]> Pileus Git - ~andy/linux/blob - drivers/ieee1394/eth1394.c
ieee1394: eth1394: handle tlabel exhaustion
[~andy/linux] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80         printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86         struct list_head list;
87         int offset;
88         int len;
89 };
90
91 struct partial_datagram {
92         struct list_head list;
93         u16 dgl;
94         u16 dg_size;
95         u16 ether_type;
96         struct sk_buff *skb;
97         char *pbuf;
98         struct list_head frag_info;
99 };
100
101 struct pdg_list {
102         struct list_head list;  /* partial datagram list per node       */
103         unsigned int sz;        /* partial datagram list size per node  */
104         spinlock_t lock;        /* partial datagram lock                */
105 };
106
107 struct eth1394_host_info {
108         struct hpsb_host *host;
109         struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113         struct unit_directory *ud;
114         struct list_head list;
115 };
116
117 struct eth1394_node_info {
118         u16 maxpayload;         /* max payload                  */
119         u8 sspd;                /* max speed                    */
120         u64 fifo;               /* FIFO address                 */
121         struct pdg_list pdg;    /* partial RX datagram lists    */
122         int dgl;                /* outgoing datagram label      */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133         sizeof(struct eth1394_uf_hdr),
134         sizeof(struct eth1394_ff_hdr),
135         sizeof(struct eth1394_sf_hdr),
136         sizeof(struct eth1394_sf_hdr)
137 };
138
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /*     S100, S200, S400, S800, S1600, S3200 */
141         512, 1024, 2048, 4096,  4096,  4096
142 };
143
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
147
148 /*
149  * The max_partial_datagrams parameter is the maximum number of fragmented
150  * datagrams per node that eth1394 will keep in memory.  Providing an upper
151  * bound allows us to limit the amount of memory that partial datagrams
152  * consume in the event that some partial datagrams are never completed.
153  */
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157                  "Maximum number of partially received fragmented datagrams "
158                  "(default = 25).");
159
160
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162                             unsigned short type, void *daddr, void *saddr,
163                             unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
166 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
167 static void ether1394_header_cache_update(struct hh_cache *hh,
168                                           struct net_device *dev,
169                                           unsigned char *haddr);
170 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
171 static void ether1394_iso(struct hpsb_iso *iso);
172
173 static struct ethtool_ops ethtool_ops;
174
175 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
176                            quadlet_t *data, u64 addr, size_t len, u16 flags);
177 static void ether1394_add_host(struct hpsb_host *host);
178 static void ether1394_remove_host(struct hpsb_host *host);
179 static void ether1394_host_reset(struct hpsb_host *host);
180
181 /* Function for incoming 1394 packets */
182 static struct hpsb_address_ops addr_ops = {
183         .write =        ether1394_write,
184 };
185
186 /* Ieee1394 highlevel driver functions */
187 static struct hpsb_highlevel eth1394_highlevel = {
188         .name =         driver_name,
189         .add_host =     ether1394_add_host,
190         .remove_host =  ether1394_remove_host,
191         .host_reset =   ether1394_host_reset,
192 };
193
194 static int ether1394_recv_init(struct eth1394_priv *priv)
195 {
196         unsigned int iso_buf_size;
197
198         /* FIXME: rawiso limits us to PAGE_SIZE */
199         iso_buf_size = min((unsigned int)PAGE_SIZE,
200                            2 * (1U << (priv->host->csr.max_rec + 1)));
201
202         priv->iso = hpsb_iso_recv_init(priv->host,
203                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
204                                        ETHER1394_GASP_BUFFERS,
205                                        priv->broadcast_channel,
206                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
207                                        1, ether1394_iso);
208         if (priv->iso == NULL) {
209                 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
210                 priv->bc_state = ETHER1394_BC_ERROR;
211                 return -EAGAIN;
212         }
213
214         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
215                 priv->bc_state = ETHER1394_BC_STOPPED;
216         else
217                 priv->bc_state = ETHER1394_BC_RUNNING;
218         return 0;
219 }
220
221 /* This is called after an "ifup" */
222 static int ether1394_open(struct net_device *dev)
223 {
224         struct eth1394_priv *priv = netdev_priv(dev);
225         int ret;
226
227         if (priv->bc_state == ETHER1394_BC_ERROR) {
228                 ret = ether1394_recv_init(priv);
229                 if (ret)
230                         return ret;
231         }
232         netif_start_queue(dev);
233         return 0;
234 }
235
236 /* This is called after an "ifdown" */
237 static int ether1394_stop(struct net_device *dev)
238 {
239         /* flush priv->wake */
240         flush_scheduled_work();
241
242         netif_stop_queue(dev);
243         return 0;
244 }
245
246 /* Return statistics to the caller */
247 static struct net_device_stats *ether1394_stats(struct net_device *dev)
248 {
249         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
250 }
251
252 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
253  * so that's what we do. Should we increment the stat counters too?  */
254 static void ether1394_tx_timeout(struct net_device *dev)
255 {
256         struct hpsb_host *host =
257                         ((struct eth1394_priv *)netdev_priv(dev))->host;
258
259         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
260         ether1394_host_reset(host);
261 }
262
263 static inline int ether1394_max_mtu(struct hpsb_host* host)
264 {
265         return (1 << (host->csr.max_rec + 1))
266                         - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
267 }
268
269 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
270 {
271         int max_mtu;
272
273         if (new_mtu < 68)
274                 return -EINVAL;
275
276         max_mtu = ether1394_max_mtu(
277                         ((struct eth1394_priv *)netdev_priv(dev))->host);
278         if (new_mtu > max_mtu) {
279                 ETH1394_PRINT(KERN_INFO, dev->name,
280                               "Local node constrains MTU to %d\n", max_mtu);
281                 return -ERANGE;
282         }
283
284         dev->mtu = new_mtu;
285         return 0;
286 }
287
288 static void purge_partial_datagram(struct list_head *old)
289 {
290         struct partial_datagram *pd;
291         struct list_head *lh, *n;
292         struct fragment_info *fi;
293
294         pd = list_entry(old, struct partial_datagram, list);
295
296         list_for_each_safe(lh, n, &pd->frag_info) {
297                 fi = list_entry(lh, struct fragment_info, list);
298                 list_del(lh);
299                 kfree(fi);
300         }
301         list_del(old);
302         kfree_skb(pd->skb);
303         kfree(pd);
304 }
305
306 /******************************************
307  * 1394 bus activity functions
308  ******************************************/
309
310 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
311                                                   struct unit_directory *ud)
312 {
313         struct eth1394_node_ref *node;
314
315         list_for_each_entry(node, inl, list)
316                 if (node->ud == ud)
317                         return node;
318
319         return NULL;
320 }
321
322 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
323                                                        u64 guid)
324 {
325         struct eth1394_node_ref *node;
326
327         list_for_each_entry(node, inl, list)
328                 if (node->ud->ne->guid == guid)
329                         return node;
330
331         return NULL;
332 }
333
334 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
335                                                          nodeid_t nodeid)
336 {
337         struct eth1394_node_ref *node;
338
339         list_for_each_entry(node, inl, list)
340                 if (node->ud->ne->nodeid == nodeid)
341                         return node;
342
343         return NULL;
344 }
345
346 static int eth1394_new_node(struct eth1394_host_info *hi,
347                             struct unit_directory *ud)
348 {
349         struct eth1394_priv *priv;
350         struct eth1394_node_ref *new_node;
351         struct eth1394_node_info *node_info;
352
353         new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
354         if (!new_node)
355                 return -ENOMEM;
356
357         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
358         if (!node_info) {
359                 kfree(new_node);
360                 return -ENOMEM;
361         }
362
363         spin_lock_init(&node_info->pdg.lock);
364         INIT_LIST_HEAD(&node_info->pdg.list);
365         node_info->pdg.sz = 0;
366         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
367
368         ud->device.driver_data = node_info;
369         new_node->ud = ud;
370
371         priv = netdev_priv(hi->dev);
372         list_add_tail(&new_node->list, &priv->ip_node_list);
373         return 0;
374 }
375
376 static int eth1394_probe(struct device *dev)
377 {
378         struct unit_directory *ud;
379         struct eth1394_host_info *hi;
380
381         ud = container_of(dev, struct unit_directory, device);
382         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
383         if (!hi)
384                 return -ENOENT;
385
386         return eth1394_new_node(hi, ud);
387 }
388
389 static int eth1394_remove(struct device *dev)
390 {
391         struct unit_directory *ud;
392         struct eth1394_host_info *hi;
393         struct eth1394_priv *priv;
394         struct eth1394_node_ref *old_node;
395         struct eth1394_node_info *node_info;
396         struct list_head *lh, *n;
397         unsigned long flags;
398
399         ud = container_of(dev, struct unit_directory, device);
400         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
401         if (!hi)
402                 return -ENOENT;
403
404         priv = netdev_priv(hi->dev);
405
406         old_node = eth1394_find_node(&priv->ip_node_list, ud);
407         if (!old_node)
408                 return 0;
409
410         list_del(&old_node->list);
411         kfree(old_node);
412
413         node_info = (struct eth1394_node_info*)ud->device.driver_data;
414
415         spin_lock_irqsave(&node_info->pdg.lock, flags);
416         /* The partial datagram list should be empty, but we'll just
417          * make sure anyway... */
418         list_for_each_safe(lh, n, &node_info->pdg.list)
419                 purge_partial_datagram(lh);
420         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
421
422         kfree(node_info);
423         ud->device.driver_data = NULL;
424         return 0;
425 }
426
427 static int eth1394_update(struct unit_directory *ud)
428 {
429         struct eth1394_host_info *hi;
430         struct eth1394_priv *priv;
431         struct eth1394_node_ref *node;
432
433         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
434         if (!hi)
435                 return -ENOENT;
436
437         priv = netdev_priv(hi->dev);
438         node = eth1394_find_node(&priv->ip_node_list, ud);
439         if (node)
440                 return 0;
441
442         return eth1394_new_node(hi, ud);
443 }
444
445 static struct ieee1394_device_id eth1394_id_table[] = {
446         {
447                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
448                                 IEEE1394_MATCH_VERSION),
449                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
450                 .version = ETHER1394_GASP_VERSION,
451         },
452         {}
453 };
454
455 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
456
457 static struct hpsb_protocol_driver eth1394_proto_driver = {
458         .name           = driver_name,
459         .id_table       = eth1394_id_table,
460         .update         = eth1394_update,
461         .driver         = {
462                 .probe          = eth1394_probe,
463                 .remove         = eth1394_remove,
464         },
465 };
466
467 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
468 {
469         unsigned long flags;
470         int i;
471         struct eth1394_priv *priv = netdev_priv(dev);
472         struct hpsb_host *host = priv->host;
473         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
474         int max_speed = IEEE1394_SPEED_MAX;
475
476         spin_lock_irqsave(&priv->lock, flags);
477
478         memset(priv->ud_list, 0, sizeof(priv->ud_list));
479         priv->bc_maxpayload = 512;
480
481         /* Determine speed limit */
482         /* FIXME: This is broken for nodes with link speed < PHY speed,
483          * and it is suboptimal for S200B...S800B hardware.
484          * The result of nodemgr's speed probe should be used somehow. */
485         for (i = 0; i < host->node_count; i++) {
486                 /* take care of S100B...S400B PHY ports */
487                 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
488                         max_speed = IEEE1394_SPEED_100;
489                         break;
490                 }
491                 if (max_speed > host->speed[i])
492                         max_speed = host->speed[i];
493         }
494         priv->bc_sspd = max_speed;
495
496         if (set_mtu) {
497                 /* Use the RFC 2734 default 1500 octets or the maximum payload
498                  * as initial MTU */
499                 dev->mtu = min(1500, ether1394_max_mtu(host));
500
501                 /* Set our hardware address while we're at it */
502                 memcpy(dev->dev_addr, &guid, sizeof(u64));
503                 memset(dev->broadcast, 0xff, sizeof(u64));
504         }
505
506         spin_unlock_irqrestore(&priv->lock, flags);
507 }
508
509 static void ether1394_init_dev(struct net_device *dev)
510 {
511         dev->open               = ether1394_open;
512         dev->stop               = ether1394_stop;
513         dev->hard_start_xmit    = ether1394_tx;
514         dev->get_stats          = ether1394_stats;
515         dev->tx_timeout         = ether1394_tx_timeout;
516         dev->change_mtu         = ether1394_change_mtu;
517
518         dev->hard_header        = ether1394_header;
519         dev->rebuild_header     = ether1394_rebuild_header;
520         dev->hard_header_cache  = ether1394_header_cache;
521         dev->header_cache_update= ether1394_header_cache_update;
522         dev->hard_header_parse  = ether1394_header_parse;
523
524         SET_ETHTOOL_OPS(dev, &ethtool_ops);
525
526         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
527         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
528         dev->features           = NETIF_F_HIGHDMA;
529         dev->addr_len           = ETH1394_ALEN;
530         dev->hard_header_len    = ETH1394_HLEN;
531         dev->type               = ARPHRD_IEEE1394;
532
533         /* FIXME: This value was copied from ether_setup(). Is it too much? */
534         dev->tx_queue_len       = 1000;
535 }
536
537 /*
538  * Wake the queue up after commonly encountered transmit failure conditions are
539  * hopefully over.  Currently only tlabel exhaustion is accounted for.
540  */
541 static void ether1394_wake_queue(struct work_struct *work)
542 {
543         struct eth1394_priv *priv;
544         struct hpsb_packet *packet;
545
546         priv = container_of(work, struct eth1394_priv, wake);
547         packet = hpsb_alloc_packet(0);
548
549         /* This is really bad, but unjam the queue anyway. */
550         if (!packet)
551                 goto out;
552
553         packet->host = priv->host;
554         packet->node_id = priv->wake_node;
555         /*
556          * A transaction label is all we really want.  If we get one, it almost
557          * always means we can get a lot more because the ieee1394 core recycled
558          * a whole batch of tlabels, at last.
559          */
560         if (hpsb_get_tlabel(packet) == 0)
561                 hpsb_free_tlabel(packet);
562
563         hpsb_free_packet(packet);
564 out:
565         netif_wake_queue(priv->wake_dev);
566 }
567
568 /*
569  * This function is called every time a card is found. It is generally called
570  * when the module is installed. This is where we add all of our ethernet
571  * devices. One for each host.
572  */
573 static void ether1394_add_host(struct hpsb_host *host)
574 {
575         struct eth1394_host_info *hi = NULL;
576         struct net_device *dev = NULL;
577         struct eth1394_priv *priv;
578         u64 fifo_addr;
579
580         if (hpsb_config_rom_ip1394_add(host) != 0) {
581                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
582                 return;
583         }
584
585         fifo_addr = hpsb_allocate_and_register_addrspace(
586                         &eth1394_highlevel, host, &addr_ops,
587                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
588                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
589         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
590                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
591                 hpsb_config_rom_ip1394_remove(host);
592                 return;
593         }
594
595         dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
596         if (dev == NULL) {
597                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
598                 goto out;
599         }
600
601         SET_MODULE_OWNER(dev);
602 #if 0
603         /* FIXME - Is this the correct parent device anyway? */
604         SET_NETDEV_DEV(dev, &host->device);
605 #endif
606
607         priv = netdev_priv(dev);
608         INIT_LIST_HEAD(&priv->ip_node_list);
609         spin_lock_init(&priv->lock);
610         priv->host = host;
611         priv->local_fifo = fifo_addr;
612         INIT_WORK(&priv->wake, ether1394_wake_queue);
613         priv->wake_dev = dev;
614
615         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
616         if (hi == NULL) {
617                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
618                 goto out;
619         }
620
621         ether1394_reset_priv(dev, 1);
622
623         if (register_netdev(dev)) {
624                 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
625                 goto out;
626         }
627
628         ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
629                       host->id);
630
631         hi->host = host;
632         hi->dev = dev;
633
634         /* Ignore validity in hopes that it will be set in the future.  It'll
635          * be checked when the eth device is opened. */
636         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
637
638         ether1394_recv_init(priv);
639         return;
640 out:
641         if (dev)
642                 free_netdev(dev);
643         if (hi)
644                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
645         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
646         hpsb_config_rom_ip1394_remove(host);
647 }
648
649 /* Remove a card from our list */
650 static void ether1394_remove_host(struct hpsb_host *host)
651 {
652         struct eth1394_host_info *hi;
653         struct eth1394_priv *priv;
654
655         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
656         if (!hi)
657                 return;
658         priv = netdev_priv(hi->dev);
659         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
660         hpsb_config_rom_ip1394_remove(host);
661         if (priv->iso)
662                 hpsb_iso_shutdown(priv->iso);
663         unregister_netdev(hi->dev);
664         free_netdev(hi->dev);
665 }
666
667 /* A bus reset happened */
668 static void ether1394_host_reset(struct hpsb_host *host)
669 {
670         struct eth1394_host_info *hi;
671         struct eth1394_priv *priv;
672         struct net_device *dev;
673         struct list_head *lh, *n;
674         struct eth1394_node_ref *node;
675         struct eth1394_node_info *node_info;
676         unsigned long flags;
677
678         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
679
680         /* This can happen for hosts that we don't use */
681         if (!hi)
682                 return;
683
684         dev = hi->dev;
685         priv = netdev_priv(dev);
686
687         /* Reset our private host data, but not our MTU */
688         netif_stop_queue(dev);
689         ether1394_reset_priv(dev, 0);
690
691         list_for_each_entry(node, &priv->ip_node_list, list) {
692                 node_info = node->ud->device.driver_data;
693
694                 spin_lock_irqsave(&node_info->pdg.lock, flags);
695
696                 list_for_each_safe(lh, n, &node_info->pdg.list)
697                         purge_partial_datagram(lh);
698
699                 INIT_LIST_HEAD(&(node_info->pdg.list));
700                 node_info->pdg.sz = 0;
701
702                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
703         }
704
705         netif_wake_queue(dev);
706 }
707
708 /******************************************
709  * HW Header net device functions
710  ******************************************/
711 /* These functions have been adapted from net/ethernet/eth.c */
712
713 /* Create a fake MAC header for an arbitrary protocol layer.
714  * saddr=NULL means use device source address
715  * daddr=NULL means leave destination address (eg unresolved arp). */
716 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
717                             unsigned short type, void *daddr, void *saddr,
718                             unsigned len)
719 {
720         struct eth1394hdr *eth =
721                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
722
723         eth->h_proto = htons(type);
724
725         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
726                 memset(eth->h_dest, 0, dev->addr_len);
727                 return dev->hard_header_len;
728         }
729
730         if (daddr) {
731                 memcpy(eth->h_dest, daddr, dev->addr_len);
732                 return dev->hard_header_len;
733         }
734
735         return -dev->hard_header_len;
736 }
737
738 /* Rebuild the faked MAC header. This is called after an ARP
739  * (or in future other address resolution) has completed on this
740  * sk_buff. We now let ARP fill in the other fields.
741  *
742  * This routine CANNOT use cached dst->neigh!
743  * Really, it is used only when dst->neigh is wrong.
744  */
745 static int ether1394_rebuild_header(struct sk_buff *skb)
746 {
747         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
748
749         if (eth->h_proto == htons(ETH_P_IP))
750                 return arp_find((unsigned char *)&eth->h_dest, skb);
751
752         ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
753                       "unable to resolve type %04x addresses\n",
754                       ntohs(eth->h_proto));
755         return 0;
756 }
757
758 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
759 {
760         struct net_device *dev = skb->dev;
761
762         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
763         return ETH1394_ALEN;
764 }
765
766 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
767 {
768         unsigned short type = hh->hh_type;
769         struct net_device *dev = neigh->dev;
770         struct eth1394hdr *eth =
771                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
772
773         if (type == htons(ETH_P_802_3))
774                 return -1;
775
776         eth->h_proto = type;
777         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
778
779         hh->hh_len = ETH1394_HLEN;
780         return 0;
781 }
782
783 /* Called by Address Resolution module to notify changes in address. */
784 static void ether1394_header_cache_update(struct hh_cache *hh,
785                                           struct net_device *dev,
786                                           unsigned char * haddr)
787 {
788         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
789 }
790
791 /******************************************
792  * Datagram reception code
793  ******************************************/
794
795 /* Copied from net/ethernet/eth.c */
796 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
797 {
798         struct eth1394hdr *eth;
799         unsigned char *rawp;
800
801         skb_reset_mac_header(skb);
802         skb_pull(skb, ETH1394_HLEN);
803         eth = eth1394_hdr(skb);
804
805         if (*eth->h_dest & 1) {
806                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
807                         skb->pkt_type = PACKET_BROADCAST;
808 #if 0
809                 else
810                         skb->pkt_type = PACKET_MULTICAST;
811 #endif
812         } else {
813                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
814                         skb->pkt_type = PACKET_OTHERHOST;
815         }
816
817         if (ntohs(eth->h_proto) >= 1536)
818                 return eth->h_proto;
819
820         rawp = skb->data;
821
822         if (*(unsigned short *)rawp == 0xFFFF)
823                 return htons(ETH_P_802_3);
824
825         return htons(ETH_P_802_2);
826 }
827
828 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
829  * We also perform ARP translation here, if need be.  */
830 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
831                                  nodeid_t srcid, nodeid_t destid,
832                                  u16 ether_type)
833 {
834         struct eth1394_priv *priv = netdev_priv(dev);
835         u64 dest_hw;
836         unsigned short ret = 0;
837
838         /* Setup our hw addresses. We use these to build the ethernet header. */
839         if (destid == (LOCAL_BUS | ALL_NODES))
840                 dest_hw = ~0ULL;  /* broadcast */
841         else
842                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
843                                       priv->host->csr.guid_lo);
844
845         /* If this is an ARP packet, convert it. First, we want to make
846          * use of some of the fields, since they tell us a little bit
847          * about the sending machine.  */
848         if (ether_type == htons(ETH_P_ARP)) {
849                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
850                 struct arphdr *arp = (struct arphdr *)skb->data;
851                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
852                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
853                                            ntohl(arp1394->fifo_lo);
854                 u8 max_rec = min(priv->host->csr.max_rec,
855                                  (u8)(arp1394->max_rec));
856                 int sspd = arp1394->sspd;
857                 u16 maxpayload;
858                 struct eth1394_node_ref *node;
859                 struct eth1394_node_info *node_info;
860                 __be64 guid;
861
862                 /* Sanity check. MacOSX seems to be sending us 131 in this
863                  * field (atleast on my Panther G5). Not sure why. */
864                 if (sspd > 5 || sspd < 0)
865                         sspd = 0;
866
867                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
868                                  (u16)(1 << (max_rec + 1)));
869
870                 guid = get_unaligned(&arp1394->s_uniq_id);
871                 node = eth1394_find_node_guid(&priv->ip_node_list,
872                                               be64_to_cpu(guid));
873                 if (!node)
874                         return 0;
875
876                 node_info =
877                     (struct eth1394_node_info *)node->ud->device.driver_data;
878
879                 /* Update our speed/payload/fifo_offset table */
880                 node_info->maxpayload = maxpayload;
881                 node_info->sspd =       sspd;
882                 node_info->fifo =       fifo_addr;
883
884                 /* Now that we're done with the 1394 specific stuff, we'll
885                  * need to alter some of the data.  Believe it or not, all
886                  * that needs to be done is sender_IP_address needs to be
887                  * moved, the destination hardware address get stuffed
888                  * in and the hardware address length set to 8.
889                  *
890                  * IMPORTANT: The code below overwrites 1394 specific data
891                  * needed above so keep the munging of the data for the
892                  * higher level IP stack last. */
893
894                 arp->ar_hln = 8;
895                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
896                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
897                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
898
899                 if (arp->ar_op == htons(ARPOP_REQUEST))
900                         memset(arp_ptr, 0, sizeof(u64));
901                 else
902                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
903         }
904
905         /* Now add the ethernet header. */
906         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
907                              skb->len) >= 0)
908                 ret = ether1394_type_trans(skb, dev);
909
910         return ret;
911 }
912
913 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
914 {
915         struct fragment_info *fi;
916         int end = offset + len;
917
918         list_for_each_entry(fi, frag_list, list)
919                 if (offset < fi->offset + fi->len && end > fi->offset)
920                         return 1;
921
922         return 0;
923 }
924
925 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
926 {
927         struct partial_datagram *pd;
928
929         list_for_each_entry(pd, pdgl, list)
930                 if (pd->dgl == dgl)
931                         return &pd->list;
932
933         return NULL;
934 }
935
936 /* Assumes that new fragment does not overlap any existing fragments */
937 static int new_fragment(struct list_head *frag_info, int offset, int len)
938 {
939         struct list_head *lh;
940         struct fragment_info *fi, *fi2, *new;
941
942         list_for_each(lh, frag_info) {
943                 fi = list_entry(lh, struct fragment_info, list);
944                 if (fi->offset + fi->len == offset) {
945                         /* The new fragment can be tacked on to the end */
946                         fi->len += len;
947                         /* Did the new fragment plug a hole? */
948                         fi2 = list_entry(lh->next, struct fragment_info, list);
949                         if (fi->offset + fi->len == fi2->offset) {
950                                 /* glue fragments together */
951                                 fi->len += fi2->len;
952                                 list_del(lh->next);
953                                 kfree(fi2);
954                         }
955                         return 0;
956                 } else if (offset + len == fi->offset) {
957                         /* The new fragment can be tacked on to the beginning */
958                         fi->offset = offset;
959                         fi->len += len;
960                         /* Did the new fragment plug a hole? */
961                         fi2 = list_entry(lh->prev, struct fragment_info, list);
962                         if (fi2->offset + fi2->len == fi->offset) {
963                                 /* glue fragments together */
964                                 fi2->len += fi->len;
965                                 list_del(lh);
966                                 kfree(fi);
967                         }
968                         return 0;
969                 } else if (offset > fi->offset + fi->len) {
970                         break;
971                 } else if (offset + len < fi->offset) {
972                         lh = lh->prev;
973                         break;
974                 }
975         }
976
977         new = kmalloc(sizeof(*new), GFP_ATOMIC);
978         if (!new)
979                 return -ENOMEM;
980
981         new->offset = offset;
982         new->len = len;
983
984         list_add(&new->list, lh);
985         return 0;
986 }
987
988 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
989                                 int dgl, int dg_size, char *frag_buf,
990                                 int frag_off, int frag_len)
991 {
992         struct partial_datagram *new;
993
994         new = kmalloc(sizeof(*new), GFP_ATOMIC);
995         if (!new)
996                 return -ENOMEM;
997
998         INIT_LIST_HEAD(&new->frag_info);
999
1000         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1001                 kfree(new);
1002                 return -ENOMEM;
1003         }
1004
1005         new->dgl = dgl;
1006         new->dg_size = dg_size;
1007
1008         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1009         if (!new->skb) {
1010                 struct fragment_info *fi = list_entry(new->frag_info.next,
1011                                                       struct fragment_info,
1012                                                       list);
1013                 kfree(fi);
1014                 kfree(new);
1015                 return -ENOMEM;
1016         }
1017
1018         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1019         new->pbuf = skb_put(new->skb, dg_size);
1020         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1021
1022         list_add(&new->list, pdgl);
1023         return 0;
1024 }
1025
1026 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1027                                    char *frag_buf, int frag_off, int frag_len)
1028 {
1029         struct partial_datagram *pd =
1030                         list_entry(lh, struct partial_datagram, list);
1031
1032         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1033                 return -ENOMEM;
1034
1035         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1036
1037         /* Move list entry to beginnig of list so that oldest partial
1038          * datagrams percolate to the end of the list */
1039         list_move(lh, pdgl);
1040         return 0;
1041 }
1042
1043 static int is_datagram_complete(struct list_head *lh, int dg_size)
1044 {
1045         struct partial_datagram *pd;
1046         struct fragment_info *fi;
1047
1048         pd = list_entry(lh, struct partial_datagram, list);
1049         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1050
1051         return (fi->len == dg_size);
1052 }
1053
1054 /* Packet reception. We convert the IP1394 encapsulation header to an
1055  * ethernet header, and fill it with some of our other fields. This is
1056  * an incoming packet from the 1394 bus.  */
1057 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1058                                   char *buf, int len)
1059 {
1060         struct sk_buff *skb;
1061         unsigned long flags;
1062         struct eth1394_priv *priv = netdev_priv(dev);
1063         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1064         u16 ether_type = 0;  /* initialized to clear warning */
1065         int hdr_len;
1066         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1067         struct eth1394_node_info *node_info;
1068
1069         if (!ud) {
1070                 struct eth1394_node_ref *node;
1071                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1072                 if (unlikely(!node)) {
1073                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1074                                    "lookup failure: " NODE_BUS_FMT,
1075                                    NODE_BUS_ARGS(priv->host, srcid));
1076                         priv->stats.rx_dropped++;
1077                         return -1;
1078                 }
1079                 ud = node->ud;
1080
1081                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1082         }
1083
1084         node_info = (struct eth1394_node_info *)ud->device.driver_data;
1085
1086         /* First, did we receive a fragmented or unfragmented datagram? */
1087         hdr->words.word1 = ntohs(hdr->words.word1);
1088
1089         hdr_len = hdr_type_len[hdr->common.lf];
1090
1091         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1092                 /* An unfragmented datagram has been received by the ieee1394
1093                  * bus. Build an skbuff around it so we can pass it to the
1094                  * high level network layer. */
1095
1096                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1097                 if (unlikely(!skb)) {
1098                         ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1099                         priv->stats.rx_dropped++;
1100                         return -1;
1101                 }
1102                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1103                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1104                        len - hdr_len);
1105                 ether_type = hdr->uf.ether_type;
1106         } else {
1107                 /* A datagram fragment has been received, now the fun begins. */
1108
1109                 struct list_head *pdgl, *lh;
1110                 struct partial_datagram *pd;
1111                 int fg_off;
1112                 int fg_len = len - hdr_len;
1113                 int dg_size;
1114                 int dgl;
1115                 int retval;
1116                 struct pdg_list *pdg = &(node_info->pdg);
1117
1118                 hdr->words.word3 = ntohs(hdr->words.word3);
1119                 /* The 4th header word is reserved so no need to do ntohs() */
1120
1121                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1122                         ether_type = hdr->ff.ether_type;
1123                         dgl = hdr->ff.dgl;
1124                         dg_size = hdr->ff.dg_size + 1;
1125                         fg_off = 0;
1126                 } else {
1127                         hdr->words.word2 = ntohs(hdr->words.word2);
1128                         dgl = hdr->sf.dgl;
1129                         dg_size = hdr->sf.dg_size + 1;
1130                         fg_off = hdr->sf.fg_off;
1131                 }
1132                 spin_lock_irqsave(&pdg->lock, flags);
1133
1134                 pdgl = &(pdg->list);
1135                 lh = find_partial_datagram(pdgl, dgl);
1136
1137                 if (lh == NULL) {
1138                         while (pdg->sz >= max_partial_datagrams) {
1139                                 /* remove the oldest */
1140                                 purge_partial_datagram(pdgl->prev);
1141                                 pdg->sz--;
1142                         }
1143
1144                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1145                                                       buf + hdr_len, fg_off,
1146                                                       fg_len);
1147                         if (retval < 0) {
1148                                 spin_unlock_irqrestore(&pdg->lock, flags);
1149                                 goto bad_proto;
1150                         }
1151                         pdg->sz++;
1152                         lh = find_partial_datagram(pdgl, dgl);
1153                 } else {
1154                         struct partial_datagram *pd;
1155
1156                         pd = list_entry(lh, struct partial_datagram, list);
1157
1158                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1159                                 /* Overlapping fragments, obliterate old
1160                                  * datagram and start new one. */
1161                                 purge_partial_datagram(lh);
1162                                 retval = new_partial_datagram(dev, pdgl, dgl,
1163                                                               dg_size,
1164                                                               buf + hdr_len,
1165                                                               fg_off, fg_len);
1166                                 if (retval < 0) {
1167                                         pdg->sz--;
1168                                         spin_unlock_irqrestore(&pdg->lock, flags);
1169                                         goto bad_proto;
1170                                 }
1171                         } else {
1172                                 retval = update_partial_datagram(pdgl, lh,
1173                                                                  buf + hdr_len,
1174                                                                  fg_off, fg_len);
1175                                 if (retval < 0) {
1176                                         /* Couldn't save off fragment anyway
1177                                          * so might as well obliterate the
1178                                          * datagram now. */
1179                                         purge_partial_datagram(lh);
1180                                         pdg->sz--;
1181                                         spin_unlock_irqrestore(&pdg->lock, flags);
1182                                         goto bad_proto;
1183                                 }
1184                         } /* fragment overlap */
1185                 } /* new datagram or add to existing one */
1186
1187                 pd = list_entry(lh, struct partial_datagram, list);
1188
1189                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1190                         pd->ether_type = ether_type;
1191
1192                 if (is_datagram_complete(lh, dg_size)) {
1193                         ether_type = pd->ether_type;
1194                         pdg->sz--;
1195                         skb = skb_get(pd->skb);
1196                         purge_partial_datagram(lh);
1197                         spin_unlock_irqrestore(&pdg->lock, flags);
1198                 } else {
1199                         /* Datagram is not complete, we're done for the
1200                          * moment. */
1201                         spin_unlock_irqrestore(&pdg->lock, flags);
1202                         return 0;
1203                 }
1204         } /* unframgented datagram or fragmented one */
1205
1206         /* Write metadata, and then pass to the receive level */
1207         skb->dev = dev;
1208         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1209
1210         /* Parse the encapsulation header. This actually does the job of
1211          * converting to an ethernet frame header, aswell as arp
1212          * conversion if needed. ARP conversion is easier in this
1213          * direction, since we are using ethernet as our backend.  */
1214         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1215                                               ether_type);
1216
1217         spin_lock_irqsave(&priv->lock, flags);
1218
1219         if (!skb->protocol) {
1220                 priv->stats.rx_errors++;
1221                 priv->stats.rx_dropped++;
1222                 dev_kfree_skb_any(skb);
1223                 goto bad_proto;
1224         }
1225
1226         if (netif_rx(skb) == NET_RX_DROP) {
1227                 priv->stats.rx_errors++;
1228                 priv->stats.rx_dropped++;
1229                 goto bad_proto;
1230         }
1231
1232         /* Statistics */
1233         priv->stats.rx_packets++;
1234         priv->stats.rx_bytes += skb->len;
1235
1236 bad_proto:
1237         if (netif_queue_stopped(dev))
1238                 netif_wake_queue(dev);
1239         spin_unlock_irqrestore(&priv->lock, flags);
1240
1241         dev->last_rx = jiffies;
1242
1243         return 0;
1244 }
1245
1246 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1247                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1248 {
1249         struct eth1394_host_info *hi;
1250
1251         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1252         if (unlikely(!hi)) {
1253                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1254                                 host->id);
1255                 return RCODE_ADDRESS_ERROR;
1256         }
1257
1258         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1259                 return RCODE_ADDRESS_ERROR;
1260         else
1261                 return RCODE_COMPLETE;
1262 }
1263
1264 static void ether1394_iso(struct hpsb_iso *iso)
1265 {
1266         quadlet_t *data;
1267         char *buf;
1268         struct eth1394_host_info *hi;
1269         struct net_device *dev;
1270         struct eth1394_priv *priv;
1271         unsigned int len;
1272         u32 specifier_id;
1273         u16 source_id;
1274         int i;
1275         int nready;
1276
1277         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1278         if (unlikely(!hi)) {
1279                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1280                                 iso->host->id);
1281                 return;
1282         }
1283
1284         dev = hi->dev;
1285
1286         nready = hpsb_iso_n_ready(iso);
1287         for (i = 0; i < nready; i++) {
1288                 struct hpsb_iso_packet_info *info =
1289                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1290                 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1291
1292                 /* skip over GASP header */
1293                 buf = (char *)data + 8;
1294                 len = info->len - 8;
1295
1296                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1297                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1298                 source_id = be32_to_cpu(data[0]) >> 16;
1299
1300                 priv = netdev_priv(dev);
1301
1302                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1303                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1304                         /* This packet is not for us */
1305                         continue;
1306                 }
1307                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1308                                        buf, len);
1309         }
1310
1311         hpsb_iso_recv_release_packets(iso, i);
1312
1313         dev->last_rx = jiffies;
1314 }
1315
1316 /******************************************
1317  * Datagram transmission code
1318  ******************************************/
1319
1320 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1321  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1322  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1323  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1324  * judge.
1325  *
1326  * Now that the EUI is used for the hardware address all we need to do to make
1327  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1328  * speed, and unicast FIFO address information between the sender_unique_id
1329  * and the IP addresses.
1330  */
1331 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1332                                      struct net_device *dev)
1333 {
1334         struct eth1394_priv *priv = netdev_priv(dev);
1335         struct arphdr *arp = (struct arphdr *)skb->data;
1336         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1337         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1338
1339         arp1394->hw_addr_len    = 16;
1340         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1341         arp1394->max_rec        = priv->host->csr.max_rec;
1342         arp1394->sspd           = priv->host->csr.lnk_spd;
1343         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1344         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1345 }
1346
1347 /* We need to encapsulate the standard header with our own. We use the
1348  * ethernet header's proto for our own. */
1349 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1350                                                __be16 proto,
1351                                                union eth1394_hdr *hdr,
1352                                                u16 dg_size, u16 dgl)
1353 {
1354         unsigned int adj_max_payload =
1355                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1356
1357         /* Does it all fit in one packet? */
1358         if (dg_size <= adj_max_payload) {
1359                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1360                 hdr->uf.ether_type = proto;
1361         } else {
1362                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1363                 hdr->ff.ether_type = proto;
1364                 hdr->ff.dg_size = dg_size - 1;
1365                 hdr->ff.dgl = dgl;
1366                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1367         }
1368         return (dg_size + adj_max_payload - 1) / adj_max_payload;
1369 }
1370
1371 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1372                                           unsigned int max_payload,
1373                                           union eth1394_hdr *hdr)
1374 {
1375         union eth1394_hdr *bufhdr;
1376         int ftype = hdr->common.lf;
1377         int hdrsz = hdr_type_len[ftype];
1378         unsigned int adj_max_payload = max_payload - hdrsz;
1379
1380         switch (ftype) {
1381         case ETH1394_HDR_LF_UF:
1382                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1383                 bufhdr->words.word1 = htons(hdr->words.word1);
1384                 bufhdr->words.word2 = hdr->words.word2;
1385                 break;
1386
1387         case ETH1394_HDR_LF_FF:
1388                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1389                 bufhdr->words.word1 = htons(hdr->words.word1);
1390                 bufhdr->words.word2 = hdr->words.word2;
1391                 bufhdr->words.word3 = htons(hdr->words.word3);
1392                 bufhdr->words.word4 = 0;
1393
1394                 /* Set frag type here for future interior fragments */
1395                 hdr->common.lf = ETH1394_HDR_LF_IF;
1396                 hdr->sf.fg_off = 0;
1397                 break;
1398
1399         default:
1400                 hdr->sf.fg_off += adj_max_payload;
1401                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1402                 if (max_payload >= skb->len)
1403                         hdr->common.lf = ETH1394_HDR_LF_LF;
1404                 bufhdr->words.word1 = htons(hdr->words.word1);
1405                 bufhdr->words.word2 = htons(hdr->words.word2);
1406                 bufhdr->words.word3 = htons(hdr->words.word3);
1407                 bufhdr->words.word4 = 0;
1408         }
1409         return min(max_payload, skb->len);
1410 }
1411
1412 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1413 {
1414         struct hpsb_packet *p;
1415
1416         p = hpsb_alloc_packet(0);
1417         if (p) {
1418                 p->host = host;
1419                 p->generation = get_hpsb_generation(host);
1420                 p->type = hpsb_async;
1421         }
1422         return p;
1423 }
1424
1425 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1426                                        struct hpsb_host *host, nodeid_t node,
1427                                        u64 addr, void *data, int tx_len)
1428 {
1429         p->node_id = node;
1430
1431         if (hpsb_get_tlabel(p))
1432                 return -EAGAIN;
1433
1434         p->tcode = TCODE_WRITEB;
1435         p->header_size = 16;
1436         p->expect_response = 1;
1437         p->header[0] =
1438                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1439         p->header[1] = host->node_id << 16 | addr >> 32;
1440         p->header[2] = addr & 0xffffffff;
1441         p->header[3] = tx_len << 16;
1442         p->data_size = (tx_len + 3) & ~3;
1443         p->data = data;
1444
1445         return 0;
1446 }
1447
1448 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1449                                        struct eth1394_priv *priv,
1450                                        struct sk_buff *skb, int length)
1451 {
1452         p->header_size = 4;
1453         p->tcode = TCODE_STREAM_DATA;
1454
1455         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1456                        TCODE_STREAM_DATA << 4;
1457         p->data_size = length;
1458         p->data = (quadlet_t *)skb->data - 2;
1459         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1460                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1461         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1462                                  ETHER1394_GASP_VERSION);
1463
1464         p->speed_code = priv->bc_sspd;
1465
1466         /* prevent hpsb_send_packet() from overriding our speed code */
1467         p->node_id = LOCAL_BUS | ALL_NODES;
1468 }
1469
1470 static void ether1394_free_packet(struct hpsb_packet *packet)
1471 {
1472         if (packet->tcode != TCODE_STREAM_DATA)
1473                 hpsb_free_tlabel(packet);
1474         hpsb_free_packet(packet);
1475 }
1476
1477 static void ether1394_complete_cb(void *__ptask);
1478
1479 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1480 {
1481         struct eth1394_priv *priv = ptask->priv;
1482         struct hpsb_packet *packet = NULL;
1483
1484         packet = ether1394_alloc_common_packet(priv->host);
1485         if (!packet)
1486                 return -ENOMEM;
1487
1488         if (ptask->tx_type == ETH1394_GASP) {
1489                 int length = tx_len + 2 * sizeof(quadlet_t);
1490
1491                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1492         } else if (ether1394_prep_write_packet(packet, priv->host,
1493                                                ptask->dest_node,
1494                                                ptask->addr, ptask->skb->data,
1495                                                tx_len)) {
1496                 hpsb_free_packet(packet);
1497                 return -EAGAIN;
1498         }
1499
1500         ptask->packet = packet;
1501         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1502                                       ptask);
1503
1504         if (hpsb_send_packet(packet) < 0) {
1505                 ether1394_free_packet(packet);
1506                 return -EIO;
1507         }
1508
1509         return 0;
1510 }
1511
1512 /* Task function to be run when a datagram transmission is completed */
1513 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1514 {
1515         struct sk_buff *skb = ptask->skb;
1516         struct eth1394_priv *priv = netdev_priv(skb->dev);
1517         unsigned long flags;
1518
1519         /* Statistics */
1520         spin_lock_irqsave(&priv->lock, flags);
1521         if (fail) {
1522                 priv->stats.tx_dropped++;
1523                 priv->stats.tx_errors++;
1524         } else {
1525                 priv->stats.tx_bytes += skb->len;
1526                 priv->stats.tx_packets++;
1527         }
1528         spin_unlock_irqrestore(&priv->lock, flags);
1529
1530         dev_kfree_skb_any(skb);
1531         kmem_cache_free(packet_task_cache, ptask);
1532 }
1533
1534 /* Callback for when a packet has been sent and the status of that packet is
1535  * known */
1536 static void ether1394_complete_cb(void *__ptask)
1537 {
1538         struct packet_task *ptask = (struct packet_task *)__ptask;
1539         struct hpsb_packet *packet = ptask->packet;
1540         int fail = 0;
1541
1542         if (packet->tcode != TCODE_STREAM_DATA)
1543                 fail = hpsb_packet_success(packet);
1544
1545         ether1394_free_packet(packet);
1546
1547         ptask->outstanding_pkts--;
1548         if (ptask->outstanding_pkts > 0 && !fail) {
1549                 int tx_len, err;
1550
1551                 /* Add the encapsulation header to the fragment */
1552                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1553                                                &ptask->hdr);
1554                 err = ether1394_send_packet(ptask, tx_len);
1555                 if (err) {
1556                         if (err == -EAGAIN)
1557                                 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1558
1559                         ether1394_dg_complete(ptask, 1);
1560                 }
1561         } else {
1562                 ether1394_dg_complete(ptask, fail);
1563         }
1564 }
1565
1566 /* Transmit a packet (called by kernel) */
1567 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1568 {
1569         struct eth1394hdr *eth;
1570         struct eth1394_priv *priv = netdev_priv(dev);
1571         __be16 proto;
1572         unsigned long flags;
1573         nodeid_t dest_node;
1574         eth1394_tx_type tx_type;
1575         unsigned int tx_len;
1576         unsigned int max_payload;
1577         u16 dg_size;
1578         u16 dgl;
1579         struct packet_task *ptask;
1580         struct eth1394_node_ref *node;
1581         struct eth1394_node_info *node_info = NULL;
1582
1583         ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1584         if (ptask == NULL)
1585                 goto fail;
1586
1587         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1588          * it does not set our validity bit. We need to compensate for
1589          * that somewhere else, but not in eth1394. */
1590 #if 0
1591         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1592                 goto fail;
1593 #endif
1594
1595         skb = skb_share_check(skb, GFP_ATOMIC);
1596         if (!skb)
1597                 goto fail;
1598
1599         /* Get rid of the fake eth1394 header, but save a pointer */
1600         eth = (struct eth1394hdr *)skb->data;
1601         skb_pull(skb, ETH1394_HLEN);
1602
1603         proto = eth->h_proto;
1604         dg_size = skb->len;
1605
1606         /* Set the transmission type for the packet.  ARP packets and IP
1607          * broadcast packets are sent via GASP. */
1608         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1609             proto == htons(ETH_P_ARP) ||
1610             (proto == htons(ETH_P_IP) &&
1611              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1612                 tx_type = ETH1394_GASP;
1613                 dest_node = LOCAL_BUS | ALL_NODES;
1614                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1615                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1616                 dgl = priv->bc_dgl;
1617                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1618                         priv->bc_dgl++;
1619         } else {
1620                 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1621
1622                 node = eth1394_find_node_guid(&priv->ip_node_list,
1623                                               be64_to_cpu(guid));
1624                 if (!node)
1625                         goto fail;
1626
1627                 node_info =
1628                     (struct eth1394_node_info *)node->ud->device.driver_data;
1629                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1630                         goto fail;
1631
1632                 dest_node = node->ud->ne->nodeid;
1633                 max_payload = node_info->maxpayload;
1634                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1635
1636                 dgl = node_info->dgl;
1637                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1638                         node_info->dgl++;
1639                 tx_type = ETH1394_WRREQ;
1640         }
1641
1642         /* If this is an ARP packet, convert it */
1643         if (proto == htons(ETH_P_ARP))
1644                 ether1394_arp_to_1394arp(skb, dev);
1645
1646         ptask->hdr.words.word1 = 0;
1647         ptask->hdr.words.word2 = 0;
1648         ptask->hdr.words.word3 = 0;
1649         ptask->hdr.words.word4 = 0;
1650         ptask->skb = skb;
1651         ptask->priv = priv;
1652         ptask->tx_type = tx_type;
1653
1654         if (tx_type != ETH1394_GASP) {
1655                 u64 addr;
1656
1657                 spin_lock_irqsave(&priv->lock, flags);
1658                 addr = node_info->fifo;
1659                 spin_unlock_irqrestore(&priv->lock, flags);
1660
1661                 ptask->addr = addr;
1662                 ptask->dest_node = dest_node;
1663         }
1664
1665         ptask->tx_type = tx_type;
1666         ptask->max_payload = max_payload;
1667         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1668                                         proto, &ptask->hdr, dg_size, dgl);
1669
1670         /* Add the encapsulation header to the fragment */
1671         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1672         dev->trans_start = jiffies;
1673         if (ether1394_send_packet(ptask, tx_len)) {
1674                 if (dest_node == (LOCAL_BUS | ALL_NODES))
1675                         goto fail;
1676
1677                 /* Most failures of ether1394_send_packet are recoverable. */
1678                 netif_stop_queue(dev);
1679                 priv->wake_node = dest_node;
1680                 schedule_work(&priv->wake);
1681                 kmem_cache_free(packet_task_cache, ptask);
1682                 return NETDEV_TX_BUSY;
1683         }
1684
1685         return NETDEV_TX_OK;
1686 fail:
1687         if (ptask)
1688                 kmem_cache_free(packet_task_cache, ptask);
1689
1690         if (skb != NULL)
1691                 dev_kfree_skb(skb);
1692
1693         spin_lock_irqsave(&priv->lock, flags);
1694         priv->stats.tx_dropped++;
1695         priv->stats.tx_errors++;
1696         spin_unlock_irqrestore(&priv->lock, flags);
1697
1698         /*
1699          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1700          * causes serious problems" here, allegedly.  Before that patch,
1701          * -ERRNO was returned which is not appropriate under Linux 2.6.
1702          * Perhaps more needs to be done?  Stop the queue in serious
1703          * conditions and restart it elsewhere?
1704          */
1705         /* return NETDEV_TX_BUSY; */
1706         return NETDEV_TX_OK;
1707 }
1708
1709 static void ether1394_get_drvinfo(struct net_device *dev,
1710                                   struct ethtool_drvinfo *info)
1711 {
1712         strcpy(info->driver, driver_name);
1713         strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1714 }
1715
1716 static struct ethtool_ops ethtool_ops = {
1717         .get_drvinfo = ether1394_get_drvinfo
1718 };
1719
1720 static int __init ether1394_init_module(void)
1721 {
1722         int err;
1723
1724         packet_task_cache = kmem_cache_create("packet_task",
1725                                               sizeof(struct packet_task),
1726                                               0, 0, NULL, NULL);
1727         if (!packet_task_cache)
1728                 return -ENOMEM;
1729
1730         hpsb_register_highlevel(&eth1394_highlevel);
1731         err = hpsb_register_protocol(&eth1394_proto_driver);
1732         if (err) {
1733                 hpsb_unregister_highlevel(&eth1394_highlevel);
1734                 kmem_cache_destroy(packet_task_cache);
1735         }
1736         return err;
1737 }
1738
1739 static void __exit ether1394_exit_module(void)
1740 {
1741         hpsb_unregister_protocol(&eth1394_proto_driver);
1742         hpsb_unregister_highlevel(&eth1394_highlevel);
1743         kmem_cache_destroy(packet_task_cache);
1744 }
1745
1746 module_init(ether1394_init_module);
1747 module_exit(ether1394_exit_module);