]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
460ee1026fcad63249e83af59da0353b40b04460
[~andy/linux] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39         if (space < 0)
40                 space += ring->size;
41         return space;
42 }
43
44 static int
45 gen2_render_ring_flush(struct intel_ring_buffer *ring,
46                        u32      invalidate_domains,
47                        u32      flush_domains)
48 {
49         u32 cmd;
50         int ret;
51
52         cmd = MI_FLUSH;
53         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
54                 cmd |= MI_NO_WRITE_FLUSH;
55
56         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
57                 cmd |= MI_READ_FLUSH;
58
59         ret = intel_ring_begin(ring, 2);
60         if (ret)
61                 return ret;
62
63         intel_ring_emit(ring, cmd);
64         intel_ring_emit(ring, MI_NOOP);
65         intel_ring_advance(ring);
66
67         return 0;
68 }
69
70 static int
71 gen4_render_ring_flush(struct intel_ring_buffer *ring,
72                        u32      invalidate_domains,
73                        u32      flush_domains)
74 {
75         struct drm_device *dev = ring->dev;
76         u32 cmd;
77         int ret;
78
79         /*
80          * read/write caches:
81          *
82          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
83          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
84          * also flushed at 2d versus 3d pipeline switches.
85          *
86          * read-only caches:
87          *
88          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
89          * MI_READ_FLUSH is set, and is always flushed on 965.
90          *
91          * I915_GEM_DOMAIN_COMMAND may not exist?
92          *
93          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
94          * invalidated when MI_EXE_FLUSH is set.
95          *
96          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
97          * invalidated with every MI_FLUSH.
98          *
99          * TLBs:
100          *
101          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
102          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
103          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
104          * are flushed at any MI_FLUSH.
105          */
106
107         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
108         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
109                 cmd &= ~MI_NO_WRITE_FLUSH;
110         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
111                 cmd |= MI_EXE_FLUSH;
112
113         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
114             (IS_G4X(dev) || IS_GEN5(dev)))
115                 cmd |= MI_INVALIDATE_ISP;
116
117         ret = intel_ring_begin(ring, 2);
118         if (ret)
119                 return ret;
120
121         intel_ring_emit(ring, cmd);
122         intel_ring_emit(ring, MI_NOOP);
123         intel_ring_advance(ring);
124
125         return 0;
126 }
127
128 /**
129  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
130  * implementing two workarounds on gen6.  From section 1.4.7.1
131  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
132  *
133  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
134  * produced by non-pipelined state commands), software needs to first
135  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
136  * 0.
137  *
138  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
139  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
140  *
141  * And the workaround for these two requires this workaround first:
142  *
143  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
144  * BEFORE the pipe-control with a post-sync op and no write-cache
145  * flushes.
146  *
147  * And this last workaround is tricky because of the requirements on
148  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
149  * volume 2 part 1:
150  *
151  *     "1 of the following must also be set:
152  *      - Render Target Cache Flush Enable ([12] of DW1)
153  *      - Depth Cache Flush Enable ([0] of DW1)
154  *      - Stall at Pixel Scoreboard ([1] of DW1)
155  *      - Depth Stall ([13] of DW1)
156  *      - Post-Sync Operation ([13] of DW1)
157  *      - Notify Enable ([8] of DW1)"
158  *
159  * The cache flushes require the workaround flush that triggered this
160  * one, so we can't use it.  Depth stall would trigger the same.
161  * Post-sync nonzero is what triggered this second workaround, so we
162  * can't use that one either.  Notify enable is IRQs, which aren't
163  * really our business.  That leaves only stall at scoreboard.
164  */
165 static int
166 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
167 {
168         u32 scratch_addr = ring->scratch.gtt_offset + 128;
169         int ret;
170
171
172         ret = intel_ring_begin(ring, 6);
173         if (ret)
174                 return ret;
175
176         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
177         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
178                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
179         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
180         intel_ring_emit(ring, 0); /* low dword */
181         intel_ring_emit(ring, 0); /* high dword */
182         intel_ring_emit(ring, MI_NOOP);
183         intel_ring_advance(ring);
184
185         ret = intel_ring_begin(ring, 6);
186         if (ret)
187                 return ret;
188
189         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
190         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
191         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
192         intel_ring_emit(ring, 0);
193         intel_ring_emit(ring, 0);
194         intel_ring_emit(ring, MI_NOOP);
195         intel_ring_advance(ring);
196
197         return 0;
198 }
199
200 static int
201 gen6_render_ring_flush(struct intel_ring_buffer *ring,
202                          u32 invalidate_domains, u32 flush_domains)
203 {
204         u32 flags = 0;
205         u32 scratch_addr = ring->scratch.gtt_offset + 128;
206         int ret;
207
208         /* Force SNB workarounds for PIPE_CONTROL flushes */
209         ret = intel_emit_post_sync_nonzero_flush(ring);
210         if (ret)
211                 return ret;
212
213         /* Just flush everything.  Experiments have shown that reducing the
214          * number of bits based on the write domains has little performance
215          * impact.
216          */
217         if (flush_domains) {
218                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
219                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
220                 /*
221                  * Ensure that any following seqno writes only happen
222                  * when the render cache is indeed flushed.
223                  */
224                 flags |= PIPE_CONTROL_CS_STALL;
225         }
226         if (invalidate_domains) {
227                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
228                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
229                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
230                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
231                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
232                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
233                 /*
234                  * TLB invalidate requires a post-sync write.
235                  */
236                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
237         }
238
239         ret = intel_ring_begin(ring, 4);
240         if (ret)
241                 return ret;
242
243         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
244         intel_ring_emit(ring, flags);
245         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
246         intel_ring_emit(ring, 0);
247         intel_ring_advance(ring);
248
249         return 0;
250 }
251
252 static int
253 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
254 {
255         int ret;
256
257         ret = intel_ring_begin(ring, 4);
258         if (ret)
259                 return ret;
260
261         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
262         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
263                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
264         intel_ring_emit(ring, 0);
265         intel_ring_emit(ring, 0);
266         intel_ring_advance(ring);
267
268         return 0;
269 }
270
271 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
272 {
273         int ret;
274
275         if (!ring->fbc_dirty)
276                 return 0;
277
278         ret = intel_ring_begin(ring, 4);
279         if (ret)
280                 return ret;
281         intel_ring_emit(ring, MI_NOOP);
282         /* WaFbcNukeOn3DBlt:ivb/hsw */
283         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
284         intel_ring_emit(ring, MSG_FBC_REND_STATE);
285         intel_ring_emit(ring, value);
286         intel_ring_advance(ring);
287
288         ring->fbc_dirty = false;
289         return 0;
290 }
291
292 static int
293 gen7_render_ring_flush(struct intel_ring_buffer *ring,
294                        u32 invalidate_domains, u32 flush_domains)
295 {
296         u32 flags = 0;
297         u32 scratch_addr = ring->scratch.gtt_offset + 128;
298         int ret;
299
300         /*
301          * Ensure that any following seqno writes only happen when the render
302          * cache is indeed flushed.
303          *
304          * Workaround: 4th PIPE_CONTROL command (except the ones with only
305          * read-cache invalidate bits set) must have the CS_STALL bit set. We
306          * don't try to be clever and just set it unconditionally.
307          */
308         flags |= PIPE_CONTROL_CS_STALL;
309
310         /* Just flush everything.  Experiments have shown that reducing the
311          * number of bits based on the write domains has little performance
312          * impact.
313          */
314         if (flush_domains) {
315                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
316                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
317         }
318         if (invalidate_domains) {
319                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
320                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
321                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
322                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
323                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
324                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
325                 /*
326                  * TLB invalidate requires a post-sync write.
327                  */
328                 flags |= PIPE_CONTROL_QW_WRITE;
329                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
330
331                 /* Workaround: we must issue a pipe_control with CS-stall bit
332                  * set before a pipe_control command that has the state cache
333                  * invalidate bit set. */
334                 gen7_render_ring_cs_stall_wa(ring);
335         }
336
337         ret = intel_ring_begin(ring, 4);
338         if (ret)
339                 return ret;
340
341         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
342         intel_ring_emit(ring, flags);
343         intel_ring_emit(ring, scratch_addr);
344         intel_ring_emit(ring, 0);
345         intel_ring_advance(ring);
346
347         if (flush_domains)
348                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
349
350         return 0;
351 }
352
353 static void ring_write_tail(struct intel_ring_buffer *ring,
354                             u32 value)
355 {
356         drm_i915_private_t *dev_priv = ring->dev->dev_private;
357         I915_WRITE_TAIL(ring, value);
358 }
359
360 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
361 {
362         drm_i915_private_t *dev_priv = ring->dev->dev_private;
363         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
364                         RING_ACTHD(ring->mmio_base) : ACTHD;
365
366         return I915_READ(acthd_reg);
367 }
368
369 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
370 {
371         struct drm_i915_private *dev_priv = ring->dev->dev_private;
372         u32 addr;
373
374         addr = dev_priv->status_page_dmah->busaddr;
375         if (INTEL_INFO(ring->dev)->gen >= 4)
376                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
377         I915_WRITE(HWS_PGA, addr);
378 }
379
380 static int init_ring_common(struct intel_ring_buffer *ring)
381 {
382         struct drm_device *dev = ring->dev;
383         drm_i915_private_t *dev_priv = dev->dev_private;
384         struct drm_i915_gem_object *obj = ring->obj;
385         int ret = 0;
386         u32 head;
387
388         if (HAS_FORCE_WAKE(dev))
389                 gen6_gt_force_wake_get(dev_priv);
390
391         if (I915_NEED_GFX_HWS(dev))
392                 intel_ring_setup_status_page(ring);
393         else
394                 ring_setup_phys_status_page(ring);
395
396         /* Stop the ring if it's running. */
397         I915_WRITE_CTL(ring, 0);
398         I915_WRITE_HEAD(ring, 0);
399         ring->write_tail(ring, 0);
400
401         head = I915_READ_HEAD(ring) & HEAD_ADDR;
402
403         /* G45 ring initialization fails to reset head to zero */
404         if (head != 0) {
405                 DRM_DEBUG_KMS("%s head not reset to zero "
406                               "ctl %08x head %08x tail %08x start %08x\n",
407                               ring->name,
408                               I915_READ_CTL(ring),
409                               I915_READ_HEAD(ring),
410                               I915_READ_TAIL(ring),
411                               I915_READ_START(ring));
412
413                 I915_WRITE_HEAD(ring, 0);
414
415                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
416                         DRM_ERROR("failed to set %s head to zero "
417                                   "ctl %08x head %08x tail %08x start %08x\n",
418                                   ring->name,
419                                   I915_READ_CTL(ring),
420                                   I915_READ_HEAD(ring),
421                                   I915_READ_TAIL(ring),
422                                   I915_READ_START(ring));
423                 }
424         }
425
426         /* Initialize the ring. This must happen _after_ we've cleared the ring
427          * registers with the above sequence (the readback of the HEAD registers
428          * also enforces ordering), otherwise the hw might lose the new ring
429          * register values. */
430         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
431         I915_WRITE_CTL(ring,
432                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
433                         | RING_VALID);
434
435         /* If the head is still not zero, the ring is dead */
436         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
437                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
438                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
439                 DRM_ERROR("%s initialization failed "
440                                 "ctl %08x head %08x tail %08x start %08x\n",
441                                 ring->name,
442                                 I915_READ_CTL(ring),
443                                 I915_READ_HEAD(ring),
444                                 I915_READ_TAIL(ring),
445                                 I915_READ_START(ring));
446                 ret = -EIO;
447                 goto out;
448         }
449
450         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
451                 i915_kernel_lost_context(ring->dev);
452         else {
453                 ring->head = I915_READ_HEAD(ring);
454                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
455                 ring->space = ring_space(ring);
456                 ring->last_retired_head = -1;
457         }
458
459         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
460
461 out:
462         if (HAS_FORCE_WAKE(dev))
463                 gen6_gt_force_wake_put(dev_priv);
464
465         return ret;
466 }
467
468 static int
469 init_pipe_control(struct intel_ring_buffer *ring)
470 {
471         int ret;
472
473         if (ring->scratch.obj)
474                 return 0;
475
476         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
477         if (ring->scratch.obj == NULL) {
478                 DRM_ERROR("Failed to allocate seqno page\n");
479                 ret = -ENOMEM;
480                 goto err;
481         }
482
483         i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
484
485         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, true, false);
486         if (ret)
487                 goto err_unref;
488
489         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
490         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
491         if (ring->scratch.cpu_page == NULL) {
492                 ret = -ENOMEM;
493                 goto err_unpin;
494         }
495
496         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
497                          ring->name, ring->scratch.gtt_offset);
498         return 0;
499
500 err_unpin:
501         i915_gem_object_unpin(ring->scratch.obj);
502 err_unref:
503         drm_gem_object_unreference(&ring->scratch.obj->base);
504 err:
505         return ret;
506 }
507
508 static int init_render_ring(struct intel_ring_buffer *ring)
509 {
510         struct drm_device *dev = ring->dev;
511         struct drm_i915_private *dev_priv = dev->dev_private;
512         int ret = init_ring_common(ring);
513
514         if (INTEL_INFO(dev)->gen > 3)
515                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
516
517         /* We need to disable the AsyncFlip performance optimisations in order
518          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
519          * programmed to '1' on all products.
520          *
521          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
522          */
523         if (INTEL_INFO(dev)->gen >= 6)
524                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
525
526         /* Required for the hardware to program scanline values for waiting */
527         if (INTEL_INFO(dev)->gen == 6)
528                 I915_WRITE(GFX_MODE,
529                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
530
531         if (IS_GEN7(dev))
532                 I915_WRITE(GFX_MODE_GEN7,
533                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
534                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
535
536         if (INTEL_INFO(dev)->gen >= 5) {
537                 ret = init_pipe_control(ring);
538                 if (ret)
539                         return ret;
540         }
541
542         if (IS_GEN6(dev)) {
543                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
544                  * "If this bit is set, STCunit will have LRA as replacement
545                  *  policy. [...] This bit must be reset.  LRA replacement
546                  *  policy is not supported."
547                  */
548                 I915_WRITE(CACHE_MODE_0,
549                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
550
551                 /* This is not explicitly set for GEN6, so read the register.
552                  * see intel_ring_mi_set_context() for why we care.
553                  * TODO: consider explicitly setting the bit for GEN5
554                  */
555                 ring->itlb_before_ctx_switch =
556                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
557         }
558
559         if (INTEL_INFO(dev)->gen >= 6)
560                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
561
562         if (HAS_L3_GPU_CACHE(dev))
563                 I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
564
565         return ret;
566 }
567
568 static void render_ring_cleanup(struct intel_ring_buffer *ring)
569 {
570         struct drm_device *dev = ring->dev;
571
572         if (ring->scratch.obj == NULL)
573                 return;
574
575         if (INTEL_INFO(dev)->gen >= 5) {
576                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
577                 i915_gem_object_unpin(ring->scratch.obj);
578         }
579
580         drm_gem_object_unreference(&ring->scratch.obj->base);
581         ring->scratch.obj = NULL;
582 }
583
584 static void
585 update_mboxes(struct intel_ring_buffer *ring,
586               u32 mmio_offset)
587 {
588 /* NB: In order to be able to do semaphore MBOX updates for varying number
589  * of rings, it's easiest if we round up each individual update to a
590  * multiple of 2 (since ring updates must always be a multiple of 2)
591  * even though the actual update only requires 3 dwords.
592  */
593 #define MBOX_UPDATE_DWORDS 4
594         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
595         intel_ring_emit(ring, mmio_offset);
596         intel_ring_emit(ring, ring->outstanding_lazy_request);
597         intel_ring_emit(ring, MI_NOOP);
598 }
599
600 /**
601  * gen6_add_request - Update the semaphore mailbox registers
602  * 
603  * @ring - ring that is adding a request
604  * @seqno - return seqno stuck into the ring
605  *
606  * Update the mailbox registers in the *other* rings with the current seqno.
607  * This acts like a signal in the canonical semaphore.
608  */
609 static int
610 gen6_add_request(struct intel_ring_buffer *ring)
611 {
612         struct drm_device *dev = ring->dev;
613         struct drm_i915_private *dev_priv = dev->dev_private;
614         struct intel_ring_buffer *useless;
615         int i, ret;
616
617         ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
618                                       MBOX_UPDATE_DWORDS) +
619                                       4);
620         if (ret)
621                 return ret;
622 #undef MBOX_UPDATE_DWORDS
623
624         for_each_ring(useless, dev_priv, i) {
625                 u32 mbox_reg = ring->signal_mbox[i];
626                 if (mbox_reg != GEN6_NOSYNC)
627                         update_mboxes(ring, mbox_reg);
628         }
629
630         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
631         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
632         intel_ring_emit(ring, ring->outstanding_lazy_request);
633         intel_ring_emit(ring, MI_USER_INTERRUPT);
634         intel_ring_advance(ring);
635
636         return 0;
637 }
638
639 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
640                                               u32 seqno)
641 {
642         struct drm_i915_private *dev_priv = dev->dev_private;
643         return dev_priv->last_seqno < seqno;
644 }
645
646 /**
647  * intel_ring_sync - sync the waiter to the signaller on seqno
648  *
649  * @waiter - ring that is waiting
650  * @signaller - ring which has, or will signal
651  * @seqno - seqno which the waiter will block on
652  */
653 static int
654 gen6_ring_sync(struct intel_ring_buffer *waiter,
655                struct intel_ring_buffer *signaller,
656                u32 seqno)
657 {
658         int ret;
659         u32 dw1 = MI_SEMAPHORE_MBOX |
660                   MI_SEMAPHORE_COMPARE |
661                   MI_SEMAPHORE_REGISTER;
662
663         /* Throughout all of the GEM code, seqno passed implies our current
664          * seqno is >= the last seqno executed. However for hardware the
665          * comparison is strictly greater than.
666          */
667         seqno -= 1;
668
669         WARN_ON(signaller->semaphore_register[waiter->id] ==
670                 MI_SEMAPHORE_SYNC_INVALID);
671
672         ret = intel_ring_begin(waiter, 4);
673         if (ret)
674                 return ret;
675
676         /* If seqno wrap happened, omit the wait with no-ops */
677         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
678                 intel_ring_emit(waiter,
679                                 dw1 |
680                                 signaller->semaphore_register[waiter->id]);
681                 intel_ring_emit(waiter, seqno);
682                 intel_ring_emit(waiter, 0);
683                 intel_ring_emit(waiter, MI_NOOP);
684         } else {
685                 intel_ring_emit(waiter, MI_NOOP);
686                 intel_ring_emit(waiter, MI_NOOP);
687                 intel_ring_emit(waiter, MI_NOOP);
688                 intel_ring_emit(waiter, MI_NOOP);
689         }
690         intel_ring_advance(waiter);
691
692         return 0;
693 }
694
695 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
696 do {                                                                    \
697         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
698                  PIPE_CONTROL_DEPTH_STALL);                             \
699         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
700         intel_ring_emit(ring__, 0);                                                     \
701         intel_ring_emit(ring__, 0);                                                     \
702 } while (0)
703
704 static int
705 pc_render_add_request(struct intel_ring_buffer *ring)
706 {
707         u32 scratch_addr = ring->scratch.gtt_offset + 128;
708         int ret;
709
710         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
711          * incoherent with writes to memory, i.e. completely fubar,
712          * so we need to use PIPE_NOTIFY instead.
713          *
714          * However, we also need to workaround the qword write
715          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
716          * memory before requesting an interrupt.
717          */
718         ret = intel_ring_begin(ring, 32);
719         if (ret)
720                 return ret;
721
722         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
723                         PIPE_CONTROL_WRITE_FLUSH |
724                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
725         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
726         intel_ring_emit(ring, ring->outstanding_lazy_request);
727         intel_ring_emit(ring, 0);
728         PIPE_CONTROL_FLUSH(ring, scratch_addr);
729         scratch_addr += 128; /* write to separate cachelines */
730         PIPE_CONTROL_FLUSH(ring, scratch_addr);
731         scratch_addr += 128;
732         PIPE_CONTROL_FLUSH(ring, scratch_addr);
733         scratch_addr += 128;
734         PIPE_CONTROL_FLUSH(ring, scratch_addr);
735         scratch_addr += 128;
736         PIPE_CONTROL_FLUSH(ring, scratch_addr);
737         scratch_addr += 128;
738         PIPE_CONTROL_FLUSH(ring, scratch_addr);
739
740         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
741                         PIPE_CONTROL_WRITE_FLUSH |
742                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
743                         PIPE_CONTROL_NOTIFY);
744         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
745         intel_ring_emit(ring, ring->outstanding_lazy_request);
746         intel_ring_emit(ring, 0);
747         intel_ring_advance(ring);
748
749         return 0;
750 }
751
752 static u32
753 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
754 {
755         /* Workaround to force correct ordering between irq and seqno writes on
756          * ivb (and maybe also on snb) by reading from a CS register (like
757          * ACTHD) before reading the status page. */
758         if (!lazy_coherency)
759                 intel_ring_get_active_head(ring);
760         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
761 }
762
763 static u32
764 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
765 {
766         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
767 }
768
769 static void
770 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
771 {
772         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
773 }
774
775 static u32
776 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
777 {
778         return ring->scratch.cpu_page[0];
779 }
780
781 static void
782 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
783 {
784         ring->scratch.cpu_page[0] = seqno;
785 }
786
787 static bool
788 gen5_ring_get_irq(struct intel_ring_buffer *ring)
789 {
790         struct drm_device *dev = ring->dev;
791         drm_i915_private_t *dev_priv = dev->dev_private;
792         unsigned long flags;
793
794         if (!dev->irq_enabled)
795                 return false;
796
797         spin_lock_irqsave(&dev_priv->irq_lock, flags);
798         if (ring->irq_refcount++ == 0)
799                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
800         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
801
802         return true;
803 }
804
805 static void
806 gen5_ring_put_irq(struct intel_ring_buffer *ring)
807 {
808         struct drm_device *dev = ring->dev;
809         drm_i915_private_t *dev_priv = dev->dev_private;
810         unsigned long flags;
811
812         spin_lock_irqsave(&dev_priv->irq_lock, flags);
813         if (--ring->irq_refcount == 0)
814                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
815         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
816 }
817
818 static bool
819 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
820 {
821         struct drm_device *dev = ring->dev;
822         drm_i915_private_t *dev_priv = dev->dev_private;
823         unsigned long flags;
824
825         if (!dev->irq_enabled)
826                 return false;
827
828         spin_lock_irqsave(&dev_priv->irq_lock, flags);
829         if (ring->irq_refcount++ == 0) {
830                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
831                 I915_WRITE(IMR, dev_priv->irq_mask);
832                 POSTING_READ(IMR);
833         }
834         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
835
836         return true;
837 }
838
839 static void
840 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
841 {
842         struct drm_device *dev = ring->dev;
843         drm_i915_private_t *dev_priv = dev->dev_private;
844         unsigned long flags;
845
846         spin_lock_irqsave(&dev_priv->irq_lock, flags);
847         if (--ring->irq_refcount == 0) {
848                 dev_priv->irq_mask |= ring->irq_enable_mask;
849                 I915_WRITE(IMR, dev_priv->irq_mask);
850                 POSTING_READ(IMR);
851         }
852         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
853 }
854
855 static bool
856 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
857 {
858         struct drm_device *dev = ring->dev;
859         drm_i915_private_t *dev_priv = dev->dev_private;
860         unsigned long flags;
861
862         if (!dev->irq_enabled)
863                 return false;
864
865         spin_lock_irqsave(&dev_priv->irq_lock, flags);
866         if (ring->irq_refcount++ == 0) {
867                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
868                 I915_WRITE16(IMR, dev_priv->irq_mask);
869                 POSTING_READ16(IMR);
870         }
871         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
872
873         return true;
874 }
875
876 static void
877 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
878 {
879         struct drm_device *dev = ring->dev;
880         drm_i915_private_t *dev_priv = dev->dev_private;
881         unsigned long flags;
882
883         spin_lock_irqsave(&dev_priv->irq_lock, flags);
884         if (--ring->irq_refcount == 0) {
885                 dev_priv->irq_mask |= ring->irq_enable_mask;
886                 I915_WRITE16(IMR, dev_priv->irq_mask);
887                 POSTING_READ16(IMR);
888         }
889         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
890 }
891
892 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
893 {
894         struct drm_device *dev = ring->dev;
895         drm_i915_private_t *dev_priv = ring->dev->dev_private;
896         u32 mmio = 0;
897
898         /* The ring status page addresses are no longer next to the rest of
899          * the ring registers as of gen7.
900          */
901         if (IS_GEN7(dev)) {
902                 switch (ring->id) {
903                 case RCS:
904                         mmio = RENDER_HWS_PGA_GEN7;
905                         break;
906                 case BCS:
907                         mmio = BLT_HWS_PGA_GEN7;
908                         break;
909                 case VCS:
910                         mmio = BSD_HWS_PGA_GEN7;
911                         break;
912                 case VECS:
913                         mmio = VEBOX_HWS_PGA_GEN7;
914                         break;
915                 }
916         } else if (IS_GEN6(ring->dev)) {
917                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
918         } else {
919                 mmio = RING_HWS_PGA(ring->mmio_base);
920         }
921
922         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
923         POSTING_READ(mmio);
924
925         /* Flush the TLB for this page */
926         if (INTEL_INFO(dev)->gen >= 6) {
927                 u32 reg = RING_INSTPM(ring->mmio_base);
928                 I915_WRITE(reg,
929                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
930                                               INSTPM_SYNC_FLUSH));
931                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
932                              1000))
933                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
934                                   ring->name);
935         }
936 }
937
938 static int
939 bsd_ring_flush(struct intel_ring_buffer *ring,
940                u32     invalidate_domains,
941                u32     flush_domains)
942 {
943         int ret;
944
945         ret = intel_ring_begin(ring, 2);
946         if (ret)
947                 return ret;
948
949         intel_ring_emit(ring, MI_FLUSH);
950         intel_ring_emit(ring, MI_NOOP);
951         intel_ring_advance(ring);
952         return 0;
953 }
954
955 static int
956 i9xx_add_request(struct intel_ring_buffer *ring)
957 {
958         int ret;
959
960         ret = intel_ring_begin(ring, 4);
961         if (ret)
962                 return ret;
963
964         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
965         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
966         intel_ring_emit(ring, ring->outstanding_lazy_request);
967         intel_ring_emit(ring, MI_USER_INTERRUPT);
968         intel_ring_advance(ring);
969
970         return 0;
971 }
972
973 static bool
974 gen6_ring_get_irq(struct intel_ring_buffer *ring)
975 {
976         struct drm_device *dev = ring->dev;
977         drm_i915_private_t *dev_priv = dev->dev_private;
978         unsigned long flags;
979
980         if (!dev->irq_enabled)
981                return false;
982
983         /* It looks like we need to prevent the gt from suspending while waiting
984          * for an notifiy irq, otherwise irqs seem to get lost on at least the
985          * blt/bsd rings on ivb. */
986         gen6_gt_force_wake_get(dev_priv);
987
988         spin_lock_irqsave(&dev_priv->irq_lock, flags);
989         if (ring->irq_refcount++ == 0) {
990                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
991                         I915_WRITE_IMR(ring,
992                                        ~(ring->irq_enable_mask |
993                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
994                 else
995                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
996                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
997         }
998         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
999
1000         return true;
1001 }
1002
1003 static void
1004 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1005 {
1006         struct drm_device *dev = ring->dev;
1007         drm_i915_private_t *dev_priv = dev->dev_private;
1008         unsigned long flags;
1009
1010         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1011         if (--ring->irq_refcount == 0) {
1012                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1013                         I915_WRITE_IMR(ring,
1014                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1015                 else
1016                         I915_WRITE_IMR(ring, ~0);
1017                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1018         }
1019         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1020
1021         gen6_gt_force_wake_put(dev_priv);
1022 }
1023
1024 static bool
1025 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1026 {
1027         struct drm_device *dev = ring->dev;
1028         struct drm_i915_private *dev_priv = dev->dev_private;
1029         unsigned long flags;
1030
1031         if (!dev->irq_enabled)
1032                 return false;
1033
1034         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1035         if (ring->irq_refcount++ == 0) {
1036                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1037                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1038         }
1039         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1040
1041         return true;
1042 }
1043
1044 static void
1045 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1046 {
1047         struct drm_device *dev = ring->dev;
1048         struct drm_i915_private *dev_priv = dev->dev_private;
1049         unsigned long flags;
1050
1051         if (!dev->irq_enabled)
1052                 return;
1053
1054         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1055         if (--ring->irq_refcount == 0) {
1056                 I915_WRITE_IMR(ring, ~0);
1057                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1058         }
1059         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1060 }
1061
1062 static int
1063 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1064                          u32 offset, u32 length,
1065                          unsigned flags)
1066 {
1067         int ret;
1068
1069         ret = intel_ring_begin(ring, 2);
1070         if (ret)
1071                 return ret;
1072
1073         intel_ring_emit(ring,
1074                         MI_BATCH_BUFFER_START |
1075                         MI_BATCH_GTT |
1076                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1077         intel_ring_emit(ring, offset);
1078         intel_ring_advance(ring);
1079
1080         return 0;
1081 }
1082
1083 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1084 #define I830_BATCH_LIMIT (256*1024)
1085 static int
1086 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1087                                 u32 offset, u32 len,
1088                                 unsigned flags)
1089 {
1090         int ret;
1091
1092         if (flags & I915_DISPATCH_PINNED) {
1093                 ret = intel_ring_begin(ring, 4);
1094                 if (ret)
1095                         return ret;
1096
1097                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1098                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1099                 intel_ring_emit(ring, offset + len - 8);
1100                 intel_ring_emit(ring, MI_NOOP);
1101                 intel_ring_advance(ring);
1102         } else {
1103                 u32 cs_offset = ring->scratch.gtt_offset;
1104
1105                 if (len > I830_BATCH_LIMIT)
1106                         return -ENOSPC;
1107
1108                 ret = intel_ring_begin(ring, 9+3);
1109                 if (ret)
1110                         return ret;
1111                 /* Blit the batch (which has now all relocs applied) to the stable batch
1112                  * scratch bo area (so that the CS never stumbles over its tlb
1113                  * invalidation bug) ... */
1114                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1115                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1116                                 XY_SRC_COPY_BLT_WRITE_RGB);
1117                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1118                 intel_ring_emit(ring, 0);
1119                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1120                 intel_ring_emit(ring, cs_offset);
1121                 intel_ring_emit(ring, 0);
1122                 intel_ring_emit(ring, 4096);
1123                 intel_ring_emit(ring, offset);
1124                 intel_ring_emit(ring, MI_FLUSH);
1125
1126                 /* ... and execute it. */
1127                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1128                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1129                 intel_ring_emit(ring, cs_offset + len - 8);
1130                 intel_ring_advance(ring);
1131         }
1132
1133         return 0;
1134 }
1135
1136 static int
1137 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1138                          u32 offset, u32 len,
1139                          unsigned flags)
1140 {
1141         int ret;
1142
1143         ret = intel_ring_begin(ring, 2);
1144         if (ret)
1145                 return ret;
1146
1147         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1148         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1149         intel_ring_advance(ring);
1150
1151         return 0;
1152 }
1153
1154 static void cleanup_status_page(struct intel_ring_buffer *ring)
1155 {
1156         struct drm_i915_gem_object *obj;
1157
1158         obj = ring->status_page.obj;
1159         if (obj == NULL)
1160                 return;
1161
1162         kunmap(sg_page(obj->pages->sgl));
1163         i915_gem_object_unpin(obj);
1164         drm_gem_object_unreference(&obj->base);
1165         ring->status_page.obj = NULL;
1166 }
1167
1168 static int init_status_page(struct intel_ring_buffer *ring)
1169 {
1170         struct drm_device *dev = ring->dev;
1171         struct drm_i915_gem_object *obj;
1172         int ret;
1173
1174         obj = i915_gem_alloc_object(dev, 4096);
1175         if (obj == NULL) {
1176                 DRM_ERROR("Failed to allocate status page\n");
1177                 ret = -ENOMEM;
1178                 goto err;
1179         }
1180
1181         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1182
1183         ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
1184         if (ret != 0) {
1185                 goto err_unref;
1186         }
1187
1188         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1189         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1190         if (ring->status_page.page_addr == NULL) {
1191                 ret = -ENOMEM;
1192                 goto err_unpin;
1193         }
1194         ring->status_page.obj = obj;
1195         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1196
1197         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1198                         ring->name, ring->status_page.gfx_addr);
1199
1200         return 0;
1201
1202 err_unpin:
1203         i915_gem_object_unpin(obj);
1204 err_unref:
1205         drm_gem_object_unreference(&obj->base);
1206 err:
1207         return ret;
1208 }
1209
1210 static int init_phys_status_page(struct intel_ring_buffer *ring)
1211 {
1212         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1213
1214         if (!dev_priv->status_page_dmah) {
1215                 dev_priv->status_page_dmah =
1216                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1217                 if (!dev_priv->status_page_dmah)
1218                         return -ENOMEM;
1219         }
1220
1221         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1222         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1223
1224         return 0;
1225 }
1226
1227 static int intel_init_ring_buffer(struct drm_device *dev,
1228                                   struct intel_ring_buffer *ring)
1229 {
1230         struct drm_i915_gem_object *obj;
1231         struct drm_i915_private *dev_priv = dev->dev_private;
1232         int ret;
1233
1234         ring->dev = dev;
1235         INIT_LIST_HEAD(&ring->active_list);
1236         INIT_LIST_HEAD(&ring->request_list);
1237         ring->size = 32 * PAGE_SIZE;
1238         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1239
1240         init_waitqueue_head(&ring->irq_queue);
1241
1242         if (I915_NEED_GFX_HWS(dev)) {
1243                 ret = init_status_page(ring);
1244                 if (ret)
1245                         return ret;
1246         } else {
1247                 BUG_ON(ring->id != RCS);
1248                 ret = init_phys_status_page(ring);
1249                 if (ret)
1250                         return ret;
1251         }
1252
1253         obj = NULL;
1254         if (!HAS_LLC(dev))
1255                 obj = i915_gem_object_create_stolen(dev, ring->size);
1256         if (obj == NULL)
1257                 obj = i915_gem_alloc_object(dev, ring->size);
1258         if (obj == NULL) {
1259                 DRM_ERROR("Failed to allocate ringbuffer\n");
1260                 ret = -ENOMEM;
1261                 goto err_hws;
1262         }
1263
1264         ring->obj = obj;
1265
1266         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false);
1267         if (ret)
1268                 goto err_unref;
1269
1270         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1271         if (ret)
1272                 goto err_unpin;
1273
1274         ring->virtual_start =
1275                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1276                            ring->size);
1277         if (ring->virtual_start == NULL) {
1278                 DRM_ERROR("Failed to map ringbuffer.\n");
1279                 ret = -EINVAL;
1280                 goto err_unpin;
1281         }
1282
1283         ret = ring->init(ring);
1284         if (ret)
1285                 goto err_unmap;
1286
1287         /* Workaround an erratum on the i830 which causes a hang if
1288          * the TAIL pointer points to within the last 2 cachelines
1289          * of the buffer.
1290          */
1291         ring->effective_size = ring->size;
1292         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1293                 ring->effective_size -= 128;
1294
1295         return 0;
1296
1297 err_unmap:
1298         iounmap(ring->virtual_start);
1299 err_unpin:
1300         i915_gem_object_unpin(obj);
1301 err_unref:
1302         drm_gem_object_unreference(&obj->base);
1303         ring->obj = NULL;
1304 err_hws:
1305         cleanup_status_page(ring);
1306         return ret;
1307 }
1308
1309 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1310 {
1311         struct drm_i915_private *dev_priv;
1312         int ret;
1313
1314         if (ring->obj == NULL)
1315                 return;
1316
1317         /* Disable the ring buffer. The ring must be idle at this point */
1318         dev_priv = ring->dev->dev_private;
1319         ret = intel_ring_idle(ring);
1320         if (ret)
1321                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1322                           ring->name, ret);
1323
1324         I915_WRITE_CTL(ring, 0);
1325
1326         iounmap(ring->virtual_start);
1327
1328         i915_gem_object_unpin(ring->obj);
1329         drm_gem_object_unreference(&ring->obj->base);
1330         ring->obj = NULL;
1331
1332         if (ring->cleanup)
1333                 ring->cleanup(ring);
1334
1335         cleanup_status_page(ring);
1336 }
1337
1338 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1339 {
1340         int ret;
1341
1342         ret = i915_wait_seqno(ring, seqno);
1343         if (!ret)
1344                 i915_gem_retire_requests_ring(ring);
1345
1346         return ret;
1347 }
1348
1349 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1350 {
1351         struct drm_i915_gem_request *request;
1352         u32 seqno = 0;
1353         int ret;
1354
1355         i915_gem_retire_requests_ring(ring);
1356
1357         if (ring->last_retired_head != -1) {
1358                 ring->head = ring->last_retired_head;
1359                 ring->last_retired_head = -1;
1360                 ring->space = ring_space(ring);
1361                 if (ring->space >= n)
1362                         return 0;
1363         }
1364
1365         list_for_each_entry(request, &ring->request_list, list) {
1366                 int space;
1367
1368                 if (request->tail == -1)
1369                         continue;
1370
1371                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1372                 if (space < 0)
1373                         space += ring->size;
1374                 if (space >= n) {
1375                         seqno = request->seqno;
1376                         break;
1377                 }
1378
1379                 /* Consume this request in case we need more space than
1380                  * is available and so need to prevent a race between
1381                  * updating last_retired_head and direct reads of
1382                  * I915_RING_HEAD. It also provides a nice sanity check.
1383                  */
1384                 request->tail = -1;
1385         }
1386
1387         if (seqno == 0)
1388                 return -ENOSPC;
1389
1390         ret = intel_ring_wait_seqno(ring, seqno);
1391         if (ret)
1392                 return ret;
1393
1394         if (WARN_ON(ring->last_retired_head == -1))
1395                 return -ENOSPC;
1396
1397         ring->head = ring->last_retired_head;
1398         ring->last_retired_head = -1;
1399         ring->space = ring_space(ring);
1400         if (WARN_ON(ring->space < n))
1401                 return -ENOSPC;
1402
1403         return 0;
1404 }
1405
1406 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1407 {
1408         struct drm_device *dev = ring->dev;
1409         struct drm_i915_private *dev_priv = dev->dev_private;
1410         unsigned long end;
1411         int ret;
1412
1413         ret = intel_ring_wait_request(ring, n);
1414         if (ret != -ENOSPC)
1415                 return ret;
1416
1417         trace_i915_ring_wait_begin(ring);
1418         /* With GEM the hangcheck timer should kick us out of the loop,
1419          * leaving it early runs the risk of corrupting GEM state (due
1420          * to running on almost untested codepaths). But on resume
1421          * timers don't work yet, so prevent a complete hang in that
1422          * case by choosing an insanely large timeout. */
1423         end = jiffies + 60 * HZ;
1424
1425         do {
1426                 ring->head = I915_READ_HEAD(ring);
1427                 ring->space = ring_space(ring);
1428                 if (ring->space >= n) {
1429                         trace_i915_ring_wait_end(ring);
1430                         return 0;
1431                 }
1432
1433                 if (dev->primary->master) {
1434                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1435                         if (master_priv->sarea_priv)
1436                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1437                 }
1438
1439                 msleep(1);
1440
1441                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1442                                            dev_priv->mm.interruptible);
1443                 if (ret)
1444                         return ret;
1445         } while (!time_after(jiffies, end));
1446         trace_i915_ring_wait_end(ring);
1447         return -EBUSY;
1448 }
1449
1450 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1451 {
1452         uint32_t __iomem *virt;
1453         int rem = ring->size - ring->tail;
1454
1455         if (ring->space < rem) {
1456                 int ret = ring_wait_for_space(ring, rem);
1457                 if (ret)
1458                         return ret;
1459         }
1460
1461         virt = ring->virtual_start + ring->tail;
1462         rem /= 4;
1463         while (rem--)
1464                 iowrite32(MI_NOOP, virt++);
1465
1466         ring->tail = 0;
1467         ring->space = ring_space(ring);
1468
1469         return 0;
1470 }
1471
1472 int intel_ring_idle(struct intel_ring_buffer *ring)
1473 {
1474         u32 seqno;
1475         int ret;
1476
1477         /* We need to add any requests required to flush the objects and ring */
1478         if (ring->outstanding_lazy_request) {
1479                 ret = i915_add_request(ring, NULL);
1480                 if (ret)
1481                         return ret;
1482         }
1483
1484         /* Wait upon the last request to be completed */
1485         if (list_empty(&ring->request_list))
1486                 return 0;
1487
1488         seqno = list_entry(ring->request_list.prev,
1489                            struct drm_i915_gem_request,
1490                            list)->seqno;
1491
1492         return i915_wait_seqno(ring, seqno);
1493 }
1494
1495 static int
1496 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1497 {
1498         if (ring->outstanding_lazy_request)
1499                 return 0;
1500
1501         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1502 }
1503
1504 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1505                               int bytes)
1506 {
1507         int ret;
1508
1509         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1510                 ret = intel_wrap_ring_buffer(ring);
1511                 if (unlikely(ret))
1512                         return ret;
1513         }
1514
1515         if (unlikely(ring->space < bytes)) {
1516                 ret = ring_wait_for_space(ring, bytes);
1517                 if (unlikely(ret))
1518                         return ret;
1519         }
1520
1521         ring->space -= bytes;
1522         return 0;
1523 }
1524
1525 int intel_ring_begin(struct intel_ring_buffer *ring,
1526                      int num_dwords)
1527 {
1528         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1529         int ret;
1530
1531         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1532                                    dev_priv->mm.interruptible);
1533         if (ret)
1534                 return ret;
1535
1536         /* Preallocate the olr before touching the ring */
1537         ret = intel_ring_alloc_seqno(ring);
1538         if (ret)
1539                 return ret;
1540
1541         return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1542 }
1543
1544 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1545 {
1546         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1547
1548         BUG_ON(ring->outstanding_lazy_request);
1549
1550         if (INTEL_INFO(ring->dev)->gen >= 6) {
1551                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1552                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1553                 if (HAS_VEBOX(ring->dev))
1554                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1555         }
1556
1557         ring->set_seqno(ring, seqno);
1558         ring->hangcheck.seqno = seqno;
1559 }
1560
1561 void intel_ring_advance(struct intel_ring_buffer *ring)
1562 {
1563         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1564
1565         ring->tail &= ring->size - 1;
1566         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1567                 return;
1568         ring->write_tail(ring, ring->tail);
1569 }
1570
1571
1572 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1573                                      u32 value)
1574 {
1575         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1576
1577        /* Every tail move must follow the sequence below */
1578
1579         /* Disable notification that the ring is IDLE. The GT
1580          * will then assume that it is busy and bring it out of rc6.
1581          */
1582         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1583                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1584
1585         /* Clear the context id. Here be magic! */
1586         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1587
1588         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1589         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1590                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1591                      50))
1592                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1593
1594         /* Now that the ring is fully powered up, update the tail */
1595         I915_WRITE_TAIL(ring, value);
1596         POSTING_READ(RING_TAIL(ring->mmio_base));
1597
1598         /* Let the ring send IDLE messages to the GT again,
1599          * and so let it sleep to conserve power when idle.
1600          */
1601         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1602                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1603 }
1604
1605 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1606                                u32 invalidate, u32 flush)
1607 {
1608         uint32_t cmd;
1609         int ret;
1610
1611         ret = intel_ring_begin(ring, 4);
1612         if (ret)
1613                 return ret;
1614
1615         cmd = MI_FLUSH_DW;
1616         /*
1617          * Bspec vol 1c.5 - video engine command streamer:
1618          * "If ENABLED, all TLBs will be invalidated once the flush
1619          * operation is complete. This bit is only valid when the
1620          * Post-Sync Operation field is a value of 1h or 3h."
1621          */
1622         if (invalidate & I915_GEM_GPU_DOMAINS)
1623                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1624                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1625         intel_ring_emit(ring, cmd);
1626         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1627         intel_ring_emit(ring, 0);
1628         intel_ring_emit(ring, MI_NOOP);
1629         intel_ring_advance(ring);
1630         return 0;
1631 }
1632
1633 static int
1634 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1635                               u32 offset, u32 len,
1636                               unsigned flags)
1637 {
1638         int ret;
1639
1640         ret = intel_ring_begin(ring, 2);
1641         if (ret)
1642                 return ret;
1643
1644         intel_ring_emit(ring,
1645                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1646                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1647         /* bit0-7 is the length on GEN6+ */
1648         intel_ring_emit(ring, offset);
1649         intel_ring_advance(ring);
1650
1651         return 0;
1652 }
1653
1654 static int
1655 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1656                               u32 offset, u32 len,
1657                               unsigned flags)
1658 {
1659         int ret;
1660
1661         ret = intel_ring_begin(ring, 2);
1662         if (ret)
1663                 return ret;
1664
1665         intel_ring_emit(ring,
1666                         MI_BATCH_BUFFER_START |
1667                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1668         /* bit0-7 is the length on GEN6+ */
1669         intel_ring_emit(ring, offset);
1670         intel_ring_advance(ring);
1671
1672         return 0;
1673 }
1674
1675 /* Blitter support (SandyBridge+) */
1676
1677 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1678                            u32 invalidate, u32 flush)
1679 {
1680         struct drm_device *dev = ring->dev;
1681         uint32_t cmd;
1682         int ret;
1683
1684         ret = intel_ring_begin(ring, 4);
1685         if (ret)
1686                 return ret;
1687
1688         cmd = MI_FLUSH_DW;
1689         /*
1690          * Bspec vol 1c.3 - blitter engine command streamer:
1691          * "If ENABLED, all TLBs will be invalidated once the flush
1692          * operation is complete. This bit is only valid when the
1693          * Post-Sync Operation field is a value of 1h or 3h."
1694          */
1695         if (invalidate & I915_GEM_DOMAIN_RENDER)
1696                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1697                         MI_FLUSH_DW_OP_STOREDW;
1698         intel_ring_emit(ring, cmd);
1699         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1700         intel_ring_emit(ring, 0);
1701         intel_ring_emit(ring, MI_NOOP);
1702         intel_ring_advance(ring);
1703
1704         if (IS_GEN7(dev) && flush)
1705                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1706
1707         return 0;
1708 }
1709
1710 int intel_init_render_ring_buffer(struct drm_device *dev)
1711 {
1712         drm_i915_private_t *dev_priv = dev->dev_private;
1713         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1714
1715         ring->name = "render ring";
1716         ring->id = RCS;
1717         ring->mmio_base = RENDER_RING_BASE;
1718
1719         if (INTEL_INFO(dev)->gen >= 6) {
1720                 ring->add_request = gen6_add_request;
1721                 ring->flush = gen7_render_ring_flush;
1722                 if (INTEL_INFO(dev)->gen == 6)
1723                         ring->flush = gen6_render_ring_flush;
1724                 ring->irq_get = gen6_ring_get_irq;
1725                 ring->irq_put = gen6_ring_put_irq;
1726                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1727                 ring->get_seqno = gen6_ring_get_seqno;
1728                 ring->set_seqno = ring_set_seqno;
1729                 ring->sync_to = gen6_ring_sync;
1730                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1731                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1732                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1733                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1734                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1735                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1736                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1737                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1738         } else if (IS_GEN5(dev)) {
1739                 ring->add_request = pc_render_add_request;
1740                 ring->flush = gen4_render_ring_flush;
1741                 ring->get_seqno = pc_render_get_seqno;
1742                 ring->set_seqno = pc_render_set_seqno;
1743                 ring->irq_get = gen5_ring_get_irq;
1744                 ring->irq_put = gen5_ring_put_irq;
1745                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1746                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1747         } else {
1748                 ring->add_request = i9xx_add_request;
1749                 if (INTEL_INFO(dev)->gen < 4)
1750                         ring->flush = gen2_render_ring_flush;
1751                 else
1752                         ring->flush = gen4_render_ring_flush;
1753                 ring->get_seqno = ring_get_seqno;
1754                 ring->set_seqno = ring_set_seqno;
1755                 if (IS_GEN2(dev)) {
1756                         ring->irq_get = i8xx_ring_get_irq;
1757                         ring->irq_put = i8xx_ring_put_irq;
1758                 } else {
1759                         ring->irq_get = i9xx_ring_get_irq;
1760                         ring->irq_put = i9xx_ring_put_irq;
1761                 }
1762                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1763         }
1764         ring->write_tail = ring_write_tail;
1765         if (IS_HASWELL(dev))
1766                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1767         else if (INTEL_INFO(dev)->gen >= 6)
1768                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1769         else if (INTEL_INFO(dev)->gen >= 4)
1770                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1771         else if (IS_I830(dev) || IS_845G(dev))
1772                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1773         else
1774                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1775         ring->init = init_render_ring;
1776         ring->cleanup = render_ring_cleanup;
1777
1778         /* Workaround batchbuffer to combat CS tlb bug. */
1779         if (HAS_BROKEN_CS_TLB(dev)) {
1780                 struct drm_i915_gem_object *obj;
1781                 int ret;
1782
1783                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1784                 if (obj == NULL) {
1785                         DRM_ERROR("Failed to allocate batch bo\n");
1786                         return -ENOMEM;
1787                 }
1788
1789                 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1790                 if (ret != 0) {
1791                         drm_gem_object_unreference(&obj->base);
1792                         DRM_ERROR("Failed to ping batch bo\n");
1793                         return ret;
1794                 }
1795
1796                 ring->scratch.obj = obj;
1797                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1798         }
1799
1800         return intel_init_ring_buffer(dev, ring);
1801 }
1802
1803 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1804 {
1805         drm_i915_private_t *dev_priv = dev->dev_private;
1806         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1807         int ret;
1808
1809         ring->name = "render ring";
1810         ring->id = RCS;
1811         ring->mmio_base = RENDER_RING_BASE;
1812
1813         if (INTEL_INFO(dev)->gen >= 6) {
1814                 /* non-kms not supported on gen6+ */
1815                 return -ENODEV;
1816         }
1817
1818         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1819          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1820          * the special gen5 functions. */
1821         ring->add_request = i9xx_add_request;
1822         if (INTEL_INFO(dev)->gen < 4)
1823                 ring->flush = gen2_render_ring_flush;
1824         else
1825                 ring->flush = gen4_render_ring_flush;
1826         ring->get_seqno = ring_get_seqno;
1827         ring->set_seqno = ring_set_seqno;
1828         if (IS_GEN2(dev)) {
1829                 ring->irq_get = i8xx_ring_get_irq;
1830                 ring->irq_put = i8xx_ring_put_irq;
1831         } else {
1832                 ring->irq_get = i9xx_ring_get_irq;
1833                 ring->irq_put = i9xx_ring_put_irq;
1834         }
1835         ring->irq_enable_mask = I915_USER_INTERRUPT;
1836         ring->write_tail = ring_write_tail;
1837         if (INTEL_INFO(dev)->gen >= 4)
1838                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1839         else if (IS_I830(dev) || IS_845G(dev))
1840                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1841         else
1842                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1843         ring->init = init_render_ring;
1844         ring->cleanup = render_ring_cleanup;
1845
1846         ring->dev = dev;
1847         INIT_LIST_HEAD(&ring->active_list);
1848         INIT_LIST_HEAD(&ring->request_list);
1849
1850         ring->size = size;
1851         ring->effective_size = ring->size;
1852         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1853                 ring->effective_size -= 128;
1854
1855         ring->virtual_start = ioremap_wc(start, size);
1856         if (ring->virtual_start == NULL) {
1857                 DRM_ERROR("can not ioremap virtual address for"
1858                           " ring buffer\n");
1859                 return -ENOMEM;
1860         }
1861
1862         if (!I915_NEED_GFX_HWS(dev)) {
1863                 ret = init_phys_status_page(ring);
1864                 if (ret)
1865                         return ret;
1866         }
1867
1868         return 0;
1869 }
1870
1871 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1872 {
1873         drm_i915_private_t *dev_priv = dev->dev_private;
1874         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1875
1876         ring->name = "bsd ring";
1877         ring->id = VCS;
1878
1879         ring->write_tail = ring_write_tail;
1880         if (IS_GEN6(dev) || IS_GEN7(dev)) {
1881                 ring->mmio_base = GEN6_BSD_RING_BASE;
1882                 /* gen6 bsd needs a special wa for tail updates */
1883                 if (IS_GEN6(dev))
1884                         ring->write_tail = gen6_bsd_ring_write_tail;
1885                 ring->flush = gen6_bsd_ring_flush;
1886                 ring->add_request = gen6_add_request;
1887                 ring->get_seqno = gen6_ring_get_seqno;
1888                 ring->set_seqno = ring_set_seqno;
1889                 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1890                 ring->irq_get = gen6_ring_get_irq;
1891                 ring->irq_put = gen6_ring_put_irq;
1892                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1893                 ring->sync_to = gen6_ring_sync;
1894                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1895                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1896                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1897                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1898                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
1899                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
1900                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
1901                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1902         } else {
1903                 ring->mmio_base = BSD_RING_BASE;
1904                 ring->flush = bsd_ring_flush;
1905                 ring->add_request = i9xx_add_request;
1906                 ring->get_seqno = ring_get_seqno;
1907                 ring->set_seqno = ring_set_seqno;
1908                 if (IS_GEN5(dev)) {
1909                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1910                         ring->irq_get = gen5_ring_get_irq;
1911                         ring->irq_put = gen5_ring_put_irq;
1912                 } else {
1913                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1914                         ring->irq_get = i9xx_ring_get_irq;
1915                         ring->irq_put = i9xx_ring_put_irq;
1916                 }
1917                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1918         }
1919         ring->init = init_ring_common;
1920
1921         return intel_init_ring_buffer(dev, ring);
1922 }
1923
1924 int intel_init_blt_ring_buffer(struct drm_device *dev)
1925 {
1926         drm_i915_private_t *dev_priv = dev->dev_private;
1927         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1928
1929         ring->name = "blitter ring";
1930         ring->id = BCS;
1931
1932         ring->mmio_base = BLT_RING_BASE;
1933         ring->write_tail = ring_write_tail;
1934         ring->flush = gen6_ring_flush;
1935         ring->add_request = gen6_add_request;
1936         ring->get_seqno = gen6_ring_get_seqno;
1937         ring->set_seqno = ring_set_seqno;
1938         ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1939         ring->irq_get = gen6_ring_get_irq;
1940         ring->irq_put = gen6_ring_put_irq;
1941         ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1942         ring->sync_to = gen6_ring_sync;
1943         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1944         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1945         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1946         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
1947         ring->signal_mbox[RCS] = GEN6_RBSYNC;
1948         ring->signal_mbox[VCS] = GEN6_VBSYNC;
1949         ring->signal_mbox[BCS] = GEN6_NOSYNC;
1950         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
1951         ring->init = init_ring_common;
1952
1953         return intel_init_ring_buffer(dev, ring);
1954 }
1955
1956 int intel_init_vebox_ring_buffer(struct drm_device *dev)
1957 {
1958         drm_i915_private_t *dev_priv = dev->dev_private;
1959         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
1960
1961         ring->name = "video enhancement ring";
1962         ring->id = VECS;
1963
1964         ring->mmio_base = VEBOX_RING_BASE;
1965         ring->write_tail = ring_write_tail;
1966         ring->flush = gen6_ring_flush;
1967         ring->add_request = gen6_add_request;
1968         ring->get_seqno = gen6_ring_get_seqno;
1969         ring->set_seqno = ring_set_seqno;
1970         ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
1971         ring->irq_get = hsw_vebox_get_irq;
1972         ring->irq_put = hsw_vebox_put_irq;
1973         ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1974         ring->sync_to = gen6_ring_sync;
1975         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
1976         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
1977         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
1978         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
1979         ring->signal_mbox[RCS] = GEN6_RVESYNC;
1980         ring->signal_mbox[VCS] = GEN6_VVESYNC;
1981         ring->signal_mbox[BCS] = GEN6_BVESYNC;
1982         ring->signal_mbox[VECS] = GEN6_NOSYNC;
1983         ring->init = init_ring_common;
1984
1985         return intel_init_ring_buffer(dev, ring);
1986 }
1987
1988 int
1989 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1990 {
1991         int ret;
1992
1993         if (!ring->gpu_caches_dirty)
1994                 return 0;
1995
1996         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1997         if (ret)
1998                 return ret;
1999
2000         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2001
2002         ring->gpu_caches_dirty = false;
2003         return 0;
2004 }
2005
2006 int
2007 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2008 {
2009         uint32_t flush_domains;
2010         int ret;
2011
2012         flush_domains = 0;
2013         if (ring->gpu_caches_dirty)
2014                 flush_domains = I915_GEM_GPU_DOMAINS;
2015
2016         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2017         if (ret)
2018                 return ret;
2019
2020         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2021
2022         ring->gpu_caches_dirty = false;
2023         return 0;
2024 }