]> Pileus Git - ~andy/linux/blob - drivers/kvm/mmu.c
[PATCH] KVM: MMU: Shadow page table caching
[~andy/linux] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #define pgprintk(x...) do { printk(x); } while (0)
30 #define rmap_printk(x...) do { printk(x); } while (0)
31
32 #define ASSERT(x)                                                       \
33         if (!(x)) {                                                     \
34                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
35                        __FILE__, __LINE__, #x);                         \
36         }
37
38 #define PT64_PT_BITS 9
39 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
40 #define PT32_PT_BITS 10
41 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
42
43 #define PT_WRITABLE_SHIFT 1
44
45 #define PT_PRESENT_MASK (1ULL << 0)
46 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
47 #define PT_USER_MASK (1ULL << 2)
48 #define PT_PWT_MASK (1ULL << 3)
49 #define PT_PCD_MASK (1ULL << 4)
50 #define PT_ACCESSED_MASK (1ULL << 5)
51 #define PT_DIRTY_MASK (1ULL << 6)
52 #define PT_PAGE_SIZE_MASK (1ULL << 7)
53 #define PT_PAT_MASK (1ULL << 7)
54 #define PT_GLOBAL_MASK (1ULL << 8)
55 #define PT64_NX_MASK (1ULL << 63)
56
57 #define PT_PAT_SHIFT 7
58 #define PT_DIR_PAT_SHIFT 12
59 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
60
61 #define PT32_DIR_PSE36_SIZE 4
62 #define PT32_DIR_PSE36_SHIFT 13
63 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
64
65
66 #define PT32_PTE_COPY_MASK \
67         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
68
69 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
70
71 #define PT_FIRST_AVAIL_BITS_SHIFT 9
72 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
73
74 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
75 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
76
77 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
78 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
79
80 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
81 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
82
83 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
84
85 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
86
87 #define PT64_LEVEL_BITS 9
88
89 #define PT64_LEVEL_SHIFT(level) \
90                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
91
92 #define PT64_LEVEL_MASK(level) \
93                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
94
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
103
104 #define PT32_LEVEL_MASK(level) \
105                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
106
107 #define PT32_INDEX(address, level)\
108         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
112 #define PT64_DIR_BASE_ADDR_MASK \
113         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118
119
120 #define PFERR_PRESENT_MASK (1U << 0)
121 #define PFERR_WRITE_MASK (1U << 1)
122 #define PFERR_USER_MASK (1U << 2)
123
124 #define PT64_ROOT_LEVEL 4
125 #define PT32_ROOT_LEVEL 2
126 #define PT32E_ROOT_LEVEL 3
127
128 #define PT_DIRECTORY_LEVEL 2
129 #define PT_PAGE_TABLE_LEVEL 1
130
131 #define RMAP_EXT 4
132
133 struct kvm_rmap_desc {
134         u64 *shadow_ptes[RMAP_EXT];
135         struct kvm_rmap_desc *more;
136 };
137
138 static int is_write_protection(struct kvm_vcpu *vcpu)
139 {
140         return vcpu->cr0 & CR0_WP_MASK;
141 }
142
143 static int is_cpuid_PSE36(void)
144 {
145         return 1;
146 }
147
148 static int is_present_pte(unsigned long pte)
149 {
150         return pte & PT_PRESENT_MASK;
151 }
152
153 static int is_writeble_pte(unsigned long pte)
154 {
155         return pte & PT_WRITABLE_MASK;
156 }
157
158 static int is_io_pte(unsigned long pte)
159 {
160         return pte & PT_SHADOW_IO_MARK;
161 }
162
163 static int is_rmap_pte(u64 pte)
164 {
165         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
166                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
167 }
168
169 /*
170  * Reverse mapping data structures:
171  *
172  * If page->private bit zero is zero, then page->private points to the
173  * shadow page table entry that points to page_address(page).
174  *
175  * If page->private bit zero is one, (then page->private & ~1) points
176  * to a struct kvm_rmap_desc containing more mappings.
177  */
178 static void rmap_add(struct kvm *kvm, u64 *spte)
179 {
180         struct page *page;
181         struct kvm_rmap_desc *desc;
182         int i;
183
184         if (!is_rmap_pte(*spte))
185                 return;
186         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
187         if (!page->private) {
188                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
189                 page->private = (unsigned long)spte;
190         } else if (!(page->private & 1)) {
191                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
192                 desc = kzalloc(sizeof *desc, GFP_NOWAIT);
193                 if (!desc)
194                         BUG(); /* FIXME: return error */
195                 desc->shadow_ptes[0] = (u64 *)page->private;
196                 desc->shadow_ptes[1] = spte;
197                 page->private = (unsigned long)desc | 1;
198         } else {
199                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
200                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
201                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
202                         desc = desc->more;
203                 if (desc->shadow_ptes[RMAP_EXT-1]) {
204                         desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
205                         if (!desc->more)
206                                 BUG(); /* FIXME: return error */
207                         desc = desc->more;
208                 }
209                 for (i = 0; desc->shadow_ptes[i]; ++i)
210                         ;
211                 desc->shadow_ptes[i] = spte;
212         }
213 }
214
215 static void rmap_desc_remove_entry(struct page *page,
216                                    struct kvm_rmap_desc *desc,
217                                    int i,
218                                    struct kvm_rmap_desc *prev_desc)
219 {
220         int j;
221
222         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
223                 ;
224         desc->shadow_ptes[i] = desc->shadow_ptes[j];
225         desc->shadow_ptes[j] = 0;
226         if (j != 0)
227                 return;
228         if (!prev_desc && !desc->more)
229                 page->private = (unsigned long)desc->shadow_ptes[0];
230         else
231                 if (prev_desc)
232                         prev_desc->more = desc->more;
233                 else
234                         page->private = (unsigned long)desc->more | 1;
235         kfree(desc);
236 }
237
238 static void rmap_remove(struct kvm *kvm, u64 *spte)
239 {
240         struct page *page;
241         struct kvm_rmap_desc *desc;
242         struct kvm_rmap_desc *prev_desc;
243         int i;
244
245         if (!is_rmap_pte(*spte))
246                 return;
247         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
248         if (!page->private) {
249                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
250                 BUG();
251         } else if (!(page->private & 1)) {
252                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
253                 if ((u64 *)page->private != spte) {
254                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
255                                spte, *spte);
256                         BUG();
257                 }
258                 page->private = 0;
259         } else {
260                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
261                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
262                 prev_desc = NULL;
263                 while (desc) {
264                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
265                                 if (desc->shadow_ptes[i] == spte) {
266                                         rmap_desc_remove_entry(page, desc, i,
267                                                                prev_desc);
268                                         return;
269                                 }
270                         prev_desc = desc;
271                         desc = desc->more;
272                 }
273                 BUG();
274         }
275 }
276
277 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
278 {
279         struct kvm_mmu_page *page_head = page_header(page_hpa);
280
281         list_del(&page_head->link);
282         page_head->page_hpa = page_hpa;
283         list_add(&page_head->link, &vcpu->free_pages);
284 }
285
286 static int is_empty_shadow_page(hpa_t page_hpa)
287 {
288         u32 *pos;
289         u32 *end;
290         for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
291                       pos != end; pos++)
292                 if (*pos != 0)
293                         return 0;
294         return 1;
295 }
296
297 static unsigned kvm_page_table_hashfn(gfn_t gfn)
298 {
299         return gfn;
300 }
301
302 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
303                                                u64 *parent_pte)
304 {
305         struct kvm_mmu_page *page;
306
307         if (list_empty(&vcpu->free_pages))
308                 return NULL;
309
310         page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
311         list_del(&page->link);
312         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
313         ASSERT(is_empty_shadow_page(page->page_hpa));
314         page->slot_bitmap = 0;
315         page->global = 1;
316         page->multimapped = 0;
317         page->parent_pte = parent_pte;
318         return page;
319 }
320
321 static void mmu_page_add_parent_pte(struct kvm_mmu_page *page, u64 *parent_pte)
322 {
323         struct kvm_pte_chain *pte_chain;
324         struct hlist_node *node;
325         int i;
326
327         if (!parent_pte)
328                 return;
329         if (!page->multimapped) {
330                 u64 *old = page->parent_pte;
331
332                 if (!old) {
333                         page->parent_pte = parent_pte;
334                         return;
335                 }
336                 page->multimapped = 1;
337                 pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
338                 BUG_ON(!pte_chain);
339                 INIT_HLIST_HEAD(&page->parent_ptes);
340                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
341                 pte_chain->parent_ptes[0] = old;
342         }
343         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
344                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
345                         continue;
346                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
347                         if (!pte_chain->parent_ptes[i]) {
348                                 pte_chain->parent_ptes[i] = parent_pte;
349                                 return;
350                         }
351         }
352         pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
353         BUG_ON(!pte_chain);
354         hlist_add_head(&pte_chain->link, &page->parent_ptes);
355         pte_chain->parent_ptes[0] = parent_pte;
356 }
357
358 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
359                                        u64 *parent_pte)
360 {
361         struct kvm_pte_chain *pte_chain;
362         struct hlist_node *node;
363         int i;
364
365         if (!page->multimapped) {
366                 BUG_ON(page->parent_pte != parent_pte);
367                 page->parent_pte = NULL;
368                 return;
369         }
370         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
371                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
372                         if (!pte_chain->parent_ptes[i])
373                                 break;
374                         if (pte_chain->parent_ptes[i] != parent_pte)
375                                 continue;
376                         while (i + 1 < NR_PTE_CHAIN_ENTRIES) {
377                                 pte_chain->parent_ptes[i]
378                                         = pte_chain->parent_ptes[i + 1];
379                                 ++i;
380                         }
381                         pte_chain->parent_ptes[i] = NULL;
382                         return;
383                 }
384         BUG();
385 }
386
387 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
388                                                 gfn_t gfn)
389 {
390         unsigned index;
391         struct hlist_head *bucket;
392         struct kvm_mmu_page *page;
393         struct hlist_node *node;
394
395         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
396         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
397         bucket = &vcpu->kvm->mmu_page_hash[index];
398         hlist_for_each_entry(page, node, bucket, hash_link)
399                 if (page->gfn == gfn && !page->role.metaphysical) {
400                         pgprintk("%s: found role %x\n",
401                                  __FUNCTION__, page->role.word);
402                         return page;
403                 }
404         return NULL;
405 }
406
407 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
408                                              gfn_t gfn,
409                                              gva_t gaddr,
410                                              unsigned level,
411                                              int metaphysical,
412                                              u64 *parent_pte)
413 {
414         union kvm_mmu_page_role role;
415         unsigned index;
416         unsigned quadrant;
417         struct hlist_head *bucket;
418         struct kvm_mmu_page *page;
419         struct hlist_node *node;
420
421         role.word = 0;
422         role.glevels = vcpu->mmu.root_level;
423         role.level = level;
424         role.metaphysical = metaphysical;
425         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
426                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
427                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
428                 role.quadrant = quadrant;
429         }
430         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
431                  gfn, role.word);
432         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
433         bucket = &vcpu->kvm->mmu_page_hash[index];
434         hlist_for_each_entry(page, node, bucket, hash_link)
435                 if (page->gfn == gfn && page->role.word == role.word) {
436                         mmu_page_add_parent_pte(page, parent_pte);
437                         pgprintk("%s: found\n", __FUNCTION__);
438                         return page;
439                 }
440         page = kvm_mmu_alloc_page(vcpu, parent_pte);
441         if (!page)
442                 return page;
443         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
444         page->gfn = gfn;
445         page->role = role;
446         hlist_add_head(&page->hash_link, bucket);
447         return page;
448 }
449
450 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
451                              struct kvm_mmu_page *page,
452                              u64 *parent_pte)
453 {
454         mmu_page_remove_parent_pte(page, parent_pte);
455 }
456
457 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
458 {
459         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
460         struct kvm_mmu_page *page_head = page_header(__pa(pte));
461
462         __set_bit(slot, &page_head->slot_bitmap);
463 }
464
465 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
466 {
467         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
468
469         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
470 }
471
472 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
473 {
474         struct kvm_memory_slot *slot;
475         struct page *page;
476
477         ASSERT((gpa & HPA_ERR_MASK) == 0);
478         slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
479         if (!slot)
480                 return gpa | HPA_ERR_MASK;
481         page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
482         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
483                 | (gpa & (PAGE_SIZE-1));
484 }
485
486 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
487 {
488         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
489
490         if (gpa == UNMAPPED_GVA)
491                 return UNMAPPED_GVA;
492         return gpa_to_hpa(vcpu, gpa);
493 }
494
495
496 static void release_pt_page_64(struct kvm_vcpu *vcpu, hpa_t page_hpa,
497                                int level)
498 {
499         u64 *pos;
500         u64 *end;
501
502         ASSERT(vcpu);
503         ASSERT(VALID_PAGE(page_hpa));
504         ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
505
506         for (pos = __va(page_hpa), end = pos + PT64_ENT_PER_PAGE;
507              pos != end; pos++) {
508                 u64 current_ent = *pos;
509
510                 if (is_present_pte(current_ent)) {
511                         if (level != 1)
512                                 release_pt_page_64(vcpu,
513                                                   current_ent &
514                                                   PT64_BASE_ADDR_MASK,
515                                                   level - 1);
516                         else
517                                 rmap_remove(vcpu->kvm, pos);
518                 }
519                 *pos = 0;
520         }
521         kvm_mmu_free_page(vcpu, page_hpa);
522 }
523
524 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
525 {
526 }
527
528 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
529 {
530         int level = PT32E_ROOT_LEVEL;
531         hpa_t table_addr = vcpu->mmu.root_hpa;
532
533         for (; ; level--) {
534                 u32 index = PT64_INDEX(v, level);
535                 u64 *table;
536                 u64 pte;
537
538                 ASSERT(VALID_PAGE(table_addr));
539                 table = __va(table_addr);
540
541                 if (level == 1) {
542                         pte = table[index];
543                         if (is_present_pte(pte) && is_writeble_pte(pte))
544                                 return 0;
545                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
546                         page_header_update_slot(vcpu->kvm, table, v);
547                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
548                                                                 PT_USER_MASK;
549                         rmap_add(vcpu->kvm, &table[index]);
550                         return 0;
551                 }
552
553                 if (table[index] == 0) {
554                         struct kvm_mmu_page *new_table;
555                         gfn_t pseudo_gfn;
556
557                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
558                                 >> PAGE_SHIFT;
559                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
560                                                      v, level - 1,
561                                                      1, &table[index]);
562                         if (!new_table) {
563                                 pgprintk("nonpaging_map: ENOMEM\n");
564                                 return -ENOMEM;
565                         }
566
567                         table[index] = new_table->page_hpa | PT_PRESENT_MASK
568                                 | PT_WRITABLE_MASK | PT_USER_MASK;
569                 }
570                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
571         }
572 }
573
574 static void mmu_free_roots(struct kvm_vcpu *vcpu)
575 {
576         int i;
577
578 #ifdef CONFIG_X86_64
579         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
580                 hpa_t root = vcpu->mmu.root_hpa;
581
582                 ASSERT(VALID_PAGE(root));
583                 vcpu->mmu.root_hpa = INVALID_PAGE;
584                 return;
585         }
586 #endif
587         for (i = 0; i < 4; ++i) {
588                 hpa_t root = vcpu->mmu.pae_root[i];
589
590                 ASSERT(VALID_PAGE(root));
591                 root &= PT64_BASE_ADDR_MASK;
592                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
593         }
594         vcpu->mmu.root_hpa = INVALID_PAGE;
595 }
596
597 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
598 {
599         int i;
600         gfn_t root_gfn;
601         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
602
603 #ifdef CONFIG_X86_64
604         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
605                 hpa_t root = vcpu->mmu.root_hpa;
606
607                 ASSERT(!VALID_PAGE(root));
608                 root = kvm_mmu_get_page(vcpu, root_gfn, 0,
609                                         PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
610                 vcpu->mmu.root_hpa = root;
611                 return;
612         }
613 #endif
614         for (i = 0; i < 4; ++i) {
615                 hpa_t root = vcpu->mmu.pae_root[i];
616
617                 ASSERT(!VALID_PAGE(root));
618                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
619                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
620                 else if (vcpu->mmu.root_level == 0)
621                         root_gfn = 0;
622                 root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
623                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
624                                         NULL)->page_hpa;
625                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
626         }
627         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
628 }
629
630 static void nonpaging_flush(struct kvm_vcpu *vcpu)
631 {
632         hpa_t root = vcpu->mmu.root_hpa;
633
634         ++kvm_stat.tlb_flush;
635         pgprintk("nonpaging_flush\n");
636         mmu_free_roots(vcpu);
637         mmu_alloc_roots(vcpu);
638         kvm_arch_ops->set_cr3(vcpu, root);
639         kvm_arch_ops->tlb_flush(vcpu);
640 }
641
642 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
643 {
644         return vaddr;
645 }
646
647 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
648                                u32 error_code)
649 {
650         int ret;
651         gpa_t addr = gva;
652
653         ASSERT(vcpu);
654         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
655
656         for (;;) {
657              hpa_t paddr;
658
659              paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
660
661              if (is_error_hpa(paddr))
662                      return 1;
663
664              ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
665              if (ret) {
666                      nonpaging_flush(vcpu);
667                      continue;
668              }
669              break;
670         }
671         return ret;
672 }
673
674 static void nonpaging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
675 {
676 }
677
678 static void nonpaging_free(struct kvm_vcpu *vcpu)
679 {
680         mmu_free_roots(vcpu);
681 }
682
683 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
684 {
685         struct kvm_mmu *context = &vcpu->mmu;
686
687         context->new_cr3 = nonpaging_new_cr3;
688         context->page_fault = nonpaging_page_fault;
689         context->inval_page = nonpaging_inval_page;
690         context->gva_to_gpa = nonpaging_gva_to_gpa;
691         context->free = nonpaging_free;
692         context->root_level = 0;
693         context->shadow_root_level = PT32E_ROOT_LEVEL;
694         mmu_alloc_roots(vcpu);
695         ASSERT(VALID_PAGE(context->root_hpa));
696         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
697         return 0;
698 }
699
700 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
701 {
702         ++kvm_stat.tlb_flush;
703         kvm_arch_ops->tlb_flush(vcpu);
704 }
705
706 static void paging_new_cr3(struct kvm_vcpu *vcpu)
707 {
708         mmu_free_roots(vcpu);
709         mmu_alloc_roots(vcpu);
710         kvm_mmu_flush_tlb(vcpu);
711         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
712 }
713
714 static void mark_pagetable_nonglobal(void *shadow_pte)
715 {
716         page_header(__pa(shadow_pte))->global = 0;
717 }
718
719 static inline void set_pte_common(struct kvm_vcpu *vcpu,
720                              u64 *shadow_pte,
721                              gpa_t gaddr,
722                              int dirty,
723                              u64 access_bits)
724 {
725         hpa_t paddr;
726
727         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
728         if (!dirty)
729                 access_bits &= ~PT_WRITABLE_MASK;
730         if (access_bits & PT_WRITABLE_MASK) {
731                 struct kvm_mmu_page *shadow;
732
733                 shadow = kvm_mmu_lookup_page(vcpu, gaddr >> PAGE_SHIFT);
734                 if (shadow)
735                         pgprintk("%s: found shadow page for %lx, marking ro\n",
736                                  __FUNCTION__, (gfn_t)(gaddr >> PAGE_SHIFT));
737                 if (shadow)
738                         access_bits &= ~PT_WRITABLE_MASK;
739         }
740
741         if (access_bits & PT_WRITABLE_MASK)
742                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
743
744         *shadow_pte |= access_bits;
745
746         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
747
748         if (!(*shadow_pte & PT_GLOBAL_MASK))
749                 mark_pagetable_nonglobal(shadow_pte);
750
751         if (is_error_hpa(paddr)) {
752                 *shadow_pte |= gaddr;
753                 *shadow_pte |= PT_SHADOW_IO_MARK;
754                 *shadow_pte &= ~PT_PRESENT_MASK;
755         } else {
756                 *shadow_pte |= paddr;
757                 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
758                 rmap_add(vcpu->kvm, shadow_pte);
759         }
760 }
761
762 static void inject_page_fault(struct kvm_vcpu *vcpu,
763                               u64 addr,
764                               u32 err_code)
765 {
766         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
767 }
768
769 static inline int fix_read_pf(u64 *shadow_ent)
770 {
771         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
772             !(*shadow_ent & PT_USER_MASK)) {
773                 /*
774                  * If supervisor write protect is disabled, we shadow kernel
775                  * pages as user pages so we can trap the write access.
776                  */
777                 *shadow_ent |= PT_USER_MASK;
778                 *shadow_ent &= ~PT_WRITABLE_MASK;
779
780                 return 1;
781
782         }
783         return 0;
784 }
785
786 static int may_access(u64 pte, int write, int user)
787 {
788
789         if (user && !(pte & PT_USER_MASK))
790                 return 0;
791         if (write && !(pte & PT_WRITABLE_MASK))
792                 return 0;
793         return 1;
794 }
795
796 /*
797  * Remove a shadow pte.
798  */
799 static void paging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
800 {
801         hpa_t page_addr = vcpu->mmu.root_hpa;
802         int level = vcpu->mmu.shadow_root_level;
803
804         ++kvm_stat.invlpg;
805
806         for (; ; level--) {
807                 u32 index = PT64_INDEX(addr, level);
808                 u64 *table = __va(page_addr);
809
810                 if (level == PT_PAGE_TABLE_LEVEL ) {
811                         rmap_remove(vcpu->kvm, &table[index]);
812                         table[index] = 0;
813                         return;
814                 }
815
816                 if (!is_present_pte(table[index]))
817                         return;
818
819                 page_addr = table[index] & PT64_BASE_ADDR_MASK;
820
821                 if (level == PT_DIRECTORY_LEVEL &&
822                           (table[index] & PT_SHADOW_PS_MARK)) {
823                         table[index] = 0;
824                         release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
825
826                         kvm_arch_ops->tlb_flush(vcpu);
827                         return;
828                 }
829         }
830 }
831
832 static void paging_free(struct kvm_vcpu *vcpu)
833 {
834         nonpaging_free(vcpu);
835 }
836
837 #define PTTYPE 64
838 #include "paging_tmpl.h"
839 #undef PTTYPE
840
841 #define PTTYPE 32
842 #include "paging_tmpl.h"
843 #undef PTTYPE
844
845 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
846 {
847         struct kvm_mmu *context = &vcpu->mmu;
848
849         ASSERT(is_pae(vcpu));
850         context->new_cr3 = paging_new_cr3;
851         context->page_fault = paging64_page_fault;
852         context->inval_page = paging_inval_page;
853         context->gva_to_gpa = paging64_gva_to_gpa;
854         context->free = paging_free;
855         context->root_level = level;
856         context->shadow_root_level = level;
857         mmu_alloc_roots(vcpu);
858         ASSERT(VALID_PAGE(context->root_hpa));
859         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
860                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
861         return 0;
862 }
863
864 static int paging64_init_context(struct kvm_vcpu *vcpu)
865 {
866         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
867 }
868
869 static int paging32_init_context(struct kvm_vcpu *vcpu)
870 {
871         struct kvm_mmu *context = &vcpu->mmu;
872
873         context->new_cr3 = paging_new_cr3;
874         context->page_fault = paging32_page_fault;
875         context->inval_page = paging_inval_page;
876         context->gva_to_gpa = paging32_gva_to_gpa;
877         context->free = paging_free;
878         context->root_level = PT32_ROOT_LEVEL;
879         context->shadow_root_level = PT32E_ROOT_LEVEL;
880         mmu_alloc_roots(vcpu);
881         ASSERT(VALID_PAGE(context->root_hpa));
882         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
883                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
884         return 0;
885 }
886
887 static int paging32E_init_context(struct kvm_vcpu *vcpu)
888 {
889         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
890 }
891
892 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
893 {
894         ASSERT(vcpu);
895         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
896
897         if (!is_paging(vcpu))
898                 return nonpaging_init_context(vcpu);
899         else if (is_long_mode(vcpu))
900                 return paging64_init_context(vcpu);
901         else if (is_pae(vcpu))
902                 return paging32E_init_context(vcpu);
903         else
904                 return paging32_init_context(vcpu);
905 }
906
907 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
908 {
909         ASSERT(vcpu);
910         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
911                 vcpu->mmu.free(vcpu);
912                 vcpu->mmu.root_hpa = INVALID_PAGE;
913         }
914 }
915
916 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
917 {
918         destroy_kvm_mmu(vcpu);
919         return init_kvm_mmu(vcpu);
920 }
921
922 static void free_mmu_pages(struct kvm_vcpu *vcpu)
923 {
924         while (!list_empty(&vcpu->free_pages)) {
925                 struct kvm_mmu_page *page;
926
927                 page = list_entry(vcpu->free_pages.next,
928                                   struct kvm_mmu_page, link);
929                 list_del(&page->link);
930                 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
931                 page->page_hpa = INVALID_PAGE;
932         }
933         free_page((unsigned long)vcpu->mmu.pae_root);
934 }
935
936 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
937 {
938         struct page *page;
939         int i;
940
941         ASSERT(vcpu);
942
943         for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
944                 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
945
946                 INIT_LIST_HEAD(&page_header->link);
947                 if ((page = alloc_page(GFP_KERNEL)) == NULL)
948                         goto error_1;
949                 page->private = (unsigned long)page_header;
950                 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
951                 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
952                 list_add(&page_header->link, &vcpu->free_pages);
953         }
954
955         /*
956          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
957          * Therefore we need to allocate shadow page tables in the first
958          * 4GB of memory, which happens to fit the DMA32 zone.
959          */
960         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
961         if (!page)
962                 goto error_1;
963         vcpu->mmu.pae_root = page_address(page);
964         for (i = 0; i < 4; ++i)
965                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
966
967         return 0;
968
969 error_1:
970         free_mmu_pages(vcpu);
971         return -ENOMEM;
972 }
973
974 int kvm_mmu_create(struct kvm_vcpu *vcpu)
975 {
976         ASSERT(vcpu);
977         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
978         ASSERT(list_empty(&vcpu->free_pages));
979
980         return alloc_mmu_pages(vcpu);
981 }
982
983 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
984 {
985         ASSERT(vcpu);
986         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
987         ASSERT(!list_empty(&vcpu->free_pages));
988
989         return init_kvm_mmu(vcpu);
990 }
991
992 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
993 {
994         ASSERT(vcpu);
995
996         destroy_kvm_mmu(vcpu);
997         free_mmu_pages(vcpu);
998 }
999
1000 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1001 {
1002         struct kvm_mmu_page *page;
1003
1004         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1005                 int i;
1006                 u64 *pt;
1007
1008                 if (!test_bit(slot, &page->slot_bitmap))
1009                         continue;
1010
1011                 pt = __va(page->page_hpa);
1012                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1013                         /* avoid RMW */
1014                         if (pt[i] & PT_WRITABLE_MASK) {
1015                                 rmap_remove(kvm, &pt[i]);
1016                                 pt[i] &= ~PT_WRITABLE_MASK;
1017                         }
1018         }
1019 }