]> Pileus Git - ~andy/linux/blob - drivers/md/dm-cache-target.c
Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[~andy/linux] / drivers / md / dm-cache-target.c
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19
20 #define DM_MSG_PREFIX "cache"
21
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23         "A percentage of time allocated for copying to and/or from cache");
24
25 /*----------------------------------------------------------------*/
26
27 /*
28  * Glossary:
29  *
30  * oblock: index of an origin block
31  * cblock: index of a cache block
32  * promotion: movement of a block from origin to cache
33  * demotion: movement of a block from cache to origin
34  * migration: movement of a block between the origin and cache device,
35  *            either direction
36  */
37
38 /*----------------------------------------------------------------*/
39
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42         return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47         size_t s = bitset_size_in_bytes(nr_entries);
48         return vzalloc(s);
49 }
50
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53         size_t s = bitset_size_in_bytes(nr_entries);
54         memset(bitset, 0, s);
55 }
56
57 static void free_bitset(unsigned long *bits)
58 {
59         vfree(bits);
60 }
61
62 /*----------------------------------------------------------------*/
63
64 /*
65  * There are a couple of places where we let a bio run, but want to do some
66  * work before calling its endio function.  We do this by temporarily
67  * changing the endio fn.
68  */
69 struct dm_hook_info {
70         bio_end_io_t *bi_end_io;
71         void *bi_private;
72 };
73
74 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
75                         bio_end_io_t *bi_end_io, void *bi_private)
76 {
77         h->bi_end_io = bio->bi_end_io;
78         h->bi_private = bio->bi_private;
79
80         bio->bi_end_io = bi_end_io;
81         bio->bi_private = bi_private;
82 }
83
84 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
85 {
86         bio->bi_end_io = h->bi_end_io;
87         bio->bi_private = h->bi_private;
88
89         /*
90          * Must bump bi_remaining to allow bio to complete with
91          * restored bi_end_io.
92          */
93         atomic_inc(&bio->bi_remaining);
94 }
95
96 /*----------------------------------------------------------------*/
97
98 #define PRISON_CELLS 1024
99 #define MIGRATION_POOL_SIZE 128
100 #define COMMIT_PERIOD HZ
101 #define MIGRATION_COUNT_WINDOW 10
102
103 /*
104  * The block size of the device holding cache data must be
105  * between 32KB and 1GB.
106  */
107 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
108 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
109
110 /*
111  * FIXME: the cache is read/write for the time being.
112  */
113 enum cache_metadata_mode {
114         CM_WRITE,               /* metadata may be changed */
115         CM_READ_ONLY,           /* metadata may not be changed */
116 };
117
118 enum cache_io_mode {
119         /*
120          * Data is written to cached blocks only.  These blocks are marked
121          * dirty.  If you lose the cache device you will lose data.
122          * Potential performance increase for both reads and writes.
123          */
124         CM_IO_WRITEBACK,
125
126         /*
127          * Data is written to both cache and origin.  Blocks are never
128          * dirty.  Potential performance benfit for reads only.
129          */
130         CM_IO_WRITETHROUGH,
131
132         /*
133          * A degraded mode useful for various cache coherency situations
134          * (eg, rolling back snapshots).  Reads and writes always go to the
135          * origin.  If a write goes to a cached oblock, then the cache
136          * block is invalidated.
137          */
138         CM_IO_PASSTHROUGH
139 };
140
141 struct cache_features {
142         enum cache_metadata_mode mode;
143         enum cache_io_mode io_mode;
144 };
145
146 struct cache_stats {
147         atomic_t read_hit;
148         atomic_t read_miss;
149         atomic_t write_hit;
150         atomic_t write_miss;
151         atomic_t demotion;
152         atomic_t promotion;
153         atomic_t copies_avoided;
154         atomic_t cache_cell_clash;
155         atomic_t commit_count;
156         atomic_t discard_count;
157 };
158
159 /*
160  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
161  * the one-past-the-end value.
162  */
163 struct cblock_range {
164         dm_cblock_t begin;
165         dm_cblock_t end;
166 };
167
168 struct invalidation_request {
169         struct list_head list;
170         struct cblock_range *cblocks;
171
172         atomic_t complete;
173         int err;
174
175         wait_queue_head_t result_wait;
176 };
177
178 struct cache {
179         struct dm_target *ti;
180         struct dm_target_callbacks callbacks;
181
182         struct dm_cache_metadata *cmd;
183
184         /*
185          * Metadata is written to this device.
186          */
187         struct dm_dev *metadata_dev;
188
189         /*
190          * The slower of the two data devices.  Typically a spindle.
191          */
192         struct dm_dev *origin_dev;
193
194         /*
195          * The faster of the two data devices.  Typically an SSD.
196          */
197         struct dm_dev *cache_dev;
198
199         /*
200          * Size of the origin device in _complete_ blocks and native sectors.
201          */
202         dm_oblock_t origin_blocks;
203         sector_t origin_sectors;
204
205         /*
206          * Size of the cache device in blocks.
207          */
208         dm_cblock_t cache_size;
209
210         /*
211          * Fields for converting from sectors to blocks.
212          */
213         uint32_t sectors_per_block;
214         int sectors_per_block_shift;
215
216         spinlock_t lock;
217         struct bio_list deferred_bios;
218         struct bio_list deferred_flush_bios;
219         struct bio_list deferred_writethrough_bios;
220         struct list_head quiesced_migrations;
221         struct list_head completed_migrations;
222         struct list_head need_commit_migrations;
223         sector_t migration_threshold;
224         wait_queue_head_t migration_wait;
225         atomic_t nr_migrations;
226
227         wait_queue_head_t quiescing_wait;
228         atomic_t quiescing;
229         atomic_t quiescing_ack;
230
231         /*
232          * cache_size entries, dirty if set
233          */
234         dm_cblock_t nr_dirty;
235         unsigned long *dirty_bitset;
236
237         /*
238          * origin_blocks entries, discarded if set.
239          */
240         dm_dblock_t discard_nr_blocks;
241         unsigned long *discard_bitset;
242         uint32_t discard_block_size; /* a power of 2 times sectors per block */
243
244         /*
245          * Rather than reconstructing the table line for the status we just
246          * save it and regurgitate.
247          */
248         unsigned nr_ctr_args;
249         const char **ctr_args;
250
251         struct dm_kcopyd_client *copier;
252         struct workqueue_struct *wq;
253         struct work_struct worker;
254
255         struct delayed_work waker;
256         unsigned long last_commit_jiffies;
257
258         struct dm_bio_prison *prison;
259         struct dm_deferred_set *all_io_ds;
260
261         mempool_t *migration_pool;
262         struct dm_cache_migration *next_migration;
263
264         struct dm_cache_policy *policy;
265         unsigned policy_nr_args;
266
267         bool need_tick_bio:1;
268         bool sized:1;
269         bool invalidate:1;
270         bool commit_requested:1;
271         bool loaded_mappings:1;
272         bool loaded_discards:1;
273
274         /*
275          * Cache features such as write-through.
276          */
277         struct cache_features features;
278
279         struct cache_stats stats;
280
281         /*
282          * Invalidation fields.
283          */
284         spinlock_t invalidation_lock;
285         struct list_head invalidation_requests;
286 };
287
288 struct per_bio_data {
289         bool tick:1;
290         unsigned req_nr:2;
291         struct dm_deferred_entry *all_io_entry;
292         struct dm_hook_info hook_info;
293
294         /*
295          * writethrough fields.  These MUST remain at the end of this
296          * structure and the 'cache' member must be the first as it
297          * is used to determine the offset of the writethrough fields.
298          */
299         struct cache *cache;
300         dm_cblock_t cblock;
301         struct dm_bio_details bio_details;
302 };
303
304 struct dm_cache_migration {
305         struct list_head list;
306         struct cache *cache;
307
308         unsigned long start_jiffies;
309         dm_oblock_t old_oblock;
310         dm_oblock_t new_oblock;
311         dm_cblock_t cblock;
312
313         bool err:1;
314         bool writeback:1;
315         bool demote:1;
316         bool promote:1;
317         bool requeue_holder:1;
318         bool invalidate:1;
319
320         struct dm_bio_prison_cell *old_ocell;
321         struct dm_bio_prison_cell *new_ocell;
322 };
323
324 /*
325  * Processing a bio in the worker thread may require these memory
326  * allocations.  We prealloc to avoid deadlocks (the same worker thread
327  * frees them back to the mempool).
328  */
329 struct prealloc {
330         struct dm_cache_migration *mg;
331         struct dm_bio_prison_cell *cell1;
332         struct dm_bio_prison_cell *cell2;
333 };
334
335 static void wake_worker(struct cache *cache)
336 {
337         queue_work(cache->wq, &cache->worker);
338 }
339
340 /*----------------------------------------------------------------*/
341
342 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
343 {
344         /* FIXME: change to use a local slab. */
345         return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
346 }
347
348 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
349 {
350         dm_bio_prison_free_cell(cache->prison, cell);
351 }
352
353 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
354 {
355         if (!p->mg) {
356                 p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
357                 if (!p->mg)
358                         return -ENOMEM;
359         }
360
361         if (!p->cell1) {
362                 p->cell1 = alloc_prison_cell(cache);
363                 if (!p->cell1)
364                         return -ENOMEM;
365         }
366
367         if (!p->cell2) {
368                 p->cell2 = alloc_prison_cell(cache);
369                 if (!p->cell2)
370                         return -ENOMEM;
371         }
372
373         return 0;
374 }
375
376 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
377 {
378         if (p->cell2)
379                 free_prison_cell(cache, p->cell2);
380
381         if (p->cell1)
382                 free_prison_cell(cache, p->cell1);
383
384         if (p->mg)
385                 mempool_free(p->mg, cache->migration_pool);
386 }
387
388 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
389 {
390         struct dm_cache_migration *mg = p->mg;
391
392         BUG_ON(!mg);
393         p->mg = NULL;
394
395         return mg;
396 }
397
398 /*
399  * You must have a cell within the prealloc struct to return.  If not this
400  * function will BUG() rather than returning NULL.
401  */
402 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
403 {
404         struct dm_bio_prison_cell *r = NULL;
405
406         if (p->cell1) {
407                 r = p->cell1;
408                 p->cell1 = NULL;
409
410         } else if (p->cell2) {
411                 r = p->cell2;
412                 p->cell2 = NULL;
413         } else
414                 BUG();
415
416         return r;
417 }
418
419 /*
420  * You can't have more than two cells in a prealloc struct.  BUG() will be
421  * called if you try and overfill.
422  */
423 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
424 {
425         if (!p->cell2)
426                 p->cell2 = cell;
427
428         else if (!p->cell1)
429                 p->cell1 = cell;
430
431         else
432                 BUG();
433 }
434
435 /*----------------------------------------------------------------*/
436
437 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
438 {
439         key->virtual = 0;
440         key->dev = 0;
441         key->block = from_oblock(oblock);
442 }
443
444 /*
445  * The caller hands in a preallocated cell, and a free function for it.
446  * The cell will be freed if there's an error, or if it wasn't used because
447  * a cell with that key already exists.
448  */
449 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
450
451 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
452                       struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
453                       cell_free_fn free_fn, void *free_context,
454                       struct dm_bio_prison_cell **cell_result)
455 {
456         int r;
457         struct dm_cell_key key;
458
459         build_key(oblock, &key);
460         r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
461         if (r)
462                 free_fn(free_context, cell_prealloc);
463
464         return r;
465 }
466
467 static int get_cell(struct cache *cache,
468                     dm_oblock_t oblock,
469                     struct prealloc *structs,
470                     struct dm_bio_prison_cell **cell_result)
471 {
472         int r;
473         struct dm_cell_key key;
474         struct dm_bio_prison_cell *cell_prealloc;
475
476         cell_prealloc = prealloc_get_cell(structs);
477
478         build_key(oblock, &key);
479         r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
480         if (r)
481                 prealloc_put_cell(structs, cell_prealloc);
482
483         return r;
484 }
485
486 /*----------------------------------------------------------------*/
487
488 static bool is_dirty(struct cache *cache, dm_cblock_t b)
489 {
490         return test_bit(from_cblock(b), cache->dirty_bitset);
491 }
492
493 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
494 {
495         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
496                 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
497                 policy_set_dirty(cache->policy, oblock);
498         }
499 }
500
501 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
502 {
503         if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
504                 policy_clear_dirty(cache->policy, oblock);
505                 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
506                 if (!from_cblock(cache->nr_dirty))
507                         dm_table_event(cache->ti->table);
508         }
509 }
510
511 /*----------------------------------------------------------------*/
512
513 static bool block_size_is_power_of_two(struct cache *cache)
514 {
515         return cache->sectors_per_block_shift >= 0;
516 }
517
518 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
519 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
520 __always_inline
521 #endif
522 static dm_block_t block_div(dm_block_t b, uint32_t n)
523 {
524         do_div(b, n);
525
526         return b;
527 }
528
529 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
530 {
531         uint32_t discard_blocks = cache->discard_block_size;
532         dm_block_t b = from_oblock(oblock);
533
534         if (!block_size_is_power_of_two(cache))
535                 discard_blocks = discard_blocks / cache->sectors_per_block;
536         else
537                 discard_blocks >>= cache->sectors_per_block_shift;
538
539         b = block_div(b, discard_blocks);
540
541         return to_dblock(b);
542 }
543
544 static void set_discard(struct cache *cache, dm_dblock_t b)
545 {
546         unsigned long flags;
547
548         atomic_inc(&cache->stats.discard_count);
549
550         spin_lock_irqsave(&cache->lock, flags);
551         set_bit(from_dblock(b), cache->discard_bitset);
552         spin_unlock_irqrestore(&cache->lock, flags);
553 }
554
555 static void clear_discard(struct cache *cache, dm_dblock_t b)
556 {
557         unsigned long flags;
558
559         spin_lock_irqsave(&cache->lock, flags);
560         clear_bit(from_dblock(b), cache->discard_bitset);
561         spin_unlock_irqrestore(&cache->lock, flags);
562 }
563
564 static bool is_discarded(struct cache *cache, dm_dblock_t b)
565 {
566         int r;
567         unsigned long flags;
568
569         spin_lock_irqsave(&cache->lock, flags);
570         r = test_bit(from_dblock(b), cache->discard_bitset);
571         spin_unlock_irqrestore(&cache->lock, flags);
572
573         return r;
574 }
575
576 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
577 {
578         int r;
579         unsigned long flags;
580
581         spin_lock_irqsave(&cache->lock, flags);
582         r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
583                      cache->discard_bitset);
584         spin_unlock_irqrestore(&cache->lock, flags);
585
586         return r;
587 }
588
589 /*----------------------------------------------------------------*/
590
591 static void load_stats(struct cache *cache)
592 {
593         struct dm_cache_statistics stats;
594
595         dm_cache_metadata_get_stats(cache->cmd, &stats);
596         atomic_set(&cache->stats.read_hit, stats.read_hits);
597         atomic_set(&cache->stats.read_miss, stats.read_misses);
598         atomic_set(&cache->stats.write_hit, stats.write_hits);
599         atomic_set(&cache->stats.write_miss, stats.write_misses);
600 }
601
602 static void save_stats(struct cache *cache)
603 {
604         struct dm_cache_statistics stats;
605
606         stats.read_hits = atomic_read(&cache->stats.read_hit);
607         stats.read_misses = atomic_read(&cache->stats.read_miss);
608         stats.write_hits = atomic_read(&cache->stats.write_hit);
609         stats.write_misses = atomic_read(&cache->stats.write_miss);
610
611         dm_cache_metadata_set_stats(cache->cmd, &stats);
612 }
613
614 /*----------------------------------------------------------------
615  * Per bio data
616  *--------------------------------------------------------------*/
617
618 /*
619  * If using writeback, leave out struct per_bio_data's writethrough fields.
620  */
621 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
622 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
623
624 static bool writethrough_mode(struct cache_features *f)
625 {
626         return f->io_mode == CM_IO_WRITETHROUGH;
627 }
628
629 static bool writeback_mode(struct cache_features *f)
630 {
631         return f->io_mode == CM_IO_WRITEBACK;
632 }
633
634 static bool passthrough_mode(struct cache_features *f)
635 {
636         return f->io_mode == CM_IO_PASSTHROUGH;
637 }
638
639 static size_t get_per_bio_data_size(struct cache *cache)
640 {
641         return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
642 }
643
644 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
645 {
646         struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
647         BUG_ON(!pb);
648         return pb;
649 }
650
651 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
652 {
653         struct per_bio_data *pb = get_per_bio_data(bio, data_size);
654
655         pb->tick = false;
656         pb->req_nr = dm_bio_get_target_bio_nr(bio);
657         pb->all_io_entry = NULL;
658
659         return pb;
660 }
661
662 /*----------------------------------------------------------------
663  * Remapping
664  *--------------------------------------------------------------*/
665 static void remap_to_origin(struct cache *cache, struct bio *bio)
666 {
667         bio->bi_bdev = cache->origin_dev->bdev;
668 }
669
670 static void remap_to_cache(struct cache *cache, struct bio *bio,
671                            dm_cblock_t cblock)
672 {
673         sector_t bi_sector = bio->bi_iter.bi_sector;
674         sector_t block = from_cblock(cblock);
675
676         bio->bi_bdev = cache->cache_dev->bdev;
677         if (!block_size_is_power_of_two(cache))
678                 bio->bi_iter.bi_sector =
679                         (block * cache->sectors_per_block) +
680                         sector_div(bi_sector, cache->sectors_per_block);
681         else
682                 bio->bi_iter.bi_sector =
683                         (block << cache->sectors_per_block_shift) |
684                         (bi_sector & (cache->sectors_per_block - 1));
685 }
686
687 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
688 {
689         unsigned long flags;
690         size_t pb_data_size = get_per_bio_data_size(cache);
691         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
692
693         spin_lock_irqsave(&cache->lock, flags);
694         if (cache->need_tick_bio &&
695             !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
696                 pb->tick = true;
697                 cache->need_tick_bio = false;
698         }
699         spin_unlock_irqrestore(&cache->lock, flags);
700 }
701
702 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
703                                   dm_oblock_t oblock)
704 {
705         check_if_tick_bio_needed(cache, bio);
706         remap_to_origin(cache, bio);
707         if (bio_data_dir(bio) == WRITE)
708                 clear_discard(cache, oblock_to_dblock(cache, oblock));
709 }
710
711 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
712                                  dm_oblock_t oblock, dm_cblock_t cblock)
713 {
714         check_if_tick_bio_needed(cache, bio);
715         remap_to_cache(cache, bio, cblock);
716         if (bio_data_dir(bio) == WRITE) {
717                 set_dirty(cache, oblock, cblock);
718                 clear_discard(cache, oblock_to_dblock(cache, oblock));
719         }
720 }
721
722 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
723 {
724         sector_t block_nr = bio->bi_iter.bi_sector;
725
726         if (!block_size_is_power_of_two(cache))
727                 (void) sector_div(block_nr, cache->sectors_per_block);
728         else
729                 block_nr >>= cache->sectors_per_block_shift;
730
731         return to_oblock(block_nr);
732 }
733
734 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
735 {
736         return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
737 }
738
739 static void issue(struct cache *cache, struct bio *bio)
740 {
741         unsigned long flags;
742
743         if (!bio_triggers_commit(cache, bio)) {
744                 generic_make_request(bio);
745                 return;
746         }
747
748         /*
749          * Batch together any bios that trigger commits and then issue a
750          * single commit for them in do_worker().
751          */
752         spin_lock_irqsave(&cache->lock, flags);
753         cache->commit_requested = true;
754         bio_list_add(&cache->deferred_flush_bios, bio);
755         spin_unlock_irqrestore(&cache->lock, flags);
756 }
757
758 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
759 {
760         unsigned long flags;
761
762         spin_lock_irqsave(&cache->lock, flags);
763         bio_list_add(&cache->deferred_writethrough_bios, bio);
764         spin_unlock_irqrestore(&cache->lock, flags);
765
766         wake_worker(cache);
767 }
768
769 static void writethrough_endio(struct bio *bio, int err)
770 {
771         struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
772
773         dm_unhook_bio(&pb->hook_info, bio);
774
775         if (err) {
776                 bio_endio(bio, err);
777                 return;
778         }
779
780         dm_bio_restore(&pb->bio_details, bio);
781         remap_to_cache(pb->cache, bio, pb->cblock);
782
783         /*
784          * We can't issue this bio directly, since we're in interrupt
785          * context.  So it gets put on a bio list for processing by the
786          * worker thread.
787          */
788         defer_writethrough_bio(pb->cache, bio);
789 }
790
791 /*
792  * When running in writethrough mode we need to send writes to clean blocks
793  * to both the cache and origin devices.  In future we'd like to clone the
794  * bio and send them in parallel, but for now we're doing them in
795  * series as this is easier.
796  */
797 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
798                                        dm_oblock_t oblock, dm_cblock_t cblock)
799 {
800         struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
801
802         pb->cache = cache;
803         pb->cblock = cblock;
804         dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
805         dm_bio_record(&pb->bio_details, bio);
806
807         remap_to_origin_clear_discard(pb->cache, bio, oblock);
808 }
809
810 /*----------------------------------------------------------------
811  * Migration processing
812  *
813  * Migration covers moving data from the origin device to the cache, or
814  * vice versa.
815  *--------------------------------------------------------------*/
816 static void free_migration(struct dm_cache_migration *mg)
817 {
818         mempool_free(mg, mg->cache->migration_pool);
819 }
820
821 static void inc_nr_migrations(struct cache *cache)
822 {
823         atomic_inc(&cache->nr_migrations);
824 }
825
826 static void dec_nr_migrations(struct cache *cache)
827 {
828         atomic_dec(&cache->nr_migrations);
829
830         /*
831          * Wake the worker in case we're suspending the target.
832          */
833         wake_up(&cache->migration_wait);
834 }
835
836 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
837                          bool holder)
838 {
839         (holder ? dm_cell_release : dm_cell_release_no_holder)
840                 (cache->prison, cell, &cache->deferred_bios);
841         free_prison_cell(cache, cell);
842 }
843
844 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
845                        bool holder)
846 {
847         unsigned long flags;
848
849         spin_lock_irqsave(&cache->lock, flags);
850         __cell_defer(cache, cell, holder);
851         spin_unlock_irqrestore(&cache->lock, flags);
852
853         wake_worker(cache);
854 }
855
856 static void cleanup_migration(struct dm_cache_migration *mg)
857 {
858         struct cache *cache = mg->cache;
859         free_migration(mg);
860         dec_nr_migrations(cache);
861 }
862
863 static void migration_failure(struct dm_cache_migration *mg)
864 {
865         struct cache *cache = mg->cache;
866
867         if (mg->writeback) {
868                 DMWARN_LIMIT("writeback failed; couldn't copy block");
869                 set_dirty(cache, mg->old_oblock, mg->cblock);
870                 cell_defer(cache, mg->old_ocell, false);
871
872         } else if (mg->demote) {
873                 DMWARN_LIMIT("demotion failed; couldn't copy block");
874                 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
875
876                 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
877                 if (mg->promote)
878                         cell_defer(cache, mg->new_ocell, true);
879         } else {
880                 DMWARN_LIMIT("promotion failed; couldn't copy block");
881                 policy_remove_mapping(cache->policy, mg->new_oblock);
882                 cell_defer(cache, mg->new_ocell, true);
883         }
884
885         cleanup_migration(mg);
886 }
887
888 static void migration_success_pre_commit(struct dm_cache_migration *mg)
889 {
890         unsigned long flags;
891         struct cache *cache = mg->cache;
892
893         if (mg->writeback) {
894                 cell_defer(cache, mg->old_ocell, false);
895                 clear_dirty(cache, mg->old_oblock, mg->cblock);
896                 cleanup_migration(mg);
897                 return;
898
899         } else if (mg->demote) {
900                 if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
901                         DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
902                         policy_force_mapping(cache->policy, mg->new_oblock,
903                                              mg->old_oblock);
904                         if (mg->promote)
905                                 cell_defer(cache, mg->new_ocell, true);
906                         cleanup_migration(mg);
907                         return;
908                 }
909         } else {
910                 if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
911                         DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
912                         policy_remove_mapping(cache->policy, mg->new_oblock);
913                         cleanup_migration(mg);
914                         return;
915                 }
916         }
917
918         spin_lock_irqsave(&cache->lock, flags);
919         list_add_tail(&mg->list, &cache->need_commit_migrations);
920         cache->commit_requested = true;
921         spin_unlock_irqrestore(&cache->lock, flags);
922 }
923
924 static void migration_success_post_commit(struct dm_cache_migration *mg)
925 {
926         unsigned long flags;
927         struct cache *cache = mg->cache;
928
929         if (mg->writeback) {
930                 DMWARN("writeback unexpectedly triggered commit");
931                 return;
932
933         } else if (mg->demote) {
934                 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
935
936                 if (mg->promote) {
937                         mg->demote = false;
938
939                         spin_lock_irqsave(&cache->lock, flags);
940                         list_add_tail(&mg->list, &cache->quiesced_migrations);
941                         spin_unlock_irqrestore(&cache->lock, flags);
942
943                 } else {
944                         if (mg->invalidate)
945                                 policy_remove_mapping(cache->policy, mg->old_oblock);
946                         cleanup_migration(mg);
947                 }
948
949         } else {
950                 if (mg->requeue_holder)
951                         cell_defer(cache, mg->new_ocell, true);
952                 else {
953                         bio_endio(mg->new_ocell->holder, 0);
954                         cell_defer(cache, mg->new_ocell, false);
955                 }
956                 clear_dirty(cache, mg->new_oblock, mg->cblock);
957                 cleanup_migration(mg);
958         }
959 }
960
961 static void copy_complete(int read_err, unsigned long write_err, void *context)
962 {
963         unsigned long flags;
964         struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
965         struct cache *cache = mg->cache;
966
967         if (read_err || write_err)
968                 mg->err = true;
969
970         spin_lock_irqsave(&cache->lock, flags);
971         list_add_tail(&mg->list, &cache->completed_migrations);
972         spin_unlock_irqrestore(&cache->lock, flags);
973
974         wake_worker(cache);
975 }
976
977 static void issue_copy_real(struct dm_cache_migration *mg)
978 {
979         int r;
980         struct dm_io_region o_region, c_region;
981         struct cache *cache = mg->cache;
982
983         o_region.bdev = cache->origin_dev->bdev;
984         o_region.count = cache->sectors_per_block;
985
986         c_region.bdev = cache->cache_dev->bdev;
987         c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block;
988         c_region.count = cache->sectors_per_block;
989
990         if (mg->writeback || mg->demote) {
991                 /* demote */
992                 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
993                 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
994         } else {
995                 /* promote */
996                 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
997                 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
998         }
999
1000         if (r < 0) {
1001                 DMERR_LIMIT("issuing migration failed");
1002                 migration_failure(mg);
1003         }
1004 }
1005
1006 static void overwrite_endio(struct bio *bio, int err)
1007 {
1008         struct dm_cache_migration *mg = bio->bi_private;
1009         struct cache *cache = mg->cache;
1010         size_t pb_data_size = get_per_bio_data_size(cache);
1011         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1012         unsigned long flags;
1013
1014         dm_unhook_bio(&pb->hook_info, bio);
1015
1016         if (err)
1017                 mg->err = true;
1018
1019         mg->requeue_holder = false;
1020
1021         spin_lock_irqsave(&cache->lock, flags);
1022         list_add_tail(&mg->list, &cache->completed_migrations);
1023         spin_unlock_irqrestore(&cache->lock, flags);
1024
1025         wake_worker(cache);
1026 }
1027
1028 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1029 {
1030         size_t pb_data_size = get_per_bio_data_size(mg->cache);
1031         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1032
1033         dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1034         remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1035         generic_make_request(bio);
1036 }
1037
1038 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1039 {
1040         return (bio_data_dir(bio) == WRITE) &&
1041                 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1042 }
1043
1044 static void avoid_copy(struct dm_cache_migration *mg)
1045 {
1046         atomic_inc(&mg->cache->stats.copies_avoided);
1047         migration_success_pre_commit(mg);
1048 }
1049
1050 static void issue_copy(struct dm_cache_migration *mg)
1051 {
1052         bool avoid;
1053         struct cache *cache = mg->cache;
1054
1055         if (mg->writeback || mg->demote)
1056                 avoid = !is_dirty(cache, mg->cblock) ||
1057                         is_discarded_oblock(cache, mg->old_oblock);
1058         else {
1059                 struct bio *bio = mg->new_ocell->holder;
1060
1061                 avoid = is_discarded_oblock(cache, mg->new_oblock);
1062
1063                 if (!avoid && bio_writes_complete_block(cache, bio)) {
1064                         issue_overwrite(mg, bio);
1065                         return;
1066                 }
1067         }
1068
1069         avoid ? avoid_copy(mg) : issue_copy_real(mg);
1070 }
1071
1072 static void complete_migration(struct dm_cache_migration *mg)
1073 {
1074         if (mg->err)
1075                 migration_failure(mg);
1076         else
1077                 migration_success_pre_commit(mg);
1078 }
1079
1080 static void process_migrations(struct cache *cache, struct list_head *head,
1081                                void (*fn)(struct dm_cache_migration *))
1082 {
1083         unsigned long flags;
1084         struct list_head list;
1085         struct dm_cache_migration *mg, *tmp;
1086
1087         INIT_LIST_HEAD(&list);
1088         spin_lock_irqsave(&cache->lock, flags);
1089         list_splice_init(head, &list);
1090         spin_unlock_irqrestore(&cache->lock, flags);
1091
1092         list_for_each_entry_safe(mg, tmp, &list, list)
1093                 fn(mg);
1094 }
1095
1096 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1097 {
1098         list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1099 }
1100
1101 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1102 {
1103         unsigned long flags;
1104         struct cache *cache = mg->cache;
1105
1106         spin_lock_irqsave(&cache->lock, flags);
1107         __queue_quiesced_migration(mg);
1108         spin_unlock_irqrestore(&cache->lock, flags);
1109
1110         wake_worker(cache);
1111 }
1112
1113 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1114 {
1115         unsigned long flags;
1116         struct dm_cache_migration *mg, *tmp;
1117
1118         spin_lock_irqsave(&cache->lock, flags);
1119         list_for_each_entry_safe(mg, tmp, work, list)
1120                 __queue_quiesced_migration(mg);
1121         spin_unlock_irqrestore(&cache->lock, flags);
1122
1123         wake_worker(cache);
1124 }
1125
1126 static void check_for_quiesced_migrations(struct cache *cache,
1127                                           struct per_bio_data *pb)
1128 {
1129         struct list_head work;
1130
1131         if (!pb->all_io_entry)
1132                 return;
1133
1134         INIT_LIST_HEAD(&work);
1135         if (pb->all_io_entry)
1136                 dm_deferred_entry_dec(pb->all_io_entry, &work);
1137
1138         if (!list_empty(&work))
1139                 queue_quiesced_migrations(cache, &work);
1140 }
1141
1142 static void quiesce_migration(struct dm_cache_migration *mg)
1143 {
1144         if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1145                 queue_quiesced_migration(mg);
1146 }
1147
1148 static void promote(struct cache *cache, struct prealloc *structs,
1149                     dm_oblock_t oblock, dm_cblock_t cblock,
1150                     struct dm_bio_prison_cell *cell)
1151 {
1152         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1153
1154         mg->err = false;
1155         mg->writeback = false;
1156         mg->demote = false;
1157         mg->promote = true;
1158         mg->requeue_holder = true;
1159         mg->invalidate = false;
1160         mg->cache = cache;
1161         mg->new_oblock = oblock;
1162         mg->cblock = cblock;
1163         mg->old_ocell = NULL;
1164         mg->new_ocell = cell;
1165         mg->start_jiffies = jiffies;
1166
1167         inc_nr_migrations(cache);
1168         quiesce_migration(mg);
1169 }
1170
1171 static void writeback(struct cache *cache, struct prealloc *structs,
1172                       dm_oblock_t oblock, dm_cblock_t cblock,
1173                       struct dm_bio_prison_cell *cell)
1174 {
1175         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1176
1177         mg->err = false;
1178         mg->writeback = true;
1179         mg->demote = false;
1180         mg->promote = false;
1181         mg->requeue_holder = true;
1182         mg->invalidate = false;
1183         mg->cache = cache;
1184         mg->old_oblock = oblock;
1185         mg->cblock = cblock;
1186         mg->old_ocell = cell;
1187         mg->new_ocell = NULL;
1188         mg->start_jiffies = jiffies;
1189
1190         inc_nr_migrations(cache);
1191         quiesce_migration(mg);
1192 }
1193
1194 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1195                                 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1196                                 dm_cblock_t cblock,
1197                                 struct dm_bio_prison_cell *old_ocell,
1198                                 struct dm_bio_prison_cell *new_ocell)
1199 {
1200         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1201
1202         mg->err = false;
1203         mg->writeback = false;
1204         mg->demote = true;
1205         mg->promote = true;
1206         mg->requeue_holder = true;
1207         mg->invalidate = false;
1208         mg->cache = cache;
1209         mg->old_oblock = old_oblock;
1210         mg->new_oblock = new_oblock;
1211         mg->cblock = cblock;
1212         mg->old_ocell = old_ocell;
1213         mg->new_ocell = new_ocell;
1214         mg->start_jiffies = jiffies;
1215
1216         inc_nr_migrations(cache);
1217         quiesce_migration(mg);
1218 }
1219
1220 /*
1221  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1222  * block are thrown away.
1223  */
1224 static void invalidate(struct cache *cache, struct prealloc *structs,
1225                        dm_oblock_t oblock, dm_cblock_t cblock,
1226                        struct dm_bio_prison_cell *cell)
1227 {
1228         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1229
1230         mg->err = false;
1231         mg->writeback = false;
1232         mg->demote = true;
1233         mg->promote = false;
1234         mg->requeue_holder = true;
1235         mg->invalidate = true;
1236         mg->cache = cache;
1237         mg->old_oblock = oblock;
1238         mg->cblock = cblock;
1239         mg->old_ocell = cell;
1240         mg->new_ocell = NULL;
1241         mg->start_jiffies = jiffies;
1242
1243         inc_nr_migrations(cache);
1244         quiesce_migration(mg);
1245 }
1246
1247 /*----------------------------------------------------------------
1248  * bio processing
1249  *--------------------------------------------------------------*/
1250 static void defer_bio(struct cache *cache, struct bio *bio)
1251 {
1252         unsigned long flags;
1253
1254         spin_lock_irqsave(&cache->lock, flags);
1255         bio_list_add(&cache->deferred_bios, bio);
1256         spin_unlock_irqrestore(&cache->lock, flags);
1257
1258         wake_worker(cache);
1259 }
1260
1261 static void process_flush_bio(struct cache *cache, struct bio *bio)
1262 {
1263         size_t pb_data_size = get_per_bio_data_size(cache);
1264         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1265
1266         BUG_ON(bio->bi_iter.bi_size);
1267         if (!pb->req_nr)
1268                 remap_to_origin(cache, bio);
1269         else
1270                 remap_to_cache(cache, bio, 0);
1271
1272         issue(cache, bio);
1273 }
1274
1275 /*
1276  * People generally discard large parts of a device, eg, the whole device
1277  * when formatting.  Splitting these large discards up into cache block
1278  * sized ios and then quiescing (always neccessary for discard) takes too
1279  * long.
1280  *
1281  * We keep it simple, and allow any size of discard to come in, and just
1282  * mark off blocks on the discard bitset.  No passdown occurs!
1283  *
1284  * To implement passdown we need to change the bio_prison such that a cell
1285  * can have a key that spans many blocks.
1286  */
1287 static void process_discard_bio(struct cache *cache, struct bio *bio)
1288 {
1289         dm_block_t start_block = dm_sector_div_up(bio->bi_iter.bi_sector,
1290                                                   cache->discard_block_size);
1291         dm_block_t end_block = bio_end_sector(bio);
1292         dm_block_t b;
1293
1294         end_block = block_div(end_block, cache->discard_block_size);
1295
1296         for (b = start_block; b < end_block; b++)
1297                 set_discard(cache, to_dblock(b));
1298
1299         bio_endio(bio, 0);
1300 }
1301
1302 static bool spare_migration_bandwidth(struct cache *cache)
1303 {
1304         sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1305                 cache->sectors_per_block;
1306         return current_volume < cache->migration_threshold;
1307 }
1308
1309 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1310 {
1311         atomic_inc(bio_data_dir(bio) == READ ?
1312                    &cache->stats.read_hit : &cache->stats.write_hit);
1313 }
1314
1315 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1316 {
1317         atomic_inc(bio_data_dir(bio) == READ ?
1318                    &cache->stats.read_miss : &cache->stats.write_miss);
1319 }
1320
1321 static void issue_cache_bio(struct cache *cache, struct bio *bio,
1322                             struct per_bio_data *pb,
1323                             dm_oblock_t oblock, dm_cblock_t cblock)
1324 {
1325         pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1326         remap_to_cache_dirty(cache, bio, oblock, cblock);
1327         issue(cache, bio);
1328 }
1329
1330 static void process_bio(struct cache *cache, struct prealloc *structs,
1331                         struct bio *bio)
1332 {
1333         int r;
1334         bool release_cell = true;
1335         dm_oblock_t block = get_bio_block(cache, bio);
1336         struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1337         struct policy_result lookup_result;
1338         size_t pb_data_size = get_per_bio_data_size(cache);
1339         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1340         bool discarded_block = is_discarded_oblock(cache, block);
1341         bool passthrough = passthrough_mode(&cache->features);
1342         bool can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1343
1344         /*
1345          * Check to see if that block is currently migrating.
1346          */
1347         cell_prealloc = prealloc_get_cell(structs);
1348         r = bio_detain(cache, block, bio, cell_prealloc,
1349                        (cell_free_fn) prealloc_put_cell,
1350                        structs, &new_ocell);
1351         if (r > 0)
1352                 return;
1353
1354         r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1355                        bio, &lookup_result);
1356
1357         if (r == -EWOULDBLOCK)
1358                 /* migration has been denied */
1359                 lookup_result.op = POLICY_MISS;
1360
1361         switch (lookup_result.op) {
1362         case POLICY_HIT:
1363                 if (passthrough) {
1364                         inc_miss_counter(cache, bio);
1365
1366                         /*
1367                          * Passthrough always maps to the origin,
1368                          * invalidating any cache blocks that are written
1369                          * to.
1370                          */
1371
1372                         if (bio_data_dir(bio) == WRITE) {
1373                                 atomic_inc(&cache->stats.demotion);
1374                                 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1375                                 release_cell = false;
1376
1377                         } else {
1378                                 /* FIXME: factor out issue_origin() */
1379                                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1380                                 remap_to_origin_clear_discard(cache, bio, block);
1381                                 issue(cache, bio);
1382                         }
1383                 } else {
1384                         inc_hit_counter(cache, bio);
1385
1386                         if (bio_data_dir(bio) == WRITE &&
1387                             writethrough_mode(&cache->features) &&
1388                             !is_dirty(cache, lookup_result.cblock)) {
1389                                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1390                                 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1391                                 issue(cache, bio);
1392                         } else
1393                                 issue_cache_bio(cache, bio, pb, block, lookup_result.cblock);
1394                 }
1395
1396                 break;
1397
1398         case POLICY_MISS:
1399                 inc_miss_counter(cache, bio);
1400                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1401                 remap_to_origin_clear_discard(cache, bio, block);
1402                 issue(cache, bio);
1403                 break;
1404
1405         case POLICY_NEW:
1406                 atomic_inc(&cache->stats.promotion);
1407                 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1408                 release_cell = false;
1409                 break;
1410
1411         case POLICY_REPLACE:
1412                 cell_prealloc = prealloc_get_cell(structs);
1413                 r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1414                                (cell_free_fn) prealloc_put_cell,
1415                                structs, &old_ocell);
1416                 if (r > 0) {
1417                         /*
1418                          * We have to be careful to avoid lock inversion of
1419                          * the cells.  So we back off, and wait for the
1420                          * old_ocell to become free.
1421                          */
1422                         policy_force_mapping(cache->policy, block,
1423                                              lookup_result.old_oblock);
1424                         atomic_inc(&cache->stats.cache_cell_clash);
1425                         break;
1426                 }
1427                 atomic_inc(&cache->stats.demotion);
1428                 atomic_inc(&cache->stats.promotion);
1429
1430                 demote_then_promote(cache, structs, lookup_result.old_oblock,
1431                                     block, lookup_result.cblock,
1432                                     old_ocell, new_ocell);
1433                 release_cell = false;
1434                 break;
1435
1436         default:
1437                 DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1438                             (unsigned) lookup_result.op);
1439                 bio_io_error(bio);
1440         }
1441
1442         if (release_cell)
1443                 cell_defer(cache, new_ocell, false);
1444 }
1445
1446 static int need_commit_due_to_time(struct cache *cache)
1447 {
1448         return jiffies < cache->last_commit_jiffies ||
1449                jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1450 }
1451
1452 static int commit_if_needed(struct cache *cache)
1453 {
1454         int r = 0;
1455
1456         if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1457             dm_cache_changed_this_transaction(cache->cmd)) {
1458                 atomic_inc(&cache->stats.commit_count);
1459                 cache->commit_requested = false;
1460                 r = dm_cache_commit(cache->cmd, false);
1461                 cache->last_commit_jiffies = jiffies;
1462         }
1463
1464         return r;
1465 }
1466
1467 static void process_deferred_bios(struct cache *cache)
1468 {
1469         unsigned long flags;
1470         struct bio_list bios;
1471         struct bio *bio;
1472         struct prealloc structs;
1473
1474         memset(&structs, 0, sizeof(structs));
1475         bio_list_init(&bios);
1476
1477         spin_lock_irqsave(&cache->lock, flags);
1478         bio_list_merge(&bios, &cache->deferred_bios);
1479         bio_list_init(&cache->deferred_bios);
1480         spin_unlock_irqrestore(&cache->lock, flags);
1481
1482         while (!bio_list_empty(&bios)) {
1483                 /*
1484                  * If we've got no free migration structs, and processing
1485                  * this bio might require one, we pause until there are some
1486                  * prepared mappings to process.
1487                  */
1488                 if (prealloc_data_structs(cache, &structs)) {
1489                         spin_lock_irqsave(&cache->lock, flags);
1490                         bio_list_merge(&cache->deferred_bios, &bios);
1491                         spin_unlock_irqrestore(&cache->lock, flags);
1492                         break;
1493                 }
1494
1495                 bio = bio_list_pop(&bios);
1496
1497                 if (bio->bi_rw & REQ_FLUSH)
1498                         process_flush_bio(cache, bio);
1499                 else if (bio->bi_rw & REQ_DISCARD)
1500                         process_discard_bio(cache, bio);
1501                 else
1502                         process_bio(cache, &structs, bio);
1503         }
1504
1505         prealloc_free_structs(cache, &structs);
1506 }
1507
1508 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1509 {
1510         unsigned long flags;
1511         struct bio_list bios;
1512         struct bio *bio;
1513
1514         bio_list_init(&bios);
1515
1516         spin_lock_irqsave(&cache->lock, flags);
1517         bio_list_merge(&bios, &cache->deferred_flush_bios);
1518         bio_list_init(&cache->deferred_flush_bios);
1519         spin_unlock_irqrestore(&cache->lock, flags);
1520
1521         while ((bio = bio_list_pop(&bios)))
1522                 submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1523 }
1524
1525 static void process_deferred_writethrough_bios(struct cache *cache)
1526 {
1527         unsigned long flags;
1528         struct bio_list bios;
1529         struct bio *bio;
1530
1531         bio_list_init(&bios);
1532
1533         spin_lock_irqsave(&cache->lock, flags);
1534         bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1535         bio_list_init(&cache->deferred_writethrough_bios);
1536         spin_unlock_irqrestore(&cache->lock, flags);
1537
1538         while ((bio = bio_list_pop(&bios)))
1539                 generic_make_request(bio);
1540 }
1541
1542 static void writeback_some_dirty_blocks(struct cache *cache)
1543 {
1544         int r = 0;
1545         dm_oblock_t oblock;
1546         dm_cblock_t cblock;
1547         struct prealloc structs;
1548         struct dm_bio_prison_cell *old_ocell;
1549
1550         memset(&structs, 0, sizeof(structs));
1551
1552         while (spare_migration_bandwidth(cache)) {
1553                 if (prealloc_data_structs(cache, &structs))
1554                         break;
1555
1556                 r = policy_writeback_work(cache->policy, &oblock, &cblock);
1557                 if (r)
1558                         break;
1559
1560                 r = get_cell(cache, oblock, &structs, &old_ocell);
1561                 if (r) {
1562                         policy_set_dirty(cache->policy, oblock);
1563                         break;
1564                 }
1565
1566                 writeback(cache, &structs, oblock, cblock, old_ocell);
1567         }
1568
1569         prealloc_free_structs(cache, &structs);
1570 }
1571
1572 /*----------------------------------------------------------------
1573  * Invalidations.
1574  * Dropping something from the cache *without* writing back.
1575  *--------------------------------------------------------------*/
1576
1577 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1578 {
1579         int r = 0;
1580         uint64_t begin = from_cblock(req->cblocks->begin);
1581         uint64_t end = from_cblock(req->cblocks->end);
1582
1583         while (begin != end) {
1584                 r = policy_remove_cblock(cache->policy, to_cblock(begin));
1585                 if (!r) {
1586                         r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1587                         if (r)
1588                                 break;
1589
1590                 } else if (r == -ENODATA) {
1591                         /* harmless, already unmapped */
1592                         r = 0;
1593
1594                 } else {
1595                         DMERR("policy_remove_cblock failed");
1596                         break;
1597                 }
1598
1599                 begin++;
1600         }
1601
1602         cache->commit_requested = true;
1603
1604         req->err = r;
1605         atomic_set(&req->complete, 1);
1606
1607         wake_up(&req->result_wait);
1608 }
1609
1610 static void process_invalidation_requests(struct cache *cache)
1611 {
1612         struct list_head list;
1613         struct invalidation_request *req, *tmp;
1614
1615         INIT_LIST_HEAD(&list);
1616         spin_lock(&cache->invalidation_lock);
1617         list_splice_init(&cache->invalidation_requests, &list);
1618         spin_unlock(&cache->invalidation_lock);
1619
1620         list_for_each_entry_safe (req, tmp, &list, list)
1621                 process_invalidation_request(cache, req);
1622 }
1623
1624 /*----------------------------------------------------------------
1625  * Main worker loop
1626  *--------------------------------------------------------------*/
1627 static bool is_quiescing(struct cache *cache)
1628 {
1629         return atomic_read(&cache->quiescing);
1630 }
1631
1632 static void ack_quiescing(struct cache *cache)
1633 {
1634         if (is_quiescing(cache)) {
1635                 atomic_inc(&cache->quiescing_ack);
1636                 wake_up(&cache->quiescing_wait);
1637         }
1638 }
1639
1640 static void wait_for_quiescing_ack(struct cache *cache)
1641 {
1642         wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1643 }
1644
1645 static void start_quiescing(struct cache *cache)
1646 {
1647         atomic_inc(&cache->quiescing);
1648         wait_for_quiescing_ack(cache);
1649 }
1650
1651 static void stop_quiescing(struct cache *cache)
1652 {
1653         atomic_set(&cache->quiescing, 0);
1654         atomic_set(&cache->quiescing_ack, 0);
1655 }
1656
1657 static void wait_for_migrations(struct cache *cache)
1658 {
1659         wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1660 }
1661
1662 static void stop_worker(struct cache *cache)
1663 {
1664         cancel_delayed_work(&cache->waker);
1665         flush_workqueue(cache->wq);
1666 }
1667
1668 static void requeue_deferred_io(struct cache *cache)
1669 {
1670         struct bio *bio;
1671         struct bio_list bios;
1672
1673         bio_list_init(&bios);
1674         bio_list_merge(&bios, &cache->deferred_bios);
1675         bio_list_init(&cache->deferred_bios);
1676
1677         while ((bio = bio_list_pop(&bios)))
1678                 bio_endio(bio, DM_ENDIO_REQUEUE);
1679 }
1680
1681 static int more_work(struct cache *cache)
1682 {
1683         if (is_quiescing(cache))
1684                 return !list_empty(&cache->quiesced_migrations) ||
1685                         !list_empty(&cache->completed_migrations) ||
1686                         !list_empty(&cache->need_commit_migrations);
1687         else
1688                 return !bio_list_empty(&cache->deferred_bios) ||
1689                         !bio_list_empty(&cache->deferred_flush_bios) ||
1690                         !bio_list_empty(&cache->deferred_writethrough_bios) ||
1691                         !list_empty(&cache->quiesced_migrations) ||
1692                         !list_empty(&cache->completed_migrations) ||
1693                         !list_empty(&cache->need_commit_migrations) ||
1694                         cache->invalidate;
1695 }
1696
1697 static void do_worker(struct work_struct *ws)
1698 {
1699         struct cache *cache = container_of(ws, struct cache, worker);
1700
1701         do {
1702                 if (!is_quiescing(cache)) {
1703                         writeback_some_dirty_blocks(cache);
1704                         process_deferred_writethrough_bios(cache);
1705                         process_deferred_bios(cache);
1706                         process_invalidation_requests(cache);
1707                 }
1708
1709                 process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1710                 process_migrations(cache, &cache->completed_migrations, complete_migration);
1711
1712                 if (commit_if_needed(cache)) {
1713                         process_deferred_flush_bios(cache, false);
1714
1715                         /*
1716                          * FIXME: rollback metadata or just go into a
1717                          * failure mode and error everything
1718                          */
1719                 } else {
1720                         process_deferred_flush_bios(cache, true);
1721                         process_migrations(cache, &cache->need_commit_migrations,
1722                                            migration_success_post_commit);
1723                 }
1724
1725                 ack_quiescing(cache);
1726
1727         } while (more_work(cache));
1728 }
1729
1730 /*
1731  * We want to commit periodically so that not too much
1732  * unwritten metadata builds up.
1733  */
1734 static void do_waker(struct work_struct *ws)
1735 {
1736         struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1737         policy_tick(cache->policy);
1738         wake_worker(cache);
1739         queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1740 }
1741
1742 /*----------------------------------------------------------------*/
1743
1744 static int is_congested(struct dm_dev *dev, int bdi_bits)
1745 {
1746         struct request_queue *q = bdev_get_queue(dev->bdev);
1747         return bdi_congested(&q->backing_dev_info, bdi_bits);
1748 }
1749
1750 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1751 {
1752         struct cache *cache = container_of(cb, struct cache, callbacks);
1753
1754         return is_congested(cache->origin_dev, bdi_bits) ||
1755                 is_congested(cache->cache_dev, bdi_bits);
1756 }
1757
1758 /*----------------------------------------------------------------
1759  * Target methods
1760  *--------------------------------------------------------------*/
1761
1762 /*
1763  * This function gets called on the error paths of the constructor, so we
1764  * have to cope with a partially initialised struct.
1765  */
1766 static void destroy(struct cache *cache)
1767 {
1768         unsigned i;
1769
1770         if (cache->next_migration)
1771                 mempool_free(cache->next_migration, cache->migration_pool);
1772
1773         if (cache->migration_pool)
1774                 mempool_destroy(cache->migration_pool);
1775
1776         if (cache->all_io_ds)
1777                 dm_deferred_set_destroy(cache->all_io_ds);
1778
1779         if (cache->prison)
1780                 dm_bio_prison_destroy(cache->prison);
1781
1782         if (cache->wq)
1783                 destroy_workqueue(cache->wq);
1784
1785         if (cache->dirty_bitset)
1786                 free_bitset(cache->dirty_bitset);
1787
1788         if (cache->discard_bitset)
1789                 free_bitset(cache->discard_bitset);
1790
1791         if (cache->copier)
1792                 dm_kcopyd_client_destroy(cache->copier);
1793
1794         if (cache->cmd)
1795                 dm_cache_metadata_close(cache->cmd);
1796
1797         if (cache->metadata_dev)
1798                 dm_put_device(cache->ti, cache->metadata_dev);
1799
1800         if (cache->origin_dev)
1801                 dm_put_device(cache->ti, cache->origin_dev);
1802
1803         if (cache->cache_dev)
1804                 dm_put_device(cache->ti, cache->cache_dev);
1805
1806         if (cache->policy)
1807                 dm_cache_policy_destroy(cache->policy);
1808
1809         for (i = 0; i < cache->nr_ctr_args ; i++)
1810                 kfree(cache->ctr_args[i]);
1811         kfree(cache->ctr_args);
1812
1813         kfree(cache);
1814 }
1815
1816 static void cache_dtr(struct dm_target *ti)
1817 {
1818         struct cache *cache = ti->private;
1819
1820         destroy(cache);
1821 }
1822
1823 static sector_t get_dev_size(struct dm_dev *dev)
1824 {
1825         return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1826 }
1827
1828 /*----------------------------------------------------------------*/
1829
1830 /*
1831  * Construct a cache device mapping.
1832  *
1833  * cache <metadata dev> <cache dev> <origin dev> <block size>
1834  *       <#feature args> [<feature arg>]*
1835  *       <policy> <#policy args> [<policy arg>]*
1836  *
1837  * metadata dev    : fast device holding the persistent metadata
1838  * cache dev       : fast device holding cached data blocks
1839  * origin dev      : slow device holding original data blocks
1840  * block size      : cache unit size in sectors
1841  *
1842  * #feature args   : number of feature arguments passed
1843  * feature args    : writethrough.  (The default is writeback.)
1844  *
1845  * policy          : the replacement policy to use
1846  * #policy args    : an even number of policy arguments corresponding
1847  *                   to key/value pairs passed to the policy
1848  * policy args     : key/value pairs passed to the policy
1849  *                   E.g. 'sequential_threshold 1024'
1850  *                   See cache-policies.txt for details.
1851  *
1852  * Optional feature arguments are:
1853  *   writethrough  : write through caching that prohibits cache block
1854  *                   content from being different from origin block content.
1855  *                   Without this argument, the default behaviour is to write
1856  *                   back cache block contents later for performance reasons,
1857  *                   so they may differ from the corresponding origin blocks.
1858  */
1859 struct cache_args {
1860         struct dm_target *ti;
1861
1862         struct dm_dev *metadata_dev;
1863
1864         struct dm_dev *cache_dev;
1865         sector_t cache_sectors;
1866
1867         struct dm_dev *origin_dev;
1868         sector_t origin_sectors;
1869
1870         uint32_t block_size;
1871
1872         const char *policy_name;
1873         int policy_argc;
1874         const char **policy_argv;
1875
1876         struct cache_features features;
1877 };
1878
1879 static void destroy_cache_args(struct cache_args *ca)
1880 {
1881         if (ca->metadata_dev)
1882                 dm_put_device(ca->ti, ca->metadata_dev);
1883
1884         if (ca->cache_dev)
1885                 dm_put_device(ca->ti, ca->cache_dev);
1886
1887         if (ca->origin_dev)
1888                 dm_put_device(ca->ti, ca->origin_dev);
1889
1890         kfree(ca);
1891 }
1892
1893 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1894 {
1895         if (!as->argc) {
1896                 *error = "Insufficient args";
1897                 return false;
1898         }
1899
1900         return true;
1901 }
1902
1903 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1904                               char **error)
1905 {
1906         int r;
1907         sector_t metadata_dev_size;
1908         char b[BDEVNAME_SIZE];
1909
1910         if (!at_least_one_arg(as, error))
1911                 return -EINVAL;
1912
1913         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1914                           &ca->metadata_dev);
1915         if (r) {
1916                 *error = "Error opening metadata device";
1917                 return r;
1918         }
1919
1920         metadata_dev_size = get_dev_size(ca->metadata_dev);
1921         if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1922                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1923                        bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1924
1925         return 0;
1926 }
1927
1928 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1929                            char **error)
1930 {
1931         int r;
1932
1933         if (!at_least_one_arg(as, error))
1934                 return -EINVAL;
1935
1936         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1937                           &ca->cache_dev);
1938         if (r) {
1939                 *error = "Error opening cache device";
1940                 return r;
1941         }
1942         ca->cache_sectors = get_dev_size(ca->cache_dev);
1943
1944         return 0;
1945 }
1946
1947 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1948                             char **error)
1949 {
1950         int r;
1951
1952         if (!at_least_one_arg(as, error))
1953                 return -EINVAL;
1954
1955         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1956                           &ca->origin_dev);
1957         if (r) {
1958                 *error = "Error opening origin device";
1959                 return r;
1960         }
1961
1962         ca->origin_sectors = get_dev_size(ca->origin_dev);
1963         if (ca->ti->len > ca->origin_sectors) {
1964                 *error = "Device size larger than cached device";
1965                 return -EINVAL;
1966         }
1967
1968         return 0;
1969 }
1970
1971 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1972                             char **error)
1973 {
1974         unsigned long block_size;
1975
1976         if (!at_least_one_arg(as, error))
1977                 return -EINVAL;
1978
1979         if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
1980             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1981             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1982             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1983                 *error = "Invalid data block size";
1984                 return -EINVAL;
1985         }
1986
1987         if (block_size > ca->cache_sectors) {
1988                 *error = "Data block size is larger than the cache device";
1989                 return -EINVAL;
1990         }
1991
1992         ca->block_size = block_size;
1993
1994         return 0;
1995 }
1996
1997 static void init_features(struct cache_features *cf)
1998 {
1999         cf->mode = CM_WRITE;
2000         cf->io_mode = CM_IO_WRITEBACK;
2001 }
2002
2003 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2004                           char **error)
2005 {
2006         static struct dm_arg _args[] = {
2007                 {0, 1, "Invalid number of cache feature arguments"},
2008         };
2009
2010         int r;
2011         unsigned argc;
2012         const char *arg;
2013         struct cache_features *cf = &ca->features;
2014
2015         init_features(cf);
2016
2017         r = dm_read_arg_group(_args, as, &argc, error);
2018         if (r)
2019                 return -EINVAL;
2020
2021         while (argc--) {
2022                 arg = dm_shift_arg(as);
2023
2024                 if (!strcasecmp(arg, "writeback"))
2025                         cf->io_mode = CM_IO_WRITEBACK;
2026
2027                 else if (!strcasecmp(arg, "writethrough"))
2028                         cf->io_mode = CM_IO_WRITETHROUGH;
2029
2030                 else if (!strcasecmp(arg, "passthrough"))
2031                         cf->io_mode = CM_IO_PASSTHROUGH;
2032
2033                 else {
2034                         *error = "Unrecognised cache feature requested";
2035                         return -EINVAL;
2036                 }
2037         }
2038
2039         return 0;
2040 }
2041
2042 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2043                         char **error)
2044 {
2045         static struct dm_arg _args[] = {
2046                 {0, 1024, "Invalid number of policy arguments"},
2047         };
2048
2049         int r;
2050
2051         if (!at_least_one_arg(as, error))
2052                 return -EINVAL;
2053
2054         ca->policy_name = dm_shift_arg(as);
2055
2056         r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2057         if (r)
2058                 return -EINVAL;
2059
2060         ca->policy_argv = (const char **)as->argv;
2061         dm_consume_args(as, ca->policy_argc);
2062
2063         return 0;
2064 }
2065
2066 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2067                             char **error)
2068 {
2069         int r;
2070         struct dm_arg_set as;
2071
2072         as.argc = argc;
2073         as.argv = argv;
2074
2075         r = parse_metadata_dev(ca, &as, error);
2076         if (r)
2077                 return r;
2078
2079         r = parse_cache_dev(ca, &as, error);
2080         if (r)
2081                 return r;
2082
2083         r = parse_origin_dev(ca, &as, error);
2084         if (r)
2085                 return r;
2086
2087         r = parse_block_size(ca, &as, error);
2088         if (r)
2089                 return r;
2090
2091         r = parse_features(ca, &as, error);
2092         if (r)
2093                 return r;
2094
2095         r = parse_policy(ca, &as, error);
2096         if (r)
2097                 return r;
2098
2099         return 0;
2100 }
2101
2102 /*----------------------------------------------------------------*/
2103
2104 static struct kmem_cache *migration_cache;
2105
2106 #define NOT_CORE_OPTION 1
2107
2108 static int process_config_option(struct cache *cache, const char *key, const char *value)
2109 {
2110         unsigned long tmp;
2111
2112         if (!strcasecmp(key, "migration_threshold")) {
2113                 if (kstrtoul(value, 10, &tmp))
2114                         return -EINVAL;
2115
2116                 cache->migration_threshold = tmp;
2117                 return 0;
2118         }
2119
2120         return NOT_CORE_OPTION;
2121 }
2122
2123 static int set_config_value(struct cache *cache, const char *key, const char *value)
2124 {
2125         int r = process_config_option(cache, key, value);
2126
2127         if (r == NOT_CORE_OPTION)
2128                 r = policy_set_config_value(cache->policy, key, value);
2129
2130         if (r)
2131                 DMWARN("bad config value for %s: %s", key, value);
2132
2133         return r;
2134 }
2135
2136 static int set_config_values(struct cache *cache, int argc, const char **argv)
2137 {
2138         int r = 0;
2139
2140         if (argc & 1) {
2141                 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2142                 return -EINVAL;
2143         }
2144
2145         while (argc) {
2146                 r = set_config_value(cache, argv[0], argv[1]);
2147                 if (r)
2148                         break;
2149
2150                 argc -= 2;
2151                 argv += 2;
2152         }
2153
2154         return r;
2155 }
2156
2157 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2158                                char **error)
2159 {
2160         struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2161                                                            cache->cache_size,
2162                                                            cache->origin_sectors,
2163                                                            cache->sectors_per_block);
2164         if (IS_ERR(p)) {
2165                 *error = "Error creating cache's policy";
2166                 return PTR_ERR(p);
2167         }
2168         cache->policy = p;
2169
2170         return 0;
2171 }
2172
2173 /*
2174  * We want the discard block size to be a power of two, at least the size
2175  * of the cache block size, and have no more than 2^14 discard blocks
2176  * across the origin.
2177  */
2178 #define MAX_DISCARD_BLOCKS (1 << 14)
2179
2180 static bool too_many_discard_blocks(sector_t discard_block_size,
2181                                     sector_t origin_size)
2182 {
2183         (void) sector_div(origin_size, discard_block_size);
2184
2185         return origin_size > MAX_DISCARD_BLOCKS;
2186 }
2187
2188 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2189                                              sector_t origin_size)
2190 {
2191         sector_t discard_block_size;
2192
2193         discard_block_size = roundup_pow_of_two(cache_block_size);
2194
2195         if (origin_size)
2196                 while (too_many_discard_blocks(discard_block_size, origin_size))
2197                         discard_block_size *= 2;
2198
2199         return discard_block_size;
2200 }
2201
2202 #define DEFAULT_MIGRATION_THRESHOLD 2048
2203
2204 static int cache_create(struct cache_args *ca, struct cache **result)
2205 {
2206         int r = 0;
2207         char **error = &ca->ti->error;
2208         struct cache *cache;
2209         struct dm_target *ti = ca->ti;
2210         dm_block_t origin_blocks;
2211         struct dm_cache_metadata *cmd;
2212         bool may_format = ca->features.mode == CM_WRITE;
2213
2214         cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2215         if (!cache)
2216                 return -ENOMEM;
2217
2218         cache->ti = ca->ti;
2219         ti->private = cache;
2220         ti->num_flush_bios = 2;
2221         ti->flush_supported = true;
2222
2223         ti->num_discard_bios = 1;
2224         ti->discards_supported = true;
2225         ti->discard_zeroes_data_unsupported = true;
2226
2227         cache->features = ca->features;
2228         ti->per_bio_data_size = get_per_bio_data_size(cache);
2229
2230         cache->callbacks.congested_fn = cache_is_congested;
2231         dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2232
2233         cache->metadata_dev = ca->metadata_dev;
2234         cache->origin_dev = ca->origin_dev;
2235         cache->cache_dev = ca->cache_dev;
2236
2237         ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2238
2239         /* FIXME: factor out this whole section */
2240         origin_blocks = cache->origin_sectors = ca->origin_sectors;
2241         origin_blocks = block_div(origin_blocks, ca->block_size);
2242         cache->origin_blocks = to_oblock(origin_blocks);
2243
2244         cache->sectors_per_block = ca->block_size;
2245         if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2246                 r = -EINVAL;
2247                 goto bad;
2248         }
2249
2250         if (ca->block_size & (ca->block_size - 1)) {
2251                 dm_block_t cache_size = ca->cache_sectors;
2252
2253                 cache->sectors_per_block_shift = -1;
2254                 cache_size = block_div(cache_size, ca->block_size);
2255                 cache->cache_size = to_cblock(cache_size);
2256         } else {
2257                 cache->sectors_per_block_shift = __ffs(ca->block_size);
2258                 cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
2259         }
2260
2261         r = create_cache_policy(cache, ca, error);
2262         if (r)
2263                 goto bad;
2264
2265         cache->policy_nr_args = ca->policy_argc;
2266         cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2267
2268         r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2269         if (r) {
2270                 *error = "Error setting cache policy's config values";
2271                 goto bad;
2272         }
2273
2274         cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2275                                      ca->block_size, may_format,
2276                                      dm_cache_policy_get_hint_size(cache->policy));
2277         if (IS_ERR(cmd)) {
2278                 *error = "Error creating metadata object";
2279                 r = PTR_ERR(cmd);
2280                 goto bad;
2281         }
2282         cache->cmd = cmd;
2283
2284         if (passthrough_mode(&cache->features)) {
2285                 bool all_clean;
2286
2287                 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2288                 if (r) {
2289                         *error = "dm_cache_metadata_all_clean() failed";
2290                         goto bad;
2291                 }
2292
2293                 if (!all_clean) {
2294                         *error = "Cannot enter passthrough mode unless all blocks are clean";
2295                         r = -EINVAL;
2296                         goto bad;
2297                 }
2298         }
2299
2300         spin_lock_init(&cache->lock);
2301         bio_list_init(&cache->deferred_bios);
2302         bio_list_init(&cache->deferred_flush_bios);
2303         bio_list_init(&cache->deferred_writethrough_bios);
2304         INIT_LIST_HEAD(&cache->quiesced_migrations);
2305         INIT_LIST_HEAD(&cache->completed_migrations);
2306         INIT_LIST_HEAD(&cache->need_commit_migrations);
2307         atomic_set(&cache->nr_migrations, 0);
2308         init_waitqueue_head(&cache->migration_wait);
2309
2310         init_waitqueue_head(&cache->quiescing_wait);
2311         atomic_set(&cache->quiescing, 0);
2312         atomic_set(&cache->quiescing_ack, 0);
2313
2314         r = -ENOMEM;
2315         cache->nr_dirty = 0;
2316         cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2317         if (!cache->dirty_bitset) {
2318                 *error = "could not allocate dirty bitset";
2319                 goto bad;
2320         }
2321         clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2322
2323         cache->discard_block_size =
2324                 calculate_discard_block_size(cache->sectors_per_block,
2325                                              cache->origin_sectors);
2326         cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks);
2327         cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2328         if (!cache->discard_bitset) {
2329                 *error = "could not allocate discard bitset";
2330                 goto bad;
2331         }
2332         clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2333
2334         cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2335         if (IS_ERR(cache->copier)) {
2336                 *error = "could not create kcopyd client";
2337                 r = PTR_ERR(cache->copier);
2338                 goto bad;
2339         }
2340
2341         cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2342         if (!cache->wq) {
2343                 *error = "could not create workqueue for metadata object";
2344                 goto bad;
2345         }
2346         INIT_WORK(&cache->worker, do_worker);
2347         INIT_DELAYED_WORK(&cache->waker, do_waker);
2348         cache->last_commit_jiffies = jiffies;
2349
2350         cache->prison = dm_bio_prison_create(PRISON_CELLS);
2351         if (!cache->prison) {
2352                 *error = "could not create bio prison";
2353                 goto bad;
2354         }
2355
2356         cache->all_io_ds = dm_deferred_set_create();
2357         if (!cache->all_io_ds) {
2358                 *error = "could not create all_io deferred set";
2359                 goto bad;
2360         }
2361
2362         cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2363                                                          migration_cache);
2364         if (!cache->migration_pool) {
2365                 *error = "Error creating cache's migration mempool";
2366                 goto bad;
2367         }
2368
2369         cache->next_migration = NULL;
2370
2371         cache->need_tick_bio = true;
2372         cache->sized = false;
2373         cache->invalidate = false;
2374         cache->commit_requested = false;
2375         cache->loaded_mappings = false;
2376         cache->loaded_discards = false;
2377
2378         load_stats(cache);
2379
2380         atomic_set(&cache->stats.demotion, 0);
2381         atomic_set(&cache->stats.promotion, 0);
2382         atomic_set(&cache->stats.copies_avoided, 0);
2383         atomic_set(&cache->stats.cache_cell_clash, 0);
2384         atomic_set(&cache->stats.commit_count, 0);
2385         atomic_set(&cache->stats.discard_count, 0);
2386
2387         spin_lock_init(&cache->invalidation_lock);
2388         INIT_LIST_HEAD(&cache->invalidation_requests);
2389
2390         *result = cache;
2391         return 0;
2392
2393 bad:
2394         destroy(cache);
2395         return r;
2396 }
2397
2398 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2399 {
2400         unsigned i;
2401         const char **copy;
2402
2403         copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2404         if (!copy)
2405                 return -ENOMEM;
2406         for (i = 0; i < argc; i++) {
2407                 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2408                 if (!copy[i]) {
2409                         while (i--)
2410                                 kfree(copy[i]);
2411                         kfree(copy);
2412                         return -ENOMEM;
2413                 }
2414         }
2415
2416         cache->nr_ctr_args = argc;
2417         cache->ctr_args = copy;
2418
2419         return 0;
2420 }
2421
2422 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2423 {
2424         int r = -EINVAL;
2425         struct cache_args *ca;
2426         struct cache *cache = NULL;
2427
2428         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2429         if (!ca) {
2430                 ti->error = "Error allocating memory for cache";
2431                 return -ENOMEM;
2432         }
2433         ca->ti = ti;
2434
2435         r = parse_cache_args(ca, argc, argv, &ti->error);
2436         if (r)
2437                 goto out;
2438
2439         r = cache_create(ca, &cache);
2440         if (r)
2441                 goto out;
2442
2443         r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2444         if (r) {
2445                 destroy(cache);
2446                 goto out;
2447         }
2448
2449         ti->private = cache;
2450
2451 out:
2452         destroy_cache_args(ca);
2453         return r;
2454 }
2455
2456 static int cache_map(struct dm_target *ti, struct bio *bio)
2457 {
2458         struct cache *cache = ti->private;
2459
2460         int r;
2461         dm_oblock_t block = get_bio_block(cache, bio);
2462         size_t pb_data_size = get_per_bio_data_size(cache);
2463         bool can_migrate = false;
2464         bool discarded_block;
2465         struct dm_bio_prison_cell *cell;
2466         struct policy_result lookup_result;
2467         struct per_bio_data *pb;
2468
2469         if (from_oblock(block) > from_oblock(cache->origin_blocks)) {
2470                 /*
2471                  * This can only occur if the io goes to a partial block at
2472                  * the end of the origin device.  We don't cache these.
2473                  * Just remap to the origin and carry on.
2474                  */
2475                 remap_to_origin_clear_discard(cache, bio, block);
2476                 return DM_MAPIO_REMAPPED;
2477         }
2478
2479         pb = init_per_bio_data(bio, pb_data_size);
2480
2481         if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2482                 defer_bio(cache, bio);
2483                 return DM_MAPIO_SUBMITTED;
2484         }
2485
2486         /*
2487          * Check to see if that block is currently migrating.
2488          */
2489         cell = alloc_prison_cell(cache);
2490         if (!cell) {
2491                 defer_bio(cache, bio);
2492                 return DM_MAPIO_SUBMITTED;
2493         }
2494
2495         r = bio_detain(cache, block, bio, cell,
2496                        (cell_free_fn) free_prison_cell,
2497                        cache, &cell);
2498         if (r) {
2499                 if (r < 0)
2500                         defer_bio(cache, bio);
2501
2502                 return DM_MAPIO_SUBMITTED;
2503         }
2504
2505         discarded_block = is_discarded_oblock(cache, block);
2506
2507         r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2508                        bio, &lookup_result);
2509         if (r == -EWOULDBLOCK) {
2510                 cell_defer(cache, cell, true);
2511                 return DM_MAPIO_SUBMITTED;
2512
2513         } else if (r) {
2514                 DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2515                 bio_io_error(bio);
2516                 return DM_MAPIO_SUBMITTED;
2517         }
2518
2519         r = DM_MAPIO_REMAPPED;
2520         switch (lookup_result.op) {
2521         case POLICY_HIT:
2522                 if (passthrough_mode(&cache->features)) {
2523                         if (bio_data_dir(bio) == WRITE) {
2524                                 /*
2525                                  * We need to invalidate this block, so
2526                                  * defer for the worker thread.
2527                                  */
2528                                 cell_defer(cache, cell, true);
2529                                 r = DM_MAPIO_SUBMITTED;
2530
2531                         } else {
2532                                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2533                                 inc_miss_counter(cache, bio);
2534                                 remap_to_origin_clear_discard(cache, bio, block);
2535
2536                                 cell_defer(cache, cell, false);
2537                         }
2538
2539                 } else {
2540                         inc_hit_counter(cache, bio);
2541
2542                         if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2543                             !is_dirty(cache, lookup_result.cblock))
2544                                 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2545                         else
2546                                 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2547
2548                         cell_defer(cache, cell, false);
2549                 }
2550                 break;
2551
2552         case POLICY_MISS:
2553                 inc_miss_counter(cache, bio);
2554                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2555
2556                 if (pb->req_nr != 0) {
2557                         /*
2558                          * This is a duplicate writethrough io that is no
2559                          * longer needed because the block has been demoted.
2560                          */
2561                         bio_endio(bio, 0);
2562                         cell_defer(cache, cell, false);
2563                         return DM_MAPIO_SUBMITTED;
2564                 } else {
2565                         remap_to_origin_clear_discard(cache, bio, block);
2566                         cell_defer(cache, cell, false);
2567                 }
2568                 break;
2569
2570         default:
2571                 DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2572                             (unsigned) lookup_result.op);
2573                 bio_io_error(bio);
2574                 r = DM_MAPIO_SUBMITTED;
2575         }
2576
2577         return r;
2578 }
2579
2580 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2581 {
2582         struct cache *cache = ti->private;
2583         unsigned long flags;
2584         size_t pb_data_size = get_per_bio_data_size(cache);
2585         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2586
2587         if (pb->tick) {
2588                 policy_tick(cache->policy);
2589
2590                 spin_lock_irqsave(&cache->lock, flags);
2591                 cache->need_tick_bio = true;
2592                 spin_unlock_irqrestore(&cache->lock, flags);
2593         }
2594
2595         check_for_quiesced_migrations(cache, pb);
2596
2597         return 0;
2598 }
2599
2600 static int write_dirty_bitset(struct cache *cache)
2601 {
2602         unsigned i, r;
2603
2604         for (i = 0; i < from_cblock(cache->cache_size); i++) {
2605                 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2606                                        is_dirty(cache, to_cblock(i)));
2607                 if (r)
2608                         return r;
2609         }
2610
2611         return 0;
2612 }
2613
2614 static int write_discard_bitset(struct cache *cache)
2615 {
2616         unsigned i, r;
2617
2618         r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2619                                            cache->discard_nr_blocks);
2620         if (r) {
2621                 DMERR("could not resize on-disk discard bitset");
2622                 return r;
2623         }
2624
2625         for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2626                 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2627                                          is_discarded(cache, to_dblock(i)));
2628                 if (r)
2629                         return r;
2630         }
2631
2632         return 0;
2633 }
2634
2635 static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock,
2636                      uint32_t hint)
2637 {
2638         struct cache *cache = context;
2639         return dm_cache_save_hint(cache->cmd, cblock, hint);
2640 }
2641
2642 static int write_hints(struct cache *cache)
2643 {
2644         int r;
2645
2646         r = dm_cache_begin_hints(cache->cmd, cache->policy);
2647         if (r) {
2648                 DMERR("dm_cache_begin_hints failed");
2649                 return r;
2650         }
2651
2652         r = policy_walk_mappings(cache->policy, save_hint, cache);
2653         if (r)
2654                 DMERR("policy_walk_mappings failed");
2655
2656         return r;
2657 }
2658
2659 /*
2660  * returns true on success
2661  */
2662 static bool sync_metadata(struct cache *cache)
2663 {
2664         int r1, r2, r3, r4;
2665
2666         r1 = write_dirty_bitset(cache);
2667         if (r1)
2668                 DMERR("could not write dirty bitset");
2669
2670         r2 = write_discard_bitset(cache);
2671         if (r2)
2672                 DMERR("could not write discard bitset");
2673
2674         save_stats(cache);
2675
2676         r3 = write_hints(cache);
2677         if (r3)
2678                 DMERR("could not write hints");
2679
2680         /*
2681          * If writing the above metadata failed, we still commit, but don't
2682          * set the clean shutdown flag.  This will effectively force every
2683          * dirty bit to be set on reload.
2684          */
2685         r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2686         if (r4)
2687                 DMERR("could not write cache metadata.  Data loss may occur.");
2688
2689         return !r1 && !r2 && !r3 && !r4;
2690 }
2691
2692 static void cache_postsuspend(struct dm_target *ti)
2693 {
2694         struct cache *cache = ti->private;
2695
2696         start_quiescing(cache);
2697         wait_for_migrations(cache);
2698         stop_worker(cache);
2699         requeue_deferred_io(cache);
2700         stop_quiescing(cache);
2701
2702         (void) sync_metadata(cache);
2703 }
2704
2705 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2706                         bool dirty, uint32_t hint, bool hint_valid)
2707 {
2708         int r;
2709         struct cache *cache = context;
2710
2711         r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2712         if (r)
2713                 return r;
2714
2715         if (dirty)
2716                 set_dirty(cache, oblock, cblock);
2717         else
2718                 clear_dirty(cache, oblock, cblock);
2719
2720         return 0;
2721 }
2722
2723 static int load_discard(void *context, sector_t discard_block_size,
2724                         dm_dblock_t dblock, bool discard)
2725 {
2726         struct cache *cache = context;
2727
2728         /* FIXME: handle mis-matched block size */
2729
2730         if (discard)
2731                 set_discard(cache, dblock);
2732         else
2733                 clear_discard(cache, dblock);
2734
2735         return 0;
2736 }
2737
2738 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2739 {
2740         sector_t size = get_dev_size(cache->cache_dev);
2741         (void) sector_div(size, cache->sectors_per_block);
2742         return to_cblock(size);
2743 }
2744
2745 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2746 {
2747         if (from_cblock(new_size) > from_cblock(cache->cache_size))
2748                 return true;
2749
2750         /*
2751          * We can't drop a dirty block when shrinking the cache.
2752          */
2753         while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2754                 new_size = to_cblock(from_cblock(new_size) + 1);
2755                 if (is_dirty(cache, new_size)) {
2756                         DMERR("unable to shrink cache; cache block %llu is dirty",
2757                               (unsigned long long) from_cblock(new_size));
2758                         return false;
2759                 }
2760         }
2761
2762         return true;
2763 }
2764
2765 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2766 {
2767         int r;
2768
2769         r = dm_cache_resize(cache->cmd, new_size);
2770         if (r) {
2771                 DMERR("could not resize cache metadata");
2772                 return r;
2773         }
2774
2775         cache->cache_size = new_size;
2776
2777         return 0;
2778 }
2779
2780 static int cache_preresume(struct dm_target *ti)
2781 {
2782         int r = 0;
2783         struct cache *cache = ti->private;
2784         dm_cblock_t csize = get_cache_dev_size(cache);
2785
2786         /*
2787          * Check to see if the cache has resized.
2788          */
2789         if (!cache->sized) {
2790                 r = resize_cache_dev(cache, csize);
2791                 if (r)
2792                         return r;
2793
2794                 cache->sized = true;
2795
2796         } else if (csize != cache->cache_size) {
2797                 if (!can_resize(cache, csize))
2798                         return -EINVAL;
2799
2800                 r = resize_cache_dev(cache, csize);
2801                 if (r)
2802                         return r;
2803         }
2804
2805         if (!cache->loaded_mappings) {
2806                 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2807                                            load_mapping, cache);
2808                 if (r) {
2809                         DMERR("could not load cache mappings");
2810                         return r;
2811                 }
2812
2813                 cache->loaded_mappings = true;
2814         }
2815
2816         if (!cache->loaded_discards) {
2817                 r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2818                 if (r) {
2819                         DMERR("could not load origin discards");
2820                         return r;
2821                 }
2822
2823                 cache->loaded_discards = true;
2824         }
2825
2826         return r;
2827 }
2828
2829 static void cache_resume(struct dm_target *ti)
2830 {
2831         struct cache *cache = ti->private;
2832
2833         cache->need_tick_bio = true;
2834         do_waker(&cache->waker.work);
2835 }
2836
2837 /*
2838  * Status format:
2839  *
2840  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
2841  * <cache block size> <#used cache blocks>/<#total cache blocks>
2842  * <#read hits> <#read misses> <#write hits> <#write misses>
2843  * <#demotions> <#promotions> <#dirty>
2844  * <#features> <features>*
2845  * <#core args> <core args>
2846  * <policy name> <#policy args> <policy args>*
2847  */
2848 static void cache_status(struct dm_target *ti, status_type_t type,
2849                          unsigned status_flags, char *result, unsigned maxlen)
2850 {
2851         int r = 0;
2852         unsigned i;
2853         ssize_t sz = 0;
2854         dm_block_t nr_free_blocks_metadata = 0;
2855         dm_block_t nr_blocks_metadata = 0;
2856         char buf[BDEVNAME_SIZE];
2857         struct cache *cache = ti->private;
2858         dm_cblock_t residency;
2859
2860         switch (type) {
2861         case STATUSTYPE_INFO:
2862                 /* Commit to ensure statistics aren't out-of-date */
2863                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2864                         r = dm_cache_commit(cache->cmd, false);
2865                         if (r)
2866                                 DMERR("could not commit metadata for accurate status");
2867                 }
2868
2869                 r = dm_cache_get_free_metadata_block_count(cache->cmd,
2870                                                            &nr_free_blocks_metadata);
2871                 if (r) {
2872                         DMERR("could not get metadata free block count");
2873                         goto err;
2874                 }
2875
2876                 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2877                 if (r) {
2878                         DMERR("could not get metadata device size");
2879                         goto err;
2880                 }
2881
2882                 residency = policy_residency(cache->policy);
2883
2884                 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %llu ",
2885                        (unsigned)(DM_CACHE_METADATA_BLOCK_SIZE >> SECTOR_SHIFT),
2886                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2887                        (unsigned long long)nr_blocks_metadata,
2888                        cache->sectors_per_block,
2889                        (unsigned long long) from_cblock(residency),
2890                        (unsigned long long) from_cblock(cache->cache_size),
2891                        (unsigned) atomic_read(&cache->stats.read_hit),
2892                        (unsigned) atomic_read(&cache->stats.read_miss),
2893                        (unsigned) atomic_read(&cache->stats.write_hit),
2894                        (unsigned) atomic_read(&cache->stats.write_miss),
2895                        (unsigned) atomic_read(&cache->stats.demotion),
2896                        (unsigned) atomic_read(&cache->stats.promotion),
2897                        (unsigned long long) from_cblock(cache->nr_dirty));
2898
2899                 if (writethrough_mode(&cache->features))
2900                         DMEMIT("1 writethrough ");
2901
2902                 else if (passthrough_mode(&cache->features))
2903                         DMEMIT("1 passthrough ");
2904
2905                 else if (writeback_mode(&cache->features))
2906                         DMEMIT("1 writeback ");
2907
2908                 else {
2909                         DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
2910                         goto err;
2911                 }
2912
2913                 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2914
2915                 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
2916                 if (sz < maxlen) {
2917                         r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2918                         if (r)
2919                                 DMERR("policy_emit_config_values returned %d", r);
2920                 }
2921
2922                 break;
2923
2924         case STATUSTYPE_TABLE:
2925                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2926                 DMEMIT("%s ", buf);
2927                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2928                 DMEMIT("%s ", buf);
2929                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2930                 DMEMIT("%s", buf);
2931
2932                 for (i = 0; i < cache->nr_ctr_args - 1; i++)
2933                         DMEMIT(" %s", cache->ctr_args[i]);
2934                 if (cache->nr_ctr_args)
2935                         DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2936         }
2937
2938         return;
2939
2940 err:
2941         DMEMIT("Error");
2942 }
2943
2944 /*
2945  * A cache block range can take two forms:
2946  *
2947  * i) A single cblock, eg. '3456'
2948  * ii) A begin and end cblock with dots between, eg. 123-234
2949  */
2950 static int parse_cblock_range(struct cache *cache, const char *str,
2951                               struct cblock_range *result)
2952 {
2953         char dummy;
2954         uint64_t b, e;
2955         int r;
2956
2957         /*
2958          * Try and parse form (ii) first.
2959          */
2960         r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
2961         if (r < 0)
2962                 return r;
2963
2964         if (r == 2) {
2965                 result->begin = to_cblock(b);
2966                 result->end = to_cblock(e);
2967                 return 0;
2968         }
2969
2970         /*
2971          * That didn't work, try form (i).
2972          */
2973         r = sscanf(str, "%llu%c", &b, &dummy);
2974         if (r < 0)
2975                 return r;
2976
2977         if (r == 1) {
2978                 result->begin = to_cblock(b);
2979                 result->end = to_cblock(from_cblock(result->begin) + 1u);
2980                 return 0;
2981         }
2982
2983         DMERR("invalid cblock range '%s'", str);
2984         return -EINVAL;
2985 }
2986
2987 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
2988 {
2989         uint64_t b = from_cblock(range->begin);
2990         uint64_t e = from_cblock(range->end);
2991         uint64_t n = from_cblock(cache->cache_size);
2992
2993         if (b >= n) {
2994                 DMERR("begin cblock out of range: %llu >= %llu", b, n);
2995                 return -EINVAL;
2996         }
2997
2998         if (e > n) {
2999                 DMERR("end cblock out of range: %llu > %llu", e, n);
3000                 return -EINVAL;
3001         }
3002
3003         if (b >= e) {
3004                 DMERR("invalid cblock range: %llu >= %llu", b, e);
3005                 return -EINVAL;
3006         }
3007
3008         return 0;
3009 }
3010
3011 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3012 {
3013         struct invalidation_request req;
3014
3015         INIT_LIST_HEAD(&req.list);
3016         req.cblocks = range;
3017         atomic_set(&req.complete, 0);
3018         req.err = 0;
3019         init_waitqueue_head(&req.result_wait);
3020
3021         spin_lock(&cache->invalidation_lock);
3022         list_add(&req.list, &cache->invalidation_requests);
3023         spin_unlock(&cache->invalidation_lock);
3024         wake_worker(cache);
3025
3026         wait_event(req.result_wait, atomic_read(&req.complete));
3027         return req.err;
3028 }
3029
3030 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3031                                               const char **cblock_ranges)
3032 {
3033         int r = 0;
3034         unsigned i;
3035         struct cblock_range range;
3036
3037         if (!passthrough_mode(&cache->features)) {
3038                 DMERR("cache has to be in passthrough mode for invalidation");
3039                 return -EPERM;
3040         }
3041
3042         for (i = 0; i < count; i++) {
3043                 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3044                 if (r)
3045                         break;
3046
3047                 r = validate_cblock_range(cache, &range);
3048                 if (r)
3049                         break;
3050
3051                 /*
3052                  * Pass begin and end origin blocks to the worker and wake it.
3053                  */
3054                 r = request_invalidation(cache, &range);
3055                 if (r)
3056                         break;
3057         }
3058
3059         return r;
3060 }
3061
3062 /*
3063  * Supports
3064  *      "<key> <value>"
3065  * and
3066  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3067  *
3068  * The key migration_threshold is supported by the cache target core.
3069  */
3070 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3071 {
3072         struct cache *cache = ti->private;
3073
3074         if (!argc)
3075                 return -EINVAL;
3076
3077         if (!strcasecmp(argv[0], "invalidate_cblocks"))
3078                 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3079
3080         if (argc != 2)
3081                 return -EINVAL;
3082
3083         return set_config_value(cache, argv[0], argv[1]);
3084 }
3085
3086 static int cache_iterate_devices(struct dm_target *ti,
3087                                  iterate_devices_callout_fn fn, void *data)
3088 {
3089         int r = 0;
3090         struct cache *cache = ti->private;
3091
3092         r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3093         if (!r)
3094                 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3095
3096         return r;
3097 }
3098
3099 /*
3100  * We assume I/O is going to the origin (which is the volume
3101  * more likely to have restrictions e.g. by being striped).
3102  * (Looking up the exact location of the data would be expensive
3103  * and could always be out of date by the time the bio is submitted.)
3104  */
3105 static int cache_bvec_merge(struct dm_target *ti,
3106                             struct bvec_merge_data *bvm,
3107                             struct bio_vec *biovec, int max_size)
3108 {
3109         struct cache *cache = ti->private;
3110         struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3111
3112         if (!q->merge_bvec_fn)
3113                 return max_size;
3114
3115         bvm->bi_bdev = cache->origin_dev->bdev;
3116         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3117 }
3118
3119 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3120 {
3121         /*
3122          * FIXME: these limits may be incompatible with the cache device
3123          */
3124         limits->max_discard_sectors = cache->discard_block_size * 1024;
3125         limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3126 }
3127
3128 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3129 {
3130         struct cache *cache = ti->private;
3131         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3132
3133         /*
3134          * If the system-determined stacked limits are compatible with the
3135          * cache's blocksize (io_opt is a factor) do not override them.
3136          */
3137         if (io_opt_sectors < cache->sectors_per_block ||
3138             do_div(io_opt_sectors, cache->sectors_per_block)) {
3139                 blk_limits_io_min(limits, 0);
3140                 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3141         }
3142         set_discard_limits(cache, limits);
3143 }
3144
3145 /*----------------------------------------------------------------*/
3146
3147 static struct target_type cache_target = {
3148         .name = "cache",
3149         .version = {1, 3, 0},
3150         .module = THIS_MODULE,
3151         .ctr = cache_ctr,
3152         .dtr = cache_dtr,
3153         .map = cache_map,
3154         .end_io = cache_end_io,
3155         .postsuspend = cache_postsuspend,
3156         .preresume = cache_preresume,
3157         .resume = cache_resume,
3158         .status = cache_status,
3159         .message = cache_message,
3160         .iterate_devices = cache_iterate_devices,
3161         .merge = cache_bvec_merge,
3162         .io_hints = cache_io_hints,
3163 };
3164
3165 static int __init dm_cache_init(void)
3166 {
3167         int r;
3168
3169         r = dm_register_target(&cache_target);
3170         if (r) {
3171                 DMERR("cache target registration failed: %d", r);
3172                 return r;
3173         }
3174
3175         migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3176         if (!migration_cache) {
3177                 dm_unregister_target(&cache_target);
3178                 return -ENOMEM;
3179         }
3180
3181         return 0;
3182 }
3183
3184 static void __exit dm_cache_exit(void)
3185 {
3186         dm_unregister_target(&cache_target);
3187         kmem_cache_destroy(migration_cache);
3188 }
3189
3190 module_init(dm_cache_init);
3191 module_exit(dm_cache_exit);
3192
3193 MODULE_DESCRIPTION(DM_NAME " cache target");
3194 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3195 MODULE_LICENSE("GPL");