]> Pileus Git - ~andy/linux/blob - drivers/md/bcache/super.c
63ebef78df4ab38dd926cccf0a9788e81d640121
[~andy/linux] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/blkdev.h>
16 #include <linux/buffer_head.h>
17 #include <linux/debugfs.h>
18 #include <linux/genhd.h>
19 #include <linux/idr.h>
20 #include <linux/kthread.h>
21 #include <linux/module.h>
22 #include <linux/random.h>
23 #include <linux/reboot.h>
24 #include <linux/sysfs.h>
25
26 MODULE_LICENSE("GPL");
27 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
28
29 static const char bcache_magic[] = {
30         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
31         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
32 };
33
34 static const char invalid_uuid[] = {
35         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
36         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
37 };
38
39 /* Default is -1; we skip past it for struct cached_dev's cache mode */
40 const char * const bch_cache_modes[] = {
41         "default",
42         "writethrough",
43         "writeback",
44         "writearound",
45         "none",
46         NULL
47 };
48
49 static struct kobject *bcache_kobj;
50 struct mutex bch_register_lock;
51 LIST_HEAD(bch_cache_sets);
52 static LIST_HEAD(uncached_devices);
53
54 static int bcache_major;
55 static DEFINE_IDA(bcache_minor);
56 static wait_queue_head_t unregister_wait;
57 struct workqueue_struct *bcache_wq;
58
59 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
60
61 static void bio_split_pool_free(struct bio_split_pool *p)
62 {
63         if (p->bio_split_hook)
64                 mempool_destroy(p->bio_split_hook);
65
66         if (p->bio_split)
67                 bioset_free(p->bio_split);
68 }
69
70 static int bio_split_pool_init(struct bio_split_pool *p)
71 {
72         p->bio_split = bioset_create(4, 0);
73         if (!p->bio_split)
74                 return -ENOMEM;
75
76         p->bio_split_hook = mempool_create_kmalloc_pool(4,
77                                 sizeof(struct bio_split_hook));
78         if (!p->bio_split_hook)
79                 return -ENOMEM;
80
81         return 0;
82 }
83
84 /* Superblock */
85
86 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
87                               struct page **res)
88 {
89         const char *err;
90         struct cache_sb *s;
91         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
92         unsigned i;
93
94         if (!bh)
95                 return "IO error";
96
97         s = (struct cache_sb *) bh->b_data;
98
99         sb->offset              = le64_to_cpu(s->offset);
100         sb->version             = le64_to_cpu(s->version);
101
102         memcpy(sb->magic,       s->magic, 16);
103         memcpy(sb->uuid,        s->uuid, 16);
104         memcpy(sb->set_uuid,    s->set_uuid, 16);
105         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
106
107         sb->flags               = le64_to_cpu(s->flags);
108         sb->seq                 = le64_to_cpu(s->seq);
109         sb->last_mount          = le32_to_cpu(s->last_mount);
110         sb->first_bucket        = le16_to_cpu(s->first_bucket);
111         sb->keys                = le16_to_cpu(s->keys);
112
113         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
114                 sb->d[i] = le64_to_cpu(s->d[i]);
115
116         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
117                  sb->version, sb->flags, sb->seq, sb->keys);
118
119         err = "Not a bcache superblock";
120         if (sb->offset != SB_SECTOR)
121                 goto err;
122
123         if (memcmp(sb->magic, bcache_magic, 16))
124                 goto err;
125
126         err = "Too many journal buckets";
127         if (sb->keys > SB_JOURNAL_BUCKETS)
128                 goto err;
129
130         err = "Bad checksum";
131         if (s->csum != csum_set(s))
132                 goto err;
133
134         err = "Bad UUID";
135         if (bch_is_zero(sb->uuid, 16))
136                 goto err;
137
138         sb->block_size  = le16_to_cpu(s->block_size);
139
140         err = "Superblock block size smaller than device block size";
141         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
142                 goto err;
143
144         switch (sb->version) {
145         case BCACHE_SB_VERSION_BDEV:
146                 sb->data_offset = BDEV_DATA_START_DEFAULT;
147                 break;
148         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
149                 sb->data_offset = le64_to_cpu(s->data_offset);
150
151                 err = "Bad data offset";
152                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
153                         goto err;
154
155                 break;
156         case BCACHE_SB_VERSION_CDEV:
157         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
158                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
159                 sb->block_size  = le16_to_cpu(s->block_size);
160                 sb->bucket_size = le16_to_cpu(s->bucket_size);
161
162                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
163                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
164
165                 err = "Too many buckets";
166                 if (sb->nbuckets > LONG_MAX)
167                         goto err;
168
169                 err = "Not enough buckets";
170                 if (sb->nbuckets < 1 << 7)
171                         goto err;
172
173                 err = "Bad block/bucket size";
174                 if (!is_power_of_2(sb->block_size) ||
175                     sb->block_size > PAGE_SECTORS ||
176                     !is_power_of_2(sb->bucket_size) ||
177                     sb->bucket_size < PAGE_SECTORS)
178                         goto err;
179
180                 err = "Invalid superblock: device too small";
181                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
182                         goto err;
183
184                 err = "Bad UUID";
185                 if (bch_is_zero(sb->set_uuid, 16))
186                         goto err;
187
188                 err = "Bad cache device number in set";
189                 if (!sb->nr_in_set ||
190                     sb->nr_in_set <= sb->nr_this_dev ||
191                     sb->nr_in_set > MAX_CACHES_PER_SET)
192                         goto err;
193
194                 err = "Journal buckets not sequential";
195                 for (i = 0; i < sb->keys; i++)
196                         if (sb->d[i] != sb->first_bucket + i)
197                                 goto err;
198
199                 err = "Too many journal buckets";
200                 if (sb->first_bucket + sb->keys > sb->nbuckets)
201                         goto err;
202
203                 err = "Invalid superblock: first bucket comes before end of super";
204                 if (sb->first_bucket * sb->bucket_size < 16)
205                         goto err;
206
207                 break;
208         default:
209                 err = "Unsupported superblock version";
210                 goto err;
211         }
212
213         sb->last_mount = get_seconds();
214         err = NULL;
215
216         get_page(bh->b_page);
217         *res = bh->b_page;
218 err:
219         put_bh(bh);
220         return err;
221 }
222
223 static void write_bdev_super_endio(struct bio *bio, int error)
224 {
225         struct cached_dev *dc = bio->bi_private;
226         /* XXX: error checking */
227
228         closure_put(&dc->sb_write);
229 }
230
231 static void __write_super(struct cache_sb *sb, struct bio *bio)
232 {
233         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
234         unsigned i;
235
236         bio->bi_iter.bi_sector  = SB_SECTOR;
237         bio->bi_rw              = REQ_SYNC|REQ_META;
238         bio->bi_iter.bi_size    = SB_SIZE;
239         bch_bio_map(bio, NULL);
240
241         out->offset             = cpu_to_le64(sb->offset);
242         out->version            = cpu_to_le64(sb->version);
243
244         memcpy(out->uuid,       sb->uuid, 16);
245         memcpy(out->set_uuid,   sb->set_uuid, 16);
246         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
247
248         out->flags              = cpu_to_le64(sb->flags);
249         out->seq                = cpu_to_le64(sb->seq);
250
251         out->last_mount         = cpu_to_le32(sb->last_mount);
252         out->first_bucket       = cpu_to_le16(sb->first_bucket);
253         out->keys               = cpu_to_le16(sb->keys);
254
255         for (i = 0; i < sb->keys; i++)
256                 out->d[i] = cpu_to_le64(sb->d[i]);
257
258         out->csum = csum_set(out);
259
260         pr_debug("ver %llu, flags %llu, seq %llu",
261                  sb->version, sb->flags, sb->seq);
262
263         submit_bio(REQ_WRITE, bio);
264 }
265
266 static void bch_write_bdev_super_unlock(struct closure *cl)
267 {
268         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
269
270         up(&dc->sb_write_mutex);
271 }
272
273 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
274 {
275         struct closure *cl = &dc->sb_write;
276         struct bio *bio = &dc->sb_bio;
277
278         down(&dc->sb_write_mutex);
279         closure_init(cl, parent);
280
281         bio_reset(bio);
282         bio->bi_bdev    = dc->bdev;
283         bio->bi_end_io  = write_bdev_super_endio;
284         bio->bi_private = dc;
285
286         closure_get(cl);
287         __write_super(&dc->sb, bio);
288
289         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
290 }
291
292 static void write_super_endio(struct bio *bio, int error)
293 {
294         struct cache *ca = bio->bi_private;
295
296         bch_count_io_errors(ca, error, "writing superblock");
297         closure_put(&ca->set->sb_write);
298 }
299
300 static void bcache_write_super_unlock(struct closure *cl)
301 {
302         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
303
304         up(&c->sb_write_mutex);
305 }
306
307 void bcache_write_super(struct cache_set *c)
308 {
309         struct closure *cl = &c->sb_write;
310         struct cache *ca;
311         unsigned i;
312
313         down(&c->sb_write_mutex);
314         closure_init(cl, &c->cl);
315
316         c->sb.seq++;
317
318         for_each_cache(ca, c, i) {
319                 struct bio *bio = &ca->sb_bio;
320
321                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
322                 ca->sb.seq              = c->sb.seq;
323                 ca->sb.last_mount       = c->sb.last_mount;
324
325                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
326
327                 bio_reset(bio);
328                 bio->bi_bdev    = ca->bdev;
329                 bio->bi_end_io  = write_super_endio;
330                 bio->bi_private = ca;
331
332                 closure_get(cl);
333                 __write_super(&ca->sb, bio);
334         }
335
336         closure_return_with_destructor(cl, bcache_write_super_unlock);
337 }
338
339 /* UUID io */
340
341 static void uuid_endio(struct bio *bio, int error)
342 {
343         struct closure *cl = bio->bi_private;
344         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
345
346         cache_set_err_on(error, c, "accessing uuids");
347         bch_bbio_free(bio, c);
348         closure_put(cl);
349 }
350
351 static void uuid_io_unlock(struct closure *cl)
352 {
353         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
354
355         up(&c->uuid_write_mutex);
356 }
357
358 static void uuid_io(struct cache_set *c, unsigned long rw,
359                     struct bkey *k, struct closure *parent)
360 {
361         struct closure *cl = &c->uuid_write;
362         struct uuid_entry *u;
363         unsigned i;
364         char buf[80];
365
366         BUG_ON(!parent);
367         down(&c->uuid_write_mutex);
368         closure_init(cl, parent);
369
370         for (i = 0; i < KEY_PTRS(k); i++) {
371                 struct bio *bio = bch_bbio_alloc(c);
372
373                 bio->bi_rw      = REQ_SYNC|REQ_META|rw;
374                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
375
376                 bio->bi_end_io  = uuid_endio;
377                 bio->bi_private = cl;
378                 bch_bio_map(bio, c->uuids);
379
380                 bch_submit_bbio(bio, c, k, i);
381
382                 if (!(rw & WRITE))
383                         break;
384         }
385
386         bch_bkey_to_text(buf, sizeof(buf), k);
387         pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
388
389         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
390                 if (!bch_is_zero(u->uuid, 16))
391                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
392                                  u - c->uuids, u->uuid, u->label,
393                                  u->first_reg, u->last_reg, u->invalidated);
394
395         closure_return_with_destructor(cl, uuid_io_unlock);
396 }
397
398 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
399 {
400         struct bkey *k = &j->uuid_bucket;
401
402         if (bch_btree_ptr_invalid(c, k))
403                 return "bad uuid pointer";
404
405         bkey_copy(&c->uuid_bucket, k);
406         uuid_io(c, READ_SYNC, k, cl);
407
408         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
409                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
410                 struct uuid_entry       *u1 = (void *) c->uuids;
411                 int i;
412
413                 closure_sync(cl);
414
415                 /*
416                  * Since the new uuid entry is bigger than the old, we have to
417                  * convert starting at the highest memory address and work down
418                  * in order to do it in place
419                  */
420
421                 for (i = c->nr_uuids - 1;
422                      i >= 0;
423                      --i) {
424                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
425                         memcpy(u1[i].label,     u0[i].label, 32);
426
427                         u1[i].first_reg         = u0[i].first_reg;
428                         u1[i].last_reg          = u0[i].last_reg;
429                         u1[i].invalidated       = u0[i].invalidated;
430
431                         u1[i].flags     = 0;
432                         u1[i].sectors   = 0;
433                 }
434         }
435
436         return NULL;
437 }
438
439 static int __uuid_write(struct cache_set *c)
440 {
441         BKEY_PADDED(key) k;
442         struct closure cl;
443         closure_init_stack(&cl);
444
445         lockdep_assert_held(&bch_register_lock);
446
447         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
448                 return 1;
449
450         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
451         uuid_io(c, REQ_WRITE, &k.key, &cl);
452         closure_sync(&cl);
453
454         bkey_copy(&c->uuid_bucket, &k.key);
455         bkey_put(c, &k.key);
456         return 0;
457 }
458
459 int bch_uuid_write(struct cache_set *c)
460 {
461         int ret = __uuid_write(c);
462
463         if (!ret)
464                 bch_journal_meta(c, NULL);
465
466         return ret;
467 }
468
469 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
470 {
471         struct uuid_entry *u;
472
473         for (u = c->uuids;
474              u < c->uuids + c->nr_uuids; u++)
475                 if (!memcmp(u->uuid, uuid, 16))
476                         return u;
477
478         return NULL;
479 }
480
481 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
482 {
483         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
484         return uuid_find(c, zero_uuid);
485 }
486
487 /*
488  * Bucket priorities/gens:
489  *
490  * For each bucket, we store on disk its
491    * 8 bit gen
492    * 16 bit priority
493  *
494  * See alloc.c for an explanation of the gen. The priority is used to implement
495  * lru (and in the future other) cache replacement policies; for most purposes
496  * it's just an opaque integer.
497  *
498  * The gens and the priorities don't have a whole lot to do with each other, and
499  * it's actually the gens that must be written out at specific times - it's no
500  * big deal if the priorities don't get written, if we lose them we just reuse
501  * buckets in suboptimal order.
502  *
503  * On disk they're stored in a packed array, and in as many buckets are required
504  * to fit them all. The buckets we use to store them form a list; the journal
505  * header points to the first bucket, the first bucket points to the second
506  * bucket, et cetera.
507  *
508  * This code is used by the allocation code; periodically (whenever it runs out
509  * of buckets to allocate from) the allocation code will invalidate some
510  * buckets, but it can't use those buckets until their new gens are safely on
511  * disk.
512  */
513
514 static void prio_endio(struct bio *bio, int error)
515 {
516         struct cache *ca = bio->bi_private;
517
518         cache_set_err_on(error, ca->set, "accessing priorities");
519         bch_bbio_free(bio, ca->set);
520         closure_put(&ca->prio);
521 }
522
523 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
524 {
525         struct closure *cl = &ca->prio;
526         struct bio *bio = bch_bbio_alloc(ca->set);
527
528         closure_init_stack(cl);
529
530         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
531         bio->bi_bdev            = ca->bdev;
532         bio->bi_rw              = REQ_SYNC|REQ_META|rw;
533         bio->bi_iter.bi_size    = bucket_bytes(ca);
534
535         bio->bi_end_io  = prio_endio;
536         bio->bi_private = ca;
537         bch_bio_map(bio, ca->disk_buckets);
538
539         closure_bio_submit(bio, &ca->prio, ca);
540         closure_sync(cl);
541 }
542
543 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu",           \
544         fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
545
546 void bch_prio_write(struct cache *ca)
547 {
548         int i;
549         struct bucket *b;
550         struct closure cl;
551
552         closure_init_stack(&cl);
553
554         lockdep_assert_held(&ca->set->bucket_lock);
555
556         for (b = ca->buckets;
557              b < ca->buckets + ca->sb.nbuckets; b++)
558                 b->disk_gen = b->gen;
559
560         ca->disk_buckets->seq++;
561
562         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
563                         &ca->meta_sectors_written);
564
565         //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
566         //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
567
568         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
569                 long bucket;
570                 struct prio_set *p = ca->disk_buckets;
571                 struct bucket_disk *d = p->data;
572                 struct bucket_disk *end = d + prios_per_bucket(ca);
573
574                 for (b = ca->buckets + i * prios_per_bucket(ca);
575                      b < ca->buckets + ca->sb.nbuckets && d < end;
576                      b++, d++) {
577                         d->prio = cpu_to_le16(b->prio);
578                         d->gen = b->gen;
579                 }
580
581                 p->next_bucket  = ca->prio_buckets[i + 1];
582                 p->magic        = pset_magic(&ca->sb);
583                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
584
585                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
586                 BUG_ON(bucket == -1);
587
588                 mutex_unlock(&ca->set->bucket_lock);
589                 prio_io(ca, bucket, REQ_WRITE);
590                 mutex_lock(&ca->set->bucket_lock);
591
592                 ca->prio_buckets[i] = bucket;
593                 atomic_dec_bug(&ca->buckets[bucket].pin);
594         }
595
596         mutex_unlock(&ca->set->bucket_lock);
597
598         bch_journal_meta(ca->set, &cl);
599         closure_sync(&cl);
600
601         mutex_lock(&ca->set->bucket_lock);
602
603         ca->need_save_prio = 0;
604
605         /*
606          * Don't want the old priorities to get garbage collected until after we
607          * finish writing the new ones, and they're journalled
608          */
609         for (i = 0; i < prio_buckets(ca); i++)
610                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
611 }
612
613 static void prio_read(struct cache *ca, uint64_t bucket)
614 {
615         struct prio_set *p = ca->disk_buckets;
616         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
617         struct bucket *b;
618         unsigned bucket_nr = 0;
619
620         for (b = ca->buckets;
621              b < ca->buckets + ca->sb.nbuckets;
622              b++, d++) {
623                 if (d == end) {
624                         ca->prio_buckets[bucket_nr] = bucket;
625                         ca->prio_last_buckets[bucket_nr] = bucket;
626                         bucket_nr++;
627
628                         prio_io(ca, bucket, READ_SYNC);
629
630                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
631                                 pr_warn("bad csum reading priorities");
632
633                         if (p->magic != pset_magic(&ca->sb))
634                                 pr_warn("bad magic reading priorities");
635
636                         bucket = p->next_bucket;
637                         d = p->data;
638                 }
639
640                 b->prio = le16_to_cpu(d->prio);
641                 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
642         }
643 }
644
645 /* Bcache device */
646
647 static int open_dev(struct block_device *b, fmode_t mode)
648 {
649         struct bcache_device *d = b->bd_disk->private_data;
650         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
651                 return -ENXIO;
652
653         closure_get(&d->cl);
654         return 0;
655 }
656
657 static void release_dev(struct gendisk *b, fmode_t mode)
658 {
659         struct bcache_device *d = b->private_data;
660         closure_put(&d->cl);
661 }
662
663 static int ioctl_dev(struct block_device *b, fmode_t mode,
664                      unsigned int cmd, unsigned long arg)
665 {
666         struct bcache_device *d = b->bd_disk->private_data;
667         return d->ioctl(d, mode, cmd, arg);
668 }
669
670 static const struct block_device_operations bcache_ops = {
671         .open           = open_dev,
672         .release        = release_dev,
673         .ioctl          = ioctl_dev,
674         .owner          = THIS_MODULE,
675 };
676
677 void bcache_device_stop(struct bcache_device *d)
678 {
679         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
680                 closure_queue(&d->cl);
681 }
682
683 static void bcache_device_unlink(struct bcache_device *d)
684 {
685         lockdep_assert_held(&bch_register_lock);
686
687         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
688                 unsigned i;
689                 struct cache *ca;
690
691                 sysfs_remove_link(&d->c->kobj, d->name);
692                 sysfs_remove_link(&d->kobj, "cache");
693
694                 for_each_cache(ca, d->c, i)
695                         bd_unlink_disk_holder(ca->bdev, d->disk);
696         }
697 }
698
699 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
700                                const char *name)
701 {
702         unsigned i;
703         struct cache *ca;
704
705         for_each_cache(ca, d->c, i)
706                 bd_link_disk_holder(ca->bdev, d->disk);
707
708         snprintf(d->name, BCACHEDEVNAME_SIZE,
709                  "%s%u", name, d->id);
710
711         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
712              sysfs_create_link(&c->kobj, &d->kobj, d->name),
713              "Couldn't create device <-> cache set symlinks");
714 }
715
716 static void bcache_device_detach(struct bcache_device *d)
717 {
718         lockdep_assert_held(&bch_register_lock);
719
720         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
721                 struct uuid_entry *u = d->c->uuids + d->id;
722
723                 SET_UUID_FLASH_ONLY(u, 0);
724                 memcpy(u->uuid, invalid_uuid, 16);
725                 u->invalidated = cpu_to_le32(get_seconds());
726                 bch_uuid_write(d->c);
727         }
728
729         bcache_device_unlink(d);
730
731         d->c->devices[d->id] = NULL;
732         closure_put(&d->c->caching);
733         d->c = NULL;
734 }
735
736 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
737                                  unsigned id)
738 {
739         BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
740
741         d->id = id;
742         d->c = c;
743         c->devices[id] = d;
744
745         closure_get(&c->caching);
746 }
747
748 static void bcache_device_free(struct bcache_device *d)
749 {
750         lockdep_assert_held(&bch_register_lock);
751
752         pr_info("%s stopped", d->disk->disk_name);
753
754         if (d->c)
755                 bcache_device_detach(d);
756         if (d->disk && d->disk->flags & GENHD_FL_UP)
757                 del_gendisk(d->disk);
758         if (d->disk && d->disk->queue)
759                 blk_cleanup_queue(d->disk->queue);
760         if (d->disk) {
761                 ida_simple_remove(&bcache_minor, d->disk->first_minor);
762                 put_disk(d->disk);
763         }
764
765         bio_split_pool_free(&d->bio_split_hook);
766         if (d->bio_split)
767                 bioset_free(d->bio_split);
768         if (is_vmalloc_addr(d->full_dirty_stripes))
769                 vfree(d->full_dirty_stripes);
770         else
771                 kfree(d->full_dirty_stripes);
772         if (is_vmalloc_addr(d->stripe_sectors_dirty))
773                 vfree(d->stripe_sectors_dirty);
774         else
775                 kfree(d->stripe_sectors_dirty);
776
777         closure_debug_destroy(&d->cl);
778 }
779
780 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
781                               sector_t sectors)
782 {
783         struct request_queue *q;
784         size_t n;
785         int minor;
786
787         if (!d->stripe_size)
788                 d->stripe_size = 1 << 31;
789
790         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
791
792         if (!d->nr_stripes ||
793             d->nr_stripes > INT_MAX ||
794             d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
795                 pr_err("nr_stripes too large");
796                 return -ENOMEM;
797         }
798
799         n = d->nr_stripes * sizeof(atomic_t);
800         d->stripe_sectors_dirty = n < PAGE_SIZE << 6
801                 ? kzalloc(n, GFP_KERNEL)
802                 : vzalloc(n);
803         if (!d->stripe_sectors_dirty)
804                 return -ENOMEM;
805
806         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
807         d->full_dirty_stripes = n < PAGE_SIZE << 6
808                 ? kzalloc(n, GFP_KERNEL)
809                 : vzalloc(n);
810         if (!d->full_dirty_stripes)
811                 return -ENOMEM;
812
813         minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
814         if (minor < 0)
815                 return minor;
816
817         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
818             bio_split_pool_init(&d->bio_split_hook) ||
819             !(d->disk = alloc_disk(1))) {
820                 ida_simple_remove(&bcache_minor, minor);
821                 return -ENOMEM;
822         }
823
824         set_capacity(d->disk, sectors);
825         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
826
827         d->disk->major          = bcache_major;
828         d->disk->first_minor    = minor;
829         d->disk->fops           = &bcache_ops;
830         d->disk->private_data   = d;
831
832         q = blk_alloc_queue(GFP_KERNEL);
833         if (!q)
834                 return -ENOMEM;
835
836         blk_queue_make_request(q, NULL);
837         d->disk->queue                  = q;
838         q->queuedata                    = d;
839         q->backing_dev_info.congested_data = d;
840         q->limits.max_hw_sectors        = UINT_MAX;
841         q->limits.max_sectors           = UINT_MAX;
842         q->limits.max_segment_size      = UINT_MAX;
843         q->limits.max_segments          = BIO_MAX_PAGES;
844         q->limits.max_discard_sectors   = UINT_MAX;
845         q->limits.io_min                = block_size;
846         q->limits.logical_block_size    = block_size;
847         q->limits.physical_block_size   = block_size;
848         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
849         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
850
851         blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
852
853         return 0;
854 }
855
856 /* Cached device */
857
858 static void calc_cached_dev_sectors(struct cache_set *c)
859 {
860         uint64_t sectors = 0;
861         struct cached_dev *dc;
862
863         list_for_each_entry(dc, &c->cached_devs, list)
864                 sectors += bdev_sectors(dc->bdev);
865
866         c->cached_dev_sectors = sectors;
867 }
868
869 void bch_cached_dev_run(struct cached_dev *dc)
870 {
871         struct bcache_device *d = &dc->disk;
872         char buf[SB_LABEL_SIZE + 1];
873         char *env[] = {
874                 "DRIVER=bcache",
875                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
876                 NULL,
877                 NULL,
878         };
879
880         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
881         buf[SB_LABEL_SIZE] = '\0';
882         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
883
884         if (atomic_xchg(&dc->running, 1))
885                 return;
886
887         if (!d->c &&
888             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
889                 struct closure cl;
890                 closure_init_stack(&cl);
891
892                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
893                 bch_write_bdev_super(dc, &cl);
894                 closure_sync(&cl);
895         }
896
897         add_disk(d->disk);
898         bd_link_disk_holder(dc->bdev, dc->disk.disk);
899         /* won't show up in the uevent file, use udevadm monitor -e instead
900          * only class / kset properties are persistent */
901         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
902         kfree(env[1]);
903         kfree(env[2]);
904
905         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
906             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
907                 pr_debug("error creating sysfs link");
908 }
909
910 static void cached_dev_detach_finish(struct work_struct *w)
911 {
912         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
913         char buf[BDEVNAME_SIZE];
914         struct closure cl;
915         closure_init_stack(&cl);
916
917         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
918         BUG_ON(atomic_read(&dc->count));
919
920         mutex_lock(&bch_register_lock);
921
922         memset(&dc->sb.set_uuid, 0, 16);
923         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
924
925         bch_write_bdev_super(dc, &cl);
926         closure_sync(&cl);
927
928         bcache_device_detach(&dc->disk);
929         list_move(&dc->list, &uncached_devices);
930
931         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
932
933         mutex_unlock(&bch_register_lock);
934
935         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
936
937         /* Drop ref we took in cached_dev_detach() */
938         closure_put(&dc->disk.cl);
939 }
940
941 void bch_cached_dev_detach(struct cached_dev *dc)
942 {
943         lockdep_assert_held(&bch_register_lock);
944
945         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
946                 return;
947
948         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
949                 return;
950
951         /*
952          * Block the device from being closed and freed until we're finished
953          * detaching
954          */
955         closure_get(&dc->disk.cl);
956
957         bch_writeback_queue(dc);
958         cached_dev_put(dc);
959 }
960
961 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
962 {
963         uint32_t rtime = cpu_to_le32(get_seconds());
964         struct uuid_entry *u;
965         char buf[BDEVNAME_SIZE];
966
967         bdevname(dc->bdev, buf);
968
969         if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
970                 return -ENOENT;
971
972         if (dc->disk.c) {
973                 pr_err("Can't attach %s: already attached", buf);
974                 return -EINVAL;
975         }
976
977         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
978                 pr_err("Can't attach %s: shutting down", buf);
979                 return -EINVAL;
980         }
981
982         if (dc->sb.block_size < c->sb.block_size) {
983                 /* Will die */
984                 pr_err("Couldn't attach %s: block size less than set's block size",
985                        buf);
986                 return -EINVAL;
987         }
988
989         u = uuid_find(c, dc->sb.uuid);
990
991         if (u &&
992             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
993              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
994                 memcpy(u->uuid, invalid_uuid, 16);
995                 u->invalidated = cpu_to_le32(get_seconds());
996                 u = NULL;
997         }
998
999         if (!u) {
1000                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1001                         pr_err("Couldn't find uuid for %s in set", buf);
1002                         return -ENOENT;
1003                 }
1004
1005                 u = uuid_find_empty(c);
1006                 if (!u) {
1007                         pr_err("Not caching %s, no room for UUID", buf);
1008                         return -EINVAL;
1009                 }
1010         }
1011
1012         /* Deadlocks since we're called via sysfs...
1013         sysfs_remove_file(&dc->kobj, &sysfs_attach);
1014          */
1015
1016         if (bch_is_zero(u->uuid, 16)) {
1017                 struct closure cl;
1018                 closure_init_stack(&cl);
1019
1020                 memcpy(u->uuid, dc->sb.uuid, 16);
1021                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1022                 u->first_reg = u->last_reg = rtime;
1023                 bch_uuid_write(c);
1024
1025                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1026                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1027
1028                 bch_write_bdev_super(dc, &cl);
1029                 closure_sync(&cl);
1030         } else {
1031                 u->last_reg = rtime;
1032                 bch_uuid_write(c);
1033         }
1034
1035         bcache_device_attach(&dc->disk, c, u - c->uuids);
1036         list_move(&dc->list, &c->cached_devs);
1037         calc_cached_dev_sectors(c);
1038
1039         smp_wmb();
1040         /*
1041          * dc->c must be set before dc->count != 0 - paired with the mb in
1042          * cached_dev_get()
1043          */
1044         atomic_set(&dc->count, 1);
1045
1046         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1047                 bch_sectors_dirty_init(dc);
1048                 atomic_set(&dc->has_dirty, 1);
1049                 atomic_inc(&dc->count);
1050                 bch_writeback_queue(dc);
1051         }
1052
1053         bch_cached_dev_run(dc);
1054         bcache_device_link(&dc->disk, c, "bdev");
1055
1056         pr_info("Caching %s as %s on set %pU",
1057                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1058                 dc->disk.c->sb.set_uuid);
1059         return 0;
1060 }
1061
1062 void bch_cached_dev_release(struct kobject *kobj)
1063 {
1064         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1065                                              disk.kobj);
1066         kfree(dc);
1067         module_put(THIS_MODULE);
1068 }
1069
1070 static void cached_dev_free(struct closure *cl)
1071 {
1072         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1073
1074         cancel_delayed_work_sync(&dc->writeback_rate_update);
1075         kthread_stop(dc->writeback_thread);
1076
1077         mutex_lock(&bch_register_lock);
1078
1079         if (atomic_read(&dc->running))
1080                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1081         bcache_device_free(&dc->disk);
1082         list_del(&dc->list);
1083
1084         mutex_unlock(&bch_register_lock);
1085
1086         if (!IS_ERR_OR_NULL(dc->bdev)) {
1087                 if (dc->bdev->bd_disk)
1088                         blk_sync_queue(bdev_get_queue(dc->bdev));
1089
1090                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1091         }
1092
1093         wake_up(&unregister_wait);
1094
1095         kobject_put(&dc->disk.kobj);
1096 }
1097
1098 static void cached_dev_flush(struct closure *cl)
1099 {
1100         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1101         struct bcache_device *d = &dc->disk;
1102
1103         mutex_lock(&bch_register_lock);
1104         bcache_device_unlink(d);
1105         mutex_unlock(&bch_register_lock);
1106
1107         bch_cache_accounting_destroy(&dc->accounting);
1108         kobject_del(&d->kobj);
1109
1110         continue_at(cl, cached_dev_free, system_wq);
1111 }
1112
1113 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1114 {
1115         int ret;
1116         struct io *io;
1117         struct request_queue *q = bdev_get_queue(dc->bdev);
1118
1119         __module_get(THIS_MODULE);
1120         INIT_LIST_HEAD(&dc->list);
1121         closure_init(&dc->disk.cl, NULL);
1122         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1123         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1124         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1125         sema_init(&dc->sb_write_mutex, 1);
1126         INIT_LIST_HEAD(&dc->io_lru);
1127         spin_lock_init(&dc->io_lock);
1128         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1129
1130         dc->sequential_cutoff           = 4 << 20;
1131
1132         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1133                 list_add(&io->lru, &dc->io_lru);
1134                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1135         }
1136
1137         ret = bcache_device_init(&dc->disk, block_size,
1138                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1139         if (ret)
1140                 return ret;
1141
1142         set_capacity(dc->disk.disk,
1143                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1144
1145         dc->disk.disk->queue->backing_dev_info.ra_pages =
1146                 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1147                     q->backing_dev_info.ra_pages);
1148
1149         bch_cached_dev_request_init(dc);
1150         bch_cached_dev_writeback_init(dc);
1151         return 0;
1152 }
1153
1154 /* Cached device - bcache superblock */
1155
1156 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1157                                  struct block_device *bdev,
1158                                  struct cached_dev *dc)
1159 {
1160         char name[BDEVNAME_SIZE];
1161         const char *err = "cannot allocate memory";
1162         struct cache_set *c;
1163
1164         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1165         dc->bdev = bdev;
1166         dc->bdev->bd_holder = dc;
1167
1168         bio_init(&dc->sb_bio);
1169         dc->sb_bio.bi_max_vecs  = 1;
1170         dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1171         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1172         get_page(sb_page);
1173
1174         if (cached_dev_init(dc, sb->block_size << 9))
1175                 goto err;
1176
1177         err = "error creating kobject";
1178         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1179                         "bcache"))
1180                 goto err;
1181         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1182                 goto err;
1183
1184         pr_info("registered backing device %s", bdevname(bdev, name));
1185
1186         list_add(&dc->list, &uncached_devices);
1187         list_for_each_entry(c, &bch_cache_sets, list)
1188                 bch_cached_dev_attach(dc, c);
1189
1190         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1191             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1192                 bch_cached_dev_run(dc);
1193
1194         return;
1195 err:
1196         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1197         bcache_device_stop(&dc->disk);
1198 }
1199
1200 /* Flash only volumes */
1201
1202 void bch_flash_dev_release(struct kobject *kobj)
1203 {
1204         struct bcache_device *d = container_of(kobj, struct bcache_device,
1205                                                kobj);
1206         kfree(d);
1207 }
1208
1209 static void flash_dev_free(struct closure *cl)
1210 {
1211         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1212         bcache_device_free(d);
1213         kobject_put(&d->kobj);
1214 }
1215
1216 static void flash_dev_flush(struct closure *cl)
1217 {
1218         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1219
1220         bcache_device_unlink(d);
1221         kobject_del(&d->kobj);
1222         continue_at(cl, flash_dev_free, system_wq);
1223 }
1224
1225 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1226 {
1227         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1228                                           GFP_KERNEL);
1229         if (!d)
1230                 return -ENOMEM;
1231
1232         closure_init(&d->cl, NULL);
1233         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1234
1235         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1236
1237         if (bcache_device_init(d, block_bytes(c), u->sectors))
1238                 goto err;
1239
1240         bcache_device_attach(d, c, u - c->uuids);
1241         bch_flash_dev_request_init(d);
1242         add_disk(d->disk);
1243
1244         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1245                 goto err;
1246
1247         bcache_device_link(d, c, "volume");
1248
1249         return 0;
1250 err:
1251         kobject_put(&d->kobj);
1252         return -ENOMEM;
1253 }
1254
1255 static int flash_devs_run(struct cache_set *c)
1256 {
1257         int ret = 0;
1258         struct uuid_entry *u;
1259
1260         for (u = c->uuids;
1261              u < c->uuids + c->nr_uuids && !ret;
1262              u++)
1263                 if (UUID_FLASH_ONLY(u))
1264                         ret = flash_dev_run(c, u);
1265
1266         return ret;
1267 }
1268
1269 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1270 {
1271         struct uuid_entry *u;
1272
1273         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1274                 return -EINTR;
1275
1276         u = uuid_find_empty(c);
1277         if (!u) {
1278                 pr_err("Can't create volume, no room for UUID");
1279                 return -EINVAL;
1280         }
1281
1282         get_random_bytes(u->uuid, 16);
1283         memset(u->label, 0, 32);
1284         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1285
1286         SET_UUID_FLASH_ONLY(u, 1);
1287         u->sectors = size >> 9;
1288
1289         bch_uuid_write(c);
1290
1291         return flash_dev_run(c, u);
1292 }
1293
1294 /* Cache set */
1295
1296 __printf(2, 3)
1297 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1298 {
1299         va_list args;
1300
1301         if (c->on_error != ON_ERROR_PANIC &&
1302             test_bit(CACHE_SET_STOPPING, &c->flags))
1303                 return false;
1304
1305         /* XXX: we can be called from atomic context
1306         acquire_console_sem();
1307         */
1308
1309         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1310
1311         va_start(args, fmt);
1312         vprintk(fmt, args);
1313         va_end(args);
1314
1315         printk(", disabling caching\n");
1316
1317         if (c->on_error == ON_ERROR_PANIC)
1318                 panic("panic forced after error\n");
1319
1320         bch_cache_set_unregister(c);
1321         return true;
1322 }
1323
1324 void bch_cache_set_release(struct kobject *kobj)
1325 {
1326         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1327         kfree(c);
1328         module_put(THIS_MODULE);
1329 }
1330
1331 static void cache_set_free(struct closure *cl)
1332 {
1333         struct cache_set *c = container_of(cl, struct cache_set, cl);
1334         struct cache *ca;
1335         unsigned i;
1336
1337         if (!IS_ERR_OR_NULL(c->debug))
1338                 debugfs_remove(c->debug);
1339
1340         bch_open_buckets_free(c);
1341         bch_btree_cache_free(c);
1342         bch_journal_free(c);
1343
1344         for_each_cache(ca, c, i)
1345                 if (ca)
1346                         kobject_put(&ca->kobj);
1347
1348         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1349         free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1350
1351         if (c->bio_split)
1352                 bioset_free(c->bio_split);
1353         if (c->fill_iter)
1354                 mempool_destroy(c->fill_iter);
1355         if (c->bio_meta)
1356                 mempool_destroy(c->bio_meta);
1357         if (c->search)
1358                 mempool_destroy(c->search);
1359         kfree(c->devices);
1360
1361         mutex_lock(&bch_register_lock);
1362         list_del(&c->list);
1363         mutex_unlock(&bch_register_lock);
1364
1365         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1366         wake_up(&unregister_wait);
1367
1368         closure_debug_destroy(&c->cl);
1369         kobject_put(&c->kobj);
1370 }
1371
1372 static void cache_set_flush(struct closure *cl)
1373 {
1374         struct cache_set *c = container_of(cl, struct cache_set, caching);
1375         struct cache *ca;
1376         struct btree *b;
1377         unsigned i;
1378
1379         bch_cache_accounting_destroy(&c->accounting);
1380
1381         kobject_put(&c->internal);
1382         kobject_del(&c->kobj);
1383
1384         if (c->gc_thread)
1385                 kthread_stop(c->gc_thread);
1386
1387         if (!IS_ERR_OR_NULL(c->root))
1388                 list_add(&c->root->list, &c->btree_cache);
1389
1390         /* Should skip this if we're unregistering because of an error */
1391         list_for_each_entry(b, &c->btree_cache, list)
1392                 if (btree_node_dirty(b))
1393                         bch_btree_node_write(b, NULL);
1394
1395         for_each_cache(ca, c, i)
1396                 if (ca->alloc_thread)
1397                         kthread_stop(ca->alloc_thread);
1398
1399         closure_return(cl);
1400 }
1401
1402 static void __cache_set_unregister(struct closure *cl)
1403 {
1404         struct cache_set *c = container_of(cl, struct cache_set, caching);
1405         struct cached_dev *dc;
1406         size_t i;
1407
1408         mutex_lock(&bch_register_lock);
1409
1410         for (i = 0; i < c->nr_uuids; i++)
1411                 if (c->devices[i]) {
1412                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1413                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1414                                 dc = container_of(c->devices[i],
1415                                                   struct cached_dev, disk);
1416                                 bch_cached_dev_detach(dc);
1417                         } else {
1418                                 bcache_device_stop(c->devices[i]);
1419                         }
1420                 }
1421
1422         mutex_unlock(&bch_register_lock);
1423
1424         continue_at(cl, cache_set_flush, system_wq);
1425 }
1426
1427 void bch_cache_set_stop(struct cache_set *c)
1428 {
1429         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1430                 closure_queue(&c->caching);
1431 }
1432
1433 void bch_cache_set_unregister(struct cache_set *c)
1434 {
1435         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1436         bch_cache_set_stop(c);
1437 }
1438
1439 #define alloc_bucket_pages(gfp, c)                      \
1440         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1441
1442 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1443 {
1444         int iter_size;
1445         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1446         if (!c)
1447                 return NULL;
1448
1449         __module_get(THIS_MODULE);
1450         closure_init(&c->cl, NULL);
1451         set_closure_fn(&c->cl, cache_set_free, system_wq);
1452
1453         closure_init(&c->caching, &c->cl);
1454         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1455
1456         /* Maybe create continue_at_noreturn() and use it here? */
1457         closure_set_stopped(&c->cl);
1458         closure_put(&c->cl);
1459
1460         kobject_init(&c->kobj, &bch_cache_set_ktype);
1461         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1462
1463         bch_cache_accounting_init(&c->accounting, &c->cl);
1464
1465         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1466         c->sb.block_size        = sb->block_size;
1467         c->sb.bucket_size       = sb->bucket_size;
1468         c->sb.nr_in_set         = sb->nr_in_set;
1469         c->sb.last_mount        = sb->last_mount;
1470         c->bucket_bits          = ilog2(sb->bucket_size);
1471         c->block_bits           = ilog2(sb->block_size);
1472         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1473
1474         c->btree_pages          = c->sb.bucket_size / PAGE_SECTORS;
1475         if (c->btree_pages > BTREE_MAX_PAGES)
1476                 c->btree_pages = max_t(int, c->btree_pages / 4,
1477                                        BTREE_MAX_PAGES);
1478
1479         c->sort_crit_factor = int_sqrt(c->btree_pages);
1480
1481         sema_init(&c->sb_write_mutex, 1);
1482         mutex_init(&c->bucket_lock);
1483         init_waitqueue_head(&c->try_wait);
1484         init_waitqueue_head(&c->bucket_wait);
1485         sema_init(&c->uuid_write_mutex, 1);
1486         mutex_init(&c->sort_lock);
1487
1488         spin_lock_init(&c->sort_time.lock);
1489         spin_lock_init(&c->btree_gc_time.lock);
1490         spin_lock_init(&c->btree_split_time.lock);
1491         spin_lock_init(&c->btree_read_time.lock);
1492         spin_lock_init(&c->try_harder_time.lock);
1493
1494         bch_moving_init_cache_set(c);
1495
1496         INIT_LIST_HEAD(&c->list);
1497         INIT_LIST_HEAD(&c->cached_devs);
1498         INIT_LIST_HEAD(&c->btree_cache);
1499         INIT_LIST_HEAD(&c->btree_cache_freeable);
1500         INIT_LIST_HEAD(&c->btree_cache_freed);
1501         INIT_LIST_HEAD(&c->data_buckets);
1502
1503         c->search = mempool_create_slab_pool(32, bch_search_cache);
1504         if (!c->search)
1505                 goto err;
1506
1507         iter_size = (sb->bucket_size / sb->block_size + 1) *
1508                 sizeof(struct btree_iter_set);
1509
1510         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1511             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1512                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1513                                 bucket_pages(c))) ||
1514             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1515             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1516             !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1517             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1518             bch_journal_alloc(c) ||
1519             bch_btree_cache_alloc(c) ||
1520             bch_open_buckets_alloc(c))
1521                 goto err;
1522
1523         c->congested_read_threshold_us  = 2000;
1524         c->congested_write_threshold_us = 20000;
1525         c->error_limit  = 8 << IO_ERROR_SHIFT;
1526
1527         return c;
1528 err:
1529         bch_cache_set_unregister(c);
1530         return NULL;
1531 }
1532
1533 static void run_cache_set(struct cache_set *c)
1534 {
1535         const char *err = "cannot allocate memory";
1536         struct cached_dev *dc, *t;
1537         struct cache *ca;
1538         struct closure cl;
1539         unsigned i;
1540
1541         closure_init_stack(&cl);
1542
1543         for_each_cache(ca, c, i)
1544                 c->nbuckets += ca->sb.nbuckets;
1545
1546         if (CACHE_SYNC(&c->sb)) {
1547                 LIST_HEAD(journal);
1548                 struct bkey *k;
1549                 struct jset *j;
1550
1551                 err = "cannot allocate memory for journal";
1552                 if (bch_journal_read(c, &journal))
1553                         goto err;
1554
1555                 pr_debug("btree_journal_read() done");
1556
1557                 err = "no journal entries found";
1558                 if (list_empty(&journal))
1559                         goto err;
1560
1561                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1562
1563                 err = "IO error reading priorities";
1564                 for_each_cache(ca, c, i)
1565                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1566
1567                 /*
1568                  * If prio_read() fails it'll call cache_set_error and we'll
1569                  * tear everything down right away, but if we perhaps checked
1570                  * sooner we could avoid journal replay.
1571                  */
1572
1573                 k = &j->btree_root;
1574
1575                 err = "bad btree root";
1576                 if (bch_btree_ptr_invalid(c, k))
1577                         goto err;
1578
1579                 err = "error reading btree root";
1580                 c->root = bch_btree_node_get(c, k, j->btree_level, true);
1581                 if (IS_ERR_OR_NULL(c->root))
1582                         goto err;
1583
1584                 list_del_init(&c->root->list);
1585                 rw_unlock(true, c->root);
1586
1587                 err = uuid_read(c, j, &cl);
1588                 if (err)
1589                         goto err;
1590
1591                 err = "error in recovery";
1592                 if (bch_btree_check(c))
1593                         goto err;
1594
1595                 bch_journal_mark(c, &journal);
1596                 bch_btree_gc_finish(c);
1597                 pr_debug("btree_check() done");
1598
1599                 /*
1600                  * bcache_journal_next() can't happen sooner, or
1601                  * btree_gc_finish() will give spurious errors about last_gc >
1602                  * gc_gen - this is a hack but oh well.
1603                  */
1604                 bch_journal_next(&c->journal);
1605
1606                 err = "error starting allocator thread";
1607                 for_each_cache(ca, c, i)
1608                         if (bch_cache_allocator_start(ca))
1609                                 goto err;
1610
1611                 /*
1612                  * First place it's safe to allocate: btree_check() and
1613                  * btree_gc_finish() have to run before we have buckets to
1614                  * allocate, and bch_bucket_alloc_set() might cause a journal
1615                  * entry to be written so bcache_journal_next() has to be called
1616                  * first.
1617                  *
1618                  * If the uuids were in the old format we have to rewrite them
1619                  * before the next journal entry is written:
1620                  */
1621                 if (j->version < BCACHE_JSET_VERSION_UUID)
1622                         __uuid_write(c);
1623
1624                 bch_journal_replay(c, &journal);
1625         } else {
1626                 pr_notice("invalidating existing data");
1627
1628                 for_each_cache(ca, c, i) {
1629                         unsigned j;
1630
1631                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1632                                               2, SB_JOURNAL_BUCKETS);
1633
1634                         for (j = 0; j < ca->sb.keys; j++)
1635                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1636                 }
1637
1638                 bch_btree_gc_finish(c);
1639
1640                 err = "error starting allocator thread";
1641                 for_each_cache(ca, c, i)
1642                         if (bch_cache_allocator_start(ca))
1643                                 goto err;
1644
1645                 mutex_lock(&c->bucket_lock);
1646                 for_each_cache(ca, c, i)
1647                         bch_prio_write(ca);
1648                 mutex_unlock(&c->bucket_lock);
1649
1650                 err = "cannot allocate new UUID bucket";
1651                 if (__uuid_write(c))
1652                         goto err;
1653
1654                 err = "cannot allocate new btree root";
1655                 c->root = bch_btree_node_alloc(c, 0, true);
1656                 if (IS_ERR_OR_NULL(c->root))
1657                         goto err;
1658
1659                 bkey_copy_key(&c->root->key, &MAX_KEY);
1660                 bch_btree_node_write(c->root, &cl);
1661
1662                 bch_btree_set_root(c->root);
1663                 rw_unlock(true, c->root);
1664
1665                 /*
1666                  * We don't want to write the first journal entry until
1667                  * everything is set up - fortunately journal entries won't be
1668                  * written until the SET_CACHE_SYNC() here:
1669                  */
1670                 SET_CACHE_SYNC(&c->sb, true);
1671
1672                 bch_journal_next(&c->journal);
1673                 bch_journal_meta(c, &cl);
1674         }
1675
1676         err = "error starting gc thread";
1677         if (bch_gc_thread_start(c))
1678                 goto err;
1679
1680         closure_sync(&cl);
1681         c->sb.last_mount = get_seconds();
1682         bcache_write_super(c);
1683
1684         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1685                 bch_cached_dev_attach(dc, c);
1686
1687         flash_devs_run(c);
1688
1689         return;
1690 err:
1691         closure_sync(&cl);
1692         /* XXX: test this, it's broken */
1693         bch_cache_set_error(c, "%s", err);
1694 }
1695
1696 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1697 {
1698         return ca->sb.block_size        == c->sb.block_size &&
1699                 ca->sb.bucket_size      == c->sb.bucket_size &&
1700                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1701 }
1702
1703 static const char *register_cache_set(struct cache *ca)
1704 {
1705         char buf[12];
1706         const char *err = "cannot allocate memory";
1707         struct cache_set *c;
1708
1709         list_for_each_entry(c, &bch_cache_sets, list)
1710                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1711                         if (c->cache[ca->sb.nr_this_dev])
1712                                 return "duplicate cache set member";
1713
1714                         if (!can_attach_cache(ca, c))
1715                                 return "cache sb does not match set";
1716
1717                         if (!CACHE_SYNC(&ca->sb))
1718                                 SET_CACHE_SYNC(&c->sb, false);
1719
1720                         goto found;
1721                 }
1722
1723         c = bch_cache_set_alloc(&ca->sb);
1724         if (!c)
1725                 return err;
1726
1727         err = "error creating kobject";
1728         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1729             kobject_add(&c->internal, &c->kobj, "internal"))
1730                 goto err;
1731
1732         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1733                 goto err;
1734
1735         bch_debug_init_cache_set(c);
1736
1737         list_add(&c->list, &bch_cache_sets);
1738 found:
1739         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1740         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1741             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1742                 goto err;
1743
1744         if (ca->sb.seq > c->sb.seq) {
1745                 c->sb.version           = ca->sb.version;
1746                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1747                 c->sb.flags             = ca->sb.flags;
1748                 c->sb.seq               = ca->sb.seq;
1749                 pr_debug("set version = %llu", c->sb.version);
1750         }
1751
1752         ca->set = c;
1753         ca->set->cache[ca->sb.nr_this_dev] = ca;
1754         c->cache_by_alloc[c->caches_loaded++] = ca;
1755
1756         if (c->caches_loaded == c->sb.nr_in_set)
1757                 run_cache_set(c);
1758
1759         return NULL;
1760 err:
1761         bch_cache_set_unregister(c);
1762         return err;
1763 }
1764
1765 /* Cache device */
1766
1767 void bch_cache_release(struct kobject *kobj)
1768 {
1769         struct cache *ca = container_of(kobj, struct cache, kobj);
1770         unsigned i;
1771
1772         if (ca->set)
1773                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1774
1775         bio_split_pool_free(&ca->bio_split_hook);
1776
1777         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1778         kfree(ca->prio_buckets);
1779         vfree(ca->buckets);
1780
1781         free_heap(&ca->heap);
1782         free_fifo(&ca->unused);
1783         free_fifo(&ca->free_inc);
1784
1785         for (i = 0; i < RESERVE_NR; i++)
1786                 free_fifo(&ca->free[i]);
1787
1788         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1789                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1790
1791         if (!IS_ERR_OR_NULL(ca->bdev)) {
1792                 blk_sync_queue(bdev_get_queue(ca->bdev));
1793                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1794         }
1795
1796         kfree(ca);
1797         module_put(THIS_MODULE);
1798 }
1799
1800 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1801 {
1802         size_t free;
1803         struct bucket *b;
1804
1805         __module_get(THIS_MODULE);
1806         kobject_init(&ca->kobj, &bch_cache_ktype);
1807
1808         bio_init(&ca->journal.bio);
1809         ca->journal.bio.bi_max_vecs = 8;
1810         ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1811
1812         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1813
1814         if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1815             !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1816             !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1817             !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1818             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1819             !init_fifo(&ca->unused,     free << 2, GFP_KERNEL) ||
1820             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1821             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1822                                           ca->sb.nbuckets)) ||
1823             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1824                                           2, GFP_KERNEL)) ||
1825             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1826             bio_split_pool_init(&ca->bio_split_hook))
1827                 return -ENOMEM;
1828
1829         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1830
1831         for_each_bucket(b, ca)
1832                 atomic_set(&b->pin, 0);
1833
1834         if (bch_cache_allocator_init(ca))
1835                 goto err;
1836
1837         return 0;
1838 err:
1839         kobject_put(&ca->kobj);
1840         return -ENOMEM;
1841 }
1842
1843 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1844                                   struct block_device *bdev, struct cache *ca)
1845 {
1846         char name[BDEVNAME_SIZE];
1847         const char *err = "cannot allocate memory";
1848
1849         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1850         ca->bdev = bdev;
1851         ca->bdev->bd_holder = ca;
1852
1853         bio_init(&ca->sb_bio);
1854         ca->sb_bio.bi_max_vecs  = 1;
1855         ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1856         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1857         get_page(sb_page);
1858
1859         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1860                 ca->discard = CACHE_DISCARD(&ca->sb);
1861
1862         if (cache_alloc(sb, ca) != 0)
1863                 goto err;
1864
1865         err = "error creating kobject";
1866         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1867                 goto err;
1868
1869         err = register_cache_set(ca);
1870         if (err)
1871                 goto err;
1872
1873         pr_info("registered cache device %s", bdevname(bdev, name));
1874         return;
1875 err:
1876         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1877         kobject_put(&ca->kobj);
1878 }
1879
1880 /* Global interfaces/init */
1881
1882 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1883                                const char *, size_t);
1884
1885 kobj_attribute_write(register,          register_bcache);
1886 kobj_attribute_write(register_quiet,    register_bcache);
1887
1888 static bool bch_is_open_backing(struct block_device *bdev) {
1889         struct cache_set *c, *tc;
1890         struct cached_dev *dc, *t;
1891
1892         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1893                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1894                         if (dc->bdev == bdev)
1895                                 return true;
1896         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1897                 if (dc->bdev == bdev)
1898                         return true;
1899         return false;
1900 }
1901
1902 static bool bch_is_open_cache(struct block_device *bdev) {
1903         struct cache_set *c, *tc;
1904         struct cache *ca;
1905         unsigned i;
1906
1907         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1908                 for_each_cache(ca, c, i)
1909                         if (ca->bdev == bdev)
1910                                 return true;
1911         return false;
1912 }
1913
1914 static bool bch_is_open(struct block_device *bdev) {
1915         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1916 }
1917
1918 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1919                                const char *buffer, size_t size)
1920 {
1921         ssize_t ret = size;
1922         const char *err = "cannot allocate memory";
1923         char *path = NULL;
1924         struct cache_sb *sb = NULL;
1925         struct block_device *bdev = NULL;
1926         struct page *sb_page = NULL;
1927
1928         if (!try_module_get(THIS_MODULE))
1929                 return -EBUSY;
1930
1931         mutex_lock(&bch_register_lock);
1932
1933         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1934             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1935                 goto err;
1936
1937         err = "failed to open device";
1938         bdev = blkdev_get_by_path(strim(path),
1939                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1940                                   sb);
1941         if (IS_ERR(bdev)) {
1942                 if (bdev == ERR_PTR(-EBUSY)) {
1943                         bdev = lookup_bdev(strim(path));
1944                         if (!IS_ERR(bdev) && bch_is_open(bdev))
1945                                 err = "device already registered";
1946                         else
1947                                 err = "device busy";
1948                 }
1949                 goto err;
1950         }
1951
1952         err = "failed to set blocksize";
1953         if (set_blocksize(bdev, 4096))
1954                 goto err_close;
1955
1956         err = read_super(sb, bdev, &sb_page);
1957         if (err)
1958                 goto err_close;
1959
1960         if (SB_IS_BDEV(sb)) {
1961                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1962                 if (!dc)
1963                         goto err_close;
1964
1965                 register_bdev(sb, sb_page, bdev, dc);
1966         } else {
1967                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1968                 if (!ca)
1969                         goto err_close;
1970
1971                 register_cache(sb, sb_page, bdev, ca);
1972         }
1973 out:
1974         if (sb_page)
1975                 put_page(sb_page);
1976         kfree(sb);
1977         kfree(path);
1978         mutex_unlock(&bch_register_lock);
1979         module_put(THIS_MODULE);
1980         return ret;
1981
1982 err_close:
1983         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1984 err:
1985         if (attr != &ksysfs_register_quiet)
1986                 pr_info("error opening %s: %s", path, err);
1987         ret = -EINVAL;
1988         goto out;
1989 }
1990
1991 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1992 {
1993         if (code == SYS_DOWN ||
1994             code == SYS_HALT ||
1995             code == SYS_POWER_OFF) {
1996                 DEFINE_WAIT(wait);
1997                 unsigned long start = jiffies;
1998                 bool stopped = false;
1999
2000                 struct cache_set *c, *tc;
2001                 struct cached_dev *dc, *tdc;
2002
2003                 mutex_lock(&bch_register_lock);
2004
2005                 if (list_empty(&bch_cache_sets) &&
2006                     list_empty(&uncached_devices))
2007                         goto out;
2008
2009                 pr_info("Stopping all devices:");
2010
2011                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2012                         bch_cache_set_stop(c);
2013
2014                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2015                         bcache_device_stop(&dc->disk);
2016
2017                 /* What's a condition variable? */
2018                 while (1) {
2019                         long timeout = start + 2 * HZ - jiffies;
2020
2021                         stopped = list_empty(&bch_cache_sets) &&
2022                                 list_empty(&uncached_devices);
2023
2024                         if (timeout < 0 || stopped)
2025                                 break;
2026
2027                         prepare_to_wait(&unregister_wait, &wait,
2028                                         TASK_UNINTERRUPTIBLE);
2029
2030                         mutex_unlock(&bch_register_lock);
2031                         schedule_timeout(timeout);
2032                         mutex_lock(&bch_register_lock);
2033                 }
2034
2035                 finish_wait(&unregister_wait, &wait);
2036
2037                 if (stopped)
2038                         pr_info("All devices stopped");
2039                 else
2040                         pr_notice("Timeout waiting for devices to be closed");
2041 out:
2042                 mutex_unlock(&bch_register_lock);
2043         }
2044
2045         return NOTIFY_DONE;
2046 }
2047
2048 static struct notifier_block reboot = {
2049         .notifier_call  = bcache_reboot,
2050         .priority       = INT_MAX, /* before any real devices */
2051 };
2052
2053 static void bcache_exit(void)
2054 {
2055         bch_debug_exit();
2056         bch_request_exit();
2057         bch_btree_exit();
2058         if (bcache_kobj)
2059                 kobject_put(bcache_kobj);
2060         if (bcache_wq)
2061                 destroy_workqueue(bcache_wq);
2062         unregister_blkdev(bcache_major, "bcache");
2063         unregister_reboot_notifier(&reboot);
2064 }
2065
2066 static int __init bcache_init(void)
2067 {
2068         static const struct attribute *files[] = {
2069                 &ksysfs_register.attr,
2070                 &ksysfs_register_quiet.attr,
2071                 NULL
2072         };
2073
2074         mutex_init(&bch_register_lock);
2075         init_waitqueue_head(&unregister_wait);
2076         register_reboot_notifier(&reboot);
2077         closure_debug_init();
2078
2079         bcache_major = register_blkdev(0, "bcache");
2080         if (bcache_major < 0)
2081                 return bcache_major;
2082
2083         if (!(bcache_wq = create_workqueue("bcache")) ||
2084             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2085             sysfs_create_files(bcache_kobj, files) ||
2086             bch_btree_init() ||
2087             bch_request_init() ||
2088             bch_debug_init(bcache_kobj))
2089                 goto err;
2090
2091         return 0;
2092 err:
2093         bcache_exit();
2094         return -ENOMEM;
2095 }
2096
2097 module_exit(bcache_exit);
2098 module_init(bcache_init);