]> Pileus Git - ~andy/linux/blob - drivers/kvm/svm.c
KVM: Don't allow the guest to turn off the cpu cache
[~andy/linux] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/vmalloc.h>
20 #include <linux/highmem.h>
21 #include <linux/profile.h>
22 #include <asm/desc.h>
23
24 #include "kvm_svm.h"
25 #include "x86_emulate.h"
26
27 MODULE_AUTHOR("Qumranet");
28 MODULE_LICENSE("GPL");
29
30 #define IOPM_ALLOC_ORDER 2
31 #define MSRPM_ALLOC_ORDER 1
32
33 #define DB_VECTOR 1
34 #define UD_VECTOR 6
35 #define GP_VECTOR 13
36
37 #define DR7_GD_MASK (1 << 13)
38 #define DR6_BD_MASK (1 << 13)
39 #define CR4_DE_MASK (1UL << 3)
40
41 #define SEG_TYPE_LDT 2
42 #define SEG_TYPE_BUSY_TSS16 3
43
44 #define KVM_EFER_LMA (1 << 10)
45 #define KVM_EFER_LME (1 << 8)
46
47 unsigned long iopm_base;
48 unsigned long msrpm_base;
49
50 struct kvm_ldttss_desc {
51         u16 limit0;
52         u16 base0;
53         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
54         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
55         u32 base3;
56         u32 zero1;
57 } __attribute__((packed));
58
59 struct svm_cpu_data {
60         int cpu;
61
62         uint64_t asid_generation;
63         uint32_t max_asid;
64         uint32_t next_asid;
65         struct kvm_ldttss_desc *tss_desc;
66
67         struct page *save_area;
68 };
69
70 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
71
72 struct svm_init_data {
73         int cpu;
74         int r;
75 };
76
77 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
78
79 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
80 #define MSRS_RANGE_SIZE 2048
81 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
82
83 #define MAX_INST_SIZE 15
84
85 static unsigned get_addr_size(struct kvm_vcpu *vcpu)
86 {
87         struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
88         u16 cs_attrib;
89
90         if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
91                 return 2;
92
93         cs_attrib = sa->cs.attrib;
94
95         return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
96                                 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
97 }
98
99 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
100 {
101         int word_index = __ffs(vcpu->irq_summary);
102         int bit_index = __ffs(vcpu->irq_pending[word_index]);
103         int irq = word_index * BITS_PER_LONG + bit_index;
104
105         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
106         if (!vcpu->irq_pending[word_index])
107                 clear_bit(word_index, &vcpu->irq_summary);
108         return irq;
109 }
110
111 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
112 {
113         set_bit(irq, vcpu->irq_pending);
114         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
115 }
116
117 static inline void clgi(void)
118 {
119         asm volatile (SVM_CLGI);
120 }
121
122 static inline void stgi(void)
123 {
124         asm volatile (SVM_STGI);
125 }
126
127 static inline void invlpga(unsigned long addr, u32 asid)
128 {
129         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
130 }
131
132 static inline unsigned long kvm_read_cr2(void)
133 {
134         unsigned long cr2;
135
136         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
137         return cr2;
138 }
139
140 static inline void kvm_write_cr2(unsigned long val)
141 {
142         asm volatile ("mov %0, %%cr2" :: "r" (val));
143 }
144
145 static inline unsigned long read_dr6(void)
146 {
147         unsigned long dr6;
148
149         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
150         return dr6;
151 }
152
153 static inline void write_dr6(unsigned long val)
154 {
155         asm volatile ("mov %0, %%dr6" :: "r" (val));
156 }
157
158 static inline unsigned long read_dr7(void)
159 {
160         unsigned long dr7;
161
162         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
163         return dr7;
164 }
165
166 static inline void write_dr7(unsigned long val)
167 {
168         asm volatile ("mov %0, %%dr7" :: "r" (val));
169 }
170
171 static inline void force_new_asid(struct kvm_vcpu *vcpu)
172 {
173         vcpu->svm->asid_generation--;
174 }
175
176 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
177 {
178         force_new_asid(vcpu);
179 }
180
181 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
182 {
183         if (!(efer & KVM_EFER_LMA))
184                 efer &= ~KVM_EFER_LME;
185
186         vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
187         vcpu->shadow_efer = efer;
188 }
189
190 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
191 {
192         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
193                                                 SVM_EVTINJ_VALID_ERR |
194                                                 SVM_EVTINJ_TYPE_EXEPT |
195                                                 GP_VECTOR;
196         vcpu->svm->vmcb->control.event_inj_err = error_code;
197 }
198
199 static void inject_ud(struct kvm_vcpu *vcpu)
200 {
201         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
202                                                 SVM_EVTINJ_TYPE_EXEPT |
203                                                 UD_VECTOR;
204 }
205
206 static void inject_db(struct kvm_vcpu *vcpu)
207 {
208         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
209                                                 SVM_EVTINJ_TYPE_EXEPT |
210                                                 DB_VECTOR;
211 }
212
213 static int is_page_fault(uint32_t info)
214 {
215         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
216         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
217 }
218
219 static int is_external_interrupt(u32 info)
220 {
221         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
222         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
223 }
224
225 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
226 {
227         if (!vcpu->svm->next_rip) {
228                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
229                 return;
230         }
231         if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
232                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
233                        __FUNCTION__,
234                        vcpu->svm->vmcb->save.rip,
235                        vcpu->svm->next_rip);
236         }
237
238         vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
239         vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
240
241         vcpu->interrupt_window_open = 1;
242 }
243
244 static int has_svm(void)
245 {
246         uint32_t eax, ebx, ecx, edx;
247
248         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
249                 printk(KERN_INFO "has_svm: not amd\n");
250                 return 0;
251         }
252
253         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
254         if (eax < SVM_CPUID_FUNC) {
255                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
256                 return 0;
257         }
258
259         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
260         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
261                 printk(KERN_DEBUG "has_svm: svm not available\n");
262                 return 0;
263         }
264         return 1;
265 }
266
267 static void svm_hardware_disable(void *garbage)
268 {
269         struct svm_cpu_data *svm_data
270                 = per_cpu(svm_data, raw_smp_processor_id());
271
272         if (svm_data) {
273                 uint64_t efer;
274
275                 wrmsrl(MSR_VM_HSAVE_PA, 0);
276                 rdmsrl(MSR_EFER, efer);
277                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
278                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
279                 __free_page(svm_data->save_area);
280                 kfree(svm_data);
281         }
282 }
283
284 static void svm_hardware_enable(void *garbage)
285 {
286
287         struct svm_cpu_data *svm_data;
288         uint64_t efer;
289 #ifdef CONFIG_X86_64
290         struct desc_ptr gdt_descr;
291 #else
292         struct Xgt_desc_struct gdt_descr;
293 #endif
294         struct desc_struct *gdt;
295         int me = raw_smp_processor_id();
296
297         if (!has_svm()) {
298                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
299                 return;
300         }
301         svm_data = per_cpu(svm_data, me);
302
303         if (!svm_data) {
304                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
305                        me);
306                 return;
307         }
308
309         svm_data->asid_generation = 1;
310         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
311         svm_data->next_asid = svm_data->max_asid + 1;
312
313         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
314         gdt = (struct desc_struct *)gdt_descr.address;
315         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
316
317         rdmsrl(MSR_EFER, efer);
318         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
319
320         wrmsrl(MSR_VM_HSAVE_PA,
321                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
322 }
323
324 static int svm_cpu_init(int cpu)
325 {
326         struct svm_cpu_data *svm_data;
327         int r;
328
329         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
330         if (!svm_data)
331                 return -ENOMEM;
332         svm_data->cpu = cpu;
333         svm_data->save_area = alloc_page(GFP_KERNEL);
334         r = -ENOMEM;
335         if (!svm_data->save_area)
336                 goto err_1;
337
338         per_cpu(svm_data, cpu) = svm_data;
339
340         return 0;
341
342 err_1:
343         kfree(svm_data);
344         return r;
345
346 }
347
348 static int set_msr_interception(u32 *msrpm, unsigned msr,
349                                 int read, int write)
350 {
351         int i;
352
353         for (i = 0; i < NUM_MSR_MAPS; i++) {
354                 if (msr >= msrpm_ranges[i] &&
355                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
356                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
357                                           msrpm_ranges[i]) * 2;
358
359                         u32 *base = msrpm + (msr_offset / 32);
360                         u32 msr_shift = msr_offset % 32;
361                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
362                         *base = (*base & ~(0x3 << msr_shift)) |
363                                 (mask << msr_shift);
364                         return 1;
365                 }
366         }
367         printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
368         return 0;
369 }
370
371 static __init int svm_hardware_setup(void)
372 {
373         int cpu;
374         struct page *iopm_pages;
375         struct page *msrpm_pages;
376         void *msrpm_va;
377         int r;
378
379         kvm_emulator_want_group7_invlpg();
380
381         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
382
383         if (!iopm_pages)
384                 return -ENOMEM;
385         memset(page_address(iopm_pages), 0xff,
386                                         PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
387         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
388
389
390         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
391
392         r = -ENOMEM;
393         if (!msrpm_pages)
394                 goto err_1;
395
396         msrpm_va = page_address(msrpm_pages);
397         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
398         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
399
400 #ifdef CONFIG_X86_64
401         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
402         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
403         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
404         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
405         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
406         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
407 #endif
408         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
409         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
410         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
411         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
412
413         for_each_online_cpu(cpu) {
414                 r = svm_cpu_init(cpu);
415                 if (r)
416                         goto err_2;
417         }
418         return 0;
419
420 err_2:
421         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
422         msrpm_base = 0;
423 err_1:
424         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
425         iopm_base = 0;
426         return r;
427 }
428
429 static __exit void svm_hardware_unsetup(void)
430 {
431         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
432         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
433         iopm_base = msrpm_base = 0;
434 }
435
436 static void init_seg(struct vmcb_seg *seg)
437 {
438         seg->selector = 0;
439         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
440                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
441         seg->limit = 0xffff;
442         seg->base = 0;
443 }
444
445 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
446 {
447         seg->selector = 0;
448         seg->attrib = SVM_SELECTOR_P_MASK | type;
449         seg->limit = 0xffff;
450         seg->base = 0;
451 }
452
453 static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
454 {
455         return 0;
456 }
457
458 static void init_vmcb(struct vmcb *vmcb)
459 {
460         struct vmcb_control_area *control = &vmcb->control;
461         struct vmcb_save_area *save = &vmcb->save;
462         u64 tsc;
463
464         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
465                                         INTERCEPT_CR3_MASK |
466                                         INTERCEPT_CR4_MASK;
467
468         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
469                                         INTERCEPT_CR3_MASK |
470                                         INTERCEPT_CR4_MASK;
471
472         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
473                                         INTERCEPT_DR1_MASK |
474                                         INTERCEPT_DR2_MASK |
475                                         INTERCEPT_DR3_MASK;
476
477         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
478                                         INTERCEPT_DR1_MASK |
479                                         INTERCEPT_DR2_MASK |
480                                         INTERCEPT_DR3_MASK |
481                                         INTERCEPT_DR5_MASK |
482                                         INTERCEPT_DR7_MASK;
483
484         control->intercept_exceptions = 1 << PF_VECTOR;
485
486
487         control->intercept =    (1ULL << INTERCEPT_INTR) |
488                                 (1ULL << INTERCEPT_NMI) |
489                                 (1ULL << INTERCEPT_SMI) |
490                 /*
491                  * selective cr0 intercept bug?
492                  *      0:   0f 22 d8                mov    %eax,%cr3
493                  *      3:   0f 20 c0                mov    %cr0,%eax
494                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
495                  *      b:   0f 22 c0                mov    %eax,%cr0
496                  * set cr3 ->interception
497                  * get cr0 ->interception
498                  * set cr0 -> no interception
499                  */
500                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
501                                 (1ULL << INTERCEPT_CPUID) |
502                                 (1ULL << INTERCEPT_HLT) |
503                                 (1ULL << INTERCEPT_INVLPGA) |
504                                 (1ULL << INTERCEPT_IOIO_PROT) |
505                                 (1ULL << INTERCEPT_MSR_PROT) |
506                                 (1ULL << INTERCEPT_TASK_SWITCH) |
507                                 (1ULL << INTERCEPT_SHUTDOWN) |
508                                 (1ULL << INTERCEPT_VMRUN) |
509                                 (1ULL << INTERCEPT_VMMCALL) |
510                                 (1ULL << INTERCEPT_VMLOAD) |
511                                 (1ULL << INTERCEPT_VMSAVE) |
512                                 (1ULL << INTERCEPT_STGI) |
513                                 (1ULL << INTERCEPT_CLGI) |
514                                 (1ULL << INTERCEPT_SKINIT);
515
516         control->iopm_base_pa = iopm_base;
517         control->msrpm_base_pa = msrpm_base;
518         rdtscll(tsc);
519         control->tsc_offset = -tsc;
520         control->int_ctl = V_INTR_MASKING_MASK;
521
522         init_seg(&save->es);
523         init_seg(&save->ss);
524         init_seg(&save->ds);
525         init_seg(&save->fs);
526         init_seg(&save->gs);
527
528         save->cs.selector = 0xf000;
529         /* Executable/Readable Code Segment */
530         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
531                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
532         save->cs.limit = 0xffff;
533         /*
534          * cs.base should really be 0xffff0000, but vmx can't handle that, so
535          * be consistent with it.
536          *
537          * Replace when we have real mode working for vmx.
538          */
539         save->cs.base = 0xf0000;
540
541         save->gdtr.limit = 0xffff;
542         save->idtr.limit = 0xffff;
543
544         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
545         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
546
547         save->efer = MSR_EFER_SVME_MASK;
548
549         save->dr6 = 0xffff0ff0;
550         save->dr7 = 0x400;
551         save->rflags = 2;
552         save->rip = 0x0000fff0;
553
554         /*
555          * cr0 val on cpu init should be 0x60000010, we enable cpu
556          * cache by default. the orderly way is to enable cache in bios.
557          */
558         save->cr0 = 0x00000010 | CR0_PG_MASK | CR0_WP_MASK;
559         save->cr4 = CR4_PAE_MASK;
560         /* rdx = ?? */
561 }
562
563 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
564 {
565         struct page *page;
566         int r;
567
568         r = -ENOMEM;
569         vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
570         if (!vcpu->svm)
571                 goto out1;
572         page = alloc_page(GFP_KERNEL);
573         if (!page)
574                 goto out2;
575
576         vcpu->svm->vmcb = page_address(page);
577         memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
578         vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
579         vcpu->svm->cr0 = 0x00000010;
580         vcpu->svm->asid_generation = 0;
581         memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
582         init_vmcb(vcpu->svm->vmcb);
583
584         fx_init(vcpu);
585         vcpu->apic_base = 0xfee00000 |
586                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
587                         MSR_IA32_APICBASE_ENABLE;
588
589         return 0;
590
591 out2:
592         kfree(vcpu->svm);
593 out1:
594         return r;
595 }
596
597 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
598 {
599         if (!vcpu->svm)
600                 return;
601         if (vcpu->svm->vmcb)
602                 __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
603         kfree(vcpu->svm);
604 }
605
606 static void svm_vcpu_load(struct kvm_vcpu *vcpu)
607 {
608         get_cpu();
609 }
610
611 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
612 {
613         put_cpu();
614 }
615
616 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
617 {
618 }
619
620 static void svm_cache_regs(struct kvm_vcpu *vcpu)
621 {
622         vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
623         vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
624         vcpu->rip = vcpu->svm->vmcb->save.rip;
625 }
626
627 static void svm_decache_regs(struct kvm_vcpu *vcpu)
628 {
629         vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
630         vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
631         vcpu->svm->vmcb->save.rip = vcpu->rip;
632 }
633
634 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
635 {
636         return vcpu->svm->vmcb->save.rflags;
637 }
638
639 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
640 {
641         vcpu->svm->vmcb->save.rflags = rflags;
642 }
643
644 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
645 {
646         struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
647
648         switch (seg) {
649         case VCPU_SREG_CS: return &save->cs;
650         case VCPU_SREG_DS: return &save->ds;
651         case VCPU_SREG_ES: return &save->es;
652         case VCPU_SREG_FS: return &save->fs;
653         case VCPU_SREG_GS: return &save->gs;
654         case VCPU_SREG_SS: return &save->ss;
655         case VCPU_SREG_TR: return &save->tr;
656         case VCPU_SREG_LDTR: return &save->ldtr;
657         }
658         BUG();
659         return NULL;
660 }
661
662 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
663 {
664         struct vmcb_seg *s = svm_seg(vcpu, seg);
665
666         return s->base;
667 }
668
669 static void svm_get_segment(struct kvm_vcpu *vcpu,
670                             struct kvm_segment *var, int seg)
671 {
672         struct vmcb_seg *s = svm_seg(vcpu, seg);
673
674         var->base = s->base;
675         var->limit = s->limit;
676         var->selector = s->selector;
677         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
678         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
679         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
680         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
681         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
682         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
683         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
684         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
685         var->unusable = !var->present;
686 }
687
688 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
689 {
690         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
691
692         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
693         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
694 }
695
696 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
697 {
698         dt->limit = vcpu->svm->vmcb->save.idtr.limit;
699         dt->base = vcpu->svm->vmcb->save.idtr.base;
700 }
701
702 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
703 {
704         vcpu->svm->vmcb->save.idtr.limit = dt->limit;
705         vcpu->svm->vmcb->save.idtr.base = dt->base ;
706 }
707
708 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
709 {
710         dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
711         dt->base = vcpu->svm->vmcb->save.gdtr.base;
712 }
713
714 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
715 {
716         vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
717         vcpu->svm->vmcb->save.gdtr.base = dt->base ;
718 }
719
720 static void svm_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
721 {
722 }
723
724 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
725 {
726 #ifdef CONFIG_X86_64
727         if (vcpu->shadow_efer & KVM_EFER_LME) {
728                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
729                         vcpu->shadow_efer |= KVM_EFER_LMA;
730                         vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
731                 }
732
733                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
734                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
735                         vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
736                 }
737         }
738 #endif
739         vcpu->svm->cr0 = cr0;
740         vcpu->cr0 = cr0;
741         cr0 |= CR0_PG_MASK | CR0_WP_MASK;
742         cr0 &= ~(CR0_CD_MASK | CR0_NW_MASK);
743         vcpu->svm->vmcb->save.cr0 = cr0;
744 }
745
746 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
747 {
748        vcpu->cr4 = cr4;
749        vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
750 }
751
752 static void svm_set_segment(struct kvm_vcpu *vcpu,
753                             struct kvm_segment *var, int seg)
754 {
755         struct vmcb_seg *s = svm_seg(vcpu, seg);
756
757         s->base = var->base;
758         s->limit = var->limit;
759         s->selector = var->selector;
760         if (var->unusable)
761                 s->attrib = 0;
762         else {
763                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
764                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
765                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
766                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
767                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
768                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
769                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
770                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
771         }
772         if (seg == VCPU_SREG_CS)
773                 vcpu->svm->vmcb->save.cpl
774                         = (vcpu->svm->vmcb->save.cs.attrib
775                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
776
777 }
778
779 /* FIXME:
780
781         vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
782         vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
783
784 */
785
786 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
787 {
788         return -EOPNOTSUPP;
789 }
790
791 static void load_host_msrs(struct kvm_vcpu *vcpu)
792 {
793         int i;
794
795         for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
796                 wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
797 }
798
799 static void save_host_msrs(struct kvm_vcpu *vcpu)
800 {
801         int i;
802
803         for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
804                 rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
805 }
806
807 static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
808 {
809         if (svm_data->next_asid > svm_data->max_asid) {
810                 ++svm_data->asid_generation;
811                 svm_data->next_asid = 1;
812                 vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
813         }
814
815         vcpu->cpu = svm_data->cpu;
816         vcpu->svm->asid_generation = svm_data->asid_generation;
817         vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
818 }
819
820 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
821 {
822         invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
823 }
824
825 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
826 {
827         return vcpu->svm->db_regs[dr];
828 }
829
830 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
831                        int *exception)
832 {
833         *exception = 0;
834
835         if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
836                 vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
837                 vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
838                 *exception = DB_VECTOR;
839                 return;
840         }
841
842         switch (dr) {
843         case 0 ... 3:
844                 vcpu->svm->db_regs[dr] = value;
845                 return;
846         case 4 ... 5:
847                 if (vcpu->cr4 & CR4_DE_MASK) {
848                         *exception = UD_VECTOR;
849                         return;
850                 }
851         case 7: {
852                 if (value & ~((1ULL << 32) - 1)) {
853                         *exception = GP_VECTOR;
854                         return;
855                 }
856                 vcpu->svm->vmcb->save.dr7 = value;
857                 return;
858         }
859         default:
860                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
861                        __FUNCTION__, dr);
862                 *exception = UD_VECTOR;
863                 return;
864         }
865 }
866
867 static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
868 {
869         u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
870         u64 fault_address;
871         u32 error_code;
872         enum emulation_result er;
873         int r;
874
875         if (is_external_interrupt(exit_int_info))
876                 push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
877
878         spin_lock(&vcpu->kvm->lock);
879
880         fault_address  = vcpu->svm->vmcb->control.exit_info_2;
881         error_code = vcpu->svm->vmcb->control.exit_info_1;
882         r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
883         if (r < 0) {
884                 spin_unlock(&vcpu->kvm->lock);
885                 return r;
886         }
887         if (!r) {
888                 spin_unlock(&vcpu->kvm->lock);
889                 return 1;
890         }
891         er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
892         spin_unlock(&vcpu->kvm->lock);
893
894         switch (er) {
895         case EMULATE_DONE:
896                 return 1;
897         case EMULATE_DO_MMIO:
898                 ++kvm_stat.mmio_exits;
899                 kvm_run->exit_reason = KVM_EXIT_MMIO;
900                 return 0;
901         case EMULATE_FAIL:
902                 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
903                 break;
904         default:
905                 BUG();
906         }
907
908         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
909         return 0;
910 }
911
912 static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
913 {
914         /*
915          * VMCB is undefined after a SHUTDOWN intercept
916          * so reinitialize it.
917          */
918         memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
919         init_vmcb(vcpu->svm->vmcb);
920
921         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
922         return 0;
923 }
924
925 static int io_get_override(struct kvm_vcpu *vcpu,
926                           struct vmcb_seg **seg,
927                           int *addr_override)
928 {
929         u8 inst[MAX_INST_SIZE];
930         unsigned ins_length;
931         gva_t rip;
932         int i;
933
934         rip =  vcpu->svm->vmcb->save.rip;
935         ins_length = vcpu->svm->next_rip - rip;
936         rip += vcpu->svm->vmcb->save.cs.base;
937
938         if (ins_length > MAX_INST_SIZE)
939                 printk(KERN_DEBUG
940                        "%s: inst length err, cs base 0x%llx rip 0x%llx "
941                        "next rip 0x%llx ins_length %u\n",
942                        __FUNCTION__,
943                        vcpu->svm->vmcb->save.cs.base,
944                        vcpu->svm->vmcb->save.rip,
945                        vcpu->svm->vmcb->control.exit_info_2,
946                        ins_length);
947
948         if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
949                 /* #PF */
950                 return 0;
951
952         *addr_override = 0;
953         *seg = NULL;
954         for (i = 0; i < ins_length; i++)
955                 switch (inst[i]) {
956                 case 0xf0:
957                 case 0xf2:
958                 case 0xf3:
959                 case 0x66:
960                         continue;
961                 case 0x67:
962                         *addr_override = 1;
963                         continue;
964                 case 0x2e:
965                         *seg = &vcpu->svm->vmcb->save.cs;
966                         continue;
967                 case 0x36:
968                         *seg = &vcpu->svm->vmcb->save.ss;
969                         continue;
970                 case 0x3e:
971                         *seg = &vcpu->svm->vmcb->save.ds;
972                         continue;
973                 case 0x26:
974                         *seg = &vcpu->svm->vmcb->save.es;
975                         continue;
976                 case 0x64:
977                         *seg = &vcpu->svm->vmcb->save.fs;
978                         continue;
979                 case 0x65:
980                         *seg = &vcpu->svm->vmcb->save.gs;
981                         continue;
982                 default:
983                         return 1;
984                 }
985         printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
986         return 0;
987 }
988
989 static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
990 {
991         unsigned long addr_mask;
992         unsigned long *reg;
993         struct vmcb_seg *seg;
994         int addr_override;
995         struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
996         u16 cs_attrib = save_area->cs.attrib;
997         unsigned addr_size = get_addr_size(vcpu);
998
999         if (!io_get_override(vcpu, &seg, &addr_override))
1000                 return 0;
1001
1002         if (addr_override)
1003                 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
1004
1005         if (ins) {
1006                 reg = &vcpu->regs[VCPU_REGS_RDI];
1007                 seg = &vcpu->svm->vmcb->save.es;
1008         } else {
1009                 reg = &vcpu->regs[VCPU_REGS_RSI];
1010                 seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
1011         }
1012
1013         addr_mask = ~0ULL >> (64 - (addr_size * 8));
1014
1015         if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
1016             !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
1017                 *address = (*reg & addr_mask);
1018                 return addr_mask;
1019         }
1020
1021         if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
1022                 svm_inject_gp(vcpu, 0);
1023                 return 0;
1024         }
1025
1026         *address = (*reg & addr_mask) + seg->base;
1027         return addr_mask;
1028 }
1029
1030 static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1031 {
1032         u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
1033         int size, down, in, string, rep;
1034         unsigned port;
1035         unsigned long count;
1036         gva_t address = 0;
1037
1038         ++kvm_stat.io_exits;
1039
1040         vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
1041
1042         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1043         port = io_info >> 16;
1044         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1045         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1046         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1047         count = 1;
1048         down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1049
1050         if (string) {
1051                 unsigned addr_mask;
1052
1053                 addr_mask = io_adress(vcpu, in, &address);
1054                 if (!addr_mask) {
1055                         printk(KERN_DEBUG "%s: get io address failed\n",
1056                                __FUNCTION__);
1057                         return 1;
1058                 }
1059
1060                 if (rep)
1061                         count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
1062         }
1063         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1064                              address, rep, port);
1065 }
1066
1067 static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1068 {
1069         return 1;
1070 }
1071
1072 static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1073 {
1074         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
1075         skip_emulated_instruction(vcpu);
1076         if (vcpu->irq_summary)
1077                 return 1;
1078
1079         kvm_run->exit_reason = KVM_EXIT_HLT;
1080         ++kvm_stat.halt_exits;
1081         return 0;
1082 }
1083
1084 static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1085 {
1086         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 3;
1087         skip_emulated_instruction(vcpu);
1088         return kvm_hypercall(vcpu, kvm_run);
1089 }
1090
1091 static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1092 {
1093         inject_ud(vcpu);
1094         return 1;
1095 }
1096
1097 static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1098 {
1099         printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1100         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1101         return 0;
1102 }
1103
1104 static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1105 {
1106         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1107         kvm_emulate_cpuid(vcpu);
1108         return 1;
1109 }
1110
1111 static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1112 {
1113         if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
1114                 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1115         return 1;
1116 }
1117
1118 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1119 {
1120         switch (ecx) {
1121         case MSR_IA32_TIME_STAMP_COUNTER: {
1122                 u64 tsc;
1123
1124                 rdtscll(tsc);
1125                 *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
1126                 break;
1127         }
1128         case MSR_K6_STAR:
1129                 *data = vcpu->svm->vmcb->save.star;
1130                 break;
1131 #ifdef CONFIG_X86_64
1132         case MSR_LSTAR:
1133                 *data = vcpu->svm->vmcb->save.lstar;
1134                 break;
1135         case MSR_CSTAR:
1136                 *data = vcpu->svm->vmcb->save.cstar;
1137                 break;
1138         case MSR_KERNEL_GS_BASE:
1139                 *data = vcpu->svm->vmcb->save.kernel_gs_base;
1140                 break;
1141         case MSR_SYSCALL_MASK:
1142                 *data = vcpu->svm->vmcb->save.sfmask;
1143                 break;
1144 #endif
1145         case MSR_IA32_SYSENTER_CS:
1146                 *data = vcpu->svm->vmcb->save.sysenter_cs;
1147                 break;
1148         case MSR_IA32_SYSENTER_EIP:
1149                 *data = vcpu->svm->vmcb->save.sysenter_eip;
1150                 break;
1151         case MSR_IA32_SYSENTER_ESP:
1152                 *data = vcpu->svm->vmcb->save.sysenter_esp;
1153                 break;
1154         default:
1155                 return kvm_get_msr_common(vcpu, ecx, data);
1156         }
1157         return 0;
1158 }
1159
1160 static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1161 {
1162         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1163         u64 data;
1164
1165         if (svm_get_msr(vcpu, ecx, &data))
1166                 svm_inject_gp(vcpu, 0);
1167         else {
1168                 vcpu->svm->vmcb->save.rax = data & 0xffffffff;
1169                 vcpu->regs[VCPU_REGS_RDX] = data >> 32;
1170                 vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1171                 skip_emulated_instruction(vcpu);
1172         }
1173         return 1;
1174 }
1175
1176 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1177 {
1178         switch (ecx) {
1179         case MSR_IA32_TIME_STAMP_COUNTER: {
1180                 u64 tsc;
1181
1182                 rdtscll(tsc);
1183                 vcpu->svm->vmcb->control.tsc_offset = data - tsc;
1184                 break;
1185         }
1186         case MSR_K6_STAR:
1187                 vcpu->svm->vmcb->save.star = data;
1188                 break;
1189 #ifdef CONFIG_X86_64
1190         case MSR_LSTAR:
1191                 vcpu->svm->vmcb->save.lstar = data;
1192                 break;
1193         case MSR_CSTAR:
1194                 vcpu->svm->vmcb->save.cstar = data;
1195                 break;
1196         case MSR_KERNEL_GS_BASE:
1197                 vcpu->svm->vmcb->save.kernel_gs_base = data;
1198                 break;
1199         case MSR_SYSCALL_MASK:
1200                 vcpu->svm->vmcb->save.sfmask = data;
1201                 break;
1202 #endif
1203         case MSR_IA32_SYSENTER_CS:
1204                 vcpu->svm->vmcb->save.sysenter_cs = data;
1205                 break;
1206         case MSR_IA32_SYSENTER_EIP:
1207                 vcpu->svm->vmcb->save.sysenter_eip = data;
1208                 break;
1209         case MSR_IA32_SYSENTER_ESP:
1210                 vcpu->svm->vmcb->save.sysenter_esp = data;
1211                 break;
1212         default:
1213                 return kvm_set_msr_common(vcpu, ecx, data);
1214         }
1215         return 0;
1216 }
1217
1218 static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1219 {
1220         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1221         u64 data = (vcpu->svm->vmcb->save.rax & -1u)
1222                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1223         vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
1224         if (svm_set_msr(vcpu, ecx, data))
1225                 svm_inject_gp(vcpu, 0);
1226         else
1227                 skip_emulated_instruction(vcpu);
1228         return 1;
1229 }
1230
1231 static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1232 {
1233         if (vcpu->svm->vmcb->control.exit_info_1)
1234                 return wrmsr_interception(vcpu, kvm_run);
1235         else
1236                 return rdmsr_interception(vcpu, kvm_run);
1237 }
1238
1239 static int interrupt_window_interception(struct kvm_vcpu *vcpu,
1240                                    struct kvm_run *kvm_run)
1241 {
1242         /*
1243          * If the user space waits to inject interrupts, exit as soon as
1244          * possible
1245          */
1246         if (kvm_run->request_interrupt_window &&
1247             !vcpu->irq_summary) {
1248                 ++kvm_stat.irq_window_exits;
1249                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1250                 return 0;
1251         }
1252
1253         return 1;
1254 }
1255
1256 static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
1257                                       struct kvm_run *kvm_run) = {
1258         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1259         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1260         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1261         /* for now: */
1262         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1263         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1264         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1265         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1266         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1267         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1268         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1269         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1270         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1271         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1272         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1273         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1274         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1275         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1276         [SVM_EXIT_INTR]                         = nop_on_interception,
1277         [SVM_EXIT_NMI]                          = nop_on_interception,
1278         [SVM_EXIT_SMI]                          = nop_on_interception,
1279         [SVM_EXIT_INIT]                         = nop_on_interception,
1280         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1281         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1282         [SVM_EXIT_CPUID]                        = cpuid_interception,
1283         [SVM_EXIT_HLT]                          = halt_interception,
1284         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1285         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1286         [SVM_EXIT_IOIO]                         = io_interception,
1287         [SVM_EXIT_MSR]                          = msr_interception,
1288         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1289         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1290         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1291         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1292         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1293         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1294         [SVM_EXIT_STGI]                         = invalid_op_interception,
1295         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1296         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1297 };
1298
1299
1300 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1301 {
1302         u32 exit_code = vcpu->svm->vmcb->control.exit_code;
1303
1304         if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
1305             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1306                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1307                        "exit_code 0x%x\n",
1308                        __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
1309                        exit_code);
1310
1311         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1312             || svm_exit_handlers[exit_code] == 0) {
1313                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1314                 printk(KERN_ERR "%s: 0x%x @ 0x%llx cr0 0x%lx rflags 0x%llx\n",
1315                        __FUNCTION__,
1316                        exit_code,
1317                        vcpu->svm->vmcb->save.rip,
1318                        vcpu->cr0,
1319                        vcpu->svm->vmcb->save.rflags);
1320                 return 0;
1321         }
1322
1323         return svm_exit_handlers[exit_code](vcpu, kvm_run);
1324 }
1325
1326 static void reload_tss(struct kvm_vcpu *vcpu)
1327 {
1328         int cpu = raw_smp_processor_id();
1329
1330         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1331         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1332         load_TR_desc();
1333 }
1334
1335 static void pre_svm_run(struct kvm_vcpu *vcpu)
1336 {
1337         int cpu = raw_smp_processor_id();
1338
1339         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1340
1341         vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1342         if (vcpu->cpu != cpu ||
1343             vcpu->svm->asid_generation != svm_data->asid_generation)
1344                 new_asid(vcpu, svm_data);
1345 }
1346
1347
1348 static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1349 {
1350         struct vmcb_control_area *control;
1351
1352         control = &vcpu->svm->vmcb->control;
1353         control->int_vector = pop_irq(vcpu);
1354         control->int_ctl &= ~V_INTR_PRIO_MASK;
1355         control->int_ctl |= V_IRQ_MASK |
1356                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1357 }
1358
1359 static void kvm_reput_irq(struct kvm_vcpu *vcpu)
1360 {
1361         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1362
1363         if (control->int_ctl & V_IRQ_MASK) {
1364                 control->int_ctl &= ~V_IRQ_MASK;
1365                 push_irq(vcpu, control->int_vector);
1366         }
1367
1368         vcpu->interrupt_window_open =
1369                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1370 }
1371
1372 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1373                                        struct kvm_run *kvm_run)
1374 {
1375         struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
1376
1377         vcpu->interrupt_window_open =
1378                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1379                  (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1380
1381         if (vcpu->interrupt_window_open && vcpu->irq_summary)
1382                 /*
1383                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1384                  */
1385                 kvm_do_inject_irq(vcpu);
1386
1387         /*
1388          * Interrupts blocked.  Wait for unblock.
1389          */
1390         if (!vcpu->interrupt_window_open &&
1391             (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
1392                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1393         } else
1394                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1395 }
1396
1397 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1398                               struct kvm_run *kvm_run)
1399 {
1400         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1401                                                   vcpu->irq_summary == 0);
1402         kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1403         kvm_run->cr8 = vcpu->cr8;
1404         kvm_run->apic_base = vcpu->apic_base;
1405 }
1406
1407 /*
1408  * Check if userspace requested an interrupt window, and that the
1409  * interrupt window is open.
1410  *
1411  * No need to exit to userspace if we already have an interrupt queued.
1412  */
1413 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1414                                           struct kvm_run *kvm_run)
1415 {
1416         return (!vcpu->irq_summary &&
1417                 kvm_run->request_interrupt_window &&
1418                 vcpu->interrupt_window_open &&
1419                 (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
1420 }
1421
1422 static void save_db_regs(unsigned long *db_regs)
1423 {
1424         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1425         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1426         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1427         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1428 }
1429
1430 static void load_db_regs(unsigned long *db_regs)
1431 {
1432         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1433         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1434         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1435         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1436 }
1437
1438 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1439 {
1440         u16 fs_selector;
1441         u16 gs_selector;
1442         u16 ldt_selector;
1443         int r;
1444
1445 again:
1446         if (!vcpu->mmio_read_completed)
1447                 do_interrupt_requests(vcpu, kvm_run);
1448
1449         clgi();
1450
1451         pre_svm_run(vcpu);
1452
1453         save_host_msrs(vcpu);
1454         fs_selector = read_fs();
1455         gs_selector = read_gs();
1456         ldt_selector = read_ldt();
1457         vcpu->svm->host_cr2 = kvm_read_cr2();
1458         vcpu->svm->host_dr6 = read_dr6();
1459         vcpu->svm->host_dr7 = read_dr7();
1460         vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
1461
1462         if (vcpu->svm->vmcb->save.dr7 & 0xff) {
1463                 write_dr7(0);
1464                 save_db_regs(vcpu->svm->host_db_regs);
1465                 load_db_regs(vcpu->svm->db_regs);
1466         }
1467
1468         fx_save(vcpu->host_fx_image);
1469         fx_restore(vcpu->guest_fx_image);
1470
1471         asm volatile (
1472 #ifdef CONFIG_X86_64
1473                 "push %%rbx; push %%rcx; push %%rdx;"
1474                 "push %%rsi; push %%rdi; push %%rbp;"
1475                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1476                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1477 #else
1478                 "push %%ebx; push %%ecx; push %%edx;"
1479                 "push %%esi; push %%edi; push %%ebp;"
1480 #endif
1481
1482 #ifdef CONFIG_X86_64
1483                 "mov %c[rbx](%[vcpu]), %%rbx \n\t"
1484                 "mov %c[rcx](%[vcpu]), %%rcx \n\t"
1485                 "mov %c[rdx](%[vcpu]), %%rdx \n\t"
1486                 "mov %c[rsi](%[vcpu]), %%rsi \n\t"
1487                 "mov %c[rdi](%[vcpu]), %%rdi \n\t"
1488                 "mov %c[rbp](%[vcpu]), %%rbp \n\t"
1489                 "mov %c[r8](%[vcpu]),  %%r8  \n\t"
1490                 "mov %c[r9](%[vcpu]),  %%r9  \n\t"
1491                 "mov %c[r10](%[vcpu]), %%r10 \n\t"
1492                 "mov %c[r11](%[vcpu]), %%r11 \n\t"
1493                 "mov %c[r12](%[vcpu]), %%r12 \n\t"
1494                 "mov %c[r13](%[vcpu]), %%r13 \n\t"
1495                 "mov %c[r14](%[vcpu]), %%r14 \n\t"
1496                 "mov %c[r15](%[vcpu]), %%r15 \n\t"
1497 #else
1498                 "mov %c[rbx](%[vcpu]), %%ebx \n\t"
1499                 "mov %c[rcx](%[vcpu]), %%ecx \n\t"
1500                 "mov %c[rdx](%[vcpu]), %%edx \n\t"
1501                 "mov %c[rsi](%[vcpu]), %%esi \n\t"
1502                 "mov %c[rdi](%[vcpu]), %%edi \n\t"
1503                 "mov %c[rbp](%[vcpu]), %%ebp \n\t"
1504 #endif
1505
1506 #ifdef CONFIG_X86_64
1507                 /* Enter guest mode */
1508                 "push %%rax \n\t"
1509                 "mov %c[svm](%[vcpu]), %%rax \n\t"
1510                 "mov %c[vmcb](%%rax), %%rax \n\t"
1511                 SVM_VMLOAD "\n\t"
1512                 SVM_VMRUN "\n\t"
1513                 SVM_VMSAVE "\n\t"
1514                 "pop %%rax \n\t"
1515 #else
1516                 /* Enter guest mode */
1517                 "push %%eax \n\t"
1518                 "mov %c[svm](%[vcpu]), %%eax \n\t"
1519                 "mov %c[vmcb](%%eax), %%eax \n\t"
1520                 SVM_VMLOAD "\n\t"
1521                 SVM_VMRUN "\n\t"
1522                 SVM_VMSAVE "\n\t"
1523                 "pop %%eax \n\t"
1524 #endif
1525
1526                 /* Save guest registers, load host registers */
1527 #ifdef CONFIG_X86_64
1528                 "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
1529                 "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
1530                 "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
1531                 "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
1532                 "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
1533                 "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
1534                 "mov %%r8,  %c[r8](%[vcpu]) \n\t"
1535                 "mov %%r9,  %c[r9](%[vcpu]) \n\t"
1536                 "mov %%r10, %c[r10](%[vcpu]) \n\t"
1537                 "mov %%r11, %c[r11](%[vcpu]) \n\t"
1538                 "mov %%r12, %c[r12](%[vcpu]) \n\t"
1539                 "mov %%r13, %c[r13](%[vcpu]) \n\t"
1540                 "mov %%r14, %c[r14](%[vcpu]) \n\t"
1541                 "mov %%r15, %c[r15](%[vcpu]) \n\t"
1542
1543                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1544                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1545                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1546                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1547 #else
1548                 "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
1549                 "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
1550                 "mov %%edx, %c[rdx](%[vcpu]) \n\t"
1551                 "mov %%esi, %c[rsi](%[vcpu]) \n\t"
1552                 "mov %%edi, %c[rdi](%[vcpu]) \n\t"
1553                 "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
1554
1555                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1556                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1557 #endif
1558                 :
1559                 : [vcpu]"a"(vcpu),
1560                   [svm]"i"(offsetof(struct kvm_vcpu, svm)),
1561                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1562                   [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1563                   [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1564                   [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1565                   [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1566                   [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1567                   [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
1568 #ifdef CONFIG_X86_64
1569                   ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1570                   [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1571                   [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1572                   [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1573                   [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1574                   [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1575                   [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1576                   [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
1577 #endif
1578                 : "cc", "memory" );
1579
1580         fx_save(vcpu->guest_fx_image);
1581         fx_restore(vcpu->host_fx_image);
1582
1583         if ((vcpu->svm->vmcb->save.dr7 & 0xff))
1584                 load_db_regs(vcpu->svm->host_db_regs);
1585
1586         vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
1587
1588         write_dr6(vcpu->svm->host_dr6);
1589         write_dr7(vcpu->svm->host_dr7);
1590         kvm_write_cr2(vcpu->svm->host_cr2);
1591
1592         load_fs(fs_selector);
1593         load_gs(gs_selector);
1594         load_ldt(ldt_selector);
1595         load_host_msrs(vcpu);
1596
1597         reload_tss(vcpu);
1598
1599         /*
1600          * Profile KVM exit RIPs:
1601          */
1602         if (unlikely(prof_on == KVM_PROFILING))
1603                 profile_hit(KVM_PROFILING,
1604                         (void *)(unsigned long)vcpu->svm->vmcb->save.rip);
1605
1606         stgi();
1607
1608         kvm_reput_irq(vcpu);
1609
1610         vcpu->svm->next_rip = 0;
1611
1612         if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1613                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1614                 kvm_run->fail_entry.hardware_entry_failure_reason
1615                         = vcpu->svm->vmcb->control.exit_code;
1616                 post_kvm_run_save(vcpu, kvm_run);
1617                 return 0;
1618         }
1619
1620         r = handle_exit(vcpu, kvm_run);
1621         if (r > 0) {
1622                 if (signal_pending(current)) {
1623                         ++kvm_stat.signal_exits;
1624                         post_kvm_run_save(vcpu, kvm_run);
1625                         kvm_run->exit_reason = KVM_EXIT_INTR;
1626                         return -EINTR;
1627                 }
1628
1629                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1630                         ++kvm_stat.request_irq_exits;
1631                         post_kvm_run_save(vcpu, kvm_run);
1632                         kvm_run->exit_reason = KVM_EXIT_INTR;
1633                         return -EINTR;
1634                 }
1635                 kvm_resched(vcpu);
1636                 goto again;
1637         }
1638         post_kvm_run_save(vcpu, kvm_run);
1639         return r;
1640 }
1641
1642 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1643 {
1644         force_new_asid(vcpu);
1645 }
1646
1647 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1648 {
1649         vcpu->svm->vmcb->save.cr3 = root;
1650         force_new_asid(vcpu);
1651 }
1652
1653 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1654                                   unsigned long  addr,
1655                                   uint32_t err_code)
1656 {
1657         uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
1658
1659         ++kvm_stat.pf_guest;
1660
1661         if (is_page_fault(exit_int_info)) {
1662
1663                 vcpu->svm->vmcb->control.event_inj_err = 0;
1664                 vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1665                                                         SVM_EVTINJ_VALID_ERR |
1666                                                         SVM_EVTINJ_TYPE_EXEPT |
1667                                                         DF_VECTOR;
1668                 return;
1669         }
1670         vcpu->cr2 = addr;
1671         vcpu->svm->vmcb->save.cr2 = addr;
1672         vcpu->svm->vmcb->control.event_inj =    SVM_EVTINJ_VALID |
1673                                                 SVM_EVTINJ_VALID_ERR |
1674                                                 SVM_EVTINJ_TYPE_EXEPT |
1675                                                 PF_VECTOR;
1676         vcpu->svm->vmcb->control.event_inj_err = err_code;
1677 }
1678
1679
1680 static int is_disabled(void)
1681 {
1682         return 0;
1683 }
1684
1685 static void
1686 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1687 {
1688         /*
1689          * Patch in the VMMCALL instruction:
1690          */
1691         hypercall[0] = 0x0f;
1692         hypercall[1] = 0x01;
1693         hypercall[2] = 0xd9;
1694         hypercall[3] = 0xc3;
1695 }
1696
1697 static struct kvm_arch_ops svm_arch_ops = {
1698         .cpu_has_kvm_support = has_svm,
1699         .disabled_by_bios = is_disabled,
1700         .hardware_setup = svm_hardware_setup,
1701         .hardware_unsetup = svm_hardware_unsetup,
1702         .hardware_enable = svm_hardware_enable,
1703         .hardware_disable = svm_hardware_disable,
1704
1705         .vcpu_create = svm_create_vcpu,
1706         .vcpu_free = svm_free_vcpu,
1707
1708         .vcpu_load = svm_vcpu_load,
1709         .vcpu_put = svm_vcpu_put,
1710         .vcpu_decache = svm_vcpu_decache,
1711
1712         .set_guest_debug = svm_guest_debug,
1713         .get_msr = svm_get_msr,
1714         .set_msr = svm_set_msr,
1715         .get_segment_base = svm_get_segment_base,
1716         .get_segment = svm_get_segment,
1717         .set_segment = svm_set_segment,
1718         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1719         .decache_cr0_cr4_guest_bits = svm_decache_cr0_cr4_guest_bits,
1720         .set_cr0 = svm_set_cr0,
1721         .set_cr3 = svm_set_cr3,
1722         .set_cr4 = svm_set_cr4,
1723         .set_efer = svm_set_efer,
1724         .get_idt = svm_get_idt,
1725         .set_idt = svm_set_idt,
1726         .get_gdt = svm_get_gdt,
1727         .set_gdt = svm_set_gdt,
1728         .get_dr = svm_get_dr,
1729         .set_dr = svm_set_dr,
1730         .cache_regs = svm_cache_regs,
1731         .decache_regs = svm_decache_regs,
1732         .get_rflags = svm_get_rflags,
1733         .set_rflags = svm_set_rflags,
1734
1735         .invlpg = svm_invlpg,
1736         .tlb_flush = svm_flush_tlb,
1737         .inject_page_fault = svm_inject_page_fault,
1738
1739         .inject_gp = svm_inject_gp,
1740
1741         .run = svm_vcpu_run,
1742         .skip_emulated_instruction = skip_emulated_instruction,
1743         .vcpu_setup = svm_vcpu_setup,
1744         .patch_hypercall = svm_patch_hypercall,
1745 };
1746
1747 static int __init svm_init(void)
1748 {
1749         return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1750 }
1751
1752 static void __exit svm_exit(void)
1753 {
1754         kvm_exit_arch();
1755 }
1756
1757 module_init(svm_init)
1758 module_exit(svm_exit)