]> Pileus Git - ~andy/linux/blob - drivers/iommu/intel-iommu.c
time: Revert to calling clock_was_set_delayed() while in irq context
[~andy/linux] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
48
49 #include "irq_remapping.h"
50 #include "pci.h"
51
52 #define ROOT_SIZE               VTD_PAGE_SIZE
53 #define CONTEXT_SIZE            VTD_PAGE_SIZE
54
55 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
58
59 #define IOAPIC_RANGE_START      (0xfee00000)
60 #define IOAPIC_RANGE_END        (0xfeefffff)
61 #define IOVA_START_ADDR         (0x1000)
62
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
64
65 #define MAX_AGAW_WIDTH 64
66 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
67
68 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
69 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
70
71 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
72    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
73 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
74                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
75 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
76
77 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
78 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
79 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
80
81 /* page table handling */
82 #define LEVEL_STRIDE            (9)
83 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
84
85 /*
86  * This bitmap is used to advertise the page sizes our hardware support
87  * to the IOMMU core, which will then use this information to split
88  * physically contiguous memory regions it is mapping into page sizes
89  * that we support.
90  *
91  * Traditionally the IOMMU core just handed us the mappings directly,
92  * after making sure the size is an order of a 4KiB page and that the
93  * mapping has natural alignment.
94  *
95  * To retain this behavior, we currently advertise that we support
96  * all page sizes that are an order of 4KiB.
97  *
98  * If at some point we'd like to utilize the IOMMU core's new behavior,
99  * we could change this to advertise the real page sizes we support.
100  */
101 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
102
103 static inline int agaw_to_level(int agaw)
104 {
105         return agaw + 2;
106 }
107
108 static inline int agaw_to_width(int agaw)
109 {
110         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
111 }
112
113 static inline int width_to_agaw(int width)
114 {
115         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
116 }
117
118 static inline unsigned int level_to_offset_bits(int level)
119 {
120         return (level - 1) * LEVEL_STRIDE;
121 }
122
123 static inline int pfn_level_offset(unsigned long pfn, int level)
124 {
125         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
126 }
127
128 static inline unsigned long level_mask(int level)
129 {
130         return -1UL << level_to_offset_bits(level);
131 }
132
133 static inline unsigned long level_size(int level)
134 {
135         return 1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long align_to_level(unsigned long pfn, int level)
139 {
140         return (pfn + level_size(level) - 1) & level_mask(level);
141 }
142
143 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
144 {
145         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
146 }
147
148 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
149    are never going to work. */
150 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
151 {
152         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
153 }
154
155 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
156 {
157         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159 static inline unsigned long page_to_dma_pfn(struct page *pg)
160 {
161         return mm_to_dma_pfn(page_to_pfn(pg));
162 }
163 static inline unsigned long virt_to_dma_pfn(void *p)
164 {
165         return page_to_dma_pfn(virt_to_page(p));
166 }
167
168 /* global iommu list, set NULL for ignored DMAR units */
169 static struct intel_iommu **g_iommus;
170
171 static void __init check_tylersburg_isoch(void);
172 static int rwbf_quirk;
173
174 /*
175  * set to 1 to panic kernel if can't successfully enable VT-d
176  * (used when kernel is launched w/ TXT)
177  */
178 static int force_on = 0;
179
180 /*
181  * 0: Present
182  * 1-11: Reserved
183  * 12-63: Context Ptr (12 - (haw-1))
184  * 64-127: Reserved
185  */
186 struct root_entry {
187         u64     val;
188         u64     rsvd1;
189 };
190 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
191 static inline bool root_present(struct root_entry *root)
192 {
193         return (root->val & 1);
194 }
195 static inline void set_root_present(struct root_entry *root)
196 {
197         root->val |= 1;
198 }
199 static inline void set_root_value(struct root_entry *root, unsigned long value)
200 {
201         root->val |= value & VTD_PAGE_MASK;
202 }
203
204 static inline struct context_entry *
205 get_context_addr_from_root(struct root_entry *root)
206 {
207         return (struct context_entry *)
208                 (root_present(root)?phys_to_virt(
209                 root->val & VTD_PAGE_MASK) :
210                 NULL);
211 }
212
213 /*
214  * low 64 bits:
215  * 0: present
216  * 1: fault processing disable
217  * 2-3: translation type
218  * 12-63: address space root
219  * high 64 bits:
220  * 0-2: address width
221  * 3-6: aval
222  * 8-23: domain id
223  */
224 struct context_entry {
225         u64 lo;
226         u64 hi;
227 };
228
229 static inline bool context_present(struct context_entry *context)
230 {
231         return (context->lo & 1);
232 }
233 static inline void context_set_present(struct context_entry *context)
234 {
235         context->lo |= 1;
236 }
237
238 static inline void context_set_fault_enable(struct context_entry *context)
239 {
240         context->lo &= (((u64)-1) << 2) | 1;
241 }
242
243 static inline void context_set_translation_type(struct context_entry *context,
244                                                 unsigned long value)
245 {
246         context->lo &= (((u64)-1) << 4) | 3;
247         context->lo |= (value & 3) << 2;
248 }
249
250 static inline void context_set_address_root(struct context_entry *context,
251                                             unsigned long value)
252 {
253         context->lo |= value & VTD_PAGE_MASK;
254 }
255
256 static inline void context_set_address_width(struct context_entry *context,
257                                              unsigned long value)
258 {
259         context->hi |= value & 7;
260 }
261
262 static inline void context_set_domain_id(struct context_entry *context,
263                                          unsigned long value)
264 {
265         context->hi |= (value & ((1 << 16) - 1)) << 8;
266 }
267
268 static inline void context_clear_entry(struct context_entry *context)
269 {
270         context->lo = 0;
271         context->hi = 0;
272 }
273
274 /*
275  * 0: readable
276  * 1: writable
277  * 2-6: reserved
278  * 7: super page
279  * 8-10: available
280  * 11: snoop behavior
281  * 12-63: Host physcial address
282  */
283 struct dma_pte {
284         u64 val;
285 };
286
287 static inline void dma_clear_pte(struct dma_pte *pte)
288 {
289         pte->val = 0;
290 }
291
292 static inline u64 dma_pte_addr(struct dma_pte *pte)
293 {
294 #ifdef CONFIG_64BIT
295         return pte->val & VTD_PAGE_MASK;
296 #else
297         /* Must have a full atomic 64-bit read */
298         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
299 #endif
300 }
301
302 static inline bool dma_pte_present(struct dma_pte *pte)
303 {
304         return (pte->val & 3) != 0;
305 }
306
307 static inline bool dma_pte_superpage(struct dma_pte *pte)
308 {
309         return (pte->val & (1 << 7));
310 }
311
312 static inline int first_pte_in_page(struct dma_pte *pte)
313 {
314         return !((unsigned long)pte & ~VTD_PAGE_MASK);
315 }
316
317 /*
318  * This domain is a statically identity mapping domain.
319  *      1. This domain creats a static 1:1 mapping to all usable memory.
320  *      2. It maps to each iommu if successful.
321  *      3. Each iommu mapps to this domain if successful.
322  */
323 static struct dmar_domain *si_domain;
324 static int hw_pass_through = 1;
325
326 /* devices under the same p2p bridge are owned in one domain */
327 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
328
329 /* domain represents a virtual machine, more than one devices
330  * across iommus may be owned in one domain, e.g. kvm guest.
331  */
332 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
333
334 /* si_domain contains mulitple devices */
335 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
336
337 /* define the limit of IOMMUs supported in each domain */
338 #ifdef  CONFIG_X86
339 # define        IOMMU_UNITS_SUPPORTED   MAX_IO_APICS
340 #else
341 # define        IOMMU_UNITS_SUPPORTED   64
342 #endif
343
344 struct dmar_domain {
345         int     id;                     /* domain id */
346         int     nid;                    /* node id */
347         DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
348                                         /* bitmap of iommus this domain uses*/
349
350         struct list_head devices;       /* all devices' list */
351         struct iova_domain iovad;       /* iova's that belong to this domain */
352
353         struct dma_pte  *pgd;           /* virtual address */
354         int             gaw;            /* max guest address width */
355
356         /* adjusted guest address width, 0 is level 2 30-bit */
357         int             agaw;
358
359         int             flags;          /* flags to find out type of domain */
360
361         int             iommu_coherency;/* indicate coherency of iommu access */
362         int             iommu_snooping; /* indicate snooping control feature*/
363         int             iommu_count;    /* reference count of iommu */
364         int             iommu_superpage;/* Level of superpages supported:
365                                            0 == 4KiB (no superpages), 1 == 2MiB,
366                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
367         spinlock_t      iommu_lock;     /* protect iommu set in domain */
368         u64             max_addr;       /* maximum mapped address */
369 };
370
371 /* PCI domain-device relationship */
372 struct device_domain_info {
373         struct list_head link;  /* link to domain siblings */
374         struct list_head global; /* link to global list */
375         int segment;            /* PCI domain */
376         u8 bus;                 /* PCI bus number */
377         u8 devfn;               /* PCI devfn number */
378         struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
379         struct intel_iommu *iommu; /* IOMMU used by this device */
380         struct dmar_domain *domain; /* pointer to domain */
381 };
382
383 static void flush_unmaps_timeout(unsigned long data);
384
385 static DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
386
387 #define HIGH_WATER_MARK 250
388 struct deferred_flush_tables {
389         int next;
390         struct iova *iova[HIGH_WATER_MARK];
391         struct dmar_domain *domain[HIGH_WATER_MARK];
392 };
393
394 static struct deferred_flush_tables *deferred_flush;
395
396 /* bitmap for indexing intel_iommus */
397 static int g_num_of_iommus;
398
399 static DEFINE_SPINLOCK(async_umap_flush_lock);
400 static LIST_HEAD(unmaps_to_do);
401
402 static int timer_on;
403 static long list_size;
404
405 static void domain_remove_dev_info(struct dmar_domain *domain);
406
407 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
408 int dmar_disabled = 0;
409 #else
410 int dmar_disabled = 1;
411 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
412
413 int intel_iommu_enabled = 0;
414 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
415
416 static int dmar_map_gfx = 1;
417 static int dmar_forcedac;
418 static int intel_iommu_strict;
419 static int intel_iommu_superpage = 1;
420
421 int intel_iommu_gfx_mapped;
422 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
423
424 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
425 static DEFINE_SPINLOCK(device_domain_lock);
426 static LIST_HEAD(device_domain_list);
427
428 static struct iommu_ops intel_iommu_ops;
429
430 static int __init intel_iommu_setup(char *str)
431 {
432         if (!str)
433                 return -EINVAL;
434         while (*str) {
435                 if (!strncmp(str, "on", 2)) {
436                         dmar_disabled = 0;
437                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
438                 } else if (!strncmp(str, "off", 3)) {
439                         dmar_disabled = 1;
440                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
441                 } else if (!strncmp(str, "igfx_off", 8)) {
442                         dmar_map_gfx = 0;
443                         printk(KERN_INFO
444                                 "Intel-IOMMU: disable GFX device mapping\n");
445                 } else if (!strncmp(str, "forcedac", 8)) {
446                         printk(KERN_INFO
447                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
448                         dmar_forcedac = 1;
449                 } else if (!strncmp(str, "strict", 6)) {
450                         printk(KERN_INFO
451                                 "Intel-IOMMU: disable batched IOTLB flush\n");
452                         intel_iommu_strict = 1;
453                 } else if (!strncmp(str, "sp_off", 6)) {
454                         printk(KERN_INFO
455                                 "Intel-IOMMU: disable supported super page\n");
456                         intel_iommu_superpage = 0;
457                 }
458
459                 str += strcspn(str, ",");
460                 while (*str == ',')
461                         str++;
462         }
463         return 0;
464 }
465 __setup("intel_iommu=", intel_iommu_setup);
466
467 static struct kmem_cache *iommu_domain_cache;
468 static struct kmem_cache *iommu_devinfo_cache;
469 static struct kmem_cache *iommu_iova_cache;
470
471 static inline void *alloc_pgtable_page(int node)
472 {
473         struct page *page;
474         void *vaddr = NULL;
475
476         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
477         if (page)
478                 vaddr = page_address(page);
479         return vaddr;
480 }
481
482 static inline void free_pgtable_page(void *vaddr)
483 {
484         free_page((unsigned long)vaddr);
485 }
486
487 static inline void *alloc_domain_mem(void)
488 {
489         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
490 }
491
492 static void free_domain_mem(void *vaddr)
493 {
494         kmem_cache_free(iommu_domain_cache, vaddr);
495 }
496
497 static inline void * alloc_devinfo_mem(void)
498 {
499         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
500 }
501
502 static inline void free_devinfo_mem(void *vaddr)
503 {
504         kmem_cache_free(iommu_devinfo_cache, vaddr);
505 }
506
507 struct iova *alloc_iova_mem(void)
508 {
509         return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
510 }
511
512 void free_iova_mem(struct iova *iova)
513 {
514         kmem_cache_free(iommu_iova_cache, iova);
515 }
516
517
518 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
519 {
520         unsigned long sagaw;
521         int agaw = -1;
522
523         sagaw = cap_sagaw(iommu->cap);
524         for (agaw = width_to_agaw(max_gaw);
525              agaw >= 0; agaw--) {
526                 if (test_bit(agaw, &sagaw))
527                         break;
528         }
529
530         return agaw;
531 }
532
533 /*
534  * Calculate max SAGAW for each iommu.
535  */
536 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
537 {
538         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
539 }
540
541 /*
542  * calculate agaw for each iommu.
543  * "SAGAW" may be different across iommus, use a default agaw, and
544  * get a supported less agaw for iommus that don't support the default agaw.
545  */
546 int iommu_calculate_agaw(struct intel_iommu *iommu)
547 {
548         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
549 }
550
551 /* This functionin only returns single iommu in a domain */
552 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
553 {
554         int iommu_id;
555
556         /* si_domain and vm domain should not get here. */
557         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
558         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
559
560         iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
561         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
562                 return NULL;
563
564         return g_iommus[iommu_id];
565 }
566
567 static void domain_update_iommu_coherency(struct dmar_domain *domain)
568 {
569         int i;
570
571         i = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
572
573         domain->iommu_coherency = i < g_num_of_iommus ? 1 : 0;
574
575         for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
576                 if (!ecap_coherent(g_iommus[i]->ecap)) {
577                         domain->iommu_coherency = 0;
578                         break;
579                 }
580         }
581 }
582
583 static void domain_update_iommu_snooping(struct dmar_domain *domain)
584 {
585         int i;
586
587         domain->iommu_snooping = 1;
588
589         for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
590                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
591                         domain->iommu_snooping = 0;
592                         break;
593                 }
594         }
595 }
596
597 static void domain_update_iommu_superpage(struct dmar_domain *domain)
598 {
599         struct dmar_drhd_unit *drhd;
600         struct intel_iommu *iommu = NULL;
601         int mask = 0xf;
602
603         if (!intel_iommu_superpage) {
604                 domain->iommu_superpage = 0;
605                 return;
606         }
607
608         /* set iommu_superpage to the smallest common denominator */
609         for_each_active_iommu(iommu, drhd) {
610                 mask &= cap_super_page_val(iommu->cap);
611                 if (!mask) {
612                         break;
613                 }
614         }
615         domain->iommu_superpage = fls(mask);
616 }
617
618 /* Some capabilities may be different across iommus */
619 static void domain_update_iommu_cap(struct dmar_domain *domain)
620 {
621         domain_update_iommu_coherency(domain);
622         domain_update_iommu_snooping(domain);
623         domain_update_iommu_superpage(domain);
624 }
625
626 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
627 {
628         struct dmar_drhd_unit *drhd = NULL;
629         int i;
630
631         for_each_active_drhd_unit(drhd) {
632                 if (segment != drhd->segment)
633                         continue;
634
635                 for (i = 0; i < drhd->devices_cnt; i++) {
636                         if (drhd->devices[i] &&
637                             drhd->devices[i]->bus->number == bus &&
638                             drhd->devices[i]->devfn == devfn)
639                                 return drhd->iommu;
640                         if (drhd->devices[i] &&
641                             drhd->devices[i]->subordinate &&
642                             drhd->devices[i]->subordinate->number <= bus &&
643                             drhd->devices[i]->subordinate->busn_res.end >= bus)
644                                 return drhd->iommu;
645                 }
646
647                 if (drhd->include_all)
648                         return drhd->iommu;
649         }
650
651         return NULL;
652 }
653
654 static void domain_flush_cache(struct dmar_domain *domain,
655                                void *addr, int size)
656 {
657         if (!domain->iommu_coherency)
658                 clflush_cache_range(addr, size);
659 }
660
661 /* Gets context entry for a given bus and devfn */
662 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
663                 u8 bus, u8 devfn)
664 {
665         struct root_entry *root;
666         struct context_entry *context;
667         unsigned long phy_addr;
668         unsigned long flags;
669
670         spin_lock_irqsave(&iommu->lock, flags);
671         root = &iommu->root_entry[bus];
672         context = get_context_addr_from_root(root);
673         if (!context) {
674                 context = (struct context_entry *)
675                                 alloc_pgtable_page(iommu->node);
676                 if (!context) {
677                         spin_unlock_irqrestore(&iommu->lock, flags);
678                         return NULL;
679                 }
680                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
681                 phy_addr = virt_to_phys((void *)context);
682                 set_root_value(root, phy_addr);
683                 set_root_present(root);
684                 __iommu_flush_cache(iommu, root, sizeof(*root));
685         }
686         spin_unlock_irqrestore(&iommu->lock, flags);
687         return &context[devfn];
688 }
689
690 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
691 {
692         struct root_entry *root;
693         struct context_entry *context;
694         int ret;
695         unsigned long flags;
696
697         spin_lock_irqsave(&iommu->lock, flags);
698         root = &iommu->root_entry[bus];
699         context = get_context_addr_from_root(root);
700         if (!context) {
701                 ret = 0;
702                 goto out;
703         }
704         ret = context_present(&context[devfn]);
705 out:
706         spin_unlock_irqrestore(&iommu->lock, flags);
707         return ret;
708 }
709
710 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
711 {
712         struct root_entry *root;
713         struct context_entry *context;
714         unsigned long flags;
715
716         spin_lock_irqsave(&iommu->lock, flags);
717         root = &iommu->root_entry[bus];
718         context = get_context_addr_from_root(root);
719         if (context) {
720                 context_clear_entry(&context[devfn]);
721                 __iommu_flush_cache(iommu, &context[devfn], \
722                         sizeof(*context));
723         }
724         spin_unlock_irqrestore(&iommu->lock, flags);
725 }
726
727 static void free_context_table(struct intel_iommu *iommu)
728 {
729         struct root_entry *root;
730         int i;
731         unsigned long flags;
732         struct context_entry *context;
733
734         spin_lock_irqsave(&iommu->lock, flags);
735         if (!iommu->root_entry) {
736                 goto out;
737         }
738         for (i = 0; i < ROOT_ENTRY_NR; i++) {
739                 root = &iommu->root_entry[i];
740                 context = get_context_addr_from_root(root);
741                 if (context)
742                         free_pgtable_page(context);
743         }
744         free_pgtable_page(iommu->root_entry);
745         iommu->root_entry = NULL;
746 out:
747         spin_unlock_irqrestore(&iommu->lock, flags);
748 }
749
750 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
751                                       unsigned long pfn, int target_level)
752 {
753         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
754         struct dma_pte *parent, *pte = NULL;
755         int level = agaw_to_level(domain->agaw);
756         int offset;
757
758         BUG_ON(!domain->pgd);
759
760         if (addr_width < BITS_PER_LONG && pfn >> addr_width)
761                 /* Address beyond IOMMU's addressing capabilities. */
762                 return NULL;
763
764         parent = domain->pgd;
765
766         while (level > 0) {
767                 void *tmp_page;
768
769                 offset = pfn_level_offset(pfn, level);
770                 pte = &parent[offset];
771                 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
772                         break;
773                 if (level == target_level)
774                         break;
775
776                 if (!dma_pte_present(pte)) {
777                         uint64_t pteval;
778
779                         tmp_page = alloc_pgtable_page(domain->nid);
780
781                         if (!tmp_page)
782                                 return NULL;
783
784                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
785                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
786                         if (cmpxchg64(&pte->val, 0ULL, pteval)) {
787                                 /* Someone else set it while we were thinking; use theirs. */
788                                 free_pgtable_page(tmp_page);
789                         } else {
790                                 dma_pte_addr(pte);
791                                 domain_flush_cache(domain, pte, sizeof(*pte));
792                         }
793                 }
794                 parent = phys_to_virt(dma_pte_addr(pte));
795                 level--;
796         }
797
798         return pte;
799 }
800
801
802 /* return address's pte at specific level */
803 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
804                                          unsigned long pfn,
805                                          int level, int *large_page)
806 {
807         struct dma_pte *parent, *pte = NULL;
808         int total = agaw_to_level(domain->agaw);
809         int offset;
810
811         parent = domain->pgd;
812         while (level <= total) {
813                 offset = pfn_level_offset(pfn, total);
814                 pte = &parent[offset];
815                 if (level == total)
816                         return pte;
817
818                 if (!dma_pte_present(pte)) {
819                         *large_page = total;
820                         break;
821                 }
822
823                 if (pte->val & DMA_PTE_LARGE_PAGE) {
824                         *large_page = total;
825                         return pte;
826                 }
827
828                 parent = phys_to_virt(dma_pte_addr(pte));
829                 total--;
830         }
831         return NULL;
832 }
833
834 /* clear last level pte, a tlb flush should be followed */
835 static int dma_pte_clear_range(struct dmar_domain *domain,
836                                 unsigned long start_pfn,
837                                 unsigned long last_pfn)
838 {
839         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
840         unsigned int large_page = 1;
841         struct dma_pte *first_pte, *pte;
842
843         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
844         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
845         BUG_ON(start_pfn > last_pfn);
846
847         /* we don't need lock here; nobody else touches the iova range */
848         do {
849                 large_page = 1;
850                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
851                 if (!pte) {
852                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
853                         continue;
854                 }
855                 do {
856                         dma_clear_pte(pte);
857                         start_pfn += lvl_to_nr_pages(large_page);
858                         pte++;
859                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
860
861                 domain_flush_cache(domain, first_pte,
862                                    (void *)pte - (void *)first_pte);
863
864         } while (start_pfn && start_pfn <= last_pfn);
865
866         return min_t(int, (large_page - 1) * 9, MAX_AGAW_PFN_WIDTH);
867 }
868
869 static void dma_pte_free_level(struct dmar_domain *domain, int level,
870                                struct dma_pte *pte, unsigned long pfn,
871                                unsigned long start_pfn, unsigned long last_pfn)
872 {
873         pfn = max(start_pfn, pfn);
874         pte = &pte[pfn_level_offset(pfn, level)];
875
876         do {
877                 unsigned long level_pfn;
878                 struct dma_pte *level_pte;
879
880                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
881                         goto next;
882
883                 level_pfn = pfn & level_mask(level - 1);
884                 level_pte = phys_to_virt(dma_pte_addr(pte));
885
886                 if (level > 2)
887                         dma_pte_free_level(domain, level - 1, level_pte,
888                                            level_pfn, start_pfn, last_pfn);
889
890                 /* If range covers entire pagetable, free it */
891                 if (!(start_pfn > level_pfn ||
892                       last_pfn < level_pfn + level_size(level) - 1)) {
893                         dma_clear_pte(pte);
894                         domain_flush_cache(domain, pte, sizeof(*pte));
895                         free_pgtable_page(level_pte);
896                 }
897 next:
898                 pfn += level_size(level);
899         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
900 }
901
902 /* free page table pages. last level pte should already be cleared */
903 static void dma_pte_free_pagetable(struct dmar_domain *domain,
904                                    unsigned long start_pfn,
905                                    unsigned long last_pfn)
906 {
907         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
908
909         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
910         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
911         BUG_ON(start_pfn > last_pfn);
912
913         /* We don't need lock here; nobody else touches the iova range */
914         dma_pte_free_level(domain, agaw_to_level(domain->agaw),
915                            domain->pgd, 0, start_pfn, last_pfn);
916
917         /* free pgd */
918         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
919                 free_pgtable_page(domain->pgd);
920                 domain->pgd = NULL;
921         }
922 }
923
924 /* iommu handling */
925 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
926 {
927         struct root_entry *root;
928         unsigned long flags;
929
930         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
931         if (!root)
932                 return -ENOMEM;
933
934         __iommu_flush_cache(iommu, root, ROOT_SIZE);
935
936         spin_lock_irqsave(&iommu->lock, flags);
937         iommu->root_entry = root;
938         spin_unlock_irqrestore(&iommu->lock, flags);
939
940         return 0;
941 }
942
943 static void iommu_set_root_entry(struct intel_iommu *iommu)
944 {
945         void *addr;
946         u32 sts;
947         unsigned long flag;
948
949         addr = iommu->root_entry;
950
951         raw_spin_lock_irqsave(&iommu->register_lock, flag);
952         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
953
954         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
955
956         /* Make sure hardware complete it */
957         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
958                       readl, (sts & DMA_GSTS_RTPS), sts);
959
960         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
961 }
962
963 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
964 {
965         u32 val;
966         unsigned long flag;
967
968         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
969                 return;
970
971         raw_spin_lock_irqsave(&iommu->register_lock, flag);
972         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
973
974         /* Make sure hardware complete it */
975         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
976                       readl, (!(val & DMA_GSTS_WBFS)), val);
977
978         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
979 }
980
981 /* return value determine if we need a write buffer flush */
982 static void __iommu_flush_context(struct intel_iommu *iommu,
983                                   u16 did, u16 source_id, u8 function_mask,
984                                   u64 type)
985 {
986         u64 val = 0;
987         unsigned long flag;
988
989         switch (type) {
990         case DMA_CCMD_GLOBAL_INVL:
991                 val = DMA_CCMD_GLOBAL_INVL;
992                 break;
993         case DMA_CCMD_DOMAIN_INVL:
994                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
995                 break;
996         case DMA_CCMD_DEVICE_INVL:
997                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
998                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
999                 break;
1000         default:
1001                 BUG();
1002         }
1003         val |= DMA_CCMD_ICC;
1004
1005         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1006         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1007
1008         /* Make sure hardware complete it */
1009         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1010                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1011
1012         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1013 }
1014
1015 /* return value determine if we need a write buffer flush */
1016 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1017                                 u64 addr, unsigned int size_order, u64 type)
1018 {
1019         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1020         u64 val = 0, val_iva = 0;
1021         unsigned long flag;
1022
1023         switch (type) {
1024         case DMA_TLB_GLOBAL_FLUSH:
1025                 /* global flush doesn't need set IVA_REG */
1026                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1027                 break;
1028         case DMA_TLB_DSI_FLUSH:
1029                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1030                 break;
1031         case DMA_TLB_PSI_FLUSH:
1032                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1033                 /* Note: always flush non-leaf currently */
1034                 val_iva = size_order | addr;
1035                 break;
1036         default:
1037                 BUG();
1038         }
1039         /* Note: set drain read/write */
1040 #if 0
1041         /*
1042          * This is probably to be super secure.. Looks like we can
1043          * ignore it without any impact.
1044          */
1045         if (cap_read_drain(iommu->cap))
1046                 val |= DMA_TLB_READ_DRAIN;
1047 #endif
1048         if (cap_write_drain(iommu->cap))
1049                 val |= DMA_TLB_WRITE_DRAIN;
1050
1051         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1052         /* Note: Only uses first TLB reg currently */
1053         if (val_iva)
1054                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1055         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1056
1057         /* Make sure hardware complete it */
1058         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1059                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1060
1061         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1062
1063         /* check IOTLB invalidation granularity */
1064         if (DMA_TLB_IAIG(val) == 0)
1065                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1066         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1067                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1068                         (unsigned long long)DMA_TLB_IIRG(type),
1069                         (unsigned long long)DMA_TLB_IAIG(val));
1070 }
1071
1072 static struct device_domain_info *iommu_support_dev_iotlb(
1073         struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1074 {
1075         int found = 0;
1076         unsigned long flags;
1077         struct device_domain_info *info;
1078         struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1079
1080         if (!ecap_dev_iotlb_support(iommu->ecap))
1081                 return NULL;
1082
1083         if (!iommu->qi)
1084                 return NULL;
1085
1086         spin_lock_irqsave(&device_domain_lock, flags);
1087         list_for_each_entry(info, &domain->devices, link)
1088                 if (info->bus == bus && info->devfn == devfn) {
1089                         found = 1;
1090                         break;
1091                 }
1092         spin_unlock_irqrestore(&device_domain_lock, flags);
1093
1094         if (!found || !info->dev)
1095                 return NULL;
1096
1097         if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1098                 return NULL;
1099
1100         if (!dmar_find_matched_atsr_unit(info->dev))
1101                 return NULL;
1102
1103         info->iommu = iommu;
1104
1105         return info;
1106 }
1107
1108 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1109 {
1110         if (!info)
1111                 return;
1112
1113         pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1114 }
1115
1116 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1117 {
1118         if (!info->dev || !pci_ats_enabled(info->dev))
1119                 return;
1120
1121         pci_disable_ats(info->dev);
1122 }
1123
1124 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1125                                   u64 addr, unsigned mask)
1126 {
1127         u16 sid, qdep;
1128         unsigned long flags;
1129         struct device_domain_info *info;
1130
1131         spin_lock_irqsave(&device_domain_lock, flags);
1132         list_for_each_entry(info, &domain->devices, link) {
1133                 if (!info->dev || !pci_ats_enabled(info->dev))
1134                         continue;
1135
1136                 sid = info->bus << 8 | info->devfn;
1137                 qdep = pci_ats_queue_depth(info->dev);
1138                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1139         }
1140         spin_unlock_irqrestore(&device_domain_lock, flags);
1141 }
1142
1143 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1144                                   unsigned long pfn, unsigned int pages, int map)
1145 {
1146         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1147         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1148
1149         BUG_ON(pages == 0);
1150
1151         /*
1152          * Fallback to domain selective flush if no PSI support or the size is
1153          * too big.
1154          * PSI requires page size to be 2 ^ x, and the base address is naturally
1155          * aligned to the size
1156          */
1157         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1158                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1159                                                 DMA_TLB_DSI_FLUSH);
1160         else
1161                 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1162                                                 DMA_TLB_PSI_FLUSH);
1163
1164         /*
1165          * In caching mode, changes of pages from non-present to present require
1166          * flush. However, device IOTLB doesn't need to be flushed in this case.
1167          */
1168         if (!cap_caching_mode(iommu->cap) || !map)
1169                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1170 }
1171
1172 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1173 {
1174         u32 pmen;
1175         unsigned long flags;
1176
1177         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1178         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1179         pmen &= ~DMA_PMEN_EPM;
1180         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1181
1182         /* wait for the protected region status bit to clear */
1183         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1184                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1185
1186         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1187 }
1188
1189 static int iommu_enable_translation(struct intel_iommu *iommu)
1190 {
1191         u32 sts;
1192         unsigned long flags;
1193
1194         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1195         iommu->gcmd |= DMA_GCMD_TE;
1196         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1197
1198         /* Make sure hardware complete it */
1199         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1200                       readl, (sts & DMA_GSTS_TES), sts);
1201
1202         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1203         return 0;
1204 }
1205
1206 static int iommu_disable_translation(struct intel_iommu *iommu)
1207 {
1208         u32 sts;
1209         unsigned long flag;
1210
1211         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1212         iommu->gcmd &= ~DMA_GCMD_TE;
1213         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1214
1215         /* Make sure hardware complete it */
1216         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1217                       readl, (!(sts & DMA_GSTS_TES)), sts);
1218
1219         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1220         return 0;
1221 }
1222
1223
1224 static int iommu_init_domains(struct intel_iommu *iommu)
1225 {
1226         unsigned long ndomains;
1227         unsigned long nlongs;
1228
1229         ndomains = cap_ndoms(iommu->cap);
1230         pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1231                  iommu->seq_id, ndomains);
1232         nlongs = BITS_TO_LONGS(ndomains);
1233
1234         spin_lock_init(&iommu->lock);
1235
1236         /* TBD: there might be 64K domains,
1237          * consider other allocation for future chip
1238          */
1239         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1240         if (!iommu->domain_ids) {
1241                 pr_err("IOMMU%d: allocating domain id array failed\n",
1242                        iommu->seq_id);
1243                 return -ENOMEM;
1244         }
1245         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1246                         GFP_KERNEL);
1247         if (!iommu->domains) {
1248                 pr_err("IOMMU%d: allocating domain array failed\n",
1249                        iommu->seq_id);
1250                 kfree(iommu->domain_ids);
1251                 iommu->domain_ids = NULL;
1252                 return -ENOMEM;
1253         }
1254
1255         /*
1256          * if Caching mode is set, then invalid translations are tagged
1257          * with domainid 0. Hence we need to pre-allocate it.
1258          */
1259         if (cap_caching_mode(iommu->cap))
1260                 set_bit(0, iommu->domain_ids);
1261         return 0;
1262 }
1263
1264
1265 static void domain_exit(struct dmar_domain *domain);
1266 static void vm_domain_exit(struct dmar_domain *domain);
1267
1268 static void free_dmar_iommu(struct intel_iommu *iommu)
1269 {
1270         struct dmar_domain *domain;
1271         int i, count;
1272         unsigned long flags;
1273
1274         if ((iommu->domains) && (iommu->domain_ids)) {
1275                 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1276                         domain = iommu->domains[i];
1277                         clear_bit(i, iommu->domain_ids);
1278
1279                         spin_lock_irqsave(&domain->iommu_lock, flags);
1280                         count = --domain->iommu_count;
1281                         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1282                         if (count == 0) {
1283                                 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1284                                         vm_domain_exit(domain);
1285                                 else
1286                                         domain_exit(domain);
1287                         }
1288                 }
1289         }
1290
1291         if (iommu->gcmd & DMA_GCMD_TE)
1292                 iommu_disable_translation(iommu);
1293
1294         kfree(iommu->domains);
1295         kfree(iommu->domain_ids);
1296         iommu->domains = NULL;
1297         iommu->domain_ids = NULL;
1298
1299         g_iommus[iommu->seq_id] = NULL;
1300
1301         /* if all iommus are freed, free g_iommus */
1302         for (i = 0; i < g_num_of_iommus; i++) {
1303                 if (g_iommus[i])
1304                         break;
1305         }
1306
1307         if (i == g_num_of_iommus)
1308                 kfree(g_iommus);
1309
1310         /* free context mapping */
1311         free_context_table(iommu);
1312 }
1313
1314 static struct dmar_domain *alloc_domain(void)
1315 {
1316         struct dmar_domain *domain;
1317
1318         domain = alloc_domain_mem();
1319         if (!domain)
1320                 return NULL;
1321
1322         domain->nid = -1;
1323         memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1324         domain->flags = 0;
1325
1326         return domain;
1327 }
1328
1329 static int iommu_attach_domain(struct dmar_domain *domain,
1330                                struct intel_iommu *iommu)
1331 {
1332         int num;
1333         unsigned long ndomains;
1334         unsigned long flags;
1335
1336         ndomains = cap_ndoms(iommu->cap);
1337
1338         spin_lock_irqsave(&iommu->lock, flags);
1339
1340         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1341         if (num >= ndomains) {
1342                 spin_unlock_irqrestore(&iommu->lock, flags);
1343                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1344                 return -ENOMEM;
1345         }
1346
1347         domain->id = num;
1348         set_bit(num, iommu->domain_ids);
1349         set_bit(iommu->seq_id, domain->iommu_bmp);
1350         iommu->domains[num] = domain;
1351         spin_unlock_irqrestore(&iommu->lock, flags);
1352
1353         return 0;
1354 }
1355
1356 static void iommu_detach_domain(struct dmar_domain *domain,
1357                                 struct intel_iommu *iommu)
1358 {
1359         unsigned long flags;
1360         int num, ndomains;
1361         int found = 0;
1362
1363         spin_lock_irqsave(&iommu->lock, flags);
1364         ndomains = cap_ndoms(iommu->cap);
1365         for_each_set_bit(num, iommu->domain_ids, ndomains) {
1366                 if (iommu->domains[num] == domain) {
1367                         found = 1;
1368                         break;
1369                 }
1370         }
1371
1372         if (found) {
1373                 clear_bit(num, iommu->domain_ids);
1374                 clear_bit(iommu->seq_id, domain->iommu_bmp);
1375                 iommu->domains[num] = NULL;
1376         }
1377         spin_unlock_irqrestore(&iommu->lock, flags);
1378 }
1379
1380 static struct iova_domain reserved_iova_list;
1381 static struct lock_class_key reserved_rbtree_key;
1382
1383 static int dmar_init_reserved_ranges(void)
1384 {
1385         struct pci_dev *pdev = NULL;
1386         struct iova *iova;
1387         int i;
1388
1389         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1390
1391         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1392                 &reserved_rbtree_key);
1393
1394         /* IOAPIC ranges shouldn't be accessed by DMA */
1395         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1396                 IOVA_PFN(IOAPIC_RANGE_END));
1397         if (!iova) {
1398                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1399                 return -ENODEV;
1400         }
1401
1402         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1403         for_each_pci_dev(pdev) {
1404                 struct resource *r;
1405
1406                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1407                         r = &pdev->resource[i];
1408                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1409                                 continue;
1410                         iova = reserve_iova(&reserved_iova_list,
1411                                             IOVA_PFN(r->start),
1412                                             IOVA_PFN(r->end));
1413                         if (!iova) {
1414                                 printk(KERN_ERR "Reserve iova failed\n");
1415                                 return -ENODEV;
1416                         }
1417                 }
1418         }
1419         return 0;
1420 }
1421
1422 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1423 {
1424         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1425 }
1426
1427 static inline int guestwidth_to_adjustwidth(int gaw)
1428 {
1429         int agaw;
1430         int r = (gaw - 12) % 9;
1431
1432         if (r == 0)
1433                 agaw = gaw;
1434         else
1435                 agaw = gaw + 9 - r;
1436         if (agaw > 64)
1437                 agaw = 64;
1438         return agaw;
1439 }
1440
1441 static int domain_init(struct dmar_domain *domain, int guest_width)
1442 {
1443         struct intel_iommu *iommu;
1444         int adjust_width, agaw;
1445         unsigned long sagaw;
1446
1447         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1448         spin_lock_init(&domain->iommu_lock);
1449
1450         domain_reserve_special_ranges(domain);
1451
1452         /* calculate AGAW */
1453         iommu = domain_get_iommu(domain);
1454         if (guest_width > cap_mgaw(iommu->cap))
1455                 guest_width = cap_mgaw(iommu->cap);
1456         domain->gaw = guest_width;
1457         adjust_width = guestwidth_to_adjustwidth(guest_width);
1458         agaw = width_to_agaw(adjust_width);
1459         sagaw = cap_sagaw(iommu->cap);
1460         if (!test_bit(agaw, &sagaw)) {
1461                 /* hardware doesn't support it, choose a bigger one */
1462                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1463                 agaw = find_next_bit(&sagaw, 5, agaw);
1464                 if (agaw >= 5)
1465                         return -ENODEV;
1466         }
1467         domain->agaw = agaw;
1468         INIT_LIST_HEAD(&domain->devices);
1469
1470         if (ecap_coherent(iommu->ecap))
1471                 domain->iommu_coherency = 1;
1472         else
1473                 domain->iommu_coherency = 0;
1474
1475         if (ecap_sc_support(iommu->ecap))
1476                 domain->iommu_snooping = 1;
1477         else
1478                 domain->iommu_snooping = 0;
1479
1480         domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1481         domain->iommu_count = 1;
1482         domain->nid = iommu->node;
1483
1484         /* always allocate the top pgd */
1485         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1486         if (!domain->pgd)
1487                 return -ENOMEM;
1488         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1489         return 0;
1490 }
1491
1492 static void domain_exit(struct dmar_domain *domain)
1493 {
1494         struct dmar_drhd_unit *drhd;
1495         struct intel_iommu *iommu;
1496
1497         /* Domain 0 is reserved, so dont process it */
1498         if (!domain)
1499                 return;
1500
1501         /* Flush any lazy unmaps that may reference this domain */
1502         if (!intel_iommu_strict)
1503                 flush_unmaps_timeout(0);
1504
1505         domain_remove_dev_info(domain);
1506         /* destroy iovas */
1507         put_iova_domain(&domain->iovad);
1508
1509         /* clear ptes */
1510         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1511
1512         /* free page tables */
1513         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1514
1515         for_each_active_iommu(iommu, drhd)
1516                 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1517                         iommu_detach_domain(domain, iommu);
1518
1519         free_domain_mem(domain);
1520 }
1521
1522 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1523                                  u8 bus, u8 devfn, int translation)
1524 {
1525         struct context_entry *context;
1526         unsigned long flags;
1527         struct intel_iommu *iommu;
1528         struct dma_pte *pgd;
1529         unsigned long num;
1530         unsigned long ndomains;
1531         int id;
1532         int agaw;
1533         struct device_domain_info *info = NULL;
1534
1535         pr_debug("Set context mapping for %02x:%02x.%d\n",
1536                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1537
1538         BUG_ON(!domain->pgd);
1539         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1540                translation != CONTEXT_TT_MULTI_LEVEL);
1541
1542         iommu = device_to_iommu(segment, bus, devfn);
1543         if (!iommu)
1544                 return -ENODEV;
1545
1546         context = device_to_context_entry(iommu, bus, devfn);
1547         if (!context)
1548                 return -ENOMEM;
1549         spin_lock_irqsave(&iommu->lock, flags);
1550         if (context_present(context)) {
1551                 spin_unlock_irqrestore(&iommu->lock, flags);
1552                 return 0;
1553         }
1554
1555         id = domain->id;
1556         pgd = domain->pgd;
1557
1558         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1559             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1560                 int found = 0;
1561
1562                 /* find an available domain id for this device in iommu */
1563                 ndomains = cap_ndoms(iommu->cap);
1564                 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1565                         if (iommu->domains[num] == domain) {
1566                                 id = num;
1567                                 found = 1;
1568                                 break;
1569                         }
1570                 }
1571
1572                 if (found == 0) {
1573                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1574                         if (num >= ndomains) {
1575                                 spin_unlock_irqrestore(&iommu->lock, flags);
1576                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1577                                 return -EFAULT;
1578                         }
1579
1580                         set_bit(num, iommu->domain_ids);
1581                         iommu->domains[num] = domain;
1582                         id = num;
1583                 }
1584
1585                 /* Skip top levels of page tables for
1586                  * iommu which has less agaw than default.
1587                  * Unnecessary for PT mode.
1588                  */
1589                 if (translation != CONTEXT_TT_PASS_THROUGH) {
1590                         for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1591                                 pgd = phys_to_virt(dma_pte_addr(pgd));
1592                                 if (!dma_pte_present(pgd)) {
1593                                         spin_unlock_irqrestore(&iommu->lock, flags);
1594                                         return -ENOMEM;
1595                                 }
1596                         }
1597                 }
1598         }
1599
1600         context_set_domain_id(context, id);
1601
1602         if (translation != CONTEXT_TT_PASS_THROUGH) {
1603                 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1604                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1605                                      CONTEXT_TT_MULTI_LEVEL;
1606         }
1607         /*
1608          * In pass through mode, AW must be programmed to indicate the largest
1609          * AGAW value supported by hardware. And ASR is ignored by hardware.
1610          */
1611         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1612                 context_set_address_width(context, iommu->msagaw);
1613         else {
1614                 context_set_address_root(context, virt_to_phys(pgd));
1615                 context_set_address_width(context, iommu->agaw);
1616         }
1617
1618         context_set_translation_type(context, translation);
1619         context_set_fault_enable(context);
1620         context_set_present(context);
1621         domain_flush_cache(domain, context, sizeof(*context));
1622
1623         /*
1624          * It's a non-present to present mapping. If hardware doesn't cache
1625          * non-present entry we only need to flush the write-buffer. If the
1626          * _does_ cache non-present entries, then it does so in the special
1627          * domain #0, which we have to flush:
1628          */
1629         if (cap_caching_mode(iommu->cap)) {
1630                 iommu->flush.flush_context(iommu, 0,
1631                                            (((u16)bus) << 8) | devfn,
1632                                            DMA_CCMD_MASK_NOBIT,
1633                                            DMA_CCMD_DEVICE_INVL);
1634                 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1635         } else {
1636                 iommu_flush_write_buffer(iommu);
1637         }
1638         iommu_enable_dev_iotlb(info);
1639         spin_unlock_irqrestore(&iommu->lock, flags);
1640
1641         spin_lock_irqsave(&domain->iommu_lock, flags);
1642         if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1643                 domain->iommu_count++;
1644                 if (domain->iommu_count == 1)
1645                         domain->nid = iommu->node;
1646                 domain_update_iommu_cap(domain);
1647         }
1648         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1649         return 0;
1650 }
1651
1652 static int
1653 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1654                         int translation)
1655 {
1656         int ret;
1657         struct pci_dev *tmp, *parent;
1658
1659         ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1660                                          pdev->bus->number, pdev->devfn,
1661                                          translation);
1662         if (ret)
1663                 return ret;
1664
1665         /* dependent device mapping */
1666         tmp = pci_find_upstream_pcie_bridge(pdev);
1667         if (!tmp)
1668                 return 0;
1669         /* Secondary interface's bus number and devfn 0 */
1670         parent = pdev->bus->self;
1671         while (parent != tmp) {
1672                 ret = domain_context_mapping_one(domain,
1673                                                  pci_domain_nr(parent->bus),
1674                                                  parent->bus->number,
1675                                                  parent->devfn, translation);
1676                 if (ret)
1677                         return ret;
1678                 parent = parent->bus->self;
1679         }
1680         if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1681                 return domain_context_mapping_one(domain,
1682                                         pci_domain_nr(tmp->subordinate),
1683                                         tmp->subordinate->number, 0,
1684                                         translation);
1685         else /* this is a legacy PCI bridge */
1686                 return domain_context_mapping_one(domain,
1687                                                   pci_domain_nr(tmp->bus),
1688                                                   tmp->bus->number,
1689                                                   tmp->devfn,
1690                                                   translation);
1691 }
1692
1693 static int domain_context_mapped(struct pci_dev *pdev)
1694 {
1695         int ret;
1696         struct pci_dev *tmp, *parent;
1697         struct intel_iommu *iommu;
1698
1699         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1700                                 pdev->devfn);
1701         if (!iommu)
1702                 return -ENODEV;
1703
1704         ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1705         if (!ret)
1706                 return ret;
1707         /* dependent device mapping */
1708         tmp = pci_find_upstream_pcie_bridge(pdev);
1709         if (!tmp)
1710                 return ret;
1711         /* Secondary interface's bus number and devfn 0 */
1712         parent = pdev->bus->self;
1713         while (parent != tmp) {
1714                 ret = device_context_mapped(iommu, parent->bus->number,
1715                                             parent->devfn);
1716                 if (!ret)
1717                         return ret;
1718                 parent = parent->bus->self;
1719         }
1720         if (pci_is_pcie(tmp))
1721                 return device_context_mapped(iommu, tmp->subordinate->number,
1722                                              0);
1723         else
1724                 return device_context_mapped(iommu, tmp->bus->number,
1725                                              tmp->devfn);
1726 }
1727
1728 /* Returns a number of VTD pages, but aligned to MM page size */
1729 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1730                                             size_t size)
1731 {
1732         host_addr &= ~PAGE_MASK;
1733         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1734 }
1735
1736 /* Return largest possible superpage level for a given mapping */
1737 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1738                                           unsigned long iov_pfn,
1739                                           unsigned long phy_pfn,
1740                                           unsigned long pages)
1741 {
1742         int support, level = 1;
1743         unsigned long pfnmerge;
1744
1745         support = domain->iommu_superpage;
1746
1747         /* To use a large page, the virtual *and* physical addresses
1748            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1749            of them will mean we have to use smaller pages. So just
1750            merge them and check both at once. */
1751         pfnmerge = iov_pfn | phy_pfn;
1752
1753         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1754                 pages >>= VTD_STRIDE_SHIFT;
1755                 if (!pages)
1756                         break;
1757                 pfnmerge >>= VTD_STRIDE_SHIFT;
1758                 level++;
1759                 support--;
1760         }
1761         return level;
1762 }
1763
1764 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1765                             struct scatterlist *sg, unsigned long phys_pfn,
1766                             unsigned long nr_pages, int prot)
1767 {
1768         struct dma_pte *first_pte = NULL, *pte = NULL;
1769         phys_addr_t uninitialized_var(pteval);
1770         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1771         unsigned long sg_res;
1772         unsigned int largepage_lvl = 0;
1773         unsigned long lvl_pages = 0;
1774
1775         BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1776
1777         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1778                 return -EINVAL;
1779
1780         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1781
1782         if (sg)
1783                 sg_res = 0;
1784         else {
1785                 sg_res = nr_pages + 1;
1786                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1787         }
1788
1789         while (nr_pages > 0) {
1790                 uint64_t tmp;
1791
1792                 if (!sg_res) {
1793                         sg_res = aligned_nrpages(sg->offset, sg->length);
1794                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1795                         sg->dma_length = sg->length;
1796                         pteval = page_to_phys(sg_page(sg)) | prot;
1797                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
1798                 }
1799
1800                 if (!pte) {
1801                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1802
1803                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1804                         if (!pte)
1805                                 return -ENOMEM;
1806                         /* It is large page*/
1807                         if (largepage_lvl > 1) {
1808                                 pteval |= DMA_PTE_LARGE_PAGE;
1809                                 /* Ensure that old small page tables are removed to make room
1810                                    for superpage, if they exist. */
1811                                 dma_pte_clear_range(domain, iov_pfn,
1812                                                     iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1813                                 dma_pte_free_pagetable(domain, iov_pfn,
1814                                                        iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1815                         } else {
1816                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1817                         }
1818
1819                 }
1820                 /* We don't need lock here, nobody else
1821                  * touches the iova range
1822                  */
1823                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1824                 if (tmp) {
1825                         static int dumps = 5;
1826                         printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1827                                iov_pfn, tmp, (unsigned long long)pteval);
1828                         if (dumps) {
1829                                 dumps--;
1830                                 debug_dma_dump_mappings(NULL);
1831                         }
1832                         WARN_ON(1);
1833                 }
1834
1835                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1836
1837                 BUG_ON(nr_pages < lvl_pages);
1838                 BUG_ON(sg_res < lvl_pages);
1839
1840                 nr_pages -= lvl_pages;
1841                 iov_pfn += lvl_pages;
1842                 phys_pfn += lvl_pages;
1843                 pteval += lvl_pages * VTD_PAGE_SIZE;
1844                 sg_res -= lvl_pages;
1845
1846                 /* If the next PTE would be the first in a new page, then we
1847                    need to flush the cache on the entries we've just written.
1848                    And then we'll need to recalculate 'pte', so clear it and
1849                    let it get set again in the if (!pte) block above.
1850
1851                    If we're done (!nr_pages) we need to flush the cache too.
1852
1853                    Also if we've been setting superpages, we may need to
1854                    recalculate 'pte' and switch back to smaller pages for the
1855                    end of the mapping, if the trailing size is not enough to
1856                    use another superpage (i.e. sg_res < lvl_pages). */
1857                 pte++;
1858                 if (!nr_pages || first_pte_in_page(pte) ||
1859                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
1860                         domain_flush_cache(domain, first_pte,
1861                                            (void *)pte - (void *)first_pte);
1862                         pte = NULL;
1863                 }
1864
1865                 if (!sg_res && nr_pages)
1866                         sg = sg_next(sg);
1867         }
1868         return 0;
1869 }
1870
1871 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1872                                     struct scatterlist *sg, unsigned long nr_pages,
1873                                     int prot)
1874 {
1875         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1876 }
1877
1878 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1879                                      unsigned long phys_pfn, unsigned long nr_pages,
1880                                      int prot)
1881 {
1882         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1883 }
1884
1885 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1886 {
1887         if (!iommu)
1888                 return;
1889
1890         clear_context_table(iommu, bus, devfn);
1891         iommu->flush.flush_context(iommu, 0, 0, 0,
1892                                            DMA_CCMD_GLOBAL_INVL);
1893         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1894 }
1895
1896 static inline void unlink_domain_info(struct device_domain_info *info)
1897 {
1898         assert_spin_locked(&device_domain_lock);
1899         list_del(&info->link);
1900         list_del(&info->global);
1901         if (info->dev)
1902                 info->dev->dev.archdata.iommu = NULL;
1903 }
1904
1905 static void domain_remove_dev_info(struct dmar_domain *domain)
1906 {
1907         struct device_domain_info *info;
1908         unsigned long flags;
1909         struct intel_iommu *iommu;
1910
1911         spin_lock_irqsave(&device_domain_lock, flags);
1912         while (!list_empty(&domain->devices)) {
1913                 info = list_entry(domain->devices.next,
1914                         struct device_domain_info, link);
1915                 unlink_domain_info(info);
1916                 spin_unlock_irqrestore(&device_domain_lock, flags);
1917
1918                 iommu_disable_dev_iotlb(info);
1919                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1920                 iommu_detach_dev(iommu, info->bus, info->devfn);
1921                 free_devinfo_mem(info);
1922
1923                 spin_lock_irqsave(&device_domain_lock, flags);
1924         }
1925         spin_unlock_irqrestore(&device_domain_lock, flags);
1926 }
1927
1928 /*
1929  * find_domain
1930  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1931  */
1932 static struct dmar_domain *
1933 find_domain(struct pci_dev *pdev)
1934 {
1935         struct device_domain_info *info;
1936
1937         /* No lock here, assumes no domain exit in normal case */
1938         info = pdev->dev.archdata.iommu;
1939         if (info)
1940                 return info->domain;
1941         return NULL;
1942 }
1943
1944 /* domain is initialized */
1945 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1946 {
1947         struct dmar_domain *domain, *found = NULL;
1948         struct intel_iommu *iommu;
1949         struct dmar_drhd_unit *drhd;
1950         struct device_domain_info *info, *tmp;
1951         struct pci_dev *dev_tmp;
1952         unsigned long flags;
1953         int bus = 0, devfn = 0;
1954         int segment;
1955         int ret;
1956
1957         domain = find_domain(pdev);
1958         if (domain)
1959                 return domain;
1960
1961         segment = pci_domain_nr(pdev->bus);
1962
1963         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1964         if (dev_tmp) {
1965                 if (pci_is_pcie(dev_tmp)) {
1966                         bus = dev_tmp->subordinate->number;
1967                         devfn = 0;
1968                 } else {
1969                         bus = dev_tmp->bus->number;
1970                         devfn = dev_tmp->devfn;
1971                 }
1972                 spin_lock_irqsave(&device_domain_lock, flags);
1973                 list_for_each_entry(info, &device_domain_list, global) {
1974                         if (info->segment == segment &&
1975                             info->bus == bus && info->devfn == devfn) {
1976                                 found = info->domain;
1977                                 break;
1978                         }
1979                 }
1980                 spin_unlock_irqrestore(&device_domain_lock, flags);
1981                 /* pcie-pci bridge already has a domain, uses it */
1982                 if (found) {
1983                         domain = found;
1984                         goto found_domain;
1985                 }
1986         }
1987
1988         domain = alloc_domain();
1989         if (!domain)
1990                 goto error;
1991
1992         /* Allocate new domain for the device */
1993         drhd = dmar_find_matched_drhd_unit(pdev);
1994         if (!drhd) {
1995                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1996                         pci_name(pdev));
1997                 free_domain_mem(domain);
1998                 return NULL;
1999         }
2000         iommu = drhd->iommu;
2001
2002         ret = iommu_attach_domain(domain, iommu);
2003         if (ret) {
2004                 free_domain_mem(domain);
2005                 goto error;
2006         }
2007
2008         if (domain_init(domain, gaw)) {
2009                 domain_exit(domain);
2010                 goto error;
2011         }
2012
2013         /* register pcie-to-pci device */
2014         if (dev_tmp) {
2015                 info = alloc_devinfo_mem();
2016                 if (!info) {
2017                         domain_exit(domain);
2018                         goto error;
2019                 }
2020                 info->segment = segment;
2021                 info->bus = bus;
2022                 info->devfn = devfn;
2023                 info->dev = NULL;
2024                 info->domain = domain;
2025                 /* This domain is shared by devices under p2p bridge */
2026                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2027
2028                 /* pcie-to-pci bridge already has a domain, uses it */
2029                 found = NULL;
2030                 spin_lock_irqsave(&device_domain_lock, flags);
2031                 list_for_each_entry(tmp, &device_domain_list, global) {
2032                         if (tmp->segment == segment &&
2033                             tmp->bus == bus && tmp->devfn == devfn) {
2034                                 found = tmp->domain;
2035                                 break;
2036                         }
2037                 }
2038                 if (found) {
2039                         spin_unlock_irqrestore(&device_domain_lock, flags);
2040                         free_devinfo_mem(info);
2041                         domain_exit(domain);
2042                         domain = found;
2043                 } else {
2044                         list_add(&info->link, &domain->devices);
2045                         list_add(&info->global, &device_domain_list);
2046                         spin_unlock_irqrestore(&device_domain_lock, flags);
2047                 }
2048         }
2049
2050 found_domain:
2051         info = alloc_devinfo_mem();
2052         if (!info)
2053                 goto error;
2054         info->segment = segment;
2055         info->bus = pdev->bus->number;
2056         info->devfn = pdev->devfn;
2057         info->dev = pdev;
2058         info->domain = domain;
2059         spin_lock_irqsave(&device_domain_lock, flags);
2060         /* somebody is fast */
2061         found = find_domain(pdev);
2062         if (found != NULL) {
2063                 spin_unlock_irqrestore(&device_domain_lock, flags);
2064                 if (found != domain) {
2065                         domain_exit(domain);
2066                         domain = found;
2067                 }
2068                 free_devinfo_mem(info);
2069                 return domain;
2070         }
2071         list_add(&info->link, &domain->devices);
2072         list_add(&info->global, &device_domain_list);
2073         pdev->dev.archdata.iommu = info;
2074         spin_unlock_irqrestore(&device_domain_lock, flags);
2075         return domain;
2076 error:
2077         /* recheck it here, maybe others set it */
2078         return find_domain(pdev);
2079 }
2080
2081 static int iommu_identity_mapping;
2082 #define IDENTMAP_ALL            1
2083 #define IDENTMAP_GFX            2
2084 #define IDENTMAP_AZALIA         4
2085
2086 static int iommu_domain_identity_map(struct dmar_domain *domain,
2087                                      unsigned long long start,
2088                                      unsigned long long end)
2089 {
2090         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2091         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2092
2093         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2094                           dma_to_mm_pfn(last_vpfn))) {
2095                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2096                 return -ENOMEM;
2097         }
2098
2099         pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2100                  start, end, domain->id);
2101         /*
2102          * RMRR range might have overlap with physical memory range,
2103          * clear it first
2104          */
2105         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2106
2107         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2108                                   last_vpfn - first_vpfn + 1,
2109                                   DMA_PTE_READ|DMA_PTE_WRITE);
2110 }
2111
2112 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2113                                       unsigned long long start,
2114                                       unsigned long long end)
2115 {
2116         struct dmar_domain *domain;
2117         int ret;
2118
2119         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2120         if (!domain)
2121                 return -ENOMEM;
2122
2123         /* For _hardware_ passthrough, don't bother. But for software
2124            passthrough, we do it anyway -- it may indicate a memory
2125            range which is reserved in E820, so which didn't get set
2126            up to start with in si_domain */
2127         if (domain == si_domain && hw_pass_through) {
2128                 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2129                        pci_name(pdev), start, end);
2130                 return 0;
2131         }
2132
2133         printk(KERN_INFO
2134                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2135                pci_name(pdev), start, end);
2136         
2137         if (end < start) {
2138                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2139                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2140                         dmi_get_system_info(DMI_BIOS_VENDOR),
2141                         dmi_get_system_info(DMI_BIOS_VERSION),
2142                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2143                 ret = -EIO;
2144                 goto error;
2145         }
2146
2147         if (end >> agaw_to_width(domain->agaw)) {
2148                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2149                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2150                      agaw_to_width(domain->agaw),
2151                      dmi_get_system_info(DMI_BIOS_VENDOR),
2152                      dmi_get_system_info(DMI_BIOS_VERSION),
2153                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2154                 ret = -EIO;
2155                 goto error;
2156         }
2157
2158         ret = iommu_domain_identity_map(domain, start, end);
2159         if (ret)
2160                 goto error;
2161
2162         /* context entry init */
2163         ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2164         if (ret)
2165                 goto error;
2166
2167         return 0;
2168
2169  error:
2170         domain_exit(domain);
2171         return ret;
2172 }
2173
2174 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2175         struct pci_dev *pdev)
2176 {
2177         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2178                 return 0;
2179         return iommu_prepare_identity_map(pdev, rmrr->base_address,
2180                 rmrr->end_address);
2181 }
2182
2183 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2184 static inline void iommu_prepare_isa(void)
2185 {
2186         struct pci_dev *pdev;
2187         int ret;
2188
2189         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2190         if (!pdev)
2191                 return;
2192
2193         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2194         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2195
2196         if (ret)
2197                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2198                        "floppy might not work\n");
2199
2200 }
2201 #else
2202 static inline void iommu_prepare_isa(void)
2203 {
2204         return;
2205 }
2206 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2207
2208 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2209
2210 static int __init si_domain_init(int hw)
2211 {
2212         struct dmar_drhd_unit *drhd;
2213         struct intel_iommu *iommu;
2214         int nid, ret = 0;
2215
2216         si_domain = alloc_domain();
2217         if (!si_domain)
2218                 return -EFAULT;
2219
2220         for_each_active_iommu(iommu, drhd) {
2221                 ret = iommu_attach_domain(si_domain, iommu);
2222                 if (ret) {
2223                         domain_exit(si_domain);
2224                         return -EFAULT;
2225                 }
2226         }
2227
2228         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2229                 domain_exit(si_domain);
2230                 return -EFAULT;
2231         }
2232
2233         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2234         pr_debug("IOMMU: identity mapping domain is domain %d\n",
2235                  si_domain->id);
2236
2237         if (hw)
2238                 return 0;
2239
2240         for_each_online_node(nid) {
2241                 unsigned long start_pfn, end_pfn;
2242                 int i;
2243
2244                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2245                         ret = iommu_domain_identity_map(si_domain,
2246                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2247                         if (ret)
2248                                 return ret;
2249                 }
2250         }
2251
2252         return 0;
2253 }
2254
2255 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2256                                           struct pci_dev *pdev);
2257 static int identity_mapping(struct pci_dev *pdev)
2258 {
2259         struct device_domain_info *info;
2260
2261         if (likely(!iommu_identity_mapping))
2262                 return 0;
2263
2264         info = pdev->dev.archdata.iommu;
2265         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2266                 return (info->domain == si_domain);
2267
2268         return 0;
2269 }
2270
2271 static int domain_add_dev_info(struct dmar_domain *domain,
2272                                struct pci_dev *pdev,
2273                                int translation)
2274 {
2275         struct device_domain_info *info;
2276         unsigned long flags;
2277         int ret;
2278
2279         info = alloc_devinfo_mem();
2280         if (!info)
2281                 return -ENOMEM;
2282
2283         info->segment = pci_domain_nr(pdev->bus);
2284         info->bus = pdev->bus->number;
2285         info->devfn = pdev->devfn;
2286         info->dev = pdev;
2287         info->domain = domain;
2288
2289         spin_lock_irqsave(&device_domain_lock, flags);
2290         list_add(&info->link, &domain->devices);
2291         list_add(&info->global, &device_domain_list);
2292         pdev->dev.archdata.iommu = info;
2293         spin_unlock_irqrestore(&device_domain_lock, flags);
2294
2295         ret = domain_context_mapping(domain, pdev, translation);
2296         if (ret) {
2297                 spin_lock_irqsave(&device_domain_lock, flags);
2298                 unlink_domain_info(info);
2299                 spin_unlock_irqrestore(&device_domain_lock, flags);
2300                 free_devinfo_mem(info);
2301                 return ret;
2302         }
2303
2304         return 0;
2305 }
2306
2307 static bool device_has_rmrr(struct pci_dev *dev)
2308 {
2309         struct dmar_rmrr_unit *rmrr;
2310         int i;
2311
2312         for_each_rmrr_units(rmrr) {
2313                 for (i = 0; i < rmrr->devices_cnt; i++) {
2314                         /*
2315                          * Return TRUE if this RMRR contains the device that
2316                          * is passed in.
2317                          */
2318                         if (rmrr->devices[i] == dev)
2319                                 return true;
2320                 }
2321         }
2322         return false;
2323 }
2324
2325 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2326 {
2327
2328         /*
2329          * We want to prevent any device associated with an RMRR from
2330          * getting placed into the SI Domain. This is done because
2331          * problems exist when devices are moved in and out of domains
2332          * and their respective RMRR info is lost. We exempt USB devices
2333          * from this process due to their usage of RMRRs that are known
2334          * to not be needed after BIOS hand-off to OS.
2335          */
2336         if (device_has_rmrr(pdev) &&
2337             (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2338                 return 0;
2339
2340         if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2341                 return 1;
2342
2343         if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2344                 return 1;
2345
2346         if (!(iommu_identity_mapping & IDENTMAP_ALL))
2347                 return 0;
2348
2349         /*
2350          * We want to start off with all devices in the 1:1 domain, and
2351          * take them out later if we find they can't access all of memory.
2352          *
2353          * However, we can't do this for PCI devices behind bridges,
2354          * because all PCI devices behind the same bridge will end up
2355          * with the same source-id on their transactions.
2356          *
2357          * Practically speaking, we can't change things around for these
2358          * devices at run-time, because we can't be sure there'll be no
2359          * DMA transactions in flight for any of their siblings.
2360          * 
2361          * So PCI devices (unless they're on the root bus) as well as
2362          * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2363          * the 1:1 domain, just in _case_ one of their siblings turns out
2364          * not to be able to map all of memory.
2365          */
2366         if (!pci_is_pcie(pdev)) {
2367                 if (!pci_is_root_bus(pdev->bus))
2368                         return 0;
2369                 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2370                         return 0;
2371         } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2372                 return 0;
2373
2374         /* 
2375          * At boot time, we don't yet know if devices will be 64-bit capable.
2376          * Assume that they will -- if they turn out not to be, then we can 
2377          * take them out of the 1:1 domain later.
2378          */
2379         if (!startup) {
2380                 /*
2381                  * If the device's dma_mask is less than the system's memory
2382                  * size then this is not a candidate for identity mapping.
2383                  */
2384                 u64 dma_mask = pdev->dma_mask;
2385
2386                 if (pdev->dev.coherent_dma_mask &&
2387                     pdev->dev.coherent_dma_mask < dma_mask)
2388                         dma_mask = pdev->dev.coherent_dma_mask;
2389
2390                 return dma_mask >= dma_get_required_mask(&pdev->dev);
2391         }
2392
2393         return 1;
2394 }
2395
2396 static int __init iommu_prepare_static_identity_mapping(int hw)
2397 {
2398         struct pci_dev *pdev = NULL;
2399         int ret;
2400
2401         ret = si_domain_init(hw);
2402         if (ret)
2403                 return -EFAULT;
2404
2405         for_each_pci_dev(pdev) {
2406                 if (iommu_should_identity_map(pdev, 1)) {
2407                         ret = domain_add_dev_info(si_domain, pdev,
2408                                              hw ? CONTEXT_TT_PASS_THROUGH :
2409                                                   CONTEXT_TT_MULTI_LEVEL);
2410                         if (ret) {
2411                                 /* device not associated with an iommu */
2412                                 if (ret == -ENODEV)
2413                                         continue;
2414                                 return ret;
2415                         }
2416                         pr_info("IOMMU: %s identity mapping for device %s\n",
2417                                 hw ? "hardware" : "software", pci_name(pdev));
2418                 }
2419         }
2420
2421         return 0;
2422 }
2423
2424 static int __init init_dmars(void)
2425 {
2426         struct dmar_drhd_unit *drhd;
2427         struct dmar_rmrr_unit *rmrr;
2428         struct pci_dev *pdev;
2429         struct intel_iommu *iommu;
2430         int i, ret;
2431
2432         /*
2433          * for each drhd
2434          *    allocate root
2435          *    initialize and program root entry to not present
2436          * endfor
2437          */
2438         for_each_drhd_unit(drhd) {
2439                 /*
2440                  * lock not needed as this is only incremented in the single
2441                  * threaded kernel __init code path all other access are read
2442                  * only
2443                  */
2444                 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2445                         g_num_of_iommus++;
2446                         continue;
2447                 }
2448                 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2449                           IOMMU_UNITS_SUPPORTED);
2450         }
2451
2452         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2453                         GFP_KERNEL);
2454         if (!g_iommus) {
2455                 printk(KERN_ERR "Allocating global iommu array failed\n");
2456                 ret = -ENOMEM;
2457                 goto error;
2458         }
2459
2460         deferred_flush = kzalloc(g_num_of_iommus *
2461                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2462         if (!deferred_flush) {
2463                 ret = -ENOMEM;
2464                 goto error;
2465         }
2466
2467         for_each_active_iommu(iommu, drhd) {
2468                 g_iommus[iommu->seq_id] = iommu;
2469
2470                 ret = iommu_init_domains(iommu);
2471                 if (ret)
2472                         goto error;
2473
2474                 /*
2475                  * TBD:
2476                  * we could share the same root & context tables
2477                  * among all IOMMU's. Need to Split it later.
2478                  */
2479                 ret = iommu_alloc_root_entry(iommu);
2480                 if (ret) {
2481                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2482                         goto error;
2483                 }
2484                 if (!ecap_pass_through(iommu->ecap))
2485                         hw_pass_through = 0;
2486         }
2487
2488         /*
2489          * Start from the sane iommu hardware state.
2490          */
2491         for_each_active_iommu(iommu, drhd) {
2492                 /*
2493                  * If the queued invalidation is already initialized by us
2494                  * (for example, while enabling interrupt-remapping) then
2495                  * we got the things already rolling from a sane state.
2496                  */
2497                 if (iommu->qi)
2498                         continue;
2499
2500                 /*
2501                  * Clear any previous faults.
2502                  */
2503                 dmar_fault(-1, iommu);
2504                 /*
2505                  * Disable queued invalidation if supported and already enabled
2506                  * before OS handover.
2507                  */
2508                 dmar_disable_qi(iommu);
2509         }
2510
2511         for_each_active_iommu(iommu, drhd) {
2512                 if (dmar_enable_qi(iommu)) {
2513                         /*
2514                          * Queued Invalidate not enabled, use Register Based
2515                          * Invalidate
2516                          */
2517                         iommu->flush.flush_context = __iommu_flush_context;
2518                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2519                         printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2520                                "invalidation\n",
2521                                 iommu->seq_id,
2522                                (unsigned long long)drhd->reg_base_addr);
2523                 } else {
2524                         iommu->flush.flush_context = qi_flush_context;
2525                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2526                         printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2527                                "invalidation\n",
2528                                 iommu->seq_id,
2529                                (unsigned long long)drhd->reg_base_addr);
2530                 }
2531         }
2532
2533         if (iommu_pass_through)
2534                 iommu_identity_mapping |= IDENTMAP_ALL;
2535
2536 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2537         iommu_identity_mapping |= IDENTMAP_GFX;
2538 #endif
2539
2540         check_tylersburg_isoch();
2541
2542         /*
2543          * If pass through is not set or not enabled, setup context entries for
2544          * identity mappings for rmrr, gfx, and isa and may fall back to static
2545          * identity mapping if iommu_identity_mapping is set.
2546          */
2547         if (iommu_identity_mapping) {
2548                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2549                 if (ret) {
2550                         printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2551                         goto error;
2552                 }
2553         }
2554         /*
2555          * For each rmrr
2556          *   for each dev attached to rmrr
2557          *   do
2558          *     locate drhd for dev, alloc domain for dev
2559          *     allocate free domain
2560          *     allocate page table entries for rmrr
2561          *     if context not allocated for bus
2562          *           allocate and init context
2563          *           set present in root table for this bus
2564          *     init context with domain, translation etc
2565          *    endfor
2566          * endfor
2567          */
2568         printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2569         for_each_rmrr_units(rmrr) {
2570                 for (i = 0; i < rmrr->devices_cnt; i++) {
2571                         pdev = rmrr->devices[i];
2572                         /*
2573                          * some BIOS lists non-exist devices in DMAR
2574                          * table.
2575                          */
2576                         if (!pdev)
2577                                 continue;
2578                         ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2579                         if (ret)
2580                                 printk(KERN_ERR
2581                                        "IOMMU: mapping reserved region failed\n");
2582                 }
2583         }
2584
2585         iommu_prepare_isa();
2586
2587         /*
2588          * for each drhd
2589          *   enable fault log
2590          *   global invalidate context cache
2591          *   global invalidate iotlb
2592          *   enable translation
2593          */
2594         for_each_iommu(iommu, drhd) {
2595                 if (drhd->ignored) {
2596                         /*
2597                          * we always have to disable PMRs or DMA may fail on
2598                          * this device
2599                          */
2600                         if (force_on)
2601                                 iommu_disable_protect_mem_regions(iommu);
2602                         continue;
2603                 }
2604
2605                 iommu_flush_write_buffer(iommu);
2606
2607                 ret = dmar_set_interrupt(iommu);
2608                 if (ret)
2609                         goto error;
2610
2611                 iommu_set_root_entry(iommu);
2612
2613                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2614                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2615
2616                 ret = iommu_enable_translation(iommu);
2617                 if (ret)
2618                         goto error;
2619
2620                 iommu_disable_protect_mem_regions(iommu);
2621         }
2622
2623         return 0;
2624 error:
2625         for_each_active_iommu(iommu, drhd)
2626                 free_dmar_iommu(iommu);
2627         kfree(deferred_flush);
2628         kfree(g_iommus);
2629         return ret;
2630 }
2631
2632 /* This takes a number of _MM_ pages, not VTD pages */
2633 static struct iova *intel_alloc_iova(struct device *dev,
2634                                      struct dmar_domain *domain,
2635                                      unsigned long nrpages, uint64_t dma_mask)
2636 {
2637         struct pci_dev *pdev = to_pci_dev(dev);
2638         struct iova *iova = NULL;
2639
2640         /* Restrict dma_mask to the width that the iommu can handle */
2641         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2642
2643         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2644                 /*
2645                  * First try to allocate an io virtual address in
2646                  * DMA_BIT_MASK(32) and if that fails then try allocating
2647                  * from higher range
2648                  */
2649                 iova = alloc_iova(&domain->iovad, nrpages,
2650                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
2651                 if (iova)
2652                         return iova;
2653         }
2654         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2655         if (unlikely(!iova)) {
2656                 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2657                        nrpages, pci_name(pdev));
2658                 return NULL;
2659         }
2660
2661         return iova;
2662 }
2663
2664 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2665 {
2666         struct dmar_domain *domain;
2667         int ret;
2668
2669         domain = get_domain_for_dev(pdev,
2670                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2671         if (!domain) {
2672                 printk(KERN_ERR
2673                         "Allocating domain for %s failed", pci_name(pdev));
2674                 return NULL;
2675         }
2676
2677         /* make sure context mapping is ok */
2678         if (unlikely(!domain_context_mapped(pdev))) {
2679                 ret = domain_context_mapping(domain, pdev,
2680                                              CONTEXT_TT_MULTI_LEVEL);
2681                 if (ret) {
2682                         printk(KERN_ERR
2683                                 "Domain context map for %s failed",
2684                                 pci_name(pdev));
2685                         return NULL;
2686                 }
2687         }
2688
2689         return domain;
2690 }
2691
2692 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2693 {
2694         struct device_domain_info *info;
2695
2696         /* No lock here, assumes no domain exit in normal case */
2697         info = dev->dev.archdata.iommu;
2698         if (likely(info))
2699                 return info->domain;
2700
2701         return __get_valid_domain_for_dev(dev);
2702 }
2703
2704 static int iommu_dummy(struct pci_dev *pdev)
2705 {
2706         return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2707 }
2708
2709 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2710 static int iommu_no_mapping(struct device *dev)
2711 {
2712         struct pci_dev *pdev;
2713         int found;
2714
2715         if (unlikely(!dev_is_pci(dev)))
2716                 return 1;
2717
2718         pdev = to_pci_dev(dev);
2719         if (iommu_dummy(pdev))
2720                 return 1;
2721
2722         if (!iommu_identity_mapping)
2723                 return 0;
2724
2725         found = identity_mapping(pdev);
2726         if (found) {
2727                 if (iommu_should_identity_map(pdev, 0))
2728                         return 1;
2729                 else {
2730                         /*
2731                          * 32 bit DMA is removed from si_domain and fall back
2732                          * to non-identity mapping.
2733                          */
2734                         domain_remove_one_dev_info(si_domain, pdev);
2735                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2736                                pci_name(pdev));
2737                         return 0;
2738                 }
2739         } else {
2740                 /*
2741                  * In case of a detached 64 bit DMA device from vm, the device
2742                  * is put into si_domain for identity mapping.
2743                  */
2744                 if (iommu_should_identity_map(pdev, 0)) {
2745                         int ret;
2746                         ret = domain_add_dev_info(si_domain, pdev,
2747                                                   hw_pass_through ?
2748                                                   CONTEXT_TT_PASS_THROUGH :
2749                                                   CONTEXT_TT_MULTI_LEVEL);
2750                         if (!ret) {
2751                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2752                                        pci_name(pdev));
2753                                 return 1;
2754                         }
2755                 }
2756         }
2757
2758         return 0;
2759 }
2760
2761 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2762                                      size_t size, int dir, u64 dma_mask)
2763 {
2764         struct pci_dev *pdev = to_pci_dev(hwdev);
2765         struct dmar_domain *domain;
2766         phys_addr_t start_paddr;
2767         struct iova *iova;
2768         int prot = 0;
2769         int ret;
2770         struct intel_iommu *iommu;
2771         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2772
2773         BUG_ON(dir == DMA_NONE);
2774
2775         if (iommu_no_mapping(hwdev))
2776                 return paddr;
2777
2778         domain = get_valid_domain_for_dev(pdev);
2779         if (!domain)
2780                 return 0;
2781
2782         iommu = domain_get_iommu(domain);
2783         size = aligned_nrpages(paddr, size);
2784
2785         iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2786         if (!iova)
2787                 goto error;
2788
2789         /*
2790          * Check if DMAR supports zero-length reads on write only
2791          * mappings..
2792          */
2793         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2794                         !cap_zlr(iommu->cap))
2795                 prot |= DMA_PTE_READ;
2796         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2797                 prot |= DMA_PTE_WRITE;
2798         /*
2799          * paddr - (paddr + size) might be partial page, we should map the whole
2800          * page.  Note: if two part of one page are separately mapped, we
2801          * might have two guest_addr mapping to the same host paddr, but this
2802          * is not a big problem
2803          */
2804         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2805                                  mm_to_dma_pfn(paddr_pfn), size, prot);
2806         if (ret)
2807                 goto error;
2808
2809         /* it's a non-present to present mapping. Only flush if caching mode */
2810         if (cap_caching_mode(iommu->cap))
2811                 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2812         else
2813                 iommu_flush_write_buffer(iommu);
2814
2815         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2816         start_paddr += paddr & ~PAGE_MASK;
2817         return start_paddr;
2818
2819 error:
2820         if (iova)
2821                 __free_iova(&domain->iovad, iova);
2822         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2823                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2824         return 0;
2825 }
2826
2827 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2828                                  unsigned long offset, size_t size,
2829                                  enum dma_data_direction dir,
2830                                  struct dma_attrs *attrs)
2831 {
2832         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2833                                   dir, to_pci_dev(dev)->dma_mask);
2834 }
2835
2836 static void flush_unmaps(void)
2837 {
2838         int i, j;
2839
2840         timer_on = 0;
2841
2842         /* just flush them all */
2843         for (i = 0; i < g_num_of_iommus; i++) {
2844                 struct intel_iommu *iommu = g_iommus[i];
2845                 if (!iommu)
2846                         continue;
2847
2848                 if (!deferred_flush[i].next)
2849                         continue;
2850
2851                 /* In caching mode, global flushes turn emulation expensive */
2852                 if (!cap_caching_mode(iommu->cap))
2853                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2854                                          DMA_TLB_GLOBAL_FLUSH);
2855                 for (j = 0; j < deferred_flush[i].next; j++) {
2856                         unsigned long mask;
2857                         struct iova *iova = deferred_flush[i].iova[j];
2858                         struct dmar_domain *domain = deferred_flush[i].domain[j];
2859
2860                         /* On real hardware multiple invalidations are expensive */
2861                         if (cap_caching_mode(iommu->cap))
2862                                 iommu_flush_iotlb_psi(iommu, domain->id,
2863                                 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2864                         else {
2865                                 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2866                                 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2867                                                 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2868                         }
2869                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2870                 }
2871                 deferred_flush[i].next = 0;
2872         }
2873
2874         list_size = 0;
2875 }
2876
2877 static void flush_unmaps_timeout(unsigned long data)
2878 {
2879         unsigned long flags;
2880
2881         spin_lock_irqsave(&async_umap_flush_lock, flags);
2882         flush_unmaps();
2883         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2884 }
2885
2886 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2887 {
2888         unsigned long flags;
2889         int next, iommu_id;
2890         struct intel_iommu *iommu;
2891
2892         spin_lock_irqsave(&async_umap_flush_lock, flags);
2893         if (list_size == HIGH_WATER_MARK)
2894                 flush_unmaps();
2895
2896         iommu = domain_get_iommu(dom);
2897         iommu_id = iommu->seq_id;
2898
2899         next = deferred_flush[iommu_id].next;
2900         deferred_flush[iommu_id].domain[next] = dom;
2901         deferred_flush[iommu_id].iova[next] = iova;
2902         deferred_flush[iommu_id].next++;
2903
2904         if (!timer_on) {
2905                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2906                 timer_on = 1;
2907         }
2908         list_size++;
2909         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2910 }
2911
2912 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2913                              size_t size, enum dma_data_direction dir,
2914                              struct dma_attrs *attrs)
2915 {
2916         struct pci_dev *pdev = to_pci_dev(dev);
2917         struct dmar_domain *domain;
2918         unsigned long start_pfn, last_pfn;
2919         struct iova *iova;
2920         struct intel_iommu *iommu;
2921
2922         if (iommu_no_mapping(dev))
2923                 return;
2924
2925         domain = find_domain(pdev);
2926         BUG_ON(!domain);
2927
2928         iommu = domain_get_iommu(domain);
2929
2930         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2931         if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2932                       (unsigned long long)dev_addr))
2933                 return;
2934
2935         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2936         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2937
2938         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2939                  pci_name(pdev), start_pfn, last_pfn);
2940
2941         /*  clear the whole page */
2942         dma_pte_clear_range(domain, start_pfn, last_pfn);
2943
2944         /* free page tables */
2945         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2946
2947         if (intel_iommu_strict) {
2948                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2949                                       last_pfn - start_pfn + 1, 0);
2950                 /* free iova */
2951                 __free_iova(&domain->iovad, iova);
2952         } else {
2953                 add_unmap(domain, iova);
2954                 /*
2955                  * queue up the release of the unmap to save the 1/6th of the
2956                  * cpu used up by the iotlb flush operation...
2957                  */
2958         }
2959 }
2960
2961 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2962                                   dma_addr_t *dma_handle, gfp_t flags,
2963                                   struct dma_attrs *attrs)
2964 {
2965         void *vaddr;
2966         int order;
2967
2968         size = PAGE_ALIGN(size);
2969         order = get_order(size);
2970
2971         if (!iommu_no_mapping(hwdev))
2972                 flags &= ~(GFP_DMA | GFP_DMA32);
2973         else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2974                 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2975                         flags |= GFP_DMA;
2976                 else
2977                         flags |= GFP_DMA32;
2978         }
2979
2980         vaddr = (void *)__get_free_pages(flags, order);
2981         if (!vaddr)
2982                 return NULL;
2983         memset(vaddr, 0, size);
2984
2985         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2986                                          DMA_BIDIRECTIONAL,
2987                                          hwdev->coherent_dma_mask);
2988         if (*dma_handle)
2989                 return vaddr;
2990         free_pages((unsigned long)vaddr, order);
2991         return NULL;
2992 }
2993
2994 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2995                                 dma_addr_t dma_handle, struct dma_attrs *attrs)
2996 {
2997         int order;
2998
2999         size = PAGE_ALIGN(size);
3000         order = get_order(size);
3001
3002         intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3003         free_pages((unsigned long)vaddr, order);
3004 }
3005
3006 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3007                            int nelems, enum dma_data_direction dir,
3008                            struct dma_attrs *attrs)
3009 {
3010         struct pci_dev *pdev = to_pci_dev(hwdev);
3011         struct dmar_domain *domain;
3012         unsigned long start_pfn, last_pfn;
3013         struct iova *iova;
3014         struct intel_iommu *iommu;
3015
3016         if (iommu_no_mapping(hwdev))
3017                 return;
3018
3019         domain = find_domain(pdev);
3020         BUG_ON(!domain);
3021
3022         iommu = domain_get_iommu(domain);
3023
3024         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3025         if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3026                       (unsigned long long)sglist[0].dma_address))
3027                 return;
3028
3029         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3030         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3031
3032         /*  clear the whole page */
3033         dma_pte_clear_range(domain, start_pfn, last_pfn);
3034
3035         /* free page tables */
3036         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3037
3038         if (intel_iommu_strict) {
3039                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3040                                       last_pfn - start_pfn + 1, 0);
3041                 /* free iova */
3042                 __free_iova(&domain->iovad, iova);
3043         } else {
3044                 add_unmap(domain, iova);
3045                 /*
3046                  * queue up the release of the unmap to save the 1/6th of the
3047                  * cpu used up by the iotlb flush operation...
3048                  */
3049         }
3050 }
3051
3052 static int intel_nontranslate_map_sg(struct device *hddev,
3053         struct scatterlist *sglist, int nelems, int dir)
3054 {
3055         int i;
3056         struct scatterlist *sg;
3057
3058         for_each_sg(sglist, sg, nelems, i) {
3059                 BUG_ON(!sg_page(sg));
3060                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3061                 sg->dma_length = sg->length;
3062         }
3063         return nelems;
3064 }
3065
3066 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3067                         enum dma_data_direction dir, struct dma_attrs *attrs)
3068 {
3069         int i;
3070         struct pci_dev *pdev = to_pci_dev(hwdev);
3071         struct dmar_domain *domain;
3072         size_t size = 0;
3073         int prot = 0;
3074         struct iova *iova = NULL;
3075         int ret;
3076         struct scatterlist *sg;
3077         unsigned long start_vpfn;
3078         struct intel_iommu *iommu;
3079
3080         BUG_ON(dir == DMA_NONE);
3081         if (iommu_no_mapping(hwdev))
3082                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3083
3084         domain = get_valid_domain_for_dev(pdev);
3085         if (!domain)
3086                 return 0;
3087
3088         iommu = domain_get_iommu(domain);
3089
3090         for_each_sg(sglist, sg, nelems, i)
3091                 size += aligned_nrpages(sg->offset, sg->length);
3092
3093         iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3094                                 pdev->dma_mask);
3095         if (!iova) {
3096                 sglist->dma_length = 0;
3097                 return 0;
3098         }
3099
3100         /*
3101          * Check if DMAR supports zero-length reads on write only
3102          * mappings..
3103          */
3104         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3105                         !cap_zlr(iommu->cap))
3106                 prot |= DMA_PTE_READ;
3107         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3108                 prot |= DMA_PTE_WRITE;
3109
3110         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3111
3112         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3113         if (unlikely(ret)) {
3114                 /*  clear the page */
3115                 dma_pte_clear_range(domain, start_vpfn,
3116                                     start_vpfn + size - 1);
3117                 /* free page tables */
3118                 dma_pte_free_pagetable(domain, start_vpfn,
3119                                        start_vpfn + size - 1);
3120                 /* free iova */
3121                 __free_iova(&domain->iovad, iova);
3122                 return 0;
3123         }
3124
3125         /* it's a non-present to present mapping. Only flush if caching mode */
3126         if (cap_caching_mode(iommu->cap))
3127                 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3128         else
3129                 iommu_flush_write_buffer(iommu);
3130
3131         return nelems;
3132 }
3133
3134 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3135 {
3136         return !dma_addr;
3137 }
3138
3139 struct dma_map_ops intel_dma_ops = {
3140         .alloc = intel_alloc_coherent,
3141         .free = intel_free_coherent,
3142         .map_sg = intel_map_sg,
3143         .unmap_sg = intel_unmap_sg,
3144         .map_page = intel_map_page,
3145         .unmap_page = intel_unmap_page,
3146         .mapping_error = intel_mapping_error,
3147 };
3148
3149 static inline int iommu_domain_cache_init(void)
3150 {
3151         int ret = 0;
3152
3153         iommu_domain_cache = kmem_cache_create("iommu_domain",
3154                                          sizeof(struct dmar_domain),
3155                                          0,
3156                                          SLAB_HWCACHE_ALIGN,
3157
3158                                          NULL);
3159         if (!iommu_domain_cache) {
3160                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3161                 ret = -ENOMEM;
3162         }
3163
3164         return ret;
3165 }
3166
3167 static inline int iommu_devinfo_cache_init(void)
3168 {
3169         int ret = 0;
3170
3171         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3172                                          sizeof(struct device_domain_info),
3173                                          0,
3174                                          SLAB_HWCACHE_ALIGN,
3175                                          NULL);
3176         if (!iommu_devinfo_cache) {
3177                 printk(KERN_ERR "Couldn't create devinfo cache\n");
3178                 ret = -ENOMEM;
3179         }
3180
3181         return ret;
3182 }
3183
3184 static inline int iommu_iova_cache_init(void)
3185 {
3186         int ret = 0;
3187
3188         iommu_iova_cache = kmem_cache_create("iommu_iova",
3189                                          sizeof(struct iova),
3190                                          0,
3191                                          SLAB_HWCACHE_ALIGN,
3192                                          NULL);
3193         if (!iommu_iova_cache) {
3194                 printk(KERN_ERR "Couldn't create iova cache\n");
3195                 ret = -ENOMEM;
3196         }
3197
3198         return ret;
3199 }
3200
3201 static int __init iommu_init_mempool(void)
3202 {
3203         int ret;
3204         ret = iommu_iova_cache_init();
3205         if (ret)
3206                 return ret;
3207
3208         ret = iommu_domain_cache_init();
3209         if (ret)
3210                 goto domain_error;
3211
3212         ret = iommu_devinfo_cache_init();
3213         if (!ret)
3214                 return ret;
3215
3216         kmem_cache_destroy(iommu_domain_cache);
3217 domain_error:
3218         kmem_cache_destroy(iommu_iova_cache);
3219
3220         return -ENOMEM;
3221 }
3222
3223 static void __init iommu_exit_mempool(void)
3224 {
3225         kmem_cache_destroy(iommu_devinfo_cache);
3226         kmem_cache_destroy(iommu_domain_cache);
3227         kmem_cache_destroy(iommu_iova_cache);
3228
3229 }
3230
3231 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3232 {
3233         struct dmar_drhd_unit *drhd;
3234         u32 vtbar;
3235         int rc;
3236
3237         /* We know that this device on this chipset has its own IOMMU.
3238          * If we find it under a different IOMMU, then the BIOS is lying
3239          * to us. Hope that the IOMMU for this device is actually
3240          * disabled, and it needs no translation...
3241          */
3242         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3243         if (rc) {
3244                 /* "can't" happen */
3245                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3246                 return;
3247         }
3248         vtbar &= 0xffff0000;
3249
3250         /* we know that the this iommu should be at offset 0xa000 from vtbar */
3251         drhd = dmar_find_matched_drhd_unit(pdev);
3252         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3253                             TAINT_FIRMWARE_WORKAROUND,
3254                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3255                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3256 }
3257 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3258
3259 static void __init init_no_remapping_devices(void)
3260 {
3261         struct dmar_drhd_unit *drhd;
3262
3263         for_each_drhd_unit(drhd) {
3264                 if (!drhd->include_all) {
3265                         int i;
3266                         for (i = 0; i < drhd->devices_cnt; i++)
3267                                 if (drhd->devices[i] != NULL)
3268                                         break;
3269                         /* ignore DMAR unit if no pci devices exist */
3270                         if (i == drhd->devices_cnt)
3271                                 drhd->ignored = 1;
3272                 }
3273         }
3274
3275         for_each_active_drhd_unit(drhd) {
3276                 int i;
3277                 if (drhd->include_all)
3278                         continue;
3279
3280                 for (i = 0; i < drhd->devices_cnt; i++)
3281                         if (drhd->devices[i] &&
3282                             !IS_GFX_DEVICE(drhd->devices[i]))
3283                                 break;
3284
3285                 if (i < drhd->devices_cnt)
3286                         continue;
3287
3288                 /* This IOMMU has *only* gfx devices. Either bypass it or
3289                    set the gfx_mapped flag, as appropriate */
3290                 if (dmar_map_gfx) {
3291                         intel_iommu_gfx_mapped = 1;
3292                 } else {
3293                         drhd->ignored = 1;
3294                         for (i = 0; i < drhd->devices_cnt; i++) {
3295                                 if (!drhd->devices[i])
3296                                         continue;
3297                                 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3298                         }
3299                 }
3300         }
3301 }
3302
3303 #ifdef CONFIG_SUSPEND
3304 static int init_iommu_hw(void)
3305 {
3306         struct dmar_drhd_unit *drhd;
3307         struct intel_iommu *iommu = NULL;
3308
3309         for_each_active_iommu(iommu, drhd)
3310                 if (iommu->qi)
3311                         dmar_reenable_qi(iommu);
3312
3313         for_each_iommu(iommu, drhd) {
3314                 if (drhd->ignored) {
3315                         /*
3316                          * we always have to disable PMRs or DMA may fail on
3317                          * this device
3318                          */
3319                         if (force_on)
3320                                 iommu_disable_protect_mem_regions(iommu);
3321                         continue;
3322                 }
3323         
3324                 iommu_flush_write_buffer(iommu);
3325
3326                 iommu_set_root_entry(iommu);
3327
3328                 iommu->flush.flush_context(iommu, 0, 0, 0,
3329                                            DMA_CCMD_GLOBAL_INVL);
3330                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3331                                          DMA_TLB_GLOBAL_FLUSH);
3332                 if (iommu_enable_translation(iommu))
3333                         return 1;
3334                 iommu_disable_protect_mem_regions(iommu);
3335         }
3336
3337         return 0;
3338 }
3339
3340 static void iommu_flush_all(void)
3341 {
3342         struct dmar_drhd_unit *drhd;
3343         struct intel_iommu *iommu;
3344
3345         for_each_active_iommu(iommu, drhd) {
3346                 iommu->flush.flush_context(iommu, 0, 0, 0,
3347                                            DMA_CCMD_GLOBAL_INVL);
3348                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3349                                          DMA_TLB_GLOBAL_FLUSH);
3350         }
3351 }
3352
3353 static int iommu_suspend(void)
3354 {
3355         struct dmar_drhd_unit *drhd;
3356         struct intel_iommu *iommu = NULL;
3357         unsigned long flag;
3358
3359         for_each_active_iommu(iommu, drhd) {
3360                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3361                                                  GFP_ATOMIC);
3362                 if (!iommu->iommu_state)
3363                         goto nomem;
3364         }
3365
3366         iommu_flush_all();
3367
3368         for_each_active_iommu(iommu, drhd) {
3369                 iommu_disable_translation(iommu);
3370
3371                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3372
3373                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3374                         readl(iommu->reg + DMAR_FECTL_REG);
3375                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3376                         readl(iommu->reg + DMAR_FEDATA_REG);
3377                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3378                         readl(iommu->reg + DMAR_FEADDR_REG);
3379                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3380                         readl(iommu->reg + DMAR_FEUADDR_REG);
3381
3382                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3383         }
3384         return 0;
3385
3386 nomem:
3387         for_each_active_iommu(iommu, drhd)
3388                 kfree(iommu->iommu_state);
3389
3390         return -ENOMEM;
3391 }
3392
3393 static void iommu_resume(void)
3394 {
3395         struct dmar_drhd_unit *drhd;
3396         struct intel_iommu *iommu = NULL;
3397         unsigned long flag;
3398
3399         if (init_iommu_hw()) {
3400                 if (force_on)
3401                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3402                 else
3403                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3404                 return;
3405         }
3406
3407         for_each_active_iommu(iommu, drhd) {
3408
3409                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3410
3411                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3412                         iommu->reg + DMAR_FECTL_REG);
3413                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3414                         iommu->reg + DMAR_FEDATA_REG);
3415                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3416                         iommu->reg + DMAR_FEADDR_REG);
3417                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3418                         iommu->reg + DMAR_FEUADDR_REG);
3419
3420                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3421         }
3422
3423         for_each_active_iommu(iommu, drhd)
3424                 kfree(iommu->iommu_state);
3425 }
3426
3427 static struct syscore_ops iommu_syscore_ops = {
3428         .resume         = iommu_resume,
3429         .suspend        = iommu_suspend,
3430 };
3431
3432 static void __init init_iommu_pm_ops(void)
3433 {
3434         register_syscore_ops(&iommu_syscore_ops);
3435 }
3436
3437 #else
3438 static inline void init_iommu_pm_ops(void) {}
3439 #endif  /* CONFIG_PM */
3440
3441 LIST_HEAD(dmar_rmrr_units);
3442
3443 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3444 {
3445         list_add(&rmrr->list, &dmar_rmrr_units);
3446 }
3447
3448
3449 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3450 {
3451         struct acpi_dmar_reserved_memory *rmrr;
3452         struct dmar_rmrr_unit *rmrru;
3453
3454         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3455         if (!rmrru)
3456                 return -ENOMEM;
3457
3458         rmrru->hdr = header;
3459         rmrr = (struct acpi_dmar_reserved_memory *)header;
3460         rmrru->base_address = rmrr->base_address;
3461         rmrru->end_address = rmrr->end_address;
3462
3463         dmar_register_rmrr_unit(rmrru);
3464         return 0;
3465 }
3466
3467 static int __init
3468 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3469 {
3470         struct acpi_dmar_reserved_memory *rmrr;
3471
3472         rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3473         return dmar_parse_dev_scope((void *)(rmrr + 1),
3474                                     ((void *)rmrr) + rmrr->header.length,
3475                                     &rmrru->devices_cnt, &rmrru->devices,
3476                                     rmrr->segment);
3477 }
3478
3479 static LIST_HEAD(dmar_atsr_units);
3480
3481 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3482 {
3483         struct acpi_dmar_atsr *atsr;
3484         struct dmar_atsr_unit *atsru;
3485
3486         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3487         atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3488         if (!atsru)
3489                 return -ENOMEM;
3490
3491         atsru->hdr = hdr;
3492         atsru->include_all = atsr->flags & 0x1;
3493
3494         list_add(&atsru->list, &dmar_atsr_units);
3495
3496         return 0;
3497 }
3498
3499 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3500 {
3501         struct acpi_dmar_atsr *atsr;
3502
3503         if (atsru->include_all)
3504                 return 0;
3505
3506         atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3507         return dmar_parse_dev_scope((void *)(atsr + 1),
3508                                     (void *)atsr + atsr->header.length,
3509                                     &atsru->devices_cnt, &atsru->devices,
3510                                     atsr->segment);
3511 }
3512
3513 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3514 {
3515         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3516         kfree(atsru);
3517 }
3518
3519 static void intel_iommu_free_dmars(void)
3520 {
3521         struct dmar_rmrr_unit *rmrru, *rmrr_n;
3522         struct dmar_atsr_unit *atsru, *atsr_n;
3523
3524         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3525                 list_del(&rmrru->list);
3526                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3527                 kfree(rmrru);
3528         }
3529
3530         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3531                 list_del(&atsru->list);
3532                 intel_iommu_free_atsr(atsru);
3533         }
3534 }
3535
3536 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3537 {
3538         int i;
3539         struct pci_bus *bus;
3540         struct acpi_dmar_atsr *atsr;
3541         struct dmar_atsr_unit *atsru;
3542
3543         dev = pci_physfn(dev);
3544
3545         list_for_each_entry(atsru, &dmar_atsr_units, list) {
3546                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3547                 if (atsr->segment == pci_domain_nr(dev->bus))
3548                         goto found;
3549         }
3550
3551         return 0;
3552
3553 found:
3554         for (bus = dev->bus; bus; bus = bus->parent) {
3555                 struct pci_dev *bridge = bus->self;
3556
3557                 if (!bridge || !pci_is_pcie(bridge) ||
3558                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3559                         return 0;
3560
3561                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) {
3562                         for (i = 0; i < atsru->devices_cnt; i++)
3563                                 if (atsru->devices[i] == bridge)
3564                                         return 1;
3565                         break;
3566                 }
3567         }
3568
3569         if (atsru->include_all)
3570                 return 1;
3571
3572         return 0;
3573 }
3574
3575 int __init dmar_parse_rmrr_atsr_dev(void)
3576 {
3577         struct dmar_rmrr_unit *rmrr;
3578         struct dmar_atsr_unit *atsr;
3579         int ret = 0;
3580
3581         list_for_each_entry(rmrr, &dmar_rmrr_units, list) {
3582                 ret = rmrr_parse_dev(rmrr);
3583                 if (ret)
3584                         return ret;
3585         }
3586
3587         list_for_each_entry(atsr, &dmar_atsr_units, list) {
3588                 ret = atsr_parse_dev(atsr);
3589                 if (ret)
3590                         return ret;
3591         }
3592
3593         return ret;
3594 }
3595
3596 /*
3597  * Here we only respond to action of unbound device from driver.
3598  *
3599  * Added device is not attached to its DMAR domain here yet. That will happen
3600  * when mapping the device to iova.
3601  */
3602 static int device_notifier(struct notifier_block *nb,
3603                                   unsigned long action, void *data)
3604 {
3605         struct device *dev = data;
3606         struct pci_dev *pdev = to_pci_dev(dev);
3607         struct dmar_domain *domain;
3608
3609         if (iommu_no_mapping(dev))
3610                 return 0;
3611
3612         domain = find_domain(pdev);
3613         if (!domain)
3614                 return 0;
3615
3616         if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3617                 domain_remove_one_dev_info(domain, pdev);
3618
3619                 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3620                     !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3621                     list_empty(&domain->devices))
3622                         domain_exit(domain);
3623         }
3624
3625         return 0;
3626 }
3627
3628 static struct notifier_block device_nb = {
3629         .notifier_call = device_notifier,
3630 };
3631
3632 int __init intel_iommu_init(void)
3633 {
3634         int ret = -ENODEV;
3635         struct dmar_drhd_unit *drhd;
3636         struct intel_iommu *iommu;
3637
3638         /* VT-d is required for a TXT/tboot launch, so enforce that */
3639         force_on = tboot_force_iommu();
3640
3641         if (dmar_table_init()) {
3642                 if (force_on)
3643                         panic("tboot: Failed to initialize DMAR table\n");
3644                 goto out_free_dmar;
3645         }
3646
3647         /*
3648          * Disable translation if already enabled prior to OS handover.
3649          */
3650         for_each_active_iommu(iommu, drhd)
3651                 if (iommu->gcmd & DMA_GCMD_TE)
3652                         iommu_disable_translation(iommu);
3653
3654         if (dmar_dev_scope_init() < 0) {
3655                 if (force_on)
3656                         panic("tboot: Failed to initialize DMAR device scope\n");
3657                 goto out_free_dmar;
3658         }
3659
3660         if (no_iommu || dmar_disabled)
3661                 goto out_free_dmar;
3662
3663         if (iommu_init_mempool()) {
3664                 if (force_on)
3665                         panic("tboot: Failed to initialize iommu memory\n");
3666                 goto out_free_dmar;
3667         }
3668
3669         if (list_empty(&dmar_rmrr_units))
3670                 printk(KERN_INFO "DMAR: No RMRR found\n");
3671
3672         if (list_empty(&dmar_atsr_units))
3673                 printk(KERN_INFO "DMAR: No ATSR found\n");
3674
3675         if (dmar_init_reserved_ranges()) {
3676                 if (force_on)
3677                         panic("tboot: Failed to reserve iommu ranges\n");
3678                 goto out_free_mempool;
3679         }
3680
3681         init_no_remapping_devices();
3682
3683         ret = init_dmars();
3684         if (ret) {
3685                 if (force_on)
3686                         panic("tboot: Failed to initialize DMARs\n");
3687                 printk(KERN_ERR "IOMMU: dmar init failed\n");
3688                 goto out_free_reserved_range;
3689         }
3690         printk(KERN_INFO
3691         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3692
3693         init_timer(&unmap_timer);
3694 #ifdef CONFIG_SWIOTLB
3695         swiotlb = 0;
3696 #endif
3697         dma_ops = &intel_dma_ops;
3698
3699         init_iommu_pm_ops();
3700
3701         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3702
3703         bus_register_notifier(&pci_bus_type, &device_nb);
3704
3705         intel_iommu_enabled = 1;
3706
3707         return 0;
3708
3709 out_free_reserved_range:
3710         put_iova_domain(&reserved_iova_list);
3711 out_free_mempool:
3712         iommu_exit_mempool();
3713 out_free_dmar:
3714         intel_iommu_free_dmars();
3715         return ret;
3716 }
3717
3718 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3719                                            struct pci_dev *pdev)
3720 {
3721         struct pci_dev *tmp, *parent;
3722
3723         if (!iommu || !pdev)
3724                 return;
3725
3726         /* dependent device detach */
3727         tmp = pci_find_upstream_pcie_bridge(pdev);
3728         /* Secondary interface's bus number and devfn 0 */
3729         if (tmp) {
3730                 parent = pdev->bus->self;
3731                 while (parent != tmp) {
3732                         iommu_detach_dev(iommu, parent->bus->number,
3733                                          parent->devfn);
3734                         parent = parent->bus->self;
3735                 }
3736                 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3737                         iommu_detach_dev(iommu,
3738                                 tmp->subordinate->number, 0);
3739                 else /* this is a legacy PCI bridge */
3740                         iommu_detach_dev(iommu, tmp->bus->number,
3741                                          tmp->devfn);
3742         }
3743 }
3744
3745 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3746                                           struct pci_dev *pdev)
3747 {
3748         struct device_domain_info *info, *tmp;
3749         struct intel_iommu *iommu;
3750         unsigned long flags;
3751         int found = 0;
3752
3753         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3754                                 pdev->devfn);
3755         if (!iommu)
3756                 return;
3757
3758         spin_lock_irqsave(&device_domain_lock, flags);
3759         list_for_each_entry_safe(info, tmp, &domain->devices, link) {
3760                 if (info->segment == pci_domain_nr(pdev->bus) &&
3761                     info->bus == pdev->bus->number &&
3762                     info->devfn == pdev->devfn) {
3763                         unlink_domain_info(info);
3764                         spin_unlock_irqrestore(&device_domain_lock, flags);
3765
3766                         iommu_disable_dev_iotlb(info);
3767                         iommu_detach_dev(iommu, info->bus, info->devfn);
3768                         iommu_detach_dependent_devices(iommu, pdev);
3769                         free_devinfo_mem(info);
3770
3771                         spin_lock_irqsave(&device_domain_lock, flags);
3772
3773                         if (found)
3774                                 break;
3775                         else
3776                                 continue;
3777                 }
3778
3779                 /* if there is no other devices under the same iommu
3780                  * owned by this domain, clear this iommu in iommu_bmp
3781                  * update iommu count and coherency
3782                  */
3783                 if (iommu == device_to_iommu(info->segment, info->bus,
3784                                             info->devfn))
3785                         found = 1;
3786         }
3787
3788         spin_unlock_irqrestore(&device_domain_lock, flags);
3789
3790         if (found == 0) {
3791                 unsigned long tmp_flags;
3792                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3793                 clear_bit(iommu->seq_id, domain->iommu_bmp);
3794                 domain->iommu_count--;
3795                 domain_update_iommu_cap(domain);
3796                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3797
3798                 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3799                     !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3800                         spin_lock_irqsave(&iommu->lock, tmp_flags);
3801                         clear_bit(domain->id, iommu->domain_ids);
3802                         iommu->domains[domain->id] = NULL;
3803                         spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3804                 }
3805         }
3806 }
3807
3808 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3809 {
3810         struct device_domain_info *info;
3811         struct intel_iommu *iommu;
3812         unsigned long flags1, flags2;
3813
3814         spin_lock_irqsave(&device_domain_lock, flags1);
3815         while (!list_empty(&domain->devices)) {
3816                 info = list_entry(domain->devices.next,
3817                         struct device_domain_info, link);
3818                 unlink_domain_info(info);
3819                 spin_unlock_irqrestore(&device_domain_lock, flags1);
3820
3821                 iommu_disable_dev_iotlb(info);
3822                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3823                 iommu_detach_dev(iommu, info->bus, info->devfn);
3824                 iommu_detach_dependent_devices(iommu, info->dev);
3825
3826                 /* clear this iommu in iommu_bmp, update iommu count
3827                  * and capabilities
3828                  */
3829                 spin_lock_irqsave(&domain->iommu_lock, flags2);
3830                 if (test_and_clear_bit(iommu->seq_id,
3831                                        domain->iommu_bmp)) {
3832                         domain->iommu_count--;
3833                         domain_update_iommu_cap(domain);
3834                 }
3835                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3836
3837                 free_devinfo_mem(info);
3838                 spin_lock_irqsave(&device_domain_lock, flags1);
3839         }
3840         spin_unlock_irqrestore(&device_domain_lock, flags1);
3841 }
3842
3843 /* domain id for virtual machine, it won't be set in context */
3844 static atomic_t vm_domid = ATOMIC_INIT(0);
3845
3846 static struct dmar_domain *iommu_alloc_vm_domain(void)
3847 {
3848         struct dmar_domain *domain;
3849
3850         domain = alloc_domain_mem();
3851         if (!domain)
3852                 return NULL;
3853
3854         domain->id = atomic_inc_return(&vm_domid);
3855         domain->nid = -1;
3856         memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3857         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3858
3859         return domain;
3860 }
3861
3862 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3863 {
3864         int adjust_width;
3865
3866         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3867         spin_lock_init(&domain->iommu_lock);
3868
3869         domain_reserve_special_ranges(domain);
3870
3871         /* calculate AGAW */
3872         domain->gaw = guest_width;
3873         adjust_width = guestwidth_to_adjustwidth(guest_width);
3874         domain->agaw = width_to_agaw(adjust_width);
3875
3876         INIT_LIST_HEAD(&domain->devices);
3877
3878         domain->iommu_count = 0;
3879         domain->iommu_coherency = 0;
3880         domain->iommu_snooping = 0;
3881         domain->iommu_superpage = 0;
3882         domain->max_addr = 0;
3883         domain->nid = -1;
3884
3885         /* always allocate the top pgd */
3886         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3887         if (!domain->pgd)
3888                 return -ENOMEM;
3889         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3890         return 0;
3891 }
3892
3893 static void iommu_free_vm_domain(struct dmar_domain *domain)
3894 {
3895         unsigned long flags;
3896         struct dmar_drhd_unit *drhd;
3897         struct intel_iommu *iommu;
3898         unsigned long i;
3899         unsigned long ndomains;
3900
3901         for_each_active_iommu(iommu, drhd) {
3902                 ndomains = cap_ndoms(iommu->cap);
3903                 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3904                         if (iommu->domains[i] == domain) {
3905                                 spin_lock_irqsave(&iommu->lock, flags);
3906                                 clear_bit(i, iommu->domain_ids);
3907                                 iommu->domains[i] = NULL;
3908                                 spin_unlock_irqrestore(&iommu->lock, flags);
3909                                 break;
3910                         }
3911                 }
3912         }
3913 }
3914
3915 static void vm_domain_exit(struct dmar_domain *domain)
3916 {
3917         /* Domain 0 is reserved, so dont process it */
3918         if (!domain)
3919                 return;
3920
3921         vm_domain_remove_all_dev_info(domain);
3922         /* destroy iovas */
3923         put_iova_domain(&domain->iovad);
3924
3925         /* clear ptes */
3926         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3927
3928         /* free page tables */
3929         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3930
3931         iommu_free_vm_domain(domain);
3932         free_domain_mem(domain);
3933 }
3934
3935 static int intel_iommu_domain_init(struct iommu_domain *domain)
3936 {
3937         struct dmar_domain *dmar_domain;
3938
3939         dmar_domain = iommu_alloc_vm_domain();
3940         if (!dmar_domain) {
3941                 printk(KERN_ERR
3942                         "intel_iommu_domain_init: dmar_domain == NULL\n");
3943                 return -ENOMEM;
3944         }
3945         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3946                 printk(KERN_ERR
3947                         "intel_iommu_domain_init() failed\n");
3948                 vm_domain_exit(dmar_domain);
3949                 return -ENOMEM;
3950         }
3951         domain_update_iommu_cap(dmar_domain);
3952         domain->priv = dmar_domain;
3953
3954         domain->geometry.aperture_start = 0;
3955         domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
3956         domain->geometry.force_aperture = true;
3957
3958         return 0;
3959 }
3960
3961 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3962 {
3963         struct dmar_domain *dmar_domain = domain->priv;
3964
3965         domain->priv = NULL;
3966         vm_domain_exit(dmar_domain);
3967 }
3968
3969 static int intel_iommu_attach_device(struct iommu_domain *domain,
3970                                      struct device *dev)
3971 {
3972         struct dmar_domain *dmar_domain = domain->priv;
3973         struct pci_dev *pdev = to_pci_dev(dev);
3974         struct intel_iommu *iommu;
3975         int addr_width;
3976
3977         /* normally pdev is not mapped */
3978         if (unlikely(domain_context_mapped(pdev))) {
3979                 struct dmar_domain *old_domain;
3980
3981                 old_domain = find_domain(pdev);
3982                 if (old_domain) {
3983                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3984                             dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3985                                 domain_remove_one_dev_info(old_domain, pdev);
3986                         else
3987                                 domain_remove_dev_info(old_domain);
3988                 }
3989         }
3990
3991         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3992                                 pdev->devfn);
3993         if (!iommu)
3994                 return -ENODEV;
3995
3996         /* check if this iommu agaw is sufficient for max mapped address */
3997         addr_width = agaw_to_width(iommu->agaw);
3998         if (addr_width > cap_mgaw(iommu->cap))
3999                 addr_width = cap_mgaw(iommu->cap);
4000
4001         if (dmar_domain->max_addr > (1LL << addr_width)) {
4002                 printk(KERN_ERR "%s: iommu width (%d) is not "
4003                        "sufficient for the mapped address (%llx)\n",
4004                        __func__, addr_width, dmar_domain->max_addr);
4005                 return -EFAULT;
4006         }
4007         dmar_domain->gaw = addr_width;
4008
4009         /*
4010          * Knock out extra levels of page tables if necessary
4011          */
4012         while (iommu->agaw < dmar_domain->agaw) {
4013                 struct dma_pte *pte;
4014
4015                 pte = dmar_domain->pgd;
4016                 if (dma_pte_present(pte)) {
4017                         dmar_domain->pgd = (struct dma_pte *)
4018                                 phys_to_virt(dma_pte_addr(pte));
4019                         free_pgtable_page(pte);
4020                 }
4021                 dmar_domain->agaw--;
4022         }
4023
4024         return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4025 }
4026
4027 static void intel_iommu_detach_device(struct iommu_domain *domain,
4028                                       struct device *dev)
4029 {
4030         struct dmar_domain *dmar_domain = domain->priv;
4031         struct pci_dev *pdev = to_pci_dev(dev);
4032
4033         domain_remove_one_dev_info(dmar_domain, pdev);
4034 }
4035
4036 static int intel_iommu_map(struct iommu_domain *domain,
4037                            unsigned long iova, phys_addr_t hpa,
4038                            size_t size, int iommu_prot)
4039 {
4040         struct dmar_domain *dmar_domain = domain->priv;
4041         u64 max_addr;
4042         int prot = 0;
4043         int ret;
4044
4045         if (iommu_prot & IOMMU_READ)
4046                 prot |= DMA_PTE_READ;
4047         if (iommu_prot & IOMMU_WRITE)
4048                 prot |= DMA_PTE_WRITE;
4049         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4050                 prot |= DMA_PTE_SNP;
4051
4052         max_addr = iova + size;
4053         if (dmar_domain->max_addr < max_addr) {
4054                 u64 end;
4055
4056                 /* check if minimum agaw is sufficient for mapped address */
4057                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4058                 if (end < max_addr) {
4059                         printk(KERN_ERR "%s: iommu width (%d) is not "
4060                                "sufficient for the mapped address (%llx)\n",
4061                                __func__, dmar_domain->gaw, max_addr);
4062                         return -EFAULT;
4063                 }
4064                 dmar_domain->max_addr = max_addr;
4065         }
4066         /* Round up size to next multiple of PAGE_SIZE, if it and
4067            the low bits of hpa would take us onto the next page */
4068         size = aligned_nrpages(hpa, size);
4069         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4070                                  hpa >> VTD_PAGE_SHIFT, size, prot);
4071         return ret;
4072 }
4073
4074 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4075                              unsigned long iova, size_t size)
4076 {
4077         struct dmar_domain *dmar_domain = domain->priv;
4078         int order;
4079
4080         order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4081                             (iova + size - 1) >> VTD_PAGE_SHIFT);
4082
4083         if (dmar_domain->max_addr == iova + size)
4084                 dmar_domain->max_addr = iova;
4085
4086         return PAGE_SIZE << order;
4087 }
4088
4089 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4090                                             dma_addr_t iova)
4091 {
4092         struct dmar_domain *dmar_domain = domain->priv;
4093         struct dma_pte *pte;
4094         u64 phys = 0;
4095
4096         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4097         if (pte)
4098                 phys = dma_pte_addr(pte);
4099
4100         return phys;
4101 }
4102
4103 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4104                                       unsigned long cap)
4105 {
4106         struct dmar_domain *dmar_domain = domain->priv;
4107
4108         if (cap == IOMMU_CAP_CACHE_COHERENCY)
4109                 return dmar_domain->iommu_snooping;
4110         if (cap == IOMMU_CAP_INTR_REMAP)
4111                 return irq_remapping_enabled;
4112
4113         return 0;
4114 }
4115
4116 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4117
4118 static int intel_iommu_add_device(struct device *dev)
4119 {
4120         struct pci_dev *pdev = to_pci_dev(dev);
4121         struct pci_dev *bridge, *dma_pdev = NULL;
4122         struct iommu_group *group;
4123         int ret;
4124
4125         if (!device_to_iommu(pci_domain_nr(pdev->bus),
4126                              pdev->bus->number, pdev->devfn))
4127                 return -ENODEV;
4128
4129         bridge = pci_find_upstream_pcie_bridge(pdev);
4130         if (bridge) {
4131                 if (pci_is_pcie(bridge))
4132                         dma_pdev = pci_get_domain_bus_and_slot(
4133                                                 pci_domain_nr(pdev->bus),
4134                                                 bridge->subordinate->number, 0);
4135                 if (!dma_pdev)
4136                         dma_pdev = pci_dev_get(bridge);
4137         } else
4138                 dma_pdev = pci_dev_get(pdev);
4139
4140         /* Account for quirked devices */
4141         swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4142
4143         /*
4144          * If it's a multifunction device that does not support our
4145          * required ACS flags, add to the same group as lowest numbered
4146          * function that also does not suport the required ACS flags.
4147          */
4148         if (dma_pdev->multifunction &&
4149             !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4150                 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4151
4152                 for (i = 0; i < 8; i++) {
4153                         struct pci_dev *tmp;
4154
4155                         tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4156                         if (!tmp)
4157                                 continue;
4158
4159                         if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4160                                 swap_pci_ref(&dma_pdev, tmp);
4161                                 break;
4162                         }
4163                         pci_dev_put(tmp);
4164                 }
4165         }
4166
4167         /*
4168          * Devices on the root bus go through the iommu.  If that's not us,
4169          * find the next upstream device and test ACS up to the root bus.
4170          * Finding the next device may require skipping virtual buses.
4171          */
4172         while (!pci_is_root_bus(dma_pdev->bus)) {
4173                 struct pci_bus *bus = dma_pdev->bus;
4174
4175                 while (!bus->self) {
4176                         if (!pci_is_root_bus(bus))
4177                                 bus = bus->parent;
4178                         else
4179                                 goto root_bus;
4180                 }
4181
4182                 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4183                         break;
4184
4185                 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4186         }
4187
4188 root_bus:
4189         group = iommu_group_get(&dma_pdev->dev);
4190         pci_dev_put(dma_pdev);
4191         if (!group) {
4192                 group = iommu_group_alloc();
4193                 if (IS_ERR(group))
4194                         return PTR_ERR(group);
4195         }
4196
4197         ret = iommu_group_add_device(group, dev);
4198
4199         iommu_group_put(group);
4200         return ret;
4201 }
4202
4203 static void intel_iommu_remove_device(struct device *dev)
4204 {
4205         iommu_group_remove_device(dev);
4206 }
4207
4208 static struct iommu_ops intel_iommu_ops = {
4209         .domain_init    = intel_iommu_domain_init,
4210         .domain_destroy = intel_iommu_domain_destroy,
4211         .attach_dev     = intel_iommu_attach_device,
4212         .detach_dev     = intel_iommu_detach_device,
4213         .map            = intel_iommu_map,
4214         .unmap          = intel_iommu_unmap,
4215         .iova_to_phys   = intel_iommu_iova_to_phys,
4216         .domain_has_cap = intel_iommu_domain_has_cap,
4217         .add_device     = intel_iommu_add_device,
4218         .remove_device  = intel_iommu_remove_device,
4219         .pgsize_bitmap  = INTEL_IOMMU_PGSIZES,
4220 };
4221
4222 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4223 {
4224         /* G4x/GM45 integrated gfx dmar support is totally busted. */
4225         printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4226         dmar_map_gfx = 0;
4227 }
4228
4229 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4230 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4231 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4232 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4233 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4234 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4235 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4236
4237 static void quirk_iommu_rwbf(struct pci_dev *dev)
4238 {
4239         /*
4240          * Mobile 4 Series Chipset neglects to set RWBF capability,
4241          * but needs it. Same seems to hold for the desktop versions.
4242          */
4243         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4244         rwbf_quirk = 1;
4245 }
4246
4247 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4248 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4249 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4250 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4251 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4252 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4253 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4254
4255 #define GGC 0x52
4256 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
4257 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
4258 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
4259 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
4260 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
4261 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
4262 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
4263 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
4264
4265 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4266 {
4267         unsigned short ggc;
4268
4269         if (pci_read_config_word(dev, GGC, &ggc))
4270                 return;
4271
4272         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4273                 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4274                 dmar_map_gfx = 0;
4275         } else if (dmar_map_gfx) {
4276                 /* we have to ensure the gfx device is idle before we flush */
4277                 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4278                 intel_iommu_strict = 1;
4279        }
4280 }
4281 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4282 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4283 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4284 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4285
4286 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4287    ISOCH DMAR unit for the Azalia sound device, but not give it any
4288    TLB entries, which causes it to deadlock. Check for that.  We do
4289    this in a function called from init_dmars(), instead of in a PCI
4290    quirk, because we don't want to print the obnoxious "BIOS broken"
4291    message if VT-d is actually disabled.
4292 */
4293 static void __init check_tylersburg_isoch(void)
4294 {
4295         struct pci_dev *pdev;
4296         uint32_t vtisochctrl;
4297
4298         /* If there's no Azalia in the system anyway, forget it. */
4299         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4300         if (!pdev)
4301                 return;
4302         pci_dev_put(pdev);
4303
4304         /* System Management Registers. Might be hidden, in which case
4305            we can't do the sanity check. But that's OK, because the
4306            known-broken BIOSes _don't_ actually hide it, so far. */
4307         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4308         if (!pdev)
4309                 return;
4310
4311         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4312                 pci_dev_put(pdev);
4313                 return;
4314         }
4315
4316         pci_dev_put(pdev);
4317
4318         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4319         if (vtisochctrl & 1)
4320                 return;
4321
4322         /* Drop all bits other than the number of TLB entries */
4323         vtisochctrl &= 0x1c;
4324
4325         /* If we have the recommended number of TLB entries (16), fine. */
4326         if (vtisochctrl == 0x10)
4327                 return;
4328
4329         /* Zero TLB entries? You get to ride the short bus to school. */
4330         if (!vtisochctrl) {
4331                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4332                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4333                      dmi_get_system_info(DMI_BIOS_VENDOR),
4334                      dmi_get_system_info(DMI_BIOS_VERSION),
4335                      dmi_get_system_info(DMI_PRODUCT_VERSION));
4336                 iommu_identity_mapping |= IDENTMAP_AZALIA;
4337                 return;
4338         }
4339         
4340         printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4341                vtisochctrl);
4342 }