]> Pileus Git - ~andy/linux/blob - drivers/md/bcache/super.c
ASoC: max98090: add DT binding document for MAX98090 CODEC
[~andy/linux] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/blkdev.h>
16 #include <linux/buffer_head.h>
17 #include <linux/debugfs.h>
18 #include <linux/genhd.h>
19 #include <linux/idr.h>
20 #include <linux/kthread.h>
21 #include <linux/module.h>
22 #include <linux/random.h>
23 #include <linux/reboot.h>
24 #include <linux/sysfs.h>
25
26 MODULE_LICENSE("GPL");
27 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
28
29 static const char bcache_magic[] = {
30         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
31         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
32 };
33
34 static const char invalid_uuid[] = {
35         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
36         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
37 };
38
39 /* Default is -1; we skip past it for struct cached_dev's cache mode */
40 const char * const bch_cache_modes[] = {
41         "default",
42         "writethrough",
43         "writeback",
44         "writearound",
45         "none",
46         NULL
47 };
48
49 static struct kobject *bcache_kobj;
50 struct mutex bch_register_lock;
51 LIST_HEAD(bch_cache_sets);
52 static LIST_HEAD(uncached_devices);
53
54 static int bcache_major;
55 static DEFINE_IDA(bcache_minor);
56 static wait_queue_head_t unregister_wait;
57 struct workqueue_struct *bcache_wq;
58
59 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
60
61 static void bio_split_pool_free(struct bio_split_pool *p)
62 {
63         if (p->bio_split_hook)
64                 mempool_destroy(p->bio_split_hook);
65
66         if (p->bio_split)
67                 bioset_free(p->bio_split);
68 }
69
70 static int bio_split_pool_init(struct bio_split_pool *p)
71 {
72         p->bio_split = bioset_create(4, 0);
73         if (!p->bio_split)
74                 return -ENOMEM;
75
76         p->bio_split_hook = mempool_create_kmalloc_pool(4,
77                                 sizeof(struct bio_split_hook));
78         if (!p->bio_split_hook)
79                 return -ENOMEM;
80
81         return 0;
82 }
83
84 /* Superblock */
85
86 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
87                               struct page **res)
88 {
89         const char *err;
90         struct cache_sb *s;
91         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
92         unsigned i;
93
94         if (!bh)
95                 return "IO error";
96
97         s = (struct cache_sb *) bh->b_data;
98
99         sb->offset              = le64_to_cpu(s->offset);
100         sb->version             = le64_to_cpu(s->version);
101
102         memcpy(sb->magic,       s->magic, 16);
103         memcpy(sb->uuid,        s->uuid, 16);
104         memcpy(sb->set_uuid,    s->set_uuid, 16);
105         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
106
107         sb->flags               = le64_to_cpu(s->flags);
108         sb->seq                 = le64_to_cpu(s->seq);
109         sb->last_mount          = le32_to_cpu(s->last_mount);
110         sb->first_bucket        = le16_to_cpu(s->first_bucket);
111         sb->keys                = le16_to_cpu(s->keys);
112
113         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
114                 sb->d[i] = le64_to_cpu(s->d[i]);
115
116         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
117                  sb->version, sb->flags, sb->seq, sb->keys);
118
119         err = "Not a bcache superblock";
120         if (sb->offset != SB_SECTOR)
121                 goto err;
122
123         if (memcmp(sb->magic, bcache_magic, 16))
124                 goto err;
125
126         err = "Too many journal buckets";
127         if (sb->keys > SB_JOURNAL_BUCKETS)
128                 goto err;
129
130         err = "Bad checksum";
131         if (s->csum != csum_set(s))
132                 goto err;
133
134         err = "Bad UUID";
135         if (bch_is_zero(sb->uuid, 16))
136                 goto err;
137
138         sb->block_size  = le16_to_cpu(s->block_size);
139
140         err = "Superblock block size smaller than device block size";
141         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
142                 goto err;
143
144         switch (sb->version) {
145         case BCACHE_SB_VERSION_BDEV:
146                 sb->data_offset = BDEV_DATA_START_DEFAULT;
147                 break;
148         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
149                 sb->data_offset = le64_to_cpu(s->data_offset);
150
151                 err = "Bad data offset";
152                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
153                         goto err;
154
155                 break;
156         case BCACHE_SB_VERSION_CDEV:
157         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
158                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
159                 sb->block_size  = le16_to_cpu(s->block_size);
160                 sb->bucket_size = le16_to_cpu(s->bucket_size);
161
162                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
163                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
164
165                 err = "Too many buckets";
166                 if (sb->nbuckets > LONG_MAX)
167                         goto err;
168
169                 err = "Not enough buckets";
170                 if (sb->nbuckets < 1 << 7)
171                         goto err;
172
173                 err = "Bad block/bucket size";
174                 if (!is_power_of_2(sb->block_size) ||
175                     sb->block_size > PAGE_SECTORS ||
176                     !is_power_of_2(sb->bucket_size) ||
177                     sb->bucket_size < PAGE_SECTORS)
178                         goto err;
179
180                 err = "Invalid superblock: device too small";
181                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
182                         goto err;
183
184                 err = "Bad UUID";
185                 if (bch_is_zero(sb->set_uuid, 16))
186                         goto err;
187
188                 err = "Bad cache device number in set";
189                 if (!sb->nr_in_set ||
190                     sb->nr_in_set <= sb->nr_this_dev ||
191                     sb->nr_in_set > MAX_CACHES_PER_SET)
192                         goto err;
193
194                 err = "Journal buckets not sequential";
195                 for (i = 0; i < sb->keys; i++)
196                         if (sb->d[i] != sb->first_bucket + i)
197                                 goto err;
198
199                 err = "Too many journal buckets";
200                 if (sb->first_bucket + sb->keys > sb->nbuckets)
201                         goto err;
202
203                 err = "Invalid superblock: first bucket comes before end of super";
204                 if (sb->first_bucket * sb->bucket_size < 16)
205                         goto err;
206
207                 break;
208         default:
209                 err = "Unsupported superblock version";
210                 goto err;
211         }
212
213         sb->last_mount = get_seconds();
214         err = NULL;
215
216         get_page(bh->b_page);
217         *res = bh->b_page;
218 err:
219         put_bh(bh);
220         return err;
221 }
222
223 static void write_bdev_super_endio(struct bio *bio, int error)
224 {
225         struct cached_dev *dc = bio->bi_private;
226         /* XXX: error checking */
227
228         closure_put(&dc->sb_write.cl);
229 }
230
231 static void __write_super(struct cache_sb *sb, struct bio *bio)
232 {
233         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
234         unsigned i;
235
236         bio->bi_sector  = SB_SECTOR;
237         bio->bi_rw      = REQ_SYNC|REQ_META;
238         bio->bi_size    = SB_SIZE;
239         bch_bio_map(bio, NULL);
240
241         out->offset             = cpu_to_le64(sb->offset);
242         out->version            = cpu_to_le64(sb->version);
243
244         memcpy(out->uuid,       sb->uuid, 16);
245         memcpy(out->set_uuid,   sb->set_uuid, 16);
246         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
247
248         out->flags              = cpu_to_le64(sb->flags);
249         out->seq                = cpu_to_le64(sb->seq);
250
251         out->last_mount         = cpu_to_le32(sb->last_mount);
252         out->first_bucket       = cpu_to_le16(sb->first_bucket);
253         out->keys               = cpu_to_le16(sb->keys);
254
255         for (i = 0; i < sb->keys; i++)
256                 out->d[i] = cpu_to_le64(sb->d[i]);
257
258         out->csum = csum_set(out);
259
260         pr_debug("ver %llu, flags %llu, seq %llu",
261                  sb->version, sb->flags, sb->seq);
262
263         submit_bio(REQ_WRITE, bio);
264 }
265
266 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
267 {
268         struct closure *cl = &dc->sb_write.cl;
269         struct bio *bio = &dc->sb_bio;
270
271         closure_lock(&dc->sb_write, parent);
272
273         bio_reset(bio);
274         bio->bi_bdev    = dc->bdev;
275         bio->bi_end_io  = write_bdev_super_endio;
276         bio->bi_private = dc;
277
278         closure_get(cl);
279         __write_super(&dc->sb, bio);
280
281         closure_return(cl);
282 }
283
284 static void write_super_endio(struct bio *bio, int error)
285 {
286         struct cache *ca = bio->bi_private;
287
288         bch_count_io_errors(ca, error, "writing superblock");
289         closure_put(&ca->set->sb_write.cl);
290 }
291
292 void bcache_write_super(struct cache_set *c)
293 {
294         struct closure *cl = &c->sb_write.cl;
295         struct cache *ca;
296         unsigned i;
297
298         closure_lock(&c->sb_write, &c->cl);
299
300         c->sb.seq++;
301
302         for_each_cache(ca, c, i) {
303                 struct bio *bio = &ca->sb_bio;
304
305                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
306                 ca->sb.seq              = c->sb.seq;
307                 ca->sb.last_mount       = c->sb.last_mount;
308
309                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
310
311                 bio_reset(bio);
312                 bio->bi_bdev    = ca->bdev;
313                 bio->bi_end_io  = write_super_endio;
314                 bio->bi_private = ca;
315
316                 closure_get(cl);
317                 __write_super(&ca->sb, bio);
318         }
319
320         closure_return(cl);
321 }
322
323 /* UUID io */
324
325 static void uuid_endio(struct bio *bio, int error)
326 {
327         struct closure *cl = bio->bi_private;
328         struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
329
330         cache_set_err_on(error, c, "accessing uuids");
331         bch_bbio_free(bio, c);
332         closure_put(cl);
333 }
334
335 static void uuid_io(struct cache_set *c, unsigned long rw,
336                     struct bkey *k, struct closure *parent)
337 {
338         struct closure *cl = &c->uuid_write.cl;
339         struct uuid_entry *u;
340         unsigned i;
341         char buf[80];
342
343         BUG_ON(!parent);
344         closure_lock(&c->uuid_write, parent);
345
346         for (i = 0; i < KEY_PTRS(k); i++) {
347                 struct bio *bio = bch_bbio_alloc(c);
348
349                 bio->bi_rw      = REQ_SYNC|REQ_META|rw;
350                 bio->bi_size    = KEY_SIZE(k) << 9;
351
352                 bio->bi_end_io  = uuid_endio;
353                 bio->bi_private = cl;
354                 bch_bio_map(bio, c->uuids);
355
356                 bch_submit_bbio(bio, c, k, i);
357
358                 if (!(rw & WRITE))
359                         break;
360         }
361
362         bch_bkey_to_text(buf, sizeof(buf), k);
363         pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
364
365         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
366                 if (!bch_is_zero(u->uuid, 16))
367                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
368                                  u - c->uuids, u->uuid, u->label,
369                                  u->first_reg, u->last_reg, u->invalidated);
370
371         closure_return(cl);
372 }
373
374 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
375 {
376         struct bkey *k = &j->uuid_bucket;
377
378         if (bch_btree_ptr_invalid(c, k))
379                 return "bad uuid pointer";
380
381         bkey_copy(&c->uuid_bucket, k);
382         uuid_io(c, READ_SYNC, k, cl);
383
384         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
385                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
386                 struct uuid_entry       *u1 = (void *) c->uuids;
387                 int i;
388
389                 closure_sync(cl);
390
391                 /*
392                  * Since the new uuid entry is bigger than the old, we have to
393                  * convert starting at the highest memory address and work down
394                  * in order to do it in place
395                  */
396
397                 for (i = c->nr_uuids - 1;
398                      i >= 0;
399                      --i) {
400                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
401                         memcpy(u1[i].label,     u0[i].label, 32);
402
403                         u1[i].first_reg         = u0[i].first_reg;
404                         u1[i].last_reg          = u0[i].last_reg;
405                         u1[i].invalidated       = u0[i].invalidated;
406
407                         u1[i].flags     = 0;
408                         u1[i].sectors   = 0;
409                 }
410         }
411
412         return NULL;
413 }
414
415 static int __uuid_write(struct cache_set *c)
416 {
417         BKEY_PADDED(key) k;
418         struct closure cl;
419         closure_init_stack(&cl);
420
421         lockdep_assert_held(&bch_register_lock);
422
423         if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, true))
424                 return 1;
425
426         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
427         uuid_io(c, REQ_WRITE, &k.key, &cl);
428         closure_sync(&cl);
429
430         bkey_copy(&c->uuid_bucket, &k.key);
431         bkey_put(c, &k.key);
432         return 0;
433 }
434
435 int bch_uuid_write(struct cache_set *c)
436 {
437         int ret = __uuid_write(c);
438
439         if (!ret)
440                 bch_journal_meta(c, NULL);
441
442         return ret;
443 }
444
445 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
446 {
447         struct uuid_entry *u;
448
449         for (u = c->uuids;
450              u < c->uuids + c->nr_uuids; u++)
451                 if (!memcmp(u->uuid, uuid, 16))
452                         return u;
453
454         return NULL;
455 }
456
457 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
458 {
459         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
460         return uuid_find(c, zero_uuid);
461 }
462
463 /*
464  * Bucket priorities/gens:
465  *
466  * For each bucket, we store on disk its
467    * 8 bit gen
468    * 16 bit priority
469  *
470  * See alloc.c for an explanation of the gen. The priority is used to implement
471  * lru (and in the future other) cache replacement policies; for most purposes
472  * it's just an opaque integer.
473  *
474  * The gens and the priorities don't have a whole lot to do with each other, and
475  * it's actually the gens that must be written out at specific times - it's no
476  * big deal if the priorities don't get written, if we lose them we just reuse
477  * buckets in suboptimal order.
478  *
479  * On disk they're stored in a packed array, and in as many buckets are required
480  * to fit them all. The buckets we use to store them form a list; the journal
481  * header points to the first bucket, the first bucket points to the second
482  * bucket, et cetera.
483  *
484  * This code is used by the allocation code; periodically (whenever it runs out
485  * of buckets to allocate from) the allocation code will invalidate some
486  * buckets, but it can't use those buckets until their new gens are safely on
487  * disk.
488  */
489
490 static void prio_endio(struct bio *bio, int error)
491 {
492         struct cache *ca = bio->bi_private;
493
494         cache_set_err_on(error, ca->set, "accessing priorities");
495         bch_bbio_free(bio, ca->set);
496         closure_put(&ca->prio);
497 }
498
499 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
500 {
501         struct closure *cl = &ca->prio;
502         struct bio *bio = bch_bbio_alloc(ca->set);
503
504         closure_init_stack(cl);
505
506         bio->bi_sector  = bucket * ca->sb.bucket_size;
507         bio->bi_bdev    = ca->bdev;
508         bio->bi_rw      = REQ_SYNC|REQ_META|rw;
509         bio->bi_size    = bucket_bytes(ca);
510
511         bio->bi_end_io  = prio_endio;
512         bio->bi_private = ca;
513         bch_bio_map(bio, ca->disk_buckets);
514
515         closure_bio_submit(bio, &ca->prio, ca);
516         closure_sync(cl);
517 }
518
519 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu",           \
520         fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
521
522 void bch_prio_write(struct cache *ca)
523 {
524         int i;
525         struct bucket *b;
526         struct closure cl;
527
528         closure_init_stack(&cl);
529
530         lockdep_assert_held(&ca->set->bucket_lock);
531
532         for (b = ca->buckets;
533              b < ca->buckets + ca->sb.nbuckets; b++)
534                 b->disk_gen = b->gen;
535
536         ca->disk_buckets->seq++;
537
538         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
539                         &ca->meta_sectors_written);
540
541         pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
542                  fifo_used(&ca->free_inc), fifo_used(&ca->unused));
543
544         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
545                 long bucket;
546                 struct prio_set *p = ca->disk_buckets;
547                 struct bucket_disk *d = p->data;
548                 struct bucket_disk *end = d + prios_per_bucket(ca);
549
550                 for (b = ca->buckets + i * prios_per_bucket(ca);
551                      b < ca->buckets + ca->sb.nbuckets && d < end;
552                      b++, d++) {
553                         d->prio = cpu_to_le16(b->prio);
554                         d->gen = b->gen;
555                 }
556
557                 p->next_bucket  = ca->prio_buckets[i + 1];
558                 p->magic        = pset_magic(&ca->sb);
559                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
560
561                 bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, true);
562                 BUG_ON(bucket == -1);
563
564                 mutex_unlock(&ca->set->bucket_lock);
565                 prio_io(ca, bucket, REQ_WRITE);
566                 mutex_lock(&ca->set->bucket_lock);
567
568                 ca->prio_buckets[i] = bucket;
569                 atomic_dec_bug(&ca->buckets[bucket].pin);
570         }
571
572         mutex_unlock(&ca->set->bucket_lock);
573
574         bch_journal_meta(ca->set, &cl);
575         closure_sync(&cl);
576
577         mutex_lock(&ca->set->bucket_lock);
578
579         ca->need_save_prio = 0;
580
581         /*
582          * Don't want the old priorities to get garbage collected until after we
583          * finish writing the new ones, and they're journalled
584          */
585         for (i = 0; i < prio_buckets(ca); i++)
586                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
587 }
588
589 static void prio_read(struct cache *ca, uint64_t bucket)
590 {
591         struct prio_set *p = ca->disk_buckets;
592         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
593         struct bucket *b;
594         unsigned bucket_nr = 0;
595
596         for (b = ca->buckets;
597              b < ca->buckets + ca->sb.nbuckets;
598              b++, d++) {
599                 if (d == end) {
600                         ca->prio_buckets[bucket_nr] = bucket;
601                         ca->prio_last_buckets[bucket_nr] = bucket;
602                         bucket_nr++;
603
604                         prio_io(ca, bucket, READ_SYNC);
605
606                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
607                                 pr_warn("bad csum reading priorities");
608
609                         if (p->magic != pset_magic(&ca->sb))
610                                 pr_warn("bad magic reading priorities");
611
612                         bucket = p->next_bucket;
613                         d = p->data;
614                 }
615
616                 b->prio = le16_to_cpu(d->prio);
617                 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
618         }
619 }
620
621 /* Bcache device */
622
623 static int open_dev(struct block_device *b, fmode_t mode)
624 {
625         struct bcache_device *d = b->bd_disk->private_data;
626         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
627                 return -ENXIO;
628
629         closure_get(&d->cl);
630         return 0;
631 }
632
633 static void release_dev(struct gendisk *b, fmode_t mode)
634 {
635         struct bcache_device *d = b->private_data;
636         closure_put(&d->cl);
637 }
638
639 static int ioctl_dev(struct block_device *b, fmode_t mode,
640                      unsigned int cmd, unsigned long arg)
641 {
642         struct bcache_device *d = b->bd_disk->private_data;
643         return d->ioctl(d, mode, cmd, arg);
644 }
645
646 static const struct block_device_operations bcache_ops = {
647         .open           = open_dev,
648         .release        = release_dev,
649         .ioctl          = ioctl_dev,
650         .owner          = THIS_MODULE,
651 };
652
653 void bcache_device_stop(struct bcache_device *d)
654 {
655         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
656                 closure_queue(&d->cl);
657 }
658
659 static void bcache_device_unlink(struct bcache_device *d)
660 {
661         lockdep_assert_held(&bch_register_lock);
662
663         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
664                 unsigned i;
665                 struct cache *ca;
666
667                 sysfs_remove_link(&d->c->kobj, d->name);
668                 sysfs_remove_link(&d->kobj, "cache");
669
670                 for_each_cache(ca, d->c, i)
671                         bd_unlink_disk_holder(ca->bdev, d->disk);
672         }
673 }
674
675 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
676                                const char *name)
677 {
678         unsigned i;
679         struct cache *ca;
680
681         for_each_cache(ca, d->c, i)
682                 bd_link_disk_holder(ca->bdev, d->disk);
683
684         snprintf(d->name, BCACHEDEVNAME_SIZE,
685                  "%s%u", name, d->id);
686
687         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
688              sysfs_create_link(&c->kobj, &d->kobj, d->name),
689              "Couldn't create device <-> cache set symlinks");
690 }
691
692 static void bcache_device_detach(struct bcache_device *d)
693 {
694         lockdep_assert_held(&bch_register_lock);
695
696         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
697                 struct uuid_entry *u = d->c->uuids + d->id;
698
699                 SET_UUID_FLASH_ONLY(u, 0);
700                 memcpy(u->uuid, invalid_uuid, 16);
701                 u->invalidated = cpu_to_le32(get_seconds());
702                 bch_uuid_write(d->c);
703         }
704
705         bcache_device_unlink(d);
706
707         d->c->devices[d->id] = NULL;
708         closure_put(&d->c->caching);
709         d->c = NULL;
710 }
711
712 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
713                                  unsigned id)
714 {
715         BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
716
717         d->id = id;
718         d->c = c;
719         c->devices[id] = d;
720
721         closure_get(&c->caching);
722 }
723
724 static void bcache_device_free(struct bcache_device *d)
725 {
726         lockdep_assert_held(&bch_register_lock);
727
728         pr_info("%s stopped", d->disk->disk_name);
729
730         if (d->c)
731                 bcache_device_detach(d);
732         if (d->disk && d->disk->flags & GENHD_FL_UP)
733                 del_gendisk(d->disk);
734         if (d->disk && d->disk->queue)
735                 blk_cleanup_queue(d->disk->queue);
736         if (d->disk) {
737                 ida_simple_remove(&bcache_minor, d->disk->first_minor);
738                 put_disk(d->disk);
739         }
740
741         bio_split_pool_free(&d->bio_split_hook);
742         if (d->unaligned_bvec)
743                 mempool_destroy(d->unaligned_bvec);
744         if (d->bio_split)
745                 bioset_free(d->bio_split);
746         if (is_vmalloc_addr(d->full_dirty_stripes))
747                 vfree(d->full_dirty_stripes);
748         else
749                 kfree(d->full_dirty_stripes);
750         if (is_vmalloc_addr(d->stripe_sectors_dirty))
751                 vfree(d->stripe_sectors_dirty);
752         else
753                 kfree(d->stripe_sectors_dirty);
754
755         closure_debug_destroy(&d->cl);
756 }
757
758 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
759                               sector_t sectors)
760 {
761         struct request_queue *q;
762         size_t n;
763         int minor;
764
765         if (!d->stripe_size)
766                 d->stripe_size = 1 << 31;
767
768         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
769
770         if (!d->nr_stripes ||
771             d->nr_stripes > INT_MAX ||
772             d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
773                 pr_err("nr_stripes too large");
774                 return -ENOMEM;
775         }
776
777         n = d->nr_stripes * sizeof(atomic_t);
778         d->stripe_sectors_dirty = n < PAGE_SIZE << 6
779                 ? kzalloc(n, GFP_KERNEL)
780                 : vzalloc(n);
781         if (!d->stripe_sectors_dirty)
782                 return -ENOMEM;
783
784         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
785         d->full_dirty_stripes = n < PAGE_SIZE << 6
786                 ? kzalloc(n, GFP_KERNEL)
787                 : vzalloc(n);
788         if (!d->full_dirty_stripes)
789                 return -ENOMEM;
790
791         minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
792         if (minor < 0)
793                 return minor;
794
795         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
796             !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
797                                 sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
798             bio_split_pool_init(&d->bio_split_hook) ||
799             !(d->disk = alloc_disk(1))) {
800                 ida_simple_remove(&bcache_minor, minor);
801                 return -ENOMEM;
802         }
803
804         set_capacity(d->disk, sectors);
805         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
806
807         d->disk->major          = bcache_major;
808         d->disk->first_minor    = minor;
809         d->disk->fops           = &bcache_ops;
810         d->disk->private_data   = d;
811
812         q = blk_alloc_queue(GFP_KERNEL);
813         if (!q)
814                 return -ENOMEM;
815
816         blk_queue_make_request(q, NULL);
817         d->disk->queue                  = q;
818         q->queuedata                    = d;
819         q->backing_dev_info.congested_data = d;
820         q->limits.max_hw_sectors        = UINT_MAX;
821         q->limits.max_sectors           = UINT_MAX;
822         q->limits.max_segment_size      = UINT_MAX;
823         q->limits.max_segments          = BIO_MAX_PAGES;
824         q->limits.max_discard_sectors   = UINT_MAX;
825         q->limits.io_min                = block_size;
826         q->limits.logical_block_size    = block_size;
827         q->limits.physical_block_size   = block_size;
828         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
829         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
830
831         blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
832
833         return 0;
834 }
835
836 /* Cached device */
837
838 static void calc_cached_dev_sectors(struct cache_set *c)
839 {
840         uint64_t sectors = 0;
841         struct cached_dev *dc;
842
843         list_for_each_entry(dc, &c->cached_devs, list)
844                 sectors += bdev_sectors(dc->bdev);
845
846         c->cached_dev_sectors = sectors;
847 }
848
849 void bch_cached_dev_run(struct cached_dev *dc)
850 {
851         struct bcache_device *d = &dc->disk;
852         char buf[SB_LABEL_SIZE + 1];
853         char *env[] = {
854                 "DRIVER=bcache",
855                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
856                 NULL,
857                 NULL,
858         };
859
860         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
861         buf[SB_LABEL_SIZE] = '\0';
862         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
863
864         if (atomic_xchg(&dc->running, 1))
865                 return;
866
867         if (!d->c &&
868             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
869                 struct closure cl;
870                 closure_init_stack(&cl);
871
872                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
873                 bch_write_bdev_super(dc, &cl);
874                 closure_sync(&cl);
875         }
876
877         add_disk(d->disk);
878         bd_link_disk_holder(dc->bdev, dc->disk.disk);
879         /* won't show up in the uevent file, use udevadm monitor -e instead
880          * only class / kset properties are persistent */
881         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
882         kfree(env[1]);
883         kfree(env[2]);
884
885         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
886             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
887                 pr_debug("error creating sysfs link");
888 }
889
890 static void cached_dev_detach_finish(struct work_struct *w)
891 {
892         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
893         char buf[BDEVNAME_SIZE];
894         struct closure cl;
895         closure_init_stack(&cl);
896
897         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
898         BUG_ON(atomic_read(&dc->count));
899
900         mutex_lock(&bch_register_lock);
901
902         memset(&dc->sb.set_uuid, 0, 16);
903         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
904
905         bch_write_bdev_super(dc, &cl);
906         closure_sync(&cl);
907
908         bcache_device_detach(&dc->disk);
909         list_move(&dc->list, &uncached_devices);
910
911         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
912
913         mutex_unlock(&bch_register_lock);
914
915         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
916
917         /* Drop ref we took in cached_dev_detach() */
918         closure_put(&dc->disk.cl);
919 }
920
921 void bch_cached_dev_detach(struct cached_dev *dc)
922 {
923         lockdep_assert_held(&bch_register_lock);
924
925         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
926                 return;
927
928         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
929                 return;
930
931         /*
932          * Block the device from being closed and freed until we're finished
933          * detaching
934          */
935         closure_get(&dc->disk.cl);
936
937         bch_writeback_queue(dc);
938         cached_dev_put(dc);
939 }
940
941 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
942 {
943         uint32_t rtime = cpu_to_le32(get_seconds());
944         struct uuid_entry *u;
945         char buf[BDEVNAME_SIZE];
946
947         bdevname(dc->bdev, buf);
948
949         if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
950                 return -ENOENT;
951
952         if (dc->disk.c) {
953                 pr_err("Can't attach %s: already attached", buf);
954                 return -EINVAL;
955         }
956
957         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
958                 pr_err("Can't attach %s: shutting down", buf);
959                 return -EINVAL;
960         }
961
962         if (dc->sb.block_size < c->sb.block_size) {
963                 /* Will die */
964                 pr_err("Couldn't attach %s: block size less than set's block size",
965                        buf);
966                 return -EINVAL;
967         }
968
969         u = uuid_find(c, dc->sb.uuid);
970
971         if (u &&
972             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
973              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
974                 memcpy(u->uuid, invalid_uuid, 16);
975                 u->invalidated = cpu_to_le32(get_seconds());
976                 u = NULL;
977         }
978
979         if (!u) {
980                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
981                         pr_err("Couldn't find uuid for %s in set", buf);
982                         return -ENOENT;
983                 }
984
985                 u = uuid_find_empty(c);
986                 if (!u) {
987                         pr_err("Not caching %s, no room for UUID", buf);
988                         return -EINVAL;
989                 }
990         }
991
992         /* Deadlocks since we're called via sysfs...
993         sysfs_remove_file(&dc->kobj, &sysfs_attach);
994          */
995
996         if (bch_is_zero(u->uuid, 16)) {
997                 struct closure cl;
998                 closure_init_stack(&cl);
999
1000                 memcpy(u->uuid, dc->sb.uuid, 16);
1001                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1002                 u->first_reg = u->last_reg = rtime;
1003                 bch_uuid_write(c);
1004
1005                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1006                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1007
1008                 bch_write_bdev_super(dc, &cl);
1009                 closure_sync(&cl);
1010         } else {
1011                 u->last_reg = rtime;
1012                 bch_uuid_write(c);
1013         }
1014
1015         bcache_device_attach(&dc->disk, c, u - c->uuids);
1016         list_move(&dc->list, &c->cached_devs);
1017         calc_cached_dev_sectors(c);
1018
1019         smp_wmb();
1020         /*
1021          * dc->c must be set before dc->count != 0 - paired with the mb in
1022          * cached_dev_get()
1023          */
1024         atomic_set(&dc->count, 1);
1025
1026         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1027                 bch_sectors_dirty_init(dc);
1028                 atomic_set(&dc->has_dirty, 1);
1029                 atomic_inc(&dc->count);
1030                 bch_writeback_queue(dc);
1031         }
1032
1033         bch_cached_dev_run(dc);
1034         bcache_device_link(&dc->disk, c, "bdev");
1035
1036         pr_info("Caching %s as %s on set %pU",
1037                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1038                 dc->disk.c->sb.set_uuid);
1039         return 0;
1040 }
1041
1042 void bch_cached_dev_release(struct kobject *kobj)
1043 {
1044         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1045                                              disk.kobj);
1046         kfree(dc);
1047         module_put(THIS_MODULE);
1048 }
1049
1050 static void cached_dev_free(struct closure *cl)
1051 {
1052         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1053
1054         cancel_delayed_work_sync(&dc->writeback_rate_update);
1055         kthread_stop(dc->writeback_thread);
1056
1057         mutex_lock(&bch_register_lock);
1058
1059         if (atomic_read(&dc->running))
1060                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1061         bcache_device_free(&dc->disk);
1062         list_del(&dc->list);
1063
1064         mutex_unlock(&bch_register_lock);
1065
1066         if (!IS_ERR_OR_NULL(dc->bdev)) {
1067                 if (dc->bdev->bd_disk)
1068                         blk_sync_queue(bdev_get_queue(dc->bdev));
1069
1070                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1071         }
1072
1073         wake_up(&unregister_wait);
1074
1075         kobject_put(&dc->disk.kobj);
1076 }
1077
1078 static void cached_dev_flush(struct closure *cl)
1079 {
1080         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1081         struct bcache_device *d = &dc->disk;
1082
1083         mutex_lock(&bch_register_lock);
1084         bcache_device_unlink(d);
1085         mutex_unlock(&bch_register_lock);
1086
1087         bch_cache_accounting_destroy(&dc->accounting);
1088         kobject_del(&d->kobj);
1089
1090         continue_at(cl, cached_dev_free, system_wq);
1091 }
1092
1093 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1094 {
1095         int ret;
1096         struct io *io;
1097         struct request_queue *q = bdev_get_queue(dc->bdev);
1098
1099         __module_get(THIS_MODULE);
1100         INIT_LIST_HEAD(&dc->list);
1101         closure_init(&dc->disk.cl, NULL);
1102         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1103         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1104         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1105         closure_init_unlocked(&dc->sb_write);
1106         INIT_LIST_HEAD(&dc->io_lru);
1107         spin_lock_init(&dc->io_lock);
1108         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1109
1110         dc->sequential_cutoff           = 4 << 20;
1111
1112         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1113                 list_add(&io->lru, &dc->io_lru);
1114                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1115         }
1116
1117         ret = bcache_device_init(&dc->disk, block_size,
1118                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1119         if (ret)
1120                 return ret;
1121
1122         set_capacity(dc->disk.disk,
1123                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1124
1125         dc->disk.disk->queue->backing_dev_info.ra_pages =
1126                 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1127                     q->backing_dev_info.ra_pages);
1128
1129         bch_cached_dev_request_init(dc);
1130         bch_cached_dev_writeback_init(dc);
1131         return 0;
1132 }
1133
1134 /* Cached device - bcache superblock */
1135
1136 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1137                                  struct block_device *bdev,
1138                                  struct cached_dev *dc)
1139 {
1140         char name[BDEVNAME_SIZE];
1141         const char *err = "cannot allocate memory";
1142         struct cache_set *c;
1143
1144         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1145         dc->bdev = bdev;
1146         dc->bdev->bd_holder = dc;
1147
1148         bio_init(&dc->sb_bio);
1149         dc->sb_bio.bi_max_vecs  = 1;
1150         dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1151         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1152         get_page(sb_page);
1153
1154         if (cached_dev_init(dc, sb->block_size << 9))
1155                 goto err;
1156
1157         err = "error creating kobject";
1158         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1159                         "bcache"))
1160                 goto err;
1161         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1162                 goto err;
1163
1164         pr_info("registered backing device %s", bdevname(bdev, name));
1165
1166         list_add(&dc->list, &uncached_devices);
1167         list_for_each_entry(c, &bch_cache_sets, list)
1168                 bch_cached_dev_attach(dc, c);
1169
1170         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1171             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1172                 bch_cached_dev_run(dc);
1173
1174         return;
1175 err:
1176         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1177         bcache_device_stop(&dc->disk);
1178 }
1179
1180 /* Flash only volumes */
1181
1182 void bch_flash_dev_release(struct kobject *kobj)
1183 {
1184         struct bcache_device *d = container_of(kobj, struct bcache_device,
1185                                                kobj);
1186         kfree(d);
1187 }
1188
1189 static void flash_dev_free(struct closure *cl)
1190 {
1191         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1192         bcache_device_free(d);
1193         kobject_put(&d->kobj);
1194 }
1195
1196 static void flash_dev_flush(struct closure *cl)
1197 {
1198         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1199
1200         bcache_device_unlink(d);
1201         kobject_del(&d->kobj);
1202         continue_at(cl, flash_dev_free, system_wq);
1203 }
1204
1205 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1206 {
1207         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1208                                           GFP_KERNEL);
1209         if (!d)
1210                 return -ENOMEM;
1211
1212         closure_init(&d->cl, NULL);
1213         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1214
1215         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1216
1217         if (bcache_device_init(d, block_bytes(c), u->sectors))
1218                 goto err;
1219
1220         bcache_device_attach(d, c, u - c->uuids);
1221         bch_flash_dev_request_init(d);
1222         add_disk(d->disk);
1223
1224         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1225                 goto err;
1226
1227         bcache_device_link(d, c, "volume");
1228
1229         return 0;
1230 err:
1231         kobject_put(&d->kobj);
1232         return -ENOMEM;
1233 }
1234
1235 static int flash_devs_run(struct cache_set *c)
1236 {
1237         int ret = 0;
1238         struct uuid_entry *u;
1239
1240         for (u = c->uuids;
1241              u < c->uuids + c->nr_uuids && !ret;
1242              u++)
1243                 if (UUID_FLASH_ONLY(u))
1244                         ret = flash_dev_run(c, u);
1245
1246         return ret;
1247 }
1248
1249 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1250 {
1251         struct uuid_entry *u;
1252
1253         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1254                 return -EINTR;
1255
1256         u = uuid_find_empty(c);
1257         if (!u) {
1258                 pr_err("Can't create volume, no room for UUID");
1259                 return -EINVAL;
1260         }
1261
1262         get_random_bytes(u->uuid, 16);
1263         memset(u->label, 0, 32);
1264         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1265
1266         SET_UUID_FLASH_ONLY(u, 1);
1267         u->sectors = size >> 9;
1268
1269         bch_uuid_write(c);
1270
1271         return flash_dev_run(c, u);
1272 }
1273
1274 /* Cache set */
1275
1276 __printf(2, 3)
1277 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1278 {
1279         va_list args;
1280
1281         if (c->on_error != ON_ERROR_PANIC &&
1282             test_bit(CACHE_SET_STOPPING, &c->flags))
1283                 return false;
1284
1285         /* XXX: we can be called from atomic context
1286         acquire_console_sem();
1287         */
1288
1289         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1290
1291         va_start(args, fmt);
1292         vprintk(fmt, args);
1293         va_end(args);
1294
1295         printk(", disabling caching\n");
1296
1297         if (c->on_error == ON_ERROR_PANIC)
1298                 panic("panic forced after error\n");
1299
1300         bch_cache_set_unregister(c);
1301         return true;
1302 }
1303
1304 void bch_cache_set_release(struct kobject *kobj)
1305 {
1306         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1307         kfree(c);
1308         module_put(THIS_MODULE);
1309 }
1310
1311 static void cache_set_free(struct closure *cl)
1312 {
1313         struct cache_set *c = container_of(cl, struct cache_set, cl);
1314         struct cache *ca;
1315         unsigned i;
1316
1317         if (!IS_ERR_OR_NULL(c->debug))
1318                 debugfs_remove(c->debug);
1319
1320         bch_open_buckets_free(c);
1321         bch_btree_cache_free(c);
1322         bch_journal_free(c);
1323
1324         for_each_cache(ca, c, i)
1325                 if (ca)
1326                         kobject_put(&ca->kobj);
1327
1328         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1329         free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1330
1331         if (c->bio_split)
1332                 bioset_free(c->bio_split);
1333         if (c->fill_iter)
1334                 mempool_destroy(c->fill_iter);
1335         if (c->bio_meta)
1336                 mempool_destroy(c->bio_meta);
1337         if (c->search)
1338                 mempool_destroy(c->search);
1339         kfree(c->devices);
1340
1341         mutex_lock(&bch_register_lock);
1342         list_del(&c->list);
1343         mutex_unlock(&bch_register_lock);
1344
1345         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1346         wake_up(&unregister_wait);
1347
1348         closure_debug_destroy(&c->cl);
1349         kobject_put(&c->kobj);
1350 }
1351
1352 static void cache_set_flush(struct closure *cl)
1353 {
1354         struct cache_set *c = container_of(cl, struct cache_set, caching);
1355         struct cache *ca;
1356         struct btree *b;
1357         unsigned i;
1358
1359         bch_cache_accounting_destroy(&c->accounting);
1360
1361         kobject_put(&c->internal);
1362         kobject_del(&c->kobj);
1363
1364         if (c->gc_thread)
1365                 kthread_stop(c->gc_thread);
1366
1367         if (!IS_ERR_OR_NULL(c->root))
1368                 list_add(&c->root->list, &c->btree_cache);
1369
1370         /* Should skip this if we're unregistering because of an error */
1371         list_for_each_entry(b, &c->btree_cache, list)
1372                 if (btree_node_dirty(b))
1373                         bch_btree_node_write(b, NULL);
1374
1375         for_each_cache(ca, c, i)
1376                 if (ca->alloc_thread)
1377                         kthread_stop(ca->alloc_thread);
1378
1379         closure_return(cl);
1380 }
1381
1382 static void __cache_set_unregister(struct closure *cl)
1383 {
1384         struct cache_set *c = container_of(cl, struct cache_set, caching);
1385         struct cached_dev *dc;
1386         size_t i;
1387
1388         mutex_lock(&bch_register_lock);
1389
1390         for (i = 0; i < c->nr_uuids; i++)
1391                 if (c->devices[i]) {
1392                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1393                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1394                                 dc = container_of(c->devices[i],
1395                                                   struct cached_dev, disk);
1396                                 bch_cached_dev_detach(dc);
1397                         } else {
1398                                 bcache_device_stop(c->devices[i]);
1399                         }
1400                 }
1401
1402         mutex_unlock(&bch_register_lock);
1403
1404         continue_at(cl, cache_set_flush, system_wq);
1405 }
1406
1407 void bch_cache_set_stop(struct cache_set *c)
1408 {
1409         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1410                 closure_queue(&c->caching);
1411 }
1412
1413 void bch_cache_set_unregister(struct cache_set *c)
1414 {
1415         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1416         bch_cache_set_stop(c);
1417 }
1418
1419 #define alloc_bucket_pages(gfp, c)                      \
1420         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1421
1422 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1423 {
1424         int iter_size;
1425         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1426         if (!c)
1427                 return NULL;
1428
1429         __module_get(THIS_MODULE);
1430         closure_init(&c->cl, NULL);
1431         set_closure_fn(&c->cl, cache_set_free, system_wq);
1432
1433         closure_init(&c->caching, &c->cl);
1434         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1435
1436         /* Maybe create continue_at_noreturn() and use it here? */
1437         closure_set_stopped(&c->cl);
1438         closure_put(&c->cl);
1439
1440         kobject_init(&c->kobj, &bch_cache_set_ktype);
1441         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1442
1443         bch_cache_accounting_init(&c->accounting, &c->cl);
1444
1445         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1446         c->sb.block_size        = sb->block_size;
1447         c->sb.bucket_size       = sb->bucket_size;
1448         c->sb.nr_in_set         = sb->nr_in_set;
1449         c->sb.last_mount        = sb->last_mount;
1450         c->bucket_bits          = ilog2(sb->bucket_size);
1451         c->block_bits           = ilog2(sb->block_size);
1452         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1453
1454         c->btree_pages          = c->sb.bucket_size / PAGE_SECTORS;
1455         if (c->btree_pages > BTREE_MAX_PAGES)
1456                 c->btree_pages = max_t(int, c->btree_pages / 4,
1457                                        BTREE_MAX_PAGES);
1458
1459         c->sort_crit_factor = int_sqrt(c->btree_pages);
1460
1461         closure_init_unlocked(&c->sb_write);
1462         mutex_init(&c->bucket_lock);
1463         init_waitqueue_head(&c->try_wait);
1464         init_waitqueue_head(&c->bucket_wait);
1465         closure_init_unlocked(&c->uuid_write);
1466         mutex_init(&c->sort_lock);
1467
1468         spin_lock_init(&c->sort_time.lock);
1469         spin_lock_init(&c->btree_gc_time.lock);
1470         spin_lock_init(&c->btree_split_time.lock);
1471         spin_lock_init(&c->btree_read_time.lock);
1472         spin_lock_init(&c->try_harder_time.lock);
1473
1474         bch_moving_init_cache_set(c);
1475
1476         INIT_LIST_HEAD(&c->list);
1477         INIT_LIST_HEAD(&c->cached_devs);
1478         INIT_LIST_HEAD(&c->btree_cache);
1479         INIT_LIST_HEAD(&c->btree_cache_freeable);
1480         INIT_LIST_HEAD(&c->btree_cache_freed);
1481         INIT_LIST_HEAD(&c->data_buckets);
1482
1483         c->search = mempool_create_slab_pool(32, bch_search_cache);
1484         if (!c->search)
1485                 goto err;
1486
1487         iter_size = (sb->bucket_size / sb->block_size + 1) *
1488                 sizeof(struct btree_iter_set);
1489
1490         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1491             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1492                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1493                                 bucket_pages(c))) ||
1494             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1495             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1496             !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1497             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1498             bch_journal_alloc(c) ||
1499             bch_btree_cache_alloc(c) ||
1500             bch_open_buckets_alloc(c))
1501                 goto err;
1502
1503         c->congested_read_threshold_us  = 2000;
1504         c->congested_write_threshold_us = 20000;
1505         c->error_limit  = 8 << IO_ERROR_SHIFT;
1506
1507         return c;
1508 err:
1509         bch_cache_set_unregister(c);
1510         return NULL;
1511 }
1512
1513 static void run_cache_set(struct cache_set *c)
1514 {
1515         const char *err = "cannot allocate memory";
1516         struct cached_dev *dc, *t;
1517         struct cache *ca;
1518         struct closure cl;
1519         unsigned i;
1520
1521         closure_init_stack(&cl);
1522
1523         for_each_cache(ca, c, i)
1524                 c->nbuckets += ca->sb.nbuckets;
1525
1526         if (CACHE_SYNC(&c->sb)) {
1527                 LIST_HEAD(journal);
1528                 struct bkey *k;
1529                 struct jset *j;
1530
1531                 err = "cannot allocate memory for journal";
1532                 if (bch_journal_read(c, &journal))
1533                         goto err;
1534
1535                 pr_debug("btree_journal_read() done");
1536
1537                 err = "no journal entries found";
1538                 if (list_empty(&journal))
1539                         goto err;
1540
1541                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1542
1543                 err = "IO error reading priorities";
1544                 for_each_cache(ca, c, i)
1545                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1546
1547                 /*
1548                  * If prio_read() fails it'll call cache_set_error and we'll
1549                  * tear everything down right away, but if we perhaps checked
1550                  * sooner we could avoid journal replay.
1551                  */
1552
1553                 k = &j->btree_root;
1554
1555                 err = "bad btree root";
1556                 if (bch_btree_ptr_invalid(c, k))
1557                         goto err;
1558
1559                 err = "error reading btree root";
1560                 c->root = bch_btree_node_get(c, k, j->btree_level, true);
1561                 if (IS_ERR_OR_NULL(c->root))
1562                         goto err;
1563
1564                 list_del_init(&c->root->list);
1565                 rw_unlock(true, c->root);
1566
1567                 err = uuid_read(c, j, &cl);
1568                 if (err)
1569                         goto err;
1570
1571                 err = "error in recovery";
1572                 if (bch_btree_check(c))
1573                         goto err;
1574
1575                 bch_journal_mark(c, &journal);
1576                 bch_btree_gc_finish(c);
1577                 pr_debug("btree_check() done");
1578
1579                 /*
1580                  * bcache_journal_next() can't happen sooner, or
1581                  * btree_gc_finish() will give spurious errors about last_gc >
1582                  * gc_gen - this is a hack but oh well.
1583                  */
1584                 bch_journal_next(&c->journal);
1585
1586                 err = "error starting allocator thread";
1587                 for_each_cache(ca, c, i)
1588                         if (bch_cache_allocator_start(ca))
1589                                 goto err;
1590
1591                 /*
1592                  * First place it's safe to allocate: btree_check() and
1593                  * btree_gc_finish() have to run before we have buckets to
1594                  * allocate, and bch_bucket_alloc_set() might cause a journal
1595                  * entry to be written so bcache_journal_next() has to be called
1596                  * first.
1597                  *
1598                  * If the uuids were in the old format we have to rewrite them
1599                  * before the next journal entry is written:
1600                  */
1601                 if (j->version < BCACHE_JSET_VERSION_UUID)
1602                         __uuid_write(c);
1603
1604                 bch_journal_replay(c, &journal);
1605         } else {
1606                 pr_notice("invalidating existing data");
1607
1608                 for_each_cache(ca, c, i) {
1609                         unsigned j;
1610
1611                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1612                                               2, SB_JOURNAL_BUCKETS);
1613
1614                         for (j = 0; j < ca->sb.keys; j++)
1615                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1616                 }
1617
1618                 bch_btree_gc_finish(c);
1619
1620                 err = "error starting allocator thread";
1621                 for_each_cache(ca, c, i)
1622                         if (bch_cache_allocator_start(ca))
1623                                 goto err;
1624
1625                 mutex_lock(&c->bucket_lock);
1626                 for_each_cache(ca, c, i)
1627                         bch_prio_write(ca);
1628                 mutex_unlock(&c->bucket_lock);
1629
1630                 err = "cannot allocate new UUID bucket";
1631                 if (__uuid_write(c))
1632                         goto err;
1633
1634                 err = "cannot allocate new btree root";
1635                 c->root = bch_btree_node_alloc(c, 0, true);
1636                 if (IS_ERR_OR_NULL(c->root))
1637                         goto err;
1638
1639                 bkey_copy_key(&c->root->key, &MAX_KEY);
1640                 bch_btree_node_write(c->root, &cl);
1641
1642                 bch_btree_set_root(c->root);
1643                 rw_unlock(true, c->root);
1644
1645                 /*
1646                  * We don't want to write the first journal entry until
1647                  * everything is set up - fortunately journal entries won't be
1648                  * written until the SET_CACHE_SYNC() here:
1649                  */
1650                 SET_CACHE_SYNC(&c->sb, true);
1651
1652                 bch_journal_next(&c->journal);
1653                 bch_journal_meta(c, &cl);
1654         }
1655
1656         err = "error starting gc thread";
1657         if (bch_gc_thread_start(c))
1658                 goto err;
1659
1660         closure_sync(&cl);
1661         c->sb.last_mount = get_seconds();
1662         bcache_write_super(c);
1663
1664         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1665                 bch_cached_dev_attach(dc, c);
1666
1667         flash_devs_run(c);
1668
1669         return;
1670 err:
1671         closure_sync(&cl);
1672         /* XXX: test this, it's broken */
1673         bch_cache_set_error(c, "%s", err);
1674 }
1675
1676 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1677 {
1678         return ca->sb.block_size        == c->sb.block_size &&
1679                 ca->sb.bucket_size      == c->sb.block_size &&
1680                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1681 }
1682
1683 static const char *register_cache_set(struct cache *ca)
1684 {
1685         char buf[12];
1686         const char *err = "cannot allocate memory";
1687         struct cache_set *c;
1688
1689         list_for_each_entry(c, &bch_cache_sets, list)
1690                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1691                         if (c->cache[ca->sb.nr_this_dev])
1692                                 return "duplicate cache set member";
1693
1694                         if (!can_attach_cache(ca, c))
1695                                 return "cache sb does not match set";
1696
1697                         if (!CACHE_SYNC(&ca->sb))
1698                                 SET_CACHE_SYNC(&c->sb, false);
1699
1700                         goto found;
1701                 }
1702
1703         c = bch_cache_set_alloc(&ca->sb);
1704         if (!c)
1705                 return err;
1706
1707         err = "error creating kobject";
1708         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1709             kobject_add(&c->internal, &c->kobj, "internal"))
1710                 goto err;
1711
1712         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1713                 goto err;
1714
1715         bch_debug_init_cache_set(c);
1716
1717         list_add(&c->list, &bch_cache_sets);
1718 found:
1719         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1720         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1721             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1722                 goto err;
1723
1724         if (ca->sb.seq > c->sb.seq) {
1725                 c->sb.version           = ca->sb.version;
1726                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1727                 c->sb.flags             = ca->sb.flags;
1728                 c->sb.seq               = ca->sb.seq;
1729                 pr_debug("set version = %llu", c->sb.version);
1730         }
1731
1732         ca->set = c;
1733         ca->set->cache[ca->sb.nr_this_dev] = ca;
1734         c->cache_by_alloc[c->caches_loaded++] = ca;
1735
1736         if (c->caches_loaded == c->sb.nr_in_set)
1737                 run_cache_set(c);
1738
1739         return NULL;
1740 err:
1741         bch_cache_set_unregister(c);
1742         return err;
1743 }
1744
1745 /* Cache device */
1746
1747 void bch_cache_release(struct kobject *kobj)
1748 {
1749         struct cache *ca = container_of(kobj, struct cache, kobj);
1750
1751         if (ca->set)
1752                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1753
1754         bio_split_pool_free(&ca->bio_split_hook);
1755
1756         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1757         kfree(ca->prio_buckets);
1758         vfree(ca->buckets);
1759
1760         free_heap(&ca->heap);
1761         free_fifo(&ca->unused);
1762         free_fifo(&ca->free_inc);
1763         free_fifo(&ca->free);
1764
1765         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1766                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1767
1768         if (!IS_ERR_OR_NULL(ca->bdev)) {
1769                 blk_sync_queue(bdev_get_queue(ca->bdev));
1770                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1771         }
1772
1773         kfree(ca);
1774         module_put(THIS_MODULE);
1775 }
1776
1777 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1778 {
1779         size_t free;
1780         struct bucket *b;
1781
1782         __module_get(THIS_MODULE);
1783         kobject_init(&ca->kobj, &bch_cache_ktype);
1784
1785         bio_init(&ca->journal.bio);
1786         ca->journal.bio.bi_max_vecs = 8;
1787         ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1788
1789         free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1790         free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1791
1792         if (!init_fifo(&ca->free,       free, GFP_KERNEL) ||
1793             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1794             !init_fifo(&ca->unused,     free << 2, GFP_KERNEL) ||
1795             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1796             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1797                                           ca->sb.nbuckets)) ||
1798             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1799                                           2, GFP_KERNEL)) ||
1800             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1801             bio_split_pool_init(&ca->bio_split_hook))
1802                 return -ENOMEM;
1803
1804         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1805
1806         for_each_bucket(b, ca)
1807                 atomic_set(&b->pin, 0);
1808
1809         if (bch_cache_allocator_init(ca))
1810                 goto err;
1811
1812         return 0;
1813 err:
1814         kobject_put(&ca->kobj);
1815         return -ENOMEM;
1816 }
1817
1818 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1819                                   struct block_device *bdev, struct cache *ca)
1820 {
1821         char name[BDEVNAME_SIZE];
1822         const char *err = "cannot allocate memory";
1823
1824         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1825         ca->bdev = bdev;
1826         ca->bdev->bd_holder = ca;
1827
1828         bio_init(&ca->sb_bio);
1829         ca->sb_bio.bi_max_vecs  = 1;
1830         ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1831         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1832         get_page(sb_page);
1833
1834         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1835                 ca->discard = CACHE_DISCARD(&ca->sb);
1836
1837         if (cache_alloc(sb, ca) != 0)
1838                 goto err;
1839
1840         err = "error creating kobject";
1841         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1842                 goto err;
1843
1844         err = register_cache_set(ca);
1845         if (err)
1846                 goto err;
1847
1848         pr_info("registered cache device %s", bdevname(bdev, name));
1849         return;
1850 err:
1851         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1852         kobject_put(&ca->kobj);
1853 }
1854
1855 /* Global interfaces/init */
1856
1857 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1858                                const char *, size_t);
1859
1860 kobj_attribute_write(register,          register_bcache);
1861 kobj_attribute_write(register_quiet,    register_bcache);
1862
1863 static bool bch_is_open_backing(struct block_device *bdev) {
1864         struct cache_set *c, *tc;
1865         struct cached_dev *dc, *t;
1866
1867         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1868                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1869                         if (dc->bdev == bdev)
1870                                 return true;
1871         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1872                 if (dc->bdev == bdev)
1873                         return true;
1874         return false;
1875 }
1876
1877 static bool bch_is_open_cache(struct block_device *bdev) {
1878         struct cache_set *c, *tc;
1879         struct cache *ca;
1880         unsigned i;
1881
1882         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1883                 for_each_cache(ca, c, i)
1884                         if (ca->bdev == bdev)
1885                                 return true;
1886         return false;
1887 }
1888
1889 static bool bch_is_open(struct block_device *bdev) {
1890         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1891 }
1892
1893 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1894                                const char *buffer, size_t size)
1895 {
1896         ssize_t ret = size;
1897         const char *err = "cannot allocate memory";
1898         char *path = NULL;
1899         struct cache_sb *sb = NULL;
1900         struct block_device *bdev = NULL;
1901         struct page *sb_page = NULL;
1902
1903         if (!try_module_get(THIS_MODULE))
1904                 return -EBUSY;
1905
1906         mutex_lock(&bch_register_lock);
1907
1908         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1909             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1910                 goto err;
1911
1912         err = "failed to open device";
1913         bdev = blkdev_get_by_path(strim(path),
1914                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1915                                   sb);
1916         if (IS_ERR(bdev)) {
1917                 if (bdev == ERR_PTR(-EBUSY)) {
1918                         bdev = lookup_bdev(strim(path));
1919                         if (!IS_ERR(bdev) && bch_is_open(bdev))
1920                                 err = "device already registered";
1921                         else
1922                                 err = "device busy";
1923                 }
1924                 goto err;
1925         }
1926
1927         err = "failed to set blocksize";
1928         if (set_blocksize(bdev, 4096))
1929                 goto err_close;
1930
1931         err = read_super(sb, bdev, &sb_page);
1932         if (err)
1933                 goto err_close;
1934
1935         if (SB_IS_BDEV(sb)) {
1936                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1937                 if (!dc)
1938                         goto err_close;
1939
1940                 register_bdev(sb, sb_page, bdev, dc);
1941         } else {
1942                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1943                 if (!ca)
1944                         goto err_close;
1945
1946                 register_cache(sb, sb_page, bdev, ca);
1947         }
1948 out:
1949         if (sb_page)
1950                 put_page(sb_page);
1951         kfree(sb);
1952         kfree(path);
1953         mutex_unlock(&bch_register_lock);
1954         module_put(THIS_MODULE);
1955         return ret;
1956
1957 err_close:
1958         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1959 err:
1960         if (attr != &ksysfs_register_quiet)
1961                 pr_info("error opening %s: %s", path, err);
1962         ret = -EINVAL;
1963         goto out;
1964 }
1965
1966 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1967 {
1968         if (code == SYS_DOWN ||
1969             code == SYS_HALT ||
1970             code == SYS_POWER_OFF) {
1971                 DEFINE_WAIT(wait);
1972                 unsigned long start = jiffies;
1973                 bool stopped = false;
1974
1975                 struct cache_set *c, *tc;
1976                 struct cached_dev *dc, *tdc;
1977
1978                 mutex_lock(&bch_register_lock);
1979
1980                 if (list_empty(&bch_cache_sets) &&
1981                     list_empty(&uncached_devices))
1982                         goto out;
1983
1984                 pr_info("Stopping all devices:");
1985
1986                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1987                         bch_cache_set_stop(c);
1988
1989                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1990                         bcache_device_stop(&dc->disk);
1991
1992                 /* What's a condition variable? */
1993                 while (1) {
1994                         long timeout = start + 2 * HZ - jiffies;
1995
1996                         stopped = list_empty(&bch_cache_sets) &&
1997                                 list_empty(&uncached_devices);
1998
1999                         if (timeout < 0 || stopped)
2000                                 break;
2001
2002                         prepare_to_wait(&unregister_wait, &wait,
2003                                         TASK_UNINTERRUPTIBLE);
2004
2005                         mutex_unlock(&bch_register_lock);
2006                         schedule_timeout(timeout);
2007                         mutex_lock(&bch_register_lock);
2008                 }
2009
2010                 finish_wait(&unregister_wait, &wait);
2011
2012                 if (stopped)
2013                         pr_info("All devices stopped");
2014                 else
2015                         pr_notice("Timeout waiting for devices to be closed");
2016 out:
2017                 mutex_unlock(&bch_register_lock);
2018         }
2019
2020         return NOTIFY_DONE;
2021 }
2022
2023 static struct notifier_block reboot = {
2024         .notifier_call  = bcache_reboot,
2025         .priority       = INT_MAX, /* before any real devices */
2026 };
2027
2028 static void bcache_exit(void)
2029 {
2030         bch_debug_exit();
2031         bch_request_exit();
2032         bch_btree_exit();
2033         if (bcache_kobj)
2034                 kobject_put(bcache_kobj);
2035         if (bcache_wq)
2036                 destroy_workqueue(bcache_wq);
2037         unregister_blkdev(bcache_major, "bcache");
2038         unregister_reboot_notifier(&reboot);
2039 }
2040
2041 static int __init bcache_init(void)
2042 {
2043         static const struct attribute *files[] = {
2044                 &ksysfs_register.attr,
2045                 &ksysfs_register_quiet.attr,
2046                 NULL
2047         };
2048
2049         mutex_init(&bch_register_lock);
2050         init_waitqueue_head(&unregister_wait);
2051         register_reboot_notifier(&reboot);
2052         closure_debug_init();
2053
2054         bcache_major = register_blkdev(0, "bcache");
2055         if (bcache_major < 0)
2056                 return bcache_major;
2057
2058         if (!(bcache_wq = create_workqueue("bcache")) ||
2059             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2060             sysfs_create_files(bcache_kobj, files) ||
2061             bch_btree_init() ||
2062             bch_request_init() ||
2063             bch_debug_init(bcache_kobj))
2064                 goto err;
2065
2066         return 0;
2067 err:
2068         bcache_exit();
2069         return -ENOMEM;
2070 }
2071
2072 module_exit(bcache_exit);
2073 module_init(bcache_init);