]> Pileus Git - ~andy/linux/blob - drivers/kvm/vmx.c
KVM: Cosmetics
[~andy/linux] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <asm/io.h>
26 #include <asm/desc.h>
27
28 #include "segment_descriptor.h"
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
34 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
35
36 #ifdef CONFIG_X86_64
37 #define HOST_IS_64 1
38 #else
39 #define HOST_IS_64 0
40 #endif
41
42 static struct vmcs_descriptor {
43         int size;
44         int order;
45         u32 revision_id;
46 } vmcs_descriptor;
47
48 #define VMX_SEGMENT_FIELD(seg)                                  \
49         [VCPU_SREG_##seg] = {                                   \
50                 .selector = GUEST_##seg##_SELECTOR,             \
51                 .base = GUEST_##seg##_BASE,                     \
52                 .limit = GUEST_##seg##_LIMIT,                   \
53                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
54         }
55
56 static struct kvm_vmx_segment_field {
57         unsigned selector;
58         unsigned base;
59         unsigned limit;
60         unsigned ar_bytes;
61 } kvm_vmx_segment_fields[] = {
62         VMX_SEGMENT_FIELD(CS),
63         VMX_SEGMENT_FIELD(DS),
64         VMX_SEGMENT_FIELD(ES),
65         VMX_SEGMENT_FIELD(FS),
66         VMX_SEGMENT_FIELD(GS),
67         VMX_SEGMENT_FIELD(SS),
68         VMX_SEGMENT_FIELD(TR),
69         VMX_SEGMENT_FIELD(LDTR),
70 };
71
72 static const u32 vmx_msr_index[] = {
73 #ifdef CONFIG_X86_64
74         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
75 #endif
76         MSR_EFER, MSR_K6_STAR,
77 };
78 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
79
80 static inline int is_page_fault(u32 intr_info)
81 {
82         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
83                              INTR_INFO_VALID_MASK)) ==
84                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
85 }
86
87 static inline int is_external_interrupt(u32 intr_info)
88 {
89         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
90                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
91 }
92
93 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
94 {
95         int i;
96
97         for (i = 0; i < vcpu->nmsrs; ++i)
98                 if (vcpu->guest_msrs[i].index == msr)
99                         return &vcpu->guest_msrs[i];
100         return NULL;
101 }
102
103 static void vmcs_clear(struct vmcs *vmcs)
104 {
105         u64 phys_addr = __pa(vmcs);
106         u8 error;
107
108         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
109                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
110                       : "cc", "memory");
111         if (error)
112                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
113                        vmcs, phys_addr);
114 }
115
116 static void __vcpu_clear(void *arg)
117 {
118         struct kvm_vcpu *vcpu = arg;
119         int cpu = raw_smp_processor_id();
120
121         if (vcpu->cpu == cpu)
122                 vmcs_clear(vcpu->vmcs);
123         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
124                 per_cpu(current_vmcs, cpu) = NULL;
125 }
126
127 static void vcpu_clear(struct kvm_vcpu *vcpu)
128 {
129         if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
130                 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
131         else
132                 __vcpu_clear(vcpu);
133         vcpu->launched = 0;
134 }
135
136 static unsigned long vmcs_readl(unsigned long field)
137 {
138         unsigned long value;
139
140         asm volatile (ASM_VMX_VMREAD_RDX_RAX
141                       : "=a"(value) : "d"(field) : "cc");
142         return value;
143 }
144
145 static u16 vmcs_read16(unsigned long field)
146 {
147         return vmcs_readl(field);
148 }
149
150 static u32 vmcs_read32(unsigned long field)
151 {
152         return vmcs_readl(field);
153 }
154
155 static u64 vmcs_read64(unsigned long field)
156 {
157 #ifdef CONFIG_X86_64
158         return vmcs_readl(field);
159 #else
160         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
161 #endif
162 }
163
164 static noinline void vmwrite_error(unsigned long field, unsigned long value)
165 {
166         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
167                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
168         dump_stack();
169 }
170
171 static void vmcs_writel(unsigned long field, unsigned long value)
172 {
173         u8 error;
174
175         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
176                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
177         if (unlikely(error))
178                 vmwrite_error(field, value);
179 }
180
181 static void vmcs_write16(unsigned long field, u16 value)
182 {
183         vmcs_writel(field, value);
184 }
185
186 static void vmcs_write32(unsigned long field, u32 value)
187 {
188         vmcs_writel(field, value);
189 }
190
191 static void vmcs_write64(unsigned long field, u64 value)
192 {
193 #ifdef CONFIG_X86_64
194         vmcs_writel(field, value);
195 #else
196         vmcs_writel(field, value);
197         asm volatile ("");
198         vmcs_writel(field+1, value >> 32);
199 #endif
200 }
201
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
204  * vcpu mutex is already taken.
205  */
206 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
207 {
208         u64 phys_addr = __pa(vcpu->vmcs);
209         int cpu;
210
211         cpu = get_cpu();
212
213         if (vcpu->cpu != cpu)
214                 vcpu_clear(vcpu);
215
216         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
217                 u8 error;
218
219                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
220                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
221                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
222                               : "cc");
223                 if (error)
224                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
225                                vcpu->vmcs, phys_addr);
226         }
227
228         if (vcpu->cpu != cpu) {
229                 struct descriptor_table dt;
230                 unsigned long sysenter_esp;
231
232                 vcpu->cpu = cpu;
233                 /*
234                  * Linux uses per-cpu TSS and GDT, so set these when switching
235                  * processors.
236                  */
237                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
238                 get_gdt(&dt);
239                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
240
241                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
242                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
243         }
244         return vcpu;
245 }
246
247 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
248 {
249         put_cpu();
250 }
251
252 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
253 {
254         vcpu_clear(vcpu);
255 }
256
257 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
258 {
259         return vmcs_readl(GUEST_RFLAGS);
260 }
261
262 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
263 {
264         vmcs_writel(GUEST_RFLAGS, rflags);
265 }
266
267 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
268 {
269         unsigned long rip;
270         u32 interruptibility;
271
272         rip = vmcs_readl(GUEST_RIP);
273         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
274         vmcs_writel(GUEST_RIP, rip);
275
276         /*
277          * We emulated an instruction, so temporary interrupt blocking
278          * should be removed, if set.
279          */
280         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
281         if (interruptibility & 3)
282                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
283                              interruptibility & ~3);
284         vcpu->interrupt_window_open = 1;
285 }
286
287 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
288 {
289         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
290                vmcs_readl(GUEST_RIP));
291         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
292         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
293                      GP_VECTOR |
294                      INTR_TYPE_EXCEPTION |
295                      INTR_INFO_DELIEVER_CODE_MASK |
296                      INTR_INFO_VALID_MASK);
297 }
298
299 /*
300  * reads and returns guest's timestamp counter "register"
301  * guest_tsc = host_tsc + tsc_offset    -- 21.3
302  */
303 static u64 guest_read_tsc(void)
304 {
305         u64 host_tsc, tsc_offset;
306
307         rdtscll(host_tsc);
308         tsc_offset = vmcs_read64(TSC_OFFSET);
309         return host_tsc + tsc_offset;
310 }
311
312 /*
313  * writes 'guest_tsc' into guest's timestamp counter "register"
314  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
315  */
316 static void guest_write_tsc(u64 guest_tsc)
317 {
318         u64 host_tsc;
319
320         rdtscll(host_tsc);
321         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
322 }
323
324 static void reload_tss(void)
325 {
326 #ifndef CONFIG_X86_64
327
328         /*
329          * VT restores TR but not its size.  Useless.
330          */
331         struct descriptor_table gdt;
332         struct segment_descriptor *descs;
333
334         get_gdt(&gdt);
335         descs = (void *)gdt.base;
336         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
337         load_TR_desc();
338 #endif
339 }
340
341 /*
342  * Reads an msr value (of 'msr_index') into 'pdata'.
343  * Returns 0 on success, non-0 otherwise.
344  * Assumes vcpu_load() was already called.
345  */
346 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
347 {
348         u64 data;
349         struct vmx_msr_entry *msr;
350
351         if (!pdata) {
352                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
353                 return -EINVAL;
354         }
355
356         switch (msr_index) {
357 #ifdef CONFIG_X86_64
358         case MSR_FS_BASE:
359                 data = vmcs_readl(GUEST_FS_BASE);
360                 break;
361         case MSR_GS_BASE:
362                 data = vmcs_readl(GUEST_GS_BASE);
363                 break;
364         case MSR_EFER:
365                 return kvm_get_msr_common(vcpu, msr_index, pdata);
366 #endif
367         case MSR_IA32_TIME_STAMP_COUNTER:
368                 data = guest_read_tsc();
369                 break;
370         case MSR_IA32_SYSENTER_CS:
371                 data = vmcs_read32(GUEST_SYSENTER_CS);
372                 break;
373         case MSR_IA32_SYSENTER_EIP:
374                 data = vmcs_read32(GUEST_SYSENTER_EIP);
375                 break;
376         case MSR_IA32_SYSENTER_ESP:
377                 data = vmcs_read32(GUEST_SYSENTER_ESP);
378                 break;
379         default:
380                 msr = find_msr_entry(vcpu, msr_index);
381                 if (msr) {
382                         data = msr->data;
383                         break;
384                 }
385                 return kvm_get_msr_common(vcpu, msr_index, pdata);
386         }
387
388         *pdata = data;
389         return 0;
390 }
391
392 /*
393  * Writes msr value into into the appropriate "register".
394  * Returns 0 on success, non-0 otherwise.
395  * Assumes vcpu_load() was already called.
396  */
397 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
398 {
399         struct vmx_msr_entry *msr;
400         switch (msr_index) {
401 #ifdef CONFIG_X86_64
402         case MSR_EFER:
403                 return kvm_set_msr_common(vcpu, msr_index, data);
404         case MSR_FS_BASE:
405                 vmcs_writel(GUEST_FS_BASE, data);
406                 break;
407         case MSR_GS_BASE:
408                 vmcs_writel(GUEST_GS_BASE, data);
409                 break;
410 #endif
411         case MSR_IA32_SYSENTER_CS:
412                 vmcs_write32(GUEST_SYSENTER_CS, data);
413                 break;
414         case MSR_IA32_SYSENTER_EIP:
415                 vmcs_write32(GUEST_SYSENTER_EIP, data);
416                 break;
417         case MSR_IA32_SYSENTER_ESP:
418                 vmcs_write32(GUEST_SYSENTER_ESP, data);
419                 break;
420         case MSR_IA32_TIME_STAMP_COUNTER:
421                 guest_write_tsc(data);
422                 break;
423         default:
424                 msr = find_msr_entry(vcpu, msr_index);
425                 if (msr) {
426                         msr->data = data;
427                         break;
428                 }
429                 return kvm_set_msr_common(vcpu, msr_index, data);
430                 msr->data = data;
431                 break;
432         }
433
434         return 0;
435 }
436
437 /*
438  * Sync the rsp and rip registers into the vcpu structure.  This allows
439  * registers to be accessed by indexing vcpu->regs.
440  */
441 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
442 {
443         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
444         vcpu->rip = vmcs_readl(GUEST_RIP);
445 }
446
447 /*
448  * Syncs rsp and rip back into the vmcs.  Should be called after possible
449  * modification.
450  */
451 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
452 {
453         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
454         vmcs_writel(GUEST_RIP, vcpu->rip);
455 }
456
457 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
458 {
459         unsigned long dr7 = 0x400;
460         u32 exception_bitmap;
461         int old_singlestep;
462
463         exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
464         old_singlestep = vcpu->guest_debug.singlestep;
465
466         vcpu->guest_debug.enabled = dbg->enabled;
467         if (vcpu->guest_debug.enabled) {
468                 int i;
469
470                 dr7 |= 0x200;  /* exact */
471                 for (i = 0; i < 4; ++i) {
472                         if (!dbg->breakpoints[i].enabled)
473                                 continue;
474                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
475                         dr7 |= 2 << (i*2);    /* global enable */
476                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
477                 }
478
479                 exception_bitmap |= (1u << 1);  /* Trap debug exceptions */
480
481                 vcpu->guest_debug.singlestep = dbg->singlestep;
482         } else {
483                 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
484                 vcpu->guest_debug.singlestep = 0;
485         }
486
487         if (old_singlestep && !vcpu->guest_debug.singlestep) {
488                 unsigned long flags;
489
490                 flags = vmcs_readl(GUEST_RFLAGS);
491                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
492                 vmcs_writel(GUEST_RFLAGS, flags);
493         }
494
495         vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
496         vmcs_writel(GUEST_DR7, dr7);
497
498         return 0;
499 }
500
501 static __init int cpu_has_kvm_support(void)
502 {
503         unsigned long ecx = cpuid_ecx(1);
504         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
505 }
506
507 static __init int vmx_disabled_by_bios(void)
508 {
509         u64 msr;
510
511         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
512         return (msr & 5) == 1; /* locked but not enabled */
513 }
514
515 static void hardware_enable(void *garbage)
516 {
517         int cpu = raw_smp_processor_id();
518         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
519         u64 old;
520
521         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
522         if ((old & 5) != 5)
523                 /* enable and lock */
524                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
525         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
526         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
527                       : "memory", "cc");
528 }
529
530 static void hardware_disable(void *garbage)
531 {
532         asm volatile (ASM_VMX_VMXOFF : : : "cc");
533 }
534
535 static __init void setup_vmcs_descriptor(void)
536 {
537         u32 vmx_msr_low, vmx_msr_high;
538
539         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
540         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
541         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
542         vmcs_descriptor.revision_id = vmx_msr_low;
543 }
544
545 static struct vmcs *alloc_vmcs_cpu(int cpu)
546 {
547         int node = cpu_to_node(cpu);
548         struct page *pages;
549         struct vmcs *vmcs;
550
551         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
552         if (!pages)
553                 return NULL;
554         vmcs = page_address(pages);
555         memset(vmcs, 0, vmcs_descriptor.size);
556         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
557         return vmcs;
558 }
559
560 static struct vmcs *alloc_vmcs(void)
561 {
562         return alloc_vmcs_cpu(raw_smp_processor_id());
563 }
564
565 static void free_vmcs(struct vmcs *vmcs)
566 {
567         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
568 }
569
570 static __exit void free_kvm_area(void)
571 {
572         int cpu;
573
574         for_each_online_cpu(cpu)
575                 free_vmcs(per_cpu(vmxarea, cpu));
576 }
577
578 extern struct vmcs *alloc_vmcs_cpu(int cpu);
579
580 static __init int alloc_kvm_area(void)
581 {
582         int cpu;
583
584         for_each_online_cpu(cpu) {
585                 struct vmcs *vmcs;
586
587                 vmcs = alloc_vmcs_cpu(cpu);
588                 if (!vmcs) {
589                         free_kvm_area();
590                         return -ENOMEM;
591                 }
592
593                 per_cpu(vmxarea, cpu) = vmcs;
594         }
595         return 0;
596 }
597
598 static __init int hardware_setup(void)
599 {
600         setup_vmcs_descriptor();
601         return alloc_kvm_area();
602 }
603
604 static __exit void hardware_unsetup(void)
605 {
606         free_kvm_area();
607 }
608
609 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
610 {
611         if (vcpu->rmode.active)
612                 vmcs_write32(EXCEPTION_BITMAP, ~0);
613         else
614                 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
615 }
616
617 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
618 {
619         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
620
621         if (vmcs_readl(sf->base) == save->base) {
622                 vmcs_write16(sf->selector, save->selector);
623                 vmcs_writel(sf->base, save->base);
624                 vmcs_write32(sf->limit, save->limit);
625                 vmcs_write32(sf->ar_bytes, save->ar);
626         } else {
627                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
628                         << AR_DPL_SHIFT;
629                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
630         }
631 }
632
633 static void enter_pmode(struct kvm_vcpu *vcpu)
634 {
635         unsigned long flags;
636
637         vcpu->rmode.active = 0;
638
639         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
640         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
641         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
642
643         flags = vmcs_readl(GUEST_RFLAGS);
644         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
645         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
646         vmcs_writel(GUEST_RFLAGS, flags);
647
648         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
649                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
650
651         update_exception_bitmap(vcpu);
652
653         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
654         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
655         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
656         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
657
658         vmcs_write16(GUEST_SS_SELECTOR, 0);
659         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
660
661         vmcs_write16(GUEST_CS_SELECTOR,
662                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
663         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
664 }
665
666 static int rmode_tss_base(struct kvm* kvm)
667 {
668         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
669         return base_gfn << PAGE_SHIFT;
670 }
671
672 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
673 {
674         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
675
676         save->selector = vmcs_read16(sf->selector);
677         save->base = vmcs_readl(sf->base);
678         save->limit = vmcs_read32(sf->limit);
679         save->ar = vmcs_read32(sf->ar_bytes);
680         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
681         vmcs_write32(sf->limit, 0xffff);
682         vmcs_write32(sf->ar_bytes, 0xf3);
683 }
684
685 static void enter_rmode(struct kvm_vcpu *vcpu)
686 {
687         unsigned long flags;
688
689         vcpu->rmode.active = 1;
690
691         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
692         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
693
694         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
695         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
696
697         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
698         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
699
700         flags = vmcs_readl(GUEST_RFLAGS);
701         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
702
703         flags |= IOPL_MASK | X86_EFLAGS_VM;
704
705         vmcs_writel(GUEST_RFLAGS, flags);
706         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
707         update_exception_bitmap(vcpu);
708
709         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
710         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
711         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
712
713         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
714         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
715         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
716
717         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
718         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
719         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
720         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
721 }
722
723 #ifdef CONFIG_X86_64
724
725 static void enter_lmode(struct kvm_vcpu *vcpu)
726 {
727         u32 guest_tr_ar;
728
729         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
730         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
731                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
732                        __FUNCTION__);
733                 vmcs_write32(GUEST_TR_AR_BYTES,
734                              (guest_tr_ar & ~AR_TYPE_MASK)
735                              | AR_TYPE_BUSY_64_TSS);
736         }
737
738         vcpu->shadow_efer |= EFER_LMA;
739
740         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
741         vmcs_write32(VM_ENTRY_CONTROLS,
742                      vmcs_read32(VM_ENTRY_CONTROLS)
743                      | VM_ENTRY_CONTROLS_IA32E_MASK);
744 }
745
746 static void exit_lmode(struct kvm_vcpu *vcpu)
747 {
748         vcpu->shadow_efer &= ~EFER_LMA;
749
750         vmcs_write32(VM_ENTRY_CONTROLS,
751                      vmcs_read32(VM_ENTRY_CONTROLS)
752                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
753 }
754
755 #endif
756
757 static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
758 {
759         vcpu->cr0 &= KVM_GUEST_CR0_MASK;
760         vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
761
762         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
763         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
764 }
765
766 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
767 {
768         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
769                 enter_pmode(vcpu);
770
771         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
772                 enter_rmode(vcpu);
773
774 #ifdef CONFIG_X86_64
775         if (vcpu->shadow_efer & EFER_LME) {
776                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
777                         enter_lmode(vcpu);
778                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
779                         exit_lmode(vcpu);
780         }
781 #endif
782
783         vmcs_writel(CR0_READ_SHADOW, cr0);
784         vmcs_writel(GUEST_CR0,
785                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
786         vcpu->cr0 = cr0;
787 }
788
789 /*
790  * Used when restoring the VM to avoid corrupting segment registers
791  */
792 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
793 {
794         vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
795         update_exception_bitmap(vcpu);
796         vmcs_writel(CR0_READ_SHADOW, cr0);
797         vmcs_writel(GUEST_CR0,
798                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
799         vcpu->cr0 = cr0;
800 }
801
802 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
803 {
804         vmcs_writel(GUEST_CR3, cr3);
805 }
806
807 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
808 {
809         vmcs_writel(CR4_READ_SHADOW, cr4);
810         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
811                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
812         vcpu->cr4 = cr4;
813 }
814
815 #ifdef CONFIG_X86_64
816
817 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
818 {
819         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
820
821         vcpu->shadow_efer = efer;
822         if (efer & EFER_LMA) {
823                 vmcs_write32(VM_ENTRY_CONTROLS,
824                                      vmcs_read32(VM_ENTRY_CONTROLS) |
825                                      VM_ENTRY_CONTROLS_IA32E_MASK);
826                 msr->data = efer;
827
828         } else {
829                 vmcs_write32(VM_ENTRY_CONTROLS,
830                                      vmcs_read32(VM_ENTRY_CONTROLS) &
831                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
832
833                 msr->data = efer & ~EFER_LME;
834         }
835 }
836
837 #endif
838
839 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
840 {
841         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
842
843         return vmcs_readl(sf->base);
844 }
845
846 static void vmx_get_segment(struct kvm_vcpu *vcpu,
847                             struct kvm_segment *var, int seg)
848 {
849         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
850         u32 ar;
851
852         var->base = vmcs_readl(sf->base);
853         var->limit = vmcs_read32(sf->limit);
854         var->selector = vmcs_read16(sf->selector);
855         ar = vmcs_read32(sf->ar_bytes);
856         if (ar & AR_UNUSABLE_MASK)
857                 ar = 0;
858         var->type = ar & 15;
859         var->s = (ar >> 4) & 1;
860         var->dpl = (ar >> 5) & 3;
861         var->present = (ar >> 7) & 1;
862         var->avl = (ar >> 12) & 1;
863         var->l = (ar >> 13) & 1;
864         var->db = (ar >> 14) & 1;
865         var->g = (ar >> 15) & 1;
866         var->unusable = (ar >> 16) & 1;
867 }
868
869 static void vmx_set_segment(struct kvm_vcpu *vcpu,
870                             struct kvm_segment *var, int seg)
871 {
872         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
873         u32 ar;
874
875         vmcs_writel(sf->base, var->base);
876         vmcs_write32(sf->limit, var->limit);
877         vmcs_write16(sf->selector, var->selector);
878         if (var->unusable)
879                 ar = 1 << 16;
880         else {
881                 ar = var->type & 15;
882                 ar |= (var->s & 1) << 4;
883                 ar |= (var->dpl & 3) << 5;
884                 ar |= (var->present & 1) << 7;
885                 ar |= (var->avl & 1) << 12;
886                 ar |= (var->l & 1) << 13;
887                 ar |= (var->db & 1) << 14;
888                 ar |= (var->g & 1) << 15;
889         }
890         if (ar == 0) /* a 0 value means unusable */
891                 ar = AR_UNUSABLE_MASK;
892         vmcs_write32(sf->ar_bytes, ar);
893 }
894
895 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
896 {
897         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
898
899         *db = (ar >> 14) & 1;
900         *l = (ar >> 13) & 1;
901 }
902
903 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
904 {
905         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
906         dt->base = vmcs_readl(GUEST_IDTR_BASE);
907 }
908
909 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
910 {
911         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
912         vmcs_writel(GUEST_IDTR_BASE, dt->base);
913 }
914
915 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
916 {
917         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
918         dt->base = vmcs_readl(GUEST_GDTR_BASE);
919 }
920
921 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
922 {
923         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
924         vmcs_writel(GUEST_GDTR_BASE, dt->base);
925 }
926
927 static int init_rmode_tss(struct kvm* kvm)
928 {
929         struct page *p1, *p2, *p3;
930         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
931         char *page;
932
933         p1 = _gfn_to_page(kvm, fn++);
934         p2 = _gfn_to_page(kvm, fn++);
935         p3 = _gfn_to_page(kvm, fn);
936
937         if (!p1 || !p2 || !p3) {
938                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
939                 return 0;
940         }
941
942         page = kmap_atomic(p1, KM_USER0);
943         memset(page, 0, PAGE_SIZE);
944         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
945         kunmap_atomic(page, KM_USER0);
946
947         page = kmap_atomic(p2, KM_USER0);
948         memset(page, 0, PAGE_SIZE);
949         kunmap_atomic(page, KM_USER0);
950
951         page = kmap_atomic(p3, KM_USER0);
952         memset(page, 0, PAGE_SIZE);
953         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
954         kunmap_atomic(page, KM_USER0);
955
956         return 1;
957 }
958
959 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
960 {
961         u32 msr_high, msr_low;
962
963         rdmsr(msr, msr_low, msr_high);
964
965         val &= msr_high;
966         val |= msr_low;
967         vmcs_write32(vmcs_field, val);
968 }
969
970 static void seg_setup(int seg)
971 {
972         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
973
974         vmcs_write16(sf->selector, 0);
975         vmcs_writel(sf->base, 0);
976         vmcs_write32(sf->limit, 0xffff);
977         vmcs_write32(sf->ar_bytes, 0x93);
978 }
979
980 /*
981  * Sets up the vmcs for emulated real mode.
982  */
983 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
984 {
985         u32 host_sysenter_cs;
986         u32 junk;
987         unsigned long a;
988         struct descriptor_table dt;
989         int i;
990         int ret = 0;
991         int nr_good_msrs;
992         extern asmlinkage void kvm_vmx_return(void);
993
994         if (!init_rmode_tss(vcpu->kvm)) {
995                 ret = -ENOMEM;
996                 goto out;
997         }
998
999         memset(vcpu->regs, 0, sizeof(vcpu->regs));
1000         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1001         vcpu->cr8 = 0;
1002         vcpu->apic_base = 0xfee00000 |
1003                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1004                         MSR_IA32_APICBASE_ENABLE;
1005
1006         fx_init(vcpu);
1007
1008         /*
1009          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1010          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1011          */
1012         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1013         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1014         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1015         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1016
1017         seg_setup(VCPU_SREG_DS);
1018         seg_setup(VCPU_SREG_ES);
1019         seg_setup(VCPU_SREG_FS);
1020         seg_setup(VCPU_SREG_GS);
1021         seg_setup(VCPU_SREG_SS);
1022
1023         vmcs_write16(GUEST_TR_SELECTOR, 0);
1024         vmcs_writel(GUEST_TR_BASE, 0);
1025         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1026         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1027
1028         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1029         vmcs_writel(GUEST_LDTR_BASE, 0);
1030         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1031         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1032
1033         vmcs_write32(GUEST_SYSENTER_CS, 0);
1034         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1035         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1036
1037         vmcs_writel(GUEST_RFLAGS, 0x02);
1038         vmcs_writel(GUEST_RIP, 0xfff0);
1039         vmcs_writel(GUEST_RSP, 0);
1040
1041         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1042         vmcs_writel(GUEST_DR7, 0x400);
1043
1044         vmcs_writel(GUEST_GDTR_BASE, 0);
1045         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1046
1047         vmcs_writel(GUEST_IDTR_BASE, 0);
1048         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1049
1050         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1051         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1052         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1053
1054         /* I/O */
1055         vmcs_write64(IO_BITMAP_A, 0);
1056         vmcs_write64(IO_BITMAP_B, 0);
1057
1058         guest_write_tsc(0);
1059
1060         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1061
1062         /* Special registers */
1063         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1064
1065         /* Control */
1066         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1067                                PIN_BASED_VM_EXEC_CONTROL,
1068                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1069                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1070                         );
1071         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1072                                CPU_BASED_VM_EXEC_CONTROL,
1073                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1074                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1075                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1076                                | CPU_BASED_UNCOND_IO_EXITING   /* 20.6.2 */
1077                                | CPU_BASED_MOV_DR_EXITING
1078                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1079                         );
1080
1081         vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1082         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1083         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1084         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1085
1086         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1087         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1088         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1089
1090         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1091         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1092         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1093         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1094         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1095         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1096 #ifdef CONFIG_X86_64
1097         rdmsrl(MSR_FS_BASE, a);
1098         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1099         rdmsrl(MSR_GS_BASE, a);
1100         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1101 #else
1102         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1103         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1104 #endif
1105
1106         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1107
1108         get_idt(&dt);
1109         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1110
1111
1112         vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1113
1114         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1115         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1116         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1117         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1118         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1119         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1120
1121         for (i = 0; i < NR_VMX_MSR; ++i) {
1122                 u32 index = vmx_msr_index[i];
1123                 u32 data_low, data_high;
1124                 u64 data;
1125                 int j = vcpu->nmsrs;
1126
1127                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1128                         continue;
1129                 if (wrmsr_safe(index, data_low, data_high) < 0)
1130                         continue;
1131                 data = data_low | ((u64)data_high << 32);
1132                 vcpu->host_msrs[j].index = index;
1133                 vcpu->host_msrs[j].reserved = 0;
1134                 vcpu->host_msrs[j].data = data;
1135                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1136                 ++vcpu->nmsrs;
1137         }
1138         printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1139
1140         nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1141         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1142                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1143         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1144                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1145         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1146                     virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1147         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1148                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1149         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1150         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
1151         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1152
1153
1154         /* 22.2.1, 20.8.1 */
1155         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1156                                VM_ENTRY_CONTROLS, 0);
1157         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1158
1159 #ifdef CONFIG_X86_64
1160         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1161         vmcs_writel(TPR_THRESHOLD, 0);
1162 #endif
1163
1164         vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1165         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1166
1167         vcpu->cr0 = 0x60000010;
1168         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1169         vmx_set_cr4(vcpu, 0);
1170 #ifdef CONFIG_X86_64
1171         vmx_set_efer(vcpu, 0);
1172 #endif
1173
1174         return 0;
1175
1176 out:
1177         return ret;
1178 }
1179
1180 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1181 {
1182         u16 ent[2];
1183         u16 cs;
1184         u16 ip;
1185         unsigned long flags;
1186         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1187         u16 sp =  vmcs_readl(GUEST_RSP);
1188         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1189
1190         if (sp > ss_limit || sp - 6 > sp) {
1191                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1192                             __FUNCTION__,
1193                             vmcs_readl(GUEST_RSP),
1194                             vmcs_readl(GUEST_SS_BASE),
1195                             vmcs_read32(GUEST_SS_LIMIT));
1196                 return;
1197         }
1198
1199         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1200                                                                 sizeof(ent)) {
1201                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1202                 return;
1203         }
1204
1205         flags =  vmcs_readl(GUEST_RFLAGS);
1206         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1207         ip =  vmcs_readl(GUEST_RIP);
1208
1209
1210         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1211             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1212             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1213                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1214                 return;
1215         }
1216
1217         vmcs_writel(GUEST_RFLAGS, flags &
1218                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1219         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1220         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1221         vmcs_writel(GUEST_RIP, ent[0]);
1222         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1223 }
1224
1225 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1226 {
1227         int word_index = __ffs(vcpu->irq_summary);
1228         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1229         int irq = word_index * BITS_PER_LONG + bit_index;
1230
1231         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1232         if (!vcpu->irq_pending[word_index])
1233                 clear_bit(word_index, &vcpu->irq_summary);
1234
1235         if (vcpu->rmode.active) {
1236                 inject_rmode_irq(vcpu, irq);
1237                 return;
1238         }
1239         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1240                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1241 }
1242
1243
1244 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1245                                        struct kvm_run *kvm_run)
1246 {
1247         u32 cpu_based_vm_exec_control;
1248
1249         vcpu->interrupt_window_open =
1250                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1251                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1252
1253         if (vcpu->interrupt_window_open &&
1254             vcpu->irq_summary &&
1255             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1256                 /*
1257                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1258                  */
1259                 kvm_do_inject_irq(vcpu);
1260
1261         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1262         if (!vcpu->interrupt_window_open &&
1263             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1264                 /*
1265                  * Interrupts blocked.  Wait for unblock.
1266                  */
1267                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1268         else
1269                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1270         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1271 }
1272
1273 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1274 {
1275         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1276
1277         set_debugreg(dbg->bp[0], 0);
1278         set_debugreg(dbg->bp[1], 1);
1279         set_debugreg(dbg->bp[2], 2);
1280         set_debugreg(dbg->bp[3], 3);
1281
1282         if (dbg->singlestep) {
1283                 unsigned long flags;
1284
1285                 flags = vmcs_readl(GUEST_RFLAGS);
1286                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1287                 vmcs_writel(GUEST_RFLAGS, flags);
1288         }
1289 }
1290
1291 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1292                                   int vec, u32 err_code)
1293 {
1294         if (!vcpu->rmode.active)
1295                 return 0;
1296
1297         if (vec == GP_VECTOR && err_code == 0)
1298                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1299                         return 1;
1300         return 0;
1301 }
1302
1303 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1304 {
1305         u32 intr_info, error_code;
1306         unsigned long cr2, rip;
1307         u32 vect_info;
1308         enum emulation_result er;
1309         int r;
1310
1311         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1312         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1313
1314         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1315                                                 !is_page_fault(intr_info)) {
1316                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1317                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1318         }
1319
1320         if (is_external_interrupt(vect_info)) {
1321                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1322                 set_bit(irq, vcpu->irq_pending);
1323                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1324         }
1325
1326         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1327                 asm ("int $2");
1328                 return 1;
1329         }
1330         error_code = 0;
1331         rip = vmcs_readl(GUEST_RIP);
1332         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1333                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1334         if (is_page_fault(intr_info)) {
1335                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1336
1337                 spin_lock(&vcpu->kvm->lock);
1338                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1339                 if (r < 0) {
1340                         spin_unlock(&vcpu->kvm->lock);
1341                         return r;
1342                 }
1343                 if (!r) {
1344                         spin_unlock(&vcpu->kvm->lock);
1345                         return 1;
1346                 }
1347
1348                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1349                 spin_unlock(&vcpu->kvm->lock);
1350
1351                 switch (er) {
1352                 case EMULATE_DONE:
1353                         return 1;
1354                 case EMULATE_DO_MMIO:
1355                         ++kvm_stat.mmio_exits;
1356                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1357                         return 0;
1358                  case EMULATE_FAIL:
1359                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1360                         break;
1361                 default:
1362                         BUG();
1363                 }
1364         }
1365
1366         if (vcpu->rmode.active &&
1367             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1368                                                                 error_code))
1369                 return 1;
1370
1371         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1372                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1373                 return 0;
1374         }
1375         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1376         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1377         kvm_run->ex.error_code = error_code;
1378         return 0;
1379 }
1380
1381 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1382                                      struct kvm_run *kvm_run)
1383 {
1384         ++kvm_stat.irq_exits;
1385         return 1;
1386 }
1387
1388 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1389 {
1390         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1391         return 0;
1392 }
1393
1394 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1395 {
1396         u64 inst;
1397         gva_t rip;
1398         int countr_size;
1399         int i, n;
1400
1401         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1402                 countr_size = 2;
1403         } else {
1404                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1405
1406                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1407                               (cs_ar & AR_DB_MASK) ? 4: 2;
1408         }
1409
1410         rip =  vmcs_readl(GUEST_RIP);
1411         if (countr_size != 8)
1412                 rip += vmcs_readl(GUEST_CS_BASE);
1413
1414         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1415
1416         for (i = 0; i < n; i++) {
1417                 switch (((u8*)&inst)[i]) {
1418                 case 0xf0:
1419                 case 0xf2:
1420                 case 0xf3:
1421                 case 0x2e:
1422                 case 0x36:
1423                 case 0x3e:
1424                 case 0x26:
1425                 case 0x64:
1426                 case 0x65:
1427                 case 0x66:
1428                         break;
1429                 case 0x67:
1430                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1431                 default:
1432                         goto done;
1433                 }
1434         }
1435         return 0;
1436 done:
1437         countr_size *= 8;
1438         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1439         return 1;
1440 }
1441
1442 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1443 {
1444         u64 exit_qualification;
1445
1446         ++kvm_stat.io_exits;
1447         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1448         kvm_run->exit_reason = KVM_EXIT_IO;
1449         if (exit_qualification & 8)
1450                 kvm_run->io.direction = KVM_EXIT_IO_IN;
1451         else
1452                 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1453         kvm_run->io.size = (exit_qualification & 7) + 1;
1454         kvm_run->io.string = (exit_qualification & 16) != 0;
1455         kvm_run->io.string_down
1456                 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1457         kvm_run->io.rep = (exit_qualification & 32) != 0;
1458         kvm_run->io.port = exit_qualification >> 16;
1459         if (kvm_run->io.string) {
1460                 if (!get_io_count(vcpu, &kvm_run->io.count))
1461                         return 1;
1462                 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1463         } else
1464                 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1465         return 0;
1466 }
1467
1468 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1469 {
1470         u64 exit_qualification;
1471         int cr;
1472         int reg;
1473
1474         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1475         cr = exit_qualification & 15;
1476         reg = (exit_qualification >> 8) & 15;
1477         switch ((exit_qualification >> 4) & 3) {
1478         case 0: /* mov to cr */
1479                 switch (cr) {
1480                 case 0:
1481                         vcpu_load_rsp_rip(vcpu);
1482                         set_cr0(vcpu, vcpu->regs[reg]);
1483                         skip_emulated_instruction(vcpu);
1484                         return 1;
1485                 case 3:
1486                         vcpu_load_rsp_rip(vcpu);
1487                         set_cr3(vcpu, vcpu->regs[reg]);
1488                         skip_emulated_instruction(vcpu);
1489                         return 1;
1490                 case 4:
1491                         vcpu_load_rsp_rip(vcpu);
1492                         set_cr4(vcpu, vcpu->regs[reg]);
1493                         skip_emulated_instruction(vcpu);
1494                         return 1;
1495                 case 8:
1496                         vcpu_load_rsp_rip(vcpu);
1497                         set_cr8(vcpu, vcpu->regs[reg]);
1498                         skip_emulated_instruction(vcpu);
1499                         return 1;
1500                 };
1501                 break;
1502         case 1: /*mov from cr*/
1503                 switch (cr) {
1504                 case 3:
1505                         vcpu_load_rsp_rip(vcpu);
1506                         vcpu->regs[reg] = vcpu->cr3;
1507                         vcpu_put_rsp_rip(vcpu);
1508                         skip_emulated_instruction(vcpu);
1509                         return 1;
1510                 case 8:
1511                         printk(KERN_DEBUG "handle_cr: read CR8 "
1512                                "cpu erratum AA15\n");
1513                         vcpu_load_rsp_rip(vcpu);
1514                         vcpu->regs[reg] = vcpu->cr8;
1515                         vcpu_put_rsp_rip(vcpu);
1516                         skip_emulated_instruction(vcpu);
1517                         return 1;
1518                 }
1519                 break;
1520         case 3: /* lmsw */
1521                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1522
1523                 skip_emulated_instruction(vcpu);
1524                 return 1;
1525         default:
1526                 break;
1527         }
1528         kvm_run->exit_reason = 0;
1529         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1530                (int)(exit_qualification >> 4) & 3, cr);
1531         return 0;
1532 }
1533
1534 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1535 {
1536         u64 exit_qualification;
1537         unsigned long val;
1538         int dr, reg;
1539
1540         /*
1541          * FIXME: this code assumes the host is debugging the guest.
1542          *        need to deal with guest debugging itself too.
1543          */
1544         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1545         dr = exit_qualification & 7;
1546         reg = (exit_qualification >> 8) & 15;
1547         vcpu_load_rsp_rip(vcpu);
1548         if (exit_qualification & 16) {
1549                 /* mov from dr */
1550                 switch (dr) {
1551                 case 6:
1552                         val = 0xffff0ff0;
1553                         break;
1554                 case 7:
1555                         val = 0x400;
1556                         break;
1557                 default:
1558                         val = 0;
1559                 }
1560                 vcpu->regs[reg] = val;
1561         } else {
1562                 /* mov to dr */
1563         }
1564         vcpu_put_rsp_rip(vcpu);
1565         skip_emulated_instruction(vcpu);
1566         return 1;
1567 }
1568
1569 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1570 {
1571         kvm_run->exit_reason = KVM_EXIT_CPUID;
1572         return 0;
1573 }
1574
1575 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1576 {
1577         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1578         u64 data;
1579
1580         if (vmx_get_msr(vcpu, ecx, &data)) {
1581                 vmx_inject_gp(vcpu, 0);
1582                 return 1;
1583         }
1584
1585         /* FIXME: handling of bits 32:63 of rax, rdx */
1586         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1587         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1588         skip_emulated_instruction(vcpu);
1589         return 1;
1590 }
1591
1592 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1593 {
1594         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1595         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1596                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1597
1598         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1599                 vmx_inject_gp(vcpu, 0);
1600                 return 1;
1601         }
1602
1603         skip_emulated_instruction(vcpu);
1604         return 1;
1605 }
1606
1607 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1608                               struct kvm_run *kvm_run)
1609 {
1610         kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1611         kvm_run->cr8 = vcpu->cr8;
1612         kvm_run->apic_base = vcpu->apic_base;
1613         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1614                                                   vcpu->irq_summary == 0);
1615 }
1616
1617 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1618                                    struct kvm_run *kvm_run)
1619 {
1620         /*
1621          * If the user space waits to inject interrupts, exit as soon as
1622          * possible
1623          */
1624         if (kvm_run->request_interrupt_window &&
1625             !vcpu->irq_summary) {
1626                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1627                 ++kvm_stat.irq_window_exits;
1628                 return 0;
1629         }
1630         return 1;
1631 }
1632
1633 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1634 {
1635         skip_emulated_instruction(vcpu);
1636         if (vcpu->irq_summary)
1637                 return 1;
1638
1639         kvm_run->exit_reason = KVM_EXIT_HLT;
1640         ++kvm_stat.halt_exits;
1641         return 0;
1642 }
1643
1644 /*
1645  * The exit handlers return 1 if the exit was handled fully and guest execution
1646  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1647  * to be done to userspace and return 0.
1648  */
1649 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1650                                       struct kvm_run *kvm_run) = {
1651         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1652         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1653         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
1654         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1655         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1656         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1657         [EXIT_REASON_CPUID]                   = handle_cpuid,
1658         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1659         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1660         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1661         [EXIT_REASON_HLT]                     = handle_halt,
1662 };
1663
1664 static const int kvm_vmx_max_exit_handlers =
1665         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1666
1667 /*
1668  * The guest has exited.  See if we can fix it or if we need userspace
1669  * assistance.
1670  */
1671 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1672 {
1673         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1674         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1675
1676         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1677                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1678                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1679                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1680         kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1681         if (exit_reason < kvm_vmx_max_exit_handlers
1682             && kvm_vmx_exit_handlers[exit_reason])
1683                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1684         else {
1685                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1686                 kvm_run->hw.hardware_exit_reason = exit_reason;
1687         }
1688         return 0;
1689 }
1690
1691 /*
1692  * Check if userspace requested an interrupt window, and that the
1693  * interrupt window is open.
1694  *
1695  * No need to exit to userspace if we already have an interrupt queued.
1696  */
1697 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1698                                           struct kvm_run *kvm_run)
1699 {
1700         return (!vcpu->irq_summary &&
1701                 kvm_run->request_interrupt_window &&
1702                 vcpu->interrupt_window_open &&
1703                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1704 }
1705
1706 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1707 {
1708         u8 fail;
1709         u16 fs_sel, gs_sel, ldt_sel;
1710         int fs_gs_ldt_reload_needed;
1711         int r;
1712
1713 again:
1714         /*
1715          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1716          * allow segment selectors with cpl > 0 or ti == 1.
1717          */
1718         fs_sel = read_fs();
1719         gs_sel = read_gs();
1720         ldt_sel = read_ldt();
1721         fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1722         if (!fs_gs_ldt_reload_needed) {
1723                 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1724                 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1725         } else {
1726                 vmcs_write16(HOST_FS_SELECTOR, 0);
1727                 vmcs_write16(HOST_GS_SELECTOR, 0);
1728         }
1729
1730 #ifdef CONFIG_X86_64
1731         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1732         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1733 #else
1734         vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1735         vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1736 #endif
1737
1738         if (!vcpu->mmio_read_completed)
1739                 do_interrupt_requests(vcpu, kvm_run);
1740
1741         if (vcpu->guest_debug.enabled)
1742                 kvm_guest_debug_pre(vcpu);
1743
1744         fx_save(vcpu->host_fx_image);
1745         fx_restore(vcpu->guest_fx_image);
1746
1747         save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1748         load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1749
1750         asm (
1751                 /* Store host registers */
1752                 "pushf \n\t"
1753 #ifdef CONFIG_X86_64
1754                 "push %%rax; push %%rbx; push %%rdx;"
1755                 "push %%rsi; push %%rdi; push %%rbp;"
1756                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1757                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1758                 "push %%rcx \n\t"
1759                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1760 #else
1761                 "pusha; push %%ecx \n\t"
1762                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1763 #endif
1764                 /* Check if vmlaunch of vmresume is needed */
1765                 "cmp $0, %1 \n\t"
1766                 /* Load guest registers.  Don't clobber flags. */
1767 #ifdef CONFIG_X86_64
1768                 "mov %c[cr2](%3), %%rax \n\t"
1769                 "mov %%rax, %%cr2 \n\t"
1770                 "mov %c[rax](%3), %%rax \n\t"
1771                 "mov %c[rbx](%3), %%rbx \n\t"
1772                 "mov %c[rdx](%3), %%rdx \n\t"
1773                 "mov %c[rsi](%3), %%rsi \n\t"
1774                 "mov %c[rdi](%3), %%rdi \n\t"
1775                 "mov %c[rbp](%3), %%rbp \n\t"
1776                 "mov %c[r8](%3),  %%r8  \n\t"
1777                 "mov %c[r9](%3),  %%r9  \n\t"
1778                 "mov %c[r10](%3), %%r10 \n\t"
1779                 "mov %c[r11](%3), %%r11 \n\t"
1780                 "mov %c[r12](%3), %%r12 \n\t"
1781                 "mov %c[r13](%3), %%r13 \n\t"
1782                 "mov %c[r14](%3), %%r14 \n\t"
1783                 "mov %c[r15](%3), %%r15 \n\t"
1784                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1785 #else
1786                 "mov %c[cr2](%3), %%eax \n\t"
1787                 "mov %%eax,   %%cr2 \n\t"
1788                 "mov %c[rax](%3), %%eax \n\t"
1789                 "mov %c[rbx](%3), %%ebx \n\t"
1790                 "mov %c[rdx](%3), %%edx \n\t"
1791                 "mov %c[rsi](%3), %%esi \n\t"
1792                 "mov %c[rdi](%3), %%edi \n\t"
1793                 "mov %c[rbp](%3), %%ebp \n\t"
1794                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1795 #endif
1796                 /* Enter guest mode */
1797                 "jne launched \n\t"
1798                 ASM_VMX_VMLAUNCH "\n\t"
1799                 "jmp kvm_vmx_return \n\t"
1800                 "launched: " ASM_VMX_VMRESUME "\n\t"
1801                 ".globl kvm_vmx_return \n\t"
1802                 "kvm_vmx_return: "
1803                 /* Save guest registers, load host registers, keep flags */
1804 #ifdef CONFIG_X86_64
1805                 "xchg %3,     (%%rsp) \n\t"
1806                 "mov %%rax, %c[rax](%3) \n\t"
1807                 "mov %%rbx, %c[rbx](%3) \n\t"
1808                 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1809                 "mov %%rdx, %c[rdx](%3) \n\t"
1810                 "mov %%rsi, %c[rsi](%3) \n\t"
1811                 "mov %%rdi, %c[rdi](%3) \n\t"
1812                 "mov %%rbp, %c[rbp](%3) \n\t"
1813                 "mov %%r8,  %c[r8](%3) \n\t"
1814                 "mov %%r9,  %c[r9](%3) \n\t"
1815                 "mov %%r10, %c[r10](%3) \n\t"
1816                 "mov %%r11, %c[r11](%3) \n\t"
1817                 "mov %%r12, %c[r12](%3) \n\t"
1818                 "mov %%r13, %c[r13](%3) \n\t"
1819                 "mov %%r14, %c[r14](%3) \n\t"
1820                 "mov %%r15, %c[r15](%3) \n\t"
1821                 "mov %%cr2, %%rax   \n\t"
1822                 "mov %%rax, %c[cr2](%3) \n\t"
1823                 "mov (%%rsp), %3 \n\t"
1824
1825                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1826                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1827                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1828                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
1829 #else
1830                 "xchg %3, (%%esp) \n\t"
1831                 "mov %%eax, %c[rax](%3) \n\t"
1832                 "mov %%ebx, %c[rbx](%3) \n\t"
1833                 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1834                 "mov %%edx, %c[rdx](%3) \n\t"
1835                 "mov %%esi, %c[rsi](%3) \n\t"
1836                 "mov %%edi, %c[rdi](%3) \n\t"
1837                 "mov %%ebp, %c[rbp](%3) \n\t"
1838                 "mov %%cr2, %%eax  \n\t"
1839                 "mov %%eax, %c[cr2](%3) \n\t"
1840                 "mov (%%esp), %3 \n\t"
1841
1842                 "pop %%ecx; popa \n\t"
1843 #endif
1844                 "setbe %0 \n\t"
1845                 "popf \n\t"
1846               : "=q" (fail)
1847               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1848                 "c"(vcpu),
1849                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1850                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1851                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1852                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1853                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1854                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1855                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1856 #ifdef CONFIG_X86_64
1857                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1858                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1859                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1860                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1861                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1862                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1863                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1864                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1865 #endif
1866                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1867               : "cc", "memory" );
1868
1869         ++kvm_stat.exits;
1870
1871         save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1872         load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1873
1874         fx_save(vcpu->guest_fx_image);
1875         fx_restore(vcpu->host_fx_image);
1876         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1877
1878         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1879
1880         kvm_run->exit_type = 0;
1881         if (fail) {
1882                 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1883                 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1884                 r = 0;
1885         } else {
1886                 if (fs_gs_ldt_reload_needed) {
1887                         load_ldt(ldt_sel);
1888                         load_fs(fs_sel);
1889                         /*
1890                          * If we have to reload gs, we must take care to
1891                          * preserve our gs base.
1892                          */
1893                         local_irq_disable();
1894                         load_gs(gs_sel);
1895 #ifdef CONFIG_X86_64
1896                         wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1897 #endif
1898                         local_irq_enable();
1899
1900                         reload_tss();
1901                 }
1902                 /*
1903                  * Profile KVM exit RIPs:
1904                  */
1905                 if (unlikely(prof_on == KVM_PROFILING))
1906                         profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
1907
1908                 vcpu->launched = 1;
1909                 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1910                 r = kvm_handle_exit(kvm_run, vcpu);
1911                 if (r > 0) {
1912                         /* Give scheduler a change to reschedule. */
1913                         if (signal_pending(current)) {
1914                                 ++kvm_stat.signal_exits;
1915                                 post_kvm_run_save(vcpu, kvm_run);
1916                                 return -EINTR;
1917                         }
1918
1919                         if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1920                                 ++kvm_stat.request_irq_exits;
1921                                 post_kvm_run_save(vcpu, kvm_run);
1922                                 return -EINTR;
1923                         }
1924
1925                         kvm_resched(vcpu);
1926                         goto again;
1927                 }
1928         }
1929
1930         post_kvm_run_save(vcpu, kvm_run);
1931         return r;
1932 }
1933
1934 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1935 {
1936         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1937 }
1938
1939 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1940                                   unsigned long addr,
1941                                   u32 err_code)
1942 {
1943         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1944
1945         ++kvm_stat.pf_guest;
1946
1947         if (is_page_fault(vect_info)) {
1948                 printk(KERN_DEBUG "inject_page_fault: "
1949                        "double fault 0x%lx @ 0x%lx\n",
1950                        addr, vmcs_readl(GUEST_RIP));
1951                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1952                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1953                              DF_VECTOR |
1954                              INTR_TYPE_EXCEPTION |
1955                              INTR_INFO_DELIEVER_CODE_MASK |
1956                              INTR_INFO_VALID_MASK);
1957                 return;
1958         }
1959         vcpu->cr2 = addr;
1960         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1961         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1962                      PF_VECTOR |
1963                      INTR_TYPE_EXCEPTION |
1964                      INTR_INFO_DELIEVER_CODE_MASK |
1965                      INTR_INFO_VALID_MASK);
1966
1967 }
1968
1969 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1970 {
1971         if (vcpu->vmcs) {
1972                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1973                 free_vmcs(vcpu->vmcs);
1974                 vcpu->vmcs = NULL;
1975         }
1976 }
1977
1978 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1979 {
1980         vmx_free_vmcs(vcpu);
1981 }
1982
1983 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1984 {
1985         struct vmcs *vmcs;
1986
1987         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1988         if (!vcpu->guest_msrs)
1989                 return -ENOMEM;
1990
1991         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1992         if (!vcpu->host_msrs)
1993                 goto out_free_guest_msrs;
1994
1995         vmcs = alloc_vmcs();
1996         if (!vmcs)
1997                 goto out_free_msrs;
1998
1999         vmcs_clear(vmcs);
2000         vcpu->vmcs = vmcs;
2001         vcpu->launched = 0;
2002
2003         return 0;
2004
2005 out_free_msrs:
2006         kfree(vcpu->host_msrs);
2007         vcpu->host_msrs = NULL;
2008
2009 out_free_guest_msrs:
2010         kfree(vcpu->guest_msrs);
2011         vcpu->guest_msrs = NULL;
2012
2013         return -ENOMEM;
2014 }
2015
2016 static struct kvm_arch_ops vmx_arch_ops = {
2017         .cpu_has_kvm_support = cpu_has_kvm_support,
2018         .disabled_by_bios = vmx_disabled_by_bios,
2019         .hardware_setup = hardware_setup,
2020         .hardware_unsetup = hardware_unsetup,
2021         .hardware_enable = hardware_enable,
2022         .hardware_disable = hardware_disable,
2023
2024         .vcpu_create = vmx_create_vcpu,
2025         .vcpu_free = vmx_free_vcpu,
2026
2027         .vcpu_load = vmx_vcpu_load,
2028         .vcpu_put = vmx_vcpu_put,
2029         .vcpu_decache = vmx_vcpu_decache,
2030
2031         .set_guest_debug = set_guest_debug,
2032         .get_msr = vmx_get_msr,
2033         .set_msr = vmx_set_msr,
2034         .get_segment_base = vmx_get_segment_base,
2035         .get_segment = vmx_get_segment,
2036         .set_segment = vmx_set_segment,
2037         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2038         .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
2039         .set_cr0 = vmx_set_cr0,
2040         .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
2041         .set_cr3 = vmx_set_cr3,
2042         .set_cr4 = vmx_set_cr4,
2043 #ifdef CONFIG_X86_64
2044         .set_efer = vmx_set_efer,
2045 #endif
2046         .get_idt = vmx_get_idt,
2047         .set_idt = vmx_set_idt,
2048         .get_gdt = vmx_get_gdt,
2049         .set_gdt = vmx_set_gdt,
2050         .cache_regs = vcpu_load_rsp_rip,
2051         .decache_regs = vcpu_put_rsp_rip,
2052         .get_rflags = vmx_get_rflags,
2053         .set_rflags = vmx_set_rflags,
2054
2055         .tlb_flush = vmx_flush_tlb,
2056         .inject_page_fault = vmx_inject_page_fault,
2057
2058         .inject_gp = vmx_inject_gp,
2059
2060         .run = vmx_vcpu_run,
2061         .skip_emulated_instruction = skip_emulated_instruction,
2062         .vcpu_setup = vmx_vcpu_setup,
2063 };
2064
2065 static int __init vmx_init(void)
2066 {
2067         return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2068 }
2069
2070 static void __exit vmx_exit(void)
2071 {
2072         kvm_exit_arch();
2073 }
2074
2075 module_init(vmx_init)
2076 module_exit(vmx_exit)