]> Pileus Git - ~andy/linux/blob - drivers/md/dm-thin.c
Merge tag 'staging-3.15-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[~andy/linux] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
138         PM_READ_ONLY,           /* metadata may not be changed */
139         PM_FAIL,                /* all I/O fails */
140 };
141
142 struct pool_features {
143         enum pool_mode mode;
144
145         bool zero_new_blocks:1;
146         bool discard_enabled:1;
147         bool discard_passdown:1;
148         bool error_if_no_space:1;
149 };
150
151 struct thin_c;
152 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
153 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
154
155 struct pool {
156         struct list_head list;
157         struct dm_target *ti;   /* Only set if a pool target is bound */
158
159         struct mapped_device *pool_md;
160         struct block_device *md_dev;
161         struct dm_pool_metadata *pmd;
162
163         dm_block_t low_water_blocks;
164         uint32_t sectors_per_block;
165         int sectors_per_block_shift;
166
167         struct pool_features pf;
168         bool low_water_triggered:1;     /* A dm event has been sent */
169
170         struct dm_bio_prison *prison;
171         struct dm_kcopyd_client *copier;
172
173         struct workqueue_struct *wq;
174         struct work_struct worker;
175         struct delayed_work waker;
176
177         unsigned long last_commit_jiffies;
178         unsigned ref_count;
179
180         spinlock_t lock;
181         struct bio_list deferred_bios;
182         struct bio_list deferred_flush_bios;
183         struct list_head prepared_mappings;
184         struct list_head prepared_discards;
185
186         struct bio_list retry_on_resume_list;
187
188         struct dm_deferred_set *shared_read_ds;
189         struct dm_deferred_set *all_io_ds;
190
191         struct dm_thin_new_mapping *next_mapping;
192         mempool_t *mapping_pool;
193
194         process_bio_fn process_bio;
195         process_bio_fn process_discard;
196
197         process_mapping_fn process_prepared_mapping;
198         process_mapping_fn process_prepared_discard;
199 };
200
201 static enum pool_mode get_pool_mode(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205  * Target context for a pool.
206  */
207 struct pool_c {
208         struct dm_target *ti;
209         struct pool *pool;
210         struct dm_dev *data_dev;
211         struct dm_dev *metadata_dev;
212         struct dm_target_callbacks callbacks;
213
214         dm_block_t low_water_blocks;
215         struct pool_features requested_pf; /* Features requested during table load */
216         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220  * Target context for a thin.
221  */
222 struct thin_c {
223         struct dm_dev *pool_dev;
224         struct dm_dev *origin_dev;
225         dm_thin_id dev_id;
226
227         struct pool *pool;
228         struct dm_thin_device *td;
229         bool requeue_mode:1;
230 };
231
232 /*----------------------------------------------------------------*/
233
234 /*
235  * wake_worker() is used when new work is queued and when pool_resume is
236  * ready to continue deferred IO processing.
237  */
238 static void wake_worker(struct pool *pool)
239 {
240         queue_work(pool->wq, &pool->worker);
241 }
242
243 /*----------------------------------------------------------------*/
244
245 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
246                       struct dm_bio_prison_cell **cell_result)
247 {
248         int r;
249         struct dm_bio_prison_cell *cell_prealloc;
250
251         /*
252          * Allocate a cell from the prison's mempool.
253          * This might block but it can't fail.
254          */
255         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
256
257         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
258         if (r)
259                 /*
260                  * We reused an old cell; we can get rid of
261                  * the new one.
262                  */
263                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
264
265         return r;
266 }
267
268 static void cell_release(struct pool *pool,
269                          struct dm_bio_prison_cell *cell,
270                          struct bio_list *bios)
271 {
272         dm_cell_release(pool->prison, cell, bios);
273         dm_bio_prison_free_cell(pool->prison, cell);
274 }
275
276 static void cell_release_no_holder(struct pool *pool,
277                                    struct dm_bio_prison_cell *cell,
278                                    struct bio_list *bios)
279 {
280         dm_cell_release_no_holder(pool->prison, cell, bios);
281         dm_bio_prison_free_cell(pool->prison, cell);
282 }
283
284 static void cell_defer_no_holder_no_free(struct thin_c *tc,
285                                          struct dm_bio_prison_cell *cell)
286 {
287         struct pool *pool = tc->pool;
288         unsigned long flags;
289
290         spin_lock_irqsave(&pool->lock, flags);
291         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
292         spin_unlock_irqrestore(&pool->lock, flags);
293
294         wake_worker(pool);
295 }
296
297 static void cell_error(struct pool *pool,
298                        struct dm_bio_prison_cell *cell)
299 {
300         dm_cell_error(pool->prison, cell);
301         dm_bio_prison_free_cell(pool->prison, cell);
302 }
303
304 /*----------------------------------------------------------------*/
305
306 /*
307  * A global list of pools that uses a struct mapped_device as a key.
308  */
309 static struct dm_thin_pool_table {
310         struct mutex mutex;
311         struct list_head pools;
312 } dm_thin_pool_table;
313
314 static void pool_table_init(void)
315 {
316         mutex_init(&dm_thin_pool_table.mutex);
317         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
318 }
319
320 static void __pool_table_insert(struct pool *pool)
321 {
322         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
323         list_add(&pool->list, &dm_thin_pool_table.pools);
324 }
325
326 static void __pool_table_remove(struct pool *pool)
327 {
328         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
329         list_del(&pool->list);
330 }
331
332 static struct pool *__pool_table_lookup(struct mapped_device *md)
333 {
334         struct pool *pool = NULL, *tmp;
335
336         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
337
338         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
339                 if (tmp->pool_md == md) {
340                         pool = tmp;
341                         break;
342                 }
343         }
344
345         return pool;
346 }
347
348 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
349 {
350         struct pool *pool = NULL, *tmp;
351
352         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
353
354         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
355                 if (tmp->md_dev == md_dev) {
356                         pool = tmp;
357                         break;
358                 }
359         }
360
361         return pool;
362 }
363
364 /*----------------------------------------------------------------*/
365
366 struct dm_thin_endio_hook {
367         struct thin_c *tc;
368         struct dm_deferred_entry *shared_read_entry;
369         struct dm_deferred_entry *all_io_entry;
370         struct dm_thin_new_mapping *overwrite_mapping;
371 };
372
373 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
374 {
375         struct bio *bio;
376         struct bio_list bios;
377         unsigned long flags;
378
379         bio_list_init(&bios);
380
381         spin_lock_irqsave(&tc->pool->lock, flags);
382         bio_list_merge(&bios, master);
383         bio_list_init(master);
384         spin_unlock_irqrestore(&tc->pool->lock, flags);
385
386         while ((bio = bio_list_pop(&bios))) {
387                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
388
389                 if (h->tc == tc)
390                         bio_endio(bio, DM_ENDIO_REQUEUE);
391                 else
392                         bio_list_add(master, bio);
393         }
394 }
395
396 static void requeue_io(struct thin_c *tc)
397 {
398         struct pool *pool = tc->pool;
399
400         requeue_bio_list(tc, &pool->deferred_bios);
401         requeue_bio_list(tc, &pool->retry_on_resume_list);
402 }
403
404 static void error_retry_list(struct pool *pool)
405 {
406         struct bio *bio;
407         unsigned long flags;
408         struct bio_list bios;
409
410         bio_list_init(&bios);
411
412         spin_lock_irqsave(&pool->lock, flags);
413         bio_list_merge(&bios, &pool->retry_on_resume_list);
414         bio_list_init(&pool->retry_on_resume_list);
415         spin_unlock_irqrestore(&pool->lock, flags);
416
417         while ((bio = bio_list_pop(&bios)))
418                 bio_io_error(bio);
419 }
420
421 /*
422  * This section of code contains the logic for processing a thin device's IO.
423  * Much of the code depends on pool object resources (lists, workqueues, etc)
424  * but most is exclusively called from the thin target rather than the thin-pool
425  * target.
426  */
427
428 static bool block_size_is_power_of_two(struct pool *pool)
429 {
430         return pool->sectors_per_block_shift >= 0;
431 }
432
433 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
434 {
435         struct pool *pool = tc->pool;
436         sector_t block_nr = bio->bi_iter.bi_sector;
437
438         if (block_size_is_power_of_two(pool))
439                 block_nr >>= pool->sectors_per_block_shift;
440         else
441                 (void) sector_div(block_nr, pool->sectors_per_block);
442
443         return block_nr;
444 }
445
446 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
447 {
448         struct pool *pool = tc->pool;
449         sector_t bi_sector = bio->bi_iter.bi_sector;
450
451         bio->bi_bdev = tc->pool_dev->bdev;
452         if (block_size_is_power_of_two(pool))
453                 bio->bi_iter.bi_sector =
454                         (block << pool->sectors_per_block_shift) |
455                         (bi_sector & (pool->sectors_per_block - 1));
456         else
457                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
458                                  sector_div(bi_sector, pool->sectors_per_block);
459 }
460
461 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
462 {
463         bio->bi_bdev = tc->origin_dev->bdev;
464 }
465
466 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
467 {
468         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
469                 dm_thin_changed_this_transaction(tc->td);
470 }
471
472 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
473 {
474         struct dm_thin_endio_hook *h;
475
476         if (bio->bi_rw & REQ_DISCARD)
477                 return;
478
479         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
480         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
481 }
482
483 static void issue(struct thin_c *tc, struct bio *bio)
484 {
485         struct pool *pool = tc->pool;
486         unsigned long flags;
487
488         if (!bio_triggers_commit(tc, bio)) {
489                 generic_make_request(bio);
490                 return;
491         }
492
493         /*
494          * Complete bio with an error if earlier I/O caused changes to
495          * the metadata that can't be committed e.g, due to I/O errors
496          * on the metadata device.
497          */
498         if (dm_thin_aborted_changes(tc->td)) {
499                 bio_io_error(bio);
500                 return;
501         }
502
503         /*
504          * Batch together any bios that trigger commits and then issue a
505          * single commit for them in process_deferred_bios().
506          */
507         spin_lock_irqsave(&pool->lock, flags);
508         bio_list_add(&pool->deferred_flush_bios, bio);
509         spin_unlock_irqrestore(&pool->lock, flags);
510 }
511
512 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
513 {
514         remap_to_origin(tc, bio);
515         issue(tc, bio);
516 }
517
518 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
519                             dm_block_t block)
520 {
521         remap(tc, bio, block);
522         issue(tc, bio);
523 }
524
525 /*----------------------------------------------------------------*/
526
527 /*
528  * Bio endio functions.
529  */
530 struct dm_thin_new_mapping {
531         struct list_head list;
532
533         bool quiesced:1;
534         bool prepared:1;
535         bool pass_discard:1;
536         bool definitely_not_shared:1;
537
538         int err;
539         struct thin_c *tc;
540         dm_block_t virt_block;
541         dm_block_t data_block;
542         struct dm_bio_prison_cell *cell, *cell2;
543
544         /*
545          * If the bio covers the whole area of a block then we can avoid
546          * zeroing or copying.  Instead this bio is hooked.  The bio will
547          * still be in the cell, so care has to be taken to avoid issuing
548          * the bio twice.
549          */
550         struct bio *bio;
551         bio_end_io_t *saved_bi_end_io;
552 };
553
554 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
555 {
556         struct pool *pool = m->tc->pool;
557
558         if (m->quiesced && m->prepared) {
559                 list_add_tail(&m->list, &pool->prepared_mappings);
560                 wake_worker(pool);
561         }
562 }
563
564 static void copy_complete(int read_err, unsigned long write_err, void *context)
565 {
566         unsigned long flags;
567         struct dm_thin_new_mapping *m = context;
568         struct pool *pool = m->tc->pool;
569
570         m->err = read_err || write_err ? -EIO : 0;
571
572         spin_lock_irqsave(&pool->lock, flags);
573         m->prepared = true;
574         __maybe_add_mapping(m);
575         spin_unlock_irqrestore(&pool->lock, flags);
576 }
577
578 static void overwrite_endio(struct bio *bio, int err)
579 {
580         unsigned long flags;
581         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
582         struct dm_thin_new_mapping *m = h->overwrite_mapping;
583         struct pool *pool = m->tc->pool;
584
585         m->err = err;
586
587         spin_lock_irqsave(&pool->lock, flags);
588         m->prepared = true;
589         __maybe_add_mapping(m);
590         spin_unlock_irqrestore(&pool->lock, flags);
591 }
592
593 /*----------------------------------------------------------------*/
594
595 /*
596  * Workqueue.
597  */
598
599 /*
600  * Prepared mapping jobs.
601  */
602
603 /*
604  * This sends the bios in the cell back to the deferred_bios list.
605  */
606 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
607 {
608         struct pool *pool = tc->pool;
609         unsigned long flags;
610
611         spin_lock_irqsave(&pool->lock, flags);
612         cell_release(pool, cell, &pool->deferred_bios);
613         spin_unlock_irqrestore(&tc->pool->lock, flags);
614
615         wake_worker(pool);
616 }
617
618 /*
619  * Same as cell_defer above, except it omits the original holder of the cell.
620  */
621 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
622 {
623         struct pool *pool = tc->pool;
624         unsigned long flags;
625
626         spin_lock_irqsave(&pool->lock, flags);
627         cell_release_no_holder(pool, cell, &pool->deferred_bios);
628         spin_unlock_irqrestore(&pool->lock, flags);
629
630         wake_worker(pool);
631 }
632
633 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
634 {
635         if (m->bio) {
636                 m->bio->bi_end_io = m->saved_bi_end_io;
637                 atomic_inc(&m->bio->bi_remaining);
638         }
639         cell_error(m->tc->pool, m->cell);
640         list_del(&m->list);
641         mempool_free(m, m->tc->pool->mapping_pool);
642 }
643
644 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
645 {
646         struct thin_c *tc = m->tc;
647         struct pool *pool = tc->pool;
648         struct bio *bio;
649         int r;
650
651         bio = m->bio;
652         if (bio) {
653                 bio->bi_end_io = m->saved_bi_end_io;
654                 atomic_inc(&bio->bi_remaining);
655         }
656
657         if (m->err) {
658                 cell_error(pool, m->cell);
659                 goto out;
660         }
661
662         /*
663          * Commit the prepared block into the mapping btree.
664          * Any I/O for this block arriving after this point will get
665          * remapped to it directly.
666          */
667         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
668         if (r) {
669                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
670                 cell_error(pool, m->cell);
671                 goto out;
672         }
673
674         /*
675          * Release any bios held while the block was being provisioned.
676          * If we are processing a write bio that completely covers the block,
677          * we already processed it so can ignore it now when processing
678          * the bios in the cell.
679          */
680         if (bio) {
681                 cell_defer_no_holder(tc, m->cell);
682                 bio_endio(bio, 0);
683         } else
684                 cell_defer(tc, m->cell);
685
686 out:
687         list_del(&m->list);
688         mempool_free(m, pool->mapping_pool);
689 }
690
691 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
692 {
693         struct thin_c *tc = m->tc;
694
695         bio_io_error(m->bio);
696         cell_defer_no_holder(tc, m->cell);
697         cell_defer_no_holder(tc, m->cell2);
698         mempool_free(m, tc->pool->mapping_pool);
699 }
700
701 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
702 {
703         struct thin_c *tc = m->tc;
704
705         inc_all_io_entry(tc->pool, m->bio);
706         cell_defer_no_holder(tc, m->cell);
707         cell_defer_no_holder(tc, m->cell2);
708
709         if (m->pass_discard)
710                 if (m->definitely_not_shared)
711                         remap_and_issue(tc, m->bio, m->data_block);
712                 else {
713                         bool used = false;
714                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
715                                 bio_endio(m->bio, 0);
716                         else
717                                 remap_and_issue(tc, m->bio, m->data_block);
718                 }
719         else
720                 bio_endio(m->bio, 0);
721
722         mempool_free(m, tc->pool->mapping_pool);
723 }
724
725 static void process_prepared_discard(struct dm_thin_new_mapping *m)
726 {
727         int r;
728         struct thin_c *tc = m->tc;
729
730         r = dm_thin_remove_block(tc->td, m->virt_block);
731         if (r)
732                 DMERR_LIMIT("dm_thin_remove_block() failed");
733
734         process_prepared_discard_passdown(m);
735 }
736
737 static void process_prepared(struct pool *pool, struct list_head *head,
738                              process_mapping_fn *fn)
739 {
740         unsigned long flags;
741         struct list_head maps;
742         struct dm_thin_new_mapping *m, *tmp;
743
744         INIT_LIST_HEAD(&maps);
745         spin_lock_irqsave(&pool->lock, flags);
746         list_splice_init(head, &maps);
747         spin_unlock_irqrestore(&pool->lock, flags);
748
749         list_for_each_entry_safe(m, tmp, &maps, list)
750                 (*fn)(m);
751 }
752
753 /*
754  * Deferred bio jobs.
755  */
756 static int io_overlaps_block(struct pool *pool, struct bio *bio)
757 {
758         return bio->bi_iter.bi_size ==
759                 (pool->sectors_per_block << SECTOR_SHIFT);
760 }
761
762 static int io_overwrites_block(struct pool *pool, struct bio *bio)
763 {
764         return (bio_data_dir(bio) == WRITE) &&
765                 io_overlaps_block(pool, bio);
766 }
767
768 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
769                                bio_end_io_t *fn)
770 {
771         *save = bio->bi_end_io;
772         bio->bi_end_io = fn;
773 }
774
775 static int ensure_next_mapping(struct pool *pool)
776 {
777         if (pool->next_mapping)
778                 return 0;
779
780         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
781
782         return pool->next_mapping ? 0 : -ENOMEM;
783 }
784
785 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
786 {
787         struct dm_thin_new_mapping *m = pool->next_mapping;
788
789         BUG_ON(!pool->next_mapping);
790
791         memset(m, 0, sizeof(struct dm_thin_new_mapping));
792         INIT_LIST_HEAD(&m->list);
793         m->bio = NULL;
794
795         pool->next_mapping = NULL;
796
797         return m;
798 }
799
800 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
801                           struct dm_dev *origin, dm_block_t data_origin,
802                           dm_block_t data_dest,
803                           struct dm_bio_prison_cell *cell, struct bio *bio)
804 {
805         int r;
806         struct pool *pool = tc->pool;
807         struct dm_thin_new_mapping *m = get_next_mapping(pool);
808
809         m->tc = tc;
810         m->virt_block = virt_block;
811         m->data_block = data_dest;
812         m->cell = cell;
813
814         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
815                 m->quiesced = true;
816
817         /*
818          * IO to pool_dev remaps to the pool target's data_dev.
819          *
820          * If the whole block of data is being overwritten, we can issue the
821          * bio immediately. Otherwise we use kcopyd to clone the data first.
822          */
823         if (io_overwrites_block(pool, bio)) {
824                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
825
826                 h->overwrite_mapping = m;
827                 m->bio = bio;
828                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
829                 inc_all_io_entry(pool, bio);
830                 remap_and_issue(tc, bio, data_dest);
831         } else {
832                 struct dm_io_region from, to;
833
834                 from.bdev = origin->bdev;
835                 from.sector = data_origin * pool->sectors_per_block;
836                 from.count = pool->sectors_per_block;
837
838                 to.bdev = tc->pool_dev->bdev;
839                 to.sector = data_dest * pool->sectors_per_block;
840                 to.count = pool->sectors_per_block;
841
842                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
843                                    0, copy_complete, m);
844                 if (r < 0) {
845                         mempool_free(m, pool->mapping_pool);
846                         DMERR_LIMIT("dm_kcopyd_copy() failed");
847                         cell_error(pool, cell);
848                 }
849         }
850 }
851
852 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
853                                    dm_block_t data_origin, dm_block_t data_dest,
854                                    struct dm_bio_prison_cell *cell, struct bio *bio)
855 {
856         schedule_copy(tc, virt_block, tc->pool_dev,
857                       data_origin, data_dest, cell, bio);
858 }
859
860 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
861                                    dm_block_t data_dest,
862                                    struct dm_bio_prison_cell *cell, struct bio *bio)
863 {
864         schedule_copy(tc, virt_block, tc->origin_dev,
865                       virt_block, data_dest, cell, bio);
866 }
867
868 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
869                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
870                           struct bio *bio)
871 {
872         struct pool *pool = tc->pool;
873         struct dm_thin_new_mapping *m = get_next_mapping(pool);
874
875         m->quiesced = true;
876         m->prepared = false;
877         m->tc = tc;
878         m->virt_block = virt_block;
879         m->data_block = data_block;
880         m->cell = cell;
881
882         /*
883          * If the whole block of data is being overwritten or we are not
884          * zeroing pre-existing data, we can issue the bio immediately.
885          * Otherwise we use kcopyd to zero the data first.
886          */
887         if (!pool->pf.zero_new_blocks)
888                 process_prepared_mapping(m);
889
890         else if (io_overwrites_block(pool, bio)) {
891                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
892
893                 h->overwrite_mapping = m;
894                 m->bio = bio;
895                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
896                 inc_all_io_entry(pool, bio);
897                 remap_and_issue(tc, bio, data_block);
898         } else {
899                 int r;
900                 struct dm_io_region to;
901
902                 to.bdev = tc->pool_dev->bdev;
903                 to.sector = data_block * pool->sectors_per_block;
904                 to.count = pool->sectors_per_block;
905
906                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
907                 if (r < 0) {
908                         mempool_free(m, pool->mapping_pool);
909                         DMERR_LIMIT("dm_kcopyd_zero() failed");
910                         cell_error(pool, cell);
911                 }
912         }
913 }
914
915 /*
916  * A non-zero return indicates read_only or fail_io mode.
917  * Many callers don't care about the return value.
918  */
919 static int commit(struct pool *pool)
920 {
921         int r;
922
923         if (get_pool_mode(pool) != PM_WRITE)
924                 return -EINVAL;
925
926         r = dm_pool_commit_metadata(pool->pmd);
927         if (r)
928                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
929
930         return r;
931 }
932
933 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
934 {
935         unsigned long flags;
936
937         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
938                 DMWARN("%s: reached low water mark for data device: sending event.",
939                        dm_device_name(pool->pool_md));
940                 spin_lock_irqsave(&pool->lock, flags);
941                 pool->low_water_triggered = true;
942                 spin_unlock_irqrestore(&pool->lock, flags);
943                 dm_table_event(pool->ti->table);
944         }
945 }
946
947 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
948
949 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
950 {
951         int r;
952         dm_block_t free_blocks;
953         struct pool *pool = tc->pool;
954
955         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
956                 return -EINVAL;
957
958         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
959         if (r) {
960                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
961                 return r;
962         }
963
964         check_low_water_mark(pool, free_blocks);
965
966         if (!free_blocks) {
967                 /*
968                  * Try to commit to see if that will free up some
969                  * more space.
970                  */
971                 r = commit(pool);
972                 if (r)
973                         return r;
974
975                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
976                 if (r) {
977                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
978                         return r;
979                 }
980
981                 if (!free_blocks) {
982                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
983                         return -ENOSPC;
984                 }
985         }
986
987         r = dm_pool_alloc_data_block(pool->pmd, result);
988         if (r) {
989                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
990                 return r;
991         }
992
993         return 0;
994 }
995
996 /*
997  * If we have run out of space, queue bios until the device is
998  * resumed, presumably after having been reloaded with more space.
999  */
1000 static void retry_on_resume(struct bio *bio)
1001 {
1002         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1003         struct thin_c *tc = h->tc;
1004         struct pool *pool = tc->pool;
1005         unsigned long flags;
1006
1007         spin_lock_irqsave(&pool->lock, flags);
1008         bio_list_add(&pool->retry_on_resume_list, bio);
1009         spin_unlock_irqrestore(&pool->lock, flags);
1010 }
1011
1012 static bool should_error_unserviceable_bio(struct pool *pool)
1013 {
1014         enum pool_mode m = get_pool_mode(pool);
1015
1016         switch (m) {
1017         case PM_WRITE:
1018                 /* Shouldn't get here */
1019                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1020                 return true;
1021
1022         case PM_OUT_OF_DATA_SPACE:
1023                 return pool->pf.error_if_no_space;
1024
1025         case PM_READ_ONLY:
1026         case PM_FAIL:
1027                 return true;
1028         default:
1029                 /* Shouldn't get here */
1030                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1031                 return true;
1032         }
1033 }
1034
1035 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1036 {
1037         if (should_error_unserviceable_bio(pool))
1038                 bio_io_error(bio);
1039         else
1040                 retry_on_resume(bio);
1041 }
1042
1043 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1044 {
1045         struct bio *bio;
1046         struct bio_list bios;
1047
1048         if (should_error_unserviceable_bio(pool)) {
1049                 cell_error(pool, cell);
1050                 return;
1051         }
1052
1053         bio_list_init(&bios);
1054         cell_release(pool, cell, &bios);
1055
1056         if (should_error_unserviceable_bio(pool))
1057                 while ((bio = bio_list_pop(&bios)))
1058                         bio_io_error(bio);
1059         else
1060                 while ((bio = bio_list_pop(&bios)))
1061                         retry_on_resume(bio);
1062 }
1063
1064 static void process_discard(struct thin_c *tc, struct bio *bio)
1065 {
1066         int r;
1067         unsigned long flags;
1068         struct pool *pool = tc->pool;
1069         struct dm_bio_prison_cell *cell, *cell2;
1070         struct dm_cell_key key, key2;
1071         dm_block_t block = get_bio_block(tc, bio);
1072         struct dm_thin_lookup_result lookup_result;
1073         struct dm_thin_new_mapping *m;
1074
1075         build_virtual_key(tc->td, block, &key);
1076         if (bio_detain(tc->pool, &key, bio, &cell))
1077                 return;
1078
1079         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1080         switch (r) {
1081         case 0:
1082                 /*
1083                  * Check nobody is fiddling with this pool block.  This can
1084                  * happen if someone's in the process of breaking sharing
1085                  * on this block.
1086                  */
1087                 build_data_key(tc->td, lookup_result.block, &key2);
1088                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1089                         cell_defer_no_holder(tc, cell);
1090                         break;
1091                 }
1092
1093                 if (io_overlaps_block(pool, bio)) {
1094                         /*
1095                          * IO may still be going to the destination block.  We must
1096                          * quiesce before we can do the removal.
1097                          */
1098                         m = get_next_mapping(pool);
1099                         m->tc = tc;
1100                         m->pass_discard = pool->pf.discard_passdown;
1101                         m->definitely_not_shared = !lookup_result.shared;
1102                         m->virt_block = block;
1103                         m->data_block = lookup_result.block;
1104                         m->cell = cell;
1105                         m->cell2 = cell2;
1106                         m->bio = bio;
1107
1108                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1109                                 spin_lock_irqsave(&pool->lock, flags);
1110                                 list_add_tail(&m->list, &pool->prepared_discards);
1111                                 spin_unlock_irqrestore(&pool->lock, flags);
1112                                 wake_worker(pool);
1113                         }
1114                 } else {
1115                         inc_all_io_entry(pool, bio);
1116                         cell_defer_no_holder(tc, cell);
1117                         cell_defer_no_holder(tc, cell2);
1118
1119                         /*
1120                          * The DM core makes sure that the discard doesn't span
1121                          * a block boundary.  So we submit the discard of a
1122                          * partial block appropriately.
1123                          */
1124                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1125                                 remap_and_issue(tc, bio, lookup_result.block);
1126                         else
1127                                 bio_endio(bio, 0);
1128                 }
1129                 break;
1130
1131         case -ENODATA:
1132                 /*
1133                  * It isn't provisioned, just forget it.
1134                  */
1135                 cell_defer_no_holder(tc, cell);
1136                 bio_endio(bio, 0);
1137                 break;
1138
1139         default:
1140                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1141                             __func__, r);
1142                 cell_defer_no_holder(tc, cell);
1143                 bio_io_error(bio);
1144                 break;
1145         }
1146 }
1147
1148 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1149                           struct dm_cell_key *key,
1150                           struct dm_thin_lookup_result *lookup_result,
1151                           struct dm_bio_prison_cell *cell)
1152 {
1153         int r;
1154         dm_block_t data_block;
1155         struct pool *pool = tc->pool;
1156
1157         r = alloc_data_block(tc, &data_block);
1158         switch (r) {
1159         case 0:
1160                 schedule_internal_copy(tc, block, lookup_result->block,
1161                                        data_block, cell, bio);
1162                 break;
1163
1164         case -ENOSPC:
1165                 retry_bios_on_resume(pool, cell);
1166                 break;
1167
1168         default:
1169                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1170                             __func__, r);
1171                 cell_error(pool, cell);
1172                 break;
1173         }
1174 }
1175
1176 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1177                                dm_block_t block,
1178                                struct dm_thin_lookup_result *lookup_result)
1179 {
1180         struct dm_bio_prison_cell *cell;
1181         struct pool *pool = tc->pool;
1182         struct dm_cell_key key;
1183
1184         /*
1185          * If cell is already occupied, then sharing is already in the process
1186          * of being broken so we have nothing further to do here.
1187          */
1188         build_data_key(tc->td, lookup_result->block, &key);
1189         if (bio_detain(pool, &key, bio, &cell))
1190                 return;
1191
1192         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1193                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1194         else {
1195                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1196
1197                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1198                 inc_all_io_entry(pool, bio);
1199                 cell_defer_no_holder(tc, cell);
1200
1201                 remap_and_issue(tc, bio, lookup_result->block);
1202         }
1203 }
1204
1205 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1206                             struct dm_bio_prison_cell *cell)
1207 {
1208         int r;
1209         dm_block_t data_block;
1210         struct pool *pool = tc->pool;
1211
1212         /*
1213          * Remap empty bios (flushes) immediately, without provisioning.
1214          */
1215         if (!bio->bi_iter.bi_size) {
1216                 inc_all_io_entry(pool, bio);
1217                 cell_defer_no_holder(tc, cell);
1218
1219                 remap_and_issue(tc, bio, 0);
1220                 return;
1221         }
1222
1223         /*
1224          * Fill read bios with zeroes and complete them immediately.
1225          */
1226         if (bio_data_dir(bio) == READ) {
1227                 zero_fill_bio(bio);
1228                 cell_defer_no_holder(tc, cell);
1229                 bio_endio(bio, 0);
1230                 return;
1231         }
1232
1233         r = alloc_data_block(tc, &data_block);
1234         switch (r) {
1235         case 0:
1236                 if (tc->origin_dev)
1237                         schedule_external_copy(tc, block, data_block, cell, bio);
1238                 else
1239                         schedule_zero(tc, block, data_block, cell, bio);
1240                 break;
1241
1242         case -ENOSPC:
1243                 retry_bios_on_resume(pool, cell);
1244                 break;
1245
1246         default:
1247                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1248                             __func__, r);
1249                 cell_error(pool, cell);
1250                 break;
1251         }
1252 }
1253
1254 static void process_bio(struct thin_c *tc, struct bio *bio)
1255 {
1256         int r;
1257         struct pool *pool = tc->pool;
1258         dm_block_t block = get_bio_block(tc, bio);
1259         struct dm_bio_prison_cell *cell;
1260         struct dm_cell_key key;
1261         struct dm_thin_lookup_result lookup_result;
1262
1263         /*
1264          * If cell is already occupied, then the block is already
1265          * being provisioned so we have nothing further to do here.
1266          */
1267         build_virtual_key(tc->td, block, &key);
1268         if (bio_detain(pool, &key, bio, &cell))
1269                 return;
1270
1271         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1272         switch (r) {
1273         case 0:
1274                 if (lookup_result.shared) {
1275                         process_shared_bio(tc, bio, block, &lookup_result);
1276                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1277                 } else {
1278                         inc_all_io_entry(pool, bio);
1279                         cell_defer_no_holder(tc, cell);
1280
1281                         remap_and_issue(tc, bio, lookup_result.block);
1282                 }
1283                 break;
1284
1285         case -ENODATA:
1286                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1287                         inc_all_io_entry(pool, bio);
1288                         cell_defer_no_holder(tc, cell);
1289
1290                         remap_to_origin_and_issue(tc, bio);
1291                 } else
1292                         provision_block(tc, bio, block, cell);
1293                 break;
1294
1295         default:
1296                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1297                             __func__, r);
1298                 cell_defer_no_holder(tc, cell);
1299                 bio_io_error(bio);
1300                 break;
1301         }
1302 }
1303
1304 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1305 {
1306         int r;
1307         int rw = bio_data_dir(bio);
1308         dm_block_t block = get_bio_block(tc, bio);
1309         struct dm_thin_lookup_result lookup_result;
1310
1311         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1312         switch (r) {
1313         case 0:
1314                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1315                         handle_unserviceable_bio(tc->pool, bio);
1316                 else {
1317                         inc_all_io_entry(tc->pool, bio);
1318                         remap_and_issue(tc, bio, lookup_result.block);
1319                 }
1320                 break;
1321
1322         case -ENODATA:
1323                 if (rw != READ) {
1324                         handle_unserviceable_bio(tc->pool, bio);
1325                         break;
1326                 }
1327
1328                 if (tc->origin_dev) {
1329                         inc_all_io_entry(tc->pool, bio);
1330                         remap_to_origin_and_issue(tc, bio);
1331                         break;
1332                 }
1333
1334                 zero_fill_bio(bio);
1335                 bio_endio(bio, 0);
1336                 break;
1337
1338         default:
1339                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1340                             __func__, r);
1341                 bio_io_error(bio);
1342                 break;
1343         }
1344 }
1345
1346 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1347 {
1348         bio_endio(bio, 0);
1349 }
1350
1351 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1352 {
1353         bio_io_error(bio);
1354 }
1355
1356 /*
1357  * FIXME: should we also commit due to size of transaction, measured in
1358  * metadata blocks?
1359  */
1360 static int need_commit_due_to_time(struct pool *pool)
1361 {
1362         return jiffies < pool->last_commit_jiffies ||
1363                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1364 }
1365
1366 static void process_deferred_bios(struct pool *pool)
1367 {
1368         unsigned long flags;
1369         struct bio *bio;
1370         struct bio_list bios;
1371
1372         bio_list_init(&bios);
1373
1374         spin_lock_irqsave(&pool->lock, flags);
1375         bio_list_merge(&bios, &pool->deferred_bios);
1376         bio_list_init(&pool->deferred_bios);
1377         spin_unlock_irqrestore(&pool->lock, flags);
1378
1379         while ((bio = bio_list_pop(&bios))) {
1380                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1381                 struct thin_c *tc = h->tc;
1382
1383                 if (tc->requeue_mode) {
1384                         bio_endio(bio, DM_ENDIO_REQUEUE);
1385                         continue;
1386                 }
1387
1388                 /*
1389                  * If we've got no free new_mapping structs, and processing
1390                  * this bio might require one, we pause until there are some
1391                  * prepared mappings to process.
1392                  */
1393                 if (ensure_next_mapping(pool)) {
1394                         spin_lock_irqsave(&pool->lock, flags);
1395                         bio_list_merge(&pool->deferred_bios, &bios);
1396                         spin_unlock_irqrestore(&pool->lock, flags);
1397
1398                         break;
1399                 }
1400
1401                 if (bio->bi_rw & REQ_DISCARD)
1402                         pool->process_discard(tc, bio);
1403                 else
1404                         pool->process_bio(tc, bio);
1405         }
1406
1407         /*
1408          * If there are any deferred flush bios, we must commit
1409          * the metadata before issuing them.
1410          */
1411         bio_list_init(&bios);
1412         spin_lock_irqsave(&pool->lock, flags);
1413         bio_list_merge(&bios, &pool->deferred_flush_bios);
1414         bio_list_init(&pool->deferred_flush_bios);
1415         spin_unlock_irqrestore(&pool->lock, flags);
1416
1417         if (bio_list_empty(&bios) &&
1418             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1419                 return;
1420
1421         if (commit(pool)) {
1422                 while ((bio = bio_list_pop(&bios)))
1423                         bio_io_error(bio);
1424                 return;
1425         }
1426         pool->last_commit_jiffies = jiffies;
1427
1428         while ((bio = bio_list_pop(&bios)))
1429                 generic_make_request(bio);
1430 }
1431
1432 static void do_worker(struct work_struct *ws)
1433 {
1434         struct pool *pool = container_of(ws, struct pool, worker);
1435
1436         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1437         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1438         process_deferred_bios(pool);
1439 }
1440
1441 /*
1442  * We want to commit periodically so that not too much
1443  * unwritten data builds up.
1444  */
1445 static void do_waker(struct work_struct *ws)
1446 {
1447         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1448         wake_worker(pool);
1449         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1450 }
1451
1452 /*----------------------------------------------------------------*/
1453
1454 struct noflush_work {
1455         struct work_struct worker;
1456         struct thin_c *tc;
1457
1458         atomic_t complete;
1459         wait_queue_head_t wait;
1460 };
1461
1462 static void complete_noflush_work(struct noflush_work *w)
1463 {
1464         atomic_set(&w->complete, 1);
1465         wake_up(&w->wait);
1466 }
1467
1468 static void do_noflush_start(struct work_struct *ws)
1469 {
1470         struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1471         w->tc->requeue_mode = true;
1472         requeue_io(w->tc);
1473         complete_noflush_work(w);
1474 }
1475
1476 static void do_noflush_stop(struct work_struct *ws)
1477 {
1478         struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1479         w->tc->requeue_mode = false;
1480         complete_noflush_work(w);
1481 }
1482
1483 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1484 {
1485         struct noflush_work w;
1486
1487         INIT_WORK(&w.worker, fn);
1488         w.tc = tc;
1489         atomic_set(&w.complete, 0);
1490         init_waitqueue_head(&w.wait);
1491
1492         queue_work(tc->pool->wq, &w.worker);
1493
1494         wait_event(w.wait, atomic_read(&w.complete));
1495 }
1496
1497 /*----------------------------------------------------------------*/
1498
1499 static enum pool_mode get_pool_mode(struct pool *pool)
1500 {
1501         return pool->pf.mode;
1502 }
1503
1504 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1505 {
1506         dm_table_event(pool->ti->table);
1507         DMINFO("%s: switching pool to %s mode",
1508                dm_device_name(pool->pool_md), new_mode);
1509 }
1510
1511 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1512 {
1513         struct pool_c *pt = pool->ti->private;
1514         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1515         enum pool_mode old_mode = get_pool_mode(pool);
1516
1517         /*
1518          * Never allow the pool to transition to PM_WRITE mode if user
1519          * intervention is required to verify metadata and data consistency.
1520          */
1521         if (new_mode == PM_WRITE && needs_check) {
1522                 DMERR("%s: unable to switch pool to write mode until repaired.",
1523                       dm_device_name(pool->pool_md));
1524                 if (old_mode != new_mode)
1525                         new_mode = old_mode;
1526                 else
1527                         new_mode = PM_READ_ONLY;
1528         }
1529         /*
1530          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1531          * not going to recover without a thin_repair.  So we never let the
1532          * pool move out of the old mode.
1533          */
1534         if (old_mode == PM_FAIL)
1535                 new_mode = old_mode;
1536
1537         switch (new_mode) {
1538         case PM_FAIL:
1539                 if (old_mode != new_mode)
1540                         notify_of_pool_mode_change(pool, "failure");
1541                 dm_pool_metadata_read_only(pool->pmd);
1542                 pool->process_bio = process_bio_fail;
1543                 pool->process_discard = process_bio_fail;
1544                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1545                 pool->process_prepared_discard = process_prepared_discard_fail;
1546
1547                 error_retry_list(pool);
1548                 break;
1549
1550         case PM_READ_ONLY:
1551                 if (old_mode != new_mode)
1552                         notify_of_pool_mode_change(pool, "read-only");
1553                 dm_pool_metadata_read_only(pool->pmd);
1554                 pool->process_bio = process_bio_read_only;
1555                 pool->process_discard = process_bio_success;
1556                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1557                 pool->process_prepared_discard = process_prepared_discard_passdown;
1558
1559                 error_retry_list(pool);
1560                 break;
1561
1562         case PM_OUT_OF_DATA_SPACE:
1563                 /*
1564                  * Ideally we'd never hit this state; the low water mark
1565                  * would trigger userland to extend the pool before we
1566                  * completely run out of data space.  However, many small
1567                  * IOs to unprovisioned space can consume data space at an
1568                  * alarming rate.  Adjust your low water mark if you're
1569                  * frequently seeing this mode.
1570                  */
1571                 if (old_mode != new_mode)
1572                         notify_of_pool_mode_change(pool, "out-of-data-space");
1573                 pool->process_bio = process_bio_read_only;
1574                 pool->process_discard = process_discard;
1575                 pool->process_prepared_mapping = process_prepared_mapping;
1576                 pool->process_prepared_discard = process_prepared_discard_passdown;
1577                 break;
1578
1579         case PM_WRITE:
1580                 if (old_mode != new_mode)
1581                         notify_of_pool_mode_change(pool, "write");
1582                 dm_pool_metadata_read_write(pool->pmd);
1583                 pool->process_bio = process_bio;
1584                 pool->process_discard = process_discard;
1585                 pool->process_prepared_mapping = process_prepared_mapping;
1586                 pool->process_prepared_discard = process_prepared_discard;
1587                 break;
1588         }
1589
1590         pool->pf.mode = new_mode;
1591         /*
1592          * The pool mode may have changed, sync it so bind_control_target()
1593          * doesn't cause an unexpected mode transition on resume.
1594          */
1595         pt->adjusted_pf.mode = new_mode;
1596 }
1597
1598 static void abort_transaction(struct pool *pool)
1599 {
1600         const char *dev_name = dm_device_name(pool->pool_md);
1601
1602         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1603         if (dm_pool_abort_metadata(pool->pmd)) {
1604                 DMERR("%s: failed to abort metadata transaction", dev_name);
1605                 set_pool_mode(pool, PM_FAIL);
1606         }
1607
1608         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1609                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1610                 set_pool_mode(pool, PM_FAIL);
1611         }
1612 }
1613
1614 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1615 {
1616         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1617                     dm_device_name(pool->pool_md), op, r);
1618
1619         abort_transaction(pool);
1620         set_pool_mode(pool, PM_READ_ONLY);
1621 }
1622
1623 /*----------------------------------------------------------------*/
1624
1625 /*
1626  * Mapping functions.
1627  */
1628
1629 /*
1630  * Called only while mapping a thin bio to hand it over to the workqueue.
1631  */
1632 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1633 {
1634         unsigned long flags;
1635         struct pool *pool = tc->pool;
1636
1637         spin_lock_irqsave(&pool->lock, flags);
1638         bio_list_add(&pool->deferred_bios, bio);
1639         spin_unlock_irqrestore(&pool->lock, flags);
1640
1641         wake_worker(pool);
1642 }
1643
1644 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1645 {
1646         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1647
1648         h->tc = tc;
1649         h->shared_read_entry = NULL;
1650         h->all_io_entry = NULL;
1651         h->overwrite_mapping = NULL;
1652 }
1653
1654 /*
1655  * Non-blocking function called from the thin target's map function.
1656  */
1657 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1658 {
1659         int r;
1660         struct thin_c *tc = ti->private;
1661         dm_block_t block = get_bio_block(tc, bio);
1662         struct dm_thin_device *td = tc->td;
1663         struct dm_thin_lookup_result result;
1664         struct dm_bio_prison_cell cell1, cell2;
1665         struct dm_bio_prison_cell *cell_result;
1666         struct dm_cell_key key;
1667
1668         thin_hook_bio(tc, bio);
1669
1670         if (tc->requeue_mode) {
1671                 bio_endio(bio, DM_ENDIO_REQUEUE);
1672                 return DM_MAPIO_SUBMITTED;
1673         }
1674
1675         if (get_pool_mode(tc->pool) == PM_FAIL) {
1676                 bio_io_error(bio);
1677                 return DM_MAPIO_SUBMITTED;
1678         }
1679
1680         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1681                 thin_defer_bio(tc, bio);
1682                 return DM_MAPIO_SUBMITTED;
1683         }
1684
1685         r = dm_thin_find_block(td, block, 0, &result);
1686
1687         /*
1688          * Note that we defer readahead too.
1689          */
1690         switch (r) {
1691         case 0:
1692                 if (unlikely(result.shared)) {
1693                         /*
1694                          * We have a race condition here between the
1695                          * result.shared value returned by the lookup and
1696                          * snapshot creation, which may cause new
1697                          * sharing.
1698                          *
1699                          * To avoid this always quiesce the origin before
1700                          * taking the snap.  You want to do this anyway to
1701                          * ensure a consistent application view
1702                          * (i.e. lockfs).
1703                          *
1704                          * More distant ancestors are irrelevant. The
1705                          * shared flag will be set in their case.
1706                          */
1707                         thin_defer_bio(tc, bio);
1708                         return DM_MAPIO_SUBMITTED;
1709                 }
1710
1711                 build_virtual_key(tc->td, block, &key);
1712                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1713                         return DM_MAPIO_SUBMITTED;
1714
1715                 build_data_key(tc->td, result.block, &key);
1716                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1717                         cell_defer_no_holder_no_free(tc, &cell1);
1718                         return DM_MAPIO_SUBMITTED;
1719                 }
1720
1721                 inc_all_io_entry(tc->pool, bio);
1722                 cell_defer_no_holder_no_free(tc, &cell2);
1723                 cell_defer_no_holder_no_free(tc, &cell1);
1724
1725                 remap(tc, bio, result.block);
1726                 return DM_MAPIO_REMAPPED;
1727
1728         case -ENODATA:
1729                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1730                         /*
1731                          * This block isn't provisioned, and we have no way
1732                          * of doing so.
1733                          */
1734                         handle_unserviceable_bio(tc->pool, bio);
1735                         return DM_MAPIO_SUBMITTED;
1736                 }
1737                 /* fall through */
1738
1739         case -EWOULDBLOCK:
1740                 /*
1741                  * In future, the failed dm_thin_find_block above could
1742                  * provide the hint to load the metadata into cache.
1743                  */
1744                 thin_defer_bio(tc, bio);
1745                 return DM_MAPIO_SUBMITTED;
1746
1747         default:
1748                 /*
1749                  * Must always call bio_io_error on failure.
1750                  * dm_thin_find_block can fail with -EINVAL if the
1751                  * pool is switched to fail-io mode.
1752                  */
1753                 bio_io_error(bio);
1754                 return DM_MAPIO_SUBMITTED;
1755         }
1756 }
1757
1758 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1759 {
1760         int r;
1761         unsigned long flags;
1762         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1763
1764         spin_lock_irqsave(&pt->pool->lock, flags);
1765         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1766         spin_unlock_irqrestore(&pt->pool->lock, flags);
1767
1768         if (!r) {
1769                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1770                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1771         }
1772
1773         return r;
1774 }
1775
1776 static void __requeue_bios(struct pool *pool)
1777 {
1778         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1779         bio_list_init(&pool->retry_on_resume_list);
1780 }
1781
1782 /*----------------------------------------------------------------
1783  * Binding of control targets to a pool object
1784  *--------------------------------------------------------------*/
1785 static bool data_dev_supports_discard(struct pool_c *pt)
1786 {
1787         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1788
1789         return q && blk_queue_discard(q);
1790 }
1791
1792 static bool is_factor(sector_t block_size, uint32_t n)
1793 {
1794         return !sector_div(block_size, n);
1795 }
1796
1797 /*
1798  * If discard_passdown was enabled verify that the data device
1799  * supports discards.  Disable discard_passdown if not.
1800  */
1801 static void disable_passdown_if_not_supported(struct pool_c *pt)
1802 {
1803         struct pool *pool = pt->pool;
1804         struct block_device *data_bdev = pt->data_dev->bdev;
1805         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1806         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1807         const char *reason = NULL;
1808         char buf[BDEVNAME_SIZE];
1809
1810         if (!pt->adjusted_pf.discard_passdown)
1811                 return;
1812
1813         if (!data_dev_supports_discard(pt))
1814                 reason = "discard unsupported";
1815
1816         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1817                 reason = "max discard sectors smaller than a block";
1818
1819         else if (data_limits->discard_granularity > block_size)
1820                 reason = "discard granularity larger than a block";
1821
1822         else if (!is_factor(block_size, data_limits->discard_granularity))
1823                 reason = "discard granularity not a factor of block size";
1824
1825         if (reason) {
1826                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1827                 pt->adjusted_pf.discard_passdown = false;
1828         }
1829 }
1830
1831 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1832 {
1833         struct pool_c *pt = ti->private;
1834
1835         /*
1836          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1837          */
1838         enum pool_mode old_mode = get_pool_mode(pool);
1839         enum pool_mode new_mode = pt->adjusted_pf.mode;
1840
1841         /*
1842          * Don't change the pool's mode until set_pool_mode() below.
1843          * Otherwise the pool's process_* function pointers may
1844          * not match the desired pool mode.
1845          */
1846         pt->adjusted_pf.mode = old_mode;
1847
1848         pool->ti = ti;
1849         pool->pf = pt->adjusted_pf;
1850         pool->low_water_blocks = pt->low_water_blocks;
1851
1852         set_pool_mode(pool, new_mode);
1853
1854         return 0;
1855 }
1856
1857 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1858 {
1859         if (pool->ti == ti)
1860                 pool->ti = NULL;
1861 }
1862
1863 /*----------------------------------------------------------------
1864  * Pool creation
1865  *--------------------------------------------------------------*/
1866 /* Initialize pool features. */
1867 static void pool_features_init(struct pool_features *pf)
1868 {
1869         pf->mode = PM_WRITE;
1870         pf->zero_new_blocks = true;
1871         pf->discard_enabled = true;
1872         pf->discard_passdown = true;
1873         pf->error_if_no_space = false;
1874 }
1875
1876 static void __pool_destroy(struct pool *pool)
1877 {
1878         __pool_table_remove(pool);
1879
1880         if (dm_pool_metadata_close(pool->pmd) < 0)
1881                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1882
1883         dm_bio_prison_destroy(pool->prison);
1884         dm_kcopyd_client_destroy(pool->copier);
1885
1886         if (pool->wq)
1887                 destroy_workqueue(pool->wq);
1888
1889         if (pool->next_mapping)
1890                 mempool_free(pool->next_mapping, pool->mapping_pool);
1891         mempool_destroy(pool->mapping_pool);
1892         dm_deferred_set_destroy(pool->shared_read_ds);
1893         dm_deferred_set_destroy(pool->all_io_ds);
1894         kfree(pool);
1895 }
1896
1897 static struct kmem_cache *_new_mapping_cache;
1898
1899 static struct pool *pool_create(struct mapped_device *pool_md,
1900                                 struct block_device *metadata_dev,
1901                                 unsigned long block_size,
1902                                 int read_only, char **error)
1903 {
1904         int r;
1905         void *err_p;
1906         struct pool *pool;
1907         struct dm_pool_metadata *pmd;
1908         bool format_device = read_only ? false : true;
1909
1910         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1911         if (IS_ERR(pmd)) {
1912                 *error = "Error creating metadata object";
1913                 return (struct pool *)pmd;
1914         }
1915
1916         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1917         if (!pool) {
1918                 *error = "Error allocating memory for pool";
1919                 err_p = ERR_PTR(-ENOMEM);
1920                 goto bad_pool;
1921         }
1922
1923         pool->pmd = pmd;
1924         pool->sectors_per_block = block_size;
1925         if (block_size & (block_size - 1))
1926                 pool->sectors_per_block_shift = -1;
1927         else
1928                 pool->sectors_per_block_shift = __ffs(block_size);
1929         pool->low_water_blocks = 0;
1930         pool_features_init(&pool->pf);
1931         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1932         if (!pool->prison) {
1933                 *error = "Error creating pool's bio prison";
1934                 err_p = ERR_PTR(-ENOMEM);
1935                 goto bad_prison;
1936         }
1937
1938         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1939         if (IS_ERR(pool->copier)) {
1940                 r = PTR_ERR(pool->copier);
1941                 *error = "Error creating pool's kcopyd client";
1942                 err_p = ERR_PTR(r);
1943                 goto bad_kcopyd_client;
1944         }
1945
1946         /*
1947          * Create singlethreaded workqueue that will service all devices
1948          * that use this metadata.
1949          */
1950         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1951         if (!pool->wq) {
1952                 *error = "Error creating pool's workqueue";
1953                 err_p = ERR_PTR(-ENOMEM);
1954                 goto bad_wq;
1955         }
1956
1957         INIT_WORK(&pool->worker, do_worker);
1958         INIT_DELAYED_WORK(&pool->waker, do_waker);
1959         spin_lock_init(&pool->lock);
1960         bio_list_init(&pool->deferred_bios);
1961         bio_list_init(&pool->deferred_flush_bios);
1962         INIT_LIST_HEAD(&pool->prepared_mappings);
1963         INIT_LIST_HEAD(&pool->prepared_discards);
1964         pool->low_water_triggered = false;
1965         bio_list_init(&pool->retry_on_resume_list);
1966
1967         pool->shared_read_ds = dm_deferred_set_create();
1968         if (!pool->shared_read_ds) {
1969                 *error = "Error creating pool's shared read deferred set";
1970                 err_p = ERR_PTR(-ENOMEM);
1971                 goto bad_shared_read_ds;
1972         }
1973
1974         pool->all_io_ds = dm_deferred_set_create();
1975         if (!pool->all_io_ds) {
1976                 *error = "Error creating pool's all io deferred set";
1977                 err_p = ERR_PTR(-ENOMEM);
1978                 goto bad_all_io_ds;
1979         }
1980
1981         pool->next_mapping = NULL;
1982         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1983                                                       _new_mapping_cache);
1984         if (!pool->mapping_pool) {
1985                 *error = "Error creating pool's mapping mempool";
1986                 err_p = ERR_PTR(-ENOMEM);
1987                 goto bad_mapping_pool;
1988         }
1989
1990         pool->ref_count = 1;
1991         pool->last_commit_jiffies = jiffies;
1992         pool->pool_md = pool_md;
1993         pool->md_dev = metadata_dev;
1994         __pool_table_insert(pool);
1995
1996         return pool;
1997
1998 bad_mapping_pool:
1999         dm_deferred_set_destroy(pool->all_io_ds);
2000 bad_all_io_ds:
2001         dm_deferred_set_destroy(pool->shared_read_ds);
2002 bad_shared_read_ds:
2003         destroy_workqueue(pool->wq);
2004 bad_wq:
2005         dm_kcopyd_client_destroy(pool->copier);
2006 bad_kcopyd_client:
2007         dm_bio_prison_destroy(pool->prison);
2008 bad_prison:
2009         kfree(pool);
2010 bad_pool:
2011         if (dm_pool_metadata_close(pmd))
2012                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2013
2014         return err_p;
2015 }
2016
2017 static void __pool_inc(struct pool *pool)
2018 {
2019         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2020         pool->ref_count++;
2021 }
2022
2023 static void __pool_dec(struct pool *pool)
2024 {
2025         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2026         BUG_ON(!pool->ref_count);
2027         if (!--pool->ref_count)
2028                 __pool_destroy(pool);
2029 }
2030
2031 static struct pool *__pool_find(struct mapped_device *pool_md,
2032                                 struct block_device *metadata_dev,
2033                                 unsigned long block_size, int read_only,
2034                                 char **error, int *created)
2035 {
2036         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2037
2038         if (pool) {
2039                 if (pool->pool_md != pool_md) {
2040                         *error = "metadata device already in use by a pool";
2041                         return ERR_PTR(-EBUSY);
2042                 }
2043                 __pool_inc(pool);
2044
2045         } else {
2046                 pool = __pool_table_lookup(pool_md);
2047                 if (pool) {
2048                         if (pool->md_dev != metadata_dev) {
2049                                 *error = "different pool cannot replace a pool";
2050                                 return ERR_PTR(-EINVAL);
2051                         }
2052                         __pool_inc(pool);
2053
2054                 } else {
2055                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2056                         *created = 1;
2057                 }
2058         }
2059
2060         return pool;
2061 }
2062
2063 /*----------------------------------------------------------------
2064  * Pool target methods
2065  *--------------------------------------------------------------*/
2066 static void pool_dtr(struct dm_target *ti)
2067 {
2068         struct pool_c *pt = ti->private;
2069
2070         mutex_lock(&dm_thin_pool_table.mutex);
2071
2072         unbind_control_target(pt->pool, ti);
2073         __pool_dec(pt->pool);
2074         dm_put_device(ti, pt->metadata_dev);
2075         dm_put_device(ti, pt->data_dev);
2076         kfree(pt);
2077
2078         mutex_unlock(&dm_thin_pool_table.mutex);
2079 }
2080
2081 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2082                                struct dm_target *ti)
2083 {
2084         int r;
2085         unsigned argc;
2086         const char *arg_name;
2087
2088         static struct dm_arg _args[] = {
2089                 {0, 4, "Invalid number of pool feature arguments"},
2090         };
2091
2092         /*
2093          * No feature arguments supplied.
2094          */
2095         if (!as->argc)
2096                 return 0;
2097
2098         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2099         if (r)
2100                 return -EINVAL;
2101
2102         while (argc && !r) {
2103                 arg_name = dm_shift_arg(as);
2104                 argc--;
2105
2106                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2107                         pf->zero_new_blocks = false;
2108
2109                 else if (!strcasecmp(arg_name, "ignore_discard"))
2110                         pf->discard_enabled = false;
2111
2112                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2113                         pf->discard_passdown = false;
2114
2115                 else if (!strcasecmp(arg_name, "read_only"))
2116                         pf->mode = PM_READ_ONLY;
2117
2118                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2119                         pf->error_if_no_space = true;
2120
2121                 else {
2122                         ti->error = "Unrecognised pool feature requested";
2123                         r = -EINVAL;
2124                         break;
2125                 }
2126         }
2127
2128         return r;
2129 }
2130
2131 static void metadata_low_callback(void *context)
2132 {
2133         struct pool *pool = context;
2134
2135         DMWARN("%s: reached low water mark for metadata device: sending event.",
2136                dm_device_name(pool->pool_md));
2137
2138         dm_table_event(pool->ti->table);
2139 }
2140
2141 static sector_t get_dev_size(struct block_device *bdev)
2142 {
2143         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2144 }
2145
2146 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2147 {
2148         sector_t metadata_dev_size = get_dev_size(bdev);
2149         char buffer[BDEVNAME_SIZE];
2150
2151         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2152                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2153                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2154 }
2155
2156 static sector_t get_metadata_dev_size(struct block_device *bdev)
2157 {
2158         sector_t metadata_dev_size = get_dev_size(bdev);
2159
2160         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2161                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2162
2163         return metadata_dev_size;
2164 }
2165
2166 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2167 {
2168         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2169
2170         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2171
2172         return metadata_dev_size;
2173 }
2174
2175 /*
2176  * When a metadata threshold is crossed a dm event is triggered, and
2177  * userland should respond by growing the metadata device.  We could let
2178  * userland set the threshold, like we do with the data threshold, but I'm
2179  * not sure they know enough to do this well.
2180  */
2181 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2182 {
2183         /*
2184          * 4M is ample for all ops with the possible exception of thin
2185          * device deletion which is harmless if it fails (just retry the
2186          * delete after you've grown the device).
2187          */
2188         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2189         return min((dm_block_t)1024ULL /* 4M */, quarter);
2190 }
2191
2192 /*
2193  * thin-pool <metadata dev> <data dev>
2194  *           <data block size (sectors)>
2195  *           <low water mark (blocks)>
2196  *           [<#feature args> [<arg>]*]
2197  *
2198  * Optional feature arguments are:
2199  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2200  *           ignore_discard: disable discard
2201  *           no_discard_passdown: don't pass discards down to the data device
2202  *           read_only: Don't allow any changes to be made to the pool metadata.
2203  *           error_if_no_space: error IOs, instead of queueing, if no space.
2204  */
2205 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2206 {
2207         int r, pool_created = 0;
2208         struct pool_c *pt;
2209         struct pool *pool;
2210         struct pool_features pf;
2211         struct dm_arg_set as;
2212         struct dm_dev *data_dev;
2213         unsigned long block_size;
2214         dm_block_t low_water_blocks;
2215         struct dm_dev *metadata_dev;
2216         fmode_t metadata_mode;
2217
2218         /*
2219          * FIXME Remove validation from scope of lock.
2220          */
2221         mutex_lock(&dm_thin_pool_table.mutex);
2222
2223         if (argc < 4) {
2224                 ti->error = "Invalid argument count";
2225                 r = -EINVAL;
2226                 goto out_unlock;
2227         }
2228
2229         as.argc = argc;
2230         as.argv = argv;
2231
2232         /*
2233          * Set default pool features.
2234          */
2235         pool_features_init(&pf);
2236
2237         dm_consume_args(&as, 4);
2238         r = parse_pool_features(&as, &pf, ti);
2239         if (r)
2240                 goto out_unlock;
2241
2242         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2243         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2244         if (r) {
2245                 ti->error = "Error opening metadata block device";
2246                 goto out_unlock;
2247         }
2248         warn_if_metadata_device_too_big(metadata_dev->bdev);
2249
2250         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2251         if (r) {
2252                 ti->error = "Error getting data device";
2253                 goto out_metadata;
2254         }
2255
2256         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2257             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2258             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2259             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2260                 ti->error = "Invalid block size";
2261                 r = -EINVAL;
2262                 goto out;
2263         }
2264
2265         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2266                 ti->error = "Invalid low water mark";
2267                 r = -EINVAL;
2268                 goto out;
2269         }
2270
2271         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2272         if (!pt) {
2273                 r = -ENOMEM;
2274                 goto out;
2275         }
2276
2277         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2278                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2279         if (IS_ERR(pool)) {
2280                 r = PTR_ERR(pool);
2281                 goto out_free_pt;
2282         }
2283
2284         /*
2285          * 'pool_created' reflects whether this is the first table load.
2286          * Top level discard support is not allowed to be changed after
2287          * initial load.  This would require a pool reload to trigger thin
2288          * device changes.
2289          */
2290         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2291                 ti->error = "Discard support cannot be disabled once enabled";
2292                 r = -EINVAL;
2293                 goto out_flags_changed;
2294         }
2295
2296         pt->pool = pool;
2297         pt->ti = ti;
2298         pt->metadata_dev = metadata_dev;
2299         pt->data_dev = data_dev;
2300         pt->low_water_blocks = low_water_blocks;
2301         pt->adjusted_pf = pt->requested_pf = pf;
2302         ti->num_flush_bios = 1;
2303
2304         /*
2305          * Only need to enable discards if the pool should pass
2306          * them down to the data device.  The thin device's discard
2307          * processing will cause mappings to be removed from the btree.
2308          */
2309         ti->discard_zeroes_data_unsupported = true;
2310         if (pf.discard_enabled && pf.discard_passdown) {
2311                 ti->num_discard_bios = 1;
2312
2313                 /*
2314                  * Setting 'discards_supported' circumvents the normal
2315                  * stacking of discard limits (this keeps the pool and
2316                  * thin devices' discard limits consistent).
2317                  */
2318                 ti->discards_supported = true;
2319         }
2320         ti->private = pt;
2321
2322         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2323                                                 calc_metadata_threshold(pt),
2324                                                 metadata_low_callback,
2325                                                 pool);
2326         if (r)
2327                 goto out_free_pt;
2328
2329         pt->callbacks.congested_fn = pool_is_congested;
2330         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2331
2332         mutex_unlock(&dm_thin_pool_table.mutex);
2333
2334         return 0;
2335
2336 out_flags_changed:
2337         __pool_dec(pool);
2338 out_free_pt:
2339         kfree(pt);
2340 out:
2341         dm_put_device(ti, data_dev);
2342 out_metadata:
2343         dm_put_device(ti, metadata_dev);
2344 out_unlock:
2345         mutex_unlock(&dm_thin_pool_table.mutex);
2346
2347         return r;
2348 }
2349
2350 static int pool_map(struct dm_target *ti, struct bio *bio)
2351 {
2352         int r;
2353         struct pool_c *pt = ti->private;
2354         struct pool *pool = pt->pool;
2355         unsigned long flags;
2356
2357         /*
2358          * As this is a singleton target, ti->begin is always zero.
2359          */
2360         spin_lock_irqsave(&pool->lock, flags);
2361         bio->bi_bdev = pt->data_dev->bdev;
2362         r = DM_MAPIO_REMAPPED;
2363         spin_unlock_irqrestore(&pool->lock, flags);
2364
2365         return r;
2366 }
2367
2368 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2369 {
2370         int r;
2371         struct pool_c *pt = ti->private;
2372         struct pool *pool = pt->pool;
2373         sector_t data_size = ti->len;
2374         dm_block_t sb_data_size;
2375
2376         *need_commit = false;
2377
2378         (void) sector_div(data_size, pool->sectors_per_block);
2379
2380         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2381         if (r) {
2382                 DMERR("%s: failed to retrieve data device size",
2383                       dm_device_name(pool->pool_md));
2384                 return r;
2385         }
2386
2387         if (data_size < sb_data_size) {
2388                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2389                       dm_device_name(pool->pool_md),
2390                       (unsigned long long)data_size, sb_data_size);
2391                 return -EINVAL;
2392
2393         } else if (data_size > sb_data_size) {
2394                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2395                         DMERR("%s: unable to grow the data device until repaired.",
2396                               dm_device_name(pool->pool_md));
2397                         return 0;
2398                 }
2399
2400                 if (sb_data_size)
2401                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2402                                dm_device_name(pool->pool_md),
2403                                sb_data_size, (unsigned long long)data_size);
2404                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2405                 if (r) {
2406                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2407                         return r;
2408                 }
2409
2410                 *need_commit = true;
2411         }
2412
2413         return 0;
2414 }
2415
2416 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2417 {
2418         int r;
2419         struct pool_c *pt = ti->private;
2420         struct pool *pool = pt->pool;
2421         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2422
2423         *need_commit = false;
2424
2425         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2426
2427         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2428         if (r) {
2429                 DMERR("%s: failed to retrieve metadata device size",
2430                       dm_device_name(pool->pool_md));
2431                 return r;
2432         }
2433
2434         if (metadata_dev_size < sb_metadata_dev_size) {
2435                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2436                       dm_device_name(pool->pool_md),
2437                       metadata_dev_size, sb_metadata_dev_size);
2438                 return -EINVAL;
2439
2440         } else if (metadata_dev_size > sb_metadata_dev_size) {
2441                 if (dm_pool_metadata_needs_check(pool->pmd)) {
2442                         DMERR("%s: unable to grow the metadata device until repaired.",
2443                               dm_device_name(pool->pool_md));
2444                         return 0;
2445                 }
2446
2447                 warn_if_metadata_device_too_big(pool->md_dev);
2448                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2449                        dm_device_name(pool->pool_md),
2450                        sb_metadata_dev_size, metadata_dev_size);
2451                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2452                 if (r) {
2453                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2454                         return r;
2455                 }
2456
2457                 *need_commit = true;
2458         }
2459
2460         return 0;
2461 }
2462
2463 /*
2464  * Retrieves the number of blocks of the data device from
2465  * the superblock and compares it to the actual device size,
2466  * thus resizing the data device in case it has grown.
2467  *
2468  * This both copes with opening preallocated data devices in the ctr
2469  * being followed by a resume
2470  * -and-
2471  * calling the resume method individually after userspace has
2472  * grown the data device in reaction to a table event.
2473  */
2474 static int pool_preresume(struct dm_target *ti)
2475 {
2476         int r;
2477         bool need_commit1, need_commit2;
2478         struct pool_c *pt = ti->private;
2479         struct pool *pool = pt->pool;
2480
2481         /*
2482          * Take control of the pool object.
2483          */
2484         r = bind_control_target(pool, ti);
2485         if (r)
2486                 return r;
2487
2488         r = maybe_resize_data_dev(ti, &need_commit1);
2489         if (r)
2490                 return r;
2491
2492         r = maybe_resize_metadata_dev(ti, &need_commit2);
2493         if (r)
2494                 return r;
2495
2496         if (need_commit1 || need_commit2)
2497                 (void) commit(pool);
2498
2499         return 0;
2500 }
2501
2502 static void pool_resume(struct dm_target *ti)
2503 {
2504         struct pool_c *pt = ti->private;
2505         struct pool *pool = pt->pool;
2506         unsigned long flags;
2507
2508         spin_lock_irqsave(&pool->lock, flags);
2509         pool->low_water_triggered = false;
2510         __requeue_bios(pool);
2511         spin_unlock_irqrestore(&pool->lock, flags);
2512
2513         do_waker(&pool->waker.work);
2514 }
2515
2516 static void pool_postsuspend(struct dm_target *ti)
2517 {
2518         struct pool_c *pt = ti->private;
2519         struct pool *pool = pt->pool;
2520
2521         cancel_delayed_work(&pool->waker);
2522         flush_workqueue(pool->wq);
2523         (void) commit(pool);
2524 }
2525
2526 static int check_arg_count(unsigned argc, unsigned args_required)
2527 {
2528         if (argc != args_required) {
2529                 DMWARN("Message received with %u arguments instead of %u.",
2530                        argc, args_required);
2531                 return -EINVAL;
2532         }
2533
2534         return 0;
2535 }
2536
2537 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2538 {
2539         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2540             *dev_id <= MAX_DEV_ID)
2541                 return 0;
2542
2543         if (warning)
2544                 DMWARN("Message received with invalid device id: %s", arg);
2545
2546         return -EINVAL;
2547 }
2548
2549 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2550 {
2551         dm_thin_id dev_id;
2552         int r;
2553
2554         r = check_arg_count(argc, 2);
2555         if (r)
2556                 return r;
2557
2558         r = read_dev_id(argv[1], &dev_id, 1);
2559         if (r)
2560                 return r;
2561
2562         r = dm_pool_create_thin(pool->pmd, dev_id);
2563         if (r) {
2564                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2565                        argv[1]);
2566                 return r;
2567         }
2568
2569         return 0;
2570 }
2571
2572 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2573 {
2574         dm_thin_id dev_id;
2575         dm_thin_id origin_dev_id;
2576         int r;
2577
2578         r = check_arg_count(argc, 3);
2579         if (r)
2580                 return r;
2581
2582         r = read_dev_id(argv[1], &dev_id, 1);
2583         if (r)
2584                 return r;
2585
2586         r = read_dev_id(argv[2], &origin_dev_id, 1);
2587         if (r)
2588                 return r;
2589
2590         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2591         if (r) {
2592                 DMWARN("Creation of new snapshot %s of device %s failed.",
2593                        argv[1], argv[2]);
2594                 return r;
2595         }
2596
2597         return 0;
2598 }
2599
2600 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2601 {
2602         dm_thin_id dev_id;
2603         int r;
2604
2605         r = check_arg_count(argc, 2);
2606         if (r)
2607                 return r;
2608
2609         r = read_dev_id(argv[1], &dev_id, 1);
2610         if (r)
2611                 return r;
2612
2613         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2614         if (r)
2615                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2616
2617         return r;
2618 }
2619
2620 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2621 {
2622         dm_thin_id old_id, new_id;
2623         int r;
2624
2625         r = check_arg_count(argc, 3);
2626         if (r)
2627                 return r;
2628
2629         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2630                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2631                 return -EINVAL;
2632         }
2633
2634         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2635                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2636                 return -EINVAL;
2637         }
2638
2639         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2640         if (r) {
2641                 DMWARN("Failed to change transaction id from %s to %s.",
2642                        argv[1], argv[2]);
2643                 return r;
2644         }
2645
2646         return 0;
2647 }
2648
2649 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2650 {
2651         int r;
2652
2653         r = check_arg_count(argc, 1);
2654         if (r)
2655                 return r;
2656
2657         (void) commit(pool);
2658
2659         r = dm_pool_reserve_metadata_snap(pool->pmd);
2660         if (r)
2661                 DMWARN("reserve_metadata_snap message failed.");
2662
2663         return r;
2664 }
2665
2666 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2667 {
2668         int r;
2669
2670         r = check_arg_count(argc, 1);
2671         if (r)
2672                 return r;
2673
2674         r = dm_pool_release_metadata_snap(pool->pmd);
2675         if (r)
2676                 DMWARN("release_metadata_snap message failed.");
2677
2678         return r;
2679 }
2680
2681 /*
2682  * Messages supported:
2683  *   create_thin        <dev_id>
2684  *   create_snap        <dev_id> <origin_id>
2685  *   delete             <dev_id>
2686  *   trim               <dev_id> <new_size_in_sectors>
2687  *   set_transaction_id <current_trans_id> <new_trans_id>
2688  *   reserve_metadata_snap
2689  *   release_metadata_snap
2690  */
2691 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2692 {
2693         int r = -EINVAL;
2694         struct pool_c *pt = ti->private;
2695         struct pool *pool = pt->pool;
2696
2697         if (!strcasecmp(argv[0], "create_thin"))
2698                 r = process_create_thin_mesg(argc, argv, pool);
2699
2700         else if (!strcasecmp(argv[0], "create_snap"))
2701                 r = process_create_snap_mesg(argc, argv, pool);
2702
2703         else if (!strcasecmp(argv[0], "delete"))
2704                 r = process_delete_mesg(argc, argv, pool);
2705
2706         else if (!strcasecmp(argv[0], "set_transaction_id"))
2707                 r = process_set_transaction_id_mesg(argc, argv, pool);
2708
2709         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2710                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2711
2712         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2713                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2714
2715         else
2716                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2717
2718         if (!r)
2719                 (void) commit(pool);
2720
2721         return r;
2722 }
2723
2724 static void emit_flags(struct pool_features *pf, char *result,
2725                        unsigned sz, unsigned maxlen)
2726 {
2727         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2728                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2729                 pf->error_if_no_space;
2730         DMEMIT("%u ", count);
2731
2732         if (!pf->zero_new_blocks)
2733                 DMEMIT("skip_block_zeroing ");
2734
2735         if (!pf->discard_enabled)
2736                 DMEMIT("ignore_discard ");
2737
2738         if (!pf->discard_passdown)
2739                 DMEMIT("no_discard_passdown ");
2740
2741         if (pf->mode == PM_READ_ONLY)
2742                 DMEMIT("read_only ");
2743
2744         if (pf->error_if_no_space)
2745                 DMEMIT("error_if_no_space ");
2746 }
2747
2748 /*
2749  * Status line is:
2750  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2751  *    <used data sectors>/<total data sectors> <held metadata root>
2752  */
2753 static void pool_status(struct dm_target *ti, status_type_t type,
2754                         unsigned status_flags, char *result, unsigned maxlen)
2755 {
2756         int r;
2757         unsigned sz = 0;
2758         uint64_t transaction_id;
2759         dm_block_t nr_free_blocks_data;
2760         dm_block_t nr_free_blocks_metadata;
2761         dm_block_t nr_blocks_data;
2762         dm_block_t nr_blocks_metadata;
2763         dm_block_t held_root;
2764         char buf[BDEVNAME_SIZE];
2765         char buf2[BDEVNAME_SIZE];
2766         struct pool_c *pt = ti->private;
2767         struct pool *pool = pt->pool;
2768
2769         switch (type) {
2770         case STATUSTYPE_INFO:
2771                 if (get_pool_mode(pool) == PM_FAIL) {
2772                         DMEMIT("Fail");
2773                         break;
2774                 }
2775
2776                 /* Commit to ensure statistics aren't out-of-date */
2777                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2778                         (void) commit(pool);
2779
2780                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2781                 if (r) {
2782                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2783                               dm_device_name(pool->pool_md), r);
2784                         goto err;
2785                 }
2786
2787                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2788                 if (r) {
2789                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2790                               dm_device_name(pool->pool_md), r);
2791                         goto err;
2792                 }
2793
2794                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2795                 if (r) {
2796                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2797                               dm_device_name(pool->pool_md), r);
2798                         goto err;
2799                 }
2800
2801                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2802                 if (r) {
2803                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2804                               dm_device_name(pool->pool_md), r);
2805                         goto err;
2806                 }
2807
2808                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2809                 if (r) {
2810                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2811                               dm_device_name(pool->pool_md), r);
2812                         goto err;
2813                 }
2814
2815                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2816                 if (r) {
2817                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2818                               dm_device_name(pool->pool_md), r);
2819                         goto err;
2820                 }
2821
2822                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2823                        (unsigned long long)transaction_id,
2824                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2825                        (unsigned long long)nr_blocks_metadata,
2826                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2827                        (unsigned long long)nr_blocks_data);
2828
2829                 if (held_root)
2830                         DMEMIT("%llu ", held_root);
2831                 else
2832                         DMEMIT("- ");
2833
2834                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
2835                         DMEMIT("out_of_data_space ");
2836                 else if (pool->pf.mode == PM_READ_ONLY)
2837                         DMEMIT("ro ");
2838                 else
2839                         DMEMIT("rw ");
2840
2841                 if (!pool->pf.discard_enabled)
2842                         DMEMIT("ignore_discard ");
2843                 else if (pool->pf.discard_passdown)
2844                         DMEMIT("discard_passdown ");
2845                 else
2846                         DMEMIT("no_discard_passdown ");
2847
2848                 if (pool->pf.error_if_no_space)
2849                         DMEMIT("error_if_no_space ");
2850                 else
2851                         DMEMIT("queue_if_no_space ");
2852
2853                 break;
2854
2855         case STATUSTYPE_TABLE:
2856                 DMEMIT("%s %s %lu %llu ",
2857                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2858                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2859                        (unsigned long)pool->sectors_per_block,
2860                        (unsigned long long)pt->low_water_blocks);
2861                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2862                 break;
2863         }
2864         return;
2865
2866 err:
2867         DMEMIT("Error");
2868 }
2869
2870 static int pool_iterate_devices(struct dm_target *ti,
2871                                 iterate_devices_callout_fn fn, void *data)
2872 {
2873         struct pool_c *pt = ti->private;
2874
2875         return fn(ti, pt->data_dev, 0, ti->len, data);
2876 }
2877
2878 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2879                       struct bio_vec *biovec, int max_size)
2880 {
2881         struct pool_c *pt = ti->private;
2882         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2883
2884         if (!q->merge_bvec_fn)
2885                 return max_size;
2886
2887         bvm->bi_bdev = pt->data_dev->bdev;
2888
2889         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2890 }
2891
2892 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2893 {
2894         struct pool *pool = pt->pool;
2895         struct queue_limits *data_limits;
2896
2897         limits->max_discard_sectors = pool->sectors_per_block;
2898
2899         /*
2900          * discard_granularity is just a hint, and not enforced.
2901          */
2902         if (pt->adjusted_pf.discard_passdown) {
2903                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2904                 limits->discard_granularity = data_limits->discard_granularity;
2905         } else
2906                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2907 }
2908
2909 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2910 {
2911         struct pool_c *pt = ti->private;
2912         struct pool *pool = pt->pool;
2913         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2914
2915         /*
2916          * If the system-determined stacked limits are compatible with the
2917          * pool's blocksize (io_opt is a factor) do not override them.
2918          */
2919         if (io_opt_sectors < pool->sectors_per_block ||
2920             do_div(io_opt_sectors, pool->sectors_per_block)) {
2921                 blk_limits_io_min(limits, 0);
2922                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2923         }
2924
2925         /*
2926          * pt->adjusted_pf is a staging area for the actual features to use.
2927          * They get transferred to the live pool in bind_control_target()
2928          * called from pool_preresume().
2929          */
2930         if (!pt->adjusted_pf.discard_enabled) {
2931                 /*
2932                  * Must explicitly disallow stacking discard limits otherwise the
2933                  * block layer will stack them if pool's data device has support.
2934                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2935                  * user to see that, so make sure to set all discard limits to 0.
2936                  */
2937                 limits->discard_granularity = 0;
2938                 return;
2939         }
2940
2941         disable_passdown_if_not_supported(pt);
2942
2943         set_discard_limits(pt, limits);
2944 }
2945
2946 static struct target_type pool_target = {
2947         .name = "thin-pool",
2948         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2949                     DM_TARGET_IMMUTABLE,
2950         .version = {1, 11, 0},
2951         .module = THIS_MODULE,
2952         .ctr = pool_ctr,
2953         .dtr = pool_dtr,
2954         .map = pool_map,
2955         .postsuspend = pool_postsuspend,
2956         .preresume = pool_preresume,
2957         .resume = pool_resume,
2958         .message = pool_message,
2959         .status = pool_status,
2960         .merge = pool_merge,
2961         .iterate_devices = pool_iterate_devices,
2962         .io_hints = pool_io_hints,
2963 };
2964
2965 /*----------------------------------------------------------------
2966  * Thin target methods
2967  *--------------------------------------------------------------*/
2968 static void thin_dtr(struct dm_target *ti)
2969 {
2970         struct thin_c *tc = ti->private;
2971
2972         mutex_lock(&dm_thin_pool_table.mutex);
2973
2974         __pool_dec(tc->pool);
2975         dm_pool_close_thin_device(tc->td);
2976         dm_put_device(ti, tc->pool_dev);
2977         if (tc->origin_dev)
2978                 dm_put_device(ti, tc->origin_dev);
2979         kfree(tc);
2980
2981         mutex_unlock(&dm_thin_pool_table.mutex);
2982 }
2983
2984 /*
2985  * Thin target parameters:
2986  *
2987  * <pool_dev> <dev_id> [origin_dev]
2988  *
2989  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2990  * dev_id: the internal device identifier
2991  * origin_dev: a device external to the pool that should act as the origin
2992  *
2993  * If the pool device has discards disabled, they get disabled for the thin
2994  * device as well.
2995  */
2996 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2997 {
2998         int r;
2999         struct thin_c *tc;
3000         struct dm_dev *pool_dev, *origin_dev;
3001         struct mapped_device *pool_md;
3002
3003         mutex_lock(&dm_thin_pool_table.mutex);
3004
3005         if (argc != 2 && argc != 3) {
3006                 ti->error = "Invalid argument count";
3007                 r = -EINVAL;
3008                 goto out_unlock;
3009         }
3010
3011         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3012         if (!tc) {
3013                 ti->error = "Out of memory";
3014                 r = -ENOMEM;
3015                 goto out_unlock;
3016         }
3017
3018         if (argc == 3) {
3019                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3020                 if (r) {
3021                         ti->error = "Error opening origin device";
3022                         goto bad_origin_dev;
3023                 }
3024                 tc->origin_dev = origin_dev;
3025         }
3026
3027         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3028         if (r) {
3029                 ti->error = "Error opening pool device";
3030                 goto bad_pool_dev;
3031         }
3032         tc->pool_dev = pool_dev;
3033
3034         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3035                 ti->error = "Invalid device id";
3036                 r = -EINVAL;
3037                 goto bad_common;
3038         }
3039
3040         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3041         if (!pool_md) {
3042                 ti->error = "Couldn't get pool mapped device";
3043                 r = -EINVAL;
3044                 goto bad_common;
3045         }
3046
3047         tc->pool = __pool_table_lookup(pool_md);
3048         if (!tc->pool) {
3049                 ti->error = "Couldn't find pool object";
3050                 r = -EINVAL;
3051                 goto bad_pool_lookup;
3052         }
3053         __pool_inc(tc->pool);
3054
3055         if (get_pool_mode(tc->pool) == PM_FAIL) {
3056                 ti->error = "Couldn't open thin device, Pool is in fail mode";
3057                 r = -EINVAL;
3058                 goto bad_thin_open;
3059         }
3060
3061         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3062         if (r) {
3063                 ti->error = "Couldn't open thin internal device";
3064                 goto bad_thin_open;
3065         }
3066
3067         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3068         if (r)
3069                 goto bad_target_max_io_len;
3070
3071         ti->num_flush_bios = 1;
3072         ti->flush_supported = true;
3073         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3074
3075         /* In case the pool supports discards, pass them on. */
3076         ti->discard_zeroes_data_unsupported = true;
3077         if (tc->pool->pf.discard_enabled) {
3078                 ti->discards_supported = true;
3079                 ti->num_discard_bios = 1;
3080                 /* Discard bios must be split on a block boundary */
3081                 ti->split_discard_bios = true;
3082         }
3083
3084         dm_put(pool_md);
3085
3086         mutex_unlock(&dm_thin_pool_table.mutex);
3087
3088         return 0;
3089
3090 bad_target_max_io_len:
3091         dm_pool_close_thin_device(tc->td);
3092 bad_thin_open:
3093         __pool_dec(tc->pool);
3094 bad_pool_lookup:
3095         dm_put(pool_md);
3096 bad_common:
3097         dm_put_device(ti, tc->pool_dev);
3098 bad_pool_dev:
3099         if (tc->origin_dev)
3100                 dm_put_device(ti, tc->origin_dev);
3101 bad_origin_dev:
3102         kfree(tc);
3103 out_unlock:
3104         mutex_unlock(&dm_thin_pool_table.mutex);
3105
3106         return r;
3107 }
3108
3109 static int thin_map(struct dm_target *ti, struct bio *bio)
3110 {
3111         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3112
3113         return thin_bio_map(ti, bio);
3114 }
3115
3116 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3117 {
3118         unsigned long flags;
3119         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3120         struct list_head work;
3121         struct dm_thin_new_mapping *m, *tmp;
3122         struct pool *pool = h->tc->pool;
3123
3124         if (h->shared_read_entry) {
3125                 INIT_LIST_HEAD(&work);
3126                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3127
3128                 spin_lock_irqsave(&pool->lock, flags);
3129                 list_for_each_entry_safe(m, tmp, &work, list) {
3130                         list_del(&m->list);
3131                         m->quiesced = true;
3132                         __maybe_add_mapping(m);
3133                 }
3134                 spin_unlock_irqrestore(&pool->lock, flags);
3135         }
3136
3137         if (h->all_io_entry) {
3138                 INIT_LIST_HEAD(&work);
3139                 dm_deferred_entry_dec(h->all_io_entry, &work);
3140                 if (!list_empty(&work)) {
3141                         spin_lock_irqsave(&pool->lock, flags);
3142                         list_for_each_entry_safe(m, tmp, &work, list)
3143                                 list_add_tail(&m->list, &pool->prepared_discards);
3144                         spin_unlock_irqrestore(&pool->lock, flags);
3145                         wake_worker(pool);
3146                 }
3147         }
3148
3149         return 0;
3150 }
3151
3152 static void thin_presuspend(struct dm_target *ti)
3153 {
3154         struct thin_c *tc = ti->private;
3155
3156         if (dm_noflush_suspending(ti))
3157                 noflush_work(tc, do_noflush_start);
3158 }
3159
3160 static void thin_postsuspend(struct dm_target *ti)
3161 {
3162         struct thin_c *tc = ti->private;
3163
3164         /*
3165          * The dm_noflush_suspending flag has been cleared by now, so
3166          * unfortunately we must always run this.
3167          */
3168         noflush_work(tc, do_noflush_stop);
3169 }
3170
3171 /*
3172  * <nr mapped sectors> <highest mapped sector>
3173  */
3174 static void thin_status(struct dm_target *ti, status_type_t type,
3175                         unsigned status_flags, char *result, unsigned maxlen)
3176 {
3177         int r;
3178         ssize_t sz = 0;
3179         dm_block_t mapped, highest;
3180         char buf[BDEVNAME_SIZE];
3181         struct thin_c *tc = ti->private;
3182
3183         if (get_pool_mode(tc->pool) == PM_FAIL) {
3184                 DMEMIT("Fail");
3185                 return;
3186         }
3187
3188         if (!tc->td)
3189                 DMEMIT("-");
3190         else {
3191                 switch (type) {
3192                 case STATUSTYPE_INFO:
3193                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3194                         if (r) {
3195                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3196                                 goto err;
3197                         }
3198
3199                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3200                         if (r < 0) {
3201                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3202                                 goto err;
3203                         }
3204
3205                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3206                         if (r)
3207                                 DMEMIT("%llu", ((highest + 1) *
3208                                                 tc->pool->sectors_per_block) - 1);
3209                         else
3210                                 DMEMIT("-");
3211                         break;
3212
3213                 case STATUSTYPE_TABLE:
3214                         DMEMIT("%s %lu",
3215                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3216                                (unsigned long) tc->dev_id);
3217                         if (tc->origin_dev)
3218                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3219                         break;
3220                 }
3221         }
3222
3223         return;
3224
3225 err:
3226         DMEMIT("Error");
3227 }
3228
3229 static int thin_iterate_devices(struct dm_target *ti,
3230                                 iterate_devices_callout_fn fn, void *data)
3231 {
3232         sector_t blocks;
3233         struct thin_c *tc = ti->private;
3234         struct pool *pool = tc->pool;
3235
3236         /*
3237          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3238          * we follow a more convoluted path through to the pool's target.
3239          */
3240         if (!pool->ti)
3241                 return 0;       /* nothing is bound */
3242
3243         blocks = pool->ti->len;
3244         (void) sector_div(blocks, pool->sectors_per_block);
3245         if (blocks)
3246                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3247
3248         return 0;
3249 }
3250
3251 static struct target_type thin_target = {
3252         .name = "thin",
3253         .version = {1, 11, 0},
3254         .module = THIS_MODULE,
3255         .ctr = thin_ctr,
3256         .dtr = thin_dtr,
3257         .map = thin_map,
3258         .end_io = thin_endio,
3259         .presuspend = thin_presuspend,
3260         .postsuspend = thin_postsuspend,
3261         .status = thin_status,
3262         .iterate_devices = thin_iterate_devices,
3263 };
3264
3265 /*----------------------------------------------------------------*/
3266
3267 static int __init dm_thin_init(void)
3268 {
3269         int r;
3270
3271         pool_table_init();
3272
3273         r = dm_register_target(&thin_target);
3274         if (r)
3275                 return r;
3276
3277         r = dm_register_target(&pool_target);
3278         if (r)
3279                 goto bad_pool_target;
3280
3281         r = -ENOMEM;
3282
3283         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3284         if (!_new_mapping_cache)
3285                 goto bad_new_mapping_cache;
3286
3287         return 0;
3288
3289 bad_new_mapping_cache:
3290         dm_unregister_target(&pool_target);
3291 bad_pool_target:
3292         dm_unregister_target(&thin_target);
3293
3294         return r;
3295 }
3296
3297 static void dm_thin_exit(void)
3298 {
3299         dm_unregister_target(&thin_target);
3300         dm_unregister_target(&pool_target);
3301
3302         kmem_cache_destroy(_new_mapping_cache);
3303 }
3304
3305 module_init(dm_thin_init);
3306 module_exit(dm_thin_exit);
3307
3308 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3309 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3310 MODULE_LICENSE("GPL");