4860                 spin_unlock(&all_mddevs_lock);
4861         }
4862
4863         error = -ENOMEM;
4864         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4865         if (!mddev->queue)
4866                 goto abort;
4867         mddev->queue->queuedata = mddev;
4868
4869         blk_queue_make_request(mddev->queue, md_make_request);
4870         blk_set_stacking_limits(&mddev->queue->limits);
4871
4872         disk = alloc_disk(1 << shift);
4873         if (!disk) {
4874                 blk_cleanup_queue(mddev->queue);
4875                 mddev->queue = NULL;
4876                 goto abort;
4877         }
4878         disk->major = MAJOR(mddev->unit);
4879         disk->first_minor = unit << shift;
4880         if (name)
4881                 strcpy(disk->disk_name, name);
4882         else if (partitioned)
4883                 sprintf(disk->disk_name, "md_d%d", unit);
4884         else
4885                 sprintf(disk->disk_name, "md%d", unit);
4886         disk->fops = &md_fops;
4887         disk->private_data = mddev;
4888         disk->queue = mddev->queue;
4889         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4890         /* Allow extended partitions.  This makes the
4891          * 'mdp' device redundant, but we can't really
4892          * remove it now.
4893          */
4894         disk->flags |= GENHD_FL_EXT_DEVT;
4895         mddev->gendisk = disk;
4896         /* As soon as we call add_disk(), another thread could get
4897          * through to md_open, so make sure it doesn't get too far
4898          */
4899         mutex_lock(&mddev->open_mutex);
4900         add_disk(disk);
4901
4902         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4903                                      &disk_to_dev(disk)->kobj, "%s", "md");
4904         if (error) {
4905                 /* This isn't possible, but as kobject_init_and_add is marked
4906                  * __must_check, we must do something with the result
4907                  */
4908                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4909                        disk->disk_name);
4910                 error = 0;
4911         }
4912         if (mddev->kobj.sd &&
4913             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4914                 printk(KERN_DEBUG "pointless warning\n");
4915         mutex_unlock(&mddev->open_mutex);
4916  abort:
4917         mutex_unlock(&disks_mutex);
4918         if (!error && mddev->kobj.sd) {
4919                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4920                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4921         }
4922         mddev_put(mddev);
4923         return error;
4924 }
4925
4926 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4927 {
4928         md_alloc(dev, NULL);
4929         return NULL;
4930 }
4931
4932 static int add_named_array(const char *val, struct kernel_param *kp)
4933 {
4934         /* val must be "md_*" where * is not all digits.
4935          * We allocate an array with a large free minor number, and
4936          * set the name to val.  val must not already be an active name.
4937          */
4938         int len = strlen(val);
4939         char buf[DISK_NAME_LEN];
4940
4941         while (len && val[len-1] == '\n')
4942                 len--;
4943         if (len >= DISK_NAME_LEN)
4944                 return -E2BIG;
4945         strlcpy(buf, val, len+1);
4946         if (strncmp(buf, "md_", 3) != 0)
4947                 return -EINVAL;
4948         return md_alloc(0, buf);
4949 }
4950
4951 static void md_safemode_timeout(unsigned long data)
4952 {
4953         struct mddev *mddev = (struct mddev *) data;
4954
4955         if (!atomic_read(&mddev->writes_pending)) {
4956                 mddev->safemode = 1;
4957                 if (mddev->external)
4958                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4959         }
4960         md_wakeup_thread(mddev->thread);
4961 }
4962
4963 static int start_dirty_degraded;
4964
4965 int md_run(struct mddev *mddev)
4966 {
4967         int err;
4968         struct md_rdev *rdev;
4969         struct md_personality *pers;
4970
4971         if (list_empty(&mddev->disks))
4972                 /* cannot run an array with no devices.. */
4973                 return -EINVAL;
4974
4975         if (mddev->pers)
4976                 return -EBUSY;
4977         /* Cannot run until previous stop completes properly */
4978         if (mddev->sysfs_active)
4979                 return -EBUSY;
4980
4981         /*
4982          * Analyze all RAID superblock(s)
4983          */
4984         if (!mddev->raid_disks) {
4985                 if (!mddev->persistent)
4986                         return -EINVAL;
4987                 analyze_sbs(mddev);
4988         }
4989
4990         if (mddev->level != LEVEL_NONE)
4991                 request_module("md-level-%d", mddev->level);
4992         else if (mddev->clevel[0])
4993                 request_module("md-%s", mddev->clevel);
4994
4995         /*
4996          * Drop all container device buffers, from now on
4997          * the only valid external interface is through the md
4998          * device.
4999          */
5000         rdev_for_each(rdev, mddev) {
5001                 if (test_bit(Faulty, &rdev->flags))
5002                         continue;
5003                 sync_blockdev(rdev->bdev);
5004                 invalidate_bdev(rdev->bdev);
5005
5006                 /* perform some consistency tests on the device.
5007                  * We don't want the data to overlap the metadata,
5008                  * Internal Bitmap issues have been handled elsewhere.
5009                  */
5010                 if (rdev->meta_bdev) {
5011                         /* Nothing to check */;
5012                 } else if (rdev->data_offset < rdev->sb_start) {
5013                         if (mddev->dev_sectors &&
5014                             rdev->data_offset + mddev->dev_sectors
5015                             > rdev->sb_start) {
5016                                 printk("md: %s: data overlaps metadata\n",
5017                                        mdname(mddev));
5018                                 return -EINVAL;
5019                         }
5020                 } else {
5021                         if (rdev->sb_start + rdev->sb_size/512
5022                             > rdev->data_offset) {
5023                                 printk("md: %s: metadata overlaps data\n",
5024                                        mdname(mddev));
5025                                 return -EINVAL;
5026                         }
5027                 }
5028                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5029         }
5030
5031         if (mddev->bio_set == NULL)
5032                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5033
5034         spin_lock(&pers_lock);
5035         pers = find_pers(mddev->level, mddev->clevel);
5036         if (!pers || !try_module_get(pers->owner)) {
5037                 spin_unlock(&pers_lock);
5038                 if (mddev->level != LEVEL_NONE)
5039                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5040                                mddev->level);
5041                 else
5042                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5043                                mddev->clevel);
5044                 return -EINVAL;
5045         }
5046         mddev->pers = pers;
5047         spin_unlock(&pers_lock);
5048         if (mddev->level != pers->level) {
5049                 mddev->level = pers->level;
5050                 mddev->new_level = pers->level;
5051         }
5052         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5053
5054         if (mddev->reshape_position != MaxSector &&
5055             pers->start_reshape == NULL) {
5056                 /* This personality cannot handle reshaping... */
5057                 mddev->pers = NULL;
5058                 module_put(pers->owner);
5059                 return -EINVAL;
5060         }
5061
5062         if (pers->sync_request) {
5063                 /* Warn if this is a potentially silly
5064                  * configuration.
5065                  */
5066                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5067                 struct md_rdev *rdev2;
5068                 int warned = 0;
5069
5070                 rdev_for_each(rdev, mddev)
5071                         rdev_for_each(rdev2, mddev) {
5072                                 if (rdev < rdev2 &&
5073                                     rdev->bdev->bd_contains ==
5074                                     rdev2->bdev->bd_contains) {
5075                                         printk(KERN_WARNING
5076                                                "%s: WARNING: %s appears to be"
5077                                                " on the same physical disk as"
5078                                                " %s.\n",
5079                                                mdname(mddev),
5080                                                bdevname(rdev->bdev,b),
5081                                                bdevname(rdev2->bdev,b2));
5082                                         warned = 1;
5083                                 }
5084                         }
5085
5086                 if (warned)
5087                         printk(KERN_WARNING
5088                                "True protection against single-disk"
5089                                " failure might be compromised.\n");
5090         }
5091
5092         mddev->recovery = 0;
5093         /* may be over-ridden by personality */
5094         mddev->resync_max_sectors = mddev->dev_sectors;
5095
5096         mddev->ok_start_degraded = start_dirty_degraded;
5097
5098         if (start_readonly && mddev->ro == 0)
5099                 mddev->ro = 2; /* read-only, but switch on first write */
5100
5101         err = mddev->pers->run(mddev);
5102         if (err)
5103                 printk(KERN_ERR "md: pers->run() failed ...\n");
5104         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5105                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5106                           " but 'external_size' not in effect?\n", __func__);
5107                 printk(KERN_ERR
5108                        "md: invalid array_size %llu > default size %llu\n",
5109                        (unsigned long long)mddev->array_sectors / 2,
5110                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5111                 err = -EINVAL;
5112                 mddev->pers->stop(mddev);
5113         }
5114         if (err == 0 && mddev->pers->sync_request &&
5115             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5116                 err = bitmap_create(mddev);
5117                 if (err) {
5118                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5119                                mdname(mddev), err);
5120                         mddev->pers->stop(mddev);
5121                 }
5122         }
5123         if (err) {
5124                 module_put(mddev->pers->owner);
5125                 mddev->pers = NULL;
5126                 bitmap_destroy(mddev);
5127                 return err;
5128         }
5129         if (mddev->pers->sync_request) {
5130                 if (mddev->kobj.sd &&
5131                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5132                         printk(KERN_WARNING
5133                                "md: cannot register extra attributes for %s\n",
5134                                mdname(mddev));
5135                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5136         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5137                 mddev->ro = 0;
5138
5139         atomic_set(&mddev->writes_pending,0);
5140         atomic_set(&mddev->max_corr_read_errors,
5141                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5142         mddev->safemode = 0;
5143         mddev->safemode_timer.function = md_safemode_timeout;
5144         mddev->safemode_timer.data = (unsigned long) mddev;
5145         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5146         mddev->in_sync = 1;
5147         smp_wmb();
5148         mddev->ready = 1;
5149         rdev_for_each(rdev, mddev)
5150                 if (rdev->raid_disk >= 0)
5151                         if (sysfs_link_rdev(mddev, rdev))
5152                                 /* failure here is OK */;
5153         
5154         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5155         
5156         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5157                 md_update_sb(mddev, 0);
5158
5159         md_new_event(mddev);
5160         sysfs_notify_dirent_safe(mddev->sysfs_state);
5161         sysfs_notify_dirent_safe(mddev->sysfs_action);
5162         sysfs_notify(&mddev->kobj, NULL, "degraded");
5163         return 0;
5164 }
5165 EXPORT_SYMBOL_GPL(md_run);
5166
5167 static int do_md_run(struct mddev *mddev)
5168 {
5169         int err;
5170
5171         err = md_run(mddev);
5172         if (err)
5173                 goto out;
5174         err = bitmap_load(mddev);
5175         if (err) {
5176                 bitmap_destroy(mddev);
5177                 goto out;
5178         }
5179
5180         md_wakeup_thread(mddev->thread);
5181         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5182
5183         set_capacity(mddev->gendisk, mddev->array_sectors);
5184         revalidate_disk(mddev->gendisk);
5185         mddev->changed = 1;
5186         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5187 out:
5188         return err;
5189 }
5190
5191 static int restart_array(struct mddev *mddev)
5192 {
5193         struct gendisk *disk = mddev->gendisk;
5194
5195         /* Complain if it has no devices */
5196         if (list_empty(&mddev->disks))
5197                 return -ENXIO;
5198         if (!mddev->pers)
5199                 return -EINVAL;
5200         if (!mddev->ro)
5201                 return -EBUSY;
5202         mddev->safemode = 0;
5203         mddev->ro = 0;
5204         set_disk_ro(disk, 0);
5205         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5206                 mdname(mddev));
5207         /* Kick recovery or resync if necessary */
5208         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5209         md_wakeup_thread(mddev->thread);
5210         md_wakeup_thread(mddev->sync_thread);
5211         sysfs_notify_dirent_safe(mddev->sysfs_state);
5212         return 0;
5213 }
5214
5215 /* similar to deny_write_access, but accounts for our holding a reference
5216  * to the file ourselves */
5217 static int deny_bitmap_write_access(struct file * file)
5218 {
5219         struct inode *inode = file->f_mapping->host;
5220
5221         spin_lock(&inode->i_lock);
5222         if (atomic_read(&inode->i_writecount) > 1) {
5223                 spin_unlock(&inode->i_lock);
5224                 return -ETXTBSY;
5225         }
5226         atomic_set(&inode->i_writecount, -1);
5227         spin_unlock(&inode->i_lock);
5228
5229         return 0;
5230 }
5231
5232 void restore_bitmap_write_access(struct file *file)
5233 {
5234         struct inode *inode = file->f_mapping->host;
5235
5236         spin_lock(&inode->i_lock);
5237         atomic_set(&inode->i_writecount, 1);
5238         spin_unlock(&inode->i_lock);
5239 }
5240
5241 static void md_clean(struct mddev *mddev)
5242 {
5243         mddev->array_sectors = 0;
5244         mddev->external_size = 0;
5245         mddev->dev_sectors = 0;
5246         mddev->raid_disks = 0;
5247         mddev->recovery_cp = 0;
5248         mddev->resync_min = 0;
5249         mddev->resync_max = MaxSector;
5250         mddev->reshape_position = MaxSector;
5251         mddev->external = 0;
5252         mddev->persistent = 0;
5253         mddev->level = LEVEL_NONE;
5254         mddev->clevel[0] = 0;
5255         mddev->flags = 0;
5256         mddev->ro = 0;
5257         mddev->metadata_type[0] = 0;
5258         mddev->chunk_sectors = 0;
5259         mddev->ctime = mddev->utime = 0;
5260         mddev->layout = 0;
5261         mddev->max_disks = 0;
5262         mddev->events = 0;
5263         mddev->can_decrease_events = 0;
5264         mddev->delta_disks = 0;
5265         mddev->reshape_backwards = 0;
5266         mddev->new_level = LEVEL_NONE;
5267         mddev->new_layout = 0;
5268         mddev->new_chunk_sectors = 0;
5269         mddev->curr_resync = 0;
5270         atomic64_set(&mddev->resync_mismatches, 0);
5271         mddev->suspend_lo = mddev->suspend_hi = 0;
5272         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5273         mddev->recovery = 0;
5274         mddev->in_sync = 0;
5275         mddev->changed = 0;
5276         mddev->degraded = 0;
5277         mddev->safemode = 0;
5278         mddev->merge_check_needed = 0;
5279         mddev->bitmap_info.offset = 0;
5280         mddev->bitmap_info.default_offset = 0;
5281         mddev->bitmap_info.default_space = 0;
5282         mddev->bitmap_info.chunksize = 0;
5283         mddev->bitmap_info.daemon_sleep = 0;
5284         mddev->bitmap_info.max_write_behind = 0;
5285 }
5286
5287 static void __md_stop_writes(struct mddev *mddev)
5288 {
5289         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5290         if (mddev->sync_thread) {
5291                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5292                 md_reap_sync_thread(mddev);
5293         }
5294
5295         del_timer_sync(&mddev->safemode_timer);
5296
5297         bitmap_flush(mddev);
5298         md_super_wait(mddev);
5299
5300         if (mddev->ro == 0 &&
5301             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5302                 /* mark array as shutdown cleanly */
5303                 mddev->in_sync = 1;
5304                 md_update_sb(mddev, 1);
5305         }
5306 }
5307
5308 void md_stop_writes(struct mddev *mddev)
5309 {
5310         mddev_lock_nointr(mddev);
5311         __md_stop_writes(mddev);
5312         mddev_unlock(mddev);
5313 }
5314 EXPORT_SYMBOL_GPL(md_stop_writes);
5315
5316 static void __md_stop(struct mddev *mddev)
5317 {
5318         mddev->ready = 0;
5319         mddev->pers->stop(mddev);
5320         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5321                 mddev->to_remove = &md_redundancy_group;
5322         module_put(mddev->pers->owner);
5323         mddev->pers = NULL;
5324         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5325 }
5326
5327 void md_stop(struct mddev *mddev)
5328 {
5329         /* stop the array and free an attached data structures.
5330          * This is called from dm-raid
5331          */
5332         __md_stop(mddev);
5333         bitmap_destroy(mddev);
5334         if (mddev->bio_set)
5335                 bioset_free(mddev->bio_set);
5336 }
5337
5338 EXPORT_SYMBOL_GPL(md_stop);
5339
5340 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5341 {
5342         int err = 0;
5343         int did_freeze = 0;
5344
5345         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5346                 did_freeze = 1;
5347                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5348                 md_wakeup_thread(mddev->thread);
5349         }
5350         if (mddev->sync_thread) {
5351                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5352                 /* Thread might be blocked waiting for metadata update
5353                  * which will now never happen */
5354                 wake_up_process(mddev->sync_thread->tsk);
5355         }
5356         mddev_unlock(mddev);
5357         wait_event(resync_wait, mddev->sync_thread == NULL);
5358         mddev_lock_nointr(mddev);
5359
5360         mutex_lock(&mddev->open_mutex);
5361         if (atomic_read(&mddev->openers) > !!bdev ||
5362             mddev->sync_thread ||
5363             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5364                 printk("md: %s still in use.\n",mdname(mddev));
5365                 if (did_freeze) {
5366                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5367                         md_wakeup_thread(mddev->thread);
5368                 }
5369                 err = -EBUSY;
5370                 goto out;
5371         }
5372         if (mddev->pers) {
5373                 __md_stop_writes(mddev);
5374
5375                 err  = -ENXIO;
5376                 if (mddev->ro==1)
5377                         goto out;
5378                 mddev->ro = 1;
5379                 set_disk_ro(mddev->gendisk, 1);
5380                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5381                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5382                 err = 0;
5383         }
5384 out:
5385         mutex_unlock(&mddev->open_mutex);
5386         return err;
5387 }
5388
5389 /* mode:
5390  *   0 - completely stop and dis-assemble array
5391  *   2 - stop but do not disassemble array
5392  */
5393 static int do_md_stop(struct mddev * mddev, int mode,
5394                       struct block_device *bdev)
5395 {
5396         struct gendisk *disk = mddev->gendisk;
5397         struct md_rdev *rdev;
5398         int did_freeze = 0;
5399
5400         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5401                 did_freeze = 1;
5402                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5403                 md_wakeup_thread(mddev->thread);
5404         }
5405         if (mddev->sync_thread) {
5406                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5407                 /* Thread might be blocked waiting for metadata update
5408                  * which will now never happen */
5409                 wake_up_process(mddev->sync_thread->tsk);
5410         }
5411         mddev_unlock(mddev);
5412         wait_event(resync_wait, mddev->sync_thread == NULL);
5413         mddev_lock_nointr(mddev);
5414
5415         mutex_lock(&mddev->open_mutex);
5416         if (atomic_read(&mddev->openers) > !!bdev ||
5417             mddev->sysfs_active ||
5418             mddev->sync_thread ||
5419             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5420                 printk("md: %s still in use.\n",mdname(mddev));
5421                 mutex_unlock(&mddev->open_mutex);
5422                 if (did_freeze) {
5423                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5424                         md_wakeup_thread(mddev->thread);
5425                 }
5426                 return -EBUSY;
5427         }
5428         if (mddev->pers) {
5429                 if (mddev->ro)
5430                         set_disk_ro(disk, 0);
5431
5432                 __md_stop_writes(mddev);
5433                 __md_stop(mddev);
5434                 mddev->queue->merge_bvec_fn = NULL;
5435                 mddev->queue->backing_dev_info.congested_fn = NULL;
5436
5437                 /* tell userspace to handle 'inactive' */
5438                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5439
5440                 rdev_for_each(rdev, mddev)
5441                         if (rdev->raid_disk >= 0)
5442                                 sysfs_unlink_rdev(mddev, rdev);
5443
5444                 set_capacity(disk, 0);
5445                 mutex_unlock(&mddev->open_mutex);
5446                 mddev->changed = 1;
5447                 revalidate_disk(disk);
5448
5449                 if (mddev->ro)
5450                         mddev->ro = 0;
5451         } else
5452                 mutex_unlock(&mddev->open_mutex);
5453         /*
5454          * Free resources if final stop
5455          */
5456         if (mode == 0) {
5457                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5458
5459                 bitmap_destroy(mddev);
5460                 if (mddev->bitmap_info.file) {
5461                         restore_bitmap_write_access(mddev->bitmap_info.file);
5462                         fput(mddev->bitmap_info.file);
5463                         mddev->bitmap_info.file = NULL;
5464                 }
5465                 mddev->bitmap_info.offset = 0;
5466
5467                 export_array(mddev);
5468
5469                 md_clean(mddev);
5470                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5471                 if (mddev->hold_active == UNTIL_STOP)
5472                         mddev->hold_active = 0;
5473         }
5474         blk_integrity_unregister(disk);
5475         md_new_event(mddev);
5476         sysfs_notify_dirent_safe(mddev->sysfs_state);
5477         return 0;
5478 }
5479
5480 #ifndef MODULE
5481 static void autorun_array(struct mddev *mddev)
5482 {
5483         struct md_rdev *rdev;
5484         int err;
5485
5486         if (list_empty(&mddev->disks))
5487                 return;
5488
5489         printk(KERN_INFO "md: running: ");
5490
5491         rdev_for_each(rdev, mddev) {
5492                 char b[BDEVNAME_SIZE];
5493                 printk("<%s>", bdevname(rdev->bdev,b));
5494         }
5495         printk("\n");
5496
5497         err = do_md_run(mddev);
5498         if (err) {
5499                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5500                 do_md_stop(mddev, 0, NULL);
5501         }
5502 }
5503
5504 /*
5505  * lets try to run arrays based on all disks that have arrived
5506  * until now. (those are in pending_raid_disks)
5507  *
5508  * the method: pick the first pending disk, collect all disks with
5509  * the same UUID, remove all from the pending list and put them into
5510  * the 'same_array' list. Then order this list based on superblock
5511  * update time (freshest comes first), kick out 'old' disks and
5512  * compare superblocks. If everything's fine then run it.
5513  *
5514  * If "unit" is allocated, then bump its reference count
5515  */
5516 static void autorun_devices(int part)
5517 {
5518         struct md_rdev *rdev0, *rdev, *tmp;
5519         struct mddev *mddev;
5520         char b[BDEVNAME_SIZE];
5521
5522         printk(KERN_INFO "md: autorun ...\n");
5523         while (!list_empty(&pending_raid_disks)) {
5524                 int unit;
5525                 dev_t dev;
5526                 LIST_HEAD(candidates);
5527                 rdev0 = list_entry(pending_raid_disks.next,
5528                                          struct md_rdev, same_set);
5529
5530                 printk(KERN_INFO "md: considering %s ...\n",
5531                         bdevname(rdev0->bdev,b));
5532                 INIT_LIST_HEAD(&candidates);
5533                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5534                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5535                                 printk(KERN_INFO "md:  adding %s ...\n",
5536                                         bdevname(rdev->bdev,b));
5537                                 list_move(&rdev->same_set, &candidates);
5538                         }
5539                 /*
5540                  * now we have a set of devices, with all of them having
5541                  * mostly sane superblocks. It's time to allocate the
5542                  * mddev.
5543                  */
5544                 if (part) {
5545                         dev = MKDEV(mdp_major,
5546                                     rdev0->preferred_minor << MdpMinorShift);
5547                         unit = MINOR(dev) >> MdpMinorShift;
5548                 } else {
5549                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5550                         unit = MINOR(dev);
5551                 }
5552                 if (rdev0->preferred_minor != unit) {
5553                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5554                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5555                         break;
5556                 }
5557
5558                 md_probe(dev, NULL, NULL);
5559                 mddev = mddev_find(dev);
5560                 if (!mddev || !mddev->gendisk) {
5561                         if (mddev)
5562                                 mddev_put(mddev);
5563                         printk(KERN_ERR
5564                                 "md: cannot allocate memory for md drive.\n");
5565                         break;
5566                 }
5567                 if (mddev_lock(mddev)) 
5568                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5569                                mdname(mddev));
5570                 else if (mddev->raid_disks || mddev->major_version
5571                          || !list_empty(&mddev->disks)) {
5572                         printk(KERN_WARNING 
5573                                 "md: %s already running, cannot run %s\n",
5574                                 mdname(mddev), bdevname(rdev0->bdev,b));
5575                         mddev_unlock(mddev);
5576                 } else {
5577                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5578                         mddev->persistent = 1;
5579                         rdev_for_each_list(rdev, tmp, &candidates) {
5580                                 list_del_init(&rdev->same_set);
5581                                 if (bind_rdev_to_array(rdev, mddev))
5582                                         export_rdev(rdev);
5583                         }
5584                         autorun_array(mddev);
5585                         mddev_unlock(mddev);
5586                 }
5587                 /* on success, candidates will be empty, on error
5588                  * it won't...
5589                  */
5590                 rdev_for_each_list(rdev, tmp, &candidates) {
5591                         list_del_init(&rdev->same_set);
5592                         export_rdev(rdev);
5593                 }
5594                 mddev_put(mddev);
5595         }
5596         printk(KERN_INFO "md: ... autorun DONE.\n");
5597 }
5598 #endif /* !MODULE */
5599
5600 static int get_version(void __user * arg)
5601 {
5602         mdu_version_t ver;
5603
5604         ver.major = MD_MAJOR_VERSION;
5605         ver.minor = MD_MINOR_VERSION;
5606         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5607
5608         if (copy_to_user(arg, &ver, sizeof(ver)))
5609                 return -EFAULT;
5610
5611         return 0;
5612 }
5613
5614 static int get_array_info(struct mddev * mddev, void __user * arg)
5615 {
5616         mdu_array_info_t info;
5617         int nr,working,insync,failed,spare;
5618         struct md_rdev *rdev;
5619
5620         nr = working = insync = failed = spare = 0;
5621         rcu_read_lock();
5622         rdev_for_each_rcu(rdev, mddev) {
5623                 nr++;
5624                 if (test_bit(Faulty, &rdev->flags))
5625                         failed++;
5626                 else {
5627                         working++;
5628                         if (test_bit(In_sync, &rdev->flags))
5629                                 insync++;       
5630                         else
5631                                 spare++;
5632                 }
5633         }
5634         rcu_read_unlock();
5635
5636         info.major_version = mddev->major_version;
5637         info.minor_version = mddev->minor_version;
5638         info.patch_version = MD_PATCHLEVEL_VERSION;
5639         info.ctime         = mddev->ctime;
5640         info.level         = mddev->level;
5641         info.size          = mddev->dev_sectors / 2;
5642         if (info.size != mddev->dev_sectors / 2) /* overflow */
5643                 info.size = -1;
5644         info.nr_disks      = nr;
5645         info.raid_disks    = mddev->raid_disks;
5646         info.md_minor      = mddev->md_minor;
5647         info.not_persistent= !mddev->persistent;
5648
5649         info.utime         = mddev->utime;
5650         info.state         = 0;
5651         if (mddev->in_sync)
5652                 info.state = (1<<MD_SB_CLEAN);
5653         if (mddev->bitmap && mddev->bitmap_info.offset)
5654                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5655         info.active_disks  = insync;
5656         info.working_disks = working;
5657         info.failed_disks  = failed;
5658         info.spare_disks   = spare;
5659
5660         info.layout        = mddev->layout;
5661         info.chunk_size    = mddev->chunk_sectors << 9;
5662
5663         if (copy_to_user(arg, &info, sizeof(info)))
5664                 return -EFAULT;
5665
5666         return 0;
5667 }
5668
5669 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5670 {
5671         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5672         char *ptr, *buf = NULL;
5673         int err = -ENOMEM;
5674
5675         file = kmalloc(sizeof(*file), GFP_NOIO);
5676
5677         if (!file)
5678                 goto out;
5679
5680         /* bitmap disabled, zero the first byte and copy out */
5681         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5682                 file->pathname[0] = '\0';
5683                 goto copy_out;
5684         }
5685
5686         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5687         if (!buf)
5688                 goto out;
5689
5690         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5691                      buf, sizeof(file->pathname));
5692         if (IS_ERR(ptr))
5693                 goto out;
5694
5695         strcpy(file->pathname, ptr);
5696
5697 copy_out:
5698         err = 0;
5699         if (copy_to_user(arg, file, sizeof(*file)))
5700                 err = -EFAULT;
5701 out:
5702         kfree(buf);
5703         kfree(file);
5704         return err;
5705 }
5706
5707 static int get_disk_info(struct mddev * mddev, void __user * arg)
5708 {
5709         mdu_disk_info_t info;
5710         struct md_rdev *rdev;
5711
5712         if (copy_from_user(&info, arg, sizeof(info)))
5713                 return -EFAULT;
5714
5715         rcu_read_lock();
5716         rdev = find_rdev_nr_rcu(mddev, info.number);
5717         if (rdev) {
5718                 info.major = MAJOR(rdev->bdev->bd_dev);
5719                 info.minor = MINOR(rdev->bdev->bd_dev);
5720                 info.raid_disk = rdev->raid_disk;
5721                 info.state = 0;
5722                 if (test_bit(Faulty, &rdev->flags))
5723                         info.state |= (1<<MD_DISK_FAULTY);
5724                 else if (test_bit(In_sync, &rdev->flags)) {
5725                         info.state |= (1<<MD_DISK_ACTIVE);
5726                         info.state |= (1<<MD_DISK_SYNC);
5727                 }
5728                 if (test_bit(WriteMostly, &rdev->flags))
5729                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5730         } else {
5731                 info.major = info.minor = 0;
5732                 info.raid_disk = -1;
5733                 info.state = (1<<MD_DISK_REMOVED);
5734         }
5735         rcu_read_unlock();
5736
5737         if (copy_to_user(arg, &info, sizeof(info)))
5738                 return -EFAULT;
5739
5740         return 0;
5741 }
5742
5743 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5744 {
5745         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5746         struct md_rdev *rdev;
5747         dev_t dev = MKDEV(info->major,info->minor);
5748
5749         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5750                 return -EOVERFLOW;
5751
5752         if (!mddev->raid_disks) {
5753                 int err;
5754                 /* expecting a device which has a superblock */
5755                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5756                 if (IS_ERR(rdev)) {
5757                         printk(KERN_WARNING 
5758                                 "md: md_import_device returned %ld\n",
5759                                 PTR_ERR(rdev));
5760                         return PTR_ERR(rdev);
5761                 }
5762                 if (!list_empty(&mddev->disks)) {
5763                         struct md_rdev *rdev0
5764                                 = list_entry(mddev->disks.next,
5765                                              struct md_rdev, same_set);
5766                         err = super_types[mddev->major_version]
5767                                 .load_super(rdev, rdev0, mddev->minor_version);
5768                         if (err < 0) {
5769                                 printk(KERN_WARNING 
5770                                         "md: %s has different UUID to %s\n",
5771                                         bdevname(rdev->bdev,b), 
5772                                         bdevname(rdev0->bdev,b2));
5773                                 export_rdev(rdev);
5774                                 return -EINVAL;
5775                         }
5776                 }
5777                 err = bind_rdev_to_array(rdev, mddev);
5778                 if (err)
5779                         export_rdev(rdev);
5780                 return err;
5781         }
5782
5783         /*
5784          * add_new_disk can be used once the array is assembled
5785          * to add "hot spares".  They must already have a superblock
5786          * written
5787          */
5788         if (mddev->pers) {
5789                 int err;
5790                 if (!mddev->pers->hot_add_disk) {
5791                         printk(KERN_WARNING 
5792                                 "%s: personality does not support diskops!\n",
5793                                mdname(mddev));
5794                         return -EINVAL;
5795                 }
5796                 if (mddev->persistent)
5797                         rdev = md_import_device(dev, mddev->major_version,
5798                                                 mddev->minor_version);
5799                 else
5800                         rdev = md_import_device(dev, -1, -1);
5801                 if (IS_ERR(rdev)) {
5802                         printk(KERN_WARNING 
5803                                 "md: md_import_device returned %ld\n",
5804                                 PTR_ERR(rdev));
5805                         return PTR_ERR(rdev);
5806                 }
5807                 /* set saved_raid_disk if appropriate */
5808                 if (!mddev->persistent) {
5809                         if (info->state & (1<<MD_DISK_SYNC)  &&
5810                             info->raid_disk < mddev->raid_disks) {
5811                                 rdev->raid_disk = info->raid_disk;
5812                                 set_bit(In_sync, &rdev->flags);
5813                         } else
5814                                 rdev->raid_disk = -1;
5815                 } else
5816                         super_types[mddev->major_version].
5817                                 validate_super(mddev, rdev);
5818                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5819                      rdev->raid_disk != info->raid_disk) {
5820                         /* This was a hot-add request, but events doesn't
5821                          * match, so reject it.
5822                          */
5823                         export_rdev(rdev);
5824                         return -EINVAL;
5825                 }
5826
5827                 if (test_bit(In_sync, &rdev->flags))
5828                         rdev->saved_raid_disk = rdev->raid_disk;
5829                 else
5830                         rdev->saved_raid_disk = -1;
5831
5832                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5833                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5834                         set_bit(WriteMostly, &rdev->flags);
5835                 else
5836                         clear_bit(WriteMostly, &rdev->flags);
5837
5838                 rdev->raid_disk = -1;
5839                 err = bind_rdev_to_array(rdev, mddev);
5840                 if (!err && !mddev->pers->hot_remove_disk) {
5841                         /* If there is hot_add_disk but no hot_remove_disk
5842                          * then added disks for geometry changes,
5843                          * and should be added immediately.
5844                          */
5845                         super_types[mddev->major_version].
5846                                 validate_super(mddev, rdev);
5847                         err = mddev->pers->hot_add_disk(mddev, rdev);
5848                         if (err)
5849                                 unbind_rdev_from_array(rdev);
5850                 }
5851                 if (err)
5852                         export_rdev(rdev);
5853                 else
5854                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5855
5856                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5857                 if (mddev->degraded)
5858                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5859                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5860                 if (!err)
5861                         md_new_event(mddev);
5862                 md_wakeup_thread(mddev->thread);
5863                 return err;
5864         }
5865
5866         /* otherwise, add_new_disk is only allowed
5867          * for major_version==0 superblocks
5868          */
5869         if (mddev->major_version != 0) {
5870                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5871                        mdname(mddev));
5872                 return -EINVAL;
5873         }
5874
5875         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5876                 int err;
5877                 rdev = md_import_device(dev, -1, 0);
5878                 if (IS_ERR(rdev)) {
5879                         printk(KERN_WARNING 
5880                                 "md: error, md_import_device() returned %ld\n",
5881                                 PTR_ERR(rdev));
5882                         return PTR_ERR(rdev);
5883                 }
5884                 rdev->desc_nr = info->number;
5885                 if (info->raid_disk < mddev->raid_disks)
5886                         rdev->raid_disk = info->raid_disk;
5887                 else
5888                         rdev->raid_disk = -1;
5889
5890                 if (rdev->raid_disk < mddev->raid_disks)
5891                         if (info->state & (1<<MD_DISK_SYNC))
5892                                 set_bit(In_sync, &rdev->flags);
5893
5894                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5895                         set_bit(WriteMostly, &rdev->flags);
5896
5897                 if (!mddev->persistent) {
5898                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5899                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5900                 } else
5901                         rdev->sb_start = calc_dev_sboffset(rdev);
5902                 rdev->sectors = rdev->sb_start;
5903
5904                 err = bind_rdev_to_array(rdev, mddev);
5905                 if (err) {
5906                         export_rdev(rdev);
5907                         return err;
5908                 }
5909         }
5910
5911         return 0;
5912 }
5913
5914 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5915 {
5916         char b[BDEVNAME_SIZE];
5917         struct md_rdev *rdev;
5918
5919         rdev = find_rdev(mddev, dev);
5920         if (!rdev)
5921                 return -ENXIO;
5922
5923         clear_bit(Blocked, &rdev->flags);
5924         remove_and_add_spares(mddev, rdev);
5925
5926         if (rdev->raid_disk >= 0)
5927                 goto busy;
5928
5929         kick_rdev_from_array(rdev);
5930         md_update_sb(mddev, 1);
5931         md_new_event(mddev);
5932
5933         return 0;
5934 busy:
5935         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5936                 bdevname(rdev->bdev,b), mdname(mddev));
5937         return -EBUSY;
5938 }
5939
5940 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5941 {
5942         char b[BDEVNAME_SIZE];
5943         int err;
5944         struct md_rdev *rdev;
5945
5946         if (!mddev->pers)
5947                 return -ENODEV;
5948
5949         if (mddev->major_version != 0) {
5950                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5951                         " version-0 superblocks.\n",
5952                         mdname(mddev));
5953                 return -EINVAL;
5954         }
5955         if (!mddev->pers->hot_add_disk) {
5956                 printk(KERN_WARNING 
5957                         "%s: personality does not support diskops!\n",
5958                         mdname(mddev));
5959                 return -EINVAL;
5960         }
5961
5962         rdev = md_import_device(dev, -1, 0);
5963         if (IS_ERR(rdev)) {
5964                 printk(KERN_WARNING 
5965                         "md: error, md_import_device() returned %ld\n",
5966                         PTR_ERR(rdev));
5967                 return -EINVAL;
5968         }
5969
5970         if (mddev->persistent)
5971                 rdev->sb_start = calc_dev_sboffset(rdev);
5972         else
5973                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5974
5975         rdev->sectors = rdev->sb_start;
5976
5977         if (test_bit(Faulty, &rdev->flags)) {
5978                 printk(KERN_WARNING 
5979                         "md: can not hot-add faulty %s disk to %s!\n",
5980                         bdevname(rdev->bdev,b), mdname(mddev));
5981                 err = -EINVAL;
5982                 goto abort_export;
5983         }
5984         clear_bit(In_sync, &rdev->flags);
5985         rdev->desc_nr = -1;
5986         rdev->saved_raid_disk = -1;
5987         err = bind_rdev_to_array(rdev, mddev);
5988         if (err)
5989                 goto abort_export;
5990
5991         /*
5992          * The rest should better be atomic, we can have disk failures
5993          * noticed in interrupt contexts ...
5994          */
5995
5996         rdev->raid_disk = -1;
5997
5998         md_update_sb(mddev, 1);
5999
6000         /*
6001          * Kick recovery, maybe this spare has to be added to the
6002          * array immediately.
6003          */
6004         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6005         md_wakeup_thread(mddev->thread);
6006         md_new_event(mddev);
6007         return 0;
6008
6009 abort_export:
6010         export_rdev(rdev);
6011         return err;
6012 }
6013
6014 static int set_bitmap_file(struct mddev *mddev, int fd)
6015 {
6016         int err;
6017
6018         if (mddev->pers) {
6019                 if (!mddev->pers->quiesce)
6020                         return -EBUSY;
6021                 if (mddev->recovery || mddev->sync_thread)
6022                         return -EBUSY;
6023                 /* we should be able to change the bitmap.. */
6024         }
6025
6026
6027         if (fd >= 0) {
6028                 if (mddev->bitmap)
6029                         return -EEXIST; /* cannot add when bitmap is present */
6030                 mddev->bitmap_info.file = fget(fd);
6031
6032                 if (mddev->bitmap_info.file == NULL) {
6033                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6034                                mdname(mddev));
6035                         return -EBADF;
6036                 }
6037
6038                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6039                 if (err) {
6040                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6041                                mdname(mddev));
6042                         fput(mddev->bitmap_info.file);
6043                         mddev->bitmap_info.file = NULL;
6044                         return err;
6045                 }
6046                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6047         } else if (mddev->bitmap == NULL)
6048                 return -ENOENT; /* cannot remove what isn't there */
6049         err = 0;
6050         if (mddev->pers) {
6051                 mddev->pers->quiesce(mddev, 1);
6052                 if (fd >= 0) {
6053                         err = bitmap_create(mddev);
6054                         if (!err)
6055                                 err = bitmap_load(mddev);
6056                 }
6057                 if (fd < 0 || err) {
6058                         bitmap_destroy(mddev);
6059                         fd = -1; /* make sure to put the file */
6060                 }
6061                 mddev->pers->quiesce(mddev, 0);
6062         }
6063         if (fd < 0) {
6064                 if (mddev->bitmap_info.file) {
6065                         restore_bitmap_write_access(mddev->bitmap_info.file);
6066                         fput(mddev->bitmap_info.file);
6067                 }
6068                 mddev->bitmap_info.file = NULL;
6069         }
6070
6071         return err;
6072 }
6073
6074 /*
6075  * set_array_info is used two different ways
6076  * The original usage is when creating a new array.
6077  * In this usage, raid_disks is > 0 and it together with
6078  *  level, size, not_persistent,layout,chunksize determine the
6079  *  shape of the array.
6080  *  This will always create an array with a type-0.90.0 superblock.
6081  * The newer usage is when assembling an array.
6082  *  In this case raid_disks will be 0, and the major_version field is
6083  *  use to determine which style super-blocks are to be found on the devices.
6084  *  The minor and patch _version numbers are also kept incase the
6085  *  super_block handler wishes to interpret them.
6086  */
6087 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6088 {
6089
6090         if (info->raid_disks == 0) {
6091                 /* just setting version number for superblock loading */
6092                 if (info->major_version < 0 ||
6093                     info->major_version >= ARRAY_SIZE(super_types) ||
6094                     super_types[info->major_version].name == NULL) {
6095                         /* maybe try to auto-load a module? */
6096                         printk(KERN_INFO 
6097                                 "md: superblock version %d not known\n",
6098                                 info->major_version);
6099                         return -EINVAL;
6100                 }
6101                 mddev->major_version = info->major_version;
6102                 mddev->minor_version = info->minor_version;
6103                 mddev->patch_version = info->patch_version;
6104                 mddev->persistent = !info->not_persistent;
6105                 /* ensure mddev_put doesn't delete this now that there
6106                  * is some minimal configuration.
6107                  */
6108                 mddev->ctime         = get_seconds();
6109                 return 0;
6110         }
6111         mddev->major_version = MD_MAJOR_VERSION;
6112         mddev->minor_version = MD_MINOR_VERSION;
6113         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6114         mddev->ctime         = get_seconds();
6115
6116         mddev->level         = info->level;
6117         mddev->clevel[0]     = 0;
6118         mddev->dev_sectors   = 2 * (sector_t)info->size;
6119         mddev->raid_disks    = info->raid_disks;
6120         /* don't set md_minor, it is determined by which /dev/md* was
6121          * openned
6122          */
6123         if (info->state & (1<<MD_SB_CLEAN))
6124                 mddev->recovery_cp = MaxSector;
6125         else
6126                 mddev->recovery_cp = 0;
6127         mddev->persistent    = ! info->not_persistent;
6128         mddev->external      = 0;
6129
6130         mddev->layout        = info->layout;
6131         mddev->chunk_sectors = info->chunk_size >> 9;
6132
6133         mddev->max_disks     = MD_SB_DISKS;
6134
6135         if (mddev->persistent)
6136                 mddev->flags         = 0;
6137         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6138
6139         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6140         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6141         mddev->bitmap_info.offset = 0;
6142
6143         mddev->reshape_position = MaxSector;
6144
6145         /*
6146          * Generate a 128 bit UUID
6147          */
6148         get_random_bytes(mddev->uuid, 16);
6149
6150         mddev->new_level = mddev->level;
6151         mddev->new_chunk_sectors = mddev->chunk_sectors;
6152         mddev->new_layout = mddev->layout;
6153         mddev->delta_disks = 0;
6154         mddev->reshape_backwards = 0;
6155
6156         return 0;
6157 }
6158
6159 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6160 {
6161         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6162
6163         if (mddev->external_size)
6164                 return;
6165
6166         mddev->array_sectors = array_sectors;
6167 }
6168 EXPORT_SYMBOL(md_set_array_sectors);
6169
6170 static int update_size(struct mddev *mddev, sector_t num_sectors)
6171 {
6172         struct md_rdev *rdev;
6173         int rv;
6174         int fit = (num_sectors == 0);
6175
6176         if (mddev->pers->resize == NULL)
6177                 return -EINVAL;
6178         /* The "num_sectors" is the number of sectors of each device that
6179          * is used.  This can only make sense for arrays with redundancy.
6180          * linear and raid0 always use whatever space is available. We can only
6181          * consider changing this number if no resync or reconstruction is
6182          * happening, and if the new size is acceptable. It must fit before the
6183          * sb_start or, if that is <data_offset, it must fit before the size
6184          * of each device.  If num_sectors is zero, we find the largest size
6185          * that fits.
6186          */
6187         if (mddev->sync_thread)
6188                 return -EBUSY;
6189
6190         rdev_for_each(rdev, mddev) {
6191                 sector_t avail = rdev->sectors;
6192
6193                 if (fit && (num_sectors == 0 || num_sectors > avail))
6194                         num_sectors = avail;
6195                 if (avail < num_sectors)
6196                         return -ENOSPC;
6197         }
6198         rv = mddev->pers->resize(mddev, num_sectors);
6199         if (!rv)
6200                 revalidate_disk(mddev->gendisk);
6201         return rv;
6202 }
6203
6204 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6205 {
6206         int rv;
6207         struct md_rdev *rdev;
6208         /* change the number of raid disks */
6209         if (mddev->pers->check_reshape == NULL)
6210                 return -EINVAL;
6211         if (raid_disks <= 0 ||
6212             (mddev->max_disks && raid_disks >= mddev->max_disks))
6213                 return -EINVAL;
6214         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6215                 return -EBUSY;
6216
6217         rdev_for_each(rdev, mddev) {
6218                 if (mddev->raid_disks < raid_disks &&
6219                     rdev->data_offset < rdev->new_data_offset)
6220                         return -EINVAL;
6221                 if (mddev->raid_disks > raid_disks &&
6222                     rdev->data_offset > rdev->new_data_offset)
6223                         return -EINVAL;
6224         }
6225
6226         mddev->delta_disks = raid_disks - mddev->raid_disks;
6227         if (mddev->delta_disks < 0)
6228                 mddev->reshape_backwards = 1;
6229         else if (mddev->delta_disks > 0)
6230                 mddev->reshape_backwards = 0;
6231
6232         rv = mddev->pers->check_reshape(mddev);
6233         if (rv < 0) {
6234                 mddev->delta_disks = 0;
6235                 mddev->reshape_backwards = 0;
6236         }
6237         return rv;
6238 }
6239
6240
6241 /*
6242  * update_array_info is used to change the configuration of an
6243  * on-line array.
6244  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6245  * fields in the info are checked against the array.
6246  * Any differences that cannot be handled will cause an error.
6247  * Normally, only one change can be managed at a time.
6248  */
6249 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6250 {
6251         int rv = 0;
6252         int cnt = 0;
6253         int state = 0;
6254
6255         /* calculate expected state,ignoring low bits */
6256         if (mddev->bitmap && mddev->bitmap_info.offset)
6257                 state |= (1 << MD_SB_BITMAP_PRESENT);
6258
6259         if (mddev->major_version != info->major_version ||
6260             mddev->minor_version != info->minor_version ||
6261 /*          mddev->patch_version != info->patch_version || */
6262             mddev->ctime         != info->ctime         ||
6263             mddev->level         != info->level         ||
6264 /*          mddev->layout        != info->layout        || */
6265             !mddev->persistent   != info->not_persistent||
6266             mddev->chunk_sectors != info->chunk_size >> 9 ||
6267             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6268             ((state^info->state) & 0xfffffe00)
6269                 )
6270                 return -EINVAL;
6271         /* Check there is only one change */
6272         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6273                 cnt++;
6274         if (mddev->raid_disks != info->raid_disks)
6275                 cnt++;
6276         if (mddev->layout != info->layout)
6277                 cnt++;
6278         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6279                 cnt++;
6280         if (cnt == 0)
6281                 return 0;
6282         if (cnt > 1)
6283                 return -EINVAL;
6284
6285         if (mddev->layout != info->layout) {
6286                 /* Change layout
6287                  * we don't need to do anything at the md level, the
6288                  * personality will take care of it all.
6289                  */
6290                 if (mddev->pers->check_reshape == NULL)
6291                         return -EINVAL;
6292                 else {
6293                         mddev->new_layout = info->layout;
6294                         rv = mddev->pers->check_reshape(mddev);
6295                         if (rv)
6296                                 mddev->new_layout = mddev->layout;
6297                         return rv;
6298                 }
6299         }
6300         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6301                 rv = update_size(mddev, (sector_t)info->size * 2);
6302
6303         if (mddev->raid_disks    != info->raid_disks)
6304                 rv = update_raid_disks(mddev, info->raid_disks);
6305
6306         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6307                 if (mddev->pers->quiesce == NULL)
6308                         return -EINVAL;
6309                 if (mddev->recovery || mddev->sync_thread)
6310                         return -EBUSY;
6311                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6312                         /* add the bitmap */
6313                         if (mddev->bitmap)
6314                                 return -EEXIST;
6315                         if (mddev->bitmap_info.default_offset == 0)
6316                                 return -EINVAL;
6317                         mddev->bitmap_info.offset =
6318                                 mddev->bitmap_info.default_offset;
6319                         mddev->bitmap_info.space =
6320                                 mddev->bitmap_info.default_space;
6321                         mddev->pers->quiesce(mddev, 1);
6322                         rv = bitmap_create(mddev);
6323                         if (!rv)
6324                                 rv = bitmap_load(mddev);
6325                         if (rv)
6326                                 bitmap_destroy(mddev);
6327                         mddev->pers->quiesce(mddev, 0);
6328                 } else {
6329                         /* remove the bitmap */
6330                         if (!mddev->bitmap)
6331                                 return -ENOENT;
6332                         if (mddev->bitmap->storage.file)
6333                                 return -EINVAL;
6334                         mddev->pers->quiesce(mddev, 1);
6335                         bitmap_destroy(mddev);
6336                         mddev->pers->quiesce(mddev, 0);
6337                         mddev->bitmap_info.offset = 0;
6338                 }
6339         }
6340         md_update_sb(mddev, 1);
6341         return rv;
6342 }
6343
6344 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6345 {
6346         struct md_rdev *rdev;
6347         int err = 0;
6348
6349         if (mddev->pers == NULL)
6350                 return -ENODEV;
6351
6352         rcu_read_lock();
6353         rdev = find_rdev_rcu(mddev, dev);
6354         if (!rdev)
6355                 err =  -ENODEV;
6356         else {
6357                 md_error(mddev, rdev);
6358                 if (!test_bit(Faulty, &rdev->flags))
6359                         err = -EBUSY;
6360         }
6361         rcu_read_unlock();
6362         return err;
6363 }
6364
6365 /*
6366  * We have a problem here : there is no easy way to give a CHS
6367  * virtual geometry. We currently pretend that we have a 2 heads
6368  * 4 sectors (with a BIG number of cylinders...). This drives
6369  * dosfs just mad... ;-)
6370  */
6371 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6372 {
6373         struct mddev *mddev = bdev->bd_disk->private_data;
6374
6375         geo->heads = 2;
6376         geo->sectors = 4;
6377         geo->cylinders = mddev->array_sectors / 8;
6378         return 0;
6379 }
6380
6381 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6382                         unsigned int cmd, unsigned long arg)
6383 {
6384         int err = 0;
6385         void __user *argp = (void __user *)arg;
6386         struct mddev *mddev = NULL;
6387         int ro;
6388
6389         switch (cmd) {
6390         case RAID_VERSION:
6391         case GET_ARRAY_INFO:
6392         case GET_DISK_INFO:
6393                 break;
6394         default:
6395                 if (!capable(CAP_SYS_ADMIN))
6396                         return -EACCES;
6397         }
6398
6399         /*
6400          * Commands dealing with the RAID driver but not any
6401          * particular array:
6402          */
6403         switch (cmd) {
6404         case RAID_VERSION:
6405                 err = get_version(argp);
6406                 goto done;
6407
6408         case PRINT_RAID_DEBUG:
6409                 err = 0;
6410                 md_print_devices();
6411                 goto done;
6412
6413 #ifndef MODULE
6414         case RAID_AUTORUN:
6415                 err = 0;
6416                 autostart_arrays(arg);
6417                 goto done;
6418 #endif
6419         default:;
6420         }
6421
6422         /*
6423          * Commands creating/starting a new array:
6424          */
6425
6426         mddev = bdev->bd_disk->private_data;
6427
6428         if (!mddev) {
6429                 BUG();
6430                 goto abort;
6431         }
6432
6433         /* Some actions do not requires the mutex */
6434         switch (cmd) {
6435         case GET_ARRAY_INFO:
6436                 if (!mddev->raid_disks && !mddev->external)
6437                         err = -ENODEV;
6438                 else
6439                         err = get_array_info(mddev, argp);
6440                 goto abort;
6441
6442         case GET_DISK_INFO:
6443                 if (!mddev->raid_disks && !mddev->external)
6444                         err = -ENODEV;
6445                 else
6446                         err = get_disk_info(mddev, argp);
6447                 goto abort;
6448
6449         case SET_DISK_FAULTY:
6450                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6451                 goto abort;
6452         }
6453
6454         if (cmd == ADD_NEW_DISK)
6455                 /* need to ensure md_delayed_delete() has completed */
6456                 flush_workqueue(md_misc_wq);
6457
6458         if (cmd == HOT_REMOVE_DISK)
6459                 /* need to ensure recovery thread has run */
6460                 wait_event_interruptible_timeout(mddev->sb_wait,
6461                                                  !test_bit(MD_RECOVERY_NEEDED,
6462                                                            &mddev->flags),
6463                                                  msecs_to_jiffies(5000));
6464         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6465                 /* Need to flush page cache, and ensure no-one else opens
6466                  * and writes
6467                  */
6468                 mutex_lock(&mddev->open_mutex);
6469                 if (atomic_read(&mddev->openers) > 1) {
6470                         mutex_unlock(&mddev->open_mutex);
6471                         err = -EBUSY;
6472                         goto abort;
6473                 }
6474                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6475                 mutex_unlock(&mddev->open_mutex);
6476                 sync_blockdev(bdev);
6477         }
6478         err = mddev_lock(mddev);
6479         if (err) {
6480                 printk(KERN_INFO 
6481                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6482                         err, cmd);
6483                 goto abort;
6484         }
6485
6486         if (cmd == SET_ARRAY_INFO) {
6487                 mdu_array_info_t info;
6488                 if (!arg)
6489                         memset(&info, 0, sizeof(info));
6490                 else if (copy_from_user(&info, argp, sizeof(info))) {
6491                         err = -EFAULT;
6492                         goto abort_unlock;
6493                 }
6494                 if (mddev->pers) {
6495                         err = update_array_info(mddev, &info);
6496                         if (err) {
6497                                 printk(KERN_WARNING "md: couldn't update"
6498                                        " array info. %d\n", err);
6499                                 goto abort_unlock;
6500                         }
6501                         goto done_unlock;
6502                 }
6503                 if (!list_empty(&mddev->disks)) {
6504                         printk(KERN_WARNING
6505                                "md: array %s already has disks!\n",
6506                                mdname(mddev));
6507                         err = -EBUSY;
6508                         goto abort_unlock;
6509                 }
6510                 if (mddev->raid_disks) {
6511                         printk(KERN_WARNING
6512                                "md: array %s already initialised!\n",
6513                                mdname(mddev));
6514                         err = -EBUSY;
6515                         goto abort_unlock;
6516                 }
6517                 err = set_array_info(mddev, &info);
6518                 if (err) {
6519                         printk(KERN_WARNING "md: couldn't set"
6520                                " array info. %d\n", err);
6521                         goto abort_unlock;
6522                 }
6523                 goto done_unlock;
6524         }
6525
6526         /*
6527          * Commands querying/configuring an existing array:
6528          */
6529         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6530          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6531         if ((!mddev->raid_disks && !mddev->external)
6532             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6533             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6534             && cmd != GET_BITMAP_FILE) {
6535                 err = -ENODEV;
6536                 goto abort_unlock;
6537         }
6538
6539         /*
6540          * Commands even a read-only array can execute:
6541          */
6542         switch (cmd) {
6543         case GET_BITMAP_FILE:
6544                 err = get_bitmap_file(mddev, argp);
6545                 goto done_unlock;
6546
6547         case RESTART_ARRAY_RW:
6548                 err = restart_array(mddev);
6549                 goto done_unlock;
6550
6551         case STOP_ARRAY:
6552                 err = do_md_stop(mddev, 0, bdev);
6553                 goto done_unlock;
6554
6555         case STOP_ARRAY_RO:
6556                 err = md_set_readonly(mddev, bdev);
6557                 goto done_unlock;
6558
6559         case HOT_REMOVE_DISK:
6560                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6561                 goto done_unlock;
6562
6563         case ADD_NEW_DISK:
6564                 /* We can support ADD_NEW_DISK on read-only arrays
6565                  * on if we are re-adding a preexisting device.
6566                  * So require mddev->pers and MD_DISK_SYNC.
6567                  */
6568                 if (mddev->pers) {
6569                         mdu_disk_info_t info;
6570                         if (copy_from_user(&info, argp, sizeof(info)))
6571                                 err = -EFAULT;
6572                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6573                                 /* Need to clear read-only for this */
6574                                 break;
6575                         else
6576                                 err = add_new_disk(mddev, &info);
6577                         goto done_unlock;
6578                 }
6579                 break;
6580
6581         case BLKROSET:
6582                 if (get_user(ro, (int __user *)(arg))) {
6583                         err = -EFAULT;
6584                         goto done_unlock;
6585                 }
6586                 err = -EINVAL;
6587
6588                 /* if the bdev is going readonly the value of mddev->ro
6589                  * does not matter, no writes are coming
6590                  */
6591                 if (ro)
6592                         goto done_unlock;
6593
6594                 /* are we are already prepared for writes? */
6595                 if (mddev->ro != 1)
6596                         goto done_unlock;
6597
6598                 /* transitioning to readauto need only happen for
6599                  * arrays that call md_write_start
6600                  */
6601                 if (mddev->pers) {
6602                         err = restart_array(mddev);
6603                         if (err == 0) {
6604                                 mddev->ro = 2;
6605                                 set_disk_ro(mddev->gendisk, 0);
6606                         }
6607                 }
6608                 goto done_unlock;
6609         }
6610
6611         /*
6612          * The remaining ioctls are changing the state of the
6613          * superblock, so we do not allow them on read-only arrays.
6614          * However non-MD ioctls (e.g. get-size) will still come through
6615          * here and hit the 'default' below, so only disallow
6616          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6617          */
6618         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6619                 if (mddev->ro == 2) {
6620                         mddev->ro = 0;
6621                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6622                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6623                         /* mddev_unlock will wake thread */
6624                         /* If a device failed while we were read-only, we
6625                          * need to make sure the metadata is updated now.
6626                          */
6627                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6628                                 mddev_unlock(mddev);
6629                                 wait_event(mddev->sb_wait,
6630                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6631                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6632                                 mddev_lock_nointr(mddev);
6633                         }
6634                 } else {
6635                         err = -EROFS;
6636                         goto abort_unlock;
6637                 }
6638         }
6639
6640         switch (cmd) {
6641         case ADD_NEW_DISK:
6642         {
6643                 mdu_disk_info_t info;
6644                 if (copy_from_user(&info, argp, sizeof(info)))
6645                         err = -EFAULT;
6646                 else
6647                         err = add_new_disk(mddev, &info);
6648                 goto done_unlock;
6649         }
6650
6651         case HOT_ADD_DISK:
6652                 err = hot_add_disk(mddev, new_decode_dev(arg));
6653                 goto done_unlock;
6654
6655         case RUN_ARRAY:
6656                 err = do_md_run(mddev);
6657                 goto done_unlock;
6658
6659         case SET_BITMAP_FILE:
6660                 err = set_bitmap_file(mddev, (int)arg);
6661                 goto done_unlock;
6662
6663         default:
6664                 err = -EINVAL;
6665                 goto abort_unlock;
6666         }
6667
6668 done_unlock:
6669 abort_unlock:
6670         if (mddev->hold_active == UNTIL_IOCTL &&
6671             err != -EINVAL)
6672                 mddev->hold_active = 0;
6673         mddev_unlock(mddev);
6674
6675         return err;
6676 done:
6677         if (err)
6678                 MD_BUG();
6679 abort:
6680         return err;
6681 }
6682 #ifdef CONFIG_COMPAT
6683 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6684                     unsigned int cmd, unsigned long arg)
6685 {
6686         switch (cmd) {
6687         case HOT_REMOVE_DISK:
6688         case HOT_ADD_DISK:
6689         case SET_DISK_FAULTY:
6690         case SET_BITMAP_FILE:
6691                 /* These take in integer arg, do not convert */
6692                 break;
6693         default:
6694                 arg = (unsigned long)compat_ptr(arg);
6695                 break;
6696         }
6697
6698         return md_ioctl(bdev, mode, cmd, arg);
6699 }
6700 #endif /* CONFIG_COMPAT */
6701
6702 static int md_open(struct block_device *bdev, fmode_t mode)
6703 {
6704         /*
6705          * Succeed if we can lock the mddev, which confirms that
6706          * it isn't being stopped right now.
6707          */
6708         struct mddev *mddev = mddev_find(bdev->bd_dev);
6709         int err;
6710
6711         if (!mddev)
6712                 return -ENODEV;
6713
6714         if (mddev->gendisk != bdev->bd_disk) {
6715                 /* we are racing with mddev_put which is discarding this
6716                  * bd_disk.
6717                  */
6718                 mddev_put(mddev);
6719                 /* Wait until bdev->bd_disk is definitely gone */
6720                 flush_workqueue(md_misc_wq);
6721                 /* Then retry the open from the top */
6722                 return -ERESTARTSYS;
6723         }
6724         BUG_ON(mddev != bdev->bd_disk->private_data);
6725
6726         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6727                 goto out;
6728
6729         err = 0;
6730         atomic_inc(&mddev->openers);
6731         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6732         mutex_unlock(&mddev->open_mutex);
6733
6734         check_disk_change(bdev);
6735  out:
6736         return err;
6737 }
6738
6739 static void md_release(struct gendisk *disk, fmode_t mode)
6740 {
6741         struct mddev *mddev = disk->private_data;
6742
6743         BUG_ON(!mddev);
6744         atomic_dec(&mddev->openers);
6745         mddev_put(mddev);
6746 }
6747
6748 static int md_media_changed(struct gendisk *disk)
6749 {
6750         struct mddev *mddev = disk->private_data;
6751
6752         return mddev->changed;
6753 }
6754
6755 static int md_revalidate(struct gendisk *disk)
6756 {
6757         struct mddev *mddev = disk->private_data;
6758
6759         mddev->changed = 0;
6760         return 0;
6761 }
6762 static const struct block_device_operations md_fops =
6763 {
6764         .owner          = THIS_MODULE,
6765         .open           = md_open,
6766         .release        = md_release,
6767         .ioctl          = md_ioctl,
6768 #ifdef CONFIG_COMPAT
6769         .compat_ioctl   = md_compat_ioctl,
6770 #endif
6771         .getgeo         = md_getgeo,
6772         .media_changed  = md_media_changed,
6773         .revalidate_disk= md_revalidate,
6774 };
6775
6776 static int md_thread(void * arg)
6777 {
6778         struct md_thread *thread = arg;
6779
6780         /*
6781          * md_thread is a 'system-thread', it's priority should be very
6782          * high. We avoid resource deadlocks individually in each
6783          * raid personality. (RAID5 does preallocation) We also use RR and
6784          * the very same RT priority as kswapd, thus we will never get
6785          * into a priority inversion deadlock.
6786          *
6787          * we definitely have to have equal or higher priority than
6788          * bdflush, otherwise bdflush will deadlock if there are too
6789          * many dirty RAID5 blocks.
6790          */
6791
6792         allow_signal(SIGKILL);
6793         while (!kthread_should_stop()) {
6794
6795                 /* We need to wait INTERRUPTIBLE so that
6796                  * we don't add to the load-average.
6797                  * That means we need to be sure no signals are
6798                  * pending
6799                  */
6800                 if (signal_pending(current))
6801                         flush_signals(current);
6802
6803                 wait_event_interruptible_timeout
6804                         (thread->wqueue,
6805                          test_bit(THREAD_WAKEUP, &thread->flags)
6806                          || kthread_should_stop(),
6807                          thread->timeout);
6808
6809                 clear_bit(THREAD_WAKEUP, &thread->flags);
6810                 if (!kthread_should_stop())
6811                         thread->run(thread);
6812         }
6813
6814         return 0;
6815 }
6816
6817 void md_wakeup_thread(struct md_thread *thread)
6818 {
6819         if (thread) {
6820                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6821                 set_bit(THREAD_WAKEUP, &thread->flags);
6822                 wake_up(&thread->wqueue);
6823         }
6824 }
6825
6826 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6827                 struct mddev *mddev, const char *name)
6828 {
6829         struct md_thread *thread;
6830
6831         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6832         if (!thread)
6833                 return NULL;
6834
6835         init_waitqueue_head(&thread->wqueue);
6836
6837         thread->run = run;
6838         thread->mddev = mddev;
6839         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6840         thread->tsk = kthread_run(md_thread, thread,
6841                                   "%s_%s",
6842                                   mdname(thread->mddev),
6843                                   name);
6844         if (IS_ERR(thread->tsk)) {
6845                 kfree(thread);
6846                 return NULL;
6847         }
6848         return thread;
6849 }
6850
6851 void md_unregister_thread(struct md_thread **threadp)
6852 {
6853         struct md_thread *thread = *threadp;
6854         if (!thread)
6855                 return;
6856         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6857         /* Locking ensures that mddev_unlock does not wake_up a
6858          * non-existent thread
6859          */
6860         spin_lock(&pers_lock);
6861         *threadp = NULL;
6862         spin_unlock(&pers_lock);
6863
6864         kthread_stop(thread->tsk);
6865         kfree(thread);
6866 }
6867
6868 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6869 {
6870         if (!mddev) {
6871                 MD_BUG();
6872                 return;
6873         }
6874
6875         if (!rdev || test_bit(Faulty, &rdev->flags))
6876                 return;
6877
6878         if (!mddev->pers || !mddev->pers->error_handler)
6879                 return;
6880         mddev->pers->error_handler(mddev,rdev);
6881         if (mddev->degraded)
6882                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6883         sysfs_notify_dirent_safe(rdev->sysfs_state);
6884         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6885         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6886         md_wakeup_thread(mddev->thread);
6887         if (mddev->event_work.func)
6888                 queue_work(md_misc_wq, &mddev->event_work);
6889         md_new_event_inintr(mddev);
6890 }
6891
6892 /* seq_file implementation /proc/mdstat */
6893
6894 static void status_unused(struct seq_file *seq)
6895 {
6896         int i = 0;
6897         struct md_rdev *rdev;
6898
6899         seq_printf(seq, "unused devices: ");
6900
6901         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6902                 char b[BDEVNAME_SIZE];
6903                 i++;
6904                 seq_printf(seq, "%s ",
6905                               bdevname(rdev->bdev,b));
6906         }
6907         if (!i)
6908                 seq_printf(seq, "<none>");
6909
6910         seq_printf(seq, "\n");
6911 }
6912
6913
6914 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6915 {
6916         sector_t max_sectors, resync, res;
6917         unsigned long dt, db;
6918         sector_t rt;
6919         int scale;
6920         unsigned int per_milli;
6921
6922         if (mddev->curr_resync <= 3)
6923                 resync = 0;
6924         else
6925                 resync = mddev->curr_resync
6926                         - atomic_read(&mddev->recovery_active);
6927
6928         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6929             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6930                 max_sectors = mddev->resync_max_sectors;
6931         else
6932                 max_sectors = mddev->dev_sectors;
6933
6934         /*
6935          * Should not happen.
6936          */
6937         if (!max_sectors) {
6938                 MD_BUG();
6939                 return;
6940         }
6941         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6942          * in a sector_t, and (max_sectors>>scale) will fit in a
6943          * u32, as those are the requirements for sector_div.
6944          * Thus 'scale' must be at least 10
6945          */
6946         scale = 10;
6947         if (sizeof(sector_t) > sizeof(unsigned long)) {
6948                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6949                         scale++;
6950         }
6951         res = (resync>>scale)*1000;
6952         sector_div(res, (u32)((max_sectors>>scale)+1));
6953
6954         per_milli = res;
6955         {
6956                 int i, x = per_milli/50, y = 20-x;
6957                 seq_printf(seq, "[");
6958                 for (i = 0; i < x; i++)
6959                         seq_printf(seq, "=");
6960                 seq_printf(seq, ">");
6961                 for (i = 0; i < y; i++)
6962                         seq_printf(seq, ".");
6963                 seq_printf(seq, "] ");
6964         }
6965         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6966                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6967                     "reshape" :
6968                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6969                      "check" :
6970                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6971                       "resync" : "recovery"))),
6972                    per_milli/10, per_milli % 10,
6973                    (unsigned long long) resync/2,
6974                    (unsigned long long) max_sectors/2);
6975
6976         /*
6977          * dt: time from mark until now
6978          * db: blocks written from mark until now
6979          * rt: remaining time
6980          *
6981          * rt is a sector_t, so could be 32bit or 64bit.
6982          * So we divide before multiply in case it is 32bit and close
6983          * to the limit.
6984          * We scale the divisor (db) by 32 to avoid losing precision
6985          * near the end of resync when the number of remaining sectors
6986          * is close to 'db'.
6987          * We then divide rt by 32 after multiplying by db to compensate.
6988          * The '+1' avoids division by zero if db is very small.
6989          */
6990         dt = ((jiffies - mddev->resync_mark) / HZ);
6991         if (!dt) dt++;
6992         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6993                 - mddev->resync_mark_cnt;
6994
6995         rt = max_sectors - resync;    /* number of remaining sectors */
6996         sector_div(rt, db/32+1);
6997         rt *= dt;
6998         rt >>= 5;
6999
7000         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7001                    ((unsigned long)rt % 60)/6);
7002
7003         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7004 }
7005
7006 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7007 {
7008         struct list_head *tmp;
7009         loff_t l = *pos;
7010         struct mddev *mddev;
7011
7012         if (l >= 0x10000)
7013                 return NULL;
7014         if (!l--)
7015                 /* header */
7016                 return (void*)1;
7017
7018         spin_lock(&all_mddevs_lock);
7019         list_for_each(tmp,&all_mddevs)
7020                 if (!l--) {
7021                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7022                         mddev_get(mddev);
7023                         spin_unlock(&all_mddevs_lock);
7024                         return mddev;
7025                 }
7026         spin_unlock(&all_mddevs_lock);
7027         if (!l--)
7028                 return (void*)2;/* tail */
7029         return NULL;
7030 }
7031
7032 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7033 {
7034         struct list_head *tmp;
7035         struct mddev *next_mddev, *mddev = v;
7036         
7037         ++*pos;
7038         if (v == (void*)2)
7039                 return NULL;
7040
7041         spin_lock(&all_mddevs_lock);
7042         if (v == (void*)1)
7043                 tmp = all_mddevs.next;
7044         else
7045                 tmp = mddev->all_mddevs.next;
7046         if (tmp != &all_mddevs)
7047                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7048         else {
7049                 next_mddev = (void*)2;
7050                 *pos = 0x10000;
7051         }               
7052         spin_unlock(&all_mddevs_lock);
7053
7054         if (v != (void*)1)
7055                 mddev_put(mddev);
7056         return next_mddev;
7057
7058 }
7059
7060 static void md_seq_stop(struct seq_file *seq, void *v)
7061 {
7062         struct mddev *mddev = v;
7063
7064         if (mddev && v != (void*)1 && v != (void*)2)
7065                 mddev_put(mddev);
7066 }
7067
7068 static int md_seq_show(struct seq_file *seq, void *v)
7069 {
7070         struct mddev *mddev = v;
7071         sector_t sectors;
7072         struct md_rdev *rdev;
7073
7074         if (v == (void*)1) {
7075                 struct md_personality *pers;
7076                 seq_printf(seq, "Personalities : ");
7077                 spin_lock(&pers_lock);
7078                 list_for_each_entry(pers, &pers_list, list)
7079                         seq_printf(seq, "[%s] ", pers->name);
7080
7081                 spin_unlock(&pers_lock);
7082                 seq_printf(seq, "\n");
7083                 seq->poll_event = atomic_read(&md_event_count);
7084                 return 0;
7085         }
7086         if (v == (void*)2) {
7087                 status_unused(seq);
7088                 return 0;
7089         }
7090
7091         if (mddev_lock(mddev) < 0)
7092                 return -EINTR;
7093
7094         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7095                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7096                                                 mddev->pers ? "" : "in");
7097                 if (mddev->pers) {
7098                         if (mddev->ro==1)
7099                                 seq_printf(seq, " (read-only)");
7100                         if (mddev->ro==2)
7101                                 seq_printf(seq, " (auto-read-only)");
7102                         seq_printf(seq, " %s", mddev->pers->name);
7103                 }
7104
7105                 sectors = 0;
7106                 rdev_for_each(rdev, mddev) {
7107                         char b[BDEVNAME_SIZE];
7108                         seq_printf(seq, " %s[%d]",
7109                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7110                         if (test_bit(WriteMostly, &rdev->flags))
7111                                 seq_printf(seq, "(W)");
7112                         if (test_bit(Faulty, &rdev->flags)) {
7113                                 seq_printf(seq, "(F)");
7114                                 continue;
7115                         }
7116                         if (rdev->raid_disk < 0)
7117                                 seq_printf(seq, "(S)"); /* spare */
7118                         if (test_bit(Replacement, &rdev->flags))
7119                                 seq_printf(seq, "(R)");
7120                         sectors += rdev->sectors;
7121                 }
7122
7123                 if (!list_empty(&mddev->disks)) {
7124                         if (mddev->pers)
7125                                 seq_printf(seq, "\n      %llu blocks",
7126                                            (unsigned long long)
7127                                            mddev->array_sectors / 2);
7128                         else
7129                                 seq_printf(seq, "\n      %llu blocks",
7130                                            (unsigned long long)sectors / 2);
7131                 }
7132                 if (mddev->persistent) {
7133                         if (mddev->major_version != 0 ||
7134                             mddev->minor_version != 90) {
7135                                 seq_printf(seq," super %d.%d",
7136                                            mddev->major_version,
7137                                            mddev->minor_version);
7138                         }
7139                 } else if (mddev->external)
7140                         seq_printf(seq, " super external:%s",
7141                                    mddev->metadata_type);
7142                 else
7143                         seq_printf(seq, " super non-persistent");
7144
7145                 if (mddev->pers) {
7146                         mddev->pers->status(seq, mddev);
7147                         seq_printf(seq, "\n      ");
7148                         if (mddev->pers->sync_request) {
7149                                 if (mddev->curr_resync > 2) {
7150                                         status_resync(seq, mddev);
7151                                         seq_printf(seq, "\n      ");
7152                                 } else if (mddev->curr_resync >= 1)
7153                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7154                                 else if (mddev->recovery_cp < MaxSector)
7155                                         seq_printf(seq, "\tresync=PENDING\n      ");
7156                         }
7157                 } else
7158                         seq_printf(seq, "\n       ");
7159
7160                 bitmap_status(seq, mddev->bitmap);
7161
7162                 seq_printf(seq, "\n");
7163         }
7164         mddev_unlock(mddev);
7165         
7166         return 0;
7167 }
7168
7169 static const struct seq_operations md_seq_ops = {
7170         .start  = md_seq_start,
7171         .next   = md_seq_next,
7172         .stop   = md_seq_stop,
7173         .show   = md_seq_show,
7174 };
7175
7176 static int md_seq_open(struct inode *inode, struct file *file)
7177 {
7178         struct seq_file *seq;
7179         int error;
7180
7181         error = seq_open(file, &md_seq_ops);
7182         if (error)
7183                 return error;
7184
7185         seq = file->private_data;
7186         seq->poll_event = atomic_read(&md_event_count);
7187         return error;
7188 }
7189
7190 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7191 {
7192         struct seq_file *seq = filp->private_data;
7193         int mask;
7194
7195         poll_wait(filp, &md_event_waiters, wait);
7196
7197         /* always allow read */
7198         mask = POLLIN | POLLRDNORM;
7199
7200         if (seq->poll_event != atomic_read(&md_event_count))
7201                 mask |= POLLERR | POLLPRI;
7202         return mask;
7203 }
7204
7205 static const struct file_operations md_seq_fops = {
7206         .owner          = THIS_MODULE,
7207         .open           = md_seq_open,
7208         .read           = seq_read,
7209         .llseek         = seq_lseek,
7210         .release        = seq_release_private,
7211         .poll           = mdstat_poll,
7212 };
7213
7214 int register_md_personality(struct md_personality *p)
7215 {
7216         spin_lock(&pers_lock);
7217         list_add_tail(&p->list, &pers_list);
7218         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7219         spin_unlock(&pers_lock);
7220         return 0;
7221 }
7222
7223 int unregister_md_personality(struct md_personality *p)
7224 {
7225         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7226         spin_lock(&pers_lock);
7227         list_del_init(&p->list);
7228         spin_unlock(&pers_lock);
7229         return 0;
7230 }
7231
7232 static int is_mddev_idle(struct mddev *mddev, int init)
7233 {
7234         struct md_rdev * rdev;
7235         int idle;
7236         int curr_events;
7237
7238         idle = 1;
7239         rcu_read_lock();
7240         rdev_for_each_rcu(rdev, mddev) {
7241                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7242                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7243                               (int)part_stat_read(&disk->part0, sectors[1]) -
7244                               atomic_read(&disk->sync_io);
7245                 /* sync IO will cause sync_io to increase before the disk_stats
7246                  * as sync_io is counted when a request starts, and
7247                  * disk_stats is counted when it completes.
7248                  * So resync activity will cause curr_events to be smaller than
7249                  * when there was no such activity.
7250                  * non-sync IO will cause disk_stat to increase without
7251                  * increasing sync_io so curr_events will (eventually)
7252                  * be larger than it was before.  Once it becomes
7253                  * substantially larger, the test below will cause
7254                  * the array to appear non-idle, and resync will slow
7255                  * down.
7256                  * If there is a lot of outstanding resync activity when
7257                  * we set last_event to curr_events, then all that activity
7258                  * completing might cause the array to appear non-idle
7259                  * and resync will be slowed down even though there might
7260                  * not have been non-resync activity.  This will only
7261                  * happen once though.  'last_events' will soon reflect
7262                  * the state where there is little or no outstanding
7263                  * resync requests, and further resync activity will
7264                  * always make curr_events less than last_events.
7265                  *
7266                  */
7267                 if (init || curr_events - rdev->last_events > 64) {
7268                         rdev->last_events = curr_events;
7269                         idle = 0;
7270                 }
7271         }
7272         rcu_read_unlock();
7273         return idle;
7274 }
7275
7276 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7277 {
7278         /* another "blocks" (512byte) blocks have been synced */
7279         atomic_sub(blocks, &mddev->recovery_active);
7280         wake_up(&mddev->recovery_wait);
7281         if (!ok) {
7282                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7283                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7284                 md_wakeup_thread(mddev->thread);
7285                 // stop recovery, signal do_sync ....
7286         }
7287 }
7288
7289
7290 /* md_write_start(mddev, bi)
7291  * If we need to update some array metadata (e.g. 'active' flag
7292  * in superblock) before writing, schedule a superblock update
7293  * and wait for it to complete.
7294  */
7295 void md_write_start(struct mddev *mddev, struct bio *bi)
7296 {
7297         int did_change = 0;
7298         if (bio_data_dir(bi) != WRITE)
7299                 return;
7300
7301         BUG_ON(mddev->ro == 1);
7302         if (mddev->ro == 2) {
7303                 /* need to switch to read/write */
7304                 mddev->ro = 0;
7305                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7306                 md_wakeup_thread(mddev->thread);
7307                 md_wakeup_thread(mddev->sync_thread);
7308                 did_change = 1;
7309         }
7310         atomic_inc(&mddev->writes_pending);
7311         if (mddev->safemode == 1)
7312                 mddev->safemode = 0;
7313         if (mddev->in_sync) {
7314                 spin_lock_irq(&mddev->write_lock);
7315                 if (mddev->in_sync) {
7316                         mddev->in_sync = 0;
7317                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7318                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7319                         md_wakeup_thread(mddev->thread);
7320                         did_change = 1;
7321                 }
7322                 spin_unlock_irq(&mddev->write_lock);
7323         }
7324         if (did_change)
7325                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7326         wait_event(mddev->sb_wait,
7327                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7328 }
7329
7330 void md_write_end(struct mddev *mddev)
7331 {
7332         if (atomic_dec_and_test(&mddev->writes_pending)) {
7333                 if (mddev->safemode == 2)
7334                         md_wakeup_thread(mddev->thread);
7335                 else if (mddev->safemode_delay)
7336                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7337         }
7338 }
7339
7340 /* md_allow_write(mddev)
7341  * Calling this ensures that the array is marked 'active' so that writes
7342  * may proceed without blocking.  It is important to call this before
7343  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7344  * Must be called with mddev_lock held.
7345  *
7346  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7347  * is dropped, so return -EAGAIN after notifying userspace.
7348  */
7349 int md_allow_write(struct mddev *mddev)
7350 {
7351         if (!mddev->pers)
7352                 return 0;
7353         if (mddev->ro)
7354                 return 0;
7355         if (!mddev->pers->sync_request)
7356                 return 0;
7357
7358         spin_lock_irq(&mddev->write_lock);
7359         if (mddev->in_sync) {
7360                 mddev->in_sync = 0;
7361                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7362                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7363                 if (mddev->safemode_delay &&
7364                     mddev->safemode == 0)
7365                         mddev->safemode = 1;
7366                 spin_unlock_irq(&mddev->write_lock);
7367                 md_update_sb(mddev, 0);
7368                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7369         } else
7370                 spin_unlock_irq(&mddev->write_lock);
7371
7372         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7373                 return -EAGAIN;
7374         else
7375                 return 0;
7376 }
7377 EXPORT_SYMBOL_GPL(md_allow_write);
7378
7379 #define SYNC_MARKS      10
7380 #define SYNC_MARK_STEP  (3*HZ)
7381 #define UPDATE_FREQUENCY (5*60*HZ)
7382 void md_do_sync(struct md_thread *thread)
7383 {
7384         struct mddev *mddev = thread->mddev;
7385         struct mddev *mddev2;
7386         unsigned int currspeed = 0,
7387                  window;
7388         sector_t max_sectors,j, io_sectors;
7389         unsigned long mark[SYNC_MARKS];
7390         unsigned long update_time;
7391         sector_t mark_cnt[SYNC_MARKS];
7392         int last_mark,m;
7393         struct list_head *tmp;
7394         sector_t last_check;
7395         int skipped = 0;
7396         struct md_rdev *rdev;
7397         char *desc, *action = NULL;
7398         struct blk_plug plug;
7399
7400         /* just incase thread restarts... */
7401         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7402                 return;
7403         if (mddev->ro) /* never try to sync a read-only array */
7404                 return;
7405
7406         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7407                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7408                         desc = "data-check";
7409                         action = "check";
7410                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7411                         desc = "requested-resync";
7412                         action = "repair";
7413                 } else
7414                         desc = "resync";
7415         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7416                 desc = "reshape";
7417         else
7418                 desc = "recovery";
7419
7420         mddev->last_sync_action = action ?: desc;
7421
7422         /* we overload curr_resync somewhat here.
7423          * 0 == not engaged in resync at all
7424          * 2 == checking that there is no conflict with another sync
7425          * 1 == like 2, but have yielded to allow conflicting resync to
7426          *              commense
7427          * other == active in resync - this many blocks
7428          *
7429          * Before starting a resync we must have set curr_resync to
7430          * 2, and then checked that every "conflicting" array has curr_resync
7431          * less than ours.  When we find one that is the same or higher
7432          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7433          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7434          * This will mean we have to start checking from the beginning again.
7435          *
7436          */
7437
7438         do {
7439                 mddev->curr_resync = 2;
7440
7441         try_again:
7442                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7443                         goto skip;
7444                 for_each_mddev(mddev2, tmp) {
7445                         if (mddev2 == mddev)
7446                                 continue;
7447                         if (!mddev->parallel_resync
7448                         &&  mddev2->curr_resync
7449                         &&  match_mddev_units(mddev, mddev2)) {
7450                                 DEFINE_WAIT(wq);
7451                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7452                                         /* arbitrarily yield */
7453                                         mddev->curr_resync = 1;
7454                                         wake_up(&resync_wait);
7455                                 }
7456                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7457                                         /* no need to wait here, we can wait the next
7458                                          * time 'round when curr_resync == 2
7459                                          */
7460                                         continue;
7461                                 /* We need to wait 'interruptible' so as not to
7462                                  * contribute to the load average, and not to
7463                                  * be caught by 'softlockup'
7464                                  */
7465                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7466                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7467                                     mddev2->curr_resync >= mddev->curr_resync) {
7468                                         printk(KERN_INFO "md: delaying %s of %s"
7469                                                " until %s has finished (they"
7470                                                " share one or more physical units)\n",
7471                                                desc, mdname(mddev), mdname(mddev2));
7472                                         mddev_put(mddev2);
7473                                         if (signal_pending(current))
7474                                                 flush_signals(current);
7475                                         schedule();
7476                                         finish_wait(&resync_wait, &wq);
7477                                         goto try_again;
7478                                 }
7479                                 finish_wait(&resync_wait, &wq);
7480                         }
7481                 }
7482         } while (mddev->curr_resync < 2);
7483
7484         j = 0;
7485         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7486                 /* resync follows the size requested by the personality,
7487                  * which defaults to physical size, but can be virtual size
7488                  */
7489                 max_sectors = mddev->resync_max_sectors;
7490                 atomic64_set(&mddev->resync_mismatches, 0);
7491                 /* we don't use the checkpoint if there's a bitmap */
7492                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7493                         j = mddev->resync_min;
7494                 else if (!mddev->bitmap)
7495                         j = mddev->recovery_cp;
7496
7497         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7498                 max_sectors = mddev->resync_max_sectors;
7499         else {
7500                 /* recovery follows the physical size of devices */
7501                 max_sectors = mddev->dev_sectors;
7502                 j = MaxSector;
7503                 rcu_read_lock();
7504                 rdev_for_each_rcu(rdev, mddev)
7505                         if (rdev->raid_disk >= 0 &&
7506                             !test_bit(Faulty, &rdev->flags) &&
7507                             !test_bit(In_sync, &rdev->flags) &&
7508                             rdev->recovery_offset < j)
7509                                 j = rdev->recovery_offset;
7510                 rcu_read_unlock();
7511         }
7512
7513         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7514         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7515                 " %d KB/sec/disk.\n", speed_min(mddev));
7516         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7517                "(but not more than %d KB/sec) for %s.\n",
7518                speed_max(mddev), desc);
7519
7520         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7521
7522         io_sectors = 0;
7523         for (m = 0; m < SYNC_MARKS; m++) {
7524                 mark[m] = jiffies;
7525                 mark_cnt[m] = io_sectors;
7526         }
7527         last_mark = 0;
7528         mddev->resync_mark = mark[last_mark];
7529         mddev->resync_mark_cnt = mark_cnt[last_mark];
7530
7531         /*
7532          * Tune reconstruction:
7533          */
7534         window = 32*(PAGE_SIZE/512);
7535         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7536                 window/2, (unsigned long long)max_sectors/2);
7537
7538         atomic_set(&mddev->recovery_active, 0);
7539         last_check = 0;
7540
7541         if (j>2) {
7542                 printk(KERN_INFO
7543                        "md: resuming %s of %s from checkpoint.\n",
7544                        desc, mdname(mddev));
7545                 mddev->curr_resync = j;
7546         } else
7547                 mddev->curr_resync = 3; /* no longer delayed */
7548         mddev->curr_resync_completed = j;
7549         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7550         md_new_event(mddev);
7551         update_time = jiffies;
7552
7553         blk_start_plug(&plug);
7554         while (j < max_sectors) {
7555                 sector_t sectors;
7556
7557                 skipped = 0;
7558
7559                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7560                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7561                       (mddev->curr_resync - mddev->curr_resync_completed)
7562                       > (max_sectors >> 4)) ||
7563                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7564                      (j - mddev->curr_resync_completed)*2
7565                      >= mddev->resync_max - mddev->curr_resync_completed
7566                             )) {
7567                         /* time to update curr_resync_completed */
7568                         wait_event(mddev->recovery_wait,
7569                                    atomic_read(&mddev->recovery_active) == 0);
7570                         mddev->curr_resync_completed = j;
7571                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7572                             j > mddev->recovery_cp)
7573                                 mddev->recovery_cp = j;
7574                         update_time = jiffies;
7575                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7576                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7577                 }
7578
7579                 while (j >= mddev->resync_max &&
7580                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7581                         /* As this condition is controlled by user-space,
7582                          * we can block indefinitely, so use '_interruptible'
7583                          * to avoid triggering warnings.
7584                          */
7585                         flush_signals(current); /* just in case */
7586                         wait_event_interruptible(mddev->recovery_wait,
7587                                                  mddev->resync_max > j
7588                                                  || test_bit(MD_RECOVERY_INTR,
7589                                                              &mddev->recovery));
7590                 }
7591
7592                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7593                         break;
7594
7595                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7596                                                   currspeed < speed_min(mddev));
7597                 if (sectors == 0) {
7598                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7599                         break;
7600                 }
7601
7602                 if (!skipped) { /* actual IO requested */
7603                         io_sectors += sectors;
7604                         atomic_add(sectors, &mddev->recovery_active);
7605                 }
7606
7607                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7608                         break;
7609
7610                 j += sectors;
7611                 if (j > 2)
7612                         mddev->curr_resync = j;
7613                 mddev->curr_mark_cnt = io_sectors;
7614                 if (last_check == 0)
7615                         /* this is the earliest that rebuild will be
7616                          * visible in /proc/mdstat
7617                          */
7618                         md_new_event(mddev);
7619
7620                 if (last_check + window > io_sectors || j == max_sectors)
7621                         continue;
7622
7623                 last_check = io_sectors;
7624         repeat:
7625                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7626                         /* step marks */
7627                         int next = (last_mark+1) % SYNC_MARKS;
7628
7629                         mddev->resync_mark = mark[next];
7630                         mddev->resync_mark_cnt = mark_cnt[next];
7631                         mark[next] = jiffies;
7632                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7633                         last_mark = next;
7634                 }
7635
7636                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7637                         break;
7638
7639                 /*
7640                  * this loop exits only if either when we are slower than
7641                  * the 'hard' speed limit, or the system was IO-idle for
7642                  * a jiffy.
7643                  * the system might be non-idle CPU-wise, but we only care
7644                  * about not overloading the IO subsystem. (things like an
7645                  * e2fsck being done on the RAID array should execute fast)
7646                  */
7647                 cond_resched();
7648
7649                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7650                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7651
7652                 if (currspeed > speed_min(mddev)) {
7653                         if ((currspeed > speed_max(mddev)) ||
7654                                         !is_mddev_idle(mddev, 0)) {
7655                                 msleep(500);
7656                                 goto repeat;
7657                         }
7658                 }
7659         }
7660         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7661                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7662                ? "interrupted" : "done");
7663         /*
7664          * this also signals 'finished resyncing' to md_stop
7665          */
7666         blk_finish_plug(&plug);
7667         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7668
7669         /* tell personality that we are finished */
7670         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7671
7672         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7673             mddev->curr_resync > 2) {
7674                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7675                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7676                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7677                                         printk(KERN_INFO
7678                                                "md: checkpointing %s of %s.\n",
7679                                                desc, mdname(mddev));
7680                                         if (test_bit(MD_RECOVERY_ERROR,
7681                                                 &mddev->recovery))
7682                                                 mddev->recovery_cp =
7683                                                         mddev->curr_resync_completed;
7684                                         else
7685                                                 mddev->recovery_cp =
7686                                                         mddev->curr_resync;
7687                                 }
7688                         } else
7689                                 mddev->recovery_cp = MaxSector;
7690                 } else {
7691                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7692                                 mddev->curr_resync = MaxSector;
7693                         rcu_read_lock();
7694                         rdev_for_each_rcu(rdev, mddev)
7695                                 if (rdev->raid_disk >= 0 &&
7696                                     mddev->delta_disks >= 0 &&
7697                                     !test_bit(Faulty, &rdev->flags) &&
7698                                     !test_bit(In_sync, &rdev->flags) &&
7699                                     rdev->recovery_offset < mddev->curr_resync)
7700                                         rdev->recovery_offset = mddev->curr_resync;
7701                         rcu_read_unlock();
7702                 }
7703         }
7704  skip:
7705         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7706
7707         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7708                 /* We completed so min/max setting can be forgotten if used. */
7709                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7710                         mddev->resync_min = 0;
7711                 mddev->resync_max = MaxSector;
7712         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7713                 mddev->resync_min = mddev->curr_resync_completed;
7714         mddev->curr_resync = 0;
7715         wake_up(&resync_wait);
7716         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7717         md_wakeup_thread(mddev->thread);
7718         return;
7719 }
7720 EXPORT_SYMBOL_GPL(md_do_sync);
7721
7722 static int remove_and_add_spares(struct mddev *mddev,
7723                                  struct md_rdev *this)
7724 {
7725         struct md_rdev *rdev;
7726         int spares = 0;
7727         int removed = 0;
7728
7729         rdev_for_each(rdev, mddev)
7730                 if ((this == NULL || rdev == this) &&
7731                     rdev->raid_disk >= 0 &&
7732                     !test_bit(Blocked, &rdev->flags) &&
7733                     (test_bit(Faulty, &rdev->flags) ||
7734                      ! test_bit(In_sync, &rdev->flags)) &&
7735                     atomic_read(&rdev->nr_pending)==0) {
7736                         if (mddev->pers->hot_remove_disk(
7737                                     mddev, rdev) == 0) {
7738                                 sysfs_unlink_rdev(mddev, rdev);
7739                                 rdev->raid_disk = -1;
7740                                 removed++;
7741                         }
7742                 }
7743         if (removed && mddev->kobj.sd)
7744                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7745
7746         if (this)
7747                 goto no_add;
7748
7749         rdev_for_each(rdev, mddev) {
7750                 if (rdev->raid_disk >= 0 &&
7751                     !test_bit(In_sync, &rdev->flags) &&
7752                     !test_bit(Faulty, &rdev->flags))
7753                         spares++;
7754                 if (rdev->raid_disk >= 0)
7755                         continue;
7756                 if (test_bit(Faulty, &rdev->flags))
7757                         continue;
7758                 if (mddev->ro &&
7759                     rdev->saved_raid_disk < 0)
7760                         continue;
7761
7762                 rdev->recovery_offset = 0;
7763                 if (mddev->pers->
7764                     hot_add_disk(mddev, rdev) == 0) {
7765                         if (sysfs_link_rdev(mddev, rdev))
7766                                 /* failure here is OK */;
7767                         spares++;
7768                         md_new_event(mddev);
7769                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7770                 }
7771         }
7772 no_add:
7773         if (removed)
7774                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7775         return spares;
7776 }
7777
7778 /*
7779  * This routine is regularly called by all per-raid-array threads to
7780  * deal with generic issues like resync and super-block update.
7781  * Raid personalities that don't have a thread (linear/raid0) do not
7782  * need this as they never do any recovery or update the superblock.
7783  *
7784  * It does not do any resync itself, but rather "forks" off other threads
7785  * to do that as needed.
7786  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7787  * "->recovery" and create a thread at ->sync_thread.
7788  * When the thread finishes it sets MD_RECOVERY_DONE
7789  * and wakeups up this thread which will reap the thread and finish up.
7790  * This thread also removes any faulty devices (with nr_pending == 0).
7791  *
7792  * The overall approach is:
7793  *  1/ if the superblock needs updating, update it.
7794  *  2/ If a recovery thread is running, don't do anything else.
7795  *  3/ If recovery has finished, clean up, possibly marking spares active.
7796  *  4/ If there are any faulty devices, remove them.
7797  *  5/ If array is degraded, try to add spares devices
7798  *  6/ If array has spares or is not in-sync, start a resync thread.
7799  */
7800 void md_check_recovery(struct mddev *mddev)
7801 {
7802         if (mddev->suspended)
7803                 return;
7804
7805         if (mddev->bitmap)
7806                 bitmap_daemon_work(mddev);
7807
7808         if (signal_pending(current)) {
7809                 if (mddev->pers->sync_request && !mddev->external) {
7810                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7811                                mdname(mddev));
7812                         mddev->safemode = 2;
7813                 }
7814                 flush_signals(current);
7815         }
7816
7817         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7818                 return;
7819         if ( ! (
7820                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7821                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7822                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7823                 (mddev->external == 0 && mddev->safemode == 1) ||
7824                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7825                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7826                 ))
7827                 return;
7828
7829         if (mddev_trylock(mddev)) {
7830                 int spares = 0;
7831
7832                 if (mddev->ro) {
7833                         /* On a read-only array we can:
7834                          * - remove failed devices
7835                          * - add already-in_sync devices if the array itself
7836                          *   is in-sync.
7837                          * As we only add devices that are already in-sync,
7838                          * we can activate the spares immediately.
7839                          */
7840                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7841                         remove_and_add_spares(mddev, NULL);
7842                         mddev->pers->spare_active(mddev);
7843                         goto unlock;
7844                 }
7845
7846                 if (!mddev->external) {
7847                         int did_change = 0;
7848                         spin_lock_irq(&mddev->write_lock);
7849                         if (mddev->safemode &&
7850                             !atomic_read(&mddev->writes_pending) &&
7851                             !mddev->in_sync &&
7852                             mddev->recovery_cp == MaxSector) {
7853                                 mddev->in_sync = 1;
7854                                 did_change = 1;
7855                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7856                         }
7857                         if (mddev->safemode == 1)
7858                                 mddev->safemode = 0;
7859                         spin_unlock_irq(&mddev->write_lock);
7860                         if (did_change)
7861                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7862                 }
7863
7864                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7865                         md_update_sb(mddev, 0);
7866
7867                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7868                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7869                         /* resync/recovery still happening */
7870                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7871                         goto unlock;
7872                 }
7873                 if (mddev->sync_thread) {
7874                         md_reap_sync_thread(mddev);
7875                         goto unlock;
7876                 }
7877                 /* Set RUNNING before clearing NEEDED to avoid
7878                  * any transients in the value of "sync_action".
7879                  */
7880                 mddev->curr_resync_completed = 0;
7881                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7882                 /* Clear some bits that don't mean anything, but
7883                  * might be left set
7884                  */
7885                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7886                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7887
7888                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7889                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7890                         goto unlock;
7891                 /* no recovery is running.
7892                  * remove any failed drives, then
7893                  * add spares if possible.
7894                  * Spares are also removed and re-added, to allow
7895                  * the personality to fail the re-add.
7896                  */
7897
7898                 if (mddev->reshape_position != MaxSector) {
7899                         if (mddev->pers->check_reshape == NULL ||
7900                             mddev->pers->check_reshape(mddev) != 0)
7901                                 /* Cannot proceed */
7902                                 goto unlock;
7903                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7904                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7905                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7906                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7907                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7908                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7909                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7910                 } else if (mddev->recovery_cp < MaxSector) {
7911                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7912                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7913                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7914                         /* nothing to be done ... */
7915                         goto unlock;
7916
7917                 if (mddev->pers->sync_request) {
7918                         if (spares) {
7919                                 /* We are adding a device or devices to an array
7920                                  * which has the bitmap stored on all devices.
7921                                  * So make sure all bitmap pages get written
7922                                  */
7923                                 bitmap_write_all(mddev->bitmap);
7924                         }
7925                         mddev->sync_thread = md_register_thread(md_do_sync,
7926                                                                 mddev,
7927                                                                 "resync");
7928                         if (!mddev->sync_thread) {
7929                                 printk(KERN_ERR "%s: could not start resync"
7930                                         " thread...\n", 
7931                                         mdname(mddev));
7932                                 /* leave the spares where they are, it shouldn't hurt */
7933                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7934                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7935                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7936                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7937                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7938                         } else
7939                                 md_wakeup_thread(mddev->sync_thread);
7940                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7941                         md_new_event(mddev);
7942                 }
7943         unlock:
7944                 wake_up(&mddev->sb_wait);
7945
7946                 if (!mddev->sync_thread) {
7947                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7948                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7949                                                &mddev->recovery))
7950                                 if (mddev->sysfs_action)
7951                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7952                 }
7953                 mddev_unlock(mddev);
7954         }
7955 }
7956
7957 void md_reap_sync_thread(struct mddev *mddev)
7958 {
7959         struct md_rdev *rdev;
7960
7961         /* resync has finished, collect result */
7962         md_unregister_thread(&mddev->sync_thread);
7963         wake_up(&resync_wait);
7964         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7965             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7966                 /* success...*/
7967                 /* activate any spares */
7968                 if (mddev->pers->spare_active(mddev)) {
7969                         sysfs_notify(&mddev->kobj, NULL,
7970                                      "degraded");
7971                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7972                 }
7973         }
7974         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7975             mddev->pers->finish_reshape)
7976                 mddev->pers->finish_reshape(mddev);
7977
7978         /* If array is no-longer degraded, then any saved_raid_disk
7979          * information must be scrapped.  Also if any device is now
7980          * In_sync we must scrape the saved_raid_disk for that device
7981          * do the superblock for an incrementally recovered device
7982          * written out.
7983          */
7984         rdev_for_each(rdev, mddev)
7985                 if (!mddev->degraded ||
7986                     test_bit(In_sync, &rdev->flags))
7987                         rdev->saved_raid_disk = -1;
7988
7989         md_update_sb(mddev, 1);
7990         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7991         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7992         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7993         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7994         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7995         /* flag recovery needed just to double check */
7996         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7997         sysfs_notify_dirent_safe(mddev->sysfs_action);
7998         md_new_event(mddev);
7999         if (mddev->event_work.func)
8000                 queue_work(md_misc_wq, &mddev->event_work);
8001 }
8002
8003 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8004 {
8005         sysfs_notify_dirent_safe(rdev->sysfs_state);
8006         wait_event_timeout(rdev->blocked_wait,
8007                            !test_bit(Blocked, &rdev->flags) &&
8008                            !test_bit(BlockedBadBlocks, &rdev->flags),
8009                            msecs_to_jiffies(5000));
8010         rdev_dec_pending(rdev, mddev);
8011 }
8012 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8013
8014 void md_finish_reshape(struct mddev *mddev)
8015 {
8016         /* called be personality module when reshape completes. */
8017         struct md_rdev *rdev;
8018
8019         rdev_for_each(rdev, mddev) {
8020                 if (rdev->data_offset > rdev->new_data_offset)
8021                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8022                 else
8023                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8024                 rdev->data_offset = rdev->new_data_offset;
8025         }
8026 }
8027 EXPORT_SYMBOL(md_finish_reshape);
8028
8029 /* Bad block management.
8030  * We can record which blocks on each device are 'bad' and so just
8031  * fail those blocks, or that stripe, rather than the whole device.
8032  * Entries in the bad-block table are 64bits wide.  This comprises:
8033  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8034  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8035  *  A 'shift' can be set so that larger blocks are tracked and
8036  *  consequently larger devices can be covered.
8037  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8038  *
8039  * Locking of the bad-block table uses a seqlock so md_is_badblock
8040  * might need to retry if it is very unlucky.
8041  * We will sometimes want to check for bad blocks in a bi_end_io function,
8042  * so we use the write_seqlock_irq variant.
8043  *
8044  * When looking for a bad block we specify a range and want to
8045  * know if any block in the range is bad.  So we binary-search
8046  * to the last range that starts at-or-before the given endpoint,
8047  * (or "before the sector after the target range")
8048  * then see if it ends after the given start.
8049  * We return
8050  *  0 if there are no known bad blocks in the range
8051  *  1 if there are known bad block which are all acknowledged
8052  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8053  * plus the start/length of the first bad section we overlap.
8054  */
8055 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8056                    sector_t *first_bad, int *bad_sectors)
8057 {
8058         int hi;
8059         int lo;
8060         u64 *p = bb->page;
8061         int rv;
8062         sector_t target = s + sectors;
8063         unsigned seq;
8064
8065         if (bb->shift > 0) {
8066                 /* round the start down, and the end up */
8067                 s >>= bb->shift;
8068                 target += (1<<bb->shift) - 1;
8069                 target >>= bb->shift;
8070                 sectors = target - s;
8071         }
8072         /* 'target' is now the first block after the bad range */
8073
8074 retry:
8075         seq = read_seqbegin(&bb->lock);
8076         lo = 0;
8077         rv = 0;
8078         hi = bb->count;
8079
8080         /* Binary search between lo and hi for 'target'
8081          * i.e. for the last range that starts before 'target'
8082          */
8083         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8084          * are known not to be the last range before target.
8085          * VARIANT: hi-lo is the number of possible
8086          * ranges, and decreases until it reaches 1
8087          */
8088         while (hi - lo > 1) {
8089                 int mid = (lo + hi) / 2;
8090                 sector_t a = BB_OFFSET(p[mid]);
8091                 if (a < target)
8092                         /* This could still be the one, earlier ranges
8093                          * could not. */
8094                         lo = mid;
8095                 else
8096                         /* This and later ranges are definitely out. */
8097                         hi = mid;
8098         }
8099         /* 'lo' might be the last that started before target, but 'hi' isn't */
8100         if (hi > lo) {
8101                 /* need to check all range that end after 's' to see if
8102                  * any are unacknowledged.
8103                  */
8104                 while (lo >= 0 &&
8105                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8106                         if (BB_OFFSET(p[lo]) < target) {
8107                                 /* starts before the end, and finishes after
8108                                  * the start, so they must overlap
8109                                  */
8110                                 if (rv != -1 && BB_ACK(p[lo]))
8111                                         rv = 1;
8112                                 else
8113                                         rv = -1;
8114                                 *first_bad = BB_OFFSET(p[lo]);
8115                                 *bad_sectors = BB_LEN(p[lo]);
8116                         }
8117                         lo--;
8118                 }
8119         }
8120
8121         if (read_seqretry(&bb->lock, seq))
8122                 goto retry;
8123
8124         return rv;
8125 }
8126 EXPORT_SYMBOL_GPL(md_is_badblock);
8127
8128 /*
8129  * Add a range of bad blocks to the table.
8130  * This might extend the table, or might contract it
8131  * if two adjacent ranges can be merged.
8132  * We binary-search to find the 'insertion' point, then
8133  * decide how best to handle it.
8134  */
8135 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8136                             int acknowledged)
8137 {
8138         u64 *p;
8139         int lo, hi;
8140         int rv = 1;
8141         unsigned long flags;
8142
8143         if (bb->shift < 0)
8144                 /* badblocks are disabled */
8145                 return 0;
8146
8147         if (bb->shift) {
8148                 /* round the start down, and the end up */
8149                 sector_t next = s + sectors;
8150                 s >>= bb->shift;
8151                 next += (1<<bb->shift) - 1;
8152                 next >>= bb->shift;
8153                 sectors = next - s;
8154         }
8155
8156         write_seqlock_irqsave(&bb->lock, flags);
8157
8158         p = bb->page;
8159         lo = 0;
8160         hi = bb->count;
8161         /* Find the last range that starts at-or-before 's' */
8162         while (hi - lo > 1) {
8163                 int mid = (lo + hi) / 2;
8164                 sector_t a = BB_OFFSET(p[mid]);
8165                 if (a <= s)
8166                         lo = mid;
8167                 else
8168                         hi = mid;
8169         }
8170         if (hi > lo && BB_OFFSET(p[lo]) > s)
8171                 hi = lo;
8172
8173         if (hi > lo) {
8174                 /* we found a range that might merge with the start
8175                  * of our new range
8176                  */
8177                 sector_t a = BB_OFFSET(p[lo]);
8178                 sector_t e = a + BB_LEN(p[lo]);
8179                 int ack = BB_ACK(p[lo]);
8180                 if (e >= s) {
8181                         /* Yes, we can merge with a previous range */
8182                         if (s == a && s + sectors >= e)
8183                                 /* new range covers old */
8184                                 ack = acknowledged;
8185                         else
8186                                 ack = ack && acknowledged;
8187
8188                         if (e < s + sectors)
8189                                 e = s + sectors;
8190                         if (e - a <= BB_MAX_LEN) {
8191                                 p[lo] = BB_MAKE(a, e-a, ack);
8192                                 s = e;
8193                         } else {
8194                                 /* does not all fit in one range,
8195                                  * make p[lo] maximal
8196                                  */
8197                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8198                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8199                                 s = a + BB_MAX_LEN;
8200                         }
8201                         sectors = e - s;
8202                 }
8203         }
8204         if (sectors && hi < bb->count) {
8205                 /* 'hi' points to the first range that starts after 's'.
8206                  * Maybe we can merge with the start of that range */
8207                 sector_t a = BB_OFFSET(p[hi]);
8208                 sector_t e = a + BB_LEN(p[hi]);
8209                 int ack = BB_ACK(p[hi]);
8210                 if (a <= s + sectors) {
8211                         /* merging is possible */
8212                         if (e <= s + sectors) {
8213                                 /* full overlap */
8214                                 e = s + sectors;
8215                                 ack = acknowledged;
8216                         } else
8217                                 ack = ack && acknowledged;
8218
8219                         a = s;
8220                         if (e - a <= BB_MAX_LEN) {
8221                                 p[hi] = BB_MAKE(a, e-a, ack);
8222                                 s = e;
8223                         } else {
8224                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8225                                 s = a + BB_MAX_LEN;
8226                         }
8227                         sectors = e - s;
8228                         lo = hi;
8229                         hi++;
8230                 }
8231         }
8232         if (sectors == 0 && hi < bb->count) {
8233                 /* we might be able to combine lo and hi */
8234                 /* Note: 's' is at the end of 'lo' */
8235                 sector_t a = BB_OFFSET(p[hi]);
8236                 int lolen = BB_LEN(p[lo]);
8237                 int hilen = BB_LEN(p[hi]);
8238                 int newlen = lolen + hilen - (s - a);
8239                 if (s >= a && newlen < BB_MAX_LEN) {
8240                         /* yes, we can combine them */
8241                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8242                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8243                         memmove(p + hi, p + hi + 1,
8244                                 (bb->count - hi - 1) * 8);
8245                         bb->count--;
8246                 }
8247         }
8248         while (sectors) {
8249                 /* didn't merge (it all).
8250                  * Need to add a range just before 'hi' */
8251                 if (bb->count >= MD_MAX_BADBLOCKS) {
8252                         /* No room for more */
8253                         rv = 0;
8254                         break;
8255                 } else {
8256                         int this_sectors = sectors;
8257                         memmove(p + hi + 1, p + hi,
8258                                 (bb->count - hi) * 8);
8259                         bb->count++;
8260
8261                         if (this_sectors > BB_MAX_LEN)
8262                                 this_sectors = BB_MAX_LEN;
8263                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8264                         sectors -= this_sectors;
8265                         s += this_sectors;
8266                 }
8267         }
8268
8269         bb->changed = 1;
8270         if (!acknowledged)
8271                 bb->unacked_exist = 1;
8272         write_sequnlock_irqrestore(&bb->lock, flags);
8273
8274         return rv;
8275 }
8276
8277 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8278                        int is_new)
8279 {
8280         int rv;
8281         if (is_new)
8282                 s += rdev->new_data_offset;
8283         else
8284                 s += rdev->data_offset;
8285         rv = md_set_badblocks(&rdev->badblocks,
8286                               s, sectors, 0);
8287         if (rv) {
8288                 /* Make sure they get written out promptly */
8289                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8290                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8291                 md_wakeup_thread(rdev->mddev->thread);
8292         }
8293         return rv;
8294 }
8295 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8296
8297 /*
8298  * Remove a range of bad blocks from the table.
8299  * This may involve extending the table if we spilt a region,
8300  * but it must not fail.  So if the table becomes full, we just
8301  * drop the remove request.
8302  */
8303 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8304 {
8305         u64 *p;
8306         int lo, hi;
8307         sector_t target = s + sectors;
8308         int rv = 0;
8309
8310         if (bb->shift > 0) {
8311                 /* When clearing we round the start up and the end down.
8312                  * This should not matter as the shift should align with
8313                  * the block size and no rounding should ever be needed.
8314                  * However it is better the think a block is bad when it
8315                  * isn't than to think a block is not bad when it is.
8316                  */
8317                 s += (1<<bb->shift) - 1;
8318                 s >>= bb->shift;
8319                 target >>= bb->shift;
8320                 sectors = target - s;
8321         }
8322
8323         write_seqlock_irq(&bb->lock);
8324
8325         p = bb->page;
8326         lo = 0;
8327         hi = bb->count;
8328         /* Find the last range that starts before 'target' */
8329         while (hi - lo > 1) {
8330                 int mid = (lo + hi) / 2;
8331                 sector_t a = BB_OFFSET(p[mid]);
8332                 if (a < target)
8333                         lo = mid;
8334                 else
8335                         hi = mid;
8336         }
8337         if (hi > lo) {
8338                 /* p[lo] is the last range that could overlap the
8339                  * current range.  Earlier ranges could also overlap,
8340                  * but only this one can overlap the end of the range.
8341                  */
8342                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8343                         /* Partial overlap, leave the tail of this range */
8344                         int ack = BB_ACK(p[lo]);
8345                         sector_t a = BB_OFFSET(p[lo]);
8346                         sector_t end = a + BB_LEN(p[lo]);
8347
8348                         if (a < s) {
8349                                 /* we need to split this range */
8350                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8351                                         rv = 0;
8352                                         goto out;
8353                                 }
8354                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8355                                 bb->count++;
8356                                 p[lo] = BB_MAKE(a, s-a, ack);
8357                                 lo++;
8358                         }
8359                         p[lo] = BB_MAKE(target, end - target, ack);
8360                         /* there is no longer an overlap */
8361                         hi = lo;
8362                         lo--;
8363                 }
8364                 while (lo >= 0 &&
8365                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8366                         /* This range does overlap */
8367                         if (BB_OFFSET(p[lo]) < s) {
8368                                 /* Keep the early parts of this range. */
8369                                 int ack = BB_ACK(p[lo]);
8370                                 sector_t start = BB_OFFSET(p[lo]);
8371                                 p[lo] = BB_MAKE(start, s - start, ack);
8372                                 /* now low doesn't overlap, so.. */
8373                                 break;
8374                         }
8375                         lo--;
8376                 }
8377                 /* 'lo' is strictly before, 'hi' is strictly after,
8378                  * anything between needs to be discarded
8379                  */
8380                 if (hi - lo > 1) {
8381                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8382                         bb->count -= (hi - lo - 1);
8383                 }
8384         }
8385
8386         bb->changed = 1;
8387 out:
8388         write_sequnlock_irq(&bb->lock);
8389         return rv;
8390 }
8391
8392 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8393                          int is_new)
8394 {
8395         if (is_new)
8396                 s += rdev->new_data_offset;
8397         else
8398                 s += rdev->data_offset;
8399         return md_clear_badblocks(&rdev->badblocks,
8400                                   s, sectors);
8401 }
8402 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8403
8404 /*
8405  * Acknowledge all bad blocks in a list.
8406  * This only succeeds if ->changed is clear.  It is used by
8407  * in-kernel metadata updates
8408  */
8409 void md_ack_all_badblocks(struct badblocks *bb)
8410 {
8411         if (bb->page == NULL || bb->changed)
8412                 /* no point even trying */
8413                 return;
8414         write_seqlock_irq(&bb->lock);
8415
8416         if (bb->changed == 0 && bb->unacked_exist) {
8417                 u64 *p = bb->page;
8418                 int i;
8419                 for (i = 0; i < bb->count ; i++) {
8420                         if (!BB_ACK(p[i])) {
8421                                 sector_t start = BB_OFFSET(p[i]);
8422                                 int len = BB_LEN(p[i]);
8423                                 p[i] = BB_MAKE(start, len, 1);
8424                         }
8425                 }
8426                 bb->unacked_exist = 0;
8427         }
8428         write_sequnlock_irq(&bb->lock);
8429 }
8430 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8431
8432 /* sysfs access to bad-blocks list.
8433  * We present two files.
8434  * 'bad-blocks' lists sector numbers and lengths of ranges that
8435  *    are recorded as bad.  The list is truncated to fit within
8436  *    the one-page limit of sysfs.
8437  *    Writing "sector length" to this file adds an acknowledged
8438  *    bad block list.
8439  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8440  *    been acknowledged.  Writing to this file adds bad blocks
8441  *    without acknowledging them.  This is largely for testing.
8442  */
8443
8444 static ssize_t
8445 badblocks_show(struct badblocks *bb, char *page, int unack)
8446 {
8447         size_t len;
8448         int i;
8449         u64 *p = bb->page;
8450         unsigned seq;
8451
8452         if (bb->shift < 0)
8453                 return 0;
8454
8455 retry:
8456         seq = read_seqbegin(&bb->lock);
8457
8458         len = 0;
8459         i = 0;
8460
8461         while (len < PAGE_SIZE && i < bb->count) {
8462                 sector_t s = BB_OFFSET(p[i]);
8463                 unsigned int length = BB_LEN(p[i]);
8464                 int ack = BB_ACK(p[i]);
8465                 i++;
8466
8467                 if (unack && ack)
8468                         continue;
8469
8470                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8471                                 (unsigned long long)s << bb->shift,
8472                                 length << bb->shift);
8473         }
8474         if (unack && len == 0)
8475                 bb->unacked_exist = 0;
8476
8477         if (read_seqretry(&bb->lock, seq))
8478                 goto retry;
8479
8480         return len;
8481 }
8482
8483 #define DO_DEBUG 1
8484
8485 static ssize_t
8486 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8487 {
8488         unsigned long long sector;
8489         int length;
8490         char newline;
8491 #ifdef DO_DEBUG
8492         /* Allow clearing via sysfs *only* for testing/debugging.
8493          * Normally only a successful write may clear a badblock
8494          */
8495         int clear = 0;
8496         if (page[0] == '-') {
8497                 clear = 1;
8498                 page++;
8499         }
8500 #endif /* DO_DEBUG */
8501
8502         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8503         case 3:
8504                 if (newline != '\n')
8505                         return -EINVAL;
8506         case 2:
8507                 if (length <= 0)
8508                         return -EINVAL;
8509                 break;
8510         default:
8511                 return -EINVAL;
8512         }
8513
8514 #ifdef DO_DEBUG
8515         if (clear) {
8516                 md_clear_badblocks(bb, sector, length);
8517                 return len;
8518         }
8519 #endif /* DO_DEBUG */
8520         if (md_set_badblocks(bb, sector, length, !unack))
8521                 return len;
8522         else
8523                 return -ENOSPC;
8524 }
8525
8526 static int md_notify_reboot(struct notifier_block *this,
8527                             unsigned long code, void *x)
8528 {
8529         struct list_head *tmp;
8530         struct mddev *mddev;
8531         int need_delay = 0;
8532
8533         for_each_mddev(mddev, tmp) {
8534                 if (mddev_trylock(mddev)) {
8535                         if (mddev->pers)
8536                                 __md_stop_writes(mddev);
8537                         mddev->safemode = 2;
8538                         mddev_unlock(mddev);
8539                 }
8540                 need_delay = 1;
8541         }
8542         /*
8543          * certain more exotic SCSI devices are known to be
8544          * volatile wrt too early system reboots. While the
8545          * right place to handle this issue is the given
8546          * driver, we do want to have a safe RAID driver ...
8547          */
8548         if (need_delay)
8549                 mdelay(1000*1);
8550
8551         return NOTIFY_DONE;
8552 }
8553
8554 static struct notifier_block md_notifier = {
8555         .notifier_call  = md_notify_reboot,
8556         .next           = NULL,
8557         .priority       = INT_MAX, /* before any real devices */
8558 };
8559
8560 static void md_geninit(void)
8561 {
8562         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8563
8564         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8565 }
8566
8567 static int __init md_init(void)
8568 {
8569         int ret = -ENOMEM;
8570
8571         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8572         if (!md_wq)
8573                 goto err_wq;
8574
8575         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8576         if (!md_misc_wq)
8577                 goto err_misc_wq;
8578
8579         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8580                 goto err_md;
8581
8582         if ((ret = register_blkdev(0, "mdp")) < 0)
8583                 goto err_mdp;
8584         mdp_major = ret;
8585
8586         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8587                             md_probe, NULL, NULL);
8588         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8589                             md_probe, NULL, NULL);
8590
8591         register_reboot_notifier(&md_notifier);
8592         raid_table_header = register_sysctl_table(raid_root_table);
8593
8594         md_geninit();
8595         return 0;
8596
8597 err_mdp:
8598         unregister_blkdev(MD_MAJOR, "md");
8599 err_md:
8600         destroy_workqueue(md_misc_wq);
8601 err_misc_wq:
8602         destroy_workqueue(md_wq);
8603 err_wq:
8604         return ret;
8605 }
8606
8607 #ifndef MODULE
8608
8609 /*
8610  * Searches all registered partitions for autorun RAID arrays
8611  * at boot time.
8612  */
8613
8614 static LIST_HEAD(all_detected_devices);
8615 struct detected_devices_node {
8616         struct list_head list;
8617         dev_t dev;
8618 };
8619
8620 void md_autodetect_dev(dev_t dev)
8621 {
8622         struct detected_devices_node *node_detected_dev;
8623
8624         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8625         if (node_detected_dev) {
8626                 node_detected_dev->dev = dev;
8627                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8628         } else {
8629                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8630                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8631         }
8632 }
8633
8634
8635 static void autostart_arrays(int part)
8636 {
8637         struct md_rdev *rdev;
8638         struct detected_devices_node *node_detected_dev;
8639         dev_t dev;
8640         int i_scanned, i_passed;
8641
8642         i_scanned = 0;
8643         i_passed = 0;
8644
8645         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8646
8647         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8648                 i_scanned++;
8649                 node_detected_dev = list_entry(all_detected_devices.next,
8650                                         struct detected_devices_node, list);
8651                 list_del(&node_detected_dev->list);
8652                 dev = node_detected_dev->dev;
8653                 kfree(node_detected_dev);
8654                 rdev = md_import_device(dev,0, 90);
8655                 if (IS_ERR(rdev))
8656                         continue;
8657
8658                 if (test_bit(Faulty, &rdev->flags)) {
8659                         MD_BUG();
8660                         continue;
8661                 }
8662                 set_bit(AutoDetected, &rdev->flags);
8663                 list_add(&rdev->same_set, &pending_raid_disks);
8664                 i_passed++;
8665         }
8666
8667         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8668                                                 i_scanned, i_passed);
8669
8670         autorun_devices(part);
8671 }
8672
8673 #endif /* !MODULE */
8674
8675 static __exit void md_exit(void)
8676 {
8677         struct mddev *mddev;
8678         struct list_head *tmp;
8679
8680         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8681         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8682
8683         unregister_blkdev(MD_MAJOR,"md");
8684         unregister_blkdev(mdp_major, "mdp");
8685         unregister_reboot_notifier(&md_notifier);
8686         unregister_sysctl_table(raid_table_header);
8687         remove_proc_entry("mdstat", NULL);
8688         for_each_mddev(mddev, tmp) {
8689                 export_array(mddev);
8690                 mddev->hold_active = 0;
8691         }
8692         destroy_workqueue(md_misc_wq);
8693         destroy_workqueue(md_wq);
8694 }
8695
8696 subsys_initcall(md_init);
8697 module_exit(md_exit)
8698
8699 static int get_ro(char *buffer, struct kernel_param *kp)
8700 {
8701         return sprintf(buffer, "%d", start_readonly);
8702 }
8703 static int set_ro(const char *val, struct kernel_param *kp)
8704 {
8705         char *e;
8706         int num = simple_strtoul(val, &e, 10);
8707         if (*val && (*e == '\0' || *e == '\n')) {
8708                 start_readonly = num;
8709                 return 0;
8710         }
8711         return -EINVAL;
8712 }
8713
8714 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8715 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8716
8717 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8718
8719 EXPORT_SYMBOL(register_md_personality);
8720 EXPORT_SYMBOL(unregister_md_personality);
8721 EXPORT_SYMBOL(md_error);
8722 EXPORT_SYMBOL(md_done_sync);
8723 EXPORT_SYMBOL(md_write_start);
8724 EXPORT_SYMBOL(md_write_end);
8725 EXPORT_SYMBOL(md_register_thread);
8726 EXPORT_SYMBOL(md_unregister_thread);
8727 EXPORT_SYMBOL(md_wakeup_thread);
8728 EXPORT_SYMBOL(md_check_recovery);
8729 EXPORT_SYMBOL(md_reap_sync_thread);
8730 MODULE_LICENSE("GPL");
8731 MODULE_DESCRIPTION("MD RAID framework");
8732 MODULE_ALIAS("md");
8733 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);