]> Pileus Git - ~andy/linux/blob - drivers/md/bcache/writeback.c
ASoC: wm8962: Use IS_ENABLED() macro
[~andy/linux] / drivers / md / bcache / writeback.c
1 /*
2  * background writeback - scan btree for dirty data and write it to the backing
3  * device
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13
14 #include <linux/delay.h>
15 #include <linux/freezer.h>
16 #include <linux/kthread.h>
17 #include <trace/events/bcache.h>
18
19 /* Rate limiting */
20
21 static void __update_writeback_rate(struct cached_dev *dc)
22 {
23         struct cache_set *c = dc->disk.c;
24         uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
25         uint64_t cache_dirty_target =
26                 div_u64(cache_sectors * dc->writeback_percent, 100);
27
28         int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
29                                    c->cached_dev_sectors);
30
31         /* PD controller */
32
33         int change = 0;
34         int64_t error;
35         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
36         int64_t derivative = dirty - dc->disk.sectors_dirty_last;
37
38         dc->disk.sectors_dirty_last = dirty;
39
40         derivative *= dc->writeback_rate_d_term;
41         derivative = clamp(derivative, -dirty, dirty);
42
43         derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
44                               dc->writeback_rate_d_smooth, 0);
45
46         /* Avoid divide by zero */
47         if (!target)
48                 goto out;
49
50         error = div64_s64((dirty + derivative - target) << 8, target);
51
52         change = div_s64((dc->writeback_rate.rate * error) >> 8,
53                          dc->writeback_rate_p_term_inverse);
54
55         /* Don't increase writeback rate if the device isn't keeping up */
56         if (change > 0 &&
57             time_after64(local_clock(),
58                          dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
59                 change = 0;
60
61         dc->writeback_rate.rate =
62                 clamp_t(int64_t, dc->writeback_rate.rate + change,
63                         1, NSEC_PER_MSEC);
64 out:
65         dc->writeback_rate_derivative = derivative;
66         dc->writeback_rate_change = change;
67         dc->writeback_rate_target = target;
68 }
69
70 static void update_writeback_rate(struct work_struct *work)
71 {
72         struct cached_dev *dc = container_of(to_delayed_work(work),
73                                              struct cached_dev,
74                                              writeback_rate_update);
75
76         down_read(&dc->writeback_lock);
77
78         if (atomic_read(&dc->has_dirty) &&
79             dc->writeback_percent)
80                 __update_writeback_rate(dc);
81
82         up_read(&dc->writeback_lock);
83
84         schedule_delayed_work(&dc->writeback_rate_update,
85                               dc->writeback_rate_update_seconds * HZ);
86 }
87
88 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
89 {
90         uint64_t ret;
91
92         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
93             !dc->writeback_percent)
94                 return 0;
95
96         ret = bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
97
98         return min_t(uint64_t, ret, HZ);
99 }
100
101 struct dirty_io {
102         struct closure          cl;
103         struct cached_dev       *dc;
104         struct bio              bio;
105 };
106
107 static void dirty_init(struct keybuf_key *w)
108 {
109         struct dirty_io *io = w->private;
110         struct bio *bio = &io->bio;
111
112         bio_init(bio);
113         if (!io->dc->writeback_percent)
114                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
115
116         bio->bi_size            = KEY_SIZE(&w->key) << 9;
117         bio->bi_max_vecs        = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
118         bio->bi_private         = w;
119         bio->bi_io_vec          = bio->bi_inline_vecs;
120         bch_bio_map(bio, NULL);
121 }
122
123 static void dirty_io_destructor(struct closure *cl)
124 {
125         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
126         kfree(io);
127 }
128
129 static void write_dirty_finish(struct closure *cl)
130 {
131         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
132         struct keybuf_key *w = io->bio.bi_private;
133         struct cached_dev *dc = io->dc;
134         struct bio_vec *bv;
135         int i;
136
137         bio_for_each_segment_all(bv, &io->bio, i)
138                 __free_page(bv->bv_page);
139
140         /* This is kind of a dumb way of signalling errors. */
141         if (KEY_DIRTY(&w->key)) {
142                 int ret;
143                 unsigned i;
144                 struct keylist keys;
145
146                 bch_keylist_init(&keys);
147
148                 bkey_copy(keys.top, &w->key);
149                 SET_KEY_DIRTY(keys.top, false);
150                 bch_keylist_push(&keys);
151
152                 for (i = 0; i < KEY_PTRS(&w->key); i++)
153                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
154
155                 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
156
157                 if (ret)
158                         trace_bcache_writeback_collision(&w->key);
159
160                 atomic_long_inc(ret
161                                 ? &dc->disk.c->writeback_keys_failed
162                                 : &dc->disk.c->writeback_keys_done);
163         }
164
165         bch_keybuf_del(&dc->writeback_keys, w);
166         up(&dc->in_flight);
167
168         closure_return_with_destructor(cl, dirty_io_destructor);
169 }
170
171 static void dirty_endio(struct bio *bio, int error)
172 {
173         struct keybuf_key *w = bio->bi_private;
174         struct dirty_io *io = w->private;
175
176         if (error)
177                 SET_KEY_DIRTY(&w->key, false);
178
179         closure_put(&io->cl);
180 }
181
182 static void write_dirty(struct closure *cl)
183 {
184         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
185         struct keybuf_key *w = io->bio.bi_private;
186
187         dirty_init(w);
188         io->bio.bi_rw           = WRITE;
189         io->bio.bi_sector       = KEY_START(&w->key);
190         io->bio.bi_bdev         = io->dc->bdev;
191         io->bio.bi_end_io       = dirty_endio;
192
193         closure_bio_submit(&io->bio, cl, &io->dc->disk);
194
195         continue_at(cl, write_dirty_finish, system_wq);
196 }
197
198 static void read_dirty_endio(struct bio *bio, int error)
199 {
200         struct keybuf_key *w = bio->bi_private;
201         struct dirty_io *io = w->private;
202
203         bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
204                             error, "reading dirty data from cache");
205
206         dirty_endio(bio, error);
207 }
208
209 static void read_dirty_submit(struct closure *cl)
210 {
211         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
212
213         closure_bio_submit(&io->bio, cl, &io->dc->disk);
214
215         continue_at(cl, write_dirty, system_wq);
216 }
217
218 static void read_dirty(struct cached_dev *dc)
219 {
220         unsigned delay = 0;
221         struct keybuf_key *w;
222         struct dirty_io *io;
223         struct closure cl;
224
225         closure_init_stack(&cl);
226
227         /*
228          * XXX: if we error, background writeback just spins. Should use some
229          * mempools.
230          */
231
232         while (!kthread_should_stop()) {
233                 try_to_freeze();
234
235                 w = bch_keybuf_next(&dc->writeback_keys);
236                 if (!w)
237                         break;
238
239                 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
240
241                 if (KEY_START(&w->key) != dc->last_read ||
242                     jiffies_to_msecs(delay) > 50)
243                         while (!kthread_should_stop() && delay)
244                                 delay = schedule_timeout_interruptible(delay);
245
246                 dc->last_read   = KEY_OFFSET(&w->key);
247
248                 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
249                              * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
250                              GFP_KERNEL);
251                 if (!io)
252                         goto err;
253
254                 w->private      = io;
255                 io->dc          = dc;
256
257                 dirty_init(w);
258                 io->bio.bi_sector       = PTR_OFFSET(&w->key, 0);
259                 io->bio.bi_bdev         = PTR_CACHE(dc->disk.c,
260                                                     &w->key, 0)->bdev;
261                 io->bio.bi_rw           = READ;
262                 io->bio.bi_end_io       = read_dirty_endio;
263
264                 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
265                         goto err_free;
266
267                 trace_bcache_writeback(&w->key);
268
269                 down(&dc->in_flight);
270                 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
271
272                 delay = writeback_delay(dc, KEY_SIZE(&w->key));
273         }
274
275         if (0) {
276 err_free:
277                 kfree(w->private);
278 err:
279                 bch_keybuf_del(&dc->writeback_keys, w);
280         }
281
282         /*
283          * Wait for outstanding writeback IOs to finish (and keybuf slots to be
284          * freed) before refilling again
285          */
286         closure_sync(&cl);
287 }
288
289 /* Scan for dirty data */
290
291 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
292                                   uint64_t offset, int nr_sectors)
293 {
294         struct bcache_device *d = c->devices[inode];
295         unsigned stripe_offset, stripe, sectors_dirty;
296
297         if (!d)
298                 return;
299
300         stripe = offset_to_stripe(d, offset);
301         stripe_offset = offset & (d->stripe_size - 1);
302
303         while (nr_sectors) {
304                 int s = min_t(unsigned, abs(nr_sectors),
305                               d->stripe_size - stripe_offset);
306
307                 if (nr_sectors < 0)
308                         s = -s;
309
310                 if (stripe >= d->nr_stripes)
311                         return;
312
313                 sectors_dirty = atomic_add_return(s,
314                                         d->stripe_sectors_dirty + stripe);
315                 if (sectors_dirty == d->stripe_size)
316                         set_bit(stripe, d->full_dirty_stripes);
317                 else
318                         clear_bit(stripe, d->full_dirty_stripes);
319
320                 nr_sectors -= s;
321                 stripe_offset = 0;
322                 stripe++;
323         }
324 }
325
326 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
327 {
328         return KEY_DIRTY(k);
329 }
330
331 static void refill_full_stripes(struct cached_dev *dc)
332 {
333         struct keybuf *buf = &dc->writeback_keys;
334         unsigned start_stripe, stripe, next_stripe;
335         bool wrapped = false;
336
337         stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
338
339         if (stripe >= dc->disk.nr_stripes)
340                 stripe = 0;
341
342         start_stripe = stripe;
343
344         while (1) {
345                 stripe = find_next_bit(dc->disk.full_dirty_stripes,
346                                        dc->disk.nr_stripes, stripe);
347
348                 if (stripe == dc->disk.nr_stripes)
349                         goto next;
350
351                 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
352                                                  dc->disk.nr_stripes, stripe);
353
354                 buf->last_scanned = KEY(dc->disk.id,
355                                         stripe * dc->disk.stripe_size, 0);
356
357                 bch_refill_keybuf(dc->disk.c, buf,
358                                   &KEY(dc->disk.id,
359                                        next_stripe * dc->disk.stripe_size, 0),
360                                   dirty_pred);
361
362                 if (array_freelist_empty(&buf->freelist))
363                         return;
364
365                 stripe = next_stripe;
366 next:
367                 if (wrapped && stripe > start_stripe)
368                         return;
369
370                 if (stripe == dc->disk.nr_stripes) {
371                         stripe = 0;
372                         wrapped = true;
373                 }
374         }
375 }
376
377 static bool refill_dirty(struct cached_dev *dc)
378 {
379         struct keybuf *buf = &dc->writeback_keys;
380         struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
381         bool searched_from_start = false;
382
383         if (dc->partial_stripes_expensive) {
384                 refill_full_stripes(dc);
385                 if (array_freelist_empty(&buf->freelist))
386                         return false;
387         }
388
389         if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
390                 buf->last_scanned = KEY(dc->disk.id, 0, 0);
391                 searched_from_start = true;
392         }
393
394         bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
395
396         return bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start;
397 }
398
399 static int bch_writeback_thread(void *arg)
400 {
401         struct cached_dev *dc = arg;
402         bool searched_full_index;
403
404         while (!kthread_should_stop()) {
405                 down_write(&dc->writeback_lock);
406                 if (!atomic_read(&dc->has_dirty) ||
407                     (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
408                      !dc->writeback_running)) {
409                         up_write(&dc->writeback_lock);
410                         set_current_state(TASK_INTERRUPTIBLE);
411
412                         if (kthread_should_stop())
413                                 return 0;
414
415                         try_to_freeze();
416                         schedule();
417                         continue;
418                 }
419
420                 searched_full_index = refill_dirty(dc);
421
422                 if (searched_full_index &&
423                     RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
424                         atomic_set(&dc->has_dirty, 0);
425                         cached_dev_put(dc);
426                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
427                         bch_write_bdev_super(dc, NULL);
428                 }
429
430                 up_write(&dc->writeback_lock);
431
432                 bch_ratelimit_reset(&dc->writeback_rate);
433                 read_dirty(dc);
434
435                 if (searched_full_index) {
436                         unsigned delay = dc->writeback_delay * HZ;
437
438                         while (delay &&
439                                !kthread_should_stop() &&
440                                !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
441                                 delay = schedule_timeout_interruptible(delay);
442                 }
443         }
444
445         return 0;
446 }
447
448 /* Init */
449
450 struct sectors_dirty_init {
451         struct btree_op op;
452         unsigned        inode;
453 };
454
455 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
456                                  struct bkey *k)
457 {
458         struct sectors_dirty_init *op = container_of(_op,
459                                                 struct sectors_dirty_init, op);
460         if (KEY_INODE(k) > op->inode)
461                 return MAP_DONE;
462
463         if (KEY_DIRTY(k))
464                 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
465                                              KEY_START(k), KEY_SIZE(k));
466
467         return MAP_CONTINUE;
468 }
469
470 void bch_sectors_dirty_init(struct cached_dev *dc)
471 {
472         struct sectors_dirty_init op;
473
474         bch_btree_op_init(&op.op, -1);
475         op.inode = dc->disk.id;
476
477         bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
478                            sectors_dirty_init_fn, 0);
479 }
480
481 int bch_cached_dev_writeback_init(struct cached_dev *dc)
482 {
483         sema_init(&dc->in_flight, 64);
484         init_rwsem(&dc->writeback_lock);
485         bch_keybuf_init(&dc->writeback_keys);
486
487         dc->writeback_metadata          = true;
488         dc->writeback_running           = true;
489         dc->writeback_percent           = 10;
490         dc->writeback_delay             = 30;
491         dc->writeback_rate.rate         = 1024;
492
493         dc->writeback_rate_update_seconds = 30;
494         dc->writeback_rate_d_term       = 16;
495         dc->writeback_rate_p_term_inverse = 64;
496         dc->writeback_rate_d_smooth     = 8;
497
498         dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
499                                               "bcache_writeback");
500         if (IS_ERR(dc->writeback_thread))
501                 return PTR_ERR(dc->writeback_thread);
502
503         set_task_state(dc->writeback_thread, TASK_INTERRUPTIBLE);
504
505         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
506         schedule_delayed_work(&dc->writeback_rate_update,
507                               dc->writeback_rate_update_seconds * HZ);
508
509         return 0;
510 }