]> Pileus Git - ~andy/linux/blob - drivers/md/dm-raid.c
DM RAID: Add rebuild capability for RAID10
[~andy/linux] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "raid10.h"
15 #include "bitmap.h"
16
17 #include <linux/device-mapper.h>
18
19 #define DM_MSG_PREFIX "raid"
20
21 /*
22  * The following flags are used by dm-raid.c to set up the array state.
23  * They must be cleared before md_run is called.
24  */
25 #define FirstUse 10             /* rdev flag */
26
27 struct raid_dev {
28         /*
29          * Two DM devices, one to hold metadata and one to hold the
30          * actual data/parity.  The reason for this is to not confuse
31          * ti->len and give more flexibility in altering size and
32          * characteristics.
33          *
34          * While it is possible for this device to be associated
35          * with a different physical device than the data_dev, it
36          * is intended for it to be the same.
37          *    |--------- Physical Device ---------|
38          *    |- meta_dev -|------ data_dev ------|
39          */
40         struct dm_dev *meta_dev;
41         struct dm_dev *data_dev;
42         struct md_rdev rdev;
43 };
44
45 /*
46  * Flags for rs->print_flags field.
47  */
48 #define DMPF_SYNC              0x1
49 #define DMPF_NOSYNC            0x2
50 #define DMPF_REBUILD           0x4
51 #define DMPF_DAEMON_SLEEP      0x8
52 #define DMPF_MIN_RECOVERY_RATE 0x10
53 #define DMPF_MAX_RECOVERY_RATE 0x20
54 #define DMPF_MAX_WRITE_BEHIND  0x40
55 #define DMPF_STRIPE_CACHE      0x80
56 #define DMPF_REGION_SIZE       0x100
57 #define DMPF_RAID10_COPIES     0x200
58 #define DMPF_RAID10_FORMAT     0x400
59
60 struct raid_set {
61         struct dm_target *ti;
62
63         uint32_t bitmap_loaded;
64         uint32_t print_flags;
65
66         struct mddev md;
67         struct raid_type *raid_type;
68         struct dm_target_callbacks callbacks;
69
70         struct raid_dev dev[0];
71 };
72
73 /* Supported raid types and properties. */
74 static struct raid_type {
75         const char *name;               /* RAID algorithm. */
76         const char *descr;              /* Descriptor text for logging. */
77         const unsigned parity_devs;     /* # of parity devices. */
78         const unsigned minimal_devs;    /* minimal # of devices in set. */
79         const unsigned level;           /* RAID level. */
80         const unsigned algorithm;       /* RAID algorithm. */
81 } raid_types[] = {
82         {"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
83         {"raid10",   "RAID10 (striped mirrors)",        0, 2, 10, UINT_MAX /* Varies */},
84         {"raid4",    "RAID4 (dedicated parity disk)",   1, 2, 5, ALGORITHM_PARITY_0},
85         {"raid5_la", "RAID5 (left asymmetric)",         1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
86         {"raid5_ra", "RAID5 (right asymmetric)",        1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
87         {"raid5_ls", "RAID5 (left symmetric)",          1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
88         {"raid5_rs", "RAID5 (right symmetric)",         1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
89         {"raid6_zr", "RAID6 (zero restart)",            2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
90         {"raid6_nr", "RAID6 (N restart)",               2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
91         {"raid6_nc", "RAID6 (N continue)",              2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
92 };
93
94 static unsigned raid10_md_layout_to_copies(int layout)
95 {
96         return layout & 0xFF;
97 }
98
99 static int raid10_format_to_md_layout(char *format, unsigned copies)
100 {
101         /* 1 "far" copy, and 'copies' "near" copies */
102         return (1 << 8) | (copies & 0xFF);
103 }
104
105 static struct raid_type *get_raid_type(char *name)
106 {
107         int i;
108
109         for (i = 0; i < ARRAY_SIZE(raid_types); i++)
110                 if (!strcmp(raid_types[i].name, name))
111                         return &raid_types[i];
112
113         return NULL;
114 }
115
116 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
117 {
118         unsigned i;
119         struct raid_set *rs;
120
121         if (raid_devs <= raid_type->parity_devs) {
122                 ti->error = "Insufficient number of devices";
123                 return ERR_PTR(-EINVAL);
124         }
125
126         rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
127         if (!rs) {
128                 ti->error = "Cannot allocate raid context";
129                 return ERR_PTR(-ENOMEM);
130         }
131
132         mddev_init(&rs->md);
133
134         rs->ti = ti;
135         rs->raid_type = raid_type;
136         rs->md.raid_disks = raid_devs;
137         rs->md.level = raid_type->level;
138         rs->md.new_level = rs->md.level;
139         rs->md.layout = raid_type->algorithm;
140         rs->md.new_layout = rs->md.layout;
141         rs->md.delta_disks = 0;
142         rs->md.recovery_cp = 0;
143
144         for (i = 0; i < raid_devs; i++)
145                 md_rdev_init(&rs->dev[i].rdev);
146
147         /*
148          * Remaining items to be initialized by further RAID params:
149          *  rs->md.persistent
150          *  rs->md.external
151          *  rs->md.chunk_sectors
152          *  rs->md.new_chunk_sectors
153          *  rs->md.dev_sectors
154          */
155
156         return rs;
157 }
158
159 static void context_free(struct raid_set *rs)
160 {
161         int i;
162
163         for (i = 0; i < rs->md.raid_disks; i++) {
164                 if (rs->dev[i].meta_dev)
165                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
166                 md_rdev_clear(&rs->dev[i].rdev);
167                 if (rs->dev[i].data_dev)
168                         dm_put_device(rs->ti, rs->dev[i].data_dev);
169         }
170
171         kfree(rs);
172 }
173
174 /*
175  * For every device we have two words
176  *  <meta_dev>: meta device name or '-' if missing
177  *  <data_dev>: data device name or '-' if missing
178  *
179  * The following are permitted:
180  *    - -
181  *    - <data_dev>
182  *    <meta_dev> <data_dev>
183  *
184  * The following is not allowed:
185  *    <meta_dev> -
186  *
187  * This code parses those words.  If there is a failure,
188  * the caller must use context_free to unwind the operations.
189  */
190 static int dev_parms(struct raid_set *rs, char **argv)
191 {
192         int i;
193         int rebuild = 0;
194         int metadata_available = 0;
195         int ret = 0;
196
197         for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
198                 rs->dev[i].rdev.raid_disk = i;
199
200                 rs->dev[i].meta_dev = NULL;
201                 rs->dev[i].data_dev = NULL;
202
203                 /*
204                  * There are no offsets, since there is a separate device
205                  * for data and metadata.
206                  */
207                 rs->dev[i].rdev.data_offset = 0;
208                 rs->dev[i].rdev.mddev = &rs->md;
209
210                 if (strcmp(argv[0], "-")) {
211                         ret = dm_get_device(rs->ti, argv[0],
212                                             dm_table_get_mode(rs->ti->table),
213                                             &rs->dev[i].meta_dev);
214                         rs->ti->error = "RAID metadata device lookup failure";
215                         if (ret)
216                                 return ret;
217
218                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
219                         if (!rs->dev[i].rdev.sb_page)
220                                 return -ENOMEM;
221                 }
222
223                 if (!strcmp(argv[1], "-")) {
224                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
225                             (!rs->dev[i].rdev.recovery_offset)) {
226                                 rs->ti->error = "Drive designated for rebuild not specified";
227                                 return -EINVAL;
228                         }
229
230                         rs->ti->error = "No data device supplied with metadata device";
231                         if (rs->dev[i].meta_dev)
232                                 return -EINVAL;
233
234                         continue;
235                 }
236
237                 ret = dm_get_device(rs->ti, argv[1],
238                                     dm_table_get_mode(rs->ti->table),
239                                     &rs->dev[i].data_dev);
240                 if (ret) {
241                         rs->ti->error = "RAID device lookup failure";
242                         return ret;
243                 }
244
245                 if (rs->dev[i].meta_dev) {
246                         metadata_available = 1;
247                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
248                 }
249                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
250                 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
251                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
252                         rebuild++;
253         }
254
255         if (metadata_available) {
256                 rs->md.external = 0;
257                 rs->md.persistent = 1;
258                 rs->md.major_version = 2;
259         } else if (rebuild && !rs->md.recovery_cp) {
260                 /*
261                  * Without metadata, we will not be able to tell if the array
262                  * is in-sync or not - we must assume it is not.  Therefore,
263                  * it is impossible to rebuild a drive.
264                  *
265                  * Even if there is metadata, the on-disk information may
266                  * indicate that the array is not in-sync and it will then
267                  * fail at that time.
268                  *
269                  * User could specify 'nosync' option if desperate.
270                  */
271                 DMERR("Unable to rebuild drive while array is not in-sync");
272                 rs->ti->error = "RAID device lookup failure";
273                 return -EINVAL;
274         }
275
276         return 0;
277 }
278
279 /*
280  * validate_region_size
281  * @rs
282  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
283  *
284  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
285  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
286  *
287  * Returns: 0 on success, -EINVAL on failure.
288  */
289 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
290 {
291         unsigned long min_region_size = rs->ti->len / (1 << 21);
292
293         if (!region_size) {
294                 /*
295                  * Choose a reasonable default.  All figures in sectors.
296                  */
297                 if (min_region_size > (1 << 13)) {
298                         DMINFO("Choosing default region size of %lu sectors",
299                                region_size);
300                         region_size = min_region_size;
301                 } else {
302                         DMINFO("Choosing default region size of 4MiB");
303                         region_size = 1 << 13; /* sectors */
304                 }
305         } else {
306                 /*
307                  * Validate user-supplied value.
308                  */
309                 if (region_size > rs->ti->len) {
310                         rs->ti->error = "Supplied region size is too large";
311                         return -EINVAL;
312                 }
313
314                 if (region_size < min_region_size) {
315                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
316                               region_size, min_region_size);
317                         rs->ti->error = "Supplied region size is too small";
318                         return -EINVAL;
319                 }
320
321                 if (!is_power_of_2(region_size)) {
322                         rs->ti->error = "Region size is not a power of 2";
323                         return -EINVAL;
324                 }
325
326                 if (region_size < rs->md.chunk_sectors) {
327                         rs->ti->error = "Region size is smaller than the chunk size";
328                         return -EINVAL;
329                 }
330         }
331
332         /*
333          * Convert sectors to bytes.
334          */
335         rs->md.bitmap_info.chunksize = (region_size << 9);
336
337         return 0;
338 }
339
340 /*
341  * validate_rebuild_devices
342  * @rs
343  *
344  * Determine if the devices specified for rebuild can result in a valid
345  * usable array that is capable of rebuilding the given devices.
346  *
347  * Returns: 0 on success, -EINVAL on failure.
348  */
349 static int validate_rebuild_devices(struct raid_set *rs)
350 {
351         unsigned i, rebuild_cnt = 0;
352         unsigned rebuilds_per_group, copies, d;
353
354         if (!(rs->print_flags & DMPF_REBUILD))
355                 return 0;
356
357         for (i = 0; i < rs->md.raid_disks; i++)
358                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
359                         rebuild_cnt++;
360
361         switch (rs->raid_type->level) {
362         case 1:
363                 if (rebuild_cnt >= rs->md.raid_disks)
364                         goto too_many;
365                 break;
366         case 4:
367         case 5:
368         case 6:
369                 if (rebuild_cnt > rs->raid_type->parity_devs)
370                         goto too_many;
371                 break;
372         case 10:
373                 copies = raid10_md_layout_to_copies(rs->md.layout);
374                 if (rebuild_cnt < copies)
375                         break;
376
377                 /*
378                  * It is possible to have a higher rebuild count for RAID10,
379                  * as long as the failed devices occur in different mirror
380                  * groups (i.e. different stripes).
381                  *
382                  * Right now, we only allow for "near" copies.  When other
383                  * formats are added, we will have to check those too.
384                  *
385                  * When checking "near" format, make sure no adjacent devices
386                  * have failed beyond what can be handled.  In addition to the
387                  * simple case where the number of devices is a multiple of the
388                  * number of copies, we must also handle cases where the number
389                  * of devices is not a multiple of the number of copies.
390                  * E.g.    dev1 dev2 dev3 dev4 dev5
391                  *          A    A    B    B    C
392                  *          C    D    D    E    E
393                  */
394                 rebuilds_per_group = 0;
395                 for (i = 0; i < rs->md.raid_disks * copies; i++) {
396                         d = i % rs->md.raid_disks;
397                         if (!test_bit(In_sync, &rs->dev[d].rdev.flags) &&
398                             (++rebuilds_per_group >= copies))
399                                 goto too_many;
400                         if (!((i + 1) % copies))
401                                 rebuilds_per_group = 0;
402                 }
403                 break;
404         default:
405                 DMERR("The rebuild parameter is not supported for %s",
406                       rs->raid_type->name);
407                 rs->ti->error = "Rebuild not supported for this RAID type";
408                 return -EINVAL;
409         }
410
411         return 0;
412
413 too_many:
414         rs->ti->error = "Too many rebuild devices specified";
415         return -EINVAL;
416 }
417
418 /*
419  * Possible arguments are...
420  *      <chunk_size> [optional_args]
421  *
422  * Argument definitions
423  *    <chunk_size>                      The number of sectors per disk that
424  *                                      will form the "stripe"
425  *    [[no]sync]                        Force or prevent recovery of the
426  *                                      entire array
427  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
428  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
429  *                                      clear bits
430  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
431  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
432  *    [write_mostly <idx>]              Indicate a write mostly drive via index
433  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
434  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
435  *    [region_size <sectors>]           Defines granularity of bitmap
436  *
437  * RAID10-only options:
438  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
439  *    [raid10_format <near>]            Layout algorithm.  (Default: near)
440  */
441 static int parse_raid_params(struct raid_set *rs, char **argv,
442                              unsigned num_raid_params)
443 {
444         char *raid10_format = "near";
445         unsigned raid10_copies = 2;
446         unsigned i;
447         unsigned long value, region_size = 0;
448         sector_t sectors_per_dev = rs->ti->len;
449         sector_t max_io_len;
450         char *key;
451
452         /*
453          * First, parse the in-order required arguments
454          * "chunk_size" is the only argument of this type.
455          */
456         if ((strict_strtoul(argv[0], 10, &value) < 0)) {
457                 rs->ti->error = "Bad chunk size";
458                 return -EINVAL;
459         } else if (rs->raid_type->level == 1) {
460                 if (value)
461                         DMERR("Ignoring chunk size parameter for RAID 1");
462                 value = 0;
463         } else if (!is_power_of_2(value)) {
464                 rs->ti->error = "Chunk size must be a power of 2";
465                 return -EINVAL;
466         } else if (value < 8) {
467                 rs->ti->error = "Chunk size value is too small";
468                 return -EINVAL;
469         }
470
471         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
472         argv++;
473         num_raid_params--;
474
475         /*
476          * We set each individual device as In_sync with a completed
477          * 'recovery_offset'.  If there has been a device failure or
478          * replacement then one of the following cases applies:
479          *
480          *   1) User specifies 'rebuild'.
481          *      - Device is reset when param is read.
482          *   2) A new device is supplied.
483          *      - No matching superblock found, resets device.
484          *   3) Device failure was transient and returns on reload.
485          *      - Failure noticed, resets device for bitmap replay.
486          *   4) Device hadn't completed recovery after previous failure.
487          *      - Superblock is read and overrides recovery_offset.
488          *
489          * What is found in the superblocks of the devices is always
490          * authoritative, unless 'rebuild' or '[no]sync' was specified.
491          */
492         for (i = 0; i < rs->md.raid_disks; i++) {
493                 set_bit(In_sync, &rs->dev[i].rdev.flags);
494                 rs->dev[i].rdev.recovery_offset = MaxSector;
495         }
496
497         /*
498          * Second, parse the unordered optional arguments
499          */
500         for (i = 0; i < num_raid_params; i++) {
501                 if (!strcasecmp(argv[i], "nosync")) {
502                         rs->md.recovery_cp = MaxSector;
503                         rs->print_flags |= DMPF_NOSYNC;
504                         continue;
505                 }
506                 if (!strcasecmp(argv[i], "sync")) {
507                         rs->md.recovery_cp = 0;
508                         rs->print_flags |= DMPF_SYNC;
509                         continue;
510                 }
511
512                 /* The rest of the optional arguments come in key/value pairs */
513                 if ((i + 1) >= num_raid_params) {
514                         rs->ti->error = "Wrong number of raid parameters given";
515                         return -EINVAL;
516                 }
517
518                 key = argv[i++];
519
520                 /* Parameters that take a string value are checked here. */
521                 if (!strcasecmp(key, "raid10_format")) {
522                         if (rs->raid_type->level != 10) {
523                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
524                                 return -EINVAL;
525                         }
526                         if (strcmp("near", argv[i])) {
527                                 rs->ti->error = "Invalid 'raid10_format' value given";
528                                 return -EINVAL;
529                         }
530                         raid10_format = argv[i];
531                         rs->print_flags |= DMPF_RAID10_FORMAT;
532                         continue;
533                 }
534
535                 if (strict_strtoul(argv[i], 10, &value) < 0) {
536                         rs->ti->error = "Bad numerical argument given in raid params";
537                         return -EINVAL;
538                 }
539
540                 /* Parameters that take a numeric value are checked here */
541                 if (!strcasecmp(key, "rebuild")) {
542                         if (value > rs->md.raid_disks) {
543                                 rs->ti->error = "Invalid rebuild index given";
544                                 return -EINVAL;
545                         }
546                         clear_bit(In_sync, &rs->dev[value].rdev.flags);
547                         rs->dev[value].rdev.recovery_offset = 0;
548                         rs->print_flags |= DMPF_REBUILD;
549                 } else if (!strcasecmp(key, "write_mostly")) {
550                         if (rs->raid_type->level != 1) {
551                                 rs->ti->error = "write_mostly option is only valid for RAID1";
552                                 return -EINVAL;
553                         }
554                         if (value >= rs->md.raid_disks) {
555                                 rs->ti->error = "Invalid write_mostly drive index given";
556                                 return -EINVAL;
557                         }
558                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
559                 } else if (!strcasecmp(key, "max_write_behind")) {
560                         if (rs->raid_type->level != 1) {
561                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
562                                 return -EINVAL;
563                         }
564                         rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
565
566                         /*
567                          * In device-mapper, we specify things in sectors, but
568                          * MD records this value in kB
569                          */
570                         value /= 2;
571                         if (value > COUNTER_MAX) {
572                                 rs->ti->error = "Max write-behind limit out of range";
573                                 return -EINVAL;
574                         }
575                         rs->md.bitmap_info.max_write_behind = value;
576                 } else if (!strcasecmp(key, "daemon_sleep")) {
577                         rs->print_flags |= DMPF_DAEMON_SLEEP;
578                         if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
579                                 rs->ti->error = "daemon sleep period out of range";
580                                 return -EINVAL;
581                         }
582                         rs->md.bitmap_info.daemon_sleep = value;
583                 } else if (!strcasecmp(key, "stripe_cache")) {
584                         rs->print_flags |= DMPF_STRIPE_CACHE;
585
586                         /*
587                          * In device-mapper, we specify things in sectors, but
588                          * MD records this value in kB
589                          */
590                         value /= 2;
591
592                         if ((rs->raid_type->level != 5) &&
593                             (rs->raid_type->level != 6)) {
594                                 rs->ti->error = "Inappropriate argument: stripe_cache";
595                                 return -EINVAL;
596                         }
597                         if (raid5_set_cache_size(&rs->md, (int)value)) {
598                                 rs->ti->error = "Bad stripe_cache size";
599                                 return -EINVAL;
600                         }
601                 } else if (!strcasecmp(key, "min_recovery_rate")) {
602                         rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
603                         if (value > INT_MAX) {
604                                 rs->ti->error = "min_recovery_rate out of range";
605                                 return -EINVAL;
606                         }
607                         rs->md.sync_speed_min = (int)value;
608                 } else if (!strcasecmp(key, "max_recovery_rate")) {
609                         rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
610                         if (value > INT_MAX) {
611                                 rs->ti->error = "max_recovery_rate out of range";
612                                 return -EINVAL;
613                         }
614                         rs->md.sync_speed_max = (int)value;
615                 } else if (!strcasecmp(key, "region_size")) {
616                         rs->print_flags |= DMPF_REGION_SIZE;
617                         region_size = value;
618                 } else if (!strcasecmp(key, "raid10_copies") &&
619                            (rs->raid_type->level == 10)) {
620                         if ((value < 2) || (value > 0xFF)) {
621                                 rs->ti->error = "Bad value for 'raid10_copies'";
622                                 return -EINVAL;
623                         }
624                         rs->print_flags |= DMPF_RAID10_COPIES;
625                         raid10_copies = value;
626                 } else {
627                         DMERR("Unable to parse RAID parameter: %s", key);
628                         rs->ti->error = "Unable to parse RAID parameters";
629                         return -EINVAL;
630                 }
631         }
632
633         if (validate_region_size(rs, region_size))
634                 return -EINVAL;
635
636         if (rs->md.chunk_sectors)
637                 max_io_len = rs->md.chunk_sectors;
638         else
639                 max_io_len = region_size;
640
641         if (dm_set_target_max_io_len(rs->ti, max_io_len))
642                 return -EINVAL;
643
644         if (rs->raid_type->level == 10) {
645                 if (raid10_copies > rs->md.raid_disks) {
646                         rs->ti->error = "Not enough devices to satisfy specification";
647                         return -EINVAL;
648                 }
649
650                 /* (Len * #mirrors) / #devices */
651                 sectors_per_dev = rs->ti->len * raid10_copies;
652                 sector_div(sectors_per_dev, rs->md.raid_disks);
653
654                 rs->md.layout = raid10_format_to_md_layout(raid10_format,
655                                                            raid10_copies);
656                 rs->md.new_layout = rs->md.layout;
657         } else if ((rs->raid_type->level > 1) &&
658                    sector_div(sectors_per_dev,
659                               (rs->md.raid_disks - rs->raid_type->parity_devs))) {
660                 rs->ti->error = "Target length not divisible by number of data devices";
661                 return -EINVAL;
662         }
663         rs->md.dev_sectors = sectors_per_dev;
664
665         if (validate_rebuild_devices(rs))
666                 return -EINVAL;
667
668         /* Assume there are no metadata devices until the drives are parsed */
669         rs->md.persistent = 0;
670         rs->md.external = 1;
671
672         return 0;
673 }
674
675 static void do_table_event(struct work_struct *ws)
676 {
677         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
678
679         dm_table_event(rs->ti->table);
680 }
681
682 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
683 {
684         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
685
686         if (rs->raid_type->level == 1)
687                 return md_raid1_congested(&rs->md, bits);
688
689         if (rs->raid_type->level == 10)
690                 return md_raid10_congested(&rs->md, bits);
691
692         return md_raid5_congested(&rs->md, bits);
693 }
694
695 /*
696  * This structure is never routinely used by userspace, unlike md superblocks.
697  * Devices with this superblock should only ever be accessed via device-mapper.
698  */
699 #define DM_RAID_MAGIC 0x64526D44
700 struct dm_raid_superblock {
701         __le32 magic;           /* "DmRd" */
702         __le32 features;        /* Used to indicate possible future changes */
703
704         __le32 num_devices;     /* Number of devices in this array. (Max 64) */
705         __le32 array_position;  /* The position of this drive in the array */
706
707         __le64 events;          /* Incremented by md when superblock updated */
708         __le64 failed_devices;  /* Bit field of devices to indicate failures */
709
710         /*
711          * This offset tracks the progress of the repair or replacement of
712          * an individual drive.
713          */
714         __le64 disk_recovery_offset;
715
716         /*
717          * This offset tracks the progress of the initial array
718          * synchronisation/parity calculation.
719          */
720         __le64 array_resync_offset;
721
722         /*
723          * RAID characteristics
724          */
725         __le32 level;
726         __le32 layout;
727         __le32 stripe_sectors;
728
729         __u8 pad[452];          /* Round struct to 512 bytes. */
730                                 /* Always set to 0 when writing. */
731 } __packed;
732
733 static int read_disk_sb(struct md_rdev *rdev, int size)
734 {
735         BUG_ON(!rdev->sb_page);
736
737         if (rdev->sb_loaded)
738                 return 0;
739
740         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
741                 DMERR("Failed to read superblock of device at position %d",
742                       rdev->raid_disk);
743                 md_error(rdev->mddev, rdev);
744                 return -EINVAL;
745         }
746
747         rdev->sb_loaded = 1;
748
749         return 0;
750 }
751
752 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
753 {
754         int i;
755         uint64_t failed_devices;
756         struct dm_raid_superblock *sb;
757         struct raid_set *rs = container_of(mddev, struct raid_set, md);
758
759         sb = page_address(rdev->sb_page);
760         failed_devices = le64_to_cpu(sb->failed_devices);
761
762         for (i = 0; i < mddev->raid_disks; i++)
763                 if (!rs->dev[i].data_dev ||
764                     test_bit(Faulty, &(rs->dev[i].rdev.flags)))
765                         failed_devices |= (1ULL << i);
766
767         memset(sb, 0, sizeof(*sb));
768
769         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
770         sb->features = cpu_to_le32(0);  /* No features yet */
771
772         sb->num_devices = cpu_to_le32(mddev->raid_disks);
773         sb->array_position = cpu_to_le32(rdev->raid_disk);
774
775         sb->events = cpu_to_le64(mddev->events);
776         sb->failed_devices = cpu_to_le64(failed_devices);
777
778         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
779         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
780
781         sb->level = cpu_to_le32(mddev->level);
782         sb->layout = cpu_to_le32(mddev->layout);
783         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
784 }
785
786 /*
787  * super_load
788  *
789  * This function creates a superblock if one is not found on the device
790  * and will decide which superblock to use if there's a choice.
791  *
792  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
793  */
794 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
795 {
796         int ret;
797         struct dm_raid_superblock *sb;
798         struct dm_raid_superblock *refsb;
799         uint64_t events_sb, events_refsb;
800
801         rdev->sb_start = 0;
802         rdev->sb_size = sizeof(*sb);
803
804         ret = read_disk_sb(rdev, rdev->sb_size);
805         if (ret)
806                 return ret;
807
808         sb = page_address(rdev->sb_page);
809
810         /*
811          * Two cases that we want to write new superblocks and rebuild:
812          * 1) New device (no matching magic number)
813          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
814          */
815         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
816             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
817                 super_sync(rdev->mddev, rdev);
818
819                 set_bit(FirstUse, &rdev->flags);
820
821                 /* Force writing of superblocks to disk */
822                 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
823
824                 /* Any superblock is better than none, choose that if given */
825                 return refdev ? 0 : 1;
826         }
827
828         if (!refdev)
829                 return 1;
830
831         events_sb = le64_to_cpu(sb->events);
832
833         refsb = page_address(refdev->sb_page);
834         events_refsb = le64_to_cpu(refsb->events);
835
836         return (events_sb > events_refsb) ? 1 : 0;
837 }
838
839 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
840 {
841         int role;
842         struct raid_set *rs = container_of(mddev, struct raid_set, md);
843         uint64_t events_sb;
844         uint64_t failed_devices;
845         struct dm_raid_superblock *sb;
846         uint32_t new_devs = 0;
847         uint32_t rebuilds = 0;
848         struct md_rdev *r;
849         struct dm_raid_superblock *sb2;
850
851         sb = page_address(rdev->sb_page);
852         events_sb = le64_to_cpu(sb->events);
853         failed_devices = le64_to_cpu(sb->failed_devices);
854
855         /*
856          * Initialise to 1 if this is a new superblock.
857          */
858         mddev->events = events_sb ? : 1;
859
860         /*
861          * Reshaping is not currently allowed
862          */
863         if ((le32_to_cpu(sb->level) != mddev->level) ||
864             (le32_to_cpu(sb->layout) != mddev->layout) ||
865             (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
866                 DMERR("Reshaping arrays not yet supported.");
867                 return -EINVAL;
868         }
869
870         /* We can only change the number of devices in RAID1 right now */
871         if ((rs->raid_type->level != 1) &&
872             (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
873                 DMERR("Reshaping arrays not yet supported.");
874                 return -EINVAL;
875         }
876
877         if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
878                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
879
880         /*
881          * During load, we set FirstUse if a new superblock was written.
882          * There are two reasons we might not have a superblock:
883          * 1) The array is brand new - in which case, all of the
884          *    devices must have their In_sync bit set.  Also,
885          *    recovery_cp must be 0, unless forced.
886          * 2) This is a new device being added to an old array
887          *    and the new device needs to be rebuilt - in which
888          *    case the In_sync bit will /not/ be set and
889          *    recovery_cp must be MaxSector.
890          */
891         rdev_for_each(r, mddev) {
892                 if (!test_bit(In_sync, &r->flags)) {
893                         DMINFO("Device %d specified for rebuild: "
894                                "Clearing superblock", r->raid_disk);
895                         rebuilds++;
896                 } else if (test_bit(FirstUse, &r->flags))
897                         new_devs++;
898         }
899
900         if (!rebuilds) {
901                 if (new_devs == mddev->raid_disks) {
902                         DMINFO("Superblocks created for new array");
903                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
904                 } else if (new_devs) {
905                         DMERR("New device injected "
906                               "into existing array without 'rebuild' "
907                               "parameter specified");
908                         return -EINVAL;
909                 }
910         } else if (new_devs) {
911                 DMERR("'rebuild' devices cannot be "
912                       "injected into an array with other first-time devices");
913                 return -EINVAL;
914         } else if (mddev->recovery_cp != MaxSector) {
915                 DMERR("'rebuild' specified while array is not in-sync");
916                 return -EINVAL;
917         }
918
919         /*
920          * Now we set the Faulty bit for those devices that are
921          * recorded in the superblock as failed.
922          */
923         rdev_for_each(r, mddev) {
924                 if (!r->sb_page)
925                         continue;
926                 sb2 = page_address(r->sb_page);
927                 sb2->failed_devices = 0;
928
929                 /*
930                  * Check for any device re-ordering.
931                  */
932                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
933                         role = le32_to_cpu(sb2->array_position);
934                         if (role != r->raid_disk) {
935                                 if (rs->raid_type->level != 1) {
936                                         rs->ti->error = "Cannot change device "
937                                                 "positions in RAID array";
938                                         return -EINVAL;
939                                 }
940                                 DMINFO("RAID1 device #%d now at position #%d",
941                                        role, r->raid_disk);
942                         }
943
944                         /*
945                          * Partial recovery is performed on
946                          * returning failed devices.
947                          */
948                         if (failed_devices & (1 << role))
949                                 set_bit(Faulty, &r->flags);
950                 }
951         }
952
953         return 0;
954 }
955
956 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
957 {
958         struct dm_raid_superblock *sb = page_address(rdev->sb_page);
959
960         /*
961          * If mddev->events is not set, we know we have not yet initialized
962          * the array.
963          */
964         if (!mddev->events && super_init_validation(mddev, rdev))
965                 return -EINVAL;
966
967         mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
968         rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
969         if (!test_bit(FirstUse, &rdev->flags)) {
970                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
971                 if (rdev->recovery_offset != MaxSector)
972                         clear_bit(In_sync, &rdev->flags);
973         }
974
975         /*
976          * If a device comes back, set it as not In_sync and no longer faulty.
977          */
978         if (test_bit(Faulty, &rdev->flags)) {
979                 clear_bit(Faulty, &rdev->flags);
980                 clear_bit(In_sync, &rdev->flags);
981                 rdev->saved_raid_disk = rdev->raid_disk;
982                 rdev->recovery_offset = 0;
983         }
984
985         clear_bit(FirstUse, &rdev->flags);
986
987         return 0;
988 }
989
990 /*
991  * Analyse superblocks and select the freshest.
992  */
993 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
994 {
995         int ret;
996         unsigned redundancy = 0;
997         struct raid_dev *dev;
998         struct md_rdev *rdev, *tmp, *freshest;
999         struct mddev *mddev = &rs->md;
1000
1001         switch (rs->raid_type->level) {
1002         case 1:
1003                 redundancy = rs->md.raid_disks - 1;
1004                 break;
1005         case 4:
1006         case 5:
1007         case 6:
1008                 redundancy = rs->raid_type->parity_devs;
1009                 break;
1010         case 10:
1011                 redundancy = raid10_md_layout_to_copies(mddev->layout) - 1;
1012                 break;
1013         default:
1014                 ti->error = "Unknown RAID type";
1015                 return -EINVAL;
1016         }
1017
1018         freshest = NULL;
1019         rdev_for_each_safe(rdev, tmp, mddev) {
1020                 if (!rdev->meta_bdev)
1021                         continue;
1022
1023                 ret = super_load(rdev, freshest);
1024
1025                 switch (ret) {
1026                 case 1:
1027                         freshest = rdev;
1028                         break;
1029                 case 0:
1030                         break;
1031                 default:
1032                         dev = container_of(rdev, struct raid_dev, rdev);
1033                         if (redundancy--) {
1034                                 if (dev->meta_dev)
1035                                         dm_put_device(ti, dev->meta_dev);
1036
1037                                 dev->meta_dev = NULL;
1038                                 rdev->meta_bdev = NULL;
1039
1040                                 if (rdev->sb_page)
1041                                         put_page(rdev->sb_page);
1042
1043                                 rdev->sb_page = NULL;
1044
1045                                 rdev->sb_loaded = 0;
1046
1047                                 /*
1048                                  * We might be able to salvage the data device
1049                                  * even though the meta device has failed.  For
1050                                  * now, we behave as though '- -' had been
1051                                  * set for this device in the table.
1052                                  */
1053                                 if (dev->data_dev)
1054                                         dm_put_device(ti, dev->data_dev);
1055
1056                                 dev->data_dev = NULL;
1057                                 rdev->bdev = NULL;
1058
1059                                 list_del(&rdev->same_set);
1060
1061                                 continue;
1062                         }
1063                         ti->error = "Failed to load superblock";
1064                         return ret;
1065                 }
1066         }
1067
1068         if (!freshest)
1069                 return 0;
1070
1071         /*
1072          * Validation of the freshest device provides the source of
1073          * validation for the remaining devices.
1074          */
1075         ti->error = "Unable to assemble array: Invalid superblocks";
1076         if (super_validate(mddev, freshest))
1077                 return -EINVAL;
1078
1079         rdev_for_each(rdev, mddev)
1080                 if ((rdev != freshest) && super_validate(mddev, rdev))
1081                         return -EINVAL;
1082
1083         return 0;
1084 }
1085
1086 /*
1087  * Construct a RAID4/5/6 mapping:
1088  * Args:
1089  *      <raid_type> <#raid_params> <raid_params>                \
1090  *      <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
1091  *
1092  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
1093  * details on possible <raid_params>.
1094  */
1095 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
1096 {
1097         int ret;
1098         struct raid_type *rt;
1099         unsigned long num_raid_params, num_raid_devs;
1100         struct raid_set *rs = NULL;
1101
1102         /* Must have at least <raid_type> <#raid_params> */
1103         if (argc < 2) {
1104                 ti->error = "Too few arguments";
1105                 return -EINVAL;
1106         }
1107
1108         /* raid type */
1109         rt = get_raid_type(argv[0]);
1110         if (!rt) {
1111                 ti->error = "Unrecognised raid_type";
1112                 return -EINVAL;
1113         }
1114         argc--;
1115         argv++;
1116
1117         /* number of RAID parameters */
1118         if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
1119                 ti->error = "Cannot understand number of RAID parameters";
1120                 return -EINVAL;
1121         }
1122         argc--;
1123         argv++;
1124
1125         /* Skip over RAID params for now and find out # of devices */
1126         if (num_raid_params + 1 > argc) {
1127                 ti->error = "Arguments do not agree with counts given";
1128                 return -EINVAL;
1129         }
1130
1131         if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1132             (num_raid_devs >= INT_MAX)) {
1133                 ti->error = "Cannot understand number of raid devices";
1134                 return -EINVAL;
1135         }
1136
1137         rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1138         if (IS_ERR(rs))
1139                 return PTR_ERR(rs);
1140
1141         ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1142         if (ret)
1143                 goto bad;
1144
1145         ret = -EINVAL;
1146
1147         argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1148         argv += num_raid_params + 1;
1149
1150         if (argc != (num_raid_devs * 2)) {
1151                 ti->error = "Supplied RAID devices does not match the count given";
1152                 goto bad;
1153         }
1154
1155         ret = dev_parms(rs, argv);
1156         if (ret)
1157                 goto bad;
1158
1159         rs->md.sync_super = super_sync;
1160         ret = analyse_superblocks(ti, rs);
1161         if (ret)
1162                 goto bad;
1163
1164         INIT_WORK(&rs->md.event_work, do_table_event);
1165         ti->private = rs;
1166         ti->num_flush_requests = 1;
1167
1168         mutex_lock(&rs->md.reconfig_mutex);
1169         ret = md_run(&rs->md);
1170         rs->md.in_sync = 0; /* Assume already marked dirty */
1171         mutex_unlock(&rs->md.reconfig_mutex);
1172
1173         if (ret) {
1174                 ti->error = "Fail to run raid array";
1175                 goto bad;
1176         }
1177
1178         if (ti->len != rs->md.array_sectors) {
1179                 ti->error = "Array size does not match requested target length";
1180                 ret = -EINVAL;
1181                 goto size_mismatch;
1182         }
1183         rs->callbacks.congested_fn = raid_is_congested;
1184         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1185
1186         mddev_suspend(&rs->md);
1187         return 0;
1188
1189 size_mismatch:
1190         md_stop(&rs->md);
1191 bad:
1192         context_free(rs);
1193
1194         return ret;
1195 }
1196
1197 static void raid_dtr(struct dm_target *ti)
1198 {
1199         struct raid_set *rs = ti->private;
1200
1201         list_del_init(&rs->callbacks.list);
1202         md_stop(&rs->md);
1203         context_free(rs);
1204 }
1205
1206 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1207 {
1208         struct raid_set *rs = ti->private;
1209         struct mddev *mddev = &rs->md;
1210
1211         mddev->pers->make_request(mddev, bio);
1212
1213         return DM_MAPIO_SUBMITTED;
1214 }
1215
1216 static int raid_status(struct dm_target *ti, status_type_t type,
1217                        unsigned status_flags, char *result, unsigned maxlen)
1218 {
1219         struct raid_set *rs = ti->private;
1220         unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1221         unsigned sz = 0;
1222         int i, array_in_sync = 0;
1223         sector_t sync;
1224
1225         switch (type) {
1226         case STATUSTYPE_INFO:
1227                 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1228
1229                 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1230                         sync = rs->md.curr_resync_completed;
1231                 else
1232                         sync = rs->md.recovery_cp;
1233
1234                 if (sync >= rs->md.resync_max_sectors) {
1235                         array_in_sync = 1;
1236                         sync = rs->md.resync_max_sectors;
1237                 } else {
1238                         /*
1239                          * The array may be doing an initial sync, or it may
1240                          * be rebuilding individual components.  If all the
1241                          * devices are In_sync, then it is the array that is
1242                          * being initialized.
1243                          */
1244                         for (i = 0; i < rs->md.raid_disks; i++)
1245                                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1246                                         array_in_sync = 1;
1247                 }
1248                 /*
1249                  * Status characters:
1250                  *  'D' = Dead/Failed device
1251                  *  'a' = Alive but not in-sync
1252                  *  'A' = Alive and in-sync
1253                  */
1254                 for (i = 0; i < rs->md.raid_disks; i++) {
1255                         if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1256                                 DMEMIT("D");
1257                         else if (!array_in_sync ||
1258                                  !test_bit(In_sync, &rs->dev[i].rdev.flags))
1259                                 DMEMIT("a");
1260                         else
1261                                 DMEMIT("A");
1262                 }
1263
1264                 /*
1265                  * In-sync ratio:
1266                  *  The in-sync ratio shows the progress of:
1267                  *   - Initializing the array
1268                  *   - Rebuilding a subset of devices of the array
1269                  *  The user can distinguish between the two by referring
1270                  *  to the status characters.
1271                  */
1272                 DMEMIT(" %llu/%llu",
1273                        (unsigned long long) sync,
1274                        (unsigned long long) rs->md.resync_max_sectors);
1275
1276                 break;
1277         case STATUSTYPE_TABLE:
1278                 /* The string you would use to construct this array */
1279                 for (i = 0; i < rs->md.raid_disks; i++) {
1280                         if ((rs->print_flags & DMPF_REBUILD) &&
1281                             rs->dev[i].data_dev &&
1282                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1283                                 raid_param_cnt += 2; /* for rebuilds */
1284                         if (rs->dev[i].data_dev &&
1285                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1286                                 raid_param_cnt += 2;
1287                 }
1288
1289                 raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1290                 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1291                         raid_param_cnt--;
1292
1293                 DMEMIT("%s %u %u", rs->raid_type->name,
1294                        raid_param_cnt, rs->md.chunk_sectors);
1295
1296                 if ((rs->print_flags & DMPF_SYNC) &&
1297                     (rs->md.recovery_cp == MaxSector))
1298                         DMEMIT(" sync");
1299                 if (rs->print_flags & DMPF_NOSYNC)
1300                         DMEMIT(" nosync");
1301
1302                 for (i = 0; i < rs->md.raid_disks; i++)
1303                         if ((rs->print_flags & DMPF_REBUILD) &&
1304                             rs->dev[i].data_dev &&
1305                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1306                                 DMEMIT(" rebuild %u", i);
1307
1308                 if (rs->print_flags & DMPF_DAEMON_SLEEP)
1309                         DMEMIT(" daemon_sleep %lu",
1310                                rs->md.bitmap_info.daemon_sleep);
1311
1312                 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1313                         DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1314
1315                 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1316                         DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1317
1318                 for (i = 0; i < rs->md.raid_disks; i++)
1319                         if (rs->dev[i].data_dev &&
1320                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1321                                 DMEMIT(" write_mostly %u", i);
1322
1323                 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1324                         DMEMIT(" max_write_behind %lu",
1325                                rs->md.bitmap_info.max_write_behind);
1326
1327                 if (rs->print_flags & DMPF_STRIPE_CACHE) {
1328                         struct r5conf *conf = rs->md.private;
1329
1330                         /* convert from kiB to sectors */
1331                         DMEMIT(" stripe_cache %d",
1332                                conf ? conf->max_nr_stripes * 2 : 0);
1333                 }
1334
1335                 if (rs->print_flags & DMPF_REGION_SIZE)
1336                         DMEMIT(" region_size %lu",
1337                                rs->md.bitmap_info.chunksize >> 9);
1338
1339                 if (rs->print_flags & DMPF_RAID10_COPIES)
1340                         DMEMIT(" raid10_copies %u",
1341                                raid10_md_layout_to_copies(rs->md.layout));
1342
1343                 if (rs->print_flags & DMPF_RAID10_FORMAT)
1344                         DMEMIT(" raid10_format near");
1345
1346                 DMEMIT(" %d", rs->md.raid_disks);
1347                 for (i = 0; i < rs->md.raid_disks; i++) {
1348                         if (rs->dev[i].meta_dev)
1349                                 DMEMIT(" %s", rs->dev[i].meta_dev->name);
1350                         else
1351                                 DMEMIT(" -");
1352
1353                         if (rs->dev[i].data_dev)
1354                                 DMEMIT(" %s", rs->dev[i].data_dev->name);
1355                         else
1356                                 DMEMIT(" -");
1357                 }
1358         }
1359
1360         return 0;
1361 }
1362
1363 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1364 {
1365         struct raid_set *rs = ti->private;
1366         unsigned i;
1367         int ret = 0;
1368
1369         for (i = 0; !ret && i < rs->md.raid_disks; i++)
1370                 if (rs->dev[i].data_dev)
1371                         ret = fn(ti,
1372                                  rs->dev[i].data_dev,
1373                                  0, /* No offset on data devs */
1374                                  rs->md.dev_sectors,
1375                                  data);
1376
1377         return ret;
1378 }
1379
1380 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1381 {
1382         struct raid_set *rs = ti->private;
1383         unsigned chunk_size = rs->md.chunk_sectors << 9;
1384         struct r5conf *conf = rs->md.private;
1385
1386         blk_limits_io_min(limits, chunk_size);
1387         blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1388 }
1389
1390 static void raid_presuspend(struct dm_target *ti)
1391 {
1392         struct raid_set *rs = ti->private;
1393
1394         md_stop_writes(&rs->md);
1395 }
1396
1397 static void raid_postsuspend(struct dm_target *ti)
1398 {
1399         struct raid_set *rs = ti->private;
1400
1401         mddev_suspend(&rs->md);
1402 }
1403
1404 static void raid_resume(struct dm_target *ti)
1405 {
1406         struct raid_set *rs = ti->private;
1407
1408         set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1409         if (!rs->bitmap_loaded) {
1410                 bitmap_load(&rs->md);
1411                 rs->bitmap_loaded = 1;
1412         }
1413
1414         clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1415         mddev_resume(&rs->md);
1416 }
1417
1418 static struct target_type raid_target = {
1419         .name = "raid",
1420         .version = {1, 3, 1},
1421         .module = THIS_MODULE,
1422         .ctr = raid_ctr,
1423         .dtr = raid_dtr,
1424         .map = raid_map,
1425         .status = raid_status,
1426         .iterate_devices = raid_iterate_devices,
1427         .io_hints = raid_io_hints,
1428         .presuspend = raid_presuspend,
1429         .postsuspend = raid_postsuspend,
1430         .resume = raid_resume,
1431 };
1432
1433 static int __init dm_raid_init(void)
1434 {
1435         return dm_register_target(&raid_target);
1436 }
1437
1438 static void __exit dm_raid_exit(void)
1439 {
1440         dm_unregister_target(&raid_target);
1441 }
1442
1443 module_init(dm_raid_init);
1444 module_exit(dm_raid_exit);
1445
1446 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1447 MODULE_ALIAS("dm-raid1");
1448 MODULE_ALIAS("dm-raid10");
1449 MODULE_ALIAS("dm-raid4");
1450 MODULE_ALIAS("dm-raid5");
1451 MODULE_ALIAS("dm-raid6");
1452 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1453 MODULE_LICENSE("GPL");