]> Pileus Git - ~andy/linux/blob - drivers/kvm/kvm_main.c
[PATCH] KVM: Move find_vmx_entry() to vmx.c
[~andy/linux] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
47
48 static struct kvm_stats_debugfs_item {
49         const char *name;
50         u32 *data;
51         struct dentry *dentry;
52 } debugfs_entries[] = {
53         { "pf_fixed", &kvm_stat.pf_fixed },
54         { "pf_guest", &kvm_stat.pf_guest },
55         { "tlb_flush", &kvm_stat.tlb_flush },
56         { "invlpg", &kvm_stat.invlpg },
57         { "exits", &kvm_stat.exits },
58         { "io_exits", &kvm_stat.io_exits },
59         { "mmio_exits", &kvm_stat.mmio_exits },
60         { "signal_exits", &kvm_stat.signal_exits },
61         { "irq_exits", &kvm_stat.irq_exits },
62         { 0, 0 }
63 };
64
65 static struct dentry *debugfs_dir;
66
67 #define MAX_IO_MSRS 256
68
69 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
70 #define LMSW_GUEST_MASK 0x0eULL
71 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
72 #define CR8_RESEVED_BITS (~0x0fULL)
73 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
74
75 #ifdef CONFIG_X86_64
76 // LDT or TSS descriptor in the GDT. 16 bytes.
77 struct segment_descriptor_64 {
78         struct segment_descriptor s;
79         u32 base_higher;
80         u32 pad_zero;
81 };
82
83 #endif
84
85 unsigned long segment_base(u16 selector)
86 {
87         struct descriptor_table gdt;
88         struct segment_descriptor *d;
89         unsigned long table_base;
90         typedef unsigned long ul;
91         unsigned long v;
92
93         if (selector == 0)
94                 return 0;
95
96         asm ("sgdt %0" : "=m"(gdt));
97         table_base = gdt.base;
98
99         if (selector & 4) {           /* from ldt */
100                 u16 ldt_selector;
101
102                 asm ("sldt %0" : "=g"(ldt_selector));
103                 table_base = segment_base(ldt_selector);
104         }
105         d = (struct segment_descriptor *)(table_base + (selector & ~7));
106         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
107 #ifdef CONFIG_X86_64
108         if (d->system == 0
109             && (d->type == 2 || d->type == 9 || d->type == 11))
110                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
111 #endif
112         return v;
113 }
114 EXPORT_SYMBOL_GPL(segment_base);
115
116 int kvm_read_guest(struct kvm_vcpu *vcpu,
117                              gva_t addr,
118                              unsigned long size,
119                              void *dest)
120 {
121         unsigned char *host_buf = dest;
122         unsigned long req_size = size;
123
124         while (size) {
125                 hpa_t paddr;
126                 unsigned now;
127                 unsigned offset;
128                 hva_t guest_buf;
129
130                 paddr = gva_to_hpa(vcpu, addr);
131
132                 if (is_error_hpa(paddr))
133                         break;
134
135                 guest_buf = (hva_t)kmap_atomic(
136                                         pfn_to_page(paddr >> PAGE_SHIFT),
137                                         KM_USER0);
138                 offset = addr & ~PAGE_MASK;
139                 guest_buf |= offset;
140                 now = min(size, PAGE_SIZE - offset);
141                 memcpy(host_buf, (void*)guest_buf, now);
142                 host_buf += now;
143                 addr += now;
144                 size -= now;
145                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
146         }
147         return req_size - size;
148 }
149 EXPORT_SYMBOL_GPL(kvm_read_guest);
150
151 int kvm_write_guest(struct kvm_vcpu *vcpu,
152                              gva_t addr,
153                              unsigned long size,
154                              void *data)
155 {
156         unsigned char *host_buf = data;
157         unsigned long req_size = size;
158
159         while (size) {
160                 hpa_t paddr;
161                 unsigned now;
162                 unsigned offset;
163                 hva_t guest_buf;
164
165                 paddr = gva_to_hpa(vcpu, addr);
166
167                 if (is_error_hpa(paddr))
168                         break;
169
170                 guest_buf = (hva_t)kmap_atomic(
171                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
172                 offset = addr & ~PAGE_MASK;
173                 guest_buf |= offset;
174                 now = min(size, PAGE_SIZE - offset);
175                 memcpy((void*)guest_buf, host_buf, now);
176                 host_buf += now;
177                 addr += now;
178                 size -= now;
179                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
180         }
181         return req_size - size;
182 }
183 EXPORT_SYMBOL_GPL(kvm_write_guest);
184
185 static int vcpu_slot(struct kvm_vcpu *vcpu)
186 {
187         return vcpu - vcpu->kvm->vcpus;
188 }
189
190 /*
191  * Switches to specified vcpu, until a matching vcpu_put()
192  */
193 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
194 {
195         struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
196
197         mutex_lock(&vcpu->mutex);
198         if (unlikely(!vcpu->vmcs)) {
199                 mutex_unlock(&vcpu->mutex);
200                 return 0;
201         }
202         return kvm_arch_ops->vcpu_load(vcpu);
203 }
204
205 static void vcpu_put(struct kvm_vcpu *vcpu)
206 {
207         kvm_arch_ops->vcpu_put(vcpu);
208         put_cpu();
209         mutex_unlock(&vcpu->mutex);
210 }
211
212 static int kvm_dev_open(struct inode *inode, struct file *filp)
213 {
214         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
215         int i;
216
217         if (!kvm)
218                 return -ENOMEM;
219
220         spin_lock_init(&kvm->lock);
221         INIT_LIST_HEAD(&kvm->active_mmu_pages);
222         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
223                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
224
225                 mutex_init(&vcpu->mutex);
226                 vcpu->mmu.root_hpa = INVALID_PAGE;
227                 INIT_LIST_HEAD(&vcpu->free_pages);
228         }
229         filp->private_data = kvm;
230         return 0;
231 }
232
233 /*
234  * Free any memory in @free but not in @dont.
235  */
236 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
237                                   struct kvm_memory_slot *dont)
238 {
239         int i;
240
241         if (!dont || free->phys_mem != dont->phys_mem)
242                 if (free->phys_mem) {
243                         for (i = 0; i < free->npages; ++i)
244                                 __free_page(free->phys_mem[i]);
245                         vfree(free->phys_mem);
246                 }
247
248         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
249                 vfree(free->dirty_bitmap);
250
251         free->phys_mem = 0;
252         free->npages = 0;
253         free->dirty_bitmap = 0;
254 }
255
256 static void kvm_free_physmem(struct kvm *kvm)
257 {
258         int i;
259
260         for (i = 0; i < kvm->nmemslots; ++i)
261                 kvm_free_physmem_slot(&kvm->memslots[i], 0);
262 }
263
264 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
265 {
266         kvm_arch_ops->vcpu_free(vcpu);
267         kvm_mmu_destroy(vcpu);
268 }
269
270 static void kvm_free_vcpus(struct kvm *kvm)
271 {
272         unsigned int i;
273
274         for (i = 0; i < KVM_MAX_VCPUS; ++i)
275                 kvm_free_vcpu(&kvm->vcpus[i]);
276 }
277
278 static int kvm_dev_release(struct inode *inode, struct file *filp)
279 {
280         struct kvm *kvm = filp->private_data;
281
282         kvm_free_vcpus(kvm);
283         kvm_free_physmem(kvm);
284         kfree(kvm);
285         return 0;
286 }
287
288 static void inject_gp(struct kvm_vcpu *vcpu)
289 {
290         kvm_arch_ops->inject_gp(vcpu, 0);
291 }
292
293 static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
294                                          unsigned long cr3)
295 {
296         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
297         unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
298         int i;
299         u64 pdpte;
300         u64 *pdpt;
301         struct kvm_memory_slot *memslot;
302
303         spin_lock(&vcpu->kvm->lock);
304         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
305         /* FIXME: !memslot - emulate? 0xff? */
306         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
307
308         for (i = 0; i < 4; ++i) {
309                 pdpte = pdpt[offset + i];
310                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
311                         break;
312         }
313
314         kunmap_atomic(pdpt, KM_USER0);
315         spin_unlock(&vcpu->kvm->lock);
316
317         return i != 4;
318 }
319
320 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
321 {
322         if (cr0 & CR0_RESEVED_BITS) {
323                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
324                        cr0, vcpu->cr0);
325                 inject_gp(vcpu);
326                 return;
327         }
328
329         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
330                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
331                 inject_gp(vcpu);
332                 return;
333         }
334
335         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
336                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
337                        "and a clear PE flag\n");
338                 inject_gp(vcpu);
339                 return;
340         }
341
342         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
343 #ifdef CONFIG_X86_64
344                 if ((vcpu->shadow_efer & EFER_LME)) {
345                         int cs_db, cs_l;
346
347                         if (!is_pae(vcpu)) {
348                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
349                                        "in long mode while PAE is disabled\n");
350                                 inject_gp(vcpu);
351                                 return;
352                         }
353                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
354                         if (cs_l) {
355                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
356                                        "in long mode while CS.L == 1\n");
357                                 inject_gp(vcpu);
358                                 return;
359
360                         }
361                 } else
362 #endif
363                 if (is_pae(vcpu) &&
364                             pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
365                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
366                                "reserved bits\n");
367                         inject_gp(vcpu);
368                         return;
369                 }
370
371         }
372
373         kvm_arch_ops->set_cr0(vcpu, cr0);
374         vcpu->cr0 = cr0;
375
376         spin_lock(&vcpu->kvm->lock);
377         kvm_mmu_reset_context(vcpu);
378         spin_unlock(&vcpu->kvm->lock);
379         return;
380 }
381 EXPORT_SYMBOL_GPL(set_cr0);
382
383 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
384 {
385         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
386 }
387 EXPORT_SYMBOL_GPL(lmsw);
388
389 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
390 {
391         if (cr4 & CR4_RESEVED_BITS) {
392                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
393                 inject_gp(vcpu);
394                 return;
395         }
396
397         if (kvm_arch_ops->is_long_mode(vcpu)) {
398                 if (!(cr4 & CR4_PAE_MASK)) {
399                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
400                                "in long mode\n");
401                         inject_gp(vcpu);
402                         return;
403                 }
404         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
405                    && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
406                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
407                 inject_gp(vcpu);
408         }
409
410         if (cr4 & CR4_VMXE_MASK) {
411                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
412                 inject_gp(vcpu);
413                 return;
414         }
415         kvm_arch_ops->set_cr4(vcpu, cr4);
416         spin_lock(&vcpu->kvm->lock);
417         kvm_mmu_reset_context(vcpu);
418         spin_unlock(&vcpu->kvm->lock);
419 }
420 EXPORT_SYMBOL_GPL(set_cr4);
421
422 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
423 {
424         if (kvm_arch_ops->is_long_mode(vcpu)) {
425                 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
426                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
427                         inject_gp(vcpu);
428                         return;
429                 }
430         } else {
431                 if (cr3 & CR3_RESEVED_BITS) {
432                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
433                         inject_gp(vcpu);
434                         return;
435                 }
436                 if (is_paging(vcpu) && is_pae(vcpu) &&
437                     pdptrs_have_reserved_bits_set(vcpu, cr3)) {
438                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
439                                "reserved bits\n");
440                         inject_gp(vcpu);
441                         return;
442                 }
443         }
444
445         vcpu->cr3 = cr3;
446         spin_lock(&vcpu->kvm->lock);
447         vcpu->mmu.new_cr3(vcpu);
448         spin_unlock(&vcpu->kvm->lock);
449 }
450 EXPORT_SYMBOL_GPL(set_cr3);
451
452 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
453 {
454         if ( cr8 & CR8_RESEVED_BITS) {
455                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
456                 inject_gp(vcpu);
457                 return;
458         }
459         vcpu->cr8 = cr8;
460 }
461 EXPORT_SYMBOL_GPL(set_cr8);
462
463 void fx_init(struct kvm_vcpu *vcpu)
464 {
465         struct __attribute__ ((__packed__)) fx_image_s {
466                 u16 control; //fcw
467                 u16 status; //fsw
468                 u16 tag; // ftw
469                 u16 opcode; //fop
470                 u64 ip; // fpu ip
471                 u64 operand;// fpu dp
472                 u32 mxcsr;
473                 u32 mxcsr_mask;
474
475         } *fx_image;
476
477         fx_save(vcpu->host_fx_image);
478         fpu_init();
479         fx_save(vcpu->guest_fx_image);
480         fx_restore(vcpu->host_fx_image);
481
482         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
483         fx_image->mxcsr = 0x1f80;
484         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
485                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
486 }
487 EXPORT_SYMBOL_GPL(fx_init);
488
489 /*
490  * Creates some virtual cpus.  Good luck creating more than one.
491  */
492 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
493 {
494         int r;
495         struct kvm_vcpu *vcpu;
496
497         r = -EINVAL;
498         if (n < 0 || n >= KVM_MAX_VCPUS)
499                 goto out;
500
501         vcpu = &kvm->vcpus[n];
502
503         mutex_lock(&vcpu->mutex);
504
505         if (vcpu->vmcs) {
506                 mutex_unlock(&vcpu->mutex);
507                 return -EEXIST;
508         }
509
510         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
511                                            FX_IMAGE_ALIGN);
512         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
513
514         vcpu->cpu = -1;  /* First load will set up TR */
515         vcpu->kvm = kvm;
516         r = kvm_arch_ops->vcpu_create(vcpu);
517         if (r < 0)
518                 goto out_free_vcpus;
519
520         kvm_arch_ops->vcpu_load(vcpu);
521
522         r = kvm_arch_ops->vcpu_setup(vcpu);
523         if (r >= 0)
524                 r = kvm_mmu_init(vcpu);
525
526         vcpu_put(vcpu);
527
528         if (r < 0)
529                 goto out_free_vcpus;
530
531         return 0;
532
533 out_free_vcpus:
534         kvm_free_vcpu(vcpu);
535         mutex_unlock(&vcpu->mutex);
536 out:
537         return r;
538 }
539
540 /*
541  * Allocate some memory and give it an address in the guest physical address
542  * space.
543  *
544  * Discontiguous memory is allowed, mostly for framebuffers.
545  */
546 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
547                                            struct kvm_memory_region *mem)
548 {
549         int r;
550         gfn_t base_gfn;
551         unsigned long npages;
552         unsigned long i;
553         struct kvm_memory_slot *memslot;
554         struct kvm_memory_slot old, new;
555         int memory_config_version;
556
557         r = -EINVAL;
558         /* General sanity checks */
559         if (mem->memory_size & (PAGE_SIZE - 1))
560                 goto out;
561         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
562                 goto out;
563         if (mem->slot >= KVM_MEMORY_SLOTS)
564                 goto out;
565         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
566                 goto out;
567
568         memslot = &kvm->memslots[mem->slot];
569         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
570         npages = mem->memory_size >> PAGE_SHIFT;
571
572         if (!npages)
573                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
574
575 raced:
576         spin_lock(&kvm->lock);
577
578         memory_config_version = kvm->memory_config_version;
579         new = old = *memslot;
580
581         new.base_gfn = base_gfn;
582         new.npages = npages;
583         new.flags = mem->flags;
584
585         /* Disallow changing a memory slot's size. */
586         r = -EINVAL;
587         if (npages && old.npages && npages != old.npages)
588                 goto out_unlock;
589
590         /* Check for overlaps */
591         r = -EEXIST;
592         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
593                 struct kvm_memory_slot *s = &kvm->memslots[i];
594
595                 if (s == memslot)
596                         continue;
597                 if (!((base_gfn + npages <= s->base_gfn) ||
598                       (base_gfn >= s->base_gfn + s->npages)))
599                         goto out_unlock;
600         }
601         /*
602          * Do memory allocations outside lock.  memory_config_version will
603          * detect any races.
604          */
605         spin_unlock(&kvm->lock);
606
607         /* Deallocate if slot is being removed */
608         if (!npages)
609                 new.phys_mem = 0;
610
611         /* Free page dirty bitmap if unneeded */
612         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
613                 new.dirty_bitmap = 0;
614
615         r = -ENOMEM;
616
617         /* Allocate if a slot is being created */
618         if (npages && !new.phys_mem) {
619                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
620
621                 if (!new.phys_mem)
622                         goto out_free;
623
624                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
625                 for (i = 0; i < npages; ++i) {
626                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
627                                                      | __GFP_ZERO);
628                         if (!new.phys_mem[i])
629                                 goto out_free;
630                 }
631         }
632
633         /* Allocate page dirty bitmap if needed */
634         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
635                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
636
637                 new.dirty_bitmap = vmalloc(dirty_bytes);
638                 if (!new.dirty_bitmap)
639                         goto out_free;
640                 memset(new.dirty_bitmap, 0, dirty_bytes);
641         }
642
643         spin_lock(&kvm->lock);
644
645         if (memory_config_version != kvm->memory_config_version) {
646                 spin_unlock(&kvm->lock);
647                 kvm_free_physmem_slot(&new, &old);
648                 goto raced;
649         }
650
651         r = -EAGAIN;
652         if (kvm->busy)
653                 goto out_unlock;
654
655         if (mem->slot >= kvm->nmemslots)
656                 kvm->nmemslots = mem->slot + 1;
657
658         *memslot = new;
659         ++kvm->memory_config_version;
660
661         spin_unlock(&kvm->lock);
662
663         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
664                 struct kvm_vcpu *vcpu;
665
666                 vcpu = vcpu_load(kvm, i);
667                 if (!vcpu)
668                         continue;
669                 kvm_mmu_reset_context(vcpu);
670                 vcpu_put(vcpu);
671         }
672
673         kvm_free_physmem_slot(&old, &new);
674         return 0;
675
676 out_unlock:
677         spin_unlock(&kvm->lock);
678 out_free:
679         kvm_free_physmem_slot(&new, &old);
680 out:
681         return r;
682 }
683
684 /*
685  * Get (and clear) the dirty memory log for a memory slot.
686  */
687 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
688                                        struct kvm_dirty_log *log)
689 {
690         struct kvm_memory_slot *memslot;
691         int r, i;
692         int n;
693         unsigned long any = 0;
694
695         spin_lock(&kvm->lock);
696
697         /*
698          * Prevent changes to guest memory configuration even while the lock
699          * is not taken.
700          */
701         ++kvm->busy;
702         spin_unlock(&kvm->lock);
703         r = -EINVAL;
704         if (log->slot >= KVM_MEMORY_SLOTS)
705                 goto out;
706
707         memslot = &kvm->memslots[log->slot];
708         r = -ENOENT;
709         if (!memslot->dirty_bitmap)
710                 goto out;
711
712         n = ALIGN(memslot->npages, 8) / 8;
713
714         for (i = 0; !any && i < n; ++i)
715                 any = memslot->dirty_bitmap[i];
716
717         r = -EFAULT;
718         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
719                 goto out;
720
721
722         if (any) {
723                 spin_lock(&kvm->lock);
724                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
725                 spin_unlock(&kvm->lock);
726                 memset(memslot->dirty_bitmap, 0, n);
727                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
728                         struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
729
730                         if (!vcpu)
731                                 continue;
732                         kvm_arch_ops->tlb_flush(vcpu);
733                         vcpu_put(vcpu);
734                 }
735         }
736
737         r = 0;
738
739 out:
740         spin_lock(&kvm->lock);
741         --kvm->busy;
742         spin_unlock(&kvm->lock);
743         return r;
744 }
745
746 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
747 {
748         int i;
749
750         for (i = 0; i < kvm->nmemslots; ++i) {
751                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
752
753                 if (gfn >= memslot->base_gfn
754                     && gfn < memslot->base_gfn + memslot->npages)
755                         return memslot;
756         }
757         return 0;
758 }
759 EXPORT_SYMBOL_GPL(gfn_to_memslot);
760
761 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
762 {
763         int i;
764         struct kvm_memory_slot *memslot = 0;
765         unsigned long rel_gfn;
766
767         for (i = 0; i < kvm->nmemslots; ++i) {
768                 memslot = &kvm->memslots[i];
769
770                 if (gfn >= memslot->base_gfn
771                     && gfn < memslot->base_gfn + memslot->npages) {
772
773                         if (!memslot || !memslot->dirty_bitmap)
774                                 return;
775
776                         rel_gfn = gfn - memslot->base_gfn;
777
778                         /* avoid RMW */
779                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
780                                 set_bit(rel_gfn, memslot->dirty_bitmap);
781                         return;
782                 }
783         }
784 }
785
786 static int emulator_read_std(unsigned long addr,
787                              unsigned long *val,
788                              unsigned int bytes,
789                              struct x86_emulate_ctxt *ctxt)
790 {
791         struct kvm_vcpu *vcpu = ctxt->vcpu;
792         void *data = val;
793
794         while (bytes) {
795                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
796                 unsigned offset = addr & (PAGE_SIZE-1);
797                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
798                 unsigned long pfn;
799                 struct kvm_memory_slot *memslot;
800                 void *page;
801
802                 if (gpa == UNMAPPED_GVA)
803                         return X86EMUL_PROPAGATE_FAULT;
804                 pfn = gpa >> PAGE_SHIFT;
805                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
806                 if (!memslot)
807                         return X86EMUL_UNHANDLEABLE;
808                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
809
810                 memcpy(data, page + offset, tocopy);
811
812                 kunmap_atomic(page, KM_USER0);
813
814                 bytes -= tocopy;
815                 data += tocopy;
816                 addr += tocopy;
817         }
818
819         return X86EMUL_CONTINUE;
820 }
821
822 static int emulator_write_std(unsigned long addr,
823                               unsigned long val,
824                               unsigned int bytes,
825                               struct x86_emulate_ctxt *ctxt)
826 {
827         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
828                addr, bytes);
829         return X86EMUL_UNHANDLEABLE;
830 }
831
832 static int emulator_read_emulated(unsigned long addr,
833                                   unsigned long *val,
834                                   unsigned int bytes,
835                                   struct x86_emulate_ctxt *ctxt)
836 {
837         struct kvm_vcpu *vcpu = ctxt->vcpu;
838
839         if (vcpu->mmio_read_completed) {
840                 memcpy(val, vcpu->mmio_data, bytes);
841                 vcpu->mmio_read_completed = 0;
842                 return X86EMUL_CONTINUE;
843         } else if (emulator_read_std(addr, val, bytes, ctxt)
844                    == X86EMUL_CONTINUE)
845                 return X86EMUL_CONTINUE;
846         else {
847                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
848                 if (gpa == UNMAPPED_GVA)
849                         return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
850                 vcpu->mmio_needed = 1;
851                 vcpu->mmio_phys_addr = gpa;
852                 vcpu->mmio_size = bytes;
853                 vcpu->mmio_is_write = 0;
854
855                 return X86EMUL_UNHANDLEABLE;
856         }
857 }
858
859 static int emulator_write_emulated(unsigned long addr,
860                                    unsigned long val,
861                                    unsigned int bytes,
862                                    struct x86_emulate_ctxt *ctxt)
863 {
864         struct kvm_vcpu *vcpu = ctxt->vcpu;
865         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
866
867         if (gpa == UNMAPPED_GVA)
868                 return X86EMUL_PROPAGATE_FAULT;
869
870         vcpu->mmio_needed = 1;
871         vcpu->mmio_phys_addr = gpa;
872         vcpu->mmio_size = bytes;
873         vcpu->mmio_is_write = 1;
874         memcpy(vcpu->mmio_data, &val, bytes);
875
876         return X86EMUL_CONTINUE;
877 }
878
879 static int emulator_cmpxchg_emulated(unsigned long addr,
880                                      unsigned long old,
881                                      unsigned long new,
882                                      unsigned int bytes,
883                                      struct x86_emulate_ctxt *ctxt)
884 {
885         static int reported;
886
887         if (!reported) {
888                 reported = 1;
889                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
890         }
891         return emulator_write_emulated(addr, new, bytes, ctxt);
892 }
893
894 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
895 {
896         return kvm_arch_ops->get_segment_base(vcpu, seg);
897 }
898
899 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
900 {
901         spin_lock(&vcpu->kvm->lock);
902         vcpu->mmu.inval_page(vcpu, address);
903         spin_unlock(&vcpu->kvm->lock);
904         kvm_arch_ops->invlpg(vcpu, address);
905         return X86EMUL_CONTINUE;
906 }
907
908 int emulate_clts(struct kvm_vcpu *vcpu)
909 {
910         unsigned long cr0 = vcpu->cr0;
911
912         cr0 &= ~CR0_TS_MASK;
913         kvm_arch_ops->set_cr0(vcpu, cr0);
914         return X86EMUL_CONTINUE;
915 }
916
917 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
918 {
919         struct kvm_vcpu *vcpu = ctxt->vcpu;
920
921         switch (dr) {
922         case 0 ... 3:
923                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
924                 return X86EMUL_CONTINUE;
925         default:
926                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
927                        __FUNCTION__, dr);
928                 return X86EMUL_UNHANDLEABLE;
929         }
930 }
931
932 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
933 {
934         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
935         int exception;
936
937         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
938         if (exception) {
939                 /* FIXME: better handling */
940                 return X86EMUL_UNHANDLEABLE;
941         }
942         return X86EMUL_CONTINUE;
943 }
944
945 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
946 {
947         static int reported;
948         u8 opcodes[4];
949         unsigned long rip = ctxt->vcpu->rip;
950         unsigned long rip_linear;
951
952         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
953
954         if (reported)
955                 return;
956
957         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
958
959         printk(KERN_ERR "emulation failed but !mmio_needed?"
960                " rip %lx %02x %02x %02x %02x\n",
961                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
962         reported = 1;
963 }
964
965 struct x86_emulate_ops emulate_ops = {
966         .read_std            = emulator_read_std,
967         .write_std           = emulator_write_std,
968         .read_emulated       = emulator_read_emulated,
969         .write_emulated      = emulator_write_emulated,
970         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
971 };
972
973 int emulate_instruction(struct kvm_vcpu *vcpu,
974                         struct kvm_run *run,
975                         unsigned long cr2,
976                         u16 error_code)
977 {
978         struct x86_emulate_ctxt emulate_ctxt;
979         int r;
980         int cs_db, cs_l;
981
982         kvm_arch_ops->cache_regs(vcpu);
983
984         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
985
986         emulate_ctxt.vcpu = vcpu;
987         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
988         emulate_ctxt.cr2 = cr2;
989         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
990                 ? X86EMUL_MODE_REAL : cs_l
991                 ? X86EMUL_MODE_PROT64 : cs_db
992                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
993
994         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
995                 emulate_ctxt.cs_base = 0;
996                 emulate_ctxt.ds_base = 0;
997                 emulate_ctxt.es_base = 0;
998                 emulate_ctxt.ss_base = 0;
999         } else {
1000                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1001                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1002                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1003                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1004         }
1005
1006         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1007         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1008
1009         vcpu->mmio_is_write = 0;
1010         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1011
1012         if ((r || vcpu->mmio_is_write) && run) {
1013                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1014                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1015                 run->mmio.len = vcpu->mmio_size;
1016                 run->mmio.is_write = vcpu->mmio_is_write;
1017         }
1018
1019         if (r) {
1020                 if (!vcpu->mmio_needed) {
1021                         report_emulation_failure(&emulate_ctxt);
1022                         return EMULATE_FAIL;
1023                 }
1024                 return EMULATE_DO_MMIO;
1025         }
1026
1027         kvm_arch_ops->decache_regs(vcpu);
1028         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1029
1030         if (vcpu->mmio_is_write)
1031                 return EMULATE_DO_MMIO;
1032
1033         return EMULATE_DONE;
1034 }
1035 EXPORT_SYMBOL_GPL(emulate_instruction);
1036
1037 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1038 {
1039         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1040 }
1041
1042 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1043 {
1044         struct descriptor_table dt = { limit, base };
1045
1046         kvm_arch_ops->set_gdt(vcpu, &dt);
1047 }
1048
1049 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1050 {
1051         struct descriptor_table dt = { limit, base };
1052
1053         kvm_arch_ops->set_idt(vcpu, &dt);
1054 }
1055
1056 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1057                    unsigned long *rflags)
1058 {
1059         lmsw(vcpu, msw);
1060         *rflags = kvm_arch_ops->get_rflags(vcpu);
1061 }
1062
1063 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1064 {
1065         switch (cr) {
1066         case 0:
1067                 return vcpu->cr0;
1068         case 2:
1069                 return vcpu->cr2;
1070         case 3:
1071                 return vcpu->cr3;
1072         case 4:
1073                 return vcpu->cr4;
1074         default:
1075                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1076                 return 0;
1077         }
1078 }
1079
1080 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1081                      unsigned long *rflags)
1082 {
1083         switch (cr) {
1084         case 0:
1085                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1086                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1087                 break;
1088         case 2:
1089                 vcpu->cr2 = val;
1090                 break;
1091         case 3:
1092                 set_cr3(vcpu, val);
1093                 break;
1094         case 4:
1095                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1096                 break;
1097         default:
1098                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1099         }
1100 }
1101
1102 /*
1103  * Reads an msr value (of 'msr_index') into 'pdata'.
1104  * Returns 0 on success, non-0 otherwise.
1105  * Assumes vcpu_load() was already called.
1106  */
1107 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1108 {
1109         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1110 }
1111
1112 #ifdef CONFIG_X86_64
1113
1114 void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1115 {
1116         if (efer & EFER_RESERVED_BITS) {
1117                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1118                        efer);
1119                 inject_gp(vcpu);
1120                 return;
1121         }
1122
1123         if (is_paging(vcpu)
1124             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1125                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1126                 inject_gp(vcpu);
1127                 return;
1128         }
1129
1130         kvm_arch_ops->set_efer(vcpu, efer);
1131
1132         efer &= ~EFER_LMA;
1133         efer |= vcpu->shadow_efer & EFER_LMA;
1134
1135         vcpu->shadow_efer = efer;
1136 }
1137 EXPORT_SYMBOL_GPL(set_efer);
1138
1139 #endif
1140
1141 /*
1142  * Writes msr value into into the appropriate "register".
1143  * Returns 0 on success, non-0 otherwise.
1144  * Assumes vcpu_load() was already called.
1145  */
1146 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1147 {
1148         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1149 }
1150
1151 void kvm_resched(struct kvm_vcpu *vcpu)
1152 {
1153         vcpu_put(vcpu);
1154         cond_resched();
1155         /* Cannot fail -  no vcpu unplug yet. */
1156         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1157 }
1158 EXPORT_SYMBOL_GPL(kvm_resched);
1159
1160 void load_msrs(struct vmx_msr_entry *e, int n)
1161 {
1162         int i;
1163
1164         for (i = 0; i < n; ++i)
1165                 wrmsrl(e[i].index, e[i].data);
1166 }
1167 EXPORT_SYMBOL_GPL(load_msrs);
1168
1169 void save_msrs(struct vmx_msr_entry *e, int n)
1170 {
1171         int i;
1172
1173         for (i = 0; i < n; ++i)
1174                 rdmsrl(e[i].index, e[i].data);
1175 }
1176 EXPORT_SYMBOL_GPL(save_msrs);
1177
1178 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1179 {
1180         struct kvm_vcpu *vcpu;
1181         int r;
1182
1183         if (kvm_run->vcpu < 0 || kvm_run->vcpu >= KVM_MAX_VCPUS)
1184                 return -EINVAL;
1185
1186         vcpu = vcpu_load(kvm, kvm_run->vcpu);
1187         if (!vcpu)
1188                 return -ENOENT;
1189
1190         if (kvm_run->emulated) {
1191                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1192                 kvm_run->emulated = 0;
1193         }
1194
1195         if (kvm_run->mmio_completed) {
1196                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1197                 vcpu->mmio_read_completed = 1;
1198         }
1199
1200         vcpu->mmio_needed = 0;
1201
1202         r = kvm_arch_ops->run(vcpu, kvm_run);
1203
1204         vcpu_put(vcpu);
1205         return r;
1206 }
1207
1208 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1209 {
1210         struct kvm_vcpu *vcpu;
1211
1212         if (regs->vcpu < 0 || regs->vcpu >= KVM_MAX_VCPUS)
1213                 return -EINVAL;
1214
1215         vcpu = vcpu_load(kvm, regs->vcpu);
1216         if (!vcpu)
1217                 return -ENOENT;
1218
1219         kvm_arch_ops->cache_regs(vcpu);
1220
1221         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1222         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1223         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1224         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1225         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1226         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1227         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1228         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1229 #ifdef CONFIG_X86_64
1230         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1231         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1232         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1233         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1234         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1235         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1236         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1237         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1238 #endif
1239
1240         regs->rip = vcpu->rip;
1241         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1242
1243         /*
1244          * Don't leak debug flags in case they were set for guest debugging
1245          */
1246         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1247                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1248
1249         vcpu_put(vcpu);
1250
1251         return 0;
1252 }
1253
1254 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1255 {
1256         struct kvm_vcpu *vcpu;
1257
1258         if (regs->vcpu < 0 || regs->vcpu >= KVM_MAX_VCPUS)
1259                 return -EINVAL;
1260
1261         vcpu = vcpu_load(kvm, regs->vcpu);
1262         if (!vcpu)
1263                 return -ENOENT;
1264
1265         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1266         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1267         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1268         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1269         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1270         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1271         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1272         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1273 #ifdef CONFIG_X86_64
1274         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1275         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1276         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1277         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1278         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1279         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1280         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1281         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1282 #endif
1283
1284         vcpu->rip = regs->rip;
1285         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1286
1287         kvm_arch_ops->decache_regs(vcpu);
1288
1289         vcpu_put(vcpu);
1290
1291         return 0;
1292 }
1293
1294 static void get_segment(struct kvm_vcpu *vcpu,
1295                         struct kvm_segment *var, int seg)
1296 {
1297         return kvm_arch_ops->get_segment(vcpu, var, seg);
1298 }
1299
1300 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1301 {
1302         struct kvm_vcpu *vcpu;
1303         struct descriptor_table dt;
1304
1305         if (sregs->vcpu < 0 || sregs->vcpu >= KVM_MAX_VCPUS)
1306                 return -EINVAL;
1307         vcpu = vcpu_load(kvm, sregs->vcpu);
1308         if (!vcpu)
1309                 return -ENOENT;
1310
1311         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1312         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1313         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1314         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1315         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1316         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1317
1318         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1319         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1320
1321         kvm_arch_ops->get_idt(vcpu, &dt);
1322         sregs->idt.limit = dt.limit;
1323         sregs->idt.base = dt.base;
1324         kvm_arch_ops->get_gdt(vcpu, &dt);
1325         sregs->gdt.limit = dt.limit;
1326         sregs->gdt.base = dt.base;
1327
1328         sregs->cr0 = vcpu->cr0;
1329         sregs->cr2 = vcpu->cr2;
1330         sregs->cr3 = vcpu->cr3;
1331         sregs->cr4 = vcpu->cr4;
1332         sregs->cr8 = vcpu->cr8;
1333         sregs->efer = vcpu->shadow_efer;
1334         sregs->apic_base = vcpu->apic_base;
1335
1336         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1337                sizeof sregs->interrupt_bitmap);
1338
1339         vcpu_put(vcpu);
1340
1341         return 0;
1342 }
1343
1344 static void set_segment(struct kvm_vcpu *vcpu,
1345                         struct kvm_segment *var, int seg)
1346 {
1347         return kvm_arch_ops->set_segment(vcpu, var, seg);
1348 }
1349
1350 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1351 {
1352         struct kvm_vcpu *vcpu;
1353         int mmu_reset_needed = 0;
1354         int i;
1355         struct descriptor_table dt;
1356
1357         if (sregs->vcpu < 0 || sregs->vcpu >= KVM_MAX_VCPUS)
1358                 return -EINVAL;
1359         vcpu = vcpu_load(kvm, sregs->vcpu);
1360         if (!vcpu)
1361                 return -ENOENT;
1362
1363         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1364         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1365         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1366         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1367         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1368         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1369
1370         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1371         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1372
1373         dt.limit = sregs->idt.limit;
1374         dt.base = sregs->idt.base;
1375         kvm_arch_ops->set_idt(vcpu, &dt);
1376         dt.limit = sregs->gdt.limit;
1377         dt.base = sregs->gdt.base;
1378         kvm_arch_ops->set_gdt(vcpu, &dt);
1379
1380         vcpu->cr2 = sregs->cr2;
1381         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1382         vcpu->cr3 = sregs->cr3;
1383
1384         vcpu->cr8 = sregs->cr8;
1385
1386         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1387 #ifdef CONFIG_X86_64
1388         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1389 #endif
1390         vcpu->apic_base = sregs->apic_base;
1391
1392         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1393         kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1394
1395         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1396         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1397
1398         if (mmu_reset_needed)
1399                 kvm_mmu_reset_context(vcpu);
1400
1401         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1402                sizeof vcpu->irq_pending);
1403         vcpu->irq_summary = 0;
1404         for (i = 0; i < NR_IRQ_WORDS; ++i)
1405                 if (vcpu->irq_pending[i])
1406                         __set_bit(i, &vcpu->irq_summary);
1407
1408         vcpu_put(vcpu);
1409
1410         return 0;
1411 }
1412
1413 /*
1414  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1415  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1416  */
1417 static u32 msrs_to_save[] = {
1418         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1419         MSR_K6_STAR,
1420 #ifdef CONFIG_X86_64
1421         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1422 #endif
1423         MSR_IA32_TIME_STAMP_COUNTER,
1424 };
1425
1426
1427 /*
1428  * Adapt set_msr() to msr_io()'s calling convention
1429  */
1430 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1431 {
1432         return set_msr(vcpu, index, *data);
1433 }
1434
1435 /*
1436  * Read or write a bunch of msrs. All parameters are kernel addresses.
1437  *
1438  * @return number of msrs set successfully.
1439  */
1440 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1441                     struct kvm_msr_entry *entries,
1442                     int (*do_msr)(struct kvm_vcpu *vcpu,
1443                                   unsigned index, u64 *data))
1444 {
1445         struct kvm_vcpu *vcpu;
1446         int i;
1447
1448         if (msrs->vcpu < 0 || msrs->vcpu >= KVM_MAX_VCPUS)
1449                 return -EINVAL;
1450
1451         vcpu = vcpu_load(kvm, msrs->vcpu);
1452         if (!vcpu)
1453                 return -ENOENT;
1454
1455         for (i = 0; i < msrs->nmsrs; ++i)
1456                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1457                         break;
1458
1459         vcpu_put(vcpu);
1460
1461         return i;
1462 }
1463
1464 /*
1465  * Read or write a bunch of msrs. Parameters are user addresses.
1466  *
1467  * @return number of msrs set successfully.
1468  */
1469 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1470                   int (*do_msr)(struct kvm_vcpu *vcpu,
1471                                 unsigned index, u64 *data),
1472                   int writeback)
1473 {
1474         struct kvm_msrs msrs;
1475         struct kvm_msr_entry *entries;
1476         int r, n;
1477         unsigned size;
1478
1479         r = -EFAULT;
1480         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1481                 goto out;
1482
1483         r = -E2BIG;
1484         if (msrs.nmsrs >= MAX_IO_MSRS)
1485                 goto out;
1486
1487         r = -ENOMEM;
1488         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1489         entries = vmalloc(size);
1490         if (!entries)
1491                 goto out;
1492
1493         r = -EFAULT;
1494         if (copy_from_user(entries, user_msrs->entries, size))
1495                 goto out_free;
1496
1497         r = n = __msr_io(kvm, &msrs, entries, do_msr);
1498         if (r < 0)
1499                 goto out_free;
1500
1501         r = -EFAULT;
1502         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1503                 goto out_free;
1504
1505         r = n;
1506
1507 out_free:
1508         vfree(entries);
1509 out:
1510         return r;
1511 }
1512
1513 /*
1514  * Translate a guest virtual address to a guest physical address.
1515  */
1516 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1517 {
1518         unsigned long vaddr = tr->linear_address;
1519         struct kvm_vcpu *vcpu;
1520         gpa_t gpa;
1521
1522         vcpu = vcpu_load(kvm, tr->vcpu);
1523         if (!vcpu)
1524                 return -ENOENT;
1525         spin_lock(&kvm->lock);
1526         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1527         tr->physical_address = gpa;
1528         tr->valid = gpa != UNMAPPED_GVA;
1529         tr->writeable = 1;
1530         tr->usermode = 0;
1531         spin_unlock(&kvm->lock);
1532         vcpu_put(vcpu);
1533
1534         return 0;
1535 }
1536
1537 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1538 {
1539         struct kvm_vcpu *vcpu;
1540
1541         if (irq->vcpu < 0 || irq->vcpu >= KVM_MAX_VCPUS)
1542                 return -EINVAL;
1543         if (irq->irq < 0 || irq->irq >= 256)
1544                 return -EINVAL;
1545         vcpu = vcpu_load(kvm, irq->vcpu);
1546         if (!vcpu)
1547                 return -ENOENT;
1548
1549         set_bit(irq->irq, vcpu->irq_pending);
1550         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1551
1552         vcpu_put(vcpu);
1553
1554         return 0;
1555 }
1556
1557 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1558                                      struct kvm_debug_guest *dbg)
1559 {
1560         struct kvm_vcpu *vcpu;
1561         int r;
1562
1563         if (dbg->vcpu < 0 || dbg->vcpu >= KVM_MAX_VCPUS)
1564                 return -EINVAL;
1565         vcpu = vcpu_load(kvm, dbg->vcpu);
1566         if (!vcpu)
1567                 return -ENOENT;
1568
1569         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1570
1571         vcpu_put(vcpu);
1572
1573         return r;
1574 }
1575
1576 static long kvm_dev_ioctl(struct file *filp,
1577                           unsigned int ioctl, unsigned long arg)
1578 {
1579         struct kvm *kvm = filp->private_data;
1580         int r = -EINVAL;
1581
1582         switch (ioctl) {
1583         case KVM_CREATE_VCPU: {
1584                 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1585                 if (r)
1586                         goto out;
1587                 break;
1588         }
1589         case KVM_RUN: {
1590                 struct kvm_run kvm_run;
1591
1592                 r = -EFAULT;
1593                 if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
1594                         goto out;
1595                 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1596                 if (r < 0)
1597                         goto out;
1598                 r = -EFAULT;
1599                 if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run))
1600                         goto out;
1601                 r = 0;
1602                 break;
1603         }
1604         case KVM_GET_REGS: {
1605                 struct kvm_regs kvm_regs;
1606
1607                 r = -EFAULT;
1608                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1609                         goto out;
1610                 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1611                 if (r)
1612                         goto out;
1613                 r = -EFAULT;
1614                 if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
1615                         goto out;
1616                 r = 0;
1617                 break;
1618         }
1619         case KVM_SET_REGS: {
1620                 struct kvm_regs kvm_regs;
1621
1622                 r = -EFAULT;
1623                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1624                         goto out;
1625                 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1626                 if (r)
1627                         goto out;
1628                 r = 0;
1629                 break;
1630         }
1631         case KVM_GET_SREGS: {
1632                 struct kvm_sregs kvm_sregs;
1633
1634                 r = -EFAULT;
1635                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1636                         goto out;
1637                 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1638                 if (r)
1639                         goto out;
1640                 r = -EFAULT;
1641                 if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
1642                         goto out;
1643                 r = 0;
1644                 break;
1645         }
1646         case KVM_SET_SREGS: {
1647                 struct kvm_sregs kvm_sregs;
1648
1649                 r = -EFAULT;
1650                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1651                         goto out;
1652                 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1653                 if (r)
1654                         goto out;
1655                 r = 0;
1656                 break;
1657         }
1658         case KVM_TRANSLATE: {
1659                 struct kvm_translation tr;
1660
1661                 r = -EFAULT;
1662                 if (copy_from_user(&tr, (void *)arg, sizeof tr))
1663                         goto out;
1664                 r = kvm_dev_ioctl_translate(kvm, &tr);
1665                 if (r)
1666                         goto out;
1667                 r = -EFAULT;
1668                 if (copy_to_user((void *)arg, &tr, sizeof tr))
1669                         goto out;
1670                 r = 0;
1671                 break;
1672         }
1673         case KVM_INTERRUPT: {
1674                 struct kvm_interrupt irq;
1675
1676                 r = -EFAULT;
1677                 if (copy_from_user(&irq, (void *)arg, sizeof irq))
1678                         goto out;
1679                 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1680                 if (r)
1681                         goto out;
1682                 r = 0;
1683                 break;
1684         }
1685         case KVM_DEBUG_GUEST: {
1686                 struct kvm_debug_guest dbg;
1687
1688                 r = -EFAULT;
1689                 if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
1690                         goto out;
1691                 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1692                 if (r)
1693                         goto out;
1694                 r = 0;
1695                 break;
1696         }
1697         case KVM_SET_MEMORY_REGION: {
1698                 struct kvm_memory_region kvm_mem;
1699
1700                 r = -EFAULT;
1701                 if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
1702                         goto out;
1703                 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1704                 if (r)
1705                         goto out;
1706                 break;
1707         }
1708         case KVM_GET_DIRTY_LOG: {
1709                 struct kvm_dirty_log log;
1710
1711                 r = -EFAULT;
1712                 if (copy_from_user(&log, (void *)arg, sizeof log))
1713                         goto out;
1714                 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1715                 if (r)
1716                         goto out;
1717                 break;
1718         }
1719         case KVM_GET_MSRS:
1720                 r = msr_io(kvm, (void __user *)arg, get_msr, 1);
1721                 break;
1722         case KVM_SET_MSRS:
1723                 r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
1724                 break;
1725         case KVM_GET_MSR_INDEX_LIST: {
1726                 struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
1727                 struct kvm_msr_list msr_list;
1728                 unsigned n;
1729
1730                 r = -EFAULT;
1731                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1732                         goto out;
1733                 n = msr_list.nmsrs;
1734                 msr_list.nmsrs = ARRAY_SIZE(msrs_to_save);
1735                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1736                         goto out;
1737                 r = -E2BIG;
1738                 if (n < ARRAY_SIZE(msrs_to_save))
1739                         goto out;
1740                 r = -EFAULT;
1741                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1742                                  sizeof msrs_to_save))
1743                         goto out;
1744                 r = 0;
1745         }
1746         default:
1747                 ;
1748         }
1749 out:
1750         return r;
1751 }
1752
1753 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1754                                    unsigned long address,
1755                                    int *type)
1756 {
1757         struct kvm *kvm = vma->vm_file->private_data;
1758         unsigned long pgoff;
1759         struct kvm_memory_slot *slot;
1760         struct page *page;
1761
1762         *type = VM_FAULT_MINOR;
1763         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1764         slot = gfn_to_memslot(kvm, pgoff);
1765         if (!slot)
1766                 return NOPAGE_SIGBUS;
1767         page = gfn_to_page(slot, pgoff);
1768         if (!page)
1769                 return NOPAGE_SIGBUS;
1770         get_page(page);
1771         return page;
1772 }
1773
1774 static struct vm_operations_struct kvm_dev_vm_ops = {
1775         .nopage = kvm_dev_nopage,
1776 };
1777
1778 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1779 {
1780         vma->vm_ops = &kvm_dev_vm_ops;
1781         return 0;
1782 }
1783
1784 static struct file_operations kvm_chardev_ops = {
1785         .open           = kvm_dev_open,
1786         .release        = kvm_dev_release,
1787         .unlocked_ioctl = kvm_dev_ioctl,
1788         .compat_ioctl   = kvm_dev_ioctl,
1789         .mmap           = kvm_dev_mmap,
1790 };
1791
1792 static struct miscdevice kvm_dev = {
1793         MISC_DYNAMIC_MINOR,
1794         "kvm",
1795         &kvm_chardev_ops,
1796 };
1797
1798 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1799                        void *v)
1800 {
1801         if (val == SYS_RESTART) {
1802                 /*
1803                  * Some (well, at least mine) BIOSes hang on reboot if
1804                  * in vmx root mode.
1805                  */
1806                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1807                 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1808         }
1809         return NOTIFY_OK;
1810 }
1811
1812 static struct notifier_block kvm_reboot_notifier = {
1813         .notifier_call = kvm_reboot,
1814         .priority = 0,
1815 };
1816
1817 static __init void kvm_init_debug(void)
1818 {
1819         struct kvm_stats_debugfs_item *p;
1820
1821         debugfs_dir = debugfs_create_dir("kvm", 0);
1822         for (p = debugfs_entries; p->name; ++p)
1823                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
1824                                                p->data);
1825 }
1826
1827 static void kvm_exit_debug(void)
1828 {
1829         struct kvm_stats_debugfs_item *p;
1830
1831         for (p = debugfs_entries; p->name; ++p)
1832                 debugfs_remove(p->dentry);
1833         debugfs_remove(debugfs_dir);
1834 }
1835
1836 hpa_t bad_page_address;
1837
1838 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
1839 {
1840         int r;
1841
1842         kvm_arch_ops = ops;
1843
1844         if (!kvm_arch_ops->cpu_has_kvm_support()) {
1845                 printk(KERN_ERR "kvm: no hardware support\n");
1846                 return -EOPNOTSUPP;
1847         }
1848         if (kvm_arch_ops->disabled_by_bios()) {
1849                 printk(KERN_ERR "kvm: disabled by bios\n");
1850                 return -EOPNOTSUPP;
1851         }
1852
1853         r = kvm_arch_ops->hardware_setup();
1854         if (r < 0)
1855             return r;
1856
1857         on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
1858         register_reboot_notifier(&kvm_reboot_notifier);
1859
1860         kvm_chardev_ops.owner = module;
1861
1862         r = misc_register(&kvm_dev);
1863         if (r) {
1864                 printk (KERN_ERR "kvm: misc device register failed\n");
1865                 goto out_free;
1866         }
1867
1868         return r;
1869
1870 out_free:
1871         unregister_reboot_notifier(&kvm_reboot_notifier);
1872         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1873         kvm_arch_ops->hardware_unsetup();
1874         return r;
1875 }
1876
1877 void kvm_exit_arch(void)
1878 {
1879         misc_deregister(&kvm_dev);
1880
1881         unregister_reboot_notifier(&kvm_reboot_notifier);
1882         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1883         kvm_arch_ops->hardware_unsetup();
1884 }
1885
1886 static __init int kvm_init(void)
1887 {
1888         static struct page *bad_page;
1889         int r = 0;
1890
1891         kvm_init_debug();
1892
1893         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
1894                 r = -ENOMEM;
1895                 goto out;
1896         }
1897
1898         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
1899         memset(__va(bad_page_address), 0, PAGE_SIZE);
1900
1901         return r;
1902
1903 out:
1904         kvm_exit_debug();
1905         return r;
1906 }
1907
1908 static __exit void kvm_exit(void)
1909 {
1910         kvm_exit_debug();
1911         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
1912 }
1913
1914 module_init(kvm_init)
1915 module_exit(kvm_exit)
1916
1917 EXPORT_SYMBOL_GPL(kvm_init_arch);
1918 EXPORT_SYMBOL_GPL(kvm_exit_arch);