]> Pileus Git - ~andy/linux/blob - drivers/md/bcache/super.c
1d9ee67d14ecb70e30ec6394acd1da8da6e2bb5c
[~andy/linux] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/blkdev.h>
16 #include <linux/buffer_head.h>
17 #include <linux/debugfs.h>
18 #include <linux/genhd.h>
19 #include <linux/idr.h>
20 #include <linux/kthread.h>
21 #include <linux/module.h>
22 #include <linux/random.h>
23 #include <linux/reboot.h>
24 #include <linux/sysfs.h>
25
26 MODULE_LICENSE("GPL");
27 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
28
29 static const char bcache_magic[] = {
30         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
31         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
32 };
33
34 static const char invalid_uuid[] = {
35         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
36         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
37 };
38
39 /* Default is -1; we skip past it for struct cached_dev's cache mode */
40 const char * const bch_cache_modes[] = {
41         "default",
42         "writethrough",
43         "writeback",
44         "writearound",
45         "none",
46         NULL
47 };
48
49 static struct kobject *bcache_kobj;
50 struct mutex bch_register_lock;
51 LIST_HEAD(bch_cache_sets);
52 static LIST_HEAD(uncached_devices);
53
54 static int bcache_major;
55 static DEFINE_IDA(bcache_minor);
56 static wait_queue_head_t unregister_wait;
57 struct workqueue_struct *bcache_wq;
58
59 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
60
61 static void bio_split_pool_free(struct bio_split_pool *p)
62 {
63         if (p->bio_split_hook)
64                 mempool_destroy(p->bio_split_hook);
65
66         if (p->bio_split)
67                 bioset_free(p->bio_split);
68 }
69
70 static int bio_split_pool_init(struct bio_split_pool *p)
71 {
72         p->bio_split = bioset_create(4, 0);
73         if (!p->bio_split)
74                 return -ENOMEM;
75
76         p->bio_split_hook = mempool_create_kmalloc_pool(4,
77                                 sizeof(struct bio_split_hook));
78         if (!p->bio_split_hook)
79                 return -ENOMEM;
80
81         return 0;
82 }
83
84 /* Superblock */
85
86 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
87                               struct page **res)
88 {
89         const char *err;
90         struct cache_sb *s;
91         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
92         unsigned i;
93
94         if (!bh)
95                 return "IO error";
96
97         s = (struct cache_sb *) bh->b_data;
98
99         sb->offset              = le64_to_cpu(s->offset);
100         sb->version             = le64_to_cpu(s->version);
101
102         memcpy(sb->magic,       s->magic, 16);
103         memcpy(sb->uuid,        s->uuid, 16);
104         memcpy(sb->set_uuid,    s->set_uuid, 16);
105         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
106
107         sb->flags               = le64_to_cpu(s->flags);
108         sb->seq                 = le64_to_cpu(s->seq);
109         sb->last_mount          = le32_to_cpu(s->last_mount);
110         sb->first_bucket        = le16_to_cpu(s->first_bucket);
111         sb->keys                = le16_to_cpu(s->keys);
112
113         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
114                 sb->d[i] = le64_to_cpu(s->d[i]);
115
116         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
117                  sb->version, sb->flags, sb->seq, sb->keys);
118
119         err = "Not a bcache superblock";
120         if (sb->offset != SB_SECTOR)
121                 goto err;
122
123         if (memcmp(sb->magic, bcache_magic, 16))
124                 goto err;
125
126         err = "Too many journal buckets";
127         if (sb->keys > SB_JOURNAL_BUCKETS)
128                 goto err;
129
130         err = "Bad checksum";
131         if (s->csum != csum_set(s))
132                 goto err;
133
134         err = "Bad UUID";
135         if (bch_is_zero(sb->uuid, 16))
136                 goto err;
137
138         sb->block_size  = le16_to_cpu(s->block_size);
139
140         err = "Superblock block size smaller than device block size";
141         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
142                 goto err;
143
144         switch (sb->version) {
145         case BCACHE_SB_VERSION_BDEV:
146                 sb->data_offset = BDEV_DATA_START_DEFAULT;
147                 break;
148         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
149                 sb->data_offset = le64_to_cpu(s->data_offset);
150
151                 err = "Bad data offset";
152                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
153                         goto err;
154
155                 break;
156         case BCACHE_SB_VERSION_CDEV:
157         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
158                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
159                 sb->block_size  = le16_to_cpu(s->block_size);
160                 sb->bucket_size = le16_to_cpu(s->bucket_size);
161
162                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
163                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
164
165                 err = "Too many buckets";
166                 if (sb->nbuckets > LONG_MAX)
167                         goto err;
168
169                 err = "Not enough buckets";
170                 if (sb->nbuckets < 1 << 7)
171                         goto err;
172
173                 err = "Bad block/bucket size";
174                 if (!is_power_of_2(sb->block_size) ||
175                     sb->block_size > PAGE_SECTORS ||
176                     !is_power_of_2(sb->bucket_size) ||
177                     sb->bucket_size < PAGE_SECTORS)
178                         goto err;
179
180                 err = "Invalid superblock: device too small";
181                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
182                         goto err;
183
184                 err = "Bad UUID";
185                 if (bch_is_zero(sb->set_uuid, 16))
186                         goto err;
187
188                 err = "Bad cache device number in set";
189                 if (!sb->nr_in_set ||
190                     sb->nr_in_set <= sb->nr_this_dev ||
191                     sb->nr_in_set > MAX_CACHES_PER_SET)
192                         goto err;
193
194                 err = "Journal buckets not sequential";
195                 for (i = 0; i < sb->keys; i++)
196                         if (sb->d[i] != sb->first_bucket + i)
197                                 goto err;
198
199                 err = "Too many journal buckets";
200                 if (sb->first_bucket + sb->keys > sb->nbuckets)
201                         goto err;
202
203                 err = "Invalid superblock: first bucket comes before end of super";
204                 if (sb->first_bucket * sb->bucket_size < 16)
205                         goto err;
206
207                 break;
208         default:
209                 err = "Unsupported superblock version";
210                 goto err;
211         }
212
213         sb->last_mount = get_seconds();
214         err = NULL;
215
216         get_page(bh->b_page);
217         *res = bh->b_page;
218 err:
219         put_bh(bh);
220         return err;
221 }
222
223 static void write_bdev_super_endio(struct bio *bio, int error)
224 {
225         struct cached_dev *dc = bio->bi_private;
226         /* XXX: error checking */
227
228         closure_put(&dc->sb_write.cl);
229 }
230
231 static void __write_super(struct cache_sb *sb, struct bio *bio)
232 {
233         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
234         unsigned i;
235
236         bio->bi_sector  = SB_SECTOR;
237         bio->bi_rw      = REQ_SYNC|REQ_META;
238         bio->bi_size    = SB_SIZE;
239         bch_bio_map(bio, NULL);
240
241         out->offset             = cpu_to_le64(sb->offset);
242         out->version            = cpu_to_le64(sb->version);
243
244         memcpy(out->uuid,       sb->uuid, 16);
245         memcpy(out->set_uuid,   sb->set_uuid, 16);
246         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
247
248         out->flags              = cpu_to_le64(sb->flags);
249         out->seq                = cpu_to_le64(sb->seq);
250
251         out->last_mount         = cpu_to_le32(sb->last_mount);
252         out->first_bucket       = cpu_to_le16(sb->first_bucket);
253         out->keys               = cpu_to_le16(sb->keys);
254
255         for (i = 0; i < sb->keys; i++)
256                 out->d[i] = cpu_to_le64(sb->d[i]);
257
258         out->csum = csum_set(out);
259
260         pr_debug("ver %llu, flags %llu, seq %llu",
261                  sb->version, sb->flags, sb->seq);
262
263         submit_bio(REQ_WRITE, bio);
264 }
265
266 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
267 {
268         struct closure *cl = &dc->sb_write.cl;
269         struct bio *bio = &dc->sb_bio;
270
271         closure_lock(&dc->sb_write, parent);
272
273         bio_reset(bio);
274         bio->bi_bdev    = dc->bdev;
275         bio->bi_end_io  = write_bdev_super_endio;
276         bio->bi_private = dc;
277
278         closure_get(cl);
279         __write_super(&dc->sb, bio);
280
281         closure_return(cl);
282 }
283
284 static void write_super_endio(struct bio *bio, int error)
285 {
286         struct cache *ca = bio->bi_private;
287
288         bch_count_io_errors(ca, error, "writing superblock");
289         closure_put(&ca->set->sb_write.cl);
290 }
291
292 void bcache_write_super(struct cache_set *c)
293 {
294         struct closure *cl = &c->sb_write.cl;
295         struct cache *ca;
296         unsigned i;
297
298         closure_lock(&c->sb_write, &c->cl);
299
300         c->sb.seq++;
301
302         for_each_cache(ca, c, i) {
303                 struct bio *bio = &ca->sb_bio;
304
305                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
306                 ca->sb.seq              = c->sb.seq;
307                 ca->sb.last_mount       = c->sb.last_mount;
308
309                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
310
311                 bio_reset(bio);
312                 bio->bi_bdev    = ca->bdev;
313                 bio->bi_end_io  = write_super_endio;
314                 bio->bi_private = ca;
315
316                 closure_get(cl);
317                 __write_super(&ca->sb, bio);
318         }
319
320         closure_return(cl);
321 }
322
323 /* UUID io */
324
325 static void uuid_endio(struct bio *bio, int error)
326 {
327         struct closure *cl = bio->bi_private;
328         struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
329
330         cache_set_err_on(error, c, "accessing uuids");
331         bch_bbio_free(bio, c);
332         closure_put(cl);
333 }
334
335 static void uuid_io(struct cache_set *c, unsigned long rw,
336                     struct bkey *k, struct closure *parent)
337 {
338         struct closure *cl = &c->uuid_write.cl;
339         struct uuid_entry *u;
340         unsigned i;
341         char buf[80];
342
343         BUG_ON(!parent);
344         closure_lock(&c->uuid_write, parent);
345
346         for (i = 0; i < KEY_PTRS(k); i++) {
347                 struct bio *bio = bch_bbio_alloc(c);
348
349                 bio->bi_rw      = REQ_SYNC|REQ_META|rw;
350                 bio->bi_size    = KEY_SIZE(k) << 9;
351
352                 bio->bi_end_io  = uuid_endio;
353                 bio->bi_private = cl;
354                 bch_bio_map(bio, c->uuids);
355
356                 bch_submit_bbio(bio, c, k, i);
357
358                 if (!(rw & WRITE))
359                         break;
360         }
361
362         bch_bkey_to_text(buf, sizeof(buf), k);
363         pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
364
365         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
366                 if (!bch_is_zero(u->uuid, 16))
367                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
368                                  u - c->uuids, u->uuid, u->label,
369                                  u->first_reg, u->last_reg, u->invalidated);
370
371         closure_return(cl);
372 }
373
374 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
375 {
376         struct bkey *k = &j->uuid_bucket;
377
378         if (bch_btree_ptr_invalid(c, k))
379                 return "bad uuid pointer";
380
381         bkey_copy(&c->uuid_bucket, k);
382         uuid_io(c, READ_SYNC, k, cl);
383
384         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
385                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
386                 struct uuid_entry       *u1 = (void *) c->uuids;
387                 int i;
388
389                 closure_sync(cl);
390
391                 /*
392                  * Since the new uuid entry is bigger than the old, we have to
393                  * convert starting at the highest memory address and work down
394                  * in order to do it in place
395                  */
396
397                 for (i = c->nr_uuids - 1;
398                      i >= 0;
399                      --i) {
400                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
401                         memcpy(u1[i].label,     u0[i].label, 32);
402
403                         u1[i].first_reg         = u0[i].first_reg;
404                         u1[i].last_reg          = u0[i].last_reg;
405                         u1[i].invalidated       = u0[i].invalidated;
406
407                         u1[i].flags     = 0;
408                         u1[i].sectors   = 0;
409                 }
410         }
411
412         return NULL;
413 }
414
415 static int __uuid_write(struct cache_set *c)
416 {
417         BKEY_PADDED(key) k;
418         struct closure cl;
419         closure_init_stack(&cl);
420
421         lockdep_assert_held(&bch_register_lock);
422
423         if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, true))
424                 return 1;
425
426         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
427         uuid_io(c, REQ_WRITE, &k.key, &cl);
428         closure_sync(&cl);
429
430         bkey_copy(&c->uuid_bucket, &k.key);
431         bkey_put(c, &k.key);
432         return 0;
433 }
434
435 int bch_uuid_write(struct cache_set *c)
436 {
437         int ret = __uuid_write(c);
438
439         if (!ret)
440                 bch_journal_meta(c, NULL);
441
442         return ret;
443 }
444
445 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
446 {
447         struct uuid_entry *u;
448
449         for (u = c->uuids;
450              u < c->uuids + c->nr_uuids; u++)
451                 if (!memcmp(u->uuid, uuid, 16))
452                         return u;
453
454         return NULL;
455 }
456
457 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
458 {
459         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
460         return uuid_find(c, zero_uuid);
461 }
462
463 /*
464  * Bucket priorities/gens:
465  *
466  * For each bucket, we store on disk its
467    * 8 bit gen
468    * 16 bit priority
469  *
470  * See alloc.c for an explanation of the gen. The priority is used to implement
471  * lru (and in the future other) cache replacement policies; for most purposes
472  * it's just an opaque integer.
473  *
474  * The gens and the priorities don't have a whole lot to do with each other, and
475  * it's actually the gens that must be written out at specific times - it's no
476  * big deal if the priorities don't get written, if we lose them we just reuse
477  * buckets in suboptimal order.
478  *
479  * On disk they're stored in a packed array, and in as many buckets are required
480  * to fit them all. The buckets we use to store them form a list; the journal
481  * header points to the first bucket, the first bucket points to the second
482  * bucket, et cetera.
483  *
484  * This code is used by the allocation code; periodically (whenever it runs out
485  * of buckets to allocate from) the allocation code will invalidate some
486  * buckets, but it can't use those buckets until their new gens are safely on
487  * disk.
488  */
489
490 static void prio_endio(struct bio *bio, int error)
491 {
492         struct cache *ca = bio->bi_private;
493
494         cache_set_err_on(error, ca->set, "accessing priorities");
495         bch_bbio_free(bio, ca->set);
496         closure_put(&ca->prio);
497 }
498
499 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
500 {
501         struct closure *cl = &ca->prio;
502         struct bio *bio = bch_bbio_alloc(ca->set);
503
504         closure_init_stack(cl);
505
506         bio->bi_sector  = bucket * ca->sb.bucket_size;
507         bio->bi_bdev    = ca->bdev;
508         bio->bi_rw      = REQ_SYNC|REQ_META|rw;
509         bio->bi_size    = bucket_bytes(ca);
510
511         bio->bi_end_io  = prio_endio;
512         bio->bi_private = ca;
513         bch_bio_map(bio, ca->disk_buckets);
514
515         closure_bio_submit(bio, &ca->prio, ca);
516         closure_sync(cl);
517 }
518
519 #define buckets_free(c) "free %zu, free_inc %zu, unused %zu",           \
520         fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
521
522 void bch_prio_write(struct cache *ca)
523 {
524         int i;
525         struct bucket *b;
526         struct closure cl;
527
528         closure_init_stack(&cl);
529
530         lockdep_assert_held(&ca->set->bucket_lock);
531
532         for (b = ca->buckets;
533              b < ca->buckets + ca->sb.nbuckets; b++)
534                 b->disk_gen = b->gen;
535
536         ca->disk_buckets->seq++;
537
538         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
539                         &ca->meta_sectors_written);
540
541         pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
542                  fifo_used(&ca->free_inc), fifo_used(&ca->unused));
543
544         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
545                 long bucket;
546                 struct prio_set *p = ca->disk_buckets;
547                 struct bucket_disk *d = p->data;
548                 struct bucket_disk *end = d + prios_per_bucket(ca);
549
550                 for (b = ca->buckets + i * prios_per_bucket(ca);
551                      b < ca->buckets + ca->sb.nbuckets && d < end;
552                      b++, d++) {
553                         d->prio = cpu_to_le16(b->prio);
554                         d->gen = b->gen;
555                 }
556
557                 p->next_bucket  = ca->prio_buckets[i + 1];
558                 p->magic        = pset_magic(&ca->sb);
559                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
560
561                 bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, true);
562                 BUG_ON(bucket == -1);
563
564                 mutex_unlock(&ca->set->bucket_lock);
565                 prio_io(ca, bucket, REQ_WRITE);
566                 mutex_lock(&ca->set->bucket_lock);
567
568                 ca->prio_buckets[i] = bucket;
569                 atomic_dec_bug(&ca->buckets[bucket].pin);
570         }
571
572         mutex_unlock(&ca->set->bucket_lock);
573
574         bch_journal_meta(ca->set, &cl);
575         closure_sync(&cl);
576
577         mutex_lock(&ca->set->bucket_lock);
578
579         ca->need_save_prio = 0;
580
581         /*
582          * Don't want the old priorities to get garbage collected until after we
583          * finish writing the new ones, and they're journalled
584          */
585         for (i = 0; i < prio_buckets(ca); i++)
586                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
587 }
588
589 static void prio_read(struct cache *ca, uint64_t bucket)
590 {
591         struct prio_set *p = ca->disk_buckets;
592         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
593         struct bucket *b;
594         unsigned bucket_nr = 0;
595
596         for (b = ca->buckets;
597              b < ca->buckets + ca->sb.nbuckets;
598              b++, d++) {
599                 if (d == end) {
600                         ca->prio_buckets[bucket_nr] = bucket;
601                         ca->prio_last_buckets[bucket_nr] = bucket;
602                         bucket_nr++;
603
604                         prio_io(ca, bucket, READ_SYNC);
605
606                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
607                                 pr_warn("bad csum reading priorities");
608
609                         if (p->magic != pset_magic(&ca->sb))
610                                 pr_warn("bad magic reading priorities");
611
612                         bucket = p->next_bucket;
613                         d = p->data;
614                 }
615
616                 b->prio = le16_to_cpu(d->prio);
617                 b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
618         }
619 }
620
621 /* Bcache device */
622
623 static int open_dev(struct block_device *b, fmode_t mode)
624 {
625         struct bcache_device *d = b->bd_disk->private_data;
626         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
627                 return -ENXIO;
628
629         closure_get(&d->cl);
630         return 0;
631 }
632
633 static void release_dev(struct gendisk *b, fmode_t mode)
634 {
635         struct bcache_device *d = b->private_data;
636         closure_put(&d->cl);
637 }
638
639 static int ioctl_dev(struct block_device *b, fmode_t mode,
640                      unsigned int cmd, unsigned long arg)
641 {
642         struct bcache_device *d = b->bd_disk->private_data;
643         return d->ioctl(d, mode, cmd, arg);
644 }
645
646 static const struct block_device_operations bcache_ops = {
647         .open           = open_dev,
648         .release        = release_dev,
649         .ioctl          = ioctl_dev,
650         .owner          = THIS_MODULE,
651 };
652
653 void bcache_device_stop(struct bcache_device *d)
654 {
655         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
656                 closure_queue(&d->cl);
657 }
658
659 static void bcache_device_unlink(struct bcache_device *d)
660 {
661         lockdep_assert_held(&bch_register_lock);
662
663         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
664                 unsigned i;
665                 struct cache *ca;
666
667                 sysfs_remove_link(&d->c->kobj, d->name);
668                 sysfs_remove_link(&d->kobj, "cache");
669
670                 for_each_cache(ca, d->c, i)
671                         bd_unlink_disk_holder(ca->bdev, d->disk);
672         }
673 }
674
675 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
676                                const char *name)
677 {
678         unsigned i;
679         struct cache *ca;
680
681         for_each_cache(ca, d->c, i)
682                 bd_link_disk_holder(ca->bdev, d->disk);
683
684         snprintf(d->name, BCACHEDEVNAME_SIZE,
685                  "%s%u", name, d->id);
686
687         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
688              sysfs_create_link(&c->kobj, &d->kobj, d->name),
689              "Couldn't create device <-> cache set symlinks");
690 }
691
692 static void bcache_device_detach(struct bcache_device *d)
693 {
694         lockdep_assert_held(&bch_register_lock);
695
696         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
697                 struct uuid_entry *u = d->c->uuids + d->id;
698
699                 SET_UUID_FLASH_ONLY(u, 0);
700                 memcpy(u->uuid, invalid_uuid, 16);
701                 u->invalidated = cpu_to_le32(get_seconds());
702                 bch_uuid_write(d->c);
703         }
704
705         bcache_device_unlink(d);
706
707         d->c->devices[d->id] = NULL;
708         closure_put(&d->c->caching);
709         d->c = NULL;
710 }
711
712 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
713                                  unsigned id)
714 {
715         BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
716
717         d->id = id;
718         d->c = c;
719         c->devices[id] = d;
720
721         closure_get(&c->caching);
722 }
723
724 static void bcache_device_free(struct bcache_device *d)
725 {
726         lockdep_assert_held(&bch_register_lock);
727
728         pr_info("%s stopped", d->disk->disk_name);
729
730         if (d->c)
731                 bcache_device_detach(d);
732         if (d->disk && d->disk->flags & GENHD_FL_UP)
733                 del_gendisk(d->disk);
734         if (d->disk && d->disk->queue)
735                 blk_cleanup_queue(d->disk->queue);
736         if (d->disk) {
737                 ida_simple_remove(&bcache_minor, d->disk->first_minor);
738                 put_disk(d->disk);
739         }
740
741         bio_split_pool_free(&d->bio_split_hook);
742         if (d->bio_split)
743                 bioset_free(d->bio_split);
744         if (is_vmalloc_addr(d->full_dirty_stripes))
745                 vfree(d->full_dirty_stripes);
746         else
747                 kfree(d->full_dirty_stripes);
748         if (is_vmalloc_addr(d->stripe_sectors_dirty))
749                 vfree(d->stripe_sectors_dirty);
750         else
751                 kfree(d->stripe_sectors_dirty);
752
753         closure_debug_destroy(&d->cl);
754 }
755
756 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
757                               sector_t sectors)
758 {
759         struct request_queue *q;
760         size_t n;
761         int minor;
762
763         if (!d->stripe_size)
764                 d->stripe_size = 1 << 31;
765
766         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
767
768         if (!d->nr_stripes ||
769             d->nr_stripes > INT_MAX ||
770             d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
771                 pr_err("nr_stripes too large");
772                 return -ENOMEM;
773         }
774
775         n = d->nr_stripes * sizeof(atomic_t);
776         d->stripe_sectors_dirty = n < PAGE_SIZE << 6
777                 ? kzalloc(n, GFP_KERNEL)
778                 : vzalloc(n);
779         if (!d->stripe_sectors_dirty)
780                 return -ENOMEM;
781
782         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
783         d->full_dirty_stripes = n < PAGE_SIZE << 6
784                 ? kzalloc(n, GFP_KERNEL)
785                 : vzalloc(n);
786         if (!d->full_dirty_stripes)
787                 return -ENOMEM;
788
789         minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
790         if (minor < 0)
791                 return minor;
792
793         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
794             bio_split_pool_init(&d->bio_split_hook) ||
795             !(d->disk = alloc_disk(1))) {
796                 ida_simple_remove(&bcache_minor, minor);
797                 return -ENOMEM;
798         }
799
800         set_capacity(d->disk, sectors);
801         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
802
803         d->disk->major          = bcache_major;
804         d->disk->first_minor    = minor;
805         d->disk->fops           = &bcache_ops;
806         d->disk->private_data   = d;
807
808         q = blk_alloc_queue(GFP_KERNEL);
809         if (!q)
810                 return -ENOMEM;
811
812         blk_queue_make_request(q, NULL);
813         d->disk->queue                  = q;
814         q->queuedata                    = d;
815         q->backing_dev_info.congested_data = d;
816         q->limits.max_hw_sectors        = UINT_MAX;
817         q->limits.max_sectors           = UINT_MAX;
818         q->limits.max_segment_size      = UINT_MAX;
819         q->limits.max_segments          = BIO_MAX_PAGES;
820         q->limits.max_discard_sectors   = UINT_MAX;
821         q->limits.io_min                = block_size;
822         q->limits.logical_block_size    = block_size;
823         q->limits.physical_block_size   = block_size;
824         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
825         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
826
827         blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
828
829         return 0;
830 }
831
832 /* Cached device */
833
834 static void calc_cached_dev_sectors(struct cache_set *c)
835 {
836         uint64_t sectors = 0;
837         struct cached_dev *dc;
838
839         list_for_each_entry(dc, &c->cached_devs, list)
840                 sectors += bdev_sectors(dc->bdev);
841
842         c->cached_dev_sectors = sectors;
843 }
844
845 void bch_cached_dev_run(struct cached_dev *dc)
846 {
847         struct bcache_device *d = &dc->disk;
848         char buf[SB_LABEL_SIZE + 1];
849         char *env[] = {
850                 "DRIVER=bcache",
851                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
852                 NULL,
853                 NULL,
854         };
855
856         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
857         buf[SB_LABEL_SIZE] = '\0';
858         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
859
860         if (atomic_xchg(&dc->running, 1))
861                 return;
862
863         if (!d->c &&
864             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
865                 struct closure cl;
866                 closure_init_stack(&cl);
867
868                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
869                 bch_write_bdev_super(dc, &cl);
870                 closure_sync(&cl);
871         }
872
873         add_disk(d->disk);
874         bd_link_disk_holder(dc->bdev, dc->disk.disk);
875         /* won't show up in the uevent file, use udevadm monitor -e instead
876          * only class / kset properties are persistent */
877         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
878         kfree(env[1]);
879         kfree(env[2]);
880
881         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
882             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
883                 pr_debug("error creating sysfs link");
884 }
885
886 static void cached_dev_detach_finish(struct work_struct *w)
887 {
888         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
889         char buf[BDEVNAME_SIZE];
890         struct closure cl;
891         closure_init_stack(&cl);
892
893         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
894         BUG_ON(atomic_read(&dc->count));
895
896         mutex_lock(&bch_register_lock);
897
898         memset(&dc->sb.set_uuid, 0, 16);
899         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
900
901         bch_write_bdev_super(dc, &cl);
902         closure_sync(&cl);
903
904         bcache_device_detach(&dc->disk);
905         list_move(&dc->list, &uncached_devices);
906
907         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
908
909         mutex_unlock(&bch_register_lock);
910
911         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
912
913         /* Drop ref we took in cached_dev_detach() */
914         closure_put(&dc->disk.cl);
915 }
916
917 void bch_cached_dev_detach(struct cached_dev *dc)
918 {
919         lockdep_assert_held(&bch_register_lock);
920
921         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
922                 return;
923
924         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
925                 return;
926
927         /*
928          * Block the device from being closed and freed until we're finished
929          * detaching
930          */
931         closure_get(&dc->disk.cl);
932
933         bch_writeback_queue(dc);
934         cached_dev_put(dc);
935 }
936
937 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
938 {
939         uint32_t rtime = cpu_to_le32(get_seconds());
940         struct uuid_entry *u;
941         char buf[BDEVNAME_SIZE];
942
943         bdevname(dc->bdev, buf);
944
945         if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
946                 return -ENOENT;
947
948         if (dc->disk.c) {
949                 pr_err("Can't attach %s: already attached", buf);
950                 return -EINVAL;
951         }
952
953         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
954                 pr_err("Can't attach %s: shutting down", buf);
955                 return -EINVAL;
956         }
957
958         if (dc->sb.block_size < c->sb.block_size) {
959                 /* Will die */
960                 pr_err("Couldn't attach %s: block size less than set's block size",
961                        buf);
962                 return -EINVAL;
963         }
964
965         u = uuid_find(c, dc->sb.uuid);
966
967         if (u &&
968             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
969              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
970                 memcpy(u->uuid, invalid_uuid, 16);
971                 u->invalidated = cpu_to_le32(get_seconds());
972                 u = NULL;
973         }
974
975         if (!u) {
976                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
977                         pr_err("Couldn't find uuid for %s in set", buf);
978                         return -ENOENT;
979                 }
980
981                 u = uuid_find_empty(c);
982                 if (!u) {
983                         pr_err("Not caching %s, no room for UUID", buf);
984                         return -EINVAL;
985                 }
986         }
987
988         /* Deadlocks since we're called via sysfs...
989         sysfs_remove_file(&dc->kobj, &sysfs_attach);
990          */
991
992         if (bch_is_zero(u->uuid, 16)) {
993                 struct closure cl;
994                 closure_init_stack(&cl);
995
996                 memcpy(u->uuid, dc->sb.uuid, 16);
997                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
998                 u->first_reg = u->last_reg = rtime;
999                 bch_uuid_write(c);
1000
1001                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1002                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1003
1004                 bch_write_bdev_super(dc, &cl);
1005                 closure_sync(&cl);
1006         } else {
1007                 u->last_reg = rtime;
1008                 bch_uuid_write(c);
1009         }
1010
1011         bcache_device_attach(&dc->disk, c, u - c->uuids);
1012         list_move(&dc->list, &c->cached_devs);
1013         calc_cached_dev_sectors(c);
1014
1015         smp_wmb();
1016         /*
1017          * dc->c must be set before dc->count != 0 - paired with the mb in
1018          * cached_dev_get()
1019          */
1020         atomic_set(&dc->count, 1);
1021
1022         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1023                 bch_sectors_dirty_init(dc);
1024                 atomic_set(&dc->has_dirty, 1);
1025                 atomic_inc(&dc->count);
1026                 bch_writeback_queue(dc);
1027         }
1028
1029         bch_cached_dev_run(dc);
1030         bcache_device_link(&dc->disk, c, "bdev");
1031
1032         pr_info("Caching %s as %s on set %pU",
1033                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1034                 dc->disk.c->sb.set_uuid);
1035         return 0;
1036 }
1037
1038 void bch_cached_dev_release(struct kobject *kobj)
1039 {
1040         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1041                                              disk.kobj);
1042         kfree(dc);
1043         module_put(THIS_MODULE);
1044 }
1045
1046 static void cached_dev_free(struct closure *cl)
1047 {
1048         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1049
1050         cancel_delayed_work_sync(&dc->writeback_rate_update);
1051         kthread_stop(dc->writeback_thread);
1052
1053         mutex_lock(&bch_register_lock);
1054
1055         if (atomic_read(&dc->running))
1056                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1057         bcache_device_free(&dc->disk);
1058         list_del(&dc->list);
1059
1060         mutex_unlock(&bch_register_lock);
1061
1062         if (!IS_ERR_OR_NULL(dc->bdev)) {
1063                 if (dc->bdev->bd_disk)
1064                         blk_sync_queue(bdev_get_queue(dc->bdev));
1065
1066                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1067         }
1068
1069         wake_up(&unregister_wait);
1070
1071         kobject_put(&dc->disk.kobj);
1072 }
1073
1074 static void cached_dev_flush(struct closure *cl)
1075 {
1076         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1077         struct bcache_device *d = &dc->disk;
1078
1079         mutex_lock(&bch_register_lock);
1080         bcache_device_unlink(d);
1081         mutex_unlock(&bch_register_lock);
1082
1083         bch_cache_accounting_destroy(&dc->accounting);
1084         kobject_del(&d->kobj);
1085
1086         continue_at(cl, cached_dev_free, system_wq);
1087 }
1088
1089 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1090 {
1091         int ret;
1092         struct io *io;
1093         struct request_queue *q = bdev_get_queue(dc->bdev);
1094
1095         __module_get(THIS_MODULE);
1096         INIT_LIST_HEAD(&dc->list);
1097         closure_init(&dc->disk.cl, NULL);
1098         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1099         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1100         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1101         closure_init_unlocked(&dc->sb_write);
1102         INIT_LIST_HEAD(&dc->io_lru);
1103         spin_lock_init(&dc->io_lock);
1104         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1105
1106         dc->sequential_cutoff           = 4 << 20;
1107
1108         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1109                 list_add(&io->lru, &dc->io_lru);
1110                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1111         }
1112
1113         ret = bcache_device_init(&dc->disk, block_size,
1114                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1115         if (ret)
1116                 return ret;
1117
1118         set_capacity(dc->disk.disk,
1119                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1120
1121         dc->disk.disk->queue->backing_dev_info.ra_pages =
1122                 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1123                     q->backing_dev_info.ra_pages);
1124
1125         bch_cached_dev_request_init(dc);
1126         bch_cached_dev_writeback_init(dc);
1127         return 0;
1128 }
1129
1130 /* Cached device - bcache superblock */
1131
1132 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1133                                  struct block_device *bdev,
1134                                  struct cached_dev *dc)
1135 {
1136         char name[BDEVNAME_SIZE];
1137         const char *err = "cannot allocate memory";
1138         struct cache_set *c;
1139
1140         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1141         dc->bdev = bdev;
1142         dc->bdev->bd_holder = dc;
1143
1144         bio_init(&dc->sb_bio);
1145         dc->sb_bio.bi_max_vecs  = 1;
1146         dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1147         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1148         get_page(sb_page);
1149
1150         if (cached_dev_init(dc, sb->block_size << 9))
1151                 goto err;
1152
1153         err = "error creating kobject";
1154         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1155                         "bcache"))
1156                 goto err;
1157         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1158                 goto err;
1159
1160         pr_info("registered backing device %s", bdevname(bdev, name));
1161
1162         list_add(&dc->list, &uncached_devices);
1163         list_for_each_entry(c, &bch_cache_sets, list)
1164                 bch_cached_dev_attach(dc, c);
1165
1166         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1167             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1168                 bch_cached_dev_run(dc);
1169
1170         return;
1171 err:
1172         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1173         bcache_device_stop(&dc->disk);
1174 }
1175
1176 /* Flash only volumes */
1177
1178 void bch_flash_dev_release(struct kobject *kobj)
1179 {
1180         struct bcache_device *d = container_of(kobj, struct bcache_device,
1181                                                kobj);
1182         kfree(d);
1183 }
1184
1185 static void flash_dev_free(struct closure *cl)
1186 {
1187         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1188         bcache_device_free(d);
1189         kobject_put(&d->kobj);
1190 }
1191
1192 static void flash_dev_flush(struct closure *cl)
1193 {
1194         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1195
1196         bcache_device_unlink(d);
1197         kobject_del(&d->kobj);
1198         continue_at(cl, flash_dev_free, system_wq);
1199 }
1200
1201 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1202 {
1203         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1204                                           GFP_KERNEL);
1205         if (!d)
1206                 return -ENOMEM;
1207
1208         closure_init(&d->cl, NULL);
1209         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1210
1211         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1212
1213         if (bcache_device_init(d, block_bytes(c), u->sectors))
1214                 goto err;
1215
1216         bcache_device_attach(d, c, u - c->uuids);
1217         bch_flash_dev_request_init(d);
1218         add_disk(d->disk);
1219
1220         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1221                 goto err;
1222
1223         bcache_device_link(d, c, "volume");
1224
1225         return 0;
1226 err:
1227         kobject_put(&d->kobj);
1228         return -ENOMEM;
1229 }
1230
1231 static int flash_devs_run(struct cache_set *c)
1232 {
1233         int ret = 0;
1234         struct uuid_entry *u;
1235
1236         for (u = c->uuids;
1237              u < c->uuids + c->nr_uuids && !ret;
1238              u++)
1239                 if (UUID_FLASH_ONLY(u))
1240                         ret = flash_dev_run(c, u);
1241
1242         return ret;
1243 }
1244
1245 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1246 {
1247         struct uuid_entry *u;
1248
1249         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1250                 return -EINTR;
1251
1252         u = uuid_find_empty(c);
1253         if (!u) {
1254                 pr_err("Can't create volume, no room for UUID");
1255                 return -EINVAL;
1256         }
1257
1258         get_random_bytes(u->uuid, 16);
1259         memset(u->label, 0, 32);
1260         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1261
1262         SET_UUID_FLASH_ONLY(u, 1);
1263         u->sectors = size >> 9;
1264
1265         bch_uuid_write(c);
1266
1267         return flash_dev_run(c, u);
1268 }
1269
1270 /* Cache set */
1271
1272 __printf(2, 3)
1273 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1274 {
1275         va_list args;
1276
1277         if (c->on_error != ON_ERROR_PANIC &&
1278             test_bit(CACHE_SET_STOPPING, &c->flags))
1279                 return false;
1280
1281         /* XXX: we can be called from atomic context
1282         acquire_console_sem();
1283         */
1284
1285         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1286
1287         va_start(args, fmt);
1288         vprintk(fmt, args);
1289         va_end(args);
1290
1291         printk(", disabling caching\n");
1292
1293         if (c->on_error == ON_ERROR_PANIC)
1294                 panic("panic forced after error\n");
1295
1296         bch_cache_set_unregister(c);
1297         return true;
1298 }
1299
1300 void bch_cache_set_release(struct kobject *kobj)
1301 {
1302         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1303         kfree(c);
1304         module_put(THIS_MODULE);
1305 }
1306
1307 static void cache_set_free(struct closure *cl)
1308 {
1309         struct cache_set *c = container_of(cl, struct cache_set, cl);
1310         struct cache *ca;
1311         unsigned i;
1312
1313         if (!IS_ERR_OR_NULL(c->debug))
1314                 debugfs_remove(c->debug);
1315
1316         bch_open_buckets_free(c);
1317         bch_btree_cache_free(c);
1318         bch_journal_free(c);
1319
1320         for_each_cache(ca, c, i)
1321                 if (ca)
1322                         kobject_put(&ca->kobj);
1323
1324         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1325         free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1326
1327         if (c->bio_split)
1328                 bioset_free(c->bio_split);
1329         if (c->fill_iter)
1330                 mempool_destroy(c->fill_iter);
1331         if (c->bio_meta)
1332                 mempool_destroy(c->bio_meta);
1333         if (c->search)
1334                 mempool_destroy(c->search);
1335         kfree(c->devices);
1336
1337         mutex_lock(&bch_register_lock);
1338         list_del(&c->list);
1339         mutex_unlock(&bch_register_lock);
1340
1341         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1342         wake_up(&unregister_wait);
1343
1344         closure_debug_destroy(&c->cl);
1345         kobject_put(&c->kobj);
1346 }
1347
1348 static void cache_set_flush(struct closure *cl)
1349 {
1350         struct cache_set *c = container_of(cl, struct cache_set, caching);
1351         struct cache *ca;
1352         struct btree *b;
1353         unsigned i;
1354
1355         bch_cache_accounting_destroy(&c->accounting);
1356
1357         kobject_put(&c->internal);
1358         kobject_del(&c->kobj);
1359
1360         if (c->gc_thread)
1361                 kthread_stop(c->gc_thread);
1362
1363         if (!IS_ERR_OR_NULL(c->root))
1364                 list_add(&c->root->list, &c->btree_cache);
1365
1366         /* Should skip this if we're unregistering because of an error */
1367         list_for_each_entry(b, &c->btree_cache, list)
1368                 if (btree_node_dirty(b))
1369                         bch_btree_node_write(b, NULL);
1370
1371         for_each_cache(ca, c, i)
1372                 if (ca->alloc_thread)
1373                         kthread_stop(ca->alloc_thread);
1374
1375         closure_return(cl);
1376 }
1377
1378 static void __cache_set_unregister(struct closure *cl)
1379 {
1380         struct cache_set *c = container_of(cl, struct cache_set, caching);
1381         struct cached_dev *dc;
1382         size_t i;
1383
1384         mutex_lock(&bch_register_lock);
1385
1386         for (i = 0; i < c->nr_uuids; i++)
1387                 if (c->devices[i]) {
1388                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1389                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1390                                 dc = container_of(c->devices[i],
1391                                                   struct cached_dev, disk);
1392                                 bch_cached_dev_detach(dc);
1393                         } else {
1394                                 bcache_device_stop(c->devices[i]);
1395                         }
1396                 }
1397
1398         mutex_unlock(&bch_register_lock);
1399
1400         continue_at(cl, cache_set_flush, system_wq);
1401 }
1402
1403 void bch_cache_set_stop(struct cache_set *c)
1404 {
1405         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1406                 closure_queue(&c->caching);
1407 }
1408
1409 void bch_cache_set_unregister(struct cache_set *c)
1410 {
1411         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1412         bch_cache_set_stop(c);
1413 }
1414
1415 #define alloc_bucket_pages(gfp, c)                      \
1416         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1417
1418 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1419 {
1420         int iter_size;
1421         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1422         if (!c)
1423                 return NULL;
1424
1425         __module_get(THIS_MODULE);
1426         closure_init(&c->cl, NULL);
1427         set_closure_fn(&c->cl, cache_set_free, system_wq);
1428
1429         closure_init(&c->caching, &c->cl);
1430         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1431
1432         /* Maybe create continue_at_noreturn() and use it here? */
1433         closure_set_stopped(&c->cl);
1434         closure_put(&c->cl);
1435
1436         kobject_init(&c->kobj, &bch_cache_set_ktype);
1437         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1438
1439         bch_cache_accounting_init(&c->accounting, &c->cl);
1440
1441         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1442         c->sb.block_size        = sb->block_size;
1443         c->sb.bucket_size       = sb->bucket_size;
1444         c->sb.nr_in_set         = sb->nr_in_set;
1445         c->sb.last_mount        = sb->last_mount;
1446         c->bucket_bits          = ilog2(sb->bucket_size);
1447         c->block_bits           = ilog2(sb->block_size);
1448         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1449
1450         c->btree_pages          = c->sb.bucket_size / PAGE_SECTORS;
1451         if (c->btree_pages > BTREE_MAX_PAGES)
1452                 c->btree_pages = max_t(int, c->btree_pages / 4,
1453                                        BTREE_MAX_PAGES);
1454
1455         c->sort_crit_factor = int_sqrt(c->btree_pages);
1456
1457         closure_init_unlocked(&c->sb_write);
1458         mutex_init(&c->bucket_lock);
1459         init_waitqueue_head(&c->try_wait);
1460         init_waitqueue_head(&c->bucket_wait);
1461         closure_init_unlocked(&c->uuid_write);
1462         mutex_init(&c->sort_lock);
1463
1464         spin_lock_init(&c->sort_time.lock);
1465         spin_lock_init(&c->btree_gc_time.lock);
1466         spin_lock_init(&c->btree_split_time.lock);
1467         spin_lock_init(&c->btree_read_time.lock);
1468         spin_lock_init(&c->try_harder_time.lock);
1469
1470         bch_moving_init_cache_set(c);
1471
1472         INIT_LIST_HEAD(&c->list);
1473         INIT_LIST_HEAD(&c->cached_devs);
1474         INIT_LIST_HEAD(&c->btree_cache);
1475         INIT_LIST_HEAD(&c->btree_cache_freeable);
1476         INIT_LIST_HEAD(&c->btree_cache_freed);
1477         INIT_LIST_HEAD(&c->data_buckets);
1478
1479         c->search = mempool_create_slab_pool(32, bch_search_cache);
1480         if (!c->search)
1481                 goto err;
1482
1483         iter_size = (sb->bucket_size / sb->block_size + 1) *
1484                 sizeof(struct btree_iter_set);
1485
1486         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1487             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1488                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1489                                 bucket_pages(c))) ||
1490             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1491             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1492             !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1493             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1494             bch_journal_alloc(c) ||
1495             bch_btree_cache_alloc(c) ||
1496             bch_open_buckets_alloc(c))
1497                 goto err;
1498
1499         c->congested_read_threshold_us  = 2000;
1500         c->congested_write_threshold_us = 20000;
1501         c->error_limit  = 8 << IO_ERROR_SHIFT;
1502
1503         return c;
1504 err:
1505         bch_cache_set_unregister(c);
1506         return NULL;
1507 }
1508
1509 static void run_cache_set(struct cache_set *c)
1510 {
1511         const char *err = "cannot allocate memory";
1512         struct cached_dev *dc, *t;
1513         struct cache *ca;
1514         struct closure cl;
1515         unsigned i;
1516
1517         closure_init_stack(&cl);
1518
1519         for_each_cache(ca, c, i)
1520                 c->nbuckets += ca->sb.nbuckets;
1521
1522         if (CACHE_SYNC(&c->sb)) {
1523                 LIST_HEAD(journal);
1524                 struct bkey *k;
1525                 struct jset *j;
1526
1527                 err = "cannot allocate memory for journal";
1528                 if (bch_journal_read(c, &journal))
1529                         goto err;
1530
1531                 pr_debug("btree_journal_read() done");
1532
1533                 err = "no journal entries found";
1534                 if (list_empty(&journal))
1535                         goto err;
1536
1537                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1538
1539                 err = "IO error reading priorities";
1540                 for_each_cache(ca, c, i)
1541                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1542
1543                 /*
1544                  * If prio_read() fails it'll call cache_set_error and we'll
1545                  * tear everything down right away, but if we perhaps checked
1546                  * sooner we could avoid journal replay.
1547                  */
1548
1549                 k = &j->btree_root;
1550
1551                 err = "bad btree root";
1552                 if (bch_btree_ptr_invalid(c, k))
1553                         goto err;
1554
1555                 err = "error reading btree root";
1556                 c->root = bch_btree_node_get(c, k, j->btree_level, true);
1557                 if (IS_ERR_OR_NULL(c->root))
1558                         goto err;
1559
1560                 list_del_init(&c->root->list);
1561                 rw_unlock(true, c->root);
1562
1563                 err = uuid_read(c, j, &cl);
1564                 if (err)
1565                         goto err;
1566
1567                 err = "error in recovery";
1568                 if (bch_btree_check(c))
1569                         goto err;
1570
1571                 bch_journal_mark(c, &journal);
1572                 bch_btree_gc_finish(c);
1573                 pr_debug("btree_check() done");
1574
1575                 /*
1576                  * bcache_journal_next() can't happen sooner, or
1577                  * btree_gc_finish() will give spurious errors about last_gc >
1578                  * gc_gen - this is a hack but oh well.
1579                  */
1580                 bch_journal_next(&c->journal);
1581
1582                 err = "error starting allocator thread";
1583                 for_each_cache(ca, c, i)
1584                         if (bch_cache_allocator_start(ca))
1585                                 goto err;
1586
1587                 /*
1588                  * First place it's safe to allocate: btree_check() and
1589                  * btree_gc_finish() have to run before we have buckets to
1590                  * allocate, and bch_bucket_alloc_set() might cause a journal
1591                  * entry to be written so bcache_journal_next() has to be called
1592                  * first.
1593                  *
1594                  * If the uuids were in the old format we have to rewrite them
1595                  * before the next journal entry is written:
1596                  */
1597                 if (j->version < BCACHE_JSET_VERSION_UUID)
1598                         __uuid_write(c);
1599
1600                 bch_journal_replay(c, &journal);
1601         } else {
1602                 pr_notice("invalidating existing data");
1603
1604                 for_each_cache(ca, c, i) {
1605                         unsigned j;
1606
1607                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1608                                               2, SB_JOURNAL_BUCKETS);
1609
1610                         for (j = 0; j < ca->sb.keys; j++)
1611                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1612                 }
1613
1614                 bch_btree_gc_finish(c);
1615
1616                 err = "error starting allocator thread";
1617                 for_each_cache(ca, c, i)
1618                         if (bch_cache_allocator_start(ca))
1619                                 goto err;
1620
1621                 mutex_lock(&c->bucket_lock);
1622                 for_each_cache(ca, c, i)
1623                         bch_prio_write(ca);
1624                 mutex_unlock(&c->bucket_lock);
1625
1626                 err = "cannot allocate new UUID bucket";
1627                 if (__uuid_write(c))
1628                         goto err;
1629
1630                 err = "cannot allocate new btree root";
1631                 c->root = bch_btree_node_alloc(c, 0, true);
1632                 if (IS_ERR_OR_NULL(c->root))
1633                         goto err;
1634
1635                 bkey_copy_key(&c->root->key, &MAX_KEY);
1636                 bch_btree_node_write(c->root, &cl);
1637
1638                 bch_btree_set_root(c->root);
1639                 rw_unlock(true, c->root);
1640
1641                 /*
1642                  * We don't want to write the first journal entry until
1643                  * everything is set up - fortunately journal entries won't be
1644                  * written until the SET_CACHE_SYNC() here:
1645                  */
1646                 SET_CACHE_SYNC(&c->sb, true);
1647
1648                 bch_journal_next(&c->journal);
1649                 bch_journal_meta(c, &cl);
1650         }
1651
1652         err = "error starting gc thread";
1653         if (bch_gc_thread_start(c))
1654                 goto err;
1655
1656         closure_sync(&cl);
1657         c->sb.last_mount = get_seconds();
1658         bcache_write_super(c);
1659
1660         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1661                 bch_cached_dev_attach(dc, c);
1662
1663         flash_devs_run(c);
1664
1665         return;
1666 err:
1667         closure_sync(&cl);
1668         /* XXX: test this, it's broken */
1669         bch_cache_set_error(c, "%s", err);
1670 }
1671
1672 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1673 {
1674         return ca->sb.block_size        == c->sb.block_size &&
1675                 ca->sb.bucket_size      == c->sb.block_size &&
1676                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1677 }
1678
1679 static const char *register_cache_set(struct cache *ca)
1680 {
1681         char buf[12];
1682         const char *err = "cannot allocate memory";
1683         struct cache_set *c;
1684
1685         list_for_each_entry(c, &bch_cache_sets, list)
1686                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1687                         if (c->cache[ca->sb.nr_this_dev])
1688                                 return "duplicate cache set member";
1689
1690                         if (!can_attach_cache(ca, c))
1691                                 return "cache sb does not match set";
1692
1693                         if (!CACHE_SYNC(&ca->sb))
1694                                 SET_CACHE_SYNC(&c->sb, false);
1695
1696                         goto found;
1697                 }
1698
1699         c = bch_cache_set_alloc(&ca->sb);
1700         if (!c)
1701                 return err;
1702
1703         err = "error creating kobject";
1704         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1705             kobject_add(&c->internal, &c->kobj, "internal"))
1706                 goto err;
1707
1708         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1709                 goto err;
1710
1711         bch_debug_init_cache_set(c);
1712
1713         list_add(&c->list, &bch_cache_sets);
1714 found:
1715         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1716         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1717             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1718                 goto err;
1719
1720         if (ca->sb.seq > c->sb.seq) {
1721                 c->sb.version           = ca->sb.version;
1722                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1723                 c->sb.flags             = ca->sb.flags;
1724                 c->sb.seq               = ca->sb.seq;
1725                 pr_debug("set version = %llu", c->sb.version);
1726         }
1727
1728         ca->set = c;
1729         ca->set->cache[ca->sb.nr_this_dev] = ca;
1730         c->cache_by_alloc[c->caches_loaded++] = ca;
1731
1732         if (c->caches_loaded == c->sb.nr_in_set)
1733                 run_cache_set(c);
1734
1735         return NULL;
1736 err:
1737         bch_cache_set_unregister(c);
1738         return err;
1739 }
1740
1741 /* Cache device */
1742
1743 void bch_cache_release(struct kobject *kobj)
1744 {
1745         struct cache *ca = container_of(kobj, struct cache, kobj);
1746
1747         if (ca->set)
1748                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1749
1750         bio_split_pool_free(&ca->bio_split_hook);
1751
1752         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1753         kfree(ca->prio_buckets);
1754         vfree(ca->buckets);
1755
1756         free_heap(&ca->heap);
1757         free_fifo(&ca->unused);
1758         free_fifo(&ca->free_inc);
1759         free_fifo(&ca->free);
1760
1761         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1762                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1763
1764         if (!IS_ERR_OR_NULL(ca->bdev)) {
1765                 blk_sync_queue(bdev_get_queue(ca->bdev));
1766                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1767         }
1768
1769         kfree(ca);
1770         module_put(THIS_MODULE);
1771 }
1772
1773 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1774 {
1775         size_t free;
1776         struct bucket *b;
1777
1778         __module_get(THIS_MODULE);
1779         kobject_init(&ca->kobj, &bch_cache_ktype);
1780
1781         bio_init(&ca->journal.bio);
1782         ca->journal.bio.bi_max_vecs = 8;
1783         ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1784
1785         free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1786         free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1787
1788         if (!init_fifo(&ca->free,       free, GFP_KERNEL) ||
1789             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1790             !init_fifo(&ca->unused,     free << 2, GFP_KERNEL) ||
1791             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1792             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1793                                           ca->sb.nbuckets)) ||
1794             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1795                                           2, GFP_KERNEL)) ||
1796             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1797             bio_split_pool_init(&ca->bio_split_hook))
1798                 return -ENOMEM;
1799
1800         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1801
1802         for_each_bucket(b, ca)
1803                 atomic_set(&b->pin, 0);
1804
1805         if (bch_cache_allocator_init(ca))
1806                 goto err;
1807
1808         return 0;
1809 err:
1810         kobject_put(&ca->kobj);
1811         return -ENOMEM;
1812 }
1813
1814 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1815                                   struct block_device *bdev, struct cache *ca)
1816 {
1817         char name[BDEVNAME_SIZE];
1818         const char *err = "cannot allocate memory";
1819
1820         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1821         ca->bdev = bdev;
1822         ca->bdev->bd_holder = ca;
1823
1824         bio_init(&ca->sb_bio);
1825         ca->sb_bio.bi_max_vecs  = 1;
1826         ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1827         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1828         get_page(sb_page);
1829
1830         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1831                 ca->discard = CACHE_DISCARD(&ca->sb);
1832
1833         if (cache_alloc(sb, ca) != 0)
1834                 goto err;
1835
1836         err = "error creating kobject";
1837         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1838                 goto err;
1839
1840         err = register_cache_set(ca);
1841         if (err)
1842                 goto err;
1843
1844         pr_info("registered cache device %s", bdevname(bdev, name));
1845         return;
1846 err:
1847         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1848         kobject_put(&ca->kobj);
1849 }
1850
1851 /* Global interfaces/init */
1852
1853 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1854                                const char *, size_t);
1855
1856 kobj_attribute_write(register,          register_bcache);
1857 kobj_attribute_write(register_quiet,    register_bcache);
1858
1859 static bool bch_is_open_backing(struct block_device *bdev) {
1860         struct cache_set *c, *tc;
1861         struct cached_dev *dc, *t;
1862
1863         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1864                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1865                         if (dc->bdev == bdev)
1866                                 return true;
1867         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1868                 if (dc->bdev == bdev)
1869                         return true;
1870         return false;
1871 }
1872
1873 static bool bch_is_open_cache(struct block_device *bdev) {
1874         struct cache_set *c, *tc;
1875         struct cache *ca;
1876         unsigned i;
1877
1878         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1879                 for_each_cache(ca, c, i)
1880                         if (ca->bdev == bdev)
1881                                 return true;
1882         return false;
1883 }
1884
1885 static bool bch_is_open(struct block_device *bdev) {
1886         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1887 }
1888
1889 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1890                                const char *buffer, size_t size)
1891 {
1892         ssize_t ret = size;
1893         const char *err = "cannot allocate memory";
1894         char *path = NULL;
1895         struct cache_sb *sb = NULL;
1896         struct block_device *bdev = NULL;
1897         struct page *sb_page = NULL;
1898
1899         if (!try_module_get(THIS_MODULE))
1900                 return -EBUSY;
1901
1902         mutex_lock(&bch_register_lock);
1903
1904         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1905             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1906                 goto err;
1907
1908         err = "failed to open device";
1909         bdev = blkdev_get_by_path(strim(path),
1910                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1911                                   sb);
1912         if (IS_ERR(bdev)) {
1913                 if (bdev == ERR_PTR(-EBUSY)) {
1914                         bdev = lookup_bdev(strim(path));
1915                         if (!IS_ERR(bdev) && bch_is_open(bdev))
1916                                 err = "device already registered";
1917                         else
1918                                 err = "device busy";
1919                 }
1920                 goto err;
1921         }
1922
1923         err = "failed to set blocksize";
1924         if (set_blocksize(bdev, 4096))
1925                 goto err_close;
1926
1927         err = read_super(sb, bdev, &sb_page);
1928         if (err)
1929                 goto err_close;
1930
1931         if (SB_IS_BDEV(sb)) {
1932                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1933                 if (!dc)
1934                         goto err_close;
1935
1936                 register_bdev(sb, sb_page, bdev, dc);
1937         } else {
1938                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1939                 if (!ca)
1940                         goto err_close;
1941
1942                 register_cache(sb, sb_page, bdev, ca);
1943         }
1944 out:
1945         if (sb_page)
1946                 put_page(sb_page);
1947         kfree(sb);
1948         kfree(path);
1949         mutex_unlock(&bch_register_lock);
1950         module_put(THIS_MODULE);
1951         return ret;
1952
1953 err_close:
1954         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1955 err:
1956         if (attr != &ksysfs_register_quiet)
1957                 pr_info("error opening %s: %s", path, err);
1958         ret = -EINVAL;
1959         goto out;
1960 }
1961
1962 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1963 {
1964         if (code == SYS_DOWN ||
1965             code == SYS_HALT ||
1966             code == SYS_POWER_OFF) {
1967                 DEFINE_WAIT(wait);
1968                 unsigned long start = jiffies;
1969                 bool stopped = false;
1970
1971                 struct cache_set *c, *tc;
1972                 struct cached_dev *dc, *tdc;
1973
1974                 mutex_lock(&bch_register_lock);
1975
1976                 if (list_empty(&bch_cache_sets) &&
1977                     list_empty(&uncached_devices))
1978                         goto out;
1979
1980                 pr_info("Stopping all devices:");
1981
1982                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1983                         bch_cache_set_stop(c);
1984
1985                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1986                         bcache_device_stop(&dc->disk);
1987
1988                 /* What's a condition variable? */
1989                 while (1) {
1990                         long timeout = start + 2 * HZ - jiffies;
1991
1992                         stopped = list_empty(&bch_cache_sets) &&
1993                                 list_empty(&uncached_devices);
1994
1995                         if (timeout < 0 || stopped)
1996                                 break;
1997
1998                         prepare_to_wait(&unregister_wait, &wait,
1999                                         TASK_UNINTERRUPTIBLE);
2000
2001                         mutex_unlock(&bch_register_lock);
2002                         schedule_timeout(timeout);
2003                         mutex_lock(&bch_register_lock);
2004                 }
2005
2006                 finish_wait(&unregister_wait, &wait);
2007
2008                 if (stopped)
2009                         pr_info("All devices stopped");
2010                 else
2011                         pr_notice("Timeout waiting for devices to be closed");
2012 out:
2013                 mutex_unlock(&bch_register_lock);
2014         }
2015
2016         return NOTIFY_DONE;
2017 }
2018
2019 static struct notifier_block reboot = {
2020         .notifier_call  = bcache_reboot,
2021         .priority       = INT_MAX, /* before any real devices */
2022 };
2023
2024 static void bcache_exit(void)
2025 {
2026         bch_debug_exit();
2027         bch_request_exit();
2028         bch_btree_exit();
2029         if (bcache_kobj)
2030                 kobject_put(bcache_kobj);
2031         if (bcache_wq)
2032                 destroy_workqueue(bcache_wq);
2033         unregister_blkdev(bcache_major, "bcache");
2034         unregister_reboot_notifier(&reboot);
2035 }
2036
2037 static int __init bcache_init(void)
2038 {
2039         static const struct attribute *files[] = {
2040                 &ksysfs_register.attr,
2041                 &ksysfs_register_quiet.attr,
2042                 NULL
2043         };
2044
2045         mutex_init(&bch_register_lock);
2046         init_waitqueue_head(&unregister_wait);
2047         register_reboot_notifier(&reboot);
2048         closure_debug_init();
2049
2050         bcache_major = register_blkdev(0, "bcache");
2051         if (bcache_major < 0)
2052                 return bcache_major;
2053
2054         if (!(bcache_wq = create_workqueue("bcache")) ||
2055             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2056             sysfs_create_files(bcache_kobj, files) ||
2057             bch_btree_init() ||
2058             bch_request_init() ||
2059             bch_debug_init(bcache_kobj))
2060                 goto err;
2061
2062         return 0;
2063 err:
2064         bcache_exit();
2065         return -ENOMEM;
2066 }
2067
2068 module_exit(bcache_exit);
2069 module_init(bcache_init);