]> Pileus Git - ~andy/linux/blob - drivers/md/dm-thin.c
staging/cxt1e1/linux.c: Correct arbitrary memory write in c4_ioctl()
[~andy/linux] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147         bool error_if_no_space:1;
148 };
149
150 struct thin_c;
151 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
152 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
153
154 struct pool {
155         struct list_head list;
156         struct dm_target *ti;   /* Only set if a pool target is bound */
157
158         struct mapped_device *pool_md;
159         struct block_device *md_dev;
160         struct dm_pool_metadata *pmd;
161
162         dm_block_t low_water_blocks;
163         uint32_t sectors_per_block;
164         int sectors_per_block_shift;
165
166         struct pool_features pf;
167         bool low_water_triggered:1;     /* A dm event has been sent */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void out_of_data_space(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203
204 /*
205  * Target context for a pool.
206  */
207 struct pool_c {
208         struct dm_target *ti;
209         struct pool *pool;
210         struct dm_dev *data_dev;
211         struct dm_dev *metadata_dev;
212         struct dm_target_callbacks callbacks;
213
214         dm_block_t low_water_blocks;
215         struct pool_features requested_pf; /* Features requested during table load */
216         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217 };
218
219 /*
220  * Target context for a thin.
221  */
222 struct thin_c {
223         struct dm_dev *pool_dev;
224         struct dm_dev *origin_dev;
225         dm_thin_id dev_id;
226
227         struct pool *pool;
228         struct dm_thin_device *td;
229 };
230
231 /*----------------------------------------------------------------*/
232
233 /*
234  * wake_worker() is used when new work is queued and when pool_resume is
235  * ready to continue deferred IO processing.
236  */
237 static void wake_worker(struct pool *pool)
238 {
239         queue_work(pool->wq, &pool->worker);
240 }
241
242 /*----------------------------------------------------------------*/
243
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245                       struct dm_bio_prison_cell **cell_result)
246 {
247         int r;
248         struct dm_bio_prison_cell *cell_prealloc;
249
250         /*
251          * Allocate a cell from the prison's mempool.
252          * This might block but it can't fail.
253          */
254         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255
256         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257         if (r)
258                 /*
259                  * We reused an old cell; we can get rid of
260                  * the new one.
261                  */
262                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
263
264         return r;
265 }
266
267 static void cell_release(struct pool *pool,
268                          struct dm_bio_prison_cell *cell,
269                          struct bio_list *bios)
270 {
271         dm_cell_release(pool->prison, cell, bios);
272         dm_bio_prison_free_cell(pool->prison, cell);
273 }
274
275 static void cell_release_no_holder(struct pool *pool,
276                                    struct dm_bio_prison_cell *cell,
277                                    struct bio_list *bios)
278 {
279         dm_cell_release_no_holder(pool->prison, cell, bios);
280         dm_bio_prison_free_cell(pool->prison, cell);
281 }
282
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284                                          struct dm_bio_prison_cell *cell)
285 {
286         struct pool *pool = tc->pool;
287         unsigned long flags;
288
289         spin_lock_irqsave(&pool->lock, flags);
290         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291         spin_unlock_irqrestore(&pool->lock, flags);
292
293         wake_worker(pool);
294 }
295
296 static void cell_error(struct pool *pool,
297                        struct dm_bio_prison_cell *cell)
298 {
299         dm_cell_error(pool->prison, cell);
300         dm_bio_prison_free_cell(pool->prison, cell);
301 }
302
303 /*----------------------------------------------------------------*/
304
305 /*
306  * A global list of pools that uses a struct mapped_device as a key.
307  */
308 static struct dm_thin_pool_table {
309         struct mutex mutex;
310         struct list_head pools;
311 } dm_thin_pool_table;
312
313 static void pool_table_init(void)
314 {
315         mutex_init(&dm_thin_pool_table.mutex);
316         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
317 }
318
319 static void __pool_table_insert(struct pool *pool)
320 {
321         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322         list_add(&pool->list, &dm_thin_pool_table.pools);
323 }
324
325 static void __pool_table_remove(struct pool *pool)
326 {
327         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328         list_del(&pool->list);
329 }
330
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
332 {
333         struct pool *pool = NULL, *tmp;
334
335         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336
337         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338                 if (tmp->pool_md == md) {
339                         pool = tmp;
340                         break;
341                 }
342         }
343
344         return pool;
345 }
346
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348 {
349         struct pool *pool = NULL, *tmp;
350
351         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352
353         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354                 if (tmp->md_dev == md_dev) {
355                         pool = tmp;
356                         break;
357                 }
358         }
359
360         return pool;
361 }
362
363 /*----------------------------------------------------------------*/
364
365 struct dm_thin_endio_hook {
366         struct thin_c *tc;
367         struct dm_deferred_entry *shared_read_entry;
368         struct dm_deferred_entry *all_io_entry;
369         struct dm_thin_new_mapping *overwrite_mapping;
370 };
371
372 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
373 {
374         struct bio *bio;
375         struct bio_list bios;
376
377         bio_list_init(&bios);
378         bio_list_merge(&bios, master);
379         bio_list_init(master);
380
381         while ((bio = bio_list_pop(&bios))) {
382                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
383
384                 if (h->tc == tc)
385                         bio_endio(bio, DM_ENDIO_REQUEUE);
386                 else
387                         bio_list_add(master, bio);
388         }
389 }
390
391 static void requeue_io(struct thin_c *tc)
392 {
393         struct pool *pool = tc->pool;
394         unsigned long flags;
395
396         spin_lock_irqsave(&pool->lock, flags);
397         __requeue_bio_list(tc, &pool->deferred_bios);
398         __requeue_bio_list(tc, &pool->retry_on_resume_list);
399         spin_unlock_irqrestore(&pool->lock, flags);
400 }
401
402 /*
403  * This section of code contains the logic for processing a thin device's IO.
404  * Much of the code depends on pool object resources (lists, workqueues, etc)
405  * but most is exclusively called from the thin target rather than the thin-pool
406  * target.
407  */
408
409 static bool block_size_is_power_of_two(struct pool *pool)
410 {
411         return pool->sectors_per_block_shift >= 0;
412 }
413
414 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
415 {
416         struct pool *pool = tc->pool;
417         sector_t block_nr = bio->bi_iter.bi_sector;
418
419         if (block_size_is_power_of_two(pool))
420                 block_nr >>= pool->sectors_per_block_shift;
421         else
422                 (void) sector_div(block_nr, pool->sectors_per_block);
423
424         return block_nr;
425 }
426
427 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
428 {
429         struct pool *pool = tc->pool;
430         sector_t bi_sector = bio->bi_iter.bi_sector;
431
432         bio->bi_bdev = tc->pool_dev->bdev;
433         if (block_size_is_power_of_two(pool))
434                 bio->bi_iter.bi_sector =
435                         (block << pool->sectors_per_block_shift) |
436                         (bi_sector & (pool->sectors_per_block - 1));
437         else
438                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
439                                  sector_div(bi_sector, pool->sectors_per_block);
440 }
441
442 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
443 {
444         bio->bi_bdev = tc->origin_dev->bdev;
445 }
446
447 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
448 {
449         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
450                 dm_thin_changed_this_transaction(tc->td);
451 }
452
453 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
454 {
455         struct dm_thin_endio_hook *h;
456
457         if (bio->bi_rw & REQ_DISCARD)
458                 return;
459
460         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
461         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
462 }
463
464 static void issue(struct thin_c *tc, struct bio *bio)
465 {
466         struct pool *pool = tc->pool;
467         unsigned long flags;
468
469         if (!bio_triggers_commit(tc, bio)) {
470                 generic_make_request(bio);
471                 return;
472         }
473
474         /*
475          * Complete bio with an error if earlier I/O caused changes to
476          * the metadata that can't be committed e.g, due to I/O errors
477          * on the metadata device.
478          */
479         if (dm_thin_aborted_changes(tc->td)) {
480                 bio_io_error(bio);
481                 return;
482         }
483
484         /*
485          * Batch together any bios that trigger commits and then issue a
486          * single commit for them in process_deferred_bios().
487          */
488         spin_lock_irqsave(&pool->lock, flags);
489         bio_list_add(&pool->deferred_flush_bios, bio);
490         spin_unlock_irqrestore(&pool->lock, flags);
491 }
492
493 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
494 {
495         remap_to_origin(tc, bio);
496         issue(tc, bio);
497 }
498
499 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
500                             dm_block_t block)
501 {
502         remap(tc, bio, block);
503         issue(tc, bio);
504 }
505
506 /*----------------------------------------------------------------*/
507
508 /*
509  * Bio endio functions.
510  */
511 struct dm_thin_new_mapping {
512         struct list_head list;
513
514         bool quiesced:1;
515         bool prepared:1;
516         bool pass_discard:1;
517         bool definitely_not_shared:1;
518
519         int err;
520         struct thin_c *tc;
521         dm_block_t virt_block;
522         dm_block_t data_block;
523         struct dm_bio_prison_cell *cell, *cell2;
524
525         /*
526          * If the bio covers the whole area of a block then we can avoid
527          * zeroing or copying.  Instead this bio is hooked.  The bio will
528          * still be in the cell, so care has to be taken to avoid issuing
529          * the bio twice.
530          */
531         struct bio *bio;
532         bio_end_io_t *saved_bi_end_io;
533 };
534
535 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
536 {
537         struct pool *pool = m->tc->pool;
538
539         if (m->quiesced && m->prepared) {
540                 list_add_tail(&m->list, &pool->prepared_mappings);
541                 wake_worker(pool);
542         }
543 }
544
545 static void copy_complete(int read_err, unsigned long write_err, void *context)
546 {
547         unsigned long flags;
548         struct dm_thin_new_mapping *m = context;
549         struct pool *pool = m->tc->pool;
550
551         m->err = read_err || write_err ? -EIO : 0;
552
553         spin_lock_irqsave(&pool->lock, flags);
554         m->prepared = true;
555         __maybe_add_mapping(m);
556         spin_unlock_irqrestore(&pool->lock, flags);
557 }
558
559 static void overwrite_endio(struct bio *bio, int err)
560 {
561         unsigned long flags;
562         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
563         struct dm_thin_new_mapping *m = h->overwrite_mapping;
564         struct pool *pool = m->tc->pool;
565
566         m->err = err;
567
568         spin_lock_irqsave(&pool->lock, flags);
569         m->prepared = true;
570         __maybe_add_mapping(m);
571         spin_unlock_irqrestore(&pool->lock, flags);
572 }
573
574 /*----------------------------------------------------------------*/
575
576 /*
577  * Workqueue.
578  */
579
580 /*
581  * Prepared mapping jobs.
582  */
583
584 /*
585  * This sends the bios in the cell back to the deferred_bios list.
586  */
587 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
588 {
589         struct pool *pool = tc->pool;
590         unsigned long flags;
591
592         spin_lock_irqsave(&pool->lock, flags);
593         cell_release(pool, cell, &pool->deferred_bios);
594         spin_unlock_irqrestore(&tc->pool->lock, flags);
595
596         wake_worker(pool);
597 }
598
599 /*
600  * Same as cell_defer above, except it omits the original holder of the cell.
601  */
602 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
603 {
604         struct pool *pool = tc->pool;
605         unsigned long flags;
606
607         spin_lock_irqsave(&pool->lock, flags);
608         cell_release_no_holder(pool, cell, &pool->deferred_bios);
609         spin_unlock_irqrestore(&pool->lock, flags);
610
611         wake_worker(pool);
612 }
613
614 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
615 {
616         if (m->bio) {
617                 m->bio->bi_end_io = m->saved_bi_end_io;
618                 atomic_inc(&m->bio->bi_remaining);
619         }
620         cell_error(m->tc->pool, m->cell);
621         list_del(&m->list);
622         mempool_free(m, m->tc->pool->mapping_pool);
623 }
624
625 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
626 {
627         struct thin_c *tc = m->tc;
628         struct pool *pool = tc->pool;
629         struct bio *bio;
630         int r;
631
632         bio = m->bio;
633         if (bio) {
634                 bio->bi_end_io = m->saved_bi_end_io;
635                 atomic_inc(&bio->bi_remaining);
636         }
637
638         if (m->err) {
639                 cell_error(pool, m->cell);
640                 goto out;
641         }
642
643         /*
644          * Commit the prepared block into the mapping btree.
645          * Any I/O for this block arriving after this point will get
646          * remapped to it directly.
647          */
648         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
649         if (r) {
650                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
651                 cell_error(pool, m->cell);
652                 goto out;
653         }
654
655         /*
656          * Release any bios held while the block was being provisioned.
657          * If we are processing a write bio that completely covers the block,
658          * we already processed it so can ignore it now when processing
659          * the bios in the cell.
660          */
661         if (bio) {
662                 cell_defer_no_holder(tc, m->cell);
663                 bio_endio(bio, 0);
664         } else
665                 cell_defer(tc, m->cell);
666
667 out:
668         list_del(&m->list);
669         mempool_free(m, pool->mapping_pool);
670 }
671
672 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
673 {
674         struct thin_c *tc = m->tc;
675
676         bio_io_error(m->bio);
677         cell_defer_no_holder(tc, m->cell);
678         cell_defer_no_holder(tc, m->cell2);
679         mempool_free(m, tc->pool->mapping_pool);
680 }
681
682 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
683 {
684         struct thin_c *tc = m->tc;
685
686         inc_all_io_entry(tc->pool, m->bio);
687         cell_defer_no_holder(tc, m->cell);
688         cell_defer_no_holder(tc, m->cell2);
689
690         if (m->pass_discard)
691                 if (m->definitely_not_shared)
692                         remap_and_issue(tc, m->bio, m->data_block);
693                 else {
694                         bool used = false;
695                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
696                                 bio_endio(m->bio, 0);
697                         else
698                                 remap_and_issue(tc, m->bio, m->data_block);
699                 }
700         else
701                 bio_endio(m->bio, 0);
702
703         mempool_free(m, tc->pool->mapping_pool);
704 }
705
706 static void process_prepared_discard(struct dm_thin_new_mapping *m)
707 {
708         int r;
709         struct thin_c *tc = m->tc;
710
711         r = dm_thin_remove_block(tc->td, m->virt_block);
712         if (r)
713                 DMERR_LIMIT("dm_thin_remove_block() failed");
714
715         process_prepared_discard_passdown(m);
716 }
717
718 static void process_prepared(struct pool *pool, struct list_head *head,
719                              process_mapping_fn *fn)
720 {
721         unsigned long flags;
722         struct list_head maps;
723         struct dm_thin_new_mapping *m, *tmp;
724
725         INIT_LIST_HEAD(&maps);
726         spin_lock_irqsave(&pool->lock, flags);
727         list_splice_init(head, &maps);
728         spin_unlock_irqrestore(&pool->lock, flags);
729
730         list_for_each_entry_safe(m, tmp, &maps, list)
731                 (*fn)(m);
732 }
733
734 /*
735  * Deferred bio jobs.
736  */
737 static int io_overlaps_block(struct pool *pool, struct bio *bio)
738 {
739         return bio->bi_iter.bi_size ==
740                 (pool->sectors_per_block << SECTOR_SHIFT);
741 }
742
743 static int io_overwrites_block(struct pool *pool, struct bio *bio)
744 {
745         return (bio_data_dir(bio) == WRITE) &&
746                 io_overlaps_block(pool, bio);
747 }
748
749 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
750                                bio_end_io_t *fn)
751 {
752         *save = bio->bi_end_io;
753         bio->bi_end_io = fn;
754 }
755
756 static int ensure_next_mapping(struct pool *pool)
757 {
758         if (pool->next_mapping)
759                 return 0;
760
761         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
762
763         return pool->next_mapping ? 0 : -ENOMEM;
764 }
765
766 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
767 {
768         struct dm_thin_new_mapping *m = pool->next_mapping;
769
770         BUG_ON(!pool->next_mapping);
771
772         memset(m, 0, sizeof(struct dm_thin_new_mapping));
773         INIT_LIST_HEAD(&m->list);
774         m->bio = NULL;
775
776         pool->next_mapping = NULL;
777
778         return m;
779 }
780
781 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
782                           struct dm_dev *origin, dm_block_t data_origin,
783                           dm_block_t data_dest,
784                           struct dm_bio_prison_cell *cell, struct bio *bio)
785 {
786         int r;
787         struct pool *pool = tc->pool;
788         struct dm_thin_new_mapping *m = get_next_mapping(pool);
789
790         m->tc = tc;
791         m->virt_block = virt_block;
792         m->data_block = data_dest;
793         m->cell = cell;
794
795         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
796                 m->quiesced = true;
797
798         /*
799          * IO to pool_dev remaps to the pool target's data_dev.
800          *
801          * If the whole block of data is being overwritten, we can issue the
802          * bio immediately. Otherwise we use kcopyd to clone the data first.
803          */
804         if (io_overwrites_block(pool, bio)) {
805                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
806
807                 h->overwrite_mapping = m;
808                 m->bio = bio;
809                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
810                 inc_all_io_entry(pool, bio);
811                 remap_and_issue(tc, bio, data_dest);
812         } else {
813                 struct dm_io_region from, to;
814
815                 from.bdev = origin->bdev;
816                 from.sector = data_origin * pool->sectors_per_block;
817                 from.count = pool->sectors_per_block;
818
819                 to.bdev = tc->pool_dev->bdev;
820                 to.sector = data_dest * pool->sectors_per_block;
821                 to.count = pool->sectors_per_block;
822
823                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
824                                    0, copy_complete, m);
825                 if (r < 0) {
826                         mempool_free(m, pool->mapping_pool);
827                         DMERR_LIMIT("dm_kcopyd_copy() failed");
828                         cell_error(pool, cell);
829                 }
830         }
831 }
832
833 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
834                                    dm_block_t data_origin, dm_block_t data_dest,
835                                    struct dm_bio_prison_cell *cell, struct bio *bio)
836 {
837         schedule_copy(tc, virt_block, tc->pool_dev,
838                       data_origin, data_dest, cell, bio);
839 }
840
841 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
842                                    dm_block_t data_dest,
843                                    struct dm_bio_prison_cell *cell, struct bio *bio)
844 {
845         schedule_copy(tc, virt_block, tc->origin_dev,
846                       virt_block, data_dest, cell, bio);
847 }
848
849 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
850                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
851                           struct bio *bio)
852 {
853         struct pool *pool = tc->pool;
854         struct dm_thin_new_mapping *m = get_next_mapping(pool);
855
856         m->quiesced = true;
857         m->prepared = false;
858         m->tc = tc;
859         m->virt_block = virt_block;
860         m->data_block = data_block;
861         m->cell = cell;
862
863         /*
864          * If the whole block of data is being overwritten or we are not
865          * zeroing pre-existing data, we can issue the bio immediately.
866          * Otherwise we use kcopyd to zero the data first.
867          */
868         if (!pool->pf.zero_new_blocks)
869                 process_prepared_mapping(m);
870
871         else if (io_overwrites_block(pool, bio)) {
872                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
873
874                 h->overwrite_mapping = m;
875                 m->bio = bio;
876                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
877                 inc_all_io_entry(pool, bio);
878                 remap_and_issue(tc, bio, data_block);
879         } else {
880                 int r;
881                 struct dm_io_region to;
882
883                 to.bdev = tc->pool_dev->bdev;
884                 to.sector = data_block * pool->sectors_per_block;
885                 to.count = pool->sectors_per_block;
886
887                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
888                 if (r < 0) {
889                         mempool_free(m, pool->mapping_pool);
890                         DMERR_LIMIT("dm_kcopyd_zero() failed");
891                         cell_error(pool, cell);
892                 }
893         }
894 }
895
896 /*
897  * A non-zero return indicates read_only or fail_io mode.
898  * Many callers don't care about the return value.
899  */
900 static int commit(struct pool *pool)
901 {
902         int r;
903
904         if (get_pool_mode(pool) != PM_WRITE)
905                 return -EINVAL;
906
907         r = dm_pool_commit_metadata(pool->pmd);
908         if (r)
909                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
910
911         return r;
912 }
913
914 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
915 {
916         unsigned long flags;
917
918         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
919                 DMWARN("%s: reached low water mark for data device: sending event.",
920                        dm_device_name(pool->pool_md));
921                 spin_lock_irqsave(&pool->lock, flags);
922                 pool->low_water_triggered = true;
923                 spin_unlock_irqrestore(&pool->lock, flags);
924                 dm_table_event(pool->ti->table);
925         }
926 }
927
928 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
929 {
930         int r;
931         dm_block_t free_blocks;
932         struct pool *pool = tc->pool;
933
934         if (get_pool_mode(pool) != PM_WRITE)
935                 return -EINVAL;
936
937         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
938         if (r) {
939                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
940                 return r;
941         }
942
943         check_low_water_mark(pool, free_blocks);
944
945         if (!free_blocks) {
946                 /*
947                  * Try to commit to see if that will free up some
948                  * more space.
949                  */
950                 r = commit(pool);
951                 if (r)
952                         return r;
953
954                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
955                 if (r) {
956                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
957                         return r;
958                 }
959
960                 if (!free_blocks) {
961                         out_of_data_space(pool);
962                         return -ENOSPC;
963                 }
964         }
965
966         r = dm_pool_alloc_data_block(pool->pmd, result);
967         if (r) {
968                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
969                 return r;
970         }
971
972         return 0;
973 }
974
975 /*
976  * If we have run out of space, queue bios until the device is
977  * resumed, presumably after having been reloaded with more space.
978  */
979 static void retry_on_resume(struct bio *bio)
980 {
981         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
982         struct thin_c *tc = h->tc;
983         struct pool *pool = tc->pool;
984         unsigned long flags;
985
986         spin_lock_irqsave(&pool->lock, flags);
987         bio_list_add(&pool->retry_on_resume_list, bio);
988         spin_unlock_irqrestore(&pool->lock, flags);
989 }
990
991 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
992 {
993         /*
994          * When pool is read-only, no cell locking is needed because
995          * nothing is changing.
996          */
997         WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
998
999         if (pool->pf.error_if_no_space)
1000                 bio_io_error(bio);
1001         else
1002                 retry_on_resume(bio);
1003 }
1004
1005 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1006 {
1007         struct bio *bio;
1008         struct bio_list bios;
1009
1010         bio_list_init(&bios);
1011         cell_release(pool, cell, &bios);
1012
1013         while ((bio = bio_list_pop(&bios)))
1014                 handle_unserviceable_bio(pool, bio);
1015 }
1016
1017 static void process_discard(struct thin_c *tc, struct bio *bio)
1018 {
1019         int r;
1020         unsigned long flags;
1021         struct pool *pool = tc->pool;
1022         struct dm_bio_prison_cell *cell, *cell2;
1023         struct dm_cell_key key, key2;
1024         dm_block_t block = get_bio_block(tc, bio);
1025         struct dm_thin_lookup_result lookup_result;
1026         struct dm_thin_new_mapping *m;
1027
1028         build_virtual_key(tc->td, block, &key);
1029         if (bio_detain(tc->pool, &key, bio, &cell))
1030                 return;
1031
1032         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1033         switch (r) {
1034         case 0:
1035                 /*
1036                  * Check nobody is fiddling with this pool block.  This can
1037                  * happen if someone's in the process of breaking sharing
1038                  * on this block.
1039                  */
1040                 build_data_key(tc->td, lookup_result.block, &key2);
1041                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1042                         cell_defer_no_holder(tc, cell);
1043                         break;
1044                 }
1045
1046                 if (io_overlaps_block(pool, bio)) {
1047                         /*
1048                          * IO may still be going to the destination block.  We must
1049                          * quiesce before we can do the removal.
1050                          */
1051                         m = get_next_mapping(pool);
1052                         m->tc = tc;
1053                         m->pass_discard = pool->pf.discard_passdown;
1054                         m->definitely_not_shared = !lookup_result.shared;
1055                         m->virt_block = block;
1056                         m->data_block = lookup_result.block;
1057                         m->cell = cell;
1058                         m->cell2 = cell2;
1059                         m->bio = bio;
1060
1061                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1062                                 spin_lock_irqsave(&pool->lock, flags);
1063                                 list_add_tail(&m->list, &pool->prepared_discards);
1064                                 spin_unlock_irqrestore(&pool->lock, flags);
1065                                 wake_worker(pool);
1066                         }
1067                 } else {
1068                         inc_all_io_entry(pool, bio);
1069                         cell_defer_no_holder(tc, cell);
1070                         cell_defer_no_holder(tc, cell2);
1071
1072                         /*
1073                          * The DM core makes sure that the discard doesn't span
1074                          * a block boundary.  So we submit the discard of a
1075                          * partial block appropriately.
1076                          */
1077                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1078                                 remap_and_issue(tc, bio, lookup_result.block);
1079                         else
1080                                 bio_endio(bio, 0);
1081                 }
1082                 break;
1083
1084         case -ENODATA:
1085                 /*
1086                  * It isn't provisioned, just forget it.
1087                  */
1088                 cell_defer_no_holder(tc, cell);
1089                 bio_endio(bio, 0);
1090                 break;
1091
1092         default:
1093                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1094                             __func__, r);
1095                 cell_defer_no_holder(tc, cell);
1096                 bio_io_error(bio);
1097                 break;
1098         }
1099 }
1100
1101 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1102                           struct dm_cell_key *key,
1103                           struct dm_thin_lookup_result *lookup_result,
1104                           struct dm_bio_prison_cell *cell)
1105 {
1106         int r;
1107         dm_block_t data_block;
1108         struct pool *pool = tc->pool;
1109
1110         r = alloc_data_block(tc, &data_block);
1111         switch (r) {
1112         case 0:
1113                 schedule_internal_copy(tc, block, lookup_result->block,
1114                                        data_block, cell, bio);
1115                 break;
1116
1117         case -ENOSPC:
1118                 retry_bios_on_resume(pool, cell);
1119                 break;
1120
1121         default:
1122                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1123                             __func__, r);
1124                 cell_error(pool, cell);
1125                 break;
1126         }
1127 }
1128
1129 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1130                                dm_block_t block,
1131                                struct dm_thin_lookup_result *lookup_result)
1132 {
1133         struct dm_bio_prison_cell *cell;
1134         struct pool *pool = tc->pool;
1135         struct dm_cell_key key;
1136
1137         /*
1138          * If cell is already occupied, then sharing is already in the process
1139          * of being broken so we have nothing further to do here.
1140          */
1141         build_data_key(tc->td, lookup_result->block, &key);
1142         if (bio_detain(pool, &key, bio, &cell))
1143                 return;
1144
1145         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1146                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1147         else {
1148                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1149
1150                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1151                 inc_all_io_entry(pool, bio);
1152                 cell_defer_no_holder(tc, cell);
1153
1154                 remap_and_issue(tc, bio, lookup_result->block);
1155         }
1156 }
1157
1158 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1159                             struct dm_bio_prison_cell *cell)
1160 {
1161         int r;
1162         dm_block_t data_block;
1163         struct pool *pool = tc->pool;
1164
1165         /*
1166          * Remap empty bios (flushes) immediately, without provisioning.
1167          */
1168         if (!bio->bi_iter.bi_size) {
1169                 inc_all_io_entry(pool, bio);
1170                 cell_defer_no_holder(tc, cell);
1171
1172                 remap_and_issue(tc, bio, 0);
1173                 return;
1174         }
1175
1176         /*
1177          * Fill read bios with zeroes and complete them immediately.
1178          */
1179         if (bio_data_dir(bio) == READ) {
1180                 zero_fill_bio(bio);
1181                 cell_defer_no_holder(tc, cell);
1182                 bio_endio(bio, 0);
1183                 return;
1184         }
1185
1186         r = alloc_data_block(tc, &data_block);
1187         switch (r) {
1188         case 0:
1189                 if (tc->origin_dev)
1190                         schedule_external_copy(tc, block, data_block, cell, bio);
1191                 else
1192                         schedule_zero(tc, block, data_block, cell, bio);
1193                 break;
1194
1195         case -ENOSPC:
1196                 retry_bios_on_resume(pool, cell);
1197                 break;
1198
1199         default:
1200                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1201                             __func__, r);
1202                 cell_error(pool, cell);
1203                 break;
1204         }
1205 }
1206
1207 static void process_bio(struct thin_c *tc, struct bio *bio)
1208 {
1209         int r;
1210         struct pool *pool = tc->pool;
1211         dm_block_t block = get_bio_block(tc, bio);
1212         struct dm_bio_prison_cell *cell;
1213         struct dm_cell_key key;
1214         struct dm_thin_lookup_result lookup_result;
1215
1216         /*
1217          * If cell is already occupied, then the block is already
1218          * being provisioned so we have nothing further to do here.
1219          */
1220         build_virtual_key(tc->td, block, &key);
1221         if (bio_detain(pool, &key, bio, &cell))
1222                 return;
1223
1224         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1225         switch (r) {
1226         case 0:
1227                 if (lookup_result.shared) {
1228                         process_shared_bio(tc, bio, block, &lookup_result);
1229                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1230                 } else {
1231                         inc_all_io_entry(pool, bio);
1232                         cell_defer_no_holder(tc, cell);
1233
1234                         remap_and_issue(tc, bio, lookup_result.block);
1235                 }
1236                 break;
1237
1238         case -ENODATA:
1239                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1240                         inc_all_io_entry(pool, bio);
1241                         cell_defer_no_holder(tc, cell);
1242
1243                         remap_to_origin_and_issue(tc, bio);
1244                 } else
1245                         provision_block(tc, bio, block, cell);
1246                 break;
1247
1248         default:
1249                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1250                             __func__, r);
1251                 cell_defer_no_holder(tc, cell);
1252                 bio_io_error(bio);
1253                 break;
1254         }
1255 }
1256
1257 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1258 {
1259         int r;
1260         int rw = bio_data_dir(bio);
1261         dm_block_t block = get_bio_block(tc, bio);
1262         struct dm_thin_lookup_result lookup_result;
1263
1264         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1265         switch (r) {
1266         case 0:
1267                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1268                         handle_unserviceable_bio(tc->pool, bio);
1269                 else {
1270                         inc_all_io_entry(tc->pool, bio);
1271                         remap_and_issue(tc, bio, lookup_result.block);
1272                 }
1273                 break;
1274
1275         case -ENODATA:
1276                 if (rw != READ) {
1277                         handle_unserviceable_bio(tc->pool, bio);
1278                         break;
1279                 }
1280
1281                 if (tc->origin_dev) {
1282                         inc_all_io_entry(tc->pool, bio);
1283                         remap_to_origin_and_issue(tc, bio);
1284                         break;
1285                 }
1286
1287                 zero_fill_bio(bio);
1288                 bio_endio(bio, 0);
1289                 break;
1290
1291         default:
1292                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1293                             __func__, r);
1294                 bio_io_error(bio);
1295                 break;
1296         }
1297 }
1298
1299 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1300 {
1301         bio_io_error(bio);
1302 }
1303
1304 /*
1305  * FIXME: should we also commit due to size of transaction, measured in
1306  * metadata blocks?
1307  */
1308 static int need_commit_due_to_time(struct pool *pool)
1309 {
1310         return jiffies < pool->last_commit_jiffies ||
1311                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1312 }
1313
1314 static void process_deferred_bios(struct pool *pool)
1315 {
1316         unsigned long flags;
1317         struct bio *bio;
1318         struct bio_list bios;
1319
1320         bio_list_init(&bios);
1321
1322         spin_lock_irqsave(&pool->lock, flags);
1323         bio_list_merge(&bios, &pool->deferred_bios);
1324         bio_list_init(&pool->deferred_bios);
1325         spin_unlock_irqrestore(&pool->lock, flags);
1326
1327         while ((bio = bio_list_pop(&bios))) {
1328                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1329                 struct thin_c *tc = h->tc;
1330
1331                 /*
1332                  * If we've got no free new_mapping structs, and processing
1333                  * this bio might require one, we pause until there are some
1334                  * prepared mappings to process.
1335                  */
1336                 if (ensure_next_mapping(pool)) {
1337                         spin_lock_irqsave(&pool->lock, flags);
1338                         bio_list_merge(&pool->deferred_bios, &bios);
1339                         spin_unlock_irqrestore(&pool->lock, flags);
1340
1341                         break;
1342                 }
1343
1344                 if (bio->bi_rw & REQ_DISCARD)
1345                         pool->process_discard(tc, bio);
1346                 else
1347                         pool->process_bio(tc, bio);
1348         }
1349
1350         /*
1351          * If there are any deferred flush bios, we must commit
1352          * the metadata before issuing them.
1353          */
1354         bio_list_init(&bios);
1355         spin_lock_irqsave(&pool->lock, flags);
1356         bio_list_merge(&bios, &pool->deferred_flush_bios);
1357         bio_list_init(&pool->deferred_flush_bios);
1358         spin_unlock_irqrestore(&pool->lock, flags);
1359
1360         if (bio_list_empty(&bios) &&
1361             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1362                 return;
1363
1364         if (commit(pool)) {
1365                 while ((bio = bio_list_pop(&bios)))
1366                         bio_io_error(bio);
1367                 return;
1368         }
1369         pool->last_commit_jiffies = jiffies;
1370
1371         while ((bio = bio_list_pop(&bios)))
1372                 generic_make_request(bio);
1373 }
1374
1375 static void do_worker(struct work_struct *ws)
1376 {
1377         struct pool *pool = container_of(ws, struct pool, worker);
1378
1379         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1380         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1381         process_deferred_bios(pool);
1382 }
1383
1384 /*
1385  * We want to commit periodically so that not too much
1386  * unwritten data builds up.
1387  */
1388 static void do_waker(struct work_struct *ws)
1389 {
1390         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1391         wake_worker(pool);
1392         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1393 }
1394
1395 /*----------------------------------------------------------------*/
1396
1397 static enum pool_mode get_pool_mode(struct pool *pool)
1398 {
1399         return pool->pf.mode;
1400 }
1401
1402 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1403 {
1404         int r;
1405         enum pool_mode old_mode = pool->pf.mode;
1406
1407         switch (new_mode) {
1408         case PM_FAIL:
1409                 if (old_mode != new_mode)
1410                         DMERR("%s: switching pool to failure mode",
1411                               dm_device_name(pool->pool_md));
1412                 dm_pool_metadata_read_only(pool->pmd);
1413                 pool->process_bio = process_bio_fail;
1414                 pool->process_discard = process_bio_fail;
1415                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1416                 pool->process_prepared_discard = process_prepared_discard_fail;
1417                 break;
1418
1419         case PM_READ_ONLY:
1420                 if (old_mode != new_mode)
1421                         DMERR("%s: switching pool to read-only mode",
1422                               dm_device_name(pool->pool_md));
1423                 r = dm_pool_abort_metadata(pool->pmd);
1424                 if (r) {
1425                         DMERR("%s: aborting transaction failed",
1426                               dm_device_name(pool->pool_md));
1427                         new_mode = PM_FAIL;
1428                         set_pool_mode(pool, new_mode);
1429                 } else {
1430                         dm_pool_metadata_read_only(pool->pmd);
1431                         pool->process_bio = process_bio_read_only;
1432                         pool->process_discard = process_discard;
1433                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1434                         pool->process_prepared_discard = process_prepared_discard_passdown;
1435                 }
1436                 break;
1437
1438         case PM_WRITE:
1439                 if (old_mode != new_mode)
1440                         DMINFO("%s: switching pool to write mode",
1441                                dm_device_name(pool->pool_md));
1442                 dm_pool_metadata_read_write(pool->pmd);
1443                 pool->process_bio = process_bio;
1444                 pool->process_discard = process_discard;
1445                 pool->process_prepared_mapping = process_prepared_mapping;
1446                 pool->process_prepared_discard = process_prepared_discard;
1447                 break;
1448         }
1449
1450         pool->pf.mode = new_mode;
1451 }
1452
1453 /*
1454  * Rather than calling set_pool_mode directly, use these which describe the
1455  * reason for mode degradation.
1456  */
1457 static void out_of_data_space(struct pool *pool)
1458 {
1459         DMERR_LIMIT("%s: no free data space available.",
1460                     dm_device_name(pool->pool_md));
1461         set_pool_mode(pool, PM_READ_ONLY);
1462 }
1463
1464 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1465 {
1466         dm_block_t free_blocks;
1467
1468         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1469                     dm_device_name(pool->pool_md), op, r);
1470
1471         if (r == -ENOSPC &&
1472             !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
1473             !free_blocks)
1474                 DMERR_LIMIT("%s: no free metadata space available.",
1475                             dm_device_name(pool->pool_md));
1476
1477         set_pool_mode(pool, PM_READ_ONLY);
1478 }
1479
1480 /*----------------------------------------------------------------*/
1481
1482 /*
1483  * Mapping functions.
1484  */
1485
1486 /*
1487  * Called only while mapping a thin bio to hand it over to the workqueue.
1488  */
1489 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1490 {
1491         unsigned long flags;
1492         struct pool *pool = tc->pool;
1493
1494         spin_lock_irqsave(&pool->lock, flags);
1495         bio_list_add(&pool->deferred_bios, bio);
1496         spin_unlock_irqrestore(&pool->lock, flags);
1497
1498         wake_worker(pool);
1499 }
1500
1501 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1502 {
1503         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1504
1505         h->tc = tc;
1506         h->shared_read_entry = NULL;
1507         h->all_io_entry = NULL;
1508         h->overwrite_mapping = NULL;
1509 }
1510
1511 /*
1512  * Non-blocking function called from the thin target's map function.
1513  */
1514 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1515 {
1516         int r;
1517         struct thin_c *tc = ti->private;
1518         dm_block_t block = get_bio_block(tc, bio);
1519         struct dm_thin_device *td = tc->td;
1520         struct dm_thin_lookup_result result;
1521         struct dm_bio_prison_cell cell1, cell2;
1522         struct dm_bio_prison_cell *cell_result;
1523         struct dm_cell_key key;
1524
1525         thin_hook_bio(tc, bio);
1526
1527         if (get_pool_mode(tc->pool) == PM_FAIL) {
1528                 bio_io_error(bio);
1529                 return DM_MAPIO_SUBMITTED;
1530         }
1531
1532         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1533                 thin_defer_bio(tc, bio);
1534                 return DM_MAPIO_SUBMITTED;
1535         }
1536
1537         r = dm_thin_find_block(td, block, 0, &result);
1538
1539         /*
1540          * Note that we defer readahead too.
1541          */
1542         switch (r) {
1543         case 0:
1544                 if (unlikely(result.shared)) {
1545                         /*
1546                          * We have a race condition here between the
1547                          * result.shared value returned by the lookup and
1548                          * snapshot creation, which may cause new
1549                          * sharing.
1550                          *
1551                          * To avoid this always quiesce the origin before
1552                          * taking the snap.  You want to do this anyway to
1553                          * ensure a consistent application view
1554                          * (i.e. lockfs).
1555                          *
1556                          * More distant ancestors are irrelevant. The
1557                          * shared flag will be set in their case.
1558                          */
1559                         thin_defer_bio(tc, bio);
1560                         return DM_MAPIO_SUBMITTED;
1561                 }
1562
1563                 build_virtual_key(tc->td, block, &key);
1564                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1565                         return DM_MAPIO_SUBMITTED;
1566
1567                 build_data_key(tc->td, result.block, &key);
1568                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1569                         cell_defer_no_holder_no_free(tc, &cell1);
1570                         return DM_MAPIO_SUBMITTED;
1571                 }
1572
1573                 inc_all_io_entry(tc->pool, bio);
1574                 cell_defer_no_holder_no_free(tc, &cell2);
1575                 cell_defer_no_holder_no_free(tc, &cell1);
1576
1577                 remap(tc, bio, result.block);
1578                 return DM_MAPIO_REMAPPED;
1579
1580         case -ENODATA:
1581                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1582                         /*
1583                          * This block isn't provisioned, and we have no way
1584                          * of doing so.
1585                          */
1586                         handle_unserviceable_bio(tc->pool, bio);
1587                         return DM_MAPIO_SUBMITTED;
1588                 }
1589                 /* fall through */
1590
1591         case -EWOULDBLOCK:
1592                 /*
1593                  * In future, the failed dm_thin_find_block above could
1594                  * provide the hint to load the metadata into cache.
1595                  */
1596                 thin_defer_bio(tc, bio);
1597                 return DM_MAPIO_SUBMITTED;
1598
1599         default:
1600                 /*
1601                  * Must always call bio_io_error on failure.
1602                  * dm_thin_find_block can fail with -EINVAL if the
1603                  * pool is switched to fail-io mode.
1604                  */
1605                 bio_io_error(bio);
1606                 return DM_MAPIO_SUBMITTED;
1607         }
1608 }
1609
1610 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1611 {
1612         int r;
1613         unsigned long flags;
1614         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1615
1616         spin_lock_irqsave(&pt->pool->lock, flags);
1617         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1618         spin_unlock_irqrestore(&pt->pool->lock, flags);
1619
1620         if (!r) {
1621                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1622                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1623         }
1624
1625         return r;
1626 }
1627
1628 static void __requeue_bios(struct pool *pool)
1629 {
1630         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1631         bio_list_init(&pool->retry_on_resume_list);
1632 }
1633
1634 /*----------------------------------------------------------------
1635  * Binding of control targets to a pool object
1636  *--------------------------------------------------------------*/
1637 static bool data_dev_supports_discard(struct pool_c *pt)
1638 {
1639         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1640
1641         return q && blk_queue_discard(q);
1642 }
1643
1644 static bool is_factor(sector_t block_size, uint32_t n)
1645 {
1646         return !sector_div(block_size, n);
1647 }
1648
1649 /*
1650  * If discard_passdown was enabled verify that the data device
1651  * supports discards.  Disable discard_passdown if not.
1652  */
1653 static void disable_passdown_if_not_supported(struct pool_c *pt)
1654 {
1655         struct pool *pool = pt->pool;
1656         struct block_device *data_bdev = pt->data_dev->bdev;
1657         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1658         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1659         const char *reason = NULL;
1660         char buf[BDEVNAME_SIZE];
1661
1662         if (!pt->adjusted_pf.discard_passdown)
1663                 return;
1664
1665         if (!data_dev_supports_discard(pt))
1666                 reason = "discard unsupported";
1667
1668         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1669                 reason = "max discard sectors smaller than a block";
1670
1671         else if (data_limits->discard_granularity > block_size)
1672                 reason = "discard granularity larger than a block";
1673
1674         else if (!is_factor(block_size, data_limits->discard_granularity))
1675                 reason = "discard granularity not a factor of block size";
1676
1677         if (reason) {
1678                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1679                 pt->adjusted_pf.discard_passdown = false;
1680         }
1681 }
1682
1683 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1684 {
1685         struct pool_c *pt = ti->private;
1686
1687         /*
1688          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1689          */
1690         enum pool_mode old_mode = pool->pf.mode;
1691         enum pool_mode new_mode = pt->adjusted_pf.mode;
1692
1693         /*
1694          * Don't change the pool's mode until set_pool_mode() below.
1695          * Otherwise the pool's process_* function pointers may
1696          * not match the desired pool mode.
1697          */
1698         pt->adjusted_pf.mode = old_mode;
1699
1700         pool->ti = ti;
1701         pool->pf = pt->adjusted_pf;
1702         pool->low_water_blocks = pt->low_water_blocks;
1703
1704         /*
1705          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1706          * not going to recover without a thin_repair.  So we never let the
1707          * pool move out of the old mode.  On the other hand a PM_READ_ONLY
1708          * may have been due to a lack of metadata or data space, and may
1709          * now work (ie. if the underlying devices have been resized).
1710          */
1711         if (old_mode == PM_FAIL)
1712                 new_mode = old_mode;
1713
1714         set_pool_mode(pool, new_mode);
1715
1716         return 0;
1717 }
1718
1719 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1720 {
1721         if (pool->ti == ti)
1722                 pool->ti = NULL;
1723 }
1724
1725 /*----------------------------------------------------------------
1726  * Pool creation
1727  *--------------------------------------------------------------*/
1728 /* Initialize pool features. */
1729 static void pool_features_init(struct pool_features *pf)
1730 {
1731         pf->mode = PM_WRITE;
1732         pf->zero_new_blocks = true;
1733         pf->discard_enabled = true;
1734         pf->discard_passdown = true;
1735         pf->error_if_no_space = false;
1736 }
1737
1738 static void __pool_destroy(struct pool *pool)
1739 {
1740         __pool_table_remove(pool);
1741
1742         if (dm_pool_metadata_close(pool->pmd) < 0)
1743                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1744
1745         dm_bio_prison_destroy(pool->prison);
1746         dm_kcopyd_client_destroy(pool->copier);
1747
1748         if (pool->wq)
1749                 destroy_workqueue(pool->wq);
1750
1751         if (pool->next_mapping)
1752                 mempool_free(pool->next_mapping, pool->mapping_pool);
1753         mempool_destroy(pool->mapping_pool);
1754         dm_deferred_set_destroy(pool->shared_read_ds);
1755         dm_deferred_set_destroy(pool->all_io_ds);
1756         kfree(pool);
1757 }
1758
1759 static struct kmem_cache *_new_mapping_cache;
1760
1761 static struct pool *pool_create(struct mapped_device *pool_md,
1762                                 struct block_device *metadata_dev,
1763                                 unsigned long block_size,
1764                                 int read_only, char **error)
1765 {
1766         int r;
1767         void *err_p;
1768         struct pool *pool;
1769         struct dm_pool_metadata *pmd;
1770         bool format_device = read_only ? false : true;
1771
1772         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1773         if (IS_ERR(pmd)) {
1774                 *error = "Error creating metadata object";
1775                 return (struct pool *)pmd;
1776         }
1777
1778         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1779         if (!pool) {
1780                 *error = "Error allocating memory for pool";
1781                 err_p = ERR_PTR(-ENOMEM);
1782                 goto bad_pool;
1783         }
1784
1785         pool->pmd = pmd;
1786         pool->sectors_per_block = block_size;
1787         if (block_size & (block_size - 1))
1788                 pool->sectors_per_block_shift = -1;
1789         else
1790                 pool->sectors_per_block_shift = __ffs(block_size);
1791         pool->low_water_blocks = 0;
1792         pool_features_init(&pool->pf);
1793         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1794         if (!pool->prison) {
1795                 *error = "Error creating pool's bio prison";
1796                 err_p = ERR_PTR(-ENOMEM);
1797                 goto bad_prison;
1798         }
1799
1800         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1801         if (IS_ERR(pool->copier)) {
1802                 r = PTR_ERR(pool->copier);
1803                 *error = "Error creating pool's kcopyd client";
1804                 err_p = ERR_PTR(r);
1805                 goto bad_kcopyd_client;
1806         }
1807
1808         /*
1809          * Create singlethreaded workqueue that will service all devices
1810          * that use this metadata.
1811          */
1812         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1813         if (!pool->wq) {
1814                 *error = "Error creating pool's workqueue";
1815                 err_p = ERR_PTR(-ENOMEM);
1816                 goto bad_wq;
1817         }
1818
1819         INIT_WORK(&pool->worker, do_worker);
1820         INIT_DELAYED_WORK(&pool->waker, do_waker);
1821         spin_lock_init(&pool->lock);
1822         bio_list_init(&pool->deferred_bios);
1823         bio_list_init(&pool->deferred_flush_bios);
1824         INIT_LIST_HEAD(&pool->prepared_mappings);
1825         INIT_LIST_HEAD(&pool->prepared_discards);
1826         pool->low_water_triggered = false;
1827         bio_list_init(&pool->retry_on_resume_list);
1828
1829         pool->shared_read_ds = dm_deferred_set_create();
1830         if (!pool->shared_read_ds) {
1831                 *error = "Error creating pool's shared read deferred set";
1832                 err_p = ERR_PTR(-ENOMEM);
1833                 goto bad_shared_read_ds;
1834         }
1835
1836         pool->all_io_ds = dm_deferred_set_create();
1837         if (!pool->all_io_ds) {
1838                 *error = "Error creating pool's all io deferred set";
1839                 err_p = ERR_PTR(-ENOMEM);
1840                 goto bad_all_io_ds;
1841         }
1842
1843         pool->next_mapping = NULL;
1844         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1845                                                       _new_mapping_cache);
1846         if (!pool->mapping_pool) {
1847                 *error = "Error creating pool's mapping mempool";
1848                 err_p = ERR_PTR(-ENOMEM);
1849                 goto bad_mapping_pool;
1850         }
1851
1852         pool->ref_count = 1;
1853         pool->last_commit_jiffies = jiffies;
1854         pool->pool_md = pool_md;
1855         pool->md_dev = metadata_dev;
1856         __pool_table_insert(pool);
1857
1858         return pool;
1859
1860 bad_mapping_pool:
1861         dm_deferred_set_destroy(pool->all_io_ds);
1862 bad_all_io_ds:
1863         dm_deferred_set_destroy(pool->shared_read_ds);
1864 bad_shared_read_ds:
1865         destroy_workqueue(pool->wq);
1866 bad_wq:
1867         dm_kcopyd_client_destroy(pool->copier);
1868 bad_kcopyd_client:
1869         dm_bio_prison_destroy(pool->prison);
1870 bad_prison:
1871         kfree(pool);
1872 bad_pool:
1873         if (dm_pool_metadata_close(pmd))
1874                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1875
1876         return err_p;
1877 }
1878
1879 static void __pool_inc(struct pool *pool)
1880 {
1881         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1882         pool->ref_count++;
1883 }
1884
1885 static void __pool_dec(struct pool *pool)
1886 {
1887         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1888         BUG_ON(!pool->ref_count);
1889         if (!--pool->ref_count)
1890                 __pool_destroy(pool);
1891 }
1892
1893 static struct pool *__pool_find(struct mapped_device *pool_md,
1894                                 struct block_device *metadata_dev,
1895                                 unsigned long block_size, int read_only,
1896                                 char **error, int *created)
1897 {
1898         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1899
1900         if (pool) {
1901                 if (pool->pool_md != pool_md) {
1902                         *error = "metadata device already in use by a pool";
1903                         return ERR_PTR(-EBUSY);
1904                 }
1905                 __pool_inc(pool);
1906
1907         } else {
1908                 pool = __pool_table_lookup(pool_md);
1909                 if (pool) {
1910                         if (pool->md_dev != metadata_dev) {
1911                                 *error = "different pool cannot replace a pool";
1912                                 return ERR_PTR(-EINVAL);
1913                         }
1914                         __pool_inc(pool);
1915
1916                 } else {
1917                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1918                         *created = 1;
1919                 }
1920         }
1921
1922         return pool;
1923 }
1924
1925 /*----------------------------------------------------------------
1926  * Pool target methods
1927  *--------------------------------------------------------------*/
1928 static void pool_dtr(struct dm_target *ti)
1929 {
1930         struct pool_c *pt = ti->private;
1931
1932         mutex_lock(&dm_thin_pool_table.mutex);
1933
1934         unbind_control_target(pt->pool, ti);
1935         __pool_dec(pt->pool);
1936         dm_put_device(ti, pt->metadata_dev);
1937         dm_put_device(ti, pt->data_dev);
1938         kfree(pt);
1939
1940         mutex_unlock(&dm_thin_pool_table.mutex);
1941 }
1942
1943 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1944                                struct dm_target *ti)
1945 {
1946         int r;
1947         unsigned argc;
1948         const char *arg_name;
1949
1950         static struct dm_arg _args[] = {
1951                 {0, 4, "Invalid number of pool feature arguments"},
1952         };
1953
1954         /*
1955          * No feature arguments supplied.
1956          */
1957         if (!as->argc)
1958                 return 0;
1959
1960         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1961         if (r)
1962                 return -EINVAL;
1963
1964         while (argc && !r) {
1965                 arg_name = dm_shift_arg(as);
1966                 argc--;
1967
1968                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1969                         pf->zero_new_blocks = false;
1970
1971                 else if (!strcasecmp(arg_name, "ignore_discard"))
1972                         pf->discard_enabled = false;
1973
1974                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1975                         pf->discard_passdown = false;
1976
1977                 else if (!strcasecmp(arg_name, "read_only"))
1978                         pf->mode = PM_READ_ONLY;
1979
1980                 else if (!strcasecmp(arg_name, "error_if_no_space"))
1981                         pf->error_if_no_space = true;
1982
1983                 else {
1984                         ti->error = "Unrecognised pool feature requested";
1985                         r = -EINVAL;
1986                         break;
1987                 }
1988         }
1989
1990         return r;
1991 }
1992
1993 static void metadata_low_callback(void *context)
1994 {
1995         struct pool *pool = context;
1996
1997         DMWARN("%s: reached low water mark for metadata device: sending event.",
1998                dm_device_name(pool->pool_md));
1999
2000         dm_table_event(pool->ti->table);
2001 }
2002
2003 static sector_t get_dev_size(struct block_device *bdev)
2004 {
2005         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2006 }
2007
2008 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2009 {
2010         sector_t metadata_dev_size = get_dev_size(bdev);
2011         char buffer[BDEVNAME_SIZE];
2012
2013         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2014                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2015                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2016 }
2017
2018 static sector_t get_metadata_dev_size(struct block_device *bdev)
2019 {
2020         sector_t metadata_dev_size = get_dev_size(bdev);
2021
2022         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2023                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2024
2025         return metadata_dev_size;
2026 }
2027
2028 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2029 {
2030         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2031
2032         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2033
2034         return metadata_dev_size;
2035 }
2036
2037 /*
2038  * When a metadata threshold is crossed a dm event is triggered, and
2039  * userland should respond by growing the metadata device.  We could let
2040  * userland set the threshold, like we do with the data threshold, but I'm
2041  * not sure they know enough to do this well.
2042  */
2043 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2044 {
2045         /*
2046          * 4M is ample for all ops with the possible exception of thin
2047          * device deletion which is harmless if it fails (just retry the
2048          * delete after you've grown the device).
2049          */
2050         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2051         return min((dm_block_t)1024ULL /* 4M */, quarter);
2052 }
2053
2054 /*
2055  * thin-pool <metadata dev> <data dev>
2056  *           <data block size (sectors)>
2057  *           <low water mark (blocks)>
2058  *           [<#feature args> [<arg>]*]
2059  *
2060  * Optional feature arguments are:
2061  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2062  *           ignore_discard: disable discard
2063  *           no_discard_passdown: don't pass discards down to the data device
2064  *           read_only: Don't allow any changes to be made to the pool metadata.
2065  *           error_if_no_space: error IOs, instead of queueing, if no space.
2066  */
2067 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2068 {
2069         int r, pool_created = 0;
2070         struct pool_c *pt;
2071         struct pool *pool;
2072         struct pool_features pf;
2073         struct dm_arg_set as;
2074         struct dm_dev *data_dev;
2075         unsigned long block_size;
2076         dm_block_t low_water_blocks;
2077         struct dm_dev *metadata_dev;
2078         fmode_t metadata_mode;
2079
2080         /*
2081          * FIXME Remove validation from scope of lock.
2082          */
2083         mutex_lock(&dm_thin_pool_table.mutex);
2084
2085         if (argc < 4) {
2086                 ti->error = "Invalid argument count";
2087                 r = -EINVAL;
2088                 goto out_unlock;
2089         }
2090
2091         as.argc = argc;
2092         as.argv = argv;
2093
2094         /*
2095          * Set default pool features.
2096          */
2097         pool_features_init(&pf);
2098
2099         dm_consume_args(&as, 4);
2100         r = parse_pool_features(&as, &pf, ti);
2101         if (r)
2102                 goto out_unlock;
2103
2104         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2105         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2106         if (r) {
2107                 ti->error = "Error opening metadata block device";
2108                 goto out_unlock;
2109         }
2110         warn_if_metadata_device_too_big(metadata_dev->bdev);
2111
2112         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2113         if (r) {
2114                 ti->error = "Error getting data device";
2115                 goto out_metadata;
2116         }
2117
2118         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2119             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2120             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2121             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2122                 ti->error = "Invalid block size";
2123                 r = -EINVAL;
2124                 goto out;
2125         }
2126
2127         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2128                 ti->error = "Invalid low water mark";
2129                 r = -EINVAL;
2130                 goto out;
2131         }
2132
2133         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2134         if (!pt) {
2135                 r = -ENOMEM;
2136                 goto out;
2137         }
2138
2139         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2140                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2141         if (IS_ERR(pool)) {
2142                 r = PTR_ERR(pool);
2143                 goto out_free_pt;
2144         }
2145
2146         /*
2147          * 'pool_created' reflects whether this is the first table load.
2148          * Top level discard support is not allowed to be changed after
2149          * initial load.  This would require a pool reload to trigger thin
2150          * device changes.
2151          */
2152         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2153                 ti->error = "Discard support cannot be disabled once enabled";
2154                 r = -EINVAL;
2155                 goto out_flags_changed;
2156         }
2157
2158         pt->pool = pool;
2159         pt->ti = ti;
2160         pt->metadata_dev = metadata_dev;
2161         pt->data_dev = data_dev;
2162         pt->low_water_blocks = low_water_blocks;
2163         pt->adjusted_pf = pt->requested_pf = pf;
2164         ti->num_flush_bios = 1;
2165
2166         /*
2167          * Only need to enable discards if the pool should pass
2168          * them down to the data device.  The thin device's discard
2169          * processing will cause mappings to be removed from the btree.
2170          */
2171         ti->discard_zeroes_data_unsupported = true;
2172         if (pf.discard_enabled && pf.discard_passdown) {
2173                 ti->num_discard_bios = 1;
2174
2175                 /*
2176                  * Setting 'discards_supported' circumvents the normal
2177                  * stacking of discard limits (this keeps the pool and
2178                  * thin devices' discard limits consistent).
2179                  */
2180                 ti->discards_supported = true;
2181         }
2182         ti->private = pt;
2183
2184         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2185                                                 calc_metadata_threshold(pt),
2186                                                 metadata_low_callback,
2187                                                 pool);
2188         if (r)
2189                 goto out_free_pt;
2190
2191         pt->callbacks.congested_fn = pool_is_congested;
2192         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2193
2194         mutex_unlock(&dm_thin_pool_table.mutex);
2195
2196         return 0;
2197
2198 out_flags_changed:
2199         __pool_dec(pool);
2200 out_free_pt:
2201         kfree(pt);
2202 out:
2203         dm_put_device(ti, data_dev);
2204 out_metadata:
2205         dm_put_device(ti, metadata_dev);
2206 out_unlock:
2207         mutex_unlock(&dm_thin_pool_table.mutex);
2208
2209         return r;
2210 }
2211
2212 static int pool_map(struct dm_target *ti, struct bio *bio)
2213 {
2214         int r;
2215         struct pool_c *pt = ti->private;
2216         struct pool *pool = pt->pool;
2217         unsigned long flags;
2218
2219         /*
2220          * As this is a singleton target, ti->begin is always zero.
2221          */
2222         spin_lock_irqsave(&pool->lock, flags);
2223         bio->bi_bdev = pt->data_dev->bdev;
2224         r = DM_MAPIO_REMAPPED;
2225         spin_unlock_irqrestore(&pool->lock, flags);
2226
2227         return r;
2228 }
2229
2230 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2231 {
2232         int r;
2233         struct pool_c *pt = ti->private;
2234         struct pool *pool = pt->pool;
2235         sector_t data_size = ti->len;
2236         dm_block_t sb_data_size;
2237
2238         *need_commit = false;
2239
2240         (void) sector_div(data_size, pool->sectors_per_block);
2241
2242         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2243         if (r) {
2244                 DMERR("%s: failed to retrieve data device size",
2245                       dm_device_name(pool->pool_md));
2246                 return r;
2247         }
2248
2249         if (data_size < sb_data_size) {
2250                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2251                       dm_device_name(pool->pool_md),
2252                       (unsigned long long)data_size, sb_data_size);
2253                 return -EINVAL;
2254
2255         } else if (data_size > sb_data_size) {
2256                 if (sb_data_size)
2257                         DMINFO("%s: growing the data device from %llu to %llu blocks",
2258                                dm_device_name(pool->pool_md),
2259                                sb_data_size, (unsigned long long)data_size);
2260                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2261                 if (r) {
2262                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2263                         return r;
2264                 }
2265
2266                 *need_commit = true;
2267         }
2268
2269         return 0;
2270 }
2271
2272 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2273 {
2274         int r;
2275         struct pool_c *pt = ti->private;
2276         struct pool *pool = pt->pool;
2277         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2278
2279         *need_commit = false;
2280
2281         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2282
2283         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2284         if (r) {
2285                 DMERR("%s: failed to retrieve metadata device size",
2286                       dm_device_name(pool->pool_md));
2287                 return r;
2288         }
2289
2290         if (metadata_dev_size < sb_metadata_dev_size) {
2291                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2292                       dm_device_name(pool->pool_md),
2293                       metadata_dev_size, sb_metadata_dev_size);
2294                 return -EINVAL;
2295
2296         } else if (metadata_dev_size > sb_metadata_dev_size) {
2297                 warn_if_metadata_device_too_big(pool->md_dev);
2298                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2299                        dm_device_name(pool->pool_md),
2300                        sb_metadata_dev_size, metadata_dev_size);
2301                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2302                 if (r) {
2303                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2304                         return r;
2305                 }
2306
2307                 *need_commit = true;
2308         }
2309
2310         return 0;
2311 }
2312
2313 /*
2314  * Retrieves the number of blocks of the data device from
2315  * the superblock and compares it to the actual device size,
2316  * thus resizing the data device in case it has grown.
2317  *
2318  * This both copes with opening preallocated data devices in the ctr
2319  * being followed by a resume
2320  * -and-
2321  * calling the resume method individually after userspace has
2322  * grown the data device in reaction to a table event.
2323  */
2324 static int pool_preresume(struct dm_target *ti)
2325 {
2326         int r;
2327         bool need_commit1, need_commit2;
2328         struct pool_c *pt = ti->private;
2329         struct pool *pool = pt->pool;
2330
2331         /*
2332          * Take control of the pool object.
2333          */
2334         r = bind_control_target(pool, ti);
2335         if (r)
2336                 return r;
2337
2338         r = maybe_resize_data_dev(ti, &need_commit1);
2339         if (r)
2340                 return r;
2341
2342         r = maybe_resize_metadata_dev(ti, &need_commit2);
2343         if (r)
2344                 return r;
2345
2346         if (need_commit1 || need_commit2)
2347                 (void) commit(pool);
2348
2349         return 0;
2350 }
2351
2352 static void pool_resume(struct dm_target *ti)
2353 {
2354         struct pool_c *pt = ti->private;
2355         struct pool *pool = pt->pool;
2356         unsigned long flags;
2357
2358         spin_lock_irqsave(&pool->lock, flags);
2359         pool->low_water_triggered = false;
2360         __requeue_bios(pool);
2361         spin_unlock_irqrestore(&pool->lock, flags);
2362
2363         do_waker(&pool->waker.work);
2364 }
2365
2366 static void pool_postsuspend(struct dm_target *ti)
2367 {
2368         struct pool_c *pt = ti->private;
2369         struct pool *pool = pt->pool;
2370
2371         cancel_delayed_work(&pool->waker);
2372         flush_workqueue(pool->wq);
2373         (void) commit(pool);
2374 }
2375
2376 static int check_arg_count(unsigned argc, unsigned args_required)
2377 {
2378         if (argc != args_required) {
2379                 DMWARN("Message received with %u arguments instead of %u.",
2380                        argc, args_required);
2381                 return -EINVAL;
2382         }
2383
2384         return 0;
2385 }
2386
2387 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2388 {
2389         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2390             *dev_id <= MAX_DEV_ID)
2391                 return 0;
2392
2393         if (warning)
2394                 DMWARN("Message received with invalid device id: %s", arg);
2395
2396         return -EINVAL;
2397 }
2398
2399 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2400 {
2401         dm_thin_id dev_id;
2402         int r;
2403
2404         r = check_arg_count(argc, 2);
2405         if (r)
2406                 return r;
2407
2408         r = read_dev_id(argv[1], &dev_id, 1);
2409         if (r)
2410                 return r;
2411
2412         r = dm_pool_create_thin(pool->pmd, dev_id);
2413         if (r) {
2414                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2415                        argv[1]);
2416                 return r;
2417         }
2418
2419         return 0;
2420 }
2421
2422 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2423 {
2424         dm_thin_id dev_id;
2425         dm_thin_id origin_dev_id;
2426         int r;
2427
2428         r = check_arg_count(argc, 3);
2429         if (r)
2430                 return r;
2431
2432         r = read_dev_id(argv[1], &dev_id, 1);
2433         if (r)
2434                 return r;
2435
2436         r = read_dev_id(argv[2], &origin_dev_id, 1);
2437         if (r)
2438                 return r;
2439
2440         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2441         if (r) {
2442                 DMWARN("Creation of new snapshot %s of device %s failed.",
2443                        argv[1], argv[2]);
2444                 return r;
2445         }
2446
2447         return 0;
2448 }
2449
2450 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2451 {
2452         dm_thin_id dev_id;
2453         int r;
2454
2455         r = check_arg_count(argc, 2);
2456         if (r)
2457                 return r;
2458
2459         r = read_dev_id(argv[1], &dev_id, 1);
2460         if (r)
2461                 return r;
2462
2463         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2464         if (r)
2465                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2466
2467         return r;
2468 }
2469
2470 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2471 {
2472         dm_thin_id old_id, new_id;
2473         int r;
2474
2475         r = check_arg_count(argc, 3);
2476         if (r)
2477                 return r;
2478
2479         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2480                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2481                 return -EINVAL;
2482         }
2483
2484         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2485                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2486                 return -EINVAL;
2487         }
2488
2489         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2490         if (r) {
2491                 DMWARN("Failed to change transaction id from %s to %s.",
2492                        argv[1], argv[2]);
2493                 return r;
2494         }
2495
2496         return 0;
2497 }
2498
2499 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2500 {
2501         int r;
2502
2503         r = check_arg_count(argc, 1);
2504         if (r)
2505                 return r;
2506
2507         (void) commit(pool);
2508
2509         r = dm_pool_reserve_metadata_snap(pool->pmd);
2510         if (r)
2511                 DMWARN("reserve_metadata_snap message failed.");
2512
2513         return r;
2514 }
2515
2516 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2517 {
2518         int r;
2519
2520         r = check_arg_count(argc, 1);
2521         if (r)
2522                 return r;
2523
2524         r = dm_pool_release_metadata_snap(pool->pmd);
2525         if (r)
2526                 DMWARN("release_metadata_snap message failed.");
2527
2528         return r;
2529 }
2530
2531 /*
2532  * Messages supported:
2533  *   create_thin        <dev_id>
2534  *   create_snap        <dev_id> <origin_id>
2535  *   delete             <dev_id>
2536  *   trim               <dev_id> <new_size_in_sectors>
2537  *   set_transaction_id <current_trans_id> <new_trans_id>
2538  *   reserve_metadata_snap
2539  *   release_metadata_snap
2540  */
2541 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2542 {
2543         int r = -EINVAL;
2544         struct pool_c *pt = ti->private;
2545         struct pool *pool = pt->pool;
2546
2547         if (!strcasecmp(argv[0], "create_thin"))
2548                 r = process_create_thin_mesg(argc, argv, pool);
2549
2550         else if (!strcasecmp(argv[0], "create_snap"))
2551                 r = process_create_snap_mesg(argc, argv, pool);
2552
2553         else if (!strcasecmp(argv[0], "delete"))
2554                 r = process_delete_mesg(argc, argv, pool);
2555
2556         else if (!strcasecmp(argv[0], "set_transaction_id"))
2557                 r = process_set_transaction_id_mesg(argc, argv, pool);
2558
2559         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2560                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2561
2562         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2563                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2564
2565         else
2566                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2567
2568         if (!r)
2569                 (void) commit(pool);
2570
2571         return r;
2572 }
2573
2574 static void emit_flags(struct pool_features *pf, char *result,
2575                        unsigned sz, unsigned maxlen)
2576 {
2577         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2578                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2579                 pf->error_if_no_space;
2580         DMEMIT("%u ", count);
2581
2582         if (!pf->zero_new_blocks)
2583                 DMEMIT("skip_block_zeroing ");
2584
2585         if (!pf->discard_enabled)
2586                 DMEMIT("ignore_discard ");
2587
2588         if (!pf->discard_passdown)
2589                 DMEMIT("no_discard_passdown ");
2590
2591         if (pf->mode == PM_READ_ONLY)
2592                 DMEMIT("read_only ");
2593
2594         if (pf->error_if_no_space)
2595                 DMEMIT("error_if_no_space ");
2596 }
2597
2598 /*
2599  * Status line is:
2600  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2601  *    <used data sectors>/<total data sectors> <held metadata root>
2602  */
2603 static void pool_status(struct dm_target *ti, status_type_t type,
2604                         unsigned status_flags, char *result, unsigned maxlen)
2605 {
2606         int r;
2607         unsigned sz = 0;
2608         uint64_t transaction_id;
2609         dm_block_t nr_free_blocks_data;
2610         dm_block_t nr_free_blocks_metadata;
2611         dm_block_t nr_blocks_data;
2612         dm_block_t nr_blocks_metadata;
2613         dm_block_t held_root;
2614         char buf[BDEVNAME_SIZE];
2615         char buf2[BDEVNAME_SIZE];
2616         struct pool_c *pt = ti->private;
2617         struct pool *pool = pt->pool;
2618
2619         switch (type) {
2620         case STATUSTYPE_INFO:
2621                 if (get_pool_mode(pool) == PM_FAIL) {
2622                         DMEMIT("Fail");
2623                         break;
2624                 }
2625
2626                 /* Commit to ensure statistics aren't out-of-date */
2627                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2628                         (void) commit(pool);
2629
2630                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2631                 if (r) {
2632                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2633                               dm_device_name(pool->pool_md), r);
2634                         goto err;
2635                 }
2636
2637                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2638                 if (r) {
2639                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2640                               dm_device_name(pool->pool_md), r);
2641                         goto err;
2642                 }
2643
2644                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2645                 if (r) {
2646                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2647                               dm_device_name(pool->pool_md), r);
2648                         goto err;
2649                 }
2650
2651                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2652                 if (r) {
2653                         DMERR("%s: dm_pool_get_free_block_count returned %d",
2654                               dm_device_name(pool->pool_md), r);
2655                         goto err;
2656                 }
2657
2658                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2659                 if (r) {
2660                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
2661                               dm_device_name(pool->pool_md), r);
2662                         goto err;
2663                 }
2664
2665                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2666                 if (r) {
2667                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
2668                               dm_device_name(pool->pool_md), r);
2669                         goto err;
2670                 }
2671
2672                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2673                        (unsigned long long)transaction_id,
2674                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2675                        (unsigned long long)nr_blocks_metadata,
2676                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2677                        (unsigned long long)nr_blocks_data);
2678
2679                 if (held_root)
2680                         DMEMIT("%llu ", held_root);
2681                 else
2682                         DMEMIT("- ");
2683
2684                 if (pool->pf.mode == PM_READ_ONLY)
2685                         DMEMIT("ro ");
2686                 else
2687                         DMEMIT("rw ");
2688
2689                 if (!pool->pf.discard_enabled)
2690                         DMEMIT("ignore_discard ");
2691                 else if (pool->pf.discard_passdown)
2692                         DMEMIT("discard_passdown ");
2693                 else
2694                         DMEMIT("no_discard_passdown ");
2695
2696                 if (pool->pf.error_if_no_space)
2697                         DMEMIT("error_if_no_space ");
2698                 else
2699                         DMEMIT("queue_if_no_space ");
2700
2701                 break;
2702
2703         case STATUSTYPE_TABLE:
2704                 DMEMIT("%s %s %lu %llu ",
2705                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2706                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2707                        (unsigned long)pool->sectors_per_block,
2708                        (unsigned long long)pt->low_water_blocks);
2709                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2710                 break;
2711         }
2712         return;
2713
2714 err:
2715         DMEMIT("Error");
2716 }
2717
2718 static int pool_iterate_devices(struct dm_target *ti,
2719                                 iterate_devices_callout_fn fn, void *data)
2720 {
2721         struct pool_c *pt = ti->private;
2722
2723         return fn(ti, pt->data_dev, 0, ti->len, data);
2724 }
2725
2726 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2727                       struct bio_vec *biovec, int max_size)
2728 {
2729         struct pool_c *pt = ti->private;
2730         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2731
2732         if (!q->merge_bvec_fn)
2733                 return max_size;
2734
2735         bvm->bi_bdev = pt->data_dev->bdev;
2736
2737         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2738 }
2739
2740 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2741 {
2742         struct pool *pool = pt->pool;
2743         struct queue_limits *data_limits;
2744
2745         limits->max_discard_sectors = pool->sectors_per_block;
2746
2747         /*
2748          * discard_granularity is just a hint, and not enforced.
2749          */
2750         if (pt->adjusted_pf.discard_passdown) {
2751                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2752                 limits->discard_granularity = data_limits->discard_granularity;
2753         } else
2754                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2755 }
2756
2757 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2758 {
2759         struct pool_c *pt = ti->private;
2760         struct pool *pool = pt->pool;
2761         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2762
2763         /*
2764          * If the system-determined stacked limits are compatible with the
2765          * pool's blocksize (io_opt is a factor) do not override them.
2766          */
2767         if (io_opt_sectors < pool->sectors_per_block ||
2768             do_div(io_opt_sectors, pool->sectors_per_block)) {
2769                 blk_limits_io_min(limits, 0);
2770                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2771         }
2772
2773         /*
2774          * pt->adjusted_pf is a staging area for the actual features to use.
2775          * They get transferred to the live pool in bind_control_target()
2776          * called from pool_preresume().
2777          */
2778         if (!pt->adjusted_pf.discard_enabled) {
2779                 /*
2780                  * Must explicitly disallow stacking discard limits otherwise the
2781                  * block layer will stack them if pool's data device has support.
2782                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2783                  * user to see that, so make sure to set all discard limits to 0.
2784                  */
2785                 limits->discard_granularity = 0;
2786                 return;
2787         }
2788
2789         disable_passdown_if_not_supported(pt);
2790
2791         set_discard_limits(pt, limits);
2792 }
2793
2794 static struct target_type pool_target = {
2795         .name = "thin-pool",
2796         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2797                     DM_TARGET_IMMUTABLE,
2798         .version = {1, 10, 0},
2799         .module = THIS_MODULE,
2800         .ctr = pool_ctr,
2801         .dtr = pool_dtr,
2802         .map = pool_map,
2803         .postsuspend = pool_postsuspend,
2804         .preresume = pool_preresume,
2805         .resume = pool_resume,
2806         .message = pool_message,
2807         .status = pool_status,
2808         .merge = pool_merge,
2809         .iterate_devices = pool_iterate_devices,
2810         .io_hints = pool_io_hints,
2811 };
2812
2813 /*----------------------------------------------------------------
2814  * Thin target methods
2815  *--------------------------------------------------------------*/
2816 static void thin_dtr(struct dm_target *ti)
2817 {
2818         struct thin_c *tc = ti->private;
2819
2820         mutex_lock(&dm_thin_pool_table.mutex);
2821
2822         __pool_dec(tc->pool);
2823         dm_pool_close_thin_device(tc->td);
2824         dm_put_device(ti, tc->pool_dev);
2825         if (tc->origin_dev)
2826                 dm_put_device(ti, tc->origin_dev);
2827         kfree(tc);
2828
2829         mutex_unlock(&dm_thin_pool_table.mutex);
2830 }
2831
2832 /*
2833  * Thin target parameters:
2834  *
2835  * <pool_dev> <dev_id> [origin_dev]
2836  *
2837  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2838  * dev_id: the internal device identifier
2839  * origin_dev: a device external to the pool that should act as the origin
2840  *
2841  * If the pool device has discards disabled, they get disabled for the thin
2842  * device as well.
2843  */
2844 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2845 {
2846         int r;
2847         struct thin_c *tc;
2848         struct dm_dev *pool_dev, *origin_dev;
2849         struct mapped_device *pool_md;
2850
2851         mutex_lock(&dm_thin_pool_table.mutex);
2852
2853         if (argc != 2 && argc != 3) {
2854                 ti->error = "Invalid argument count";
2855                 r = -EINVAL;
2856                 goto out_unlock;
2857         }
2858
2859         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2860         if (!tc) {
2861                 ti->error = "Out of memory";
2862                 r = -ENOMEM;
2863                 goto out_unlock;
2864         }
2865
2866         if (argc == 3) {
2867                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2868                 if (r) {
2869                         ti->error = "Error opening origin device";
2870                         goto bad_origin_dev;
2871                 }
2872                 tc->origin_dev = origin_dev;
2873         }
2874
2875         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2876         if (r) {
2877                 ti->error = "Error opening pool device";
2878                 goto bad_pool_dev;
2879         }
2880         tc->pool_dev = pool_dev;
2881
2882         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2883                 ti->error = "Invalid device id";
2884                 r = -EINVAL;
2885                 goto bad_common;
2886         }
2887
2888         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2889         if (!pool_md) {
2890                 ti->error = "Couldn't get pool mapped device";
2891                 r = -EINVAL;
2892                 goto bad_common;
2893         }
2894
2895         tc->pool = __pool_table_lookup(pool_md);
2896         if (!tc->pool) {
2897                 ti->error = "Couldn't find pool object";
2898                 r = -EINVAL;
2899                 goto bad_pool_lookup;
2900         }
2901         __pool_inc(tc->pool);
2902
2903         if (get_pool_mode(tc->pool) == PM_FAIL) {
2904                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2905                 r = -EINVAL;
2906                 goto bad_thin_open;
2907         }
2908
2909         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2910         if (r) {
2911                 ti->error = "Couldn't open thin internal device";
2912                 goto bad_thin_open;
2913         }
2914
2915         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2916         if (r)
2917                 goto bad_target_max_io_len;
2918
2919         ti->num_flush_bios = 1;
2920         ti->flush_supported = true;
2921         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2922
2923         /* In case the pool supports discards, pass them on. */
2924         ti->discard_zeroes_data_unsupported = true;
2925         if (tc->pool->pf.discard_enabled) {
2926                 ti->discards_supported = true;
2927                 ti->num_discard_bios = 1;
2928                 /* Discard bios must be split on a block boundary */
2929                 ti->split_discard_bios = true;
2930         }
2931
2932         dm_put(pool_md);
2933
2934         mutex_unlock(&dm_thin_pool_table.mutex);
2935
2936         return 0;
2937
2938 bad_target_max_io_len:
2939         dm_pool_close_thin_device(tc->td);
2940 bad_thin_open:
2941         __pool_dec(tc->pool);
2942 bad_pool_lookup:
2943         dm_put(pool_md);
2944 bad_common:
2945         dm_put_device(ti, tc->pool_dev);
2946 bad_pool_dev:
2947         if (tc->origin_dev)
2948                 dm_put_device(ti, tc->origin_dev);
2949 bad_origin_dev:
2950         kfree(tc);
2951 out_unlock:
2952         mutex_unlock(&dm_thin_pool_table.mutex);
2953
2954         return r;
2955 }
2956
2957 static int thin_map(struct dm_target *ti, struct bio *bio)
2958 {
2959         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2960
2961         return thin_bio_map(ti, bio);
2962 }
2963
2964 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2965 {
2966         unsigned long flags;
2967         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2968         struct list_head work;
2969         struct dm_thin_new_mapping *m, *tmp;
2970         struct pool *pool = h->tc->pool;
2971
2972         if (h->shared_read_entry) {
2973                 INIT_LIST_HEAD(&work);
2974                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2975
2976                 spin_lock_irqsave(&pool->lock, flags);
2977                 list_for_each_entry_safe(m, tmp, &work, list) {
2978                         list_del(&m->list);
2979                         m->quiesced = true;
2980                         __maybe_add_mapping(m);
2981                 }
2982                 spin_unlock_irqrestore(&pool->lock, flags);
2983         }
2984
2985         if (h->all_io_entry) {
2986                 INIT_LIST_HEAD(&work);
2987                 dm_deferred_entry_dec(h->all_io_entry, &work);
2988                 if (!list_empty(&work)) {
2989                         spin_lock_irqsave(&pool->lock, flags);
2990                         list_for_each_entry_safe(m, tmp, &work, list)
2991                                 list_add_tail(&m->list, &pool->prepared_discards);
2992                         spin_unlock_irqrestore(&pool->lock, flags);
2993                         wake_worker(pool);
2994                 }
2995         }
2996
2997         return 0;
2998 }
2999
3000 static void thin_postsuspend(struct dm_target *ti)
3001 {
3002         if (dm_noflush_suspending(ti))
3003                 requeue_io((struct thin_c *)ti->private);
3004 }
3005
3006 /*
3007  * <nr mapped sectors> <highest mapped sector>
3008  */
3009 static void thin_status(struct dm_target *ti, status_type_t type,
3010                         unsigned status_flags, char *result, unsigned maxlen)
3011 {
3012         int r;
3013         ssize_t sz = 0;
3014         dm_block_t mapped, highest;
3015         char buf[BDEVNAME_SIZE];
3016         struct thin_c *tc = ti->private;
3017
3018         if (get_pool_mode(tc->pool) == PM_FAIL) {
3019                 DMEMIT("Fail");
3020                 return;
3021         }
3022
3023         if (!tc->td)
3024                 DMEMIT("-");
3025         else {
3026                 switch (type) {
3027                 case STATUSTYPE_INFO:
3028                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3029                         if (r) {
3030                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3031                                 goto err;
3032                         }
3033
3034                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3035                         if (r < 0) {
3036                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3037                                 goto err;
3038                         }
3039
3040                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3041                         if (r)
3042                                 DMEMIT("%llu", ((highest + 1) *
3043                                                 tc->pool->sectors_per_block) - 1);
3044                         else
3045                                 DMEMIT("-");
3046                         break;
3047
3048                 case STATUSTYPE_TABLE:
3049                         DMEMIT("%s %lu",
3050                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3051                                (unsigned long) tc->dev_id);
3052                         if (tc->origin_dev)
3053                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3054                         break;
3055                 }
3056         }
3057
3058         return;
3059
3060 err:
3061         DMEMIT("Error");
3062 }
3063
3064 static int thin_iterate_devices(struct dm_target *ti,
3065                                 iterate_devices_callout_fn fn, void *data)
3066 {
3067         sector_t blocks;
3068         struct thin_c *tc = ti->private;
3069         struct pool *pool = tc->pool;
3070
3071         /*
3072          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3073          * we follow a more convoluted path through to the pool's target.
3074          */
3075         if (!pool->ti)
3076                 return 0;       /* nothing is bound */
3077
3078         blocks = pool->ti->len;
3079         (void) sector_div(blocks, pool->sectors_per_block);
3080         if (blocks)
3081                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3082
3083         return 0;
3084 }
3085
3086 static struct target_type thin_target = {
3087         .name = "thin",
3088         .version = {1, 10, 0},
3089         .module = THIS_MODULE,
3090         .ctr = thin_ctr,
3091         .dtr = thin_dtr,
3092         .map = thin_map,
3093         .end_io = thin_endio,
3094         .postsuspend = thin_postsuspend,
3095         .status = thin_status,
3096         .iterate_devices = thin_iterate_devices,
3097 };
3098
3099 /*----------------------------------------------------------------*/
3100
3101 static int __init dm_thin_init(void)
3102 {
3103         int r;
3104
3105         pool_table_init();
3106
3107         r = dm_register_target(&thin_target);
3108         if (r)
3109                 return r;
3110
3111         r = dm_register_target(&pool_target);
3112         if (r)
3113                 goto bad_pool_target;
3114
3115         r = -ENOMEM;
3116
3117         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3118         if (!_new_mapping_cache)
3119                 goto bad_new_mapping_cache;
3120
3121         return 0;
3122
3123 bad_new_mapping_cache:
3124         dm_unregister_target(&pool_target);
3125 bad_pool_target:
3126         dm_unregister_target(&thin_target);
3127
3128         return r;
3129 }
3130
3131 static void dm_thin_exit(void)
3132 {
3133         dm_unregister_target(&thin_target);
3134         dm_unregister_target(&pool_target);
3135
3136         kmem_cache_destroy(_new_mapping_cache);
3137 }
3138
3139 module_init(dm_thin_init);
3140 module_exit(dm_thin_exit);
3141
3142 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3143 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3144 MODULE_LICENSE("GPL");