]> Pileus Git - ~andy/linux/blob - drivers/ide/ide-io.c
c27eaab1ffcfbe4f528df49264b294e20ab0958d
[~andy/linux] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61         int error = 0;
62
63         if (uptodate <= 0)
64                 error = uptodate ? uptodate : -EIO;
65
66         /*
67          * if failfast is set on a request, override number of sectors and
68          * complete the whole request right now
69          */
70         if (blk_noretry_request(rq) && error)
71                 nr_bytes = rq->hard_nr_sectors << 9;
72
73         if (!blk_fs_request(rq) && error && !rq->errors)
74                 rq->errors = -EIO;
75
76         /*
77          * decide whether to reenable DMA -- 3 is a random magic for now,
78          * if we DMA timeout more than 3 times, just stay in PIO
79          */
80         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
81             drive->retry_pio <= 3) {
82                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
83                 ide_dma_on(drive);
84         }
85
86         if (!blk_end_request(rq, error, nr_bytes))
87                 ret = 0;
88
89         if (ret == 0 && dequeue)
90                 drive->hwif->rq = NULL;
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq = drive->hwif->rq;
110
111         if (!nr_bytes) {
112                 if (blk_pc_request(rq))
113                         nr_bytes = rq->data_len;
114                 else
115                         nr_bytes = rq->hard_cur_sectors << 9;
116         }
117
118         return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
119 }
120 EXPORT_SYMBOL(ide_end_request);
121
122 /**
123  *      ide_end_dequeued_request        -       complete an IDE I/O
124  *      @drive: IDE device for the I/O
125  *      @uptodate:
126  *      @nr_sectors: number of sectors completed
127  *
128  *      Complete an I/O that is no longer on the request queue. This
129  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
130  *      We must still finish the old request but we must not tamper with the
131  *      queue in the meantime.
132  *
133  *      NOTE: This path does not handle barrier, but barrier is not supported
134  *      on ide-cd anyway.
135  */
136
137 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
138                              int uptodate, int nr_sectors)
139 {
140         BUG_ON(!blk_rq_started(rq));
141
142         return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
143 }
144 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
145
146 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
147 {
148         struct ide_taskfile *tf = &cmd->tf;
149         struct request *rq = cmd->rq;
150
151         tf->error = err;
152         tf->status = stat;
153
154         drive->hwif->tp_ops->tf_read(drive, cmd);
155
156         if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
157                 memcpy(rq->special, cmd, sizeof(*cmd));
158
159         if (cmd->tf_flags & IDE_TFLAG_DYN)
160                 kfree(cmd);
161 }
162
163 void ide_complete_rq(ide_drive_t *drive, u8 err)
164 {
165         ide_hwif_t *hwif = drive->hwif;
166         struct request *rq = hwif->rq;
167
168         hwif->rq = NULL;
169
170         rq->errors = err;
171
172         if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
173                                      blk_rq_bytes(rq))))
174                 BUG();
175 }
176 EXPORT_SYMBOL(ide_complete_rq);
177
178 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
179 {
180         u8 drv_req = blk_special_request(rq) && rq->rq_disk;
181         u8 media = drive->media;
182
183         drive->failed_pc = NULL;
184
185         if ((media == ide_floppy && drv_req) || media == ide_tape)
186                 rq->errors = IDE_DRV_ERROR_GENERAL;
187
188         if ((media == ide_floppy || media == ide_tape) && drv_req)
189                 ide_complete_rq(drive, 0);
190         else
191                 ide_end_request(drive, 0, 0);
192 }
193
194 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
195 {
196         tf->nsect   = drive->sect;
197         tf->lbal    = drive->sect;
198         tf->lbam    = drive->cyl;
199         tf->lbah    = drive->cyl >> 8;
200         tf->device  = (drive->head - 1) | drive->select;
201         tf->command = ATA_CMD_INIT_DEV_PARAMS;
202 }
203
204 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
205 {
206         tf->nsect   = drive->sect;
207         tf->command = ATA_CMD_RESTORE;
208 }
209
210 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
211 {
212         tf->nsect   = drive->mult_req;
213         tf->command = ATA_CMD_SET_MULTI;
214 }
215
216 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
217 {
218         special_t *s = &drive->special;
219         struct ide_cmd cmd;
220
221         memset(&cmd, 0, sizeof(cmd));
222         cmd.protocol = ATA_PROT_NODATA;
223
224         if (s->b.set_geometry) {
225                 s->b.set_geometry = 0;
226                 ide_tf_set_specify_cmd(drive, &cmd.tf);
227         } else if (s->b.recalibrate) {
228                 s->b.recalibrate = 0;
229                 ide_tf_set_restore_cmd(drive, &cmd.tf);
230         } else if (s->b.set_multmode) {
231                 s->b.set_multmode = 0;
232                 ide_tf_set_setmult_cmd(drive, &cmd.tf);
233         } else if (s->all) {
234                 int special = s->all;
235                 s->all = 0;
236                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
237                 return ide_stopped;
238         }
239
240         cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
241                        IDE_TFLAG_CUSTOM_HANDLER;
242
243         do_rw_taskfile(drive, &cmd);
244
245         return ide_started;
246 }
247
248 /**
249  *      do_special              -       issue some special commands
250  *      @drive: drive the command is for
251  *
252  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
253  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
254  *
255  *      It used to do much more, but has been scaled back.
256  */
257
258 static ide_startstop_t do_special (ide_drive_t *drive)
259 {
260         special_t *s = &drive->special;
261
262 #ifdef DEBUG
263         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
264 #endif
265         if (drive->media == ide_disk)
266                 return ide_disk_special(drive);
267
268         s->all = 0;
269         drive->mult_req = 0;
270         return ide_stopped;
271 }
272
273 void ide_map_sg(ide_drive_t *drive, struct request *rq)
274 {
275         ide_hwif_t *hwif = drive->hwif;
276         struct ide_cmd *cmd = &hwif->cmd;
277         struct scatterlist *sg = hwif->sg_table;
278
279         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
280                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
281                 cmd->sg_nents = 1;
282         } else if (!rq->bio) {
283                 sg_init_one(sg, rq->data, rq->data_len);
284                 cmd->sg_nents = 1;
285         } else
286                 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
287 }
288 EXPORT_SYMBOL_GPL(ide_map_sg);
289
290 void ide_init_sg_cmd(struct ide_cmd *cmd, int nsect)
291 {
292         cmd->nsect = cmd->nleft = nsect;
293         cmd->cursg_ofs = 0;
294         cmd->cursg = NULL;
295 }
296 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
297
298 /**
299  *      execute_drive_command   -       issue special drive command
300  *      @drive: the drive to issue the command on
301  *      @rq: the request structure holding the command
302  *
303  *      execute_drive_cmd() issues a special drive command,  usually 
304  *      initiated by ioctl() from the external hdparm program. The
305  *      command can be a drive command, drive task or taskfile 
306  *      operation. Weirdly you can call it with NULL to wait for
307  *      all commands to finish. Don't do this as that is due to change
308  */
309
310 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
311                 struct request *rq)
312 {
313         struct ide_cmd *cmd = rq->special;
314
315         if (cmd) {
316                 if (cmd->protocol == ATA_PROT_PIO) {
317                         ide_init_sg_cmd(cmd, rq->nr_sectors);
318                         ide_map_sg(drive, rq);
319                 }
320
321                 return do_rw_taskfile(drive, cmd);
322         }
323
324         /*
325          * NULL is actually a valid way of waiting for
326          * all current requests to be flushed from the queue.
327          */
328 #ifdef DEBUG
329         printk("%s: DRIVE_CMD (null)\n", drive->name);
330 #endif
331         ide_complete_rq(drive, 0);
332
333         return ide_stopped;
334 }
335
336 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
337 {
338         u8 cmd = rq->cmd[0];
339
340         switch (cmd) {
341         case REQ_PARK_HEADS:
342         case REQ_UNPARK_HEADS:
343                 return ide_do_park_unpark(drive, rq);
344         case REQ_DEVSET_EXEC:
345                 return ide_do_devset(drive, rq);
346         case REQ_DRIVE_RESET:
347                 return ide_do_reset(drive);
348         default:
349                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
350                 ide_end_request(drive, 0, 0);
351                 return ide_stopped;
352         }
353 }
354
355 /**
356  *      start_request   -       start of I/O and command issuing for IDE
357  *
358  *      start_request() initiates handling of a new I/O request. It
359  *      accepts commands and I/O (read/write) requests.
360  *
361  *      FIXME: this function needs a rename
362  */
363  
364 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
365 {
366         ide_startstop_t startstop;
367
368         BUG_ON(!blk_rq_started(rq));
369
370 #ifdef DEBUG
371         printk("%s: start_request: current=0x%08lx\n",
372                 drive->hwif->name, (unsigned long) rq);
373 #endif
374
375         /* bail early if we've exceeded max_failures */
376         if (drive->max_failures && (drive->failures > drive->max_failures)) {
377                 rq->cmd_flags |= REQ_FAILED;
378                 goto kill_rq;
379         }
380
381         if (blk_pm_request(rq))
382                 ide_check_pm_state(drive, rq);
383
384         SELECT_DRIVE(drive);
385         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
386                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
387                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
388                 return startstop;
389         }
390         if (!drive->special.all) {
391                 struct ide_driver *drv;
392
393                 /*
394                  * We reset the drive so we need to issue a SETFEATURES.
395                  * Do it _after_ do_special() restored device parameters.
396                  */
397                 if (drive->current_speed == 0xff)
398                         ide_config_drive_speed(drive, drive->desired_speed);
399
400                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
401                         return execute_drive_cmd(drive, rq);
402                 else if (blk_pm_request(rq)) {
403                         struct request_pm_state *pm = rq->data;
404 #ifdef DEBUG_PM
405                         printk("%s: start_power_step(step: %d)\n",
406                                 drive->name, pm->pm_step);
407 #endif
408                         startstop = ide_start_power_step(drive, rq);
409                         if (startstop == ide_stopped &&
410                             pm->pm_step == IDE_PM_COMPLETED)
411                                 ide_complete_pm_rq(drive, rq);
412                         return startstop;
413                 } else if (!rq->rq_disk && blk_special_request(rq))
414                         /*
415                          * TODO: Once all ULDs have been modified to
416                          * check for specific op codes rather than
417                          * blindly accepting any special request, the
418                          * check for ->rq_disk above may be replaced
419                          * by a more suitable mechanism or even
420                          * dropped entirely.
421                          */
422                         return ide_special_rq(drive, rq);
423
424                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
425
426                 return drv->do_request(drive, rq, rq->sector);
427         }
428         return do_special(drive);
429 kill_rq:
430         ide_kill_rq(drive, rq);
431         return ide_stopped;
432 }
433
434 /**
435  *      ide_stall_queue         -       pause an IDE device
436  *      @drive: drive to stall
437  *      @timeout: time to stall for (jiffies)
438  *
439  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
440  *      to the port by sleeping for timeout jiffies.
441  */
442  
443 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
444 {
445         if (timeout > WAIT_WORSTCASE)
446                 timeout = WAIT_WORSTCASE;
447         drive->sleep = timeout + jiffies;
448         drive->dev_flags |= IDE_DFLAG_SLEEPING;
449 }
450 EXPORT_SYMBOL(ide_stall_queue);
451
452 static inline int ide_lock_port(ide_hwif_t *hwif)
453 {
454         if (hwif->busy)
455                 return 1;
456
457         hwif->busy = 1;
458
459         return 0;
460 }
461
462 static inline void ide_unlock_port(ide_hwif_t *hwif)
463 {
464         hwif->busy = 0;
465 }
466
467 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
468 {
469         int rc = 0;
470
471         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
472                 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
473                 if (rc == 0) {
474                         if (host->get_lock)
475                                 host->get_lock(ide_intr, hwif);
476                 }
477         }
478         return rc;
479 }
480
481 static inline void ide_unlock_host(struct ide_host *host)
482 {
483         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
484                 if (host->release_lock)
485                         host->release_lock();
486                 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
487         }
488 }
489
490 /*
491  * Issue a new request to a device.
492  */
493 void do_ide_request(struct request_queue *q)
494 {
495         ide_drive_t     *drive = q->queuedata;
496         ide_hwif_t      *hwif = drive->hwif;
497         struct ide_host *host = hwif->host;
498         struct request  *rq = NULL;
499         ide_startstop_t startstop;
500
501         /*
502          * drive is doing pre-flush, ordered write, post-flush sequence. even
503          * though that is 3 requests, it must be seen as a single transaction.
504          * we must not preempt this drive until that is complete
505          */
506         if (blk_queue_flushing(q))
507                 /*
508                  * small race where queue could get replugged during
509                  * the 3-request flush cycle, just yank the plug since
510                  * we want it to finish asap
511                  */
512                 blk_remove_plug(q);
513
514         spin_unlock_irq(q->queue_lock);
515
516         if (ide_lock_host(host, hwif))
517                 goto plug_device_2;
518
519         spin_lock_irq(&hwif->lock);
520
521         if (!ide_lock_port(hwif)) {
522                 ide_hwif_t *prev_port;
523 repeat:
524                 prev_port = hwif->host->cur_port;
525                 hwif->rq = NULL;
526
527                 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
528                         if (time_before(drive->sleep, jiffies)) {
529                                 ide_unlock_port(hwif);
530                                 goto plug_device;
531                         }
532                 }
533
534                 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
535                     hwif != prev_port) {
536                         /*
537                          * set nIEN for previous port, drives in the
538                          * quirk_list may not like intr setups/cleanups
539                          */
540                         if (prev_port && prev_port->cur_dev->quirk_list == 0)
541                                 prev_port->tp_ops->set_irq(prev_port, 0);
542
543                         hwif->host->cur_port = hwif;
544                 }
545                 hwif->cur_dev = drive;
546                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
547
548                 spin_unlock_irq(&hwif->lock);
549                 spin_lock_irq(q->queue_lock);
550                 /*
551                  * we know that the queue isn't empty, but this can happen
552                  * if the q->prep_rq_fn() decides to kill a request
553                  */
554                 rq = elv_next_request(drive->queue);
555                 spin_unlock_irq(q->queue_lock);
556                 spin_lock_irq(&hwif->lock);
557
558                 if (!rq) {
559                         ide_unlock_port(hwif);
560                         goto out;
561                 }
562
563                 /*
564                  * Sanity: don't accept a request that isn't a PM request
565                  * if we are currently power managed. This is very important as
566                  * blk_stop_queue() doesn't prevent the elv_next_request()
567                  * above to return us whatever is in the queue. Since we call
568                  * ide_do_request() ourselves, we end up taking requests while
569                  * the queue is blocked...
570                  * 
571                  * We let requests forced at head of queue with ide-preempt
572                  * though. I hope that doesn't happen too much, hopefully not
573                  * unless the subdriver triggers such a thing in its own PM
574                  * state machine.
575                  */
576                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
577                     blk_pm_request(rq) == 0 &&
578                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
579                         /* there should be no pending command at this point */
580                         ide_unlock_port(hwif);
581                         goto plug_device;
582                 }
583
584                 hwif->rq = rq;
585
586                 spin_unlock_irq(&hwif->lock);
587                 startstop = start_request(drive, rq);
588                 spin_lock_irq(&hwif->lock);
589
590                 if (startstop == ide_stopped)
591                         goto repeat;
592         } else
593                 goto plug_device;
594 out:
595         spin_unlock_irq(&hwif->lock);
596         if (rq == NULL)
597                 ide_unlock_host(host);
598         spin_lock_irq(q->queue_lock);
599         return;
600
601 plug_device:
602         spin_unlock_irq(&hwif->lock);
603         ide_unlock_host(host);
604 plug_device_2:
605         spin_lock_irq(q->queue_lock);
606
607         if (!elv_queue_empty(q))
608                 blk_plug_device(q);
609 }
610
611 static void ide_plug_device(ide_drive_t *drive)
612 {
613         struct request_queue *q = drive->queue;
614         unsigned long flags;
615
616         spin_lock_irqsave(q->queue_lock, flags);
617         if (!elv_queue_empty(q))
618                 blk_plug_device(q);
619         spin_unlock_irqrestore(q->queue_lock, flags);
620 }
621
622 static int drive_is_ready(ide_drive_t *drive)
623 {
624         ide_hwif_t *hwif = drive->hwif;
625         u8 stat = 0;
626
627         if (drive->waiting_for_dma)
628                 return hwif->dma_ops->dma_test_irq(drive);
629
630         if (hwif->io_ports.ctl_addr &&
631             (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
632                 stat = hwif->tp_ops->read_altstatus(hwif);
633         else
634                 /* Note: this may clear a pending IRQ!! */
635                 stat = hwif->tp_ops->read_status(hwif);
636
637         if (stat & ATA_BUSY)
638                 /* drive busy: definitely not interrupting */
639                 return 0;
640
641         /* drive ready: *might* be interrupting */
642         return 1;
643 }
644
645 /**
646  *      ide_timer_expiry        -       handle lack of an IDE interrupt
647  *      @data: timer callback magic (hwif)
648  *
649  *      An IDE command has timed out before the expected drive return
650  *      occurred. At this point we attempt to clean up the current
651  *      mess. If the current handler includes an expiry handler then
652  *      we invoke the expiry handler, and providing it is happy the
653  *      work is done. If that fails we apply generic recovery rules
654  *      invoking the handler and checking the drive DMA status. We
655  *      have an excessively incestuous relationship with the DMA
656  *      logic that wants cleaning up.
657  */
658  
659 void ide_timer_expiry (unsigned long data)
660 {
661         ide_hwif_t      *hwif = (ide_hwif_t *)data;
662         ide_drive_t     *uninitialized_var(drive);
663         ide_handler_t   *handler;
664         unsigned long   flags;
665         int             wait = -1;
666         int             plug_device = 0;
667
668         spin_lock_irqsave(&hwif->lock, flags);
669
670         handler = hwif->handler;
671
672         if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
673                 /*
674                  * Either a marginal timeout occurred
675                  * (got the interrupt just as timer expired),
676                  * or we were "sleeping" to give other devices a chance.
677                  * Either way, we don't really want to complain about anything.
678                  */
679         } else {
680                 ide_expiry_t *expiry = hwif->expiry;
681                 ide_startstop_t startstop = ide_stopped;
682
683                 drive = hwif->cur_dev;
684
685                 if (expiry) {
686                         wait = expiry(drive);
687                         if (wait > 0) { /* continue */
688                                 /* reset timer */
689                                 hwif->timer.expires = jiffies + wait;
690                                 hwif->req_gen_timer = hwif->req_gen;
691                                 add_timer(&hwif->timer);
692                                 spin_unlock_irqrestore(&hwif->lock, flags);
693                                 return;
694                         }
695                 }
696                 hwif->handler = NULL;
697                 /*
698                  * We need to simulate a real interrupt when invoking
699                  * the handler() function, which means we need to
700                  * globally mask the specific IRQ:
701                  */
702                 spin_unlock(&hwif->lock);
703                 /* disable_irq_nosync ?? */
704                 disable_irq(hwif->irq);
705                 /* local CPU only, as if we were handling an interrupt */
706                 local_irq_disable();
707                 if (hwif->polling) {
708                         startstop = handler(drive);
709                 } else if (drive_is_ready(drive)) {
710                         if (drive->waiting_for_dma)
711                                 hwif->dma_ops->dma_lost_irq(drive);
712                         if (hwif->ack_intr)
713                                 hwif->ack_intr(hwif);
714                         printk(KERN_WARNING "%s: lost interrupt\n",
715                                 drive->name);
716                         startstop = handler(drive);
717                 } else {
718                         if (drive->waiting_for_dma)
719                                 startstop = ide_dma_timeout_retry(drive, wait);
720                         else
721                                 startstop = ide_error(drive, "irq timeout",
722                                         hwif->tp_ops->read_status(hwif));
723                 }
724                 spin_lock_irq(&hwif->lock);
725                 enable_irq(hwif->irq);
726                 if (startstop == ide_stopped) {
727                         ide_unlock_port(hwif);
728                         plug_device = 1;
729                 }
730         }
731         spin_unlock_irqrestore(&hwif->lock, flags);
732
733         if (plug_device) {
734                 ide_unlock_host(hwif->host);
735                 ide_plug_device(drive);
736         }
737 }
738
739 /**
740  *      unexpected_intr         -       handle an unexpected IDE interrupt
741  *      @irq: interrupt line
742  *      @hwif: port being processed
743  *
744  *      There's nothing really useful we can do with an unexpected interrupt,
745  *      other than reading the status register (to clear it), and logging it.
746  *      There should be no way that an irq can happen before we're ready for it,
747  *      so we needn't worry much about losing an "important" interrupt here.
748  *
749  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
750  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
751  *      looks "good", we just ignore the interrupt completely.
752  *
753  *      This routine assumes __cli() is in effect when called.
754  *
755  *      If an unexpected interrupt happens on irq15 while we are handling irq14
756  *      and if the two interfaces are "serialized" (CMD640), then it looks like
757  *      we could screw up by interfering with a new request being set up for 
758  *      irq15.
759  *
760  *      In reality, this is a non-issue.  The new command is not sent unless 
761  *      the drive is ready to accept one, in which case we know the drive is
762  *      not trying to interrupt us.  And ide_set_handler() is always invoked
763  *      before completing the issuance of any new drive command, so we will not
764  *      be accidentally invoked as a result of any valid command completion
765  *      interrupt.
766  */
767
768 static void unexpected_intr(int irq, ide_hwif_t *hwif)
769 {
770         u8 stat = hwif->tp_ops->read_status(hwif);
771
772         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
773                 /* Try to not flood the console with msgs */
774                 static unsigned long last_msgtime, count;
775                 ++count;
776
777                 if (time_after(jiffies, last_msgtime + HZ)) {
778                         last_msgtime = jiffies;
779                         printk(KERN_ERR "%s: unexpected interrupt, "
780                                 "status=0x%02x, count=%ld\n",
781                                 hwif->name, stat, count);
782                 }
783         }
784 }
785
786 /**
787  *      ide_intr        -       default IDE interrupt handler
788  *      @irq: interrupt number
789  *      @dev_id: hwif
790  *      @regs: unused weirdness from the kernel irq layer
791  *
792  *      This is the default IRQ handler for the IDE layer. You should
793  *      not need to override it. If you do be aware it is subtle in
794  *      places
795  *
796  *      hwif is the interface in the group currently performing
797  *      a command. hwif->cur_dev is the drive and hwif->handler is
798  *      the IRQ handler to call. As we issue a command the handlers
799  *      step through multiple states, reassigning the handler to the
800  *      next step in the process. Unlike a smart SCSI controller IDE
801  *      expects the main processor to sequence the various transfer
802  *      stages. We also manage a poll timer to catch up with most
803  *      timeout situations. There are still a few where the handlers
804  *      don't ever decide to give up.
805  *
806  *      The handler eventually returns ide_stopped to indicate the
807  *      request completed. At this point we issue the next request
808  *      on the port and the process begins again.
809  */
810
811 irqreturn_t ide_intr (int irq, void *dev_id)
812 {
813         ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
814         struct ide_host *host = hwif->host;
815         ide_drive_t *uninitialized_var(drive);
816         ide_handler_t *handler;
817         unsigned long flags;
818         ide_startstop_t startstop;
819         irqreturn_t irq_ret = IRQ_NONE;
820         int plug_device = 0;
821
822         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
823                 if (hwif != host->cur_port)
824                         goto out_early;
825         }
826
827         spin_lock_irqsave(&hwif->lock, flags);
828
829         if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
830                 goto out;
831
832         handler = hwif->handler;
833
834         if (handler == NULL || hwif->polling) {
835                 /*
836                  * Not expecting an interrupt from this drive.
837                  * That means this could be:
838                  *      (1) an interrupt from another PCI device
839                  *      sharing the same PCI INT# as us.
840                  * or   (2) a drive just entered sleep or standby mode,
841                  *      and is interrupting to let us know.
842                  * or   (3) a spurious interrupt of unknown origin.
843                  *
844                  * For PCI, we cannot tell the difference,
845                  * so in that case we just ignore it and hope it goes away.
846                  */
847                 if ((host->irq_flags & IRQF_SHARED) == 0) {
848                         /*
849                          * Probably not a shared PCI interrupt,
850                          * so we can safely try to do something about it:
851                          */
852                         unexpected_intr(irq, hwif);
853                 } else {
854                         /*
855                          * Whack the status register, just in case
856                          * we have a leftover pending IRQ.
857                          */
858                         (void)hwif->tp_ops->read_status(hwif);
859                 }
860                 goto out;
861         }
862
863         drive = hwif->cur_dev;
864
865         if (!drive_is_ready(drive))
866                 /*
867                  * This happens regularly when we share a PCI IRQ with
868                  * another device.  Unfortunately, it can also happen
869                  * with some buggy drives that trigger the IRQ before
870                  * their status register is up to date.  Hopefully we have
871                  * enough advance overhead that the latter isn't a problem.
872                  */
873                 goto out;
874
875         hwif->handler = NULL;
876         hwif->req_gen++;
877         del_timer(&hwif->timer);
878         spin_unlock(&hwif->lock);
879
880         if (hwif->port_ops && hwif->port_ops->clear_irq)
881                 hwif->port_ops->clear_irq(drive);
882
883         if (drive->dev_flags & IDE_DFLAG_UNMASK)
884                 local_irq_enable_in_hardirq();
885
886         /* service this interrupt, may set handler for next interrupt */
887         startstop = handler(drive);
888
889         spin_lock_irq(&hwif->lock);
890         /*
891          * Note that handler() may have set things up for another
892          * interrupt to occur soon, but it cannot happen until
893          * we exit from this routine, because it will be the
894          * same irq as is currently being serviced here, and Linux
895          * won't allow another of the same (on any CPU) until we return.
896          */
897         if (startstop == ide_stopped) {
898                 BUG_ON(hwif->handler);
899                 ide_unlock_port(hwif);
900                 plug_device = 1;
901         }
902         irq_ret = IRQ_HANDLED;
903 out:
904         spin_unlock_irqrestore(&hwif->lock, flags);
905 out_early:
906         if (plug_device) {
907                 ide_unlock_host(hwif->host);
908                 ide_plug_device(drive);
909         }
910
911         return irq_ret;
912 }
913 EXPORT_SYMBOL_GPL(ide_intr);
914
915 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
916 {
917         ide_hwif_t *hwif = drive->hwif;
918         u8 buf[4] = { 0 };
919
920         while (len > 0) {
921                 if (write)
922                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
923                 else
924                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
925                 len -= 4;
926         }
927 }
928 EXPORT_SYMBOL_GPL(ide_pad_transfer);