]> Pileus Git - ~andy/linux/blob - drivers/md/bcache/alloc.c
nfsd: fix lost nfserrno() call in nfsd_setattr()
[~andy/linux] / drivers / md / bcache / alloc.c
1 /*
2  * Primary bucket allocation code
3  *
4  * Copyright 2012 Google, Inc.
5  *
6  * Allocation in bcache is done in terms of buckets:
7  *
8  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9  * btree pointers - they must match for the pointer to be considered valid.
10  *
11  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12  * bucket simply by incrementing its gen.
13  *
14  * The gens (along with the priorities; it's really the gens are important but
15  * the code is named as if it's the priorities) are written in an arbitrary list
16  * of buckets on disk, with a pointer to them in the journal header.
17  *
18  * When we invalidate a bucket, we have to write its new gen to disk and wait
19  * for that write to complete before we use it - otherwise after a crash we
20  * could have pointers that appeared to be good but pointed to data that had
21  * been overwritten.
22  *
23  * Since the gens and priorities are all stored contiguously on disk, we can
24  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25  * call prio_write(), and when prio_write() finishes we pull buckets off the
26  * free_inc list and optionally discard them.
27  *
28  * free_inc isn't the only freelist - if it was, we'd often to sleep while
29  * priorities and gens were being written before we could allocate. c->free is a
30  * smaller freelist, and buckets on that list are always ready to be used.
31  *
32  * If we've got discards enabled, that happens when a bucket moves from the
33  * free_inc list to the free list.
34  *
35  * There is another freelist, because sometimes we have buckets that we know
36  * have nothing pointing into them - these we can reuse without waiting for
37  * priorities to be rewritten. These come from freed btree nodes and buckets
38  * that garbage collection discovered no longer had valid keys pointing into
39  * them (because they were overwritten). That's the unused list - buckets on the
40  * unused list move to the free list, optionally being discarded in the process.
41  *
42  * It's also important to ensure that gens don't wrap around - with respect to
43  * either the oldest gen in the btree or the gen on disk. This is quite
44  * difficult to do in practice, but we explicitly guard against it anyways - if
45  * a bucket is in danger of wrapping around we simply skip invalidating it that
46  * time around, and we garbage collect or rewrite the priorities sooner than we
47  * would have otherwise.
48  *
49  * bch_bucket_alloc() allocates a single bucket from a specific cache.
50  *
51  * bch_bucket_alloc_set() allocates one or more buckets from different caches
52  * out of a cache set.
53  *
54  * free_some_buckets() drives all the processes described above. It's called
55  * from bch_bucket_alloc() and a few other places that need to make sure free
56  * buckets are ready.
57  *
58  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59  * invalidated, and then invalidate them and stick them on the free_inc list -
60  * in either lru or fifo order.
61  */
62
63 #include "bcache.h"
64 #include "btree.h"
65
66 #include <linux/blkdev.h>
67 #include <linux/freezer.h>
68 #include <linux/kthread.h>
69 #include <linux/random.h>
70 #include <trace/events/bcache.h>
71
72 /* Bucket heap / gen */
73
74 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
75 {
76         uint8_t ret = ++b->gen;
77
78         ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
79         WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
80
81         if (CACHE_SYNC(&ca->set->sb)) {
82                 ca->need_save_prio = max(ca->need_save_prio,
83                                          bucket_disk_gen(b));
84                 WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
85         }
86
87         return ret;
88 }
89
90 void bch_rescale_priorities(struct cache_set *c, int sectors)
91 {
92         struct cache *ca;
93         struct bucket *b;
94         unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
95         unsigned i;
96         int r;
97
98         atomic_sub(sectors, &c->rescale);
99
100         do {
101                 r = atomic_read(&c->rescale);
102
103                 if (r >= 0)
104                         return;
105         } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
106
107         mutex_lock(&c->bucket_lock);
108
109         c->min_prio = USHRT_MAX;
110
111         for_each_cache(ca, c, i)
112                 for_each_bucket(b, ca)
113                         if (b->prio &&
114                             b->prio != BTREE_PRIO &&
115                             !atomic_read(&b->pin)) {
116                                 b->prio--;
117                                 c->min_prio = min(c->min_prio, b->prio);
118                         }
119
120         mutex_unlock(&c->bucket_lock);
121 }
122
123 /* Allocation */
124
125 static inline bool can_inc_bucket_gen(struct bucket *b)
126 {
127         return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
128                 bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
129 }
130
131 bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
132 {
133         BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
134
135         if (CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO) {
136                 unsigned i;
137
138                 for (i = 0; i < RESERVE_NONE; i++)
139                         if (!fifo_full(&ca->free[i]))
140                                 goto add;
141
142                 return false;
143         }
144 add:
145         b->prio = 0;
146
147         if (can_inc_bucket_gen(b) &&
148             fifo_push(&ca->unused, b - ca->buckets)) {
149                 atomic_inc(&b->pin);
150                 return true;
151         }
152
153         return false;
154 }
155
156 static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
157 {
158         return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
159                 !atomic_read(&b->pin) &&
160                 can_inc_bucket_gen(b);
161 }
162
163 static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
164 {
165         bch_inc_gen(ca, b);
166         b->prio = INITIAL_PRIO;
167         atomic_inc(&b->pin);
168         fifo_push(&ca->free_inc, b - ca->buckets);
169 }
170
171 /*
172  * Determines what order we're going to reuse buckets, smallest bucket_prio()
173  * first: we also take into account the number of sectors of live data in that
174  * bucket, and in order for that multiply to make sense we have to scale bucket
175  *
176  * Thus, we scale the bucket priorities so that the bucket with the smallest
177  * prio is worth 1/8th of what INITIAL_PRIO is worth.
178  */
179
180 #define bucket_prio(b)                                                  \
181 ({                                                                      \
182         unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;     \
183                                                                         \
184         (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);  \
185 })
186
187 #define bucket_max_cmp(l, r)    (bucket_prio(l) < bucket_prio(r))
188 #define bucket_min_cmp(l, r)    (bucket_prio(l) > bucket_prio(r))
189
190 static void invalidate_buckets_lru(struct cache *ca)
191 {
192         struct bucket *b;
193         ssize_t i;
194
195         ca->heap.used = 0;
196
197         for_each_bucket(b, ca) {
198                 /*
199                  * If we fill up the unused list, if we then return before
200                  * adding anything to the free_inc list we'll skip writing
201                  * prios/gens and just go back to allocating from the unused
202                  * list:
203                  */
204                 if (fifo_full(&ca->unused))
205                         return;
206
207                 if (!can_invalidate_bucket(ca, b))
208                         continue;
209
210                 if (!GC_SECTORS_USED(b) &&
211                     bch_bucket_add_unused(ca, b))
212                         continue;
213
214                 if (!heap_full(&ca->heap))
215                         heap_add(&ca->heap, b, bucket_max_cmp);
216                 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
217                         ca->heap.data[0] = b;
218                         heap_sift(&ca->heap, 0, bucket_max_cmp);
219                 }
220         }
221
222         for (i = ca->heap.used / 2 - 1; i >= 0; --i)
223                 heap_sift(&ca->heap, i, bucket_min_cmp);
224
225         while (!fifo_full(&ca->free_inc)) {
226                 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
227                         /*
228                          * We don't want to be calling invalidate_buckets()
229                          * multiple times when it can't do anything
230                          */
231                         ca->invalidate_needs_gc = 1;
232                         wake_up_gc(ca->set);
233                         return;
234                 }
235
236                 invalidate_one_bucket(ca, b);
237         }
238 }
239
240 static void invalidate_buckets_fifo(struct cache *ca)
241 {
242         struct bucket *b;
243         size_t checked = 0;
244
245         while (!fifo_full(&ca->free_inc)) {
246                 if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
247                     ca->fifo_last_bucket >= ca->sb.nbuckets)
248                         ca->fifo_last_bucket = ca->sb.first_bucket;
249
250                 b = ca->buckets + ca->fifo_last_bucket++;
251
252                 if (can_invalidate_bucket(ca, b))
253                         invalidate_one_bucket(ca, b);
254
255                 if (++checked >= ca->sb.nbuckets) {
256                         ca->invalidate_needs_gc = 1;
257                         wake_up_gc(ca->set);
258                         return;
259                 }
260         }
261 }
262
263 static void invalidate_buckets_random(struct cache *ca)
264 {
265         struct bucket *b;
266         size_t checked = 0;
267
268         while (!fifo_full(&ca->free_inc)) {
269                 size_t n;
270                 get_random_bytes(&n, sizeof(n));
271
272                 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
273                 n += ca->sb.first_bucket;
274
275                 b = ca->buckets + n;
276
277                 if (can_invalidate_bucket(ca, b))
278                         invalidate_one_bucket(ca, b);
279
280                 if (++checked >= ca->sb.nbuckets / 2) {
281                         ca->invalidate_needs_gc = 1;
282                         wake_up_gc(ca->set);
283                         return;
284                 }
285         }
286 }
287
288 static void invalidate_buckets(struct cache *ca)
289 {
290         if (ca->invalidate_needs_gc)
291                 return;
292
293         switch (CACHE_REPLACEMENT(&ca->sb)) {
294         case CACHE_REPLACEMENT_LRU:
295                 invalidate_buckets_lru(ca);
296                 break;
297         case CACHE_REPLACEMENT_FIFO:
298                 invalidate_buckets_fifo(ca);
299                 break;
300         case CACHE_REPLACEMENT_RANDOM:
301                 invalidate_buckets_random(ca);
302                 break;
303         }
304
305         trace_bcache_alloc_invalidate(ca);
306 }
307
308 #define allocator_wait(ca, cond)                                        \
309 do {                                                                    \
310         while (1) {                                                     \
311                 set_current_state(TASK_INTERRUPTIBLE);                  \
312                 if (cond)                                               \
313                         break;                                          \
314                                                                         \
315                 mutex_unlock(&(ca)->set->bucket_lock);                  \
316                 if (kthread_should_stop())                              \
317                         return 0;                                       \
318                                                                         \
319                 try_to_freeze();                                        \
320                 schedule();                                             \
321                 mutex_lock(&(ca)->set->bucket_lock);                    \
322         }                                                               \
323         __set_current_state(TASK_RUNNING);                              \
324 } while (0)
325
326 static int bch_allocator_push(struct cache *ca, long bucket)
327 {
328         unsigned i;
329
330         /* Prios/gens are actually the most important reserve */
331         if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
332                 return true;
333
334         for (i = 0; i < RESERVE_NR; i++)
335                 if (fifo_push(&ca->free[i], bucket))
336                         return true;
337
338         return false;
339 }
340
341 static int bch_allocator_thread(void *arg)
342 {
343         struct cache *ca = arg;
344
345         mutex_lock(&ca->set->bucket_lock);
346
347         while (1) {
348                 /*
349                  * First, we pull buckets off of the unused and free_inc lists,
350                  * possibly issue discards to them, then we add the bucket to
351                  * the free list:
352                  */
353                 while (1) {
354                         long bucket;
355
356                         if ((!atomic_read(&ca->set->prio_blocked) ||
357                              !CACHE_SYNC(&ca->set->sb)) &&
358                             !fifo_empty(&ca->unused))
359                                 fifo_pop(&ca->unused, bucket);
360                         else if (!fifo_empty(&ca->free_inc))
361                                 fifo_pop(&ca->free_inc, bucket);
362                         else
363                                 break;
364
365                         if (ca->discard) {
366                                 mutex_unlock(&ca->set->bucket_lock);
367                                 blkdev_issue_discard(ca->bdev,
368                                         bucket_to_sector(ca->set, bucket),
369                                         ca->sb.block_size, GFP_KERNEL, 0);
370                                 mutex_lock(&ca->set->bucket_lock);
371                         }
372
373                         allocator_wait(ca, bch_allocator_push(ca, bucket));
374                         wake_up(&ca->set->bucket_wait);
375                 }
376
377                 /*
378                  * We've run out of free buckets, we need to find some buckets
379                  * we can invalidate. First, invalidate them in memory and add
380                  * them to the free_inc list:
381                  */
382
383                 allocator_wait(ca, ca->set->gc_mark_valid &&
384                                (ca->need_save_prio > 64 ||
385                                 !ca->invalidate_needs_gc));
386                 invalidate_buckets(ca);
387
388                 /*
389                  * Now, we write their new gens to disk so we can start writing
390                  * new stuff to them:
391                  */
392                 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
393                 if (CACHE_SYNC(&ca->set->sb) &&
394                     (!fifo_empty(&ca->free_inc) ||
395                      ca->need_save_prio > 64))
396                         bch_prio_write(ca);
397         }
398 }
399
400 long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
401 {
402         DEFINE_WAIT(w);
403         struct bucket *b;
404         long r;
405
406         /* fastpath */
407         if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
408             fifo_pop(&ca->free[reserve], r))
409                 goto out;
410
411         if (!wait)
412                 return -1;
413
414         do {
415                 prepare_to_wait(&ca->set->bucket_wait, &w,
416                                 TASK_UNINTERRUPTIBLE);
417
418                 mutex_unlock(&ca->set->bucket_lock);
419                 schedule();
420                 mutex_lock(&ca->set->bucket_lock);
421         } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
422                  !fifo_pop(&ca->free[reserve], r));
423
424         finish_wait(&ca->set->bucket_wait, &w);
425 out:
426         wake_up_process(ca->alloc_thread);
427
428         if (expensive_debug_checks(ca->set)) {
429                 size_t iter;
430                 long i;
431                 unsigned j;
432
433                 for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
434                         BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
435
436                 for (j = 0; j < RESERVE_NR; j++)
437                         fifo_for_each(i, &ca->free[j], iter)
438                                 BUG_ON(i == r);
439                 fifo_for_each(i, &ca->free_inc, iter)
440                         BUG_ON(i == r);
441                 fifo_for_each(i, &ca->unused, iter)
442                         BUG_ON(i == r);
443         }
444
445         b = ca->buckets + r;
446
447         BUG_ON(atomic_read(&b->pin) != 1);
448
449         SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
450
451         if (reserve <= RESERVE_PRIO) {
452                 SET_GC_MARK(b, GC_MARK_METADATA);
453                 SET_GC_MOVE(b, 0);
454                 b->prio = BTREE_PRIO;
455         } else {
456                 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
457                 SET_GC_MOVE(b, 0);
458                 b->prio = INITIAL_PRIO;
459         }
460
461         return r;
462 }
463
464 void bch_bucket_free(struct cache_set *c, struct bkey *k)
465 {
466         unsigned i;
467
468         for (i = 0; i < KEY_PTRS(k); i++) {
469                 struct bucket *b = PTR_BUCKET(c, k, i);
470
471                 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
472                 SET_GC_SECTORS_USED(b, 0);
473                 bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
474         }
475 }
476
477 int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
478                            struct bkey *k, int n, bool wait)
479 {
480         int i;
481
482         lockdep_assert_held(&c->bucket_lock);
483         BUG_ON(!n || n > c->caches_loaded || n > 8);
484
485         bkey_init(k);
486
487         /* sort by free space/prio of oldest data in caches */
488
489         for (i = 0; i < n; i++) {
490                 struct cache *ca = c->cache_by_alloc[i];
491                 long b = bch_bucket_alloc(ca, reserve, wait);
492
493                 if (b == -1)
494                         goto err;
495
496                 k->ptr[i] = PTR(ca->buckets[b].gen,
497                                 bucket_to_sector(c, b),
498                                 ca->sb.nr_this_dev);
499
500                 SET_KEY_PTRS(k, i + 1);
501         }
502
503         return 0;
504 err:
505         bch_bucket_free(c, k);
506         bkey_put(c, k);
507         return -1;
508 }
509
510 int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
511                          struct bkey *k, int n, bool wait)
512 {
513         int ret;
514         mutex_lock(&c->bucket_lock);
515         ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
516         mutex_unlock(&c->bucket_lock);
517         return ret;
518 }
519
520 /* Sector allocator */
521
522 struct open_bucket {
523         struct list_head        list;
524         unsigned                last_write_point;
525         unsigned                sectors_free;
526         BKEY_PADDED(key);
527 };
528
529 /*
530  * We keep multiple buckets open for writes, and try to segregate different
531  * write streams for better cache utilization: first we look for a bucket where
532  * the last write to it was sequential with the current write, and failing that
533  * we look for a bucket that was last used by the same task.
534  *
535  * The ideas is if you've got multiple tasks pulling data into the cache at the
536  * same time, you'll get better cache utilization if you try to segregate their
537  * data and preserve locality.
538  *
539  * For example, say you've starting Firefox at the same time you're copying a
540  * bunch of files. Firefox will likely end up being fairly hot and stay in the
541  * cache awhile, but the data you copied might not be; if you wrote all that
542  * data to the same buckets it'd get invalidated at the same time.
543  *
544  * Both of those tasks will be doing fairly random IO so we can't rely on
545  * detecting sequential IO to segregate their data, but going off of the task
546  * should be a sane heuristic.
547  */
548 static struct open_bucket *pick_data_bucket(struct cache_set *c,
549                                             const struct bkey *search,
550                                             unsigned write_point,
551                                             struct bkey *alloc)
552 {
553         struct open_bucket *ret, *ret_task = NULL;
554
555         list_for_each_entry_reverse(ret, &c->data_buckets, list)
556                 if (!bkey_cmp(&ret->key, search))
557                         goto found;
558                 else if (ret->last_write_point == write_point)
559                         ret_task = ret;
560
561         ret = ret_task ?: list_first_entry(&c->data_buckets,
562                                            struct open_bucket, list);
563 found:
564         if (!ret->sectors_free && KEY_PTRS(alloc)) {
565                 ret->sectors_free = c->sb.bucket_size;
566                 bkey_copy(&ret->key, alloc);
567                 bkey_init(alloc);
568         }
569
570         if (!ret->sectors_free)
571                 ret = NULL;
572
573         return ret;
574 }
575
576 /*
577  * Allocates some space in the cache to write to, and k to point to the newly
578  * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
579  * end of the newly allocated space).
580  *
581  * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
582  * sectors were actually allocated.
583  *
584  * If s->writeback is true, will not fail.
585  */
586 bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
587                        unsigned write_point, unsigned write_prio, bool wait)
588 {
589         struct open_bucket *b;
590         BKEY_PADDED(key) alloc;
591         unsigned i;
592
593         /*
594          * We might have to allocate a new bucket, which we can't do with a
595          * spinlock held. So if we have to allocate, we drop the lock, allocate
596          * and then retry. KEY_PTRS() indicates whether alloc points to
597          * allocated bucket(s).
598          */
599
600         bkey_init(&alloc.key);
601         spin_lock(&c->data_bucket_lock);
602
603         while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
604                 unsigned watermark = write_prio
605                         ? RESERVE_MOVINGGC
606                         : RESERVE_NONE;
607
608                 spin_unlock(&c->data_bucket_lock);
609
610                 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
611                         return false;
612
613                 spin_lock(&c->data_bucket_lock);
614         }
615
616         /*
617          * If we had to allocate, we might race and not need to allocate the
618          * second time we call find_data_bucket(). If we allocated a bucket but
619          * didn't use it, drop the refcount bch_bucket_alloc_set() took:
620          */
621         if (KEY_PTRS(&alloc.key))
622                 bkey_put(c, &alloc.key);
623
624         for (i = 0; i < KEY_PTRS(&b->key); i++)
625                 EBUG_ON(ptr_stale(c, &b->key, i));
626
627         /* Set up the pointer to the space we're allocating: */
628
629         for (i = 0; i < KEY_PTRS(&b->key); i++)
630                 k->ptr[i] = b->key.ptr[i];
631
632         sectors = min(sectors, b->sectors_free);
633
634         SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
635         SET_KEY_SIZE(k, sectors);
636         SET_KEY_PTRS(k, KEY_PTRS(&b->key));
637
638         /*
639          * Move b to the end of the lru, and keep track of what this bucket was
640          * last used for:
641          */
642         list_move_tail(&b->list, &c->data_buckets);
643         bkey_copy_key(&b->key, k);
644         b->last_write_point = write_point;
645
646         b->sectors_free -= sectors;
647
648         for (i = 0; i < KEY_PTRS(&b->key); i++) {
649                 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
650
651                 atomic_long_add(sectors,
652                                 &PTR_CACHE(c, &b->key, i)->sectors_written);
653         }
654
655         if (b->sectors_free < c->sb.block_size)
656                 b->sectors_free = 0;
657
658         /*
659          * k takes refcounts on the buckets it points to until it's inserted
660          * into the btree, but if we're done with this bucket we just transfer
661          * get_data_bucket()'s refcount.
662          */
663         if (b->sectors_free)
664                 for (i = 0; i < KEY_PTRS(&b->key); i++)
665                         atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
666
667         spin_unlock(&c->data_bucket_lock);
668         return true;
669 }
670
671 /* Init */
672
673 void bch_open_buckets_free(struct cache_set *c)
674 {
675         struct open_bucket *b;
676
677         while (!list_empty(&c->data_buckets)) {
678                 b = list_first_entry(&c->data_buckets,
679                                      struct open_bucket, list);
680                 list_del(&b->list);
681                 kfree(b);
682         }
683 }
684
685 int bch_open_buckets_alloc(struct cache_set *c)
686 {
687         int i;
688
689         spin_lock_init(&c->data_bucket_lock);
690
691         for (i = 0; i < 6; i++) {
692                 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
693                 if (!b)
694                         return -ENOMEM;
695
696                 list_add(&b->list, &c->data_buckets);
697         }
698
699         return 0;
700 }
701
702 int bch_cache_allocator_start(struct cache *ca)
703 {
704         struct task_struct *k = kthread_run(bch_allocator_thread,
705                                             ca, "bcache_allocator");
706         if (IS_ERR(k))
707                 return PTR_ERR(k);
708
709         ca->alloc_thread = k;
710         return 0;
711 }
712
713 int bch_cache_allocator_init(struct cache *ca)
714 {
715         /*
716          * Reserve:
717          * Prio/gen writes first
718          * Then 8 for btree allocations
719          * Then half for the moving garbage collector
720          */
721 #if 0
722         ca->watermark[WATERMARK_PRIO] = 0;
723
724         ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
725
726         ca->watermark[WATERMARK_MOVINGGC] = 8 +
727                 ca->watermark[WATERMARK_METADATA];
728
729         ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
730                 ca->watermark[WATERMARK_MOVINGGC];
731 #endif
732         return 0;
733 }