]> Pileus Git - ~andy/linux/blob - drivers/kvm/mmu.c
KVM: MMU: Simplify kvm_mmu_free_page() a tiny bit
[~andy/linux] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #undef MMU_DEBUG
30
31 #undef AUDIT
32
33 #ifdef AUDIT
34 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
35 #else
36 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
37 #endif
38
39 #ifdef MMU_DEBUG
40
41 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
43
44 #else
45
46 #define pgprintk(x...) do { } while (0)
47 #define rmap_printk(x...) do { } while (0)
48
49 #endif
50
51 #if defined(MMU_DEBUG) || defined(AUDIT)
52 static int dbg = 1;
53 #endif
54
55 #ifndef MMU_DEBUG
56 #define ASSERT(x) do { } while (0)
57 #else
58 #define ASSERT(x)                                                       \
59         if (!(x)) {                                                     \
60                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
61                        __FILE__, __LINE__, #x);                         \
62         }
63 #endif
64
65 #define PT64_PT_BITS 9
66 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
67 #define PT32_PT_BITS 10
68 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
69
70 #define PT_WRITABLE_SHIFT 1
71
72 #define PT_PRESENT_MASK (1ULL << 0)
73 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
74 #define PT_USER_MASK (1ULL << 2)
75 #define PT_PWT_MASK (1ULL << 3)
76 #define PT_PCD_MASK (1ULL << 4)
77 #define PT_ACCESSED_MASK (1ULL << 5)
78 #define PT_DIRTY_MASK (1ULL << 6)
79 #define PT_PAGE_SIZE_MASK (1ULL << 7)
80 #define PT_PAT_MASK (1ULL << 7)
81 #define PT_GLOBAL_MASK (1ULL << 8)
82 #define PT64_NX_MASK (1ULL << 63)
83
84 #define PT_PAT_SHIFT 7
85 #define PT_DIR_PAT_SHIFT 12
86 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
87
88 #define PT32_DIR_PSE36_SIZE 4
89 #define PT32_DIR_PSE36_SHIFT 13
90 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
91
92
93 #define PT32_PTE_COPY_MASK \
94         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
95
96 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
97
98 #define PT_FIRST_AVAIL_BITS_SHIFT 9
99 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
100
101 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
102 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
103
104 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
105 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
106
107 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
108 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
109
110 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
111
112 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
113
114 #define PT64_LEVEL_BITS 9
115
116 #define PT64_LEVEL_SHIFT(level) \
117                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
118
119 #define PT64_LEVEL_MASK(level) \
120                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
121
122 #define PT64_INDEX(address, level)\
123         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
124
125
126 #define PT32_LEVEL_BITS 10
127
128 #define PT32_LEVEL_SHIFT(level) \
129                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
130
131 #define PT32_LEVEL_MASK(level) \
132                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
133
134 #define PT32_INDEX(address, level)\
135         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
136
137
138 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
139 #define PT64_DIR_BASE_ADDR_MASK \
140         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
141
142 #define PT32_BASE_ADDR_MASK PAGE_MASK
143 #define PT32_DIR_BASE_ADDR_MASK \
144         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
145
146
147 #define PFERR_PRESENT_MASK (1U << 0)
148 #define PFERR_WRITE_MASK (1U << 1)
149 #define PFERR_USER_MASK (1U << 2)
150 #define PFERR_FETCH_MASK (1U << 4)
151
152 #define PT64_ROOT_LEVEL 4
153 #define PT32_ROOT_LEVEL 2
154 #define PT32E_ROOT_LEVEL 3
155
156 #define PT_DIRECTORY_LEVEL 2
157 #define PT_PAGE_TABLE_LEVEL 1
158
159 #define RMAP_EXT 4
160
161 struct kvm_rmap_desc {
162         u64 *shadow_ptes[RMAP_EXT];
163         struct kvm_rmap_desc *more;
164 };
165
166 static struct kmem_cache *pte_chain_cache;
167 static struct kmem_cache *rmap_desc_cache;
168
169 static int is_write_protection(struct kvm_vcpu *vcpu)
170 {
171         return vcpu->cr0 & CR0_WP_MASK;
172 }
173
174 static int is_cpuid_PSE36(void)
175 {
176         return 1;
177 }
178
179 static int is_nx(struct kvm_vcpu *vcpu)
180 {
181         return vcpu->shadow_efer & EFER_NX;
182 }
183
184 static int is_present_pte(unsigned long pte)
185 {
186         return pte & PT_PRESENT_MASK;
187 }
188
189 static int is_writeble_pte(unsigned long pte)
190 {
191         return pte & PT_WRITABLE_MASK;
192 }
193
194 static int is_io_pte(unsigned long pte)
195 {
196         return pte & PT_SHADOW_IO_MARK;
197 }
198
199 static int is_rmap_pte(u64 pte)
200 {
201         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
202                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
203 }
204
205 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
206                                   struct kmem_cache *base_cache, int min,
207                                   gfp_t gfp_flags)
208 {
209         void *obj;
210
211         if (cache->nobjs >= min)
212                 return 0;
213         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
214                 obj = kmem_cache_zalloc(base_cache, gfp_flags);
215                 if (!obj)
216                         return -ENOMEM;
217                 cache->objects[cache->nobjs++] = obj;
218         }
219         return 0;
220 }
221
222 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
223 {
224         while (mc->nobjs)
225                 kfree(mc->objects[--mc->nobjs]);
226 }
227
228 static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
229 {
230         int r;
231
232         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
233                                    pte_chain_cache, 4, gfp_flags);
234         if (r)
235                 goto out;
236         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
237                                    rmap_desc_cache, 1, gfp_flags);
238 out:
239         return r;
240 }
241
242 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
243 {
244         int r;
245
246         r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
247         if (r < 0) {
248                 spin_unlock(&vcpu->kvm->lock);
249                 kvm_arch_ops->vcpu_put(vcpu);
250                 r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
251                 kvm_arch_ops->vcpu_load(vcpu);
252                 spin_lock(&vcpu->kvm->lock);
253         }
254         return r;
255 }
256
257 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
258 {
259         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
260         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
261 }
262
263 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
264                                     size_t size)
265 {
266         void *p;
267
268         BUG_ON(!mc->nobjs);
269         p = mc->objects[--mc->nobjs];
270         memset(p, 0, size);
271         return p;
272 }
273
274 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
275 {
276         if (mc->nobjs < KVM_NR_MEM_OBJS)
277                 mc->objects[mc->nobjs++] = obj;
278         else
279                 kfree(obj);
280 }
281
282 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
283 {
284         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
285                                       sizeof(struct kvm_pte_chain));
286 }
287
288 static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
289                                struct kvm_pte_chain *pc)
290 {
291         mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
292 }
293
294 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
295 {
296         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
297                                       sizeof(struct kvm_rmap_desc));
298 }
299
300 static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
301                                struct kvm_rmap_desc *rd)
302 {
303         mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
304 }
305
306 /*
307  * Reverse mapping data structures:
308  *
309  * If page->private bit zero is zero, then page->private points to the
310  * shadow page table entry that points to page_address(page).
311  *
312  * If page->private bit zero is one, (then page->private & ~1) points
313  * to a struct kvm_rmap_desc containing more mappings.
314  */
315 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
316 {
317         struct page *page;
318         struct kvm_rmap_desc *desc;
319         int i;
320
321         if (!is_rmap_pte(*spte))
322                 return;
323         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
324         if (!page_private(page)) {
325                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
326                 set_page_private(page,(unsigned long)spte);
327         } else if (!(page_private(page) & 1)) {
328                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
329                 desc = mmu_alloc_rmap_desc(vcpu);
330                 desc->shadow_ptes[0] = (u64 *)page_private(page);
331                 desc->shadow_ptes[1] = spte;
332                 set_page_private(page,(unsigned long)desc | 1);
333         } else {
334                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
335                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
336                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
337                         desc = desc->more;
338                 if (desc->shadow_ptes[RMAP_EXT-1]) {
339                         desc->more = mmu_alloc_rmap_desc(vcpu);
340                         desc = desc->more;
341                 }
342                 for (i = 0; desc->shadow_ptes[i]; ++i)
343                         ;
344                 desc->shadow_ptes[i] = spte;
345         }
346 }
347
348 static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
349                                    struct page *page,
350                                    struct kvm_rmap_desc *desc,
351                                    int i,
352                                    struct kvm_rmap_desc *prev_desc)
353 {
354         int j;
355
356         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
357                 ;
358         desc->shadow_ptes[i] = desc->shadow_ptes[j];
359         desc->shadow_ptes[j] = NULL;
360         if (j != 0)
361                 return;
362         if (!prev_desc && !desc->more)
363                 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
364         else
365                 if (prev_desc)
366                         prev_desc->more = desc->more;
367                 else
368                         set_page_private(page,(unsigned long)desc->more | 1);
369         mmu_free_rmap_desc(vcpu, desc);
370 }
371
372 static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
373 {
374         struct page *page;
375         struct kvm_rmap_desc *desc;
376         struct kvm_rmap_desc *prev_desc;
377         int i;
378
379         if (!is_rmap_pte(*spte))
380                 return;
381         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
382         if (!page_private(page)) {
383                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
384                 BUG();
385         } else if (!(page_private(page) & 1)) {
386                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
387                 if ((u64 *)page_private(page) != spte) {
388                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
389                                spte, *spte);
390                         BUG();
391                 }
392                 set_page_private(page,0);
393         } else {
394                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
395                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
396                 prev_desc = NULL;
397                 while (desc) {
398                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
399                                 if (desc->shadow_ptes[i] == spte) {
400                                         rmap_desc_remove_entry(vcpu, page,
401                                                                desc, i,
402                                                                prev_desc);
403                                         return;
404                                 }
405                         prev_desc = desc;
406                         desc = desc->more;
407                 }
408                 BUG();
409         }
410 }
411
412 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
413 {
414         struct kvm *kvm = vcpu->kvm;
415         struct page *page;
416         struct kvm_rmap_desc *desc;
417         u64 *spte;
418
419         page = gfn_to_page(kvm, gfn);
420         BUG_ON(!page);
421
422         while (page_private(page)) {
423                 if (!(page_private(page) & 1))
424                         spte = (u64 *)page_private(page);
425                 else {
426                         desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
427                         spte = desc->shadow_ptes[0];
428                 }
429                 BUG_ON(!spte);
430                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
431                        != page_to_pfn(page));
432                 BUG_ON(!(*spte & PT_PRESENT_MASK));
433                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
434                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
435                 rmap_remove(vcpu, spte);
436                 kvm_arch_ops->tlb_flush(vcpu);
437                 *spte &= ~(u64)PT_WRITABLE_MASK;
438         }
439 }
440
441 #ifdef MMU_DEBUG
442 static int is_empty_shadow_page(hpa_t page_hpa)
443 {
444         u64 *pos;
445         u64 *end;
446
447         for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
448                       pos != end; pos++)
449                 if (*pos != 0) {
450                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
451                                pos, *pos);
452                         return 0;
453                 }
454         return 1;
455 }
456 #endif
457
458 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu,
459                               struct kvm_mmu_page *page_head)
460 {
461         ASSERT(is_empty_shadow_page(page_head->page_hpa));
462         list_move(&page_head->link, &vcpu->free_pages);
463         ++vcpu->kvm->n_free_mmu_pages;
464 }
465
466 static unsigned kvm_page_table_hashfn(gfn_t gfn)
467 {
468         return gfn;
469 }
470
471 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
472                                                u64 *parent_pte)
473 {
474         struct kvm_mmu_page *page;
475
476         if (list_empty(&vcpu->free_pages))
477                 return NULL;
478
479         page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
480         list_move(&page->link, &vcpu->kvm->active_mmu_pages);
481         ASSERT(is_empty_shadow_page(page->page_hpa));
482         page->slot_bitmap = 0;
483         page->multimapped = 0;
484         page->parent_pte = parent_pte;
485         --vcpu->kvm->n_free_mmu_pages;
486         return page;
487 }
488
489 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
490                                     struct kvm_mmu_page *page, u64 *parent_pte)
491 {
492         struct kvm_pte_chain *pte_chain;
493         struct hlist_node *node;
494         int i;
495
496         if (!parent_pte)
497                 return;
498         if (!page->multimapped) {
499                 u64 *old = page->parent_pte;
500
501                 if (!old) {
502                         page->parent_pte = parent_pte;
503                         return;
504                 }
505                 page->multimapped = 1;
506                 pte_chain = mmu_alloc_pte_chain(vcpu);
507                 INIT_HLIST_HEAD(&page->parent_ptes);
508                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
509                 pte_chain->parent_ptes[0] = old;
510         }
511         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
512                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
513                         continue;
514                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
515                         if (!pte_chain->parent_ptes[i]) {
516                                 pte_chain->parent_ptes[i] = parent_pte;
517                                 return;
518                         }
519         }
520         pte_chain = mmu_alloc_pte_chain(vcpu);
521         BUG_ON(!pte_chain);
522         hlist_add_head(&pte_chain->link, &page->parent_ptes);
523         pte_chain->parent_ptes[0] = parent_pte;
524 }
525
526 static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
527                                        struct kvm_mmu_page *page,
528                                        u64 *parent_pte)
529 {
530         struct kvm_pte_chain *pte_chain;
531         struct hlist_node *node;
532         int i;
533
534         if (!page->multimapped) {
535                 BUG_ON(page->parent_pte != parent_pte);
536                 page->parent_pte = NULL;
537                 return;
538         }
539         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
540                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
541                         if (!pte_chain->parent_ptes[i])
542                                 break;
543                         if (pte_chain->parent_ptes[i] != parent_pte)
544                                 continue;
545                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
546                                 && pte_chain->parent_ptes[i + 1]) {
547                                 pte_chain->parent_ptes[i]
548                                         = pte_chain->parent_ptes[i + 1];
549                                 ++i;
550                         }
551                         pte_chain->parent_ptes[i] = NULL;
552                         if (i == 0) {
553                                 hlist_del(&pte_chain->link);
554                                 mmu_free_pte_chain(vcpu, pte_chain);
555                                 if (hlist_empty(&page->parent_ptes)) {
556                                         page->multimapped = 0;
557                                         page->parent_pte = NULL;
558                                 }
559                         }
560                         return;
561                 }
562         BUG();
563 }
564
565 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
566                                                 gfn_t gfn)
567 {
568         unsigned index;
569         struct hlist_head *bucket;
570         struct kvm_mmu_page *page;
571         struct hlist_node *node;
572
573         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
574         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
575         bucket = &vcpu->kvm->mmu_page_hash[index];
576         hlist_for_each_entry(page, node, bucket, hash_link)
577                 if (page->gfn == gfn && !page->role.metaphysical) {
578                         pgprintk("%s: found role %x\n",
579                                  __FUNCTION__, page->role.word);
580                         return page;
581                 }
582         return NULL;
583 }
584
585 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
586                                              gfn_t gfn,
587                                              gva_t gaddr,
588                                              unsigned level,
589                                              int metaphysical,
590                                              unsigned hugepage_access,
591                                              u64 *parent_pte)
592 {
593         union kvm_mmu_page_role role;
594         unsigned index;
595         unsigned quadrant;
596         struct hlist_head *bucket;
597         struct kvm_mmu_page *page;
598         struct hlist_node *node;
599
600         role.word = 0;
601         role.glevels = vcpu->mmu.root_level;
602         role.level = level;
603         role.metaphysical = metaphysical;
604         role.hugepage_access = hugepage_access;
605         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
606                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
607                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
608                 role.quadrant = quadrant;
609         }
610         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
611                  gfn, role.word);
612         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
613         bucket = &vcpu->kvm->mmu_page_hash[index];
614         hlist_for_each_entry(page, node, bucket, hash_link)
615                 if (page->gfn == gfn && page->role.word == role.word) {
616                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
617                         pgprintk("%s: found\n", __FUNCTION__);
618                         return page;
619                 }
620         page = kvm_mmu_alloc_page(vcpu, parent_pte);
621         if (!page)
622                 return page;
623         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
624         page->gfn = gfn;
625         page->role = role;
626         hlist_add_head(&page->hash_link, bucket);
627         if (!metaphysical)
628                 rmap_write_protect(vcpu, gfn);
629         return page;
630 }
631
632 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
633                                          struct kvm_mmu_page *page)
634 {
635         unsigned i;
636         u64 *pt;
637         u64 ent;
638
639         pt = __va(page->page_hpa);
640
641         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
642                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
643                         if (pt[i] & PT_PRESENT_MASK)
644                                 rmap_remove(vcpu, &pt[i]);
645                         pt[i] = 0;
646                 }
647                 kvm_arch_ops->tlb_flush(vcpu);
648                 return;
649         }
650
651         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
652                 ent = pt[i];
653
654                 pt[i] = 0;
655                 if (!(ent & PT_PRESENT_MASK))
656                         continue;
657                 ent &= PT64_BASE_ADDR_MASK;
658                 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
659         }
660 }
661
662 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
663                              struct kvm_mmu_page *page,
664                              u64 *parent_pte)
665 {
666         mmu_page_remove_parent_pte(vcpu, page, parent_pte);
667 }
668
669 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
670                              struct kvm_mmu_page *page)
671 {
672         u64 *parent_pte;
673
674         while (page->multimapped || page->parent_pte) {
675                 if (!page->multimapped)
676                         parent_pte = page->parent_pte;
677                 else {
678                         struct kvm_pte_chain *chain;
679
680                         chain = container_of(page->parent_ptes.first,
681                                              struct kvm_pte_chain, link);
682                         parent_pte = chain->parent_ptes[0];
683                 }
684                 BUG_ON(!parent_pte);
685                 kvm_mmu_put_page(vcpu, page, parent_pte);
686                 *parent_pte = 0;
687         }
688         kvm_mmu_page_unlink_children(vcpu, page);
689         if (!page->root_count) {
690                 hlist_del(&page->hash_link);
691                 kvm_mmu_free_page(vcpu, page);
692         } else
693                 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
694 }
695
696 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
697 {
698         unsigned index;
699         struct hlist_head *bucket;
700         struct kvm_mmu_page *page;
701         struct hlist_node *node, *n;
702         int r;
703
704         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
705         r = 0;
706         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
707         bucket = &vcpu->kvm->mmu_page_hash[index];
708         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
709                 if (page->gfn == gfn && !page->role.metaphysical) {
710                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
711                                  page->role.word);
712                         kvm_mmu_zap_page(vcpu, page);
713                         r = 1;
714                 }
715         return r;
716 }
717
718 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
719 {
720         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
721         struct kvm_mmu_page *page_head = page_header(__pa(pte));
722
723         __set_bit(slot, &page_head->slot_bitmap);
724 }
725
726 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
727 {
728         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
729
730         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
731 }
732
733 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
734 {
735         struct page *page;
736
737         ASSERT((gpa & HPA_ERR_MASK) == 0);
738         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
739         if (!page)
740                 return gpa | HPA_ERR_MASK;
741         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
742                 | (gpa & (PAGE_SIZE-1));
743 }
744
745 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
746 {
747         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
748
749         if (gpa == UNMAPPED_GVA)
750                 return UNMAPPED_GVA;
751         return gpa_to_hpa(vcpu, gpa);
752 }
753
754 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
755 {
756         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
757
758         if (gpa == UNMAPPED_GVA)
759                 return NULL;
760         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
761 }
762
763 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
764 {
765 }
766
767 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
768 {
769         int level = PT32E_ROOT_LEVEL;
770         hpa_t table_addr = vcpu->mmu.root_hpa;
771
772         for (; ; level--) {
773                 u32 index = PT64_INDEX(v, level);
774                 u64 *table;
775                 u64 pte;
776
777                 ASSERT(VALID_PAGE(table_addr));
778                 table = __va(table_addr);
779
780                 if (level == 1) {
781                         pte = table[index];
782                         if (is_present_pte(pte) && is_writeble_pte(pte))
783                                 return 0;
784                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
785                         page_header_update_slot(vcpu->kvm, table, v);
786                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
787                                                                 PT_USER_MASK;
788                         rmap_add(vcpu, &table[index]);
789                         return 0;
790                 }
791
792                 if (table[index] == 0) {
793                         struct kvm_mmu_page *new_table;
794                         gfn_t pseudo_gfn;
795
796                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
797                                 >> PAGE_SHIFT;
798                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
799                                                      v, level - 1,
800                                                      1, 0, &table[index]);
801                         if (!new_table) {
802                                 pgprintk("nonpaging_map: ENOMEM\n");
803                                 return -ENOMEM;
804                         }
805
806                         table[index] = new_table->page_hpa | PT_PRESENT_MASK
807                                 | PT_WRITABLE_MASK | PT_USER_MASK;
808                 }
809                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
810         }
811 }
812
813 static void mmu_free_roots(struct kvm_vcpu *vcpu)
814 {
815         int i;
816         struct kvm_mmu_page *page;
817
818 #ifdef CONFIG_X86_64
819         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
820                 hpa_t root = vcpu->mmu.root_hpa;
821
822                 ASSERT(VALID_PAGE(root));
823                 page = page_header(root);
824                 --page->root_count;
825                 vcpu->mmu.root_hpa = INVALID_PAGE;
826                 return;
827         }
828 #endif
829         for (i = 0; i < 4; ++i) {
830                 hpa_t root = vcpu->mmu.pae_root[i];
831
832                 if (root) {
833                         ASSERT(VALID_PAGE(root));
834                         root &= PT64_BASE_ADDR_MASK;
835                         page = page_header(root);
836                         --page->root_count;
837                 }
838                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
839         }
840         vcpu->mmu.root_hpa = INVALID_PAGE;
841 }
842
843 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
844 {
845         int i;
846         gfn_t root_gfn;
847         struct kvm_mmu_page *page;
848
849         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
850
851 #ifdef CONFIG_X86_64
852         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
853                 hpa_t root = vcpu->mmu.root_hpa;
854
855                 ASSERT(!VALID_PAGE(root));
856                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
857                                         PT64_ROOT_LEVEL, 0, 0, NULL);
858                 root = page->page_hpa;
859                 ++page->root_count;
860                 vcpu->mmu.root_hpa = root;
861                 return;
862         }
863 #endif
864         for (i = 0; i < 4; ++i) {
865                 hpa_t root = vcpu->mmu.pae_root[i];
866
867                 ASSERT(!VALID_PAGE(root));
868                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
869                         if (!is_present_pte(vcpu->pdptrs[i])) {
870                                 vcpu->mmu.pae_root[i] = 0;
871                                 continue;
872                         }
873                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
874                 } else if (vcpu->mmu.root_level == 0)
875                         root_gfn = 0;
876                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
877                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
878                                         0, NULL);
879                 root = page->page_hpa;
880                 ++page->root_count;
881                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
882         }
883         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
884 }
885
886 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
887 {
888         return vaddr;
889 }
890
891 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
892                                u32 error_code)
893 {
894         gpa_t addr = gva;
895         hpa_t paddr;
896         int r;
897
898         r = mmu_topup_memory_caches(vcpu);
899         if (r)
900                 return r;
901
902         ASSERT(vcpu);
903         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
904
905
906         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
907
908         if (is_error_hpa(paddr))
909                 return 1;
910
911         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
912 }
913
914 static void nonpaging_free(struct kvm_vcpu *vcpu)
915 {
916         mmu_free_roots(vcpu);
917 }
918
919 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
920 {
921         struct kvm_mmu *context = &vcpu->mmu;
922
923         context->new_cr3 = nonpaging_new_cr3;
924         context->page_fault = nonpaging_page_fault;
925         context->gva_to_gpa = nonpaging_gva_to_gpa;
926         context->free = nonpaging_free;
927         context->root_level = 0;
928         context->shadow_root_level = PT32E_ROOT_LEVEL;
929         mmu_alloc_roots(vcpu);
930         ASSERT(VALID_PAGE(context->root_hpa));
931         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
932         return 0;
933 }
934
935 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
936 {
937         ++vcpu->stat.tlb_flush;
938         kvm_arch_ops->tlb_flush(vcpu);
939 }
940
941 static void paging_new_cr3(struct kvm_vcpu *vcpu)
942 {
943         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
944         mmu_free_roots(vcpu);
945         if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
946                 kvm_mmu_free_some_pages(vcpu);
947         mmu_alloc_roots(vcpu);
948         kvm_mmu_flush_tlb(vcpu);
949         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
950 }
951
952 static inline void set_pte_common(struct kvm_vcpu *vcpu,
953                              u64 *shadow_pte,
954                              gpa_t gaddr,
955                              int dirty,
956                              u64 access_bits,
957                              gfn_t gfn)
958 {
959         hpa_t paddr;
960
961         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
962         if (!dirty)
963                 access_bits &= ~PT_WRITABLE_MASK;
964
965         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
966
967         *shadow_pte |= access_bits;
968
969         if (is_error_hpa(paddr)) {
970                 *shadow_pte |= gaddr;
971                 *shadow_pte |= PT_SHADOW_IO_MARK;
972                 *shadow_pte &= ~PT_PRESENT_MASK;
973                 return;
974         }
975
976         *shadow_pte |= paddr;
977
978         if (access_bits & PT_WRITABLE_MASK) {
979                 struct kvm_mmu_page *shadow;
980
981                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
982                 if (shadow) {
983                         pgprintk("%s: found shadow page for %lx, marking ro\n",
984                                  __FUNCTION__, gfn);
985                         access_bits &= ~PT_WRITABLE_MASK;
986                         if (is_writeble_pte(*shadow_pte)) {
987                                     *shadow_pte &= ~PT_WRITABLE_MASK;
988                                     kvm_arch_ops->tlb_flush(vcpu);
989                         }
990                 }
991         }
992
993         if (access_bits & PT_WRITABLE_MASK)
994                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
995
996         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
997         rmap_add(vcpu, shadow_pte);
998 }
999
1000 static void inject_page_fault(struct kvm_vcpu *vcpu,
1001                               u64 addr,
1002                               u32 err_code)
1003 {
1004         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
1005 }
1006
1007 static inline int fix_read_pf(u64 *shadow_ent)
1008 {
1009         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
1010             !(*shadow_ent & PT_USER_MASK)) {
1011                 /*
1012                  * If supervisor write protect is disabled, we shadow kernel
1013                  * pages as user pages so we can trap the write access.
1014                  */
1015                 *shadow_ent |= PT_USER_MASK;
1016                 *shadow_ent &= ~PT_WRITABLE_MASK;
1017
1018                 return 1;
1019
1020         }
1021         return 0;
1022 }
1023
1024 static void paging_free(struct kvm_vcpu *vcpu)
1025 {
1026         nonpaging_free(vcpu);
1027 }
1028
1029 #define PTTYPE 64
1030 #include "paging_tmpl.h"
1031 #undef PTTYPE
1032
1033 #define PTTYPE 32
1034 #include "paging_tmpl.h"
1035 #undef PTTYPE
1036
1037 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1038 {
1039         struct kvm_mmu *context = &vcpu->mmu;
1040
1041         ASSERT(is_pae(vcpu));
1042         context->new_cr3 = paging_new_cr3;
1043         context->page_fault = paging64_page_fault;
1044         context->gva_to_gpa = paging64_gva_to_gpa;
1045         context->free = paging_free;
1046         context->root_level = level;
1047         context->shadow_root_level = level;
1048         mmu_alloc_roots(vcpu);
1049         ASSERT(VALID_PAGE(context->root_hpa));
1050         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1051                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1052         return 0;
1053 }
1054
1055 static int paging64_init_context(struct kvm_vcpu *vcpu)
1056 {
1057         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1058 }
1059
1060 static int paging32_init_context(struct kvm_vcpu *vcpu)
1061 {
1062         struct kvm_mmu *context = &vcpu->mmu;
1063
1064         context->new_cr3 = paging_new_cr3;
1065         context->page_fault = paging32_page_fault;
1066         context->gva_to_gpa = paging32_gva_to_gpa;
1067         context->free = paging_free;
1068         context->root_level = PT32_ROOT_LEVEL;
1069         context->shadow_root_level = PT32E_ROOT_LEVEL;
1070         mmu_alloc_roots(vcpu);
1071         ASSERT(VALID_PAGE(context->root_hpa));
1072         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1073                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1074         return 0;
1075 }
1076
1077 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1078 {
1079         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1080 }
1081
1082 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1083 {
1084         ASSERT(vcpu);
1085         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1086
1087         if (!is_paging(vcpu))
1088                 return nonpaging_init_context(vcpu);
1089         else if (is_long_mode(vcpu))
1090                 return paging64_init_context(vcpu);
1091         else if (is_pae(vcpu))
1092                 return paging32E_init_context(vcpu);
1093         else
1094                 return paging32_init_context(vcpu);
1095 }
1096
1097 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1098 {
1099         ASSERT(vcpu);
1100         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1101                 vcpu->mmu.free(vcpu);
1102                 vcpu->mmu.root_hpa = INVALID_PAGE;
1103         }
1104 }
1105
1106 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1107 {
1108         int r;
1109
1110         destroy_kvm_mmu(vcpu);
1111         r = init_kvm_mmu(vcpu);
1112         if (r < 0)
1113                 goto out;
1114         r = mmu_topup_memory_caches(vcpu);
1115 out:
1116         return r;
1117 }
1118
1119 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1120                                   struct kvm_mmu_page *page,
1121                                   u64 *spte)
1122 {
1123         u64 pte;
1124         struct kvm_mmu_page *child;
1125
1126         pte = *spte;
1127         if (is_present_pte(pte)) {
1128                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1129                         rmap_remove(vcpu, spte);
1130                 else {
1131                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1132                         mmu_page_remove_parent_pte(vcpu, child, spte);
1133                 }
1134         }
1135         *spte = 0;
1136 }
1137
1138 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1139                                   struct kvm_mmu_page *page,
1140                                   u64 *spte,
1141                                   const void *new, int bytes)
1142 {
1143         if (page->role.level != PT_PAGE_TABLE_LEVEL)
1144                 return;
1145
1146         if (page->role.glevels == PT32_ROOT_LEVEL)
1147                 paging32_update_pte(vcpu, page, spte, new, bytes);
1148         else
1149                 paging64_update_pte(vcpu, page, spte, new, bytes);
1150 }
1151
1152 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1153                        const u8 *old, const u8 *new, int bytes)
1154 {
1155         gfn_t gfn = gpa >> PAGE_SHIFT;
1156         struct kvm_mmu_page *page;
1157         struct hlist_node *node, *n;
1158         struct hlist_head *bucket;
1159         unsigned index;
1160         u64 *spte;
1161         unsigned offset = offset_in_page(gpa);
1162         unsigned pte_size;
1163         unsigned page_offset;
1164         unsigned misaligned;
1165         unsigned quadrant;
1166         int level;
1167         int flooded = 0;
1168         int npte;
1169
1170         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1171         if (gfn == vcpu->last_pt_write_gfn) {
1172                 ++vcpu->last_pt_write_count;
1173                 if (vcpu->last_pt_write_count >= 3)
1174                         flooded = 1;
1175         } else {
1176                 vcpu->last_pt_write_gfn = gfn;
1177                 vcpu->last_pt_write_count = 1;
1178         }
1179         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1180         bucket = &vcpu->kvm->mmu_page_hash[index];
1181         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1182                 if (page->gfn != gfn || page->role.metaphysical)
1183                         continue;
1184                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1185                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1186                 misaligned |= bytes < 4;
1187                 if (misaligned || flooded) {
1188                         /*
1189                          * Misaligned accesses are too much trouble to fix
1190                          * up; also, they usually indicate a page is not used
1191                          * as a page table.
1192                          *
1193                          * If we're seeing too many writes to a page,
1194                          * it may no longer be a page table, or we may be
1195                          * forking, in which case it is better to unmap the
1196                          * page.
1197                          */
1198                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1199                                  gpa, bytes, page->role.word);
1200                         kvm_mmu_zap_page(vcpu, page);
1201                         continue;
1202                 }
1203                 page_offset = offset;
1204                 level = page->role.level;
1205                 npte = 1;
1206                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1207                         page_offset <<= 1;      /* 32->64 */
1208                         /*
1209                          * A 32-bit pde maps 4MB while the shadow pdes map
1210                          * only 2MB.  So we need to double the offset again
1211                          * and zap two pdes instead of one.
1212                          */
1213                         if (level == PT32_ROOT_LEVEL) {
1214                                 page_offset &= ~7; /* kill rounding error */
1215                                 page_offset <<= 1;
1216                                 npte = 2;
1217                         }
1218                         quadrant = page_offset >> PAGE_SHIFT;
1219                         page_offset &= ~PAGE_MASK;
1220                         if (quadrant != page->role.quadrant)
1221                                 continue;
1222                 }
1223                 spte = __va(page->page_hpa);
1224                 spte += page_offset / sizeof(*spte);
1225                 while (npte--) {
1226                         mmu_pte_write_zap_pte(vcpu, page, spte);
1227                         mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
1228                         ++spte;
1229                 }
1230         }
1231 }
1232
1233 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1234 {
1235         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1236
1237         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1238 }
1239
1240 void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1241 {
1242         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1243                 struct kvm_mmu_page *page;
1244
1245                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1246                                     struct kvm_mmu_page, link);
1247                 kvm_mmu_zap_page(vcpu, page);
1248         }
1249 }
1250 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1251
1252 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1253 {
1254         struct kvm_mmu_page *page;
1255
1256         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1257                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1258                                     struct kvm_mmu_page, link);
1259                 kvm_mmu_zap_page(vcpu, page);
1260         }
1261         while (!list_empty(&vcpu->free_pages)) {
1262                 page = list_entry(vcpu->free_pages.next,
1263                                   struct kvm_mmu_page, link);
1264                 list_del(&page->link);
1265                 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1266                 page->page_hpa = INVALID_PAGE;
1267         }
1268         free_page((unsigned long)vcpu->mmu.pae_root);
1269 }
1270
1271 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1272 {
1273         struct page *page;
1274         int i;
1275
1276         ASSERT(vcpu);
1277
1278         for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
1279                 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1280
1281                 INIT_LIST_HEAD(&page_header->link);
1282                 if ((page = alloc_page(GFP_KERNEL)) == NULL)
1283                         goto error_1;
1284                 set_page_private(page, (unsigned long)page_header);
1285                 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1286                 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1287                 list_add(&page_header->link, &vcpu->free_pages);
1288                 ++vcpu->kvm->n_free_mmu_pages;
1289         }
1290
1291         /*
1292          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1293          * Therefore we need to allocate shadow page tables in the first
1294          * 4GB of memory, which happens to fit the DMA32 zone.
1295          */
1296         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1297         if (!page)
1298                 goto error_1;
1299         vcpu->mmu.pae_root = page_address(page);
1300         for (i = 0; i < 4; ++i)
1301                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1302
1303         return 0;
1304
1305 error_1:
1306         free_mmu_pages(vcpu);
1307         return -ENOMEM;
1308 }
1309
1310 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1311 {
1312         ASSERT(vcpu);
1313         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1314         ASSERT(list_empty(&vcpu->free_pages));
1315
1316         return alloc_mmu_pages(vcpu);
1317 }
1318
1319 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1320 {
1321         ASSERT(vcpu);
1322         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1323         ASSERT(!list_empty(&vcpu->free_pages));
1324
1325         return init_kvm_mmu(vcpu);
1326 }
1327
1328 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1329 {
1330         ASSERT(vcpu);
1331
1332         destroy_kvm_mmu(vcpu);
1333         free_mmu_pages(vcpu);
1334         mmu_free_memory_caches(vcpu);
1335 }
1336
1337 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
1338 {
1339         struct kvm *kvm = vcpu->kvm;
1340         struct kvm_mmu_page *page;
1341
1342         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1343                 int i;
1344                 u64 *pt;
1345
1346                 if (!test_bit(slot, &page->slot_bitmap))
1347                         continue;
1348
1349                 pt = __va(page->page_hpa);
1350                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1351                         /* avoid RMW */
1352                         if (pt[i] & PT_WRITABLE_MASK) {
1353                                 rmap_remove(vcpu, &pt[i]);
1354                                 pt[i] &= ~PT_WRITABLE_MASK;
1355                         }
1356         }
1357 }
1358
1359 void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
1360 {
1361         destroy_kvm_mmu(vcpu);
1362
1363         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1364                 struct kvm_mmu_page *page;
1365
1366                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1367                                     struct kvm_mmu_page, link);
1368                 kvm_mmu_zap_page(vcpu, page);
1369         }
1370
1371         mmu_free_memory_caches(vcpu);
1372         kvm_arch_ops->tlb_flush(vcpu);
1373         init_kvm_mmu(vcpu);
1374 }
1375
1376 void kvm_mmu_module_exit(void)
1377 {
1378         if (pte_chain_cache)
1379                 kmem_cache_destroy(pte_chain_cache);
1380         if (rmap_desc_cache)
1381                 kmem_cache_destroy(rmap_desc_cache);
1382 }
1383
1384 int kvm_mmu_module_init(void)
1385 {
1386         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1387                                             sizeof(struct kvm_pte_chain),
1388                                             0, 0, NULL, NULL);
1389         if (!pte_chain_cache)
1390                 goto nomem;
1391         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1392                                             sizeof(struct kvm_rmap_desc),
1393                                             0, 0, NULL, NULL);
1394         if (!rmap_desc_cache)
1395                 goto nomem;
1396
1397         return 0;
1398
1399 nomem:
1400         kvm_mmu_module_exit();
1401         return -ENOMEM;
1402 }
1403
1404 #ifdef AUDIT
1405
1406 static const char *audit_msg;
1407
1408 static gva_t canonicalize(gva_t gva)
1409 {
1410 #ifdef CONFIG_X86_64
1411         gva = (long long)(gva << 16) >> 16;
1412 #endif
1413         return gva;
1414 }
1415
1416 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1417                                 gva_t va, int level)
1418 {
1419         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1420         int i;
1421         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1422
1423         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1424                 u64 ent = pt[i];
1425
1426                 if (!(ent & PT_PRESENT_MASK))
1427                         continue;
1428
1429                 va = canonicalize(va);
1430                 if (level > 1)
1431                         audit_mappings_page(vcpu, ent, va, level - 1);
1432                 else {
1433                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1434                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1435
1436                         if ((ent & PT_PRESENT_MASK)
1437                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1438                                 printk(KERN_ERR "audit error: (%s) levels %d"
1439                                        " gva %lx gpa %llx hpa %llx ent %llx\n",
1440                                        audit_msg, vcpu->mmu.root_level,
1441                                        va, gpa, hpa, ent);
1442                 }
1443         }
1444 }
1445
1446 static void audit_mappings(struct kvm_vcpu *vcpu)
1447 {
1448         unsigned i;
1449
1450         if (vcpu->mmu.root_level == 4)
1451                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1452         else
1453                 for (i = 0; i < 4; ++i)
1454                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1455                                 audit_mappings_page(vcpu,
1456                                                     vcpu->mmu.pae_root[i],
1457                                                     i << 30,
1458                                                     2);
1459 }
1460
1461 static int count_rmaps(struct kvm_vcpu *vcpu)
1462 {
1463         int nmaps = 0;
1464         int i, j, k;
1465
1466         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1467                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1468                 struct kvm_rmap_desc *d;
1469
1470                 for (j = 0; j < m->npages; ++j) {
1471                         struct page *page = m->phys_mem[j];
1472
1473                         if (!page->private)
1474                                 continue;
1475                         if (!(page->private & 1)) {
1476                                 ++nmaps;
1477                                 continue;
1478                         }
1479                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1480                         while (d) {
1481                                 for (k = 0; k < RMAP_EXT; ++k)
1482                                         if (d->shadow_ptes[k])
1483                                                 ++nmaps;
1484                                         else
1485                                                 break;
1486                                 d = d->more;
1487                         }
1488                 }
1489         }
1490         return nmaps;
1491 }
1492
1493 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1494 {
1495         int nmaps = 0;
1496         struct kvm_mmu_page *page;
1497         int i;
1498
1499         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1500                 u64 *pt = __va(page->page_hpa);
1501
1502                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1503                         continue;
1504
1505                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1506                         u64 ent = pt[i];
1507
1508                         if (!(ent & PT_PRESENT_MASK))
1509                                 continue;
1510                         if (!(ent & PT_WRITABLE_MASK))
1511                                 continue;
1512                         ++nmaps;
1513                 }
1514         }
1515         return nmaps;
1516 }
1517
1518 static void audit_rmap(struct kvm_vcpu *vcpu)
1519 {
1520         int n_rmap = count_rmaps(vcpu);
1521         int n_actual = count_writable_mappings(vcpu);
1522
1523         if (n_rmap != n_actual)
1524                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1525                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1526 }
1527
1528 static void audit_write_protection(struct kvm_vcpu *vcpu)
1529 {
1530         struct kvm_mmu_page *page;
1531
1532         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1533                 hfn_t hfn;
1534                 struct page *pg;
1535
1536                 if (page->role.metaphysical)
1537                         continue;
1538
1539                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1540                         >> PAGE_SHIFT;
1541                 pg = pfn_to_page(hfn);
1542                 if (pg->private)
1543                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1544                                " mappings: gfn %lx role %x\n",
1545                                __FUNCTION__, audit_msg, page->gfn,
1546                                page->role.word);
1547         }
1548 }
1549
1550 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1551 {
1552         int olddbg = dbg;
1553
1554         dbg = 0;
1555         audit_msg = msg;
1556         audit_rmap(vcpu);
1557         audit_write_protection(vcpu);
1558         audit_mappings(vcpu);
1559         dbg = olddbg;
1560 }
1561
1562 #endif