]> Pileus Git - ~andy/linux/blob - drivers/kvm/kvm_main.c
[PATCH] KVM: Add a global list of all virtual machines
[~andy/linux] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 static DEFINE_SPINLOCK(kvm_lock);
45 static LIST_HEAD(vm_list);
46
47 struct kvm_arch_ops *kvm_arch_ops;
48 struct kvm_stat kvm_stat;
49 EXPORT_SYMBOL_GPL(kvm_stat);
50
51 static struct kvm_stats_debugfs_item {
52         const char *name;
53         u32 *data;
54         struct dentry *dentry;
55 } debugfs_entries[] = {
56         { "pf_fixed", &kvm_stat.pf_fixed },
57         { "pf_guest", &kvm_stat.pf_guest },
58         { "tlb_flush", &kvm_stat.tlb_flush },
59         { "invlpg", &kvm_stat.invlpg },
60         { "exits", &kvm_stat.exits },
61         { "io_exits", &kvm_stat.io_exits },
62         { "mmio_exits", &kvm_stat.mmio_exits },
63         { "signal_exits", &kvm_stat.signal_exits },
64         { "irq_window", &kvm_stat.irq_window_exits },
65         { "halt_exits", &kvm_stat.halt_exits },
66         { "request_irq", &kvm_stat.request_irq_exits },
67         { "irq_exits", &kvm_stat.irq_exits },
68         { NULL, NULL }
69 };
70
71 static struct dentry *debugfs_dir;
72
73 #define MAX_IO_MSRS 256
74
75 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
76 #define LMSW_GUEST_MASK 0x0eULL
77 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
78 #define CR8_RESEVED_BITS (~0x0fULL)
79 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
80
81 #ifdef CONFIG_X86_64
82 // LDT or TSS descriptor in the GDT. 16 bytes.
83 struct segment_descriptor_64 {
84         struct segment_descriptor s;
85         u32 base_higher;
86         u32 pad_zero;
87 };
88
89 #endif
90
91 unsigned long segment_base(u16 selector)
92 {
93         struct descriptor_table gdt;
94         struct segment_descriptor *d;
95         unsigned long table_base;
96         typedef unsigned long ul;
97         unsigned long v;
98
99         if (selector == 0)
100                 return 0;
101
102         asm ("sgdt %0" : "=m"(gdt));
103         table_base = gdt.base;
104
105         if (selector & 4) {           /* from ldt */
106                 u16 ldt_selector;
107
108                 asm ("sldt %0" : "=g"(ldt_selector));
109                 table_base = segment_base(ldt_selector);
110         }
111         d = (struct segment_descriptor *)(table_base + (selector & ~7));
112         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
113 #ifdef CONFIG_X86_64
114         if (d->system == 0
115             && (d->type == 2 || d->type == 9 || d->type == 11))
116                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
117 #endif
118         return v;
119 }
120 EXPORT_SYMBOL_GPL(segment_base);
121
122 static inline int valid_vcpu(int n)
123 {
124         return likely(n >= 0 && n < KVM_MAX_VCPUS);
125 }
126
127 int kvm_read_guest(struct kvm_vcpu *vcpu,
128                              gva_t addr,
129                              unsigned long size,
130                              void *dest)
131 {
132         unsigned char *host_buf = dest;
133         unsigned long req_size = size;
134
135         while (size) {
136                 hpa_t paddr;
137                 unsigned now;
138                 unsigned offset;
139                 hva_t guest_buf;
140
141                 paddr = gva_to_hpa(vcpu, addr);
142
143                 if (is_error_hpa(paddr))
144                         break;
145
146                 guest_buf = (hva_t)kmap_atomic(
147                                         pfn_to_page(paddr >> PAGE_SHIFT),
148                                         KM_USER0);
149                 offset = addr & ~PAGE_MASK;
150                 guest_buf |= offset;
151                 now = min(size, PAGE_SIZE - offset);
152                 memcpy(host_buf, (void*)guest_buf, now);
153                 host_buf += now;
154                 addr += now;
155                 size -= now;
156                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
157         }
158         return req_size - size;
159 }
160 EXPORT_SYMBOL_GPL(kvm_read_guest);
161
162 int kvm_write_guest(struct kvm_vcpu *vcpu,
163                              gva_t addr,
164                              unsigned long size,
165                              void *data)
166 {
167         unsigned char *host_buf = data;
168         unsigned long req_size = size;
169
170         while (size) {
171                 hpa_t paddr;
172                 unsigned now;
173                 unsigned offset;
174                 hva_t guest_buf;
175
176                 paddr = gva_to_hpa(vcpu, addr);
177
178                 if (is_error_hpa(paddr))
179                         break;
180
181                 guest_buf = (hva_t)kmap_atomic(
182                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
183                 offset = addr & ~PAGE_MASK;
184                 guest_buf |= offset;
185                 now = min(size, PAGE_SIZE - offset);
186                 memcpy((void*)guest_buf, host_buf, now);
187                 host_buf += now;
188                 addr += now;
189                 size -= now;
190                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
191         }
192         return req_size - size;
193 }
194 EXPORT_SYMBOL_GPL(kvm_write_guest);
195
196 static int vcpu_slot(struct kvm_vcpu *vcpu)
197 {
198         return vcpu - vcpu->kvm->vcpus;
199 }
200
201 /*
202  * Switches to specified vcpu, until a matching vcpu_put()
203  */
204 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
205 {
206         struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
207
208         mutex_lock(&vcpu->mutex);
209         if (unlikely(!vcpu->vmcs)) {
210                 mutex_unlock(&vcpu->mutex);
211                 return NULL;
212         }
213         return kvm_arch_ops->vcpu_load(vcpu);
214 }
215
216 static void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         kvm_arch_ops->vcpu_put(vcpu);
219         mutex_unlock(&vcpu->mutex);
220 }
221
222 static int kvm_dev_open(struct inode *inode, struct file *filp)
223 {
224         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
225         int i;
226
227         if (!kvm)
228                 return -ENOMEM;
229
230         spin_lock_init(&kvm->lock);
231         INIT_LIST_HEAD(&kvm->active_mmu_pages);
232         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
233                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
234
235                 mutex_init(&vcpu->mutex);
236                 vcpu->cpu = -1;
237                 vcpu->kvm = kvm;
238                 vcpu->mmu.root_hpa = INVALID_PAGE;
239                 INIT_LIST_HEAD(&vcpu->free_pages);
240                 spin_lock(&kvm_lock);
241                 list_add(&kvm->vm_list, &vm_list);
242                 spin_unlock(&kvm_lock);
243         }
244         filp->private_data = kvm;
245         return 0;
246 }
247
248 /*
249  * Free any memory in @free but not in @dont.
250  */
251 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
252                                   struct kvm_memory_slot *dont)
253 {
254         int i;
255
256         if (!dont || free->phys_mem != dont->phys_mem)
257                 if (free->phys_mem) {
258                         for (i = 0; i < free->npages; ++i)
259                                 if (free->phys_mem[i])
260                                         __free_page(free->phys_mem[i]);
261                         vfree(free->phys_mem);
262                 }
263
264         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
265                 vfree(free->dirty_bitmap);
266
267         free->phys_mem = NULL;
268         free->npages = 0;
269         free->dirty_bitmap = NULL;
270 }
271
272 static void kvm_free_physmem(struct kvm *kvm)
273 {
274         int i;
275
276         for (i = 0; i < kvm->nmemslots; ++i)
277                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
278 }
279
280 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
281 {
282         if (!vcpu_load(vcpu->kvm, vcpu_slot(vcpu)))
283                 return;
284
285         kvm_mmu_destroy(vcpu);
286         vcpu_put(vcpu);
287         kvm_arch_ops->vcpu_free(vcpu);
288 }
289
290 static void kvm_free_vcpus(struct kvm *kvm)
291 {
292         unsigned int i;
293
294         for (i = 0; i < KVM_MAX_VCPUS; ++i)
295                 kvm_free_vcpu(&kvm->vcpus[i]);
296 }
297
298 static int kvm_dev_release(struct inode *inode, struct file *filp)
299 {
300         struct kvm *kvm = filp->private_data;
301
302         spin_lock(&kvm_lock);
303         list_del(&kvm->vm_list);
304         spin_unlock(&kvm_lock);
305         kvm_free_vcpus(kvm);
306         kvm_free_physmem(kvm);
307         kfree(kvm);
308         return 0;
309 }
310
311 static void inject_gp(struct kvm_vcpu *vcpu)
312 {
313         kvm_arch_ops->inject_gp(vcpu, 0);
314 }
315
316 /*
317  * Load the pae pdptrs.  Return true is they are all valid.
318  */
319 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
320 {
321         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
322         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
323         int i;
324         u64 pdpte;
325         u64 *pdpt;
326         int ret;
327         struct kvm_memory_slot *memslot;
328
329         spin_lock(&vcpu->kvm->lock);
330         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
331         /* FIXME: !memslot - emulate? 0xff? */
332         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
333
334         ret = 1;
335         for (i = 0; i < 4; ++i) {
336                 pdpte = pdpt[offset + i];
337                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
338                         ret = 0;
339                         goto out;
340                 }
341         }
342
343         for (i = 0; i < 4; ++i)
344                 vcpu->pdptrs[i] = pdpt[offset + i];
345
346 out:
347         kunmap_atomic(pdpt, KM_USER0);
348         spin_unlock(&vcpu->kvm->lock);
349
350         return ret;
351 }
352
353 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
354 {
355         if (cr0 & CR0_RESEVED_BITS) {
356                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
357                        cr0, vcpu->cr0);
358                 inject_gp(vcpu);
359                 return;
360         }
361
362         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
363                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
364                 inject_gp(vcpu);
365                 return;
366         }
367
368         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
369                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
370                        "and a clear PE flag\n");
371                 inject_gp(vcpu);
372                 return;
373         }
374
375         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
376 #ifdef CONFIG_X86_64
377                 if ((vcpu->shadow_efer & EFER_LME)) {
378                         int cs_db, cs_l;
379
380                         if (!is_pae(vcpu)) {
381                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
382                                        "in long mode while PAE is disabled\n");
383                                 inject_gp(vcpu);
384                                 return;
385                         }
386                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
387                         if (cs_l) {
388                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
389                                        "in long mode while CS.L == 1\n");
390                                 inject_gp(vcpu);
391                                 return;
392
393                         }
394                 } else
395 #endif
396                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
397                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
398                                "reserved bits\n");
399                         inject_gp(vcpu);
400                         return;
401                 }
402
403         }
404
405         kvm_arch_ops->set_cr0(vcpu, cr0);
406         vcpu->cr0 = cr0;
407
408         spin_lock(&vcpu->kvm->lock);
409         kvm_mmu_reset_context(vcpu);
410         spin_unlock(&vcpu->kvm->lock);
411         return;
412 }
413 EXPORT_SYMBOL_GPL(set_cr0);
414
415 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
416 {
417         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
418         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
419 }
420 EXPORT_SYMBOL_GPL(lmsw);
421
422 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
423 {
424         if (cr4 & CR4_RESEVED_BITS) {
425                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
426                 inject_gp(vcpu);
427                 return;
428         }
429
430         if (is_long_mode(vcpu)) {
431                 if (!(cr4 & CR4_PAE_MASK)) {
432                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
433                                "in long mode\n");
434                         inject_gp(vcpu);
435                         return;
436                 }
437         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
438                    && !load_pdptrs(vcpu, vcpu->cr3)) {
439                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
440                 inject_gp(vcpu);
441         }
442
443         if (cr4 & CR4_VMXE_MASK) {
444                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
445                 inject_gp(vcpu);
446                 return;
447         }
448         kvm_arch_ops->set_cr4(vcpu, cr4);
449         spin_lock(&vcpu->kvm->lock);
450         kvm_mmu_reset_context(vcpu);
451         spin_unlock(&vcpu->kvm->lock);
452 }
453 EXPORT_SYMBOL_GPL(set_cr4);
454
455 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
456 {
457         if (is_long_mode(vcpu)) {
458                 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
459                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
460                         inject_gp(vcpu);
461                         return;
462                 }
463         } else {
464                 if (cr3 & CR3_RESEVED_BITS) {
465                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
466                         inject_gp(vcpu);
467                         return;
468                 }
469                 if (is_paging(vcpu) && is_pae(vcpu) &&
470                     !load_pdptrs(vcpu, cr3)) {
471                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
472                                "reserved bits\n");
473                         inject_gp(vcpu);
474                         return;
475                 }
476         }
477
478         vcpu->cr3 = cr3;
479         spin_lock(&vcpu->kvm->lock);
480         /*
481          * Does the new cr3 value map to physical memory? (Note, we
482          * catch an invalid cr3 even in real-mode, because it would
483          * cause trouble later on when we turn on paging anyway.)
484          *
485          * A real CPU would silently accept an invalid cr3 and would
486          * attempt to use it - with largely undefined (and often hard
487          * to debug) behavior on the guest side.
488          */
489         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
490                 inject_gp(vcpu);
491         else
492                 vcpu->mmu.new_cr3(vcpu);
493         spin_unlock(&vcpu->kvm->lock);
494 }
495 EXPORT_SYMBOL_GPL(set_cr3);
496
497 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
498 {
499         if ( cr8 & CR8_RESEVED_BITS) {
500                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
501                 inject_gp(vcpu);
502                 return;
503         }
504         vcpu->cr8 = cr8;
505 }
506 EXPORT_SYMBOL_GPL(set_cr8);
507
508 void fx_init(struct kvm_vcpu *vcpu)
509 {
510         struct __attribute__ ((__packed__)) fx_image_s {
511                 u16 control; //fcw
512                 u16 status; //fsw
513                 u16 tag; // ftw
514                 u16 opcode; //fop
515                 u64 ip; // fpu ip
516                 u64 operand;// fpu dp
517                 u32 mxcsr;
518                 u32 mxcsr_mask;
519
520         } *fx_image;
521
522         fx_save(vcpu->host_fx_image);
523         fpu_init();
524         fx_save(vcpu->guest_fx_image);
525         fx_restore(vcpu->host_fx_image);
526
527         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
528         fx_image->mxcsr = 0x1f80;
529         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
530                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
531 }
532 EXPORT_SYMBOL_GPL(fx_init);
533
534 /*
535  * Creates some virtual cpus.  Good luck creating more than one.
536  */
537 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
538 {
539         int r;
540         struct kvm_vcpu *vcpu;
541
542         r = -EINVAL;
543         if (!valid_vcpu(n))
544                 goto out;
545
546         vcpu = &kvm->vcpus[n];
547
548         mutex_lock(&vcpu->mutex);
549
550         if (vcpu->vmcs) {
551                 mutex_unlock(&vcpu->mutex);
552                 return -EEXIST;
553         }
554
555         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
556                                            FX_IMAGE_ALIGN);
557         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
558
559         r = kvm_arch_ops->vcpu_create(vcpu);
560         if (r < 0)
561                 goto out_free_vcpus;
562
563         r = kvm_mmu_create(vcpu);
564         if (r < 0)
565                 goto out_free_vcpus;
566
567         kvm_arch_ops->vcpu_load(vcpu);
568         r = kvm_mmu_setup(vcpu);
569         if (r >= 0)
570                 r = kvm_arch_ops->vcpu_setup(vcpu);
571         vcpu_put(vcpu);
572
573         if (r < 0)
574                 goto out_free_vcpus;
575
576         return 0;
577
578 out_free_vcpus:
579         kvm_free_vcpu(vcpu);
580         mutex_unlock(&vcpu->mutex);
581 out:
582         return r;
583 }
584
585 /*
586  * Allocate some memory and give it an address in the guest physical address
587  * space.
588  *
589  * Discontiguous memory is allowed, mostly for framebuffers.
590  */
591 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
592                                            struct kvm_memory_region *mem)
593 {
594         int r;
595         gfn_t base_gfn;
596         unsigned long npages;
597         unsigned long i;
598         struct kvm_memory_slot *memslot;
599         struct kvm_memory_slot old, new;
600         int memory_config_version;
601
602         r = -EINVAL;
603         /* General sanity checks */
604         if (mem->memory_size & (PAGE_SIZE - 1))
605                 goto out;
606         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
607                 goto out;
608         if (mem->slot >= KVM_MEMORY_SLOTS)
609                 goto out;
610         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
611                 goto out;
612
613         memslot = &kvm->memslots[mem->slot];
614         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
615         npages = mem->memory_size >> PAGE_SHIFT;
616
617         if (!npages)
618                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
619
620 raced:
621         spin_lock(&kvm->lock);
622
623         memory_config_version = kvm->memory_config_version;
624         new = old = *memslot;
625
626         new.base_gfn = base_gfn;
627         new.npages = npages;
628         new.flags = mem->flags;
629
630         /* Disallow changing a memory slot's size. */
631         r = -EINVAL;
632         if (npages && old.npages && npages != old.npages)
633                 goto out_unlock;
634
635         /* Check for overlaps */
636         r = -EEXIST;
637         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
638                 struct kvm_memory_slot *s = &kvm->memslots[i];
639
640                 if (s == memslot)
641                         continue;
642                 if (!((base_gfn + npages <= s->base_gfn) ||
643                       (base_gfn >= s->base_gfn + s->npages)))
644                         goto out_unlock;
645         }
646         /*
647          * Do memory allocations outside lock.  memory_config_version will
648          * detect any races.
649          */
650         spin_unlock(&kvm->lock);
651
652         /* Deallocate if slot is being removed */
653         if (!npages)
654                 new.phys_mem = NULL;
655
656         /* Free page dirty bitmap if unneeded */
657         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
658                 new.dirty_bitmap = NULL;
659
660         r = -ENOMEM;
661
662         /* Allocate if a slot is being created */
663         if (npages && !new.phys_mem) {
664                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
665
666                 if (!new.phys_mem)
667                         goto out_free;
668
669                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
670                 for (i = 0; i < npages; ++i) {
671                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
672                                                      | __GFP_ZERO);
673                         if (!new.phys_mem[i])
674                                 goto out_free;
675                         new.phys_mem[i]->private = 0;
676                 }
677         }
678
679         /* Allocate page dirty bitmap if needed */
680         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
681                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
682
683                 new.dirty_bitmap = vmalloc(dirty_bytes);
684                 if (!new.dirty_bitmap)
685                         goto out_free;
686                 memset(new.dirty_bitmap, 0, dirty_bytes);
687         }
688
689         spin_lock(&kvm->lock);
690
691         if (memory_config_version != kvm->memory_config_version) {
692                 spin_unlock(&kvm->lock);
693                 kvm_free_physmem_slot(&new, &old);
694                 goto raced;
695         }
696
697         r = -EAGAIN;
698         if (kvm->busy)
699                 goto out_unlock;
700
701         if (mem->slot >= kvm->nmemslots)
702                 kvm->nmemslots = mem->slot + 1;
703
704         *memslot = new;
705         ++kvm->memory_config_version;
706
707         spin_unlock(&kvm->lock);
708
709         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
710                 struct kvm_vcpu *vcpu;
711
712                 vcpu = vcpu_load(kvm, i);
713                 if (!vcpu)
714                         continue;
715                 kvm_mmu_reset_context(vcpu);
716                 vcpu_put(vcpu);
717         }
718
719         kvm_free_physmem_slot(&old, &new);
720         return 0;
721
722 out_unlock:
723         spin_unlock(&kvm->lock);
724 out_free:
725         kvm_free_physmem_slot(&new, &old);
726 out:
727         return r;
728 }
729
730 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
731 {
732         spin_lock(&vcpu->kvm->lock);
733         kvm_mmu_slot_remove_write_access(vcpu, slot);
734         spin_unlock(&vcpu->kvm->lock);
735 }
736
737 /*
738  * Get (and clear) the dirty memory log for a memory slot.
739  */
740 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
741                                        struct kvm_dirty_log *log)
742 {
743         struct kvm_memory_slot *memslot;
744         int r, i;
745         int n;
746         int cleared;
747         unsigned long any = 0;
748
749         spin_lock(&kvm->lock);
750
751         /*
752          * Prevent changes to guest memory configuration even while the lock
753          * is not taken.
754          */
755         ++kvm->busy;
756         spin_unlock(&kvm->lock);
757         r = -EINVAL;
758         if (log->slot >= KVM_MEMORY_SLOTS)
759                 goto out;
760
761         memslot = &kvm->memslots[log->slot];
762         r = -ENOENT;
763         if (!memslot->dirty_bitmap)
764                 goto out;
765
766         n = ALIGN(memslot->npages, 8) / 8;
767
768         for (i = 0; !any && i < n; ++i)
769                 any = memslot->dirty_bitmap[i];
770
771         r = -EFAULT;
772         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
773                 goto out;
774
775
776         if (any) {
777                 cleared = 0;
778                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
779                         struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
780
781                         if (!vcpu)
782                                 continue;
783                         if (!cleared) {
784                                 do_remove_write_access(vcpu, log->slot);
785                                 memset(memslot->dirty_bitmap, 0, n);
786                                 cleared = 1;
787                         }
788                         kvm_arch_ops->tlb_flush(vcpu);
789                         vcpu_put(vcpu);
790                 }
791         }
792
793         r = 0;
794
795 out:
796         spin_lock(&kvm->lock);
797         --kvm->busy;
798         spin_unlock(&kvm->lock);
799         return r;
800 }
801
802 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
803 {
804         int i;
805
806         for (i = 0; i < kvm->nmemslots; ++i) {
807                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
808
809                 if (gfn >= memslot->base_gfn
810                     && gfn < memslot->base_gfn + memslot->npages)
811                         return memslot;
812         }
813         return NULL;
814 }
815 EXPORT_SYMBOL_GPL(gfn_to_memslot);
816
817 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
818 {
819         int i;
820         struct kvm_memory_slot *memslot = NULL;
821         unsigned long rel_gfn;
822
823         for (i = 0; i < kvm->nmemslots; ++i) {
824                 memslot = &kvm->memslots[i];
825
826                 if (gfn >= memslot->base_gfn
827                     && gfn < memslot->base_gfn + memslot->npages) {
828
829                         if (!memslot || !memslot->dirty_bitmap)
830                                 return;
831
832                         rel_gfn = gfn - memslot->base_gfn;
833
834                         /* avoid RMW */
835                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
836                                 set_bit(rel_gfn, memslot->dirty_bitmap);
837                         return;
838                 }
839         }
840 }
841
842 static int emulator_read_std(unsigned long addr,
843                              unsigned long *val,
844                              unsigned int bytes,
845                              struct x86_emulate_ctxt *ctxt)
846 {
847         struct kvm_vcpu *vcpu = ctxt->vcpu;
848         void *data = val;
849
850         while (bytes) {
851                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
852                 unsigned offset = addr & (PAGE_SIZE-1);
853                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
854                 unsigned long pfn;
855                 struct kvm_memory_slot *memslot;
856                 void *page;
857
858                 if (gpa == UNMAPPED_GVA)
859                         return X86EMUL_PROPAGATE_FAULT;
860                 pfn = gpa >> PAGE_SHIFT;
861                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
862                 if (!memslot)
863                         return X86EMUL_UNHANDLEABLE;
864                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
865
866                 memcpy(data, page + offset, tocopy);
867
868                 kunmap_atomic(page, KM_USER0);
869
870                 bytes -= tocopy;
871                 data += tocopy;
872                 addr += tocopy;
873         }
874
875         return X86EMUL_CONTINUE;
876 }
877
878 static int emulator_write_std(unsigned long addr,
879                               unsigned long val,
880                               unsigned int bytes,
881                               struct x86_emulate_ctxt *ctxt)
882 {
883         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
884                addr, bytes);
885         return X86EMUL_UNHANDLEABLE;
886 }
887
888 static int emulator_read_emulated(unsigned long addr,
889                                   unsigned long *val,
890                                   unsigned int bytes,
891                                   struct x86_emulate_ctxt *ctxt)
892 {
893         struct kvm_vcpu *vcpu = ctxt->vcpu;
894
895         if (vcpu->mmio_read_completed) {
896                 memcpy(val, vcpu->mmio_data, bytes);
897                 vcpu->mmio_read_completed = 0;
898                 return X86EMUL_CONTINUE;
899         } else if (emulator_read_std(addr, val, bytes, ctxt)
900                    == X86EMUL_CONTINUE)
901                 return X86EMUL_CONTINUE;
902         else {
903                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
904                 if (gpa == UNMAPPED_GVA)
905                         return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
906                 vcpu->mmio_needed = 1;
907                 vcpu->mmio_phys_addr = gpa;
908                 vcpu->mmio_size = bytes;
909                 vcpu->mmio_is_write = 0;
910
911                 return X86EMUL_UNHANDLEABLE;
912         }
913 }
914
915 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
916                                unsigned long val, int bytes)
917 {
918         struct kvm_memory_slot *m;
919         struct page *page;
920         void *virt;
921
922         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
923                 return 0;
924         m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
925         if (!m)
926                 return 0;
927         page = gfn_to_page(m, gpa >> PAGE_SHIFT);
928         kvm_mmu_pre_write(vcpu, gpa, bytes);
929         virt = kmap_atomic(page, KM_USER0);
930         memcpy(virt + offset_in_page(gpa), &val, bytes);
931         kunmap_atomic(virt, KM_USER0);
932         kvm_mmu_post_write(vcpu, gpa, bytes);
933         return 1;
934 }
935
936 static int emulator_write_emulated(unsigned long addr,
937                                    unsigned long val,
938                                    unsigned int bytes,
939                                    struct x86_emulate_ctxt *ctxt)
940 {
941         struct kvm_vcpu *vcpu = ctxt->vcpu;
942         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
943
944         if (gpa == UNMAPPED_GVA)
945                 return X86EMUL_PROPAGATE_FAULT;
946
947         if (emulator_write_phys(vcpu, gpa, val, bytes))
948                 return X86EMUL_CONTINUE;
949
950         vcpu->mmio_needed = 1;
951         vcpu->mmio_phys_addr = gpa;
952         vcpu->mmio_size = bytes;
953         vcpu->mmio_is_write = 1;
954         memcpy(vcpu->mmio_data, &val, bytes);
955
956         return X86EMUL_CONTINUE;
957 }
958
959 static int emulator_cmpxchg_emulated(unsigned long addr,
960                                      unsigned long old,
961                                      unsigned long new,
962                                      unsigned int bytes,
963                                      struct x86_emulate_ctxt *ctxt)
964 {
965         static int reported;
966
967         if (!reported) {
968                 reported = 1;
969                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
970         }
971         return emulator_write_emulated(addr, new, bytes, ctxt);
972 }
973
974 #ifdef CONFIG_X86_32
975
976 static int emulator_cmpxchg8b_emulated(unsigned long addr,
977                                        unsigned long old_lo,
978                                        unsigned long old_hi,
979                                        unsigned long new_lo,
980                                        unsigned long new_hi,
981                                        struct x86_emulate_ctxt *ctxt)
982 {
983         static int reported;
984         int r;
985
986         if (!reported) {
987                 reported = 1;
988                 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
989         }
990         r = emulator_write_emulated(addr, new_lo, 4, ctxt);
991         if (r != X86EMUL_CONTINUE)
992                 return r;
993         return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
994 }
995
996 #endif
997
998 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
999 {
1000         return kvm_arch_ops->get_segment_base(vcpu, seg);
1001 }
1002
1003 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1004 {
1005         return X86EMUL_CONTINUE;
1006 }
1007
1008 int emulate_clts(struct kvm_vcpu *vcpu)
1009 {
1010         unsigned long cr0;
1011
1012         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1013         cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1014         kvm_arch_ops->set_cr0(vcpu, cr0);
1015         return X86EMUL_CONTINUE;
1016 }
1017
1018 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1019 {
1020         struct kvm_vcpu *vcpu = ctxt->vcpu;
1021
1022         switch (dr) {
1023         case 0 ... 3:
1024                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1025                 return X86EMUL_CONTINUE;
1026         default:
1027                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1028                        __FUNCTION__, dr);
1029                 return X86EMUL_UNHANDLEABLE;
1030         }
1031 }
1032
1033 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1034 {
1035         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1036         int exception;
1037
1038         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1039         if (exception) {
1040                 /* FIXME: better handling */
1041                 return X86EMUL_UNHANDLEABLE;
1042         }
1043         return X86EMUL_CONTINUE;
1044 }
1045
1046 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1047 {
1048         static int reported;
1049         u8 opcodes[4];
1050         unsigned long rip = ctxt->vcpu->rip;
1051         unsigned long rip_linear;
1052
1053         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1054
1055         if (reported)
1056                 return;
1057
1058         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1059
1060         printk(KERN_ERR "emulation failed but !mmio_needed?"
1061                " rip %lx %02x %02x %02x %02x\n",
1062                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1063         reported = 1;
1064 }
1065
1066 struct x86_emulate_ops emulate_ops = {
1067         .read_std            = emulator_read_std,
1068         .write_std           = emulator_write_std,
1069         .read_emulated       = emulator_read_emulated,
1070         .write_emulated      = emulator_write_emulated,
1071         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1072 #ifdef CONFIG_X86_32
1073         .cmpxchg8b_emulated  = emulator_cmpxchg8b_emulated,
1074 #endif
1075 };
1076
1077 int emulate_instruction(struct kvm_vcpu *vcpu,
1078                         struct kvm_run *run,
1079                         unsigned long cr2,
1080                         u16 error_code)
1081 {
1082         struct x86_emulate_ctxt emulate_ctxt;
1083         int r;
1084         int cs_db, cs_l;
1085
1086         kvm_arch_ops->cache_regs(vcpu);
1087
1088         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1089
1090         emulate_ctxt.vcpu = vcpu;
1091         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1092         emulate_ctxt.cr2 = cr2;
1093         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1094                 ? X86EMUL_MODE_REAL : cs_l
1095                 ? X86EMUL_MODE_PROT64 : cs_db
1096                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1097
1098         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1099                 emulate_ctxt.cs_base = 0;
1100                 emulate_ctxt.ds_base = 0;
1101                 emulate_ctxt.es_base = 0;
1102                 emulate_ctxt.ss_base = 0;
1103         } else {
1104                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1105                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1106                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1107                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1108         }
1109
1110         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1111         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1112
1113         vcpu->mmio_is_write = 0;
1114         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1115
1116         if ((r || vcpu->mmio_is_write) && run) {
1117                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1118                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1119                 run->mmio.len = vcpu->mmio_size;
1120                 run->mmio.is_write = vcpu->mmio_is_write;
1121         }
1122
1123         if (r) {
1124                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1125                         return EMULATE_DONE;
1126                 if (!vcpu->mmio_needed) {
1127                         report_emulation_failure(&emulate_ctxt);
1128                         return EMULATE_FAIL;
1129                 }
1130                 return EMULATE_DO_MMIO;
1131         }
1132
1133         kvm_arch_ops->decache_regs(vcpu);
1134         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1135
1136         if (vcpu->mmio_is_write)
1137                 return EMULATE_DO_MMIO;
1138
1139         return EMULATE_DONE;
1140 }
1141 EXPORT_SYMBOL_GPL(emulate_instruction);
1142
1143 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1144 {
1145         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1146 }
1147
1148 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1149 {
1150         struct descriptor_table dt = { limit, base };
1151
1152         kvm_arch_ops->set_gdt(vcpu, &dt);
1153 }
1154
1155 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1156 {
1157         struct descriptor_table dt = { limit, base };
1158
1159         kvm_arch_ops->set_idt(vcpu, &dt);
1160 }
1161
1162 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1163                    unsigned long *rflags)
1164 {
1165         lmsw(vcpu, msw);
1166         *rflags = kvm_arch_ops->get_rflags(vcpu);
1167 }
1168
1169 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1170 {
1171         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1172         switch (cr) {
1173         case 0:
1174                 return vcpu->cr0;
1175         case 2:
1176                 return vcpu->cr2;
1177         case 3:
1178                 return vcpu->cr3;
1179         case 4:
1180                 return vcpu->cr4;
1181         default:
1182                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1183                 return 0;
1184         }
1185 }
1186
1187 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1188                      unsigned long *rflags)
1189 {
1190         switch (cr) {
1191         case 0:
1192                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1193                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1194                 break;
1195         case 2:
1196                 vcpu->cr2 = val;
1197                 break;
1198         case 3:
1199                 set_cr3(vcpu, val);
1200                 break;
1201         case 4:
1202                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1203                 break;
1204         default:
1205                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1206         }
1207 }
1208
1209 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1210 {
1211         u64 data;
1212
1213         switch (msr) {
1214         case 0xc0010010: /* SYSCFG */
1215         case 0xc0010015: /* HWCR */
1216         case MSR_IA32_PLATFORM_ID:
1217         case MSR_IA32_P5_MC_ADDR:
1218         case MSR_IA32_P5_MC_TYPE:
1219         case MSR_IA32_MC0_CTL:
1220         case MSR_IA32_MCG_STATUS:
1221         case MSR_IA32_MCG_CAP:
1222         case MSR_IA32_MC0_MISC:
1223         case MSR_IA32_MC0_MISC+4:
1224         case MSR_IA32_MC0_MISC+8:
1225         case MSR_IA32_MC0_MISC+12:
1226         case MSR_IA32_MC0_MISC+16:
1227         case MSR_IA32_UCODE_REV:
1228         case MSR_IA32_PERF_STATUS:
1229                 /* MTRR registers */
1230         case 0xfe:
1231         case 0x200 ... 0x2ff:
1232                 data = 0;
1233                 break;
1234         case 0xcd: /* fsb frequency */
1235                 data = 3;
1236                 break;
1237         case MSR_IA32_APICBASE:
1238                 data = vcpu->apic_base;
1239                 break;
1240         case MSR_IA32_MISC_ENABLE:
1241                 data = vcpu->ia32_misc_enable_msr;
1242                 break;
1243 #ifdef CONFIG_X86_64
1244         case MSR_EFER:
1245                 data = vcpu->shadow_efer;
1246                 break;
1247 #endif
1248         default:
1249                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1250                 return 1;
1251         }
1252         *pdata = data;
1253         return 0;
1254 }
1255 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1256
1257 /*
1258  * Reads an msr value (of 'msr_index') into 'pdata'.
1259  * Returns 0 on success, non-0 otherwise.
1260  * Assumes vcpu_load() was already called.
1261  */
1262 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1263 {
1264         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1265 }
1266
1267 #ifdef CONFIG_X86_64
1268
1269 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1270 {
1271         if (efer & EFER_RESERVED_BITS) {
1272                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1273                        efer);
1274                 inject_gp(vcpu);
1275                 return;
1276         }
1277
1278         if (is_paging(vcpu)
1279             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1280                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1281                 inject_gp(vcpu);
1282                 return;
1283         }
1284
1285         kvm_arch_ops->set_efer(vcpu, efer);
1286
1287         efer &= ~EFER_LMA;
1288         efer |= vcpu->shadow_efer & EFER_LMA;
1289
1290         vcpu->shadow_efer = efer;
1291 }
1292
1293 #endif
1294
1295 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1296 {
1297         switch (msr) {
1298 #ifdef CONFIG_X86_64
1299         case MSR_EFER:
1300                 set_efer(vcpu, data);
1301                 break;
1302 #endif
1303         case MSR_IA32_MC0_STATUS:
1304                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1305                        __FUNCTION__, data);
1306                 break;
1307         case MSR_IA32_UCODE_REV:
1308         case MSR_IA32_UCODE_WRITE:
1309         case 0x200 ... 0x2ff: /* MTRRs */
1310                 break;
1311         case MSR_IA32_APICBASE:
1312                 vcpu->apic_base = data;
1313                 break;
1314         case MSR_IA32_MISC_ENABLE:
1315                 vcpu->ia32_misc_enable_msr = data;
1316                 break;
1317         default:
1318                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1319                 return 1;
1320         }
1321         return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1324
1325 /*
1326  * Writes msr value into into the appropriate "register".
1327  * Returns 0 on success, non-0 otherwise.
1328  * Assumes vcpu_load() was already called.
1329  */
1330 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1331 {
1332         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1333 }
1334
1335 void kvm_resched(struct kvm_vcpu *vcpu)
1336 {
1337         vcpu_put(vcpu);
1338         cond_resched();
1339         /* Cannot fail -  no vcpu unplug yet. */
1340         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1341 }
1342 EXPORT_SYMBOL_GPL(kvm_resched);
1343
1344 void load_msrs(struct vmx_msr_entry *e, int n)
1345 {
1346         int i;
1347
1348         for (i = 0; i < n; ++i)
1349                 wrmsrl(e[i].index, e[i].data);
1350 }
1351 EXPORT_SYMBOL_GPL(load_msrs);
1352
1353 void save_msrs(struct vmx_msr_entry *e, int n)
1354 {
1355         int i;
1356
1357         for (i = 0; i < n; ++i)
1358                 rdmsrl(e[i].index, e[i].data);
1359 }
1360 EXPORT_SYMBOL_GPL(save_msrs);
1361
1362 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1363 {
1364         struct kvm_vcpu *vcpu;
1365         int r;
1366
1367         if (!valid_vcpu(kvm_run->vcpu))
1368                 return -EINVAL;
1369
1370         vcpu = vcpu_load(kvm, kvm_run->vcpu);
1371         if (!vcpu)
1372                 return -ENOENT;
1373
1374         /* re-sync apic's tpr */
1375         vcpu->cr8 = kvm_run->cr8;
1376
1377         if (kvm_run->emulated) {
1378                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1379                 kvm_run->emulated = 0;
1380         }
1381
1382         if (kvm_run->mmio_completed) {
1383                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1384                 vcpu->mmio_read_completed = 1;
1385         }
1386
1387         vcpu->mmio_needed = 0;
1388
1389         r = kvm_arch_ops->run(vcpu, kvm_run);
1390
1391         vcpu_put(vcpu);
1392         return r;
1393 }
1394
1395 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1396 {
1397         struct kvm_vcpu *vcpu;
1398
1399         if (!valid_vcpu(regs->vcpu))
1400                 return -EINVAL;
1401
1402         vcpu = vcpu_load(kvm, regs->vcpu);
1403         if (!vcpu)
1404                 return -ENOENT;
1405
1406         kvm_arch_ops->cache_regs(vcpu);
1407
1408         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1409         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1410         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1411         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1412         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1413         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1414         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1415         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1416 #ifdef CONFIG_X86_64
1417         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1418         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1419         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1420         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1421         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1422         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1423         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1424         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1425 #endif
1426
1427         regs->rip = vcpu->rip;
1428         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1429
1430         /*
1431          * Don't leak debug flags in case they were set for guest debugging
1432          */
1433         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1434                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1435
1436         vcpu_put(vcpu);
1437
1438         return 0;
1439 }
1440
1441 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1442 {
1443         struct kvm_vcpu *vcpu;
1444
1445         if (!valid_vcpu(regs->vcpu))
1446                 return -EINVAL;
1447
1448         vcpu = vcpu_load(kvm, regs->vcpu);
1449         if (!vcpu)
1450                 return -ENOENT;
1451
1452         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1453         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1454         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1455         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1456         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1457         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1458         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1459         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1460 #ifdef CONFIG_X86_64
1461         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1462         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1463         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1464         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1465         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1466         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1467         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1468         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1469 #endif
1470
1471         vcpu->rip = regs->rip;
1472         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1473
1474         kvm_arch_ops->decache_regs(vcpu);
1475
1476         vcpu_put(vcpu);
1477
1478         return 0;
1479 }
1480
1481 static void get_segment(struct kvm_vcpu *vcpu,
1482                         struct kvm_segment *var, int seg)
1483 {
1484         return kvm_arch_ops->get_segment(vcpu, var, seg);
1485 }
1486
1487 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1488 {
1489         struct kvm_vcpu *vcpu;
1490         struct descriptor_table dt;
1491
1492         if (!valid_vcpu(sregs->vcpu))
1493                 return -EINVAL;
1494         vcpu = vcpu_load(kvm, sregs->vcpu);
1495         if (!vcpu)
1496                 return -ENOENT;
1497
1498         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1499         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1500         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1501         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1502         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1503         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1504
1505         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1506         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1507
1508         kvm_arch_ops->get_idt(vcpu, &dt);
1509         sregs->idt.limit = dt.limit;
1510         sregs->idt.base = dt.base;
1511         kvm_arch_ops->get_gdt(vcpu, &dt);
1512         sregs->gdt.limit = dt.limit;
1513         sregs->gdt.base = dt.base;
1514
1515         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1516         sregs->cr0 = vcpu->cr0;
1517         sregs->cr2 = vcpu->cr2;
1518         sregs->cr3 = vcpu->cr3;
1519         sregs->cr4 = vcpu->cr4;
1520         sregs->cr8 = vcpu->cr8;
1521         sregs->efer = vcpu->shadow_efer;
1522         sregs->apic_base = vcpu->apic_base;
1523
1524         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1525                sizeof sregs->interrupt_bitmap);
1526
1527         vcpu_put(vcpu);
1528
1529         return 0;
1530 }
1531
1532 static void set_segment(struct kvm_vcpu *vcpu,
1533                         struct kvm_segment *var, int seg)
1534 {
1535         return kvm_arch_ops->set_segment(vcpu, var, seg);
1536 }
1537
1538 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1539 {
1540         struct kvm_vcpu *vcpu;
1541         int mmu_reset_needed = 0;
1542         int i;
1543         struct descriptor_table dt;
1544
1545         if (!valid_vcpu(sregs->vcpu))
1546                 return -EINVAL;
1547         vcpu = vcpu_load(kvm, sregs->vcpu);
1548         if (!vcpu)
1549                 return -ENOENT;
1550
1551         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1552         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1553         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1554         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1555         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1556         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1557
1558         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1559         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1560
1561         dt.limit = sregs->idt.limit;
1562         dt.base = sregs->idt.base;
1563         kvm_arch_ops->set_idt(vcpu, &dt);
1564         dt.limit = sregs->gdt.limit;
1565         dt.base = sregs->gdt.base;
1566         kvm_arch_ops->set_gdt(vcpu, &dt);
1567
1568         vcpu->cr2 = sregs->cr2;
1569         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1570         vcpu->cr3 = sregs->cr3;
1571
1572         vcpu->cr8 = sregs->cr8;
1573
1574         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1575 #ifdef CONFIG_X86_64
1576         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1577 #endif
1578         vcpu->apic_base = sregs->apic_base;
1579
1580         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1581
1582         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1583         kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1584
1585         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1586         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1587         if (!is_long_mode(vcpu) && is_pae(vcpu))
1588                 load_pdptrs(vcpu, vcpu->cr3);
1589
1590         if (mmu_reset_needed)
1591                 kvm_mmu_reset_context(vcpu);
1592
1593         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1594                sizeof vcpu->irq_pending);
1595         vcpu->irq_summary = 0;
1596         for (i = 0; i < NR_IRQ_WORDS; ++i)
1597                 if (vcpu->irq_pending[i])
1598                         __set_bit(i, &vcpu->irq_summary);
1599
1600         vcpu_put(vcpu);
1601
1602         return 0;
1603 }
1604
1605 /*
1606  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1607  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1608  *
1609  * This list is modified at module load time to reflect the
1610  * capabilities of the host cpu.
1611  */
1612 static u32 msrs_to_save[] = {
1613         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1614         MSR_K6_STAR,
1615 #ifdef CONFIG_X86_64
1616         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1617 #endif
1618         MSR_IA32_TIME_STAMP_COUNTER,
1619 };
1620
1621 static unsigned num_msrs_to_save;
1622
1623 static u32 emulated_msrs[] = {
1624         MSR_IA32_MISC_ENABLE,
1625 };
1626
1627 static __init void kvm_init_msr_list(void)
1628 {
1629         u32 dummy[2];
1630         unsigned i, j;
1631
1632         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1633                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1634                         continue;
1635                 if (j < i)
1636                         msrs_to_save[j] = msrs_to_save[i];
1637                 j++;
1638         }
1639         num_msrs_to_save = j;
1640 }
1641
1642 /*
1643  * Adapt set_msr() to msr_io()'s calling convention
1644  */
1645 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1646 {
1647         return set_msr(vcpu, index, *data);
1648 }
1649
1650 /*
1651  * Read or write a bunch of msrs. All parameters are kernel addresses.
1652  *
1653  * @return number of msrs set successfully.
1654  */
1655 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1656                     struct kvm_msr_entry *entries,
1657                     int (*do_msr)(struct kvm_vcpu *vcpu,
1658                                   unsigned index, u64 *data))
1659 {
1660         struct kvm_vcpu *vcpu;
1661         int i;
1662
1663         if (!valid_vcpu(msrs->vcpu))
1664                 return -EINVAL;
1665
1666         vcpu = vcpu_load(kvm, msrs->vcpu);
1667         if (!vcpu)
1668                 return -ENOENT;
1669
1670         for (i = 0; i < msrs->nmsrs; ++i)
1671                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1672                         break;
1673
1674         vcpu_put(vcpu);
1675
1676         return i;
1677 }
1678
1679 /*
1680  * Read or write a bunch of msrs. Parameters are user addresses.
1681  *
1682  * @return number of msrs set successfully.
1683  */
1684 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1685                   int (*do_msr)(struct kvm_vcpu *vcpu,
1686                                 unsigned index, u64 *data),
1687                   int writeback)
1688 {
1689         struct kvm_msrs msrs;
1690         struct kvm_msr_entry *entries;
1691         int r, n;
1692         unsigned size;
1693
1694         r = -EFAULT;
1695         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1696                 goto out;
1697
1698         r = -E2BIG;
1699         if (msrs.nmsrs >= MAX_IO_MSRS)
1700                 goto out;
1701
1702         r = -ENOMEM;
1703         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1704         entries = vmalloc(size);
1705         if (!entries)
1706                 goto out;
1707
1708         r = -EFAULT;
1709         if (copy_from_user(entries, user_msrs->entries, size))
1710                 goto out_free;
1711
1712         r = n = __msr_io(kvm, &msrs, entries, do_msr);
1713         if (r < 0)
1714                 goto out_free;
1715
1716         r = -EFAULT;
1717         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1718                 goto out_free;
1719
1720         r = n;
1721
1722 out_free:
1723         vfree(entries);
1724 out:
1725         return r;
1726 }
1727
1728 /*
1729  * Translate a guest virtual address to a guest physical address.
1730  */
1731 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1732 {
1733         unsigned long vaddr = tr->linear_address;
1734         struct kvm_vcpu *vcpu;
1735         gpa_t gpa;
1736
1737         vcpu = vcpu_load(kvm, tr->vcpu);
1738         if (!vcpu)
1739                 return -ENOENT;
1740         spin_lock(&kvm->lock);
1741         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1742         tr->physical_address = gpa;
1743         tr->valid = gpa != UNMAPPED_GVA;
1744         tr->writeable = 1;
1745         tr->usermode = 0;
1746         spin_unlock(&kvm->lock);
1747         vcpu_put(vcpu);
1748
1749         return 0;
1750 }
1751
1752 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1753 {
1754         struct kvm_vcpu *vcpu;
1755
1756         if (!valid_vcpu(irq->vcpu))
1757                 return -EINVAL;
1758         if (irq->irq < 0 || irq->irq >= 256)
1759                 return -EINVAL;
1760         vcpu = vcpu_load(kvm, irq->vcpu);
1761         if (!vcpu)
1762                 return -ENOENT;
1763
1764         set_bit(irq->irq, vcpu->irq_pending);
1765         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1766
1767         vcpu_put(vcpu);
1768
1769         return 0;
1770 }
1771
1772 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1773                                      struct kvm_debug_guest *dbg)
1774 {
1775         struct kvm_vcpu *vcpu;
1776         int r;
1777
1778         if (!valid_vcpu(dbg->vcpu))
1779                 return -EINVAL;
1780         vcpu = vcpu_load(kvm, dbg->vcpu);
1781         if (!vcpu)
1782                 return -ENOENT;
1783
1784         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1785
1786         vcpu_put(vcpu);
1787
1788         return r;
1789 }
1790
1791 static long kvm_dev_ioctl(struct file *filp,
1792                           unsigned int ioctl, unsigned long arg)
1793 {
1794         struct kvm *kvm = filp->private_data;
1795         void __user *argp = (void __user *)arg;
1796         int r = -EINVAL;
1797
1798         switch (ioctl) {
1799         case KVM_GET_API_VERSION:
1800                 r = KVM_API_VERSION;
1801                 break;
1802         case KVM_CREATE_VCPU: {
1803                 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1804                 if (r)
1805                         goto out;
1806                 break;
1807         }
1808         case KVM_RUN: {
1809                 struct kvm_run kvm_run;
1810
1811                 r = -EFAULT;
1812                 if (copy_from_user(&kvm_run, argp, sizeof kvm_run))
1813                         goto out;
1814                 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1815                 if (r < 0 &&  r != -EINTR)
1816                         goto out;
1817                 if (copy_to_user(argp, &kvm_run, sizeof kvm_run)) {
1818                         r = -EFAULT;
1819                         goto out;
1820                 }
1821                 break;
1822         }
1823         case KVM_GET_REGS: {
1824                 struct kvm_regs kvm_regs;
1825
1826                 r = -EFAULT;
1827                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1828                         goto out;
1829                 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1830                 if (r)
1831                         goto out;
1832                 r = -EFAULT;
1833                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
1834                         goto out;
1835                 r = 0;
1836                 break;
1837         }
1838         case KVM_SET_REGS: {
1839                 struct kvm_regs kvm_regs;
1840
1841                 r = -EFAULT;
1842                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1843                         goto out;
1844                 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1845                 if (r)
1846                         goto out;
1847                 r = 0;
1848                 break;
1849         }
1850         case KVM_GET_SREGS: {
1851                 struct kvm_sregs kvm_sregs;
1852
1853                 r = -EFAULT;
1854                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1855                         goto out;
1856                 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1857                 if (r)
1858                         goto out;
1859                 r = -EFAULT;
1860                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1861                         goto out;
1862                 r = 0;
1863                 break;
1864         }
1865         case KVM_SET_SREGS: {
1866                 struct kvm_sregs kvm_sregs;
1867
1868                 r = -EFAULT;
1869                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1870                         goto out;
1871                 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1872                 if (r)
1873                         goto out;
1874                 r = 0;
1875                 break;
1876         }
1877         case KVM_TRANSLATE: {
1878                 struct kvm_translation tr;
1879
1880                 r = -EFAULT;
1881                 if (copy_from_user(&tr, argp, sizeof tr))
1882                         goto out;
1883                 r = kvm_dev_ioctl_translate(kvm, &tr);
1884                 if (r)
1885                         goto out;
1886                 r = -EFAULT;
1887                 if (copy_to_user(argp, &tr, sizeof tr))
1888                         goto out;
1889                 r = 0;
1890                 break;
1891         }
1892         case KVM_INTERRUPT: {
1893                 struct kvm_interrupt irq;
1894
1895                 r = -EFAULT;
1896                 if (copy_from_user(&irq, argp, sizeof irq))
1897                         goto out;
1898                 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1899                 if (r)
1900                         goto out;
1901                 r = 0;
1902                 break;
1903         }
1904         case KVM_DEBUG_GUEST: {
1905                 struct kvm_debug_guest dbg;
1906
1907                 r = -EFAULT;
1908                 if (copy_from_user(&dbg, argp, sizeof dbg))
1909                         goto out;
1910                 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1911                 if (r)
1912                         goto out;
1913                 r = 0;
1914                 break;
1915         }
1916         case KVM_SET_MEMORY_REGION: {
1917                 struct kvm_memory_region kvm_mem;
1918
1919                 r = -EFAULT;
1920                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1921                         goto out;
1922                 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1923                 if (r)
1924                         goto out;
1925                 break;
1926         }
1927         case KVM_GET_DIRTY_LOG: {
1928                 struct kvm_dirty_log log;
1929
1930                 r = -EFAULT;
1931                 if (copy_from_user(&log, argp, sizeof log))
1932                         goto out;
1933                 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1934                 if (r)
1935                         goto out;
1936                 break;
1937         }
1938         case KVM_GET_MSRS:
1939                 r = msr_io(kvm, argp, get_msr, 1);
1940                 break;
1941         case KVM_SET_MSRS:
1942                 r = msr_io(kvm, argp, do_set_msr, 0);
1943                 break;
1944         case KVM_GET_MSR_INDEX_LIST: {
1945                 struct kvm_msr_list __user *user_msr_list = argp;
1946                 struct kvm_msr_list msr_list;
1947                 unsigned n;
1948
1949                 r = -EFAULT;
1950                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1951                         goto out;
1952                 n = msr_list.nmsrs;
1953                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1954                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1955                         goto out;
1956                 r = -E2BIG;
1957                 if (n < num_msrs_to_save)
1958                         goto out;
1959                 r = -EFAULT;
1960                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1961                                  num_msrs_to_save * sizeof(u32)))
1962                         goto out;
1963                 if (copy_to_user(user_msr_list->indices
1964                                  + num_msrs_to_save * sizeof(u32),
1965                                  &emulated_msrs,
1966                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1967                         goto out;
1968                 r = 0;
1969                 break;
1970         }
1971         default:
1972                 ;
1973         }
1974 out:
1975         return r;
1976 }
1977
1978 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1979                                    unsigned long address,
1980                                    int *type)
1981 {
1982         struct kvm *kvm = vma->vm_file->private_data;
1983         unsigned long pgoff;
1984         struct kvm_memory_slot *slot;
1985         struct page *page;
1986
1987         *type = VM_FAULT_MINOR;
1988         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1989         slot = gfn_to_memslot(kvm, pgoff);
1990         if (!slot)
1991                 return NOPAGE_SIGBUS;
1992         page = gfn_to_page(slot, pgoff);
1993         if (!page)
1994                 return NOPAGE_SIGBUS;
1995         get_page(page);
1996         return page;
1997 }
1998
1999 static struct vm_operations_struct kvm_dev_vm_ops = {
2000         .nopage = kvm_dev_nopage,
2001 };
2002
2003 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
2004 {
2005         vma->vm_ops = &kvm_dev_vm_ops;
2006         return 0;
2007 }
2008
2009 static struct file_operations kvm_chardev_ops = {
2010         .open           = kvm_dev_open,
2011         .release        = kvm_dev_release,
2012         .unlocked_ioctl = kvm_dev_ioctl,
2013         .compat_ioctl   = kvm_dev_ioctl,
2014         .mmap           = kvm_dev_mmap,
2015 };
2016
2017 static struct miscdevice kvm_dev = {
2018         MISC_DYNAMIC_MINOR,
2019         "kvm",
2020         &kvm_chardev_ops,
2021 };
2022
2023 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2024                        void *v)
2025 {
2026         if (val == SYS_RESTART) {
2027                 /*
2028                  * Some (well, at least mine) BIOSes hang on reboot if
2029                  * in vmx root mode.
2030                  */
2031                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2032                 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2033         }
2034         return NOTIFY_OK;
2035 }
2036
2037 static struct notifier_block kvm_reboot_notifier = {
2038         .notifier_call = kvm_reboot,
2039         .priority = 0,
2040 };
2041
2042 static __init void kvm_init_debug(void)
2043 {
2044         struct kvm_stats_debugfs_item *p;
2045
2046         debugfs_dir = debugfs_create_dir("kvm", NULL);
2047         for (p = debugfs_entries; p->name; ++p)
2048                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2049                                                p->data);
2050 }
2051
2052 static void kvm_exit_debug(void)
2053 {
2054         struct kvm_stats_debugfs_item *p;
2055
2056         for (p = debugfs_entries; p->name; ++p)
2057                 debugfs_remove(p->dentry);
2058         debugfs_remove(debugfs_dir);
2059 }
2060
2061 hpa_t bad_page_address;
2062
2063 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2064 {
2065         int r;
2066
2067         if (kvm_arch_ops) {
2068                 printk(KERN_ERR "kvm: already loaded the other module\n");
2069                 return -EEXIST;
2070         }
2071
2072         if (!ops->cpu_has_kvm_support()) {
2073                 printk(KERN_ERR "kvm: no hardware support\n");
2074                 return -EOPNOTSUPP;
2075         }
2076         if (ops->disabled_by_bios()) {
2077                 printk(KERN_ERR "kvm: disabled by bios\n");
2078                 return -EOPNOTSUPP;
2079         }
2080
2081         kvm_arch_ops = ops;
2082
2083         r = kvm_arch_ops->hardware_setup();
2084         if (r < 0)
2085             return r;
2086
2087         on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2088         register_reboot_notifier(&kvm_reboot_notifier);
2089
2090         kvm_chardev_ops.owner = module;
2091
2092         r = misc_register(&kvm_dev);
2093         if (r) {
2094                 printk (KERN_ERR "kvm: misc device register failed\n");
2095                 goto out_free;
2096         }
2097
2098         return r;
2099
2100 out_free:
2101         unregister_reboot_notifier(&kvm_reboot_notifier);
2102         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2103         kvm_arch_ops->hardware_unsetup();
2104         return r;
2105 }
2106
2107 void kvm_exit_arch(void)
2108 {
2109         misc_deregister(&kvm_dev);
2110
2111         unregister_reboot_notifier(&kvm_reboot_notifier);
2112         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2113         kvm_arch_ops->hardware_unsetup();
2114         kvm_arch_ops = NULL;
2115 }
2116
2117 static __init int kvm_init(void)
2118 {
2119         static struct page *bad_page;
2120         int r = 0;
2121
2122         kvm_init_debug();
2123
2124         kvm_init_msr_list();
2125
2126         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2127                 r = -ENOMEM;
2128                 goto out;
2129         }
2130
2131         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2132         memset(__va(bad_page_address), 0, PAGE_SIZE);
2133
2134         return r;
2135
2136 out:
2137         kvm_exit_debug();
2138         return r;
2139 }
2140
2141 static __exit void kvm_exit(void)
2142 {
2143         kvm_exit_debug();
2144         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2145 }
2146
2147 module_init(kvm_init)
2148 module_exit(kvm_exit)
2149
2150 EXPORT_SYMBOL_GPL(kvm_init_arch);
2151 EXPORT_SYMBOL_GPL(kvm_exit_arch);