]> Pileus Git - ~andy/linux/blob - drivers/hv/hv_balloon.c
Input: don't modify the id of ioctl-provided ff effect on upload failure
[~andy/linux] / drivers / hv / hv_balloon.c
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/mman.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/kthread.h>
28 #include <linux/completion.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/memory.h>
31 #include <linux/notifier.h>
32 #include <linux/percpu_counter.h>
33
34 #include <linux/hyperv.h>
35
36 /*
37  * We begin with definitions supporting the Dynamic Memory protocol
38  * with the host.
39  *
40  * Begin protocol definitions.
41  */
42
43
44
45 /*
46  * Protocol versions. The low word is the minor version, the high word the major
47  * version.
48  *
49  * History:
50  * Initial version 1.0
51  * Changed to 0.1 on 2009/03/25
52  * Changes to 0.2 on 2009/05/14
53  * Changes to 0.3 on 2009/12/03
54  * Changed to 1.0 on 2011/04/05
55  */
56
57 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
58 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
59 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
60
61 enum {
62         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
63         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
64
65         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
66         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
67
68         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN8
69 };
70
71
72
73 /*
74  * Message Types
75  */
76
77 enum dm_message_type {
78         /*
79          * Version 0.3
80          */
81         DM_ERROR                        = 0,
82         DM_VERSION_REQUEST              = 1,
83         DM_VERSION_RESPONSE             = 2,
84         DM_CAPABILITIES_REPORT          = 3,
85         DM_CAPABILITIES_RESPONSE        = 4,
86         DM_STATUS_REPORT                = 5,
87         DM_BALLOON_REQUEST              = 6,
88         DM_BALLOON_RESPONSE             = 7,
89         DM_UNBALLOON_REQUEST            = 8,
90         DM_UNBALLOON_RESPONSE           = 9,
91         DM_MEM_HOT_ADD_REQUEST          = 10,
92         DM_MEM_HOT_ADD_RESPONSE         = 11,
93         DM_VERSION_03_MAX               = 11,
94         /*
95          * Version 1.0.
96          */
97         DM_INFO_MESSAGE                 = 12,
98         DM_VERSION_1_MAX                = 12
99 };
100
101
102 /*
103  * Structures defining the dynamic memory management
104  * protocol.
105  */
106
107 union dm_version {
108         struct {
109                 __u16 minor_version;
110                 __u16 major_version;
111         };
112         __u32 version;
113 } __packed;
114
115
116 union dm_caps {
117         struct {
118                 __u64 balloon:1;
119                 __u64 hot_add:1;
120                 /*
121                  * To support guests that may have alignment
122                  * limitations on hot-add, the guest can specify
123                  * its alignment requirements; a value of n
124                  * represents an alignment of 2^n in mega bytes.
125                  */
126                 __u64 hot_add_alignment:4;
127                 __u64 reservedz:58;
128         } cap_bits;
129         __u64 caps;
130 } __packed;
131
132 union dm_mem_page_range {
133         struct  {
134                 /*
135                  * The PFN number of the first page in the range.
136                  * 40 bits is the architectural limit of a PFN
137                  * number for AMD64.
138                  */
139                 __u64 start_page:40;
140                 /*
141                  * The number of pages in the range.
142                  */
143                 __u64 page_cnt:24;
144         } finfo;
145         __u64  page_range;
146 } __packed;
147
148
149
150 /*
151  * The header for all dynamic memory messages:
152  *
153  * type: Type of the message.
154  * size: Size of the message in bytes; including the header.
155  * trans_id: The guest is responsible for manufacturing this ID.
156  */
157
158 struct dm_header {
159         __u16 type;
160         __u16 size;
161         __u32 trans_id;
162 } __packed;
163
164 /*
165  * A generic message format for dynamic memory.
166  * Specific message formats are defined later in the file.
167  */
168
169 struct dm_message {
170         struct dm_header hdr;
171         __u8 data[]; /* enclosed message */
172 } __packed;
173
174
175 /*
176  * Specific message types supporting the dynamic memory protocol.
177  */
178
179 /*
180  * Version negotiation message. Sent from the guest to the host.
181  * The guest is free to try different versions until the host
182  * accepts the version.
183  *
184  * dm_version: The protocol version requested.
185  * is_last_attempt: If TRUE, this is the last version guest will request.
186  * reservedz: Reserved field, set to zero.
187  */
188
189 struct dm_version_request {
190         struct dm_header hdr;
191         union dm_version version;
192         __u32 is_last_attempt:1;
193         __u32 reservedz:31;
194 } __packed;
195
196 /*
197  * Version response message; Host to Guest and indicates
198  * if the host has accepted the version sent by the guest.
199  *
200  * is_accepted: If TRUE, host has accepted the version and the guest
201  * should proceed to the next stage of the protocol. FALSE indicates that
202  * guest should re-try with a different version.
203  *
204  * reservedz: Reserved field, set to zero.
205  */
206
207 struct dm_version_response {
208         struct dm_header hdr;
209         __u64 is_accepted:1;
210         __u64 reservedz:63;
211 } __packed;
212
213 /*
214  * Message reporting capabilities. This is sent from the guest to the
215  * host.
216  */
217
218 struct dm_capabilities {
219         struct dm_header hdr;
220         union dm_caps caps;
221         __u64 min_page_cnt;
222         __u64 max_page_number;
223 } __packed;
224
225 /*
226  * Response to the capabilities message. This is sent from the host to the
227  * guest. This message notifies if the host has accepted the guest's
228  * capabilities. If the host has not accepted, the guest must shutdown
229  * the service.
230  *
231  * is_accepted: Indicates if the host has accepted guest's capabilities.
232  * reservedz: Must be 0.
233  */
234
235 struct dm_capabilities_resp_msg {
236         struct dm_header hdr;
237         __u64 is_accepted:1;
238         __u64 reservedz:63;
239 } __packed;
240
241 /*
242  * This message is used to report memory pressure from the guest.
243  * This message is not part of any transaction and there is no
244  * response to this message.
245  *
246  * num_avail: Available memory in pages.
247  * num_committed: Committed memory in pages.
248  * page_file_size: The accumulated size of all page files
249  *                 in the system in pages.
250  * zero_free: The nunber of zero and free pages.
251  * page_file_writes: The writes to the page file in pages.
252  * io_diff: An indicator of file cache efficiency or page file activity,
253  *          calculated as File Cache Page Fault Count - Page Read Count.
254  *          This value is in pages.
255  *
256  * Some of these metrics are Windows specific and fortunately
257  * the algorithm on the host side that computes the guest memory
258  * pressure only uses num_committed value.
259  */
260
261 struct dm_status {
262         struct dm_header hdr;
263         __u64 num_avail;
264         __u64 num_committed;
265         __u64 page_file_size;
266         __u64 zero_free;
267         __u32 page_file_writes;
268         __u32 io_diff;
269 } __packed;
270
271
272 /*
273  * Message to ask the guest to allocate memory - balloon up message.
274  * This message is sent from the host to the guest. The guest may not be
275  * able to allocate as much memory as requested.
276  *
277  * num_pages: number of pages to allocate.
278  */
279
280 struct dm_balloon {
281         struct dm_header hdr;
282         __u32 num_pages;
283         __u32 reservedz;
284 } __packed;
285
286
287 /*
288  * Balloon response message; this message is sent from the guest
289  * to the host in response to the balloon message.
290  *
291  * reservedz: Reserved; must be set to zero.
292  * more_pages: If FALSE, this is the last message of the transaction.
293  * if TRUE there will atleast one more message from the guest.
294  *
295  * range_count: The number of ranges in the range array.
296  *
297  * range_array: An array of page ranges returned to the host.
298  *
299  */
300
301 struct dm_balloon_response {
302         struct dm_header hdr;
303         __u32 reservedz;
304         __u32 more_pages:1;
305         __u32 range_count:31;
306         union dm_mem_page_range range_array[];
307 } __packed;
308
309 /*
310  * Un-balloon message; this message is sent from the host
311  * to the guest to give guest more memory.
312  *
313  * more_pages: If FALSE, this is the last message of the transaction.
314  * if TRUE there will atleast one more message from the guest.
315  *
316  * reservedz: Reserved; must be set to zero.
317  *
318  * range_count: The number of ranges in the range array.
319  *
320  * range_array: An array of page ranges returned to the host.
321  *
322  */
323
324 struct dm_unballoon_request {
325         struct dm_header hdr;
326         __u32 more_pages:1;
327         __u32 reservedz:31;
328         __u32 range_count;
329         union dm_mem_page_range range_array[];
330 } __packed;
331
332 /*
333  * Un-balloon response message; this message is sent from the guest
334  * to the host in response to an unballoon request.
335  *
336  */
337
338 struct dm_unballoon_response {
339         struct dm_header hdr;
340 } __packed;
341
342
343 /*
344  * Hot add request message. Message sent from the host to the guest.
345  *
346  * mem_range: Memory range to hot add.
347  *
348  * On Linux we currently don't support this since we cannot hot add
349  * arbitrary granularity of memory.
350  */
351
352 struct dm_hot_add {
353         struct dm_header hdr;
354         union dm_mem_page_range range;
355 } __packed;
356
357 /*
358  * Hot add response message.
359  * This message is sent by the guest to report the status of a hot add request.
360  * If page_count is less than the requested page count, then the host should
361  * assume all further hot add requests will fail, since this indicates that
362  * the guest has hit an upper physical memory barrier.
363  *
364  * Hot adds may also fail due to low resources; in this case, the guest must
365  * not complete this message until the hot add can succeed, and the host must
366  * not send a new hot add request until the response is sent.
367  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
368  * times it fails the request.
369  *
370  *
371  * page_count: number of pages that were successfully hot added.
372  *
373  * result: result of the operation 1: success, 0: failure.
374  *
375  */
376
377 struct dm_hot_add_response {
378         struct dm_header hdr;
379         __u32 page_count;
380         __u32 result;
381 } __packed;
382
383 /*
384  * Types of information sent from host to the guest.
385  */
386
387 enum dm_info_type {
388         INFO_TYPE_MAX_PAGE_CNT = 0,
389         MAX_INFO_TYPE
390 };
391
392
393 /*
394  * Header for the information message.
395  */
396
397 struct dm_info_header {
398         enum dm_info_type type;
399         __u32 data_size;
400 } __packed;
401
402 /*
403  * This message is sent from the host to the guest to pass
404  * some relevant information (win8 addition).
405  *
406  * reserved: no used.
407  * info_size: size of the information blob.
408  * info: information blob.
409  */
410
411 struct dm_info_msg {
412         struct dm_header hdr;
413         __u32 reserved;
414         __u32 info_size;
415         __u8  info[];
416 };
417
418 /*
419  * End protocol definitions.
420  */
421
422 /*
423  * State to manage hot adding memory into the guest.
424  * The range start_pfn : end_pfn specifies the range
425  * that the host has asked us to hot add. The range
426  * start_pfn : ha_end_pfn specifies the range that we have
427  * currently hot added. We hot add in multiples of 128M
428  * chunks; it is possible that we may not be able to bring
429  * online all the pages in the region. The range
430  * covered_start_pfn : covered_end_pfn defines the pages that can
431  * be brough online.
432  */
433
434 struct hv_hotadd_state {
435         struct list_head list;
436         unsigned long start_pfn;
437         unsigned long covered_start_pfn;
438         unsigned long covered_end_pfn;
439         unsigned long ha_end_pfn;
440         unsigned long end_pfn;
441 };
442
443 struct balloon_state {
444         __u32 num_pages;
445         struct work_struct wrk;
446 };
447
448 struct hot_add_wrk {
449         union dm_mem_page_range ha_page_range;
450         union dm_mem_page_range ha_region_range;
451         struct work_struct wrk;
452 };
453
454 static bool hot_add = true;
455 static bool do_hot_add;
456 /*
457  * Delay reporting memory pressure by
458  * the specified number of seconds.
459  */
460 static uint pressure_report_delay = 45;
461
462 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
463 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
464
465 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
466 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
467 static atomic_t trans_id = ATOMIC_INIT(0);
468
469 static int dm_ring_size = (5 * PAGE_SIZE);
470
471 /*
472  * Driver specific state.
473  */
474
475 enum hv_dm_state {
476         DM_INITIALIZING = 0,
477         DM_INITIALIZED,
478         DM_BALLOON_UP,
479         DM_BALLOON_DOWN,
480         DM_HOT_ADD,
481         DM_INIT_ERROR
482 };
483
484
485 static __u8 recv_buffer[PAGE_SIZE];
486 static __u8 *send_buffer;
487 #define PAGES_IN_2M     512
488 #define HA_CHUNK (32 * 1024)
489
490 struct hv_dynmem_device {
491         struct hv_device *dev;
492         enum hv_dm_state state;
493         struct completion host_event;
494         struct completion config_event;
495
496         /*
497          * Number of pages we have currently ballooned out.
498          */
499         unsigned int num_pages_ballooned;
500
501         /*
502          * State to manage the ballooning (up) operation.
503          */
504         struct balloon_state balloon_wrk;
505
506         /*
507          * State to execute the "hot-add" operation.
508          */
509         struct hot_add_wrk ha_wrk;
510
511         /*
512          * This state tracks if the host has specified a hot-add
513          * region.
514          */
515         bool host_specified_ha_region;
516
517         /*
518          * State to synchronize hot-add.
519          */
520         struct completion  ol_waitevent;
521         bool ha_waiting;
522         /*
523          * This thread handles hot-add
524          * requests from the host as well as notifying
525          * the host with regards to memory pressure in
526          * the guest.
527          */
528         struct task_struct *thread;
529
530         /*
531          * A list of hot-add regions.
532          */
533         struct list_head ha_region_list;
534
535         /*
536          * We start with the highest version we can support
537          * and downgrade based on the host; we save here the
538          * next version to try.
539          */
540         __u32 next_version;
541 };
542
543 static struct hv_dynmem_device dm_device;
544
545 #ifdef CONFIG_MEMORY_HOTPLUG
546
547 static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
548 {
549         int i;
550
551         for (i = 0; i < size; i++) {
552                 struct page *pg;
553                 pg = pfn_to_page(start_pfn + i);
554                 __online_page_set_limits(pg);
555                 __online_page_increment_counters(pg);
556                 __online_page_free(pg);
557         }
558 }
559
560 static void hv_mem_hot_add(unsigned long start, unsigned long size,
561                                 unsigned long pfn_count,
562                                 struct hv_hotadd_state *has)
563 {
564         int ret = 0;
565         int i, nid;
566         unsigned long start_pfn;
567         unsigned long processed_pfn;
568         unsigned long total_pfn = pfn_count;
569
570         for (i = 0; i < (size/HA_CHUNK); i++) {
571                 start_pfn = start + (i * HA_CHUNK);
572                 has->ha_end_pfn +=  HA_CHUNK;
573
574                 if (total_pfn > HA_CHUNK) {
575                         processed_pfn = HA_CHUNK;
576                         total_pfn -= HA_CHUNK;
577                 } else {
578                         processed_pfn = total_pfn;
579                         total_pfn = 0;
580                 }
581
582                 has->covered_end_pfn +=  processed_pfn;
583
584                 init_completion(&dm_device.ol_waitevent);
585                 dm_device.ha_waiting = true;
586
587                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
588                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
589                                 (HA_CHUNK << PAGE_SHIFT));
590
591                 if (ret) {
592                         pr_info("hot_add memory failed error is %d\n", ret);
593                         if (ret == -EEXIST) {
594                                 /*
595                                  * This error indicates that the error
596                                  * is not a transient failure. This is the
597                                  * case where the guest's physical address map
598                                  * precludes hot adding memory. Stop all further
599                                  * memory hot-add.
600                                  */
601                                 do_hot_add = false;
602                         }
603                         has->ha_end_pfn -= HA_CHUNK;
604                         has->covered_end_pfn -=  processed_pfn;
605                         break;
606                 }
607
608                 /*
609                  * Wait for the memory block to be onlined.
610                  * Since the hot add has succeeded, it is ok to
611                  * proceed even if the pages in the hot added region
612                  * have not been "onlined" within the allowed time.
613                  */
614                 wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
615
616         }
617
618         return;
619 }
620
621 static void hv_online_page(struct page *pg)
622 {
623         struct list_head *cur;
624         struct hv_hotadd_state *has;
625         unsigned long cur_start_pgp;
626         unsigned long cur_end_pgp;
627
628         if (dm_device.ha_waiting) {
629                 dm_device.ha_waiting = false;
630                 complete(&dm_device.ol_waitevent);
631         }
632
633         list_for_each(cur, &dm_device.ha_region_list) {
634                 has = list_entry(cur, struct hv_hotadd_state, list);
635                 cur_start_pgp = (unsigned long)
636                                 pfn_to_page(has->covered_start_pfn);
637                 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
638
639                 if (((unsigned long)pg >= cur_start_pgp) &&
640                         ((unsigned long)pg < cur_end_pgp)) {
641                         /*
642                          * This frame is currently backed; online the
643                          * page.
644                          */
645                         __online_page_set_limits(pg);
646                         __online_page_increment_counters(pg);
647                         __online_page_free(pg);
648                         has->covered_start_pfn++;
649                 }
650         }
651 }
652
653 static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
654 {
655         struct list_head *cur;
656         struct hv_hotadd_state *has;
657         unsigned long residual, new_inc;
658
659         if (list_empty(&dm_device.ha_region_list))
660                 return false;
661
662         list_for_each(cur, &dm_device.ha_region_list) {
663                 has = list_entry(cur, struct hv_hotadd_state, list);
664
665                 /*
666                  * If the pfn range we are dealing with is not in the current
667                  * "hot add block", move on.
668                  */
669                 if ((start_pfn >= has->end_pfn))
670                         continue;
671                 /*
672                  * If the current hot add-request extends beyond
673                  * our current limit; extend it.
674                  */
675                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
676                         residual = (start_pfn + pfn_cnt - has->end_pfn);
677                         /*
678                          * Extend the region by multiples of HA_CHUNK.
679                          */
680                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
681                         if (residual % HA_CHUNK)
682                                 new_inc += HA_CHUNK;
683
684                         has->end_pfn += new_inc;
685                 }
686
687                 /*
688                  * If the current start pfn is not where the covered_end
689                  * is, update it.
690                  */
691
692                 if (has->covered_end_pfn != start_pfn) {
693                         has->covered_end_pfn = start_pfn;
694                         has->covered_start_pfn = start_pfn;
695                 }
696                 return true;
697
698         }
699
700         return false;
701 }
702
703 static unsigned long handle_pg_range(unsigned long pg_start,
704                                         unsigned long pg_count)
705 {
706         unsigned long start_pfn = pg_start;
707         unsigned long pfn_cnt = pg_count;
708         unsigned long size;
709         struct list_head *cur;
710         struct hv_hotadd_state *has;
711         unsigned long pgs_ol = 0;
712         unsigned long old_covered_state;
713
714         if (list_empty(&dm_device.ha_region_list))
715                 return 0;
716
717         list_for_each(cur, &dm_device.ha_region_list) {
718                 has = list_entry(cur, struct hv_hotadd_state, list);
719
720                 /*
721                  * If the pfn range we are dealing with is not in the current
722                  * "hot add block", move on.
723                  */
724                 if ((start_pfn >= has->end_pfn))
725                         continue;
726
727                 old_covered_state = has->covered_end_pfn;
728
729                 if (start_pfn < has->ha_end_pfn) {
730                         /*
731                          * This is the case where we are backing pages
732                          * in an already hot added region. Bring
733                          * these pages online first.
734                          */
735                         pgs_ol = has->ha_end_pfn - start_pfn;
736                         if (pgs_ol > pfn_cnt)
737                                 pgs_ol = pfn_cnt;
738                         hv_bring_pgs_online(start_pfn, pgs_ol);
739                         has->covered_end_pfn +=  pgs_ol;
740                         has->covered_start_pfn +=  pgs_ol;
741                         pfn_cnt -= pgs_ol;
742                 }
743
744                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
745                         /*
746                          * We have some residual hot add range
747                          * that needs to be hot added; hot add
748                          * it now. Hot add a multiple of
749                          * of HA_CHUNK that fully covers the pages
750                          * we have.
751                          */
752                         size = (has->end_pfn - has->ha_end_pfn);
753                         if (pfn_cnt <= size) {
754                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
755                                 if (pfn_cnt % HA_CHUNK)
756                                         size += HA_CHUNK;
757                         } else {
758                                 pfn_cnt = size;
759                         }
760                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
761                 }
762                 /*
763                  * If we managed to online any pages that were given to us,
764                  * we declare success.
765                  */
766                 return has->covered_end_pfn - old_covered_state;
767
768         }
769
770         return 0;
771 }
772
773 static unsigned long process_hot_add(unsigned long pg_start,
774                                         unsigned long pfn_cnt,
775                                         unsigned long rg_start,
776                                         unsigned long rg_size)
777 {
778         struct hv_hotadd_state *ha_region = NULL;
779
780         if (pfn_cnt == 0)
781                 return 0;
782
783         if (!dm_device.host_specified_ha_region)
784                 if (pfn_covered(pg_start, pfn_cnt))
785                         goto do_pg_range;
786
787         /*
788          * If the host has specified a hot-add range; deal with it first.
789          */
790
791         if (rg_size != 0) {
792                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
793                 if (!ha_region)
794                         return 0;
795
796                 INIT_LIST_HEAD(&ha_region->list);
797
798                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
799                 ha_region->start_pfn = rg_start;
800                 ha_region->ha_end_pfn = rg_start;
801                 ha_region->covered_start_pfn = pg_start;
802                 ha_region->covered_end_pfn = pg_start;
803                 ha_region->end_pfn = rg_start + rg_size;
804         }
805
806 do_pg_range:
807         /*
808          * Process the page range specified; bringing them
809          * online if possible.
810          */
811         return handle_pg_range(pg_start, pfn_cnt);
812 }
813
814 #endif
815
816 static void hot_add_req(struct work_struct *dummy)
817 {
818         struct dm_hot_add_response resp;
819 #ifdef CONFIG_MEMORY_HOTPLUG
820         unsigned long pg_start, pfn_cnt;
821         unsigned long rg_start, rg_sz;
822 #endif
823         struct hv_dynmem_device *dm = &dm_device;
824
825         memset(&resp, 0, sizeof(struct dm_hot_add_response));
826         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
827         resp.hdr.size = sizeof(struct dm_hot_add_response);
828
829 #ifdef CONFIG_MEMORY_HOTPLUG
830         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
831         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
832
833         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
834         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
835
836         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
837                 unsigned long region_size;
838                 unsigned long region_start;
839
840                 /*
841                  * The host has not specified the hot-add region.
842                  * Based on the hot-add page range being specified,
843                  * compute a hot-add region that can cover the pages
844                  * that need to be hot-added while ensuring the alignment
845                  * and size requirements of Linux as it relates to hot-add.
846                  */
847                 region_start = pg_start;
848                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
849                 if (pfn_cnt % HA_CHUNK)
850                         region_size += HA_CHUNK;
851
852                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
853
854                 rg_start = region_start;
855                 rg_sz = region_size;
856         }
857
858         if (do_hot_add)
859                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
860                                                 rg_start, rg_sz);
861 #endif
862         /*
863          * The result field of the response structure has the
864          * following semantics:
865          *
866          * 1. If all or some pages hot-added: Guest should return success.
867          *
868          * 2. If no pages could be hot-added:
869          *
870          * If the guest returns success, then the host
871          * will not attempt any further hot-add operations. This
872          * signifies a permanent failure.
873          *
874          * If the guest returns failure, then this failure will be
875          * treated as a transient failure and the host may retry the
876          * hot-add operation after some delay.
877          */
878         if (resp.page_count > 0)
879                 resp.result = 1;
880         else if (!do_hot_add)
881                 resp.result = 1;
882         else
883                 resp.result = 0;
884
885         if (!do_hot_add || (resp.page_count == 0))
886                 pr_info("Memory hot add failed\n");
887
888         dm->state = DM_INITIALIZED;
889         resp.hdr.trans_id = atomic_inc_return(&trans_id);
890         vmbus_sendpacket(dm->dev->channel, &resp,
891                         sizeof(struct dm_hot_add_response),
892                         (unsigned long)NULL,
893                         VM_PKT_DATA_INBAND, 0);
894 }
895
896 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
897 {
898         struct dm_info_header *info_hdr;
899
900         info_hdr = (struct dm_info_header *)msg->info;
901
902         switch (info_hdr->type) {
903         case INFO_TYPE_MAX_PAGE_CNT:
904                 pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
905                 pr_info("Data Size is %d\n", info_hdr->data_size);
906                 break;
907         default:
908                 pr_info("Received Unknown type: %d\n", info_hdr->type);
909         }
910 }
911
912 static unsigned long compute_balloon_floor(void)
913 {
914         unsigned long min_pages;
915 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
916         /* Simple continuous piecewiese linear function:
917          *  max MiB -> min MiB  gradient
918          *       0         0
919          *      16        16
920          *      32        24
921          *     128        72    (1/2)
922          *     512       168    (1/4)
923          *    2048       360    (1/8)
924          *    8192       552    (1/32)
925          *   32768      1320
926          *  131072      4392
927          */
928         if (totalram_pages < MB2PAGES(128))
929                 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
930         else if (totalram_pages < MB2PAGES(512))
931                 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
932         else if (totalram_pages < MB2PAGES(2048))
933                 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
934         else
935                 min_pages = MB2PAGES(296) + (totalram_pages >> 5);
936 #undef MB2PAGES
937         return min_pages;
938 }
939
940 /*
941  * Post our status as it relates memory pressure to the
942  * host. Host expects the guests to post this status
943  * periodically at 1 second intervals.
944  *
945  * The metrics specified in this protocol are very Windows
946  * specific and so we cook up numbers here to convey our memory
947  * pressure.
948  */
949
950 static void post_status(struct hv_dynmem_device *dm)
951 {
952         struct dm_status status;
953         struct sysinfo val;
954
955         if (pressure_report_delay > 0) {
956                 --pressure_report_delay;
957                 return;
958         }
959         si_meminfo(&val);
960         memset(&status, 0, sizeof(struct dm_status));
961         status.hdr.type = DM_STATUS_REPORT;
962         status.hdr.size = sizeof(struct dm_status);
963         status.hdr.trans_id = atomic_inc_return(&trans_id);
964
965         /*
966          * The host expects the guest to report free memory.
967          * Further, the host expects the pressure information to
968          * include the ballooned out pages.
969          * For a given amount of memory that we are managing, we
970          * need to compute a floor below which we should not balloon.
971          * Compute this and add it to the pressure report.
972          */
973         status.num_avail = val.freeram;
974         status.num_committed = vm_memory_committed() +
975                                 dm->num_pages_ballooned +
976                                 compute_balloon_floor();
977
978         /*
979          * If our transaction ID is no longer current, just don't
980          * send the status. This can happen if we were interrupted
981          * after we picked our transaction ID.
982          */
983         if (status.hdr.trans_id != atomic_read(&trans_id))
984                 return;
985
986         vmbus_sendpacket(dm->dev->channel, &status,
987                                 sizeof(struct dm_status),
988                                 (unsigned long)NULL,
989                                 VM_PKT_DATA_INBAND, 0);
990
991 }
992
993 static void free_balloon_pages(struct hv_dynmem_device *dm,
994                          union dm_mem_page_range *range_array)
995 {
996         int num_pages = range_array->finfo.page_cnt;
997         __u64 start_frame = range_array->finfo.start_page;
998         struct page *pg;
999         int i;
1000
1001         for (i = 0; i < num_pages; i++) {
1002                 pg = pfn_to_page(i + start_frame);
1003                 __free_page(pg);
1004                 dm->num_pages_ballooned--;
1005         }
1006 }
1007
1008
1009
1010 static int  alloc_balloon_pages(struct hv_dynmem_device *dm, int num_pages,
1011                          struct dm_balloon_response *bl_resp, int alloc_unit,
1012                          bool *alloc_error)
1013 {
1014         int i = 0;
1015         struct page *pg;
1016
1017         if (num_pages < alloc_unit)
1018                 return 0;
1019
1020         for (i = 0; (i * alloc_unit) < num_pages; i++) {
1021                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1022                         PAGE_SIZE)
1023                         return i * alloc_unit;
1024
1025                 /*
1026                  * We execute this code in a thread context. Furthermore,
1027                  * we don't want the kernel to try too hard.
1028                  */
1029                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1030                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1031                                 get_order(alloc_unit << PAGE_SHIFT));
1032
1033                 if (!pg) {
1034                         *alloc_error = true;
1035                         return i * alloc_unit;
1036                 }
1037
1038
1039                 dm->num_pages_ballooned += alloc_unit;
1040
1041                 /*
1042                  * If we allocatted 2M pages; split them so we
1043                  * can free them in any order we get.
1044                  */
1045
1046                 if (alloc_unit != 1)
1047                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1048
1049                 bl_resp->range_count++;
1050                 bl_resp->range_array[i].finfo.start_page =
1051                         page_to_pfn(pg);
1052                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1053                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1054
1055         }
1056
1057         return num_pages;
1058 }
1059
1060
1061
1062 static void balloon_up(struct work_struct *dummy)
1063 {
1064         int num_pages = dm_device.balloon_wrk.num_pages;
1065         int num_ballooned = 0;
1066         struct dm_balloon_response *bl_resp;
1067         int alloc_unit;
1068         int ret;
1069         bool alloc_error = false;
1070         bool done = false;
1071         int i;
1072
1073
1074         /*
1075          * We will attempt 2M allocations. However, if we fail to
1076          * allocate 2M chunks, we will go back to 4k allocations.
1077          */
1078         alloc_unit = 512;
1079
1080         while (!done) {
1081                 bl_resp = (struct dm_balloon_response *)send_buffer;
1082                 memset(send_buffer, 0, PAGE_SIZE);
1083                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1084                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1085                 bl_resp->more_pages = 1;
1086
1087
1088                 num_pages -= num_ballooned;
1089                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1090                                                 bl_resp, alloc_unit,
1091                                                  &alloc_error);
1092
1093                 if ((alloc_error) && (alloc_unit != 1)) {
1094                         alloc_unit = 1;
1095                         continue;
1096                 }
1097
1098                 if ((alloc_error) || (num_ballooned == num_pages)) {
1099                         bl_resp->more_pages = 0;
1100                         done = true;
1101                         dm_device.state = DM_INITIALIZED;
1102                 }
1103
1104                 /*
1105                  * We are pushing a lot of data through the channel;
1106                  * deal with transient failures caused because of the
1107                  * lack of space in the ring buffer.
1108                  */
1109
1110                 do {
1111                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1112                         ret = vmbus_sendpacket(dm_device.dev->channel,
1113                                                 bl_resp,
1114                                                 bl_resp->hdr.size,
1115                                                 (unsigned long)NULL,
1116                                                 VM_PKT_DATA_INBAND, 0);
1117
1118                         if (ret == -EAGAIN)
1119                                 msleep(20);
1120
1121                 } while (ret == -EAGAIN);
1122
1123                 if (ret) {
1124                         /*
1125                          * Free up the memory we allocatted.
1126                          */
1127                         pr_info("Balloon response failed\n");
1128
1129                         for (i = 0; i < bl_resp->range_count; i++)
1130                                 free_balloon_pages(&dm_device,
1131                                                  &bl_resp->range_array[i]);
1132
1133                         done = true;
1134                 }
1135         }
1136
1137 }
1138
1139 static void balloon_down(struct hv_dynmem_device *dm,
1140                         struct dm_unballoon_request *req)
1141 {
1142         union dm_mem_page_range *range_array = req->range_array;
1143         int range_count = req->range_count;
1144         struct dm_unballoon_response resp;
1145         int i;
1146
1147         for (i = 0; i < range_count; i++)
1148                 free_balloon_pages(dm, &range_array[i]);
1149
1150         if (req->more_pages == 1)
1151                 return;
1152
1153         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1154         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1155         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1156         resp.hdr.size = sizeof(struct dm_unballoon_response);
1157
1158         vmbus_sendpacket(dm_device.dev->channel, &resp,
1159                                 sizeof(struct dm_unballoon_response),
1160                                 (unsigned long)NULL,
1161                                 VM_PKT_DATA_INBAND, 0);
1162
1163         dm->state = DM_INITIALIZED;
1164 }
1165
1166 static void balloon_onchannelcallback(void *context);
1167
1168 static int dm_thread_func(void *dm_dev)
1169 {
1170         struct hv_dynmem_device *dm = dm_dev;
1171         int t;
1172
1173         while (!kthread_should_stop()) {
1174                 t = wait_for_completion_timeout(&dm_device.config_event, 1*HZ);
1175                 /*
1176                  * The host expects us to post information on the memory
1177                  * pressure every second.
1178                  */
1179
1180                 if (t == 0)
1181                         post_status(dm);
1182
1183         }
1184
1185         return 0;
1186 }
1187
1188
1189 static void version_resp(struct hv_dynmem_device *dm,
1190                         struct dm_version_response *vresp)
1191 {
1192         struct dm_version_request version_req;
1193         int ret;
1194
1195         if (vresp->is_accepted) {
1196                 /*
1197                  * We are done; wakeup the
1198                  * context waiting for version
1199                  * negotiation.
1200                  */
1201                 complete(&dm->host_event);
1202                 return;
1203         }
1204         /*
1205          * If there are more versions to try, continue
1206          * with negotiations; if not
1207          * shutdown the service since we are not able
1208          * to negotiate a suitable version number
1209          * with the host.
1210          */
1211         if (dm->next_version == 0)
1212                 goto version_error;
1213
1214         dm->next_version = 0;
1215         memset(&version_req, 0, sizeof(struct dm_version_request));
1216         version_req.hdr.type = DM_VERSION_REQUEST;
1217         version_req.hdr.size = sizeof(struct dm_version_request);
1218         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1219         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN7;
1220         version_req.is_last_attempt = 1;
1221
1222         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1223                                 sizeof(struct dm_version_request),
1224                                 (unsigned long)NULL,
1225                                 VM_PKT_DATA_INBAND, 0);
1226
1227         if (ret)
1228                 goto version_error;
1229
1230         return;
1231
1232 version_error:
1233         dm->state = DM_INIT_ERROR;
1234         complete(&dm->host_event);
1235 }
1236
1237 static void cap_resp(struct hv_dynmem_device *dm,
1238                         struct dm_capabilities_resp_msg *cap_resp)
1239 {
1240         if (!cap_resp->is_accepted) {
1241                 pr_info("Capabilities not accepted by host\n");
1242                 dm->state = DM_INIT_ERROR;
1243         }
1244         complete(&dm->host_event);
1245 }
1246
1247 static void balloon_onchannelcallback(void *context)
1248 {
1249         struct hv_device *dev = context;
1250         u32 recvlen;
1251         u64 requestid;
1252         struct dm_message *dm_msg;
1253         struct dm_header *dm_hdr;
1254         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1255         struct dm_balloon *bal_msg;
1256         struct dm_hot_add *ha_msg;
1257         union dm_mem_page_range *ha_pg_range;
1258         union dm_mem_page_range *ha_region;
1259
1260         memset(recv_buffer, 0, sizeof(recv_buffer));
1261         vmbus_recvpacket(dev->channel, recv_buffer,
1262                          PAGE_SIZE, &recvlen, &requestid);
1263
1264         if (recvlen > 0) {
1265                 dm_msg = (struct dm_message *)recv_buffer;
1266                 dm_hdr = &dm_msg->hdr;
1267
1268                 switch (dm_hdr->type) {
1269                 case DM_VERSION_RESPONSE:
1270                         version_resp(dm,
1271                                  (struct dm_version_response *)dm_msg);
1272                         break;
1273
1274                 case DM_CAPABILITIES_RESPONSE:
1275                         cap_resp(dm,
1276                                  (struct dm_capabilities_resp_msg *)dm_msg);
1277                         break;
1278
1279                 case DM_BALLOON_REQUEST:
1280                         if (dm->state == DM_BALLOON_UP)
1281                                 pr_warn("Currently ballooning\n");
1282                         bal_msg = (struct dm_balloon *)recv_buffer;
1283                         dm->state = DM_BALLOON_UP;
1284                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1285                         schedule_work(&dm_device.balloon_wrk.wrk);
1286                         break;
1287
1288                 case DM_UNBALLOON_REQUEST:
1289                         dm->state = DM_BALLOON_DOWN;
1290                         balloon_down(dm,
1291                                  (struct dm_unballoon_request *)recv_buffer);
1292                         break;
1293
1294                 case DM_MEM_HOT_ADD_REQUEST:
1295                         if (dm->state == DM_HOT_ADD)
1296                                 pr_warn("Currently hot-adding\n");
1297                         dm->state = DM_HOT_ADD;
1298                         ha_msg = (struct dm_hot_add *)recv_buffer;
1299                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1300                                 /*
1301                                  * This is a normal hot-add request specifying
1302                                  * hot-add memory.
1303                                  */
1304                                 ha_pg_range = &ha_msg->range;
1305                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1306                                 dm->ha_wrk.ha_region_range.page_range = 0;
1307                         } else {
1308                                 /*
1309                                  * Host is specifying that we first hot-add
1310                                  * a region and then partially populate this
1311                                  * region.
1312                                  */
1313                                 dm->host_specified_ha_region = true;
1314                                 ha_pg_range = &ha_msg->range;
1315                                 ha_region = &ha_pg_range[1];
1316                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1317                                 dm->ha_wrk.ha_region_range = *ha_region;
1318                         }
1319                         schedule_work(&dm_device.ha_wrk.wrk);
1320                         break;
1321
1322                 case DM_INFO_MESSAGE:
1323                         process_info(dm, (struct dm_info_msg *)dm_msg);
1324                         break;
1325
1326                 default:
1327                         pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1328
1329                 }
1330         }
1331
1332 }
1333
1334 static int balloon_probe(struct hv_device *dev,
1335                         const struct hv_vmbus_device_id *dev_id)
1336 {
1337         int ret, t;
1338         struct dm_version_request version_req;
1339         struct dm_capabilities cap_msg;
1340
1341         do_hot_add = hot_add;
1342
1343         /*
1344          * First allocate a send buffer.
1345          */
1346
1347         send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1348         if (!send_buffer)
1349                 return -ENOMEM;
1350
1351         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1352                         balloon_onchannelcallback, dev);
1353
1354         if (ret)
1355                 goto probe_error0;
1356
1357         dm_device.dev = dev;
1358         dm_device.state = DM_INITIALIZING;
1359         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1360         init_completion(&dm_device.host_event);
1361         init_completion(&dm_device.config_event);
1362         INIT_LIST_HEAD(&dm_device.ha_region_list);
1363         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1364         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1365         dm_device.host_specified_ha_region = false;
1366
1367         dm_device.thread =
1368                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1369         if (IS_ERR(dm_device.thread)) {
1370                 ret = PTR_ERR(dm_device.thread);
1371                 goto probe_error1;
1372         }
1373
1374 #ifdef CONFIG_MEMORY_HOTPLUG
1375         set_online_page_callback(&hv_online_page);
1376 #endif
1377
1378         hv_set_drvdata(dev, &dm_device);
1379         /*
1380          * Initiate the hand shake with the host and negotiate
1381          * a version that the host can support. We start with the
1382          * highest version number and go down if the host cannot
1383          * support it.
1384          */
1385         memset(&version_req, 0, sizeof(struct dm_version_request));
1386         version_req.hdr.type = DM_VERSION_REQUEST;
1387         version_req.hdr.size = sizeof(struct dm_version_request);
1388         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1389         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN8;
1390         version_req.is_last_attempt = 0;
1391
1392         ret = vmbus_sendpacket(dev->channel, &version_req,
1393                                 sizeof(struct dm_version_request),
1394                                 (unsigned long)NULL,
1395                                 VM_PKT_DATA_INBAND, 0);
1396         if (ret)
1397                 goto probe_error2;
1398
1399         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1400         if (t == 0) {
1401                 ret = -ETIMEDOUT;
1402                 goto probe_error2;
1403         }
1404
1405         /*
1406          * If we could not negotiate a compatible version with the host
1407          * fail the probe function.
1408          */
1409         if (dm_device.state == DM_INIT_ERROR) {
1410                 ret = -ETIMEDOUT;
1411                 goto probe_error2;
1412         }
1413         /*
1414          * Now submit our capabilities to the host.
1415          */
1416         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1417         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1418         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1419         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1420
1421         cap_msg.caps.cap_bits.balloon = 1;
1422         cap_msg.caps.cap_bits.hot_add = 1;
1423
1424         /*
1425          * Specify our alignment requirements as it relates
1426          * memory hot-add. Specify 128MB alignment.
1427          */
1428         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1429
1430         /*
1431          * Currently the host does not use these
1432          * values and we set them to what is done in the
1433          * Windows driver.
1434          */
1435         cap_msg.min_page_cnt = 0;
1436         cap_msg.max_page_number = -1;
1437
1438         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1439                                 sizeof(struct dm_capabilities),
1440                                 (unsigned long)NULL,
1441                                 VM_PKT_DATA_INBAND, 0);
1442         if (ret)
1443                 goto probe_error2;
1444
1445         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1446         if (t == 0) {
1447                 ret = -ETIMEDOUT;
1448                 goto probe_error2;
1449         }
1450
1451         /*
1452          * If the host does not like our capabilities,
1453          * fail the probe function.
1454          */
1455         if (dm_device.state == DM_INIT_ERROR) {
1456                 ret = -ETIMEDOUT;
1457                 goto probe_error2;
1458         }
1459
1460         dm_device.state = DM_INITIALIZED;
1461
1462         return 0;
1463
1464 probe_error2:
1465 #ifdef CONFIG_MEMORY_HOTPLUG
1466         restore_online_page_callback(&hv_online_page);
1467 #endif
1468         kthread_stop(dm_device.thread);
1469
1470 probe_error1:
1471         vmbus_close(dev->channel);
1472 probe_error0:
1473         kfree(send_buffer);
1474         return ret;
1475 }
1476
1477 static int balloon_remove(struct hv_device *dev)
1478 {
1479         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1480         struct list_head *cur, *tmp;
1481         struct hv_hotadd_state *has;
1482
1483         if (dm->num_pages_ballooned != 0)
1484                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1485
1486         cancel_work_sync(&dm->balloon_wrk.wrk);
1487         cancel_work_sync(&dm->ha_wrk.wrk);
1488
1489         vmbus_close(dev->channel);
1490         kthread_stop(dm->thread);
1491         kfree(send_buffer);
1492 #ifdef CONFIG_MEMORY_HOTPLUG
1493         restore_online_page_callback(&hv_online_page);
1494 #endif
1495         list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1496                 has = list_entry(cur, struct hv_hotadd_state, list);
1497                 list_del(&has->list);
1498                 kfree(has);
1499         }
1500
1501         return 0;
1502 }
1503
1504 static const struct hv_vmbus_device_id id_table[] = {
1505         /* Dynamic Memory Class ID */
1506         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1507         { HV_DM_GUID, },
1508         { },
1509 };
1510
1511 MODULE_DEVICE_TABLE(vmbus, id_table);
1512
1513 static  struct hv_driver balloon_drv = {
1514         .name = "hv_balloon",
1515         .id_table = id_table,
1516         .probe =  balloon_probe,
1517         .remove =  balloon_remove,
1518 };
1519
1520 static int __init init_balloon_drv(void)
1521 {
1522
1523         return vmbus_driver_register(&balloon_drv);
1524 }
1525
1526 module_init(init_balloon_drv);
1527
1528 MODULE_DESCRIPTION("Hyper-V Balloon");
1529 MODULE_LICENSE("GPL");