]> Pileus Git - ~andy/linux/blob - drivers/md/bcache/bset.h
Merge branch 'fortglx/3.12/sched-clock64-base' into fortglx/3.13/time
[~andy/linux] / drivers / md / bcache / bset.h
1 #ifndef _BCACHE_BSET_H
2 #define _BCACHE_BSET_H
3
4 #include <linux/slab.h>
5
6 /*
7  * BKEYS:
8  *
9  * A bkey contains a key, a size field, a variable number of pointers, and some
10  * ancillary flag bits.
11  *
12  * We use two different functions for validating bkeys, bch_ptr_invalid and
13  * bch_ptr_bad().
14  *
15  * bch_ptr_invalid() primarily filters out keys and pointers that would be
16  * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
17  * pointer that occur in normal practice but don't point to real data.
18  *
19  * The one exception to the rule that ptr_invalid() filters out invalid keys is
20  * that it also filters out keys of size 0 - these are keys that have been
21  * completely overwritten. It'd be safe to delete these in memory while leaving
22  * them on disk, just unnecessary work - so we filter them out when resorting
23  * instead.
24  *
25  * We can't filter out stale keys when we're resorting, because garbage
26  * collection needs to find them to ensure bucket gens don't wrap around -
27  * unless we're rewriting the btree node those stale keys still exist on disk.
28  *
29  * We also implement functions here for removing some number of sectors from the
30  * front or the back of a bkey - this is mainly used for fixing overlapping
31  * extents, by removing the overlapping sectors from the older key.
32  *
33  * BSETS:
34  *
35  * A bset is an array of bkeys laid out contiguously in memory in sorted order,
36  * along with a header. A btree node is made up of a number of these, written at
37  * different times.
38  *
39  * There could be many of them on disk, but we never allow there to be more than
40  * 4 in memory - we lazily resort as needed.
41  *
42  * We implement code here for creating and maintaining auxiliary search trees
43  * (described below) for searching an individial bset, and on top of that we
44  * implement a btree iterator.
45  *
46  * BTREE ITERATOR:
47  *
48  * Most of the code in bcache doesn't care about an individual bset - it needs
49  * to search entire btree nodes and iterate over them in sorted order.
50  *
51  * The btree iterator code serves both functions; it iterates through the keys
52  * in a btree node in sorted order, starting from either keys after a specific
53  * point (if you pass it a search key) or the start of the btree node.
54  *
55  * AUXILIARY SEARCH TREES:
56  *
57  * Since keys are variable length, we can't use a binary search on a bset - we
58  * wouldn't be able to find the start of the next key. But binary searches are
59  * slow anyways, due to terrible cache behaviour; bcache originally used binary
60  * searches and that code topped out at under 50k lookups/second.
61  *
62  * So we need to construct some sort of lookup table. Since we only insert keys
63  * into the last (unwritten) set, most of the keys within a given btree node are
64  * usually in sets that are mostly constant. We use two different types of
65  * lookup tables to take advantage of this.
66  *
67  * Both lookup tables share in common that they don't index every key in the
68  * set; they index one key every BSET_CACHELINE bytes, and then a linear search
69  * is used for the rest.
70  *
71  * For sets that have been written to disk and are no longer being inserted
72  * into, we construct a binary search tree in an array - traversing a binary
73  * search tree in an array gives excellent locality of reference and is very
74  * fast, since both children of any node are adjacent to each other in memory
75  * (and their grandchildren, and great grandchildren...) - this means
76  * prefetching can be used to great effect.
77  *
78  * It's quite useful performance wise to keep these nodes small - not just
79  * because they're more likely to be in L2, but also because we can prefetch
80  * more nodes on a single cacheline and thus prefetch more iterations in advance
81  * when traversing this tree.
82  *
83  * Nodes in the auxiliary search tree must contain both a key to compare against
84  * (we don't want to fetch the key from the set, that would defeat the purpose),
85  * and a pointer to the key. We use a few tricks to compress both of these.
86  *
87  * To compress the pointer, we take advantage of the fact that one node in the
88  * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
89  * a function (to_inorder()) that takes the index of a node in a binary tree and
90  * returns what its index would be in an inorder traversal, so we only have to
91  * store the low bits of the offset.
92  *
93  * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
94  * compress that,  we take advantage of the fact that when we're traversing the
95  * search tree at every iteration we know that both our search key and the key
96  * we're looking for lie within some range - bounded by our previous
97  * comparisons. (We special case the start of a search so that this is true even
98  * at the root of the tree).
99  *
100  * So we know the key we're looking for is between a and b, and a and b don't
101  * differ higher than bit 50, we don't need to check anything higher than bit
102  * 50.
103  *
104  * We don't usually need the rest of the bits, either; we only need enough bits
105  * to partition the key range we're currently checking.  Consider key n - the
106  * key our auxiliary search tree node corresponds to, and key p, the key
107  * immediately preceding n.  The lowest bit we need to store in the auxiliary
108  * search tree is the highest bit that differs between n and p.
109  *
110  * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
111  * comparison. But we'd really like our nodes in the auxiliary search tree to be
112  * of fixed size.
113  *
114  * The solution is to make them fixed size, and when we're constructing a node
115  * check if p and n differed in the bits we needed them to. If they don't we
116  * flag that node, and when doing lookups we fallback to comparing against the
117  * real key. As long as this doesn't happen to often (and it seems to reliably
118  * happen a bit less than 1% of the time), we win - even on failures, that key
119  * is then more likely to be in cache than if we were doing binary searches all
120  * the way, since we're touching so much less memory.
121  *
122  * The keys in the auxiliary search tree are stored in (software) floating
123  * point, with an exponent and a mantissa. The exponent needs to be big enough
124  * to address all the bits in the original key, but the number of bits in the
125  * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
126  *
127  * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
128  * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
129  * We need one node per 128 bytes in the btree node, which means the auxiliary
130  * search trees take up 3% as much memory as the btree itself.
131  *
132  * Constructing these auxiliary search trees is moderately expensive, and we
133  * don't want to be constantly rebuilding the search tree for the last set
134  * whenever we insert another key into it. For the unwritten set, we use a much
135  * simpler lookup table - it's just a flat array, so index i in the lookup table
136  * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
137  * within each byte range works the same as with the auxiliary search trees.
138  *
139  * These are much easier to keep up to date when we insert a key - we do it
140  * somewhat lazily; when we shift a key up we usually just increment the pointer
141  * to it, only when it would overflow do we go to the trouble of finding the
142  * first key in that range of bytes again.
143  */
144
145 /* Btree key comparison/iteration */
146
147 #define MAX_BSETS               4U
148
149 struct btree_iter {
150         size_t size, used;
151         struct btree_iter_set {
152                 struct bkey *k, *end;
153         } data[MAX_BSETS];
154 };
155
156 struct bset_tree {
157         /*
158          * We construct a binary tree in an array as if the array
159          * started at 1, so that things line up on the same cachelines
160          * better: see comments in bset.c at cacheline_to_bkey() for
161          * details
162          */
163
164         /* size of the binary tree and prev array */
165         unsigned        size;
166
167         /* function of size - precalculated for to_inorder() */
168         unsigned        extra;
169
170         /* copy of the last key in the set */
171         struct bkey     end;
172         struct bkey_float *tree;
173
174         /*
175          * The nodes in the bset tree point to specific keys - this
176          * array holds the sizes of the previous key.
177          *
178          * Conceptually it's a member of struct bkey_float, but we want
179          * to keep bkey_float to 4 bytes and prev isn't used in the fast
180          * path.
181          */
182         uint8_t         *prev;
183
184         /* The actual btree node, with pointers to each sorted set */
185         struct bset     *data;
186 };
187
188 static __always_inline int64_t bkey_cmp(const struct bkey *l,
189                                         const struct bkey *r)
190 {
191         return unlikely(KEY_INODE(l) != KEY_INODE(r))
192                 ? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
193                 : (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
194 }
195
196 static inline size_t bkey_u64s(const struct bkey *k)
197 {
198         BUG_ON(KEY_CSUM(k) > 1);
199         return 2 + KEY_PTRS(k) + (KEY_CSUM(k) ? 1 : 0);
200 }
201
202 static inline size_t bkey_bytes(const struct bkey *k)
203 {
204         return bkey_u64s(k) * sizeof(uint64_t);
205 }
206
207 static inline void bkey_copy(struct bkey *dest, const struct bkey *src)
208 {
209         memcpy(dest, src, bkey_bytes(src));
210 }
211
212 static inline void bkey_copy_key(struct bkey *dest, const struct bkey *src)
213 {
214         if (!src)
215                 src = &KEY(0, 0, 0);
216
217         SET_KEY_INODE(dest, KEY_INODE(src));
218         SET_KEY_OFFSET(dest, KEY_OFFSET(src));
219 }
220
221 static inline struct bkey *bkey_next(const struct bkey *k)
222 {
223         uint64_t *d = (void *) k;
224         return (struct bkey *) (d + bkey_u64s(k));
225 }
226
227 /* Keylists */
228
229 struct keylist {
230         struct bkey             *top;
231         union {
232                 uint64_t                *list;
233                 struct bkey             *bottom;
234         };
235
236         /* Enough room for btree_split's keys without realloc */
237 #define KEYLIST_INLINE          16
238         uint64_t                d[KEYLIST_INLINE];
239 };
240
241 static inline void bch_keylist_init(struct keylist *l)
242 {
243         l->top = (void *) (l->list = l->d);
244 }
245
246 static inline void bch_keylist_push(struct keylist *l)
247 {
248         l->top = bkey_next(l->top);
249 }
250
251 static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
252 {
253         bkey_copy(l->top, k);
254         bch_keylist_push(l);
255 }
256
257 static inline bool bch_keylist_empty(struct keylist *l)
258 {
259         return l->top == (void *) l->list;
260 }
261
262 static inline void bch_keylist_free(struct keylist *l)
263 {
264         if (l->list != l->d)
265                 kfree(l->list);
266 }
267
268 void bch_keylist_copy(struct keylist *, struct keylist *);
269 struct bkey *bch_keylist_pop(struct keylist *);
270 int bch_keylist_realloc(struct keylist *, int, struct cache_set *);
271
272 void bch_bkey_copy_single_ptr(struct bkey *, const struct bkey *,
273                               unsigned);
274 bool __bch_cut_front(const struct bkey *, struct bkey *);
275 bool __bch_cut_back(const struct bkey *, struct bkey *);
276
277 static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
278 {
279         BUG_ON(bkey_cmp(where, k) > 0);
280         return __bch_cut_front(where, k);
281 }
282
283 static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
284 {
285         BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
286         return __bch_cut_back(where, k);
287 }
288
289 const char *bch_ptr_status(struct cache_set *, const struct bkey *);
290 bool __bch_ptr_invalid(struct cache_set *, int level, const struct bkey *);
291 bool bch_ptr_bad(struct btree *, const struct bkey *);
292
293 static inline uint8_t gen_after(uint8_t a, uint8_t b)
294 {
295         uint8_t r = a - b;
296         return r > 128U ? 0 : r;
297 }
298
299 static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
300                                 unsigned i)
301 {
302         return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
303 }
304
305 static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
306                                  unsigned i)
307 {
308         return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
309 }
310
311
312 typedef bool (*ptr_filter_fn)(struct btree *, const struct bkey *);
313
314 struct bkey *bch_next_recurse_key(struct btree *, struct bkey *);
315 struct bkey *bch_btree_iter_next(struct btree_iter *);
316 struct bkey *bch_btree_iter_next_filter(struct btree_iter *,
317                                         struct btree *, ptr_filter_fn);
318
319 void bch_btree_iter_push(struct btree_iter *, struct bkey *, struct bkey *);
320 struct bkey *__bch_btree_iter_init(struct btree *, struct btree_iter *,
321                                    struct bkey *, struct bset_tree *);
322
323 /* 32 bits total: */
324 #define BKEY_MID_BITS           3
325 #define BKEY_EXPONENT_BITS      7
326 #define BKEY_MANTISSA_BITS      22
327 #define BKEY_MANTISSA_MASK      ((1 << BKEY_MANTISSA_BITS) - 1)
328
329 struct bkey_float {
330         unsigned        exponent:BKEY_EXPONENT_BITS;
331         unsigned        m:BKEY_MID_BITS;
332         unsigned        mantissa:BKEY_MANTISSA_BITS;
333 } __packed;
334
335 /*
336  * BSET_CACHELINE was originally intended to match the hardware cacheline size -
337  * it used to be 64, but I realized the lookup code would touch slightly less
338  * memory if it was 128.
339  *
340  * It definites the number of bytes (in struct bset) per struct bkey_float in
341  * the auxiliar search tree - when we're done searching the bset_float tree we
342  * have this many bytes left that we do a linear search over.
343  *
344  * Since (after level 5) every level of the bset_tree is on a new cacheline,
345  * we're touching one fewer cacheline in the bset tree in exchange for one more
346  * cacheline in the linear search - but the linear search might stop before it
347  * gets to the second cacheline.
348  */
349
350 #define BSET_CACHELINE          128
351 #define bset_tree_space(b)      (btree_data_space(b) / BSET_CACHELINE)
352
353 #define bset_tree_bytes(b)      (bset_tree_space(b) * sizeof(struct bkey_float))
354 #define bset_prev_bytes(b)      (bset_tree_space(b) * sizeof(uint8_t))
355
356 void bch_bset_init_next(struct btree *);
357
358 void bch_bset_fix_invalidated_key(struct btree *, struct bkey *);
359 void bch_bset_fix_lookup_table(struct btree *, struct bkey *);
360
361 struct bkey *__bch_bset_search(struct btree *, struct bset_tree *,
362                            const struct bkey *);
363
364 static inline struct bkey *bch_bset_search(struct btree *b, struct bset_tree *t,
365                                            const struct bkey *search)
366 {
367         return search ? __bch_bset_search(b, t, search) : t->data->start;
368 }
369
370 bool bch_bkey_try_merge(struct btree *, struct bkey *, struct bkey *);
371 void bch_btree_sort_lazy(struct btree *);
372 void bch_btree_sort_into(struct btree *, struct btree *);
373 void bch_btree_sort_and_fix_extents(struct btree *, struct btree_iter *);
374 void bch_btree_sort_partial(struct btree *, unsigned);
375
376 static inline void bch_btree_sort(struct btree *b)
377 {
378         bch_btree_sort_partial(b, 0);
379 }
380
381 int bch_bset_print_stats(struct cache_set *, char *);
382
383 #endif