]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_pm.c
drm/i915: change VLV IOSF sideband accessors to not return error code
[~andy/linux] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37  * framebuffer contents in-memory, aiming at reducing the required bandwidth
38  * during in-memory transfers and, therefore, reduce the power packet.
39  *
40  * The benefits of FBC are mostly visible with solid backgrounds and
41  * variation-less patterns.
42  *
43  * FBC-related functionality can be enabled by the means of the
44  * i915.i915_enable_fbc parameter
45  */
46
47 static bool intel_crtc_active(struct drm_crtc *crtc)
48 {
49         /* Be paranoid as we can arrive here with only partial
50          * state retrieved from the hardware during setup.
51          */
52         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53 }
54
55 static void i8xx_disable_fbc(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58         u32 fbc_ctl;
59
60         /* Disable compression */
61         fbc_ctl = I915_READ(FBC_CONTROL);
62         if ((fbc_ctl & FBC_CTL_EN) == 0)
63                 return;
64
65         fbc_ctl &= ~FBC_CTL_EN;
66         I915_WRITE(FBC_CONTROL, fbc_ctl);
67
68         /* Wait for compressing bit to clear */
69         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70                 DRM_DEBUG_KMS("FBC idle timed out\n");
71                 return;
72         }
73
74         DRM_DEBUG_KMS("disabled FBC\n");
75 }
76
77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 {
79         struct drm_device *dev = crtc->dev;
80         struct drm_i915_private *dev_priv = dev->dev_private;
81         struct drm_framebuffer *fb = crtc->fb;
82         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83         struct drm_i915_gem_object *obj = intel_fb->obj;
84         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85         int cfb_pitch;
86         int plane, i;
87         u32 fbc_ctl, fbc_ctl2;
88
89         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90         if (fb->pitches[0] < cfb_pitch)
91                 cfb_pitch = fb->pitches[0];
92
93         /* FBC_CTL wants 64B units */
94         cfb_pitch = (cfb_pitch / 64) - 1;
95         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96
97         /* Clear old tags */
98         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99                 I915_WRITE(FBC_TAG + (i * 4), 0);
100
101         /* Set it up... */
102         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103         fbc_ctl2 |= plane;
104         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105         I915_WRITE(FBC_FENCE_OFF, crtc->y);
106
107         /* enable it... */
108         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109         if (IS_I945GM(dev))
110                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113         fbc_ctl |= obj->fence_reg;
114         I915_WRITE(FBC_CONTROL, fbc_ctl);
115
116         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
117                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
118 }
119
120 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 {
122         struct drm_i915_private *dev_priv = dev->dev_private;
123
124         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125 }
126
127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 {
129         struct drm_device *dev = crtc->dev;
130         struct drm_i915_private *dev_priv = dev->dev_private;
131         struct drm_framebuffer *fb = crtc->fb;
132         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133         struct drm_i915_gem_object *obj = intel_fb->obj;
134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136         unsigned long stall_watermark = 200;
137         u32 dpfc_ctl;
138
139         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142
143         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147
148         /* enable it... */
149         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150
151         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
152 }
153
154 static void g4x_disable_fbc(struct drm_device *dev)
155 {
156         struct drm_i915_private *dev_priv = dev->dev_private;
157         u32 dpfc_ctl;
158
159         /* Disable compression */
160         dpfc_ctl = I915_READ(DPFC_CONTROL);
161         if (dpfc_ctl & DPFC_CTL_EN) {
162                 dpfc_ctl &= ~DPFC_CTL_EN;
163                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164
165                 DRM_DEBUG_KMS("disabled FBC\n");
166         }
167 }
168
169 static bool g4x_fbc_enabled(struct drm_device *dev)
170 {
171         struct drm_i915_private *dev_priv = dev->dev_private;
172
173         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174 }
175
176 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         u32 blt_ecoskpd;
180
181         /* Make sure blitter notifies FBC of writes */
182         gen6_gt_force_wake_get(dev_priv);
183         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185                 GEN6_BLITTER_LOCK_SHIFT;
186         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190                          GEN6_BLITTER_LOCK_SHIFT);
191         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192         POSTING_READ(GEN6_BLITTER_ECOSKPD);
193         gen6_gt_force_wake_put(dev_priv);
194 }
195
196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 {
198         struct drm_device *dev = crtc->dev;
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_framebuffer *fb = crtc->fb;
201         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202         struct drm_i915_gem_object *obj = intel_fb->obj;
203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205         unsigned long stall_watermark = 200;
206         u32 dpfc_ctl;
207
208         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209         dpfc_ctl &= DPFC_RESERVED;
210         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211         /* Set persistent mode for front-buffer rendering, ala X. */
212         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215
216         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221         /* enable it... */
222         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223
224         if (IS_GEN6(dev)) {
225                 I915_WRITE(SNB_DPFC_CTL_SA,
226                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228                 sandybridge_blit_fbc_update(dev);
229         }
230
231         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
232 }
233
234 static void ironlake_disable_fbc(struct drm_device *dev)
235 {
236         struct drm_i915_private *dev_priv = dev->dev_private;
237         u32 dpfc_ctl;
238
239         /* Disable compression */
240         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241         if (dpfc_ctl & DPFC_CTL_EN) {
242                 dpfc_ctl &= ~DPFC_CTL_EN;
243                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244
245                 if (IS_IVYBRIDGE(dev))
246                         /* WaFbcDisableDpfcClockGating:ivb */
247                         I915_WRITE(ILK_DSPCLK_GATE_D,
248                                    I915_READ(ILK_DSPCLK_GATE_D) &
249                                    ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
250
251                 if (IS_HASWELL(dev))
252                         /* WaFbcDisableDpfcClockGating:hsw */
253                         I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
254                                    I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
255                                    ~HSW_DPFC_GATING_DISABLE);
256
257                 DRM_DEBUG_KMS("disabled FBC\n");
258         }
259 }
260
261 static bool ironlake_fbc_enabled(struct drm_device *dev)
262 {
263         struct drm_i915_private *dev_priv = dev->dev_private;
264
265         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
266 }
267
268 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
269 {
270         struct drm_device *dev = crtc->dev;
271         struct drm_i915_private *dev_priv = dev->dev_private;
272         struct drm_framebuffer *fb = crtc->fb;
273         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
274         struct drm_i915_gem_object *obj = intel_fb->obj;
275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
276
277         I915_WRITE(IVB_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
278
279         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
280                    IVB_DPFC_CTL_FENCE_EN |
281                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
282
283         if (IS_IVYBRIDGE(dev)) {
284                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
285                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
286                 /* WaFbcDisableDpfcClockGating:ivb */
287                 I915_WRITE(ILK_DSPCLK_GATE_D,
288                            I915_READ(ILK_DSPCLK_GATE_D) |
289                            ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
290         } else {
291                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
292                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
293                            HSW_BYPASS_FBC_QUEUE);
294                 /* WaFbcDisableDpfcClockGating:hsw */
295                 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
296                            I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
297                            HSW_DPFC_GATING_DISABLE);
298         }
299
300         I915_WRITE(SNB_DPFC_CTL_SA,
301                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
302         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
303
304         sandybridge_blit_fbc_update(dev);
305
306         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
307 }
308
309 bool intel_fbc_enabled(struct drm_device *dev)
310 {
311         struct drm_i915_private *dev_priv = dev->dev_private;
312
313         if (!dev_priv->display.fbc_enabled)
314                 return false;
315
316         return dev_priv->display.fbc_enabled(dev);
317 }
318
319 static void intel_fbc_work_fn(struct work_struct *__work)
320 {
321         struct intel_fbc_work *work =
322                 container_of(to_delayed_work(__work),
323                              struct intel_fbc_work, work);
324         struct drm_device *dev = work->crtc->dev;
325         struct drm_i915_private *dev_priv = dev->dev_private;
326
327         mutex_lock(&dev->struct_mutex);
328         if (work == dev_priv->fbc_work) {
329                 /* Double check that we haven't switched fb without cancelling
330                  * the prior work.
331                  */
332                 if (work->crtc->fb == work->fb) {
333                         dev_priv->display.enable_fbc(work->crtc,
334                                                      work->interval);
335
336                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
337                         dev_priv->cfb_fb = work->crtc->fb->base.id;
338                         dev_priv->cfb_y = work->crtc->y;
339                 }
340
341                 dev_priv->fbc_work = NULL;
342         }
343         mutex_unlock(&dev->struct_mutex);
344
345         kfree(work);
346 }
347
348 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
349 {
350         if (dev_priv->fbc_work == NULL)
351                 return;
352
353         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
354
355         /* Synchronisation is provided by struct_mutex and checking of
356          * dev_priv->fbc_work, so we can perform the cancellation
357          * entirely asynchronously.
358          */
359         if (cancel_delayed_work(&dev_priv->fbc_work->work))
360                 /* tasklet was killed before being run, clean up */
361                 kfree(dev_priv->fbc_work);
362
363         /* Mark the work as no longer wanted so that if it does
364          * wake-up (because the work was already running and waiting
365          * for our mutex), it will discover that is no longer
366          * necessary to run.
367          */
368         dev_priv->fbc_work = NULL;
369 }
370
371 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
372 {
373         struct intel_fbc_work *work;
374         struct drm_device *dev = crtc->dev;
375         struct drm_i915_private *dev_priv = dev->dev_private;
376
377         if (!dev_priv->display.enable_fbc)
378                 return;
379
380         intel_cancel_fbc_work(dev_priv);
381
382         work = kzalloc(sizeof *work, GFP_KERNEL);
383         if (work == NULL) {
384                 dev_priv->display.enable_fbc(crtc, interval);
385                 return;
386         }
387
388         work->crtc = crtc;
389         work->fb = crtc->fb;
390         work->interval = interval;
391         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
393         dev_priv->fbc_work = work;
394
395         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
396
397         /* Delay the actual enabling to let pageflipping cease and the
398          * display to settle before starting the compression. Note that
399          * this delay also serves a second purpose: it allows for a
400          * vblank to pass after disabling the FBC before we attempt
401          * to modify the control registers.
402          *
403          * A more complicated solution would involve tracking vblanks
404          * following the termination of the page-flipping sequence
405          * and indeed performing the enable as a co-routine and not
406          * waiting synchronously upon the vblank.
407          */
408         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409 }
410
411 void intel_disable_fbc(struct drm_device *dev)
412 {
413         struct drm_i915_private *dev_priv = dev->dev_private;
414
415         intel_cancel_fbc_work(dev_priv);
416
417         if (!dev_priv->display.disable_fbc)
418                 return;
419
420         dev_priv->display.disable_fbc(dev);
421         dev_priv->cfb_plane = -1;
422 }
423
424 /**
425  * intel_update_fbc - enable/disable FBC as needed
426  * @dev: the drm_device
427  *
428  * Set up the framebuffer compression hardware at mode set time.  We
429  * enable it if possible:
430  *   - plane A only (on pre-965)
431  *   - no pixel mulitply/line duplication
432  *   - no alpha buffer discard
433  *   - no dual wide
434  *   - framebuffer <= 2048 in width, 1536 in height
435  *
436  * We can't assume that any compression will take place (worst case),
437  * so the compressed buffer has to be the same size as the uncompressed
438  * one.  It also must reside (along with the line length buffer) in
439  * stolen memory.
440  *
441  * We need to enable/disable FBC on a global basis.
442  */
443 void intel_update_fbc(struct drm_device *dev)
444 {
445         struct drm_i915_private *dev_priv = dev->dev_private;
446         struct drm_crtc *crtc = NULL, *tmp_crtc;
447         struct intel_crtc *intel_crtc;
448         struct drm_framebuffer *fb;
449         struct intel_framebuffer *intel_fb;
450         struct drm_i915_gem_object *obj;
451         int enable_fbc;
452
453         if (!i915_powersave)
454                 return;
455
456         if (!I915_HAS_FBC(dev))
457                 return;
458
459         /*
460          * If FBC is already on, we just have to verify that we can
461          * keep it that way...
462          * Need to disable if:
463          *   - more than one pipe is active
464          *   - changing FBC params (stride, fence, mode)
465          *   - new fb is too large to fit in compressed buffer
466          *   - going to an unsupported config (interlace, pixel multiply, etc.)
467          */
468         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
469                 if (intel_crtc_active(tmp_crtc) &&
470                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
471                         if (crtc) {
472                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
473                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
474                                 goto out_disable;
475                         }
476                         crtc = tmp_crtc;
477                 }
478         }
479
480         if (!crtc || crtc->fb == NULL) {
481                 DRM_DEBUG_KMS("no output, disabling\n");
482                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
483                 goto out_disable;
484         }
485
486         intel_crtc = to_intel_crtc(crtc);
487         fb = crtc->fb;
488         intel_fb = to_intel_framebuffer(fb);
489         obj = intel_fb->obj;
490
491         enable_fbc = i915_enable_fbc;
492         if (enable_fbc < 0) {
493                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
494                 enable_fbc = 1;
495                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
496                         enable_fbc = 0;
497         }
498         if (!enable_fbc) {
499                 DRM_DEBUG_KMS("fbc disabled per module param\n");
500                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
501                 goto out_disable;
502         }
503         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
504             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
505                 DRM_DEBUG_KMS("mode incompatible with compression, "
506                               "disabling\n");
507                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
508                 goto out_disable;
509         }
510         if ((crtc->mode.hdisplay > 2048) ||
511             (crtc->mode.vdisplay > 1536)) {
512                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
513                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
514                 goto out_disable;
515         }
516         if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
517             intel_crtc->plane != 0) {
518                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
519                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
520                 goto out_disable;
521         }
522
523         /* The use of a CPU fence is mandatory in order to detect writes
524          * by the CPU to the scanout and trigger updates to the FBC.
525          */
526         if (obj->tiling_mode != I915_TILING_X ||
527             obj->fence_reg == I915_FENCE_REG_NONE) {
528                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
529                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
530                 goto out_disable;
531         }
532
533         /* If the kernel debugger is active, always disable compression */
534         if (in_dbg_master())
535                 goto out_disable;
536
537         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
538                 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
539                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
540                 goto out_disable;
541         }
542
543         /* If the scanout has not changed, don't modify the FBC settings.
544          * Note that we make the fundamental assumption that the fb->obj
545          * cannot be unpinned (and have its GTT offset and fence revoked)
546          * without first being decoupled from the scanout and FBC disabled.
547          */
548         if (dev_priv->cfb_plane == intel_crtc->plane &&
549             dev_priv->cfb_fb == fb->base.id &&
550             dev_priv->cfb_y == crtc->y)
551                 return;
552
553         if (intel_fbc_enabled(dev)) {
554                 /* We update FBC along two paths, after changing fb/crtc
555                  * configuration (modeswitching) and after page-flipping
556                  * finishes. For the latter, we know that not only did
557                  * we disable the FBC at the start of the page-flip
558                  * sequence, but also more than one vblank has passed.
559                  *
560                  * For the former case of modeswitching, it is possible
561                  * to switch between two FBC valid configurations
562                  * instantaneously so we do need to disable the FBC
563                  * before we can modify its control registers. We also
564                  * have to wait for the next vblank for that to take
565                  * effect. However, since we delay enabling FBC we can
566                  * assume that a vblank has passed since disabling and
567                  * that we can safely alter the registers in the deferred
568                  * callback.
569                  *
570                  * In the scenario that we go from a valid to invalid
571                  * and then back to valid FBC configuration we have
572                  * no strict enforcement that a vblank occurred since
573                  * disabling the FBC. However, along all current pipe
574                  * disabling paths we do need to wait for a vblank at
575                  * some point. And we wait before enabling FBC anyway.
576                  */
577                 DRM_DEBUG_KMS("disabling active FBC for update\n");
578                 intel_disable_fbc(dev);
579         }
580
581         intel_enable_fbc(crtc, 500);
582         return;
583
584 out_disable:
585         /* Multiple disables should be harmless */
586         if (intel_fbc_enabled(dev)) {
587                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
588                 intel_disable_fbc(dev);
589         }
590         i915_gem_stolen_cleanup_compression(dev);
591 }
592
593 static void i915_pineview_get_mem_freq(struct drm_device *dev)
594 {
595         drm_i915_private_t *dev_priv = dev->dev_private;
596         u32 tmp;
597
598         tmp = I915_READ(CLKCFG);
599
600         switch (tmp & CLKCFG_FSB_MASK) {
601         case CLKCFG_FSB_533:
602                 dev_priv->fsb_freq = 533; /* 133*4 */
603                 break;
604         case CLKCFG_FSB_800:
605                 dev_priv->fsb_freq = 800; /* 200*4 */
606                 break;
607         case CLKCFG_FSB_667:
608                 dev_priv->fsb_freq =  667; /* 167*4 */
609                 break;
610         case CLKCFG_FSB_400:
611                 dev_priv->fsb_freq = 400; /* 100*4 */
612                 break;
613         }
614
615         switch (tmp & CLKCFG_MEM_MASK) {
616         case CLKCFG_MEM_533:
617                 dev_priv->mem_freq = 533;
618                 break;
619         case CLKCFG_MEM_667:
620                 dev_priv->mem_freq = 667;
621                 break;
622         case CLKCFG_MEM_800:
623                 dev_priv->mem_freq = 800;
624                 break;
625         }
626
627         /* detect pineview DDR3 setting */
628         tmp = I915_READ(CSHRDDR3CTL);
629         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
630 }
631
632 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
633 {
634         drm_i915_private_t *dev_priv = dev->dev_private;
635         u16 ddrpll, csipll;
636
637         ddrpll = I915_READ16(DDRMPLL1);
638         csipll = I915_READ16(CSIPLL0);
639
640         switch (ddrpll & 0xff) {
641         case 0xc:
642                 dev_priv->mem_freq = 800;
643                 break;
644         case 0x10:
645                 dev_priv->mem_freq = 1066;
646                 break;
647         case 0x14:
648                 dev_priv->mem_freq = 1333;
649                 break;
650         case 0x18:
651                 dev_priv->mem_freq = 1600;
652                 break;
653         default:
654                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
655                                  ddrpll & 0xff);
656                 dev_priv->mem_freq = 0;
657                 break;
658         }
659
660         dev_priv->ips.r_t = dev_priv->mem_freq;
661
662         switch (csipll & 0x3ff) {
663         case 0x00c:
664                 dev_priv->fsb_freq = 3200;
665                 break;
666         case 0x00e:
667                 dev_priv->fsb_freq = 3733;
668                 break;
669         case 0x010:
670                 dev_priv->fsb_freq = 4266;
671                 break;
672         case 0x012:
673                 dev_priv->fsb_freq = 4800;
674                 break;
675         case 0x014:
676                 dev_priv->fsb_freq = 5333;
677                 break;
678         case 0x016:
679                 dev_priv->fsb_freq = 5866;
680                 break;
681         case 0x018:
682                 dev_priv->fsb_freq = 6400;
683                 break;
684         default:
685                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
686                                  csipll & 0x3ff);
687                 dev_priv->fsb_freq = 0;
688                 break;
689         }
690
691         if (dev_priv->fsb_freq == 3200) {
692                 dev_priv->ips.c_m = 0;
693         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
694                 dev_priv->ips.c_m = 1;
695         } else {
696                 dev_priv->ips.c_m = 2;
697         }
698 }
699
700 static const struct cxsr_latency cxsr_latency_table[] = {
701         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
702         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
703         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
704         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
705         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
706
707         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
708         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
709         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
710         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
711         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
712
713         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
714         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
715         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
716         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
717         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
718
719         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
720         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
721         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
722         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
723         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
724
725         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
726         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
727         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
728         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
729         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
730
731         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
732         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
733         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
734         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
735         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
736 };
737
738 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
739                                                          int is_ddr3,
740                                                          int fsb,
741                                                          int mem)
742 {
743         const struct cxsr_latency *latency;
744         int i;
745
746         if (fsb == 0 || mem == 0)
747                 return NULL;
748
749         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
750                 latency = &cxsr_latency_table[i];
751                 if (is_desktop == latency->is_desktop &&
752                     is_ddr3 == latency->is_ddr3 &&
753                     fsb == latency->fsb_freq && mem == latency->mem_freq)
754                         return latency;
755         }
756
757         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
758
759         return NULL;
760 }
761
762 static void pineview_disable_cxsr(struct drm_device *dev)
763 {
764         struct drm_i915_private *dev_priv = dev->dev_private;
765
766         /* deactivate cxsr */
767         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
768 }
769
770 /*
771  * Latency for FIFO fetches is dependent on several factors:
772  *   - memory configuration (speed, channels)
773  *   - chipset
774  *   - current MCH state
775  * It can be fairly high in some situations, so here we assume a fairly
776  * pessimal value.  It's a tradeoff between extra memory fetches (if we
777  * set this value too high, the FIFO will fetch frequently to stay full)
778  * and power consumption (set it too low to save power and we might see
779  * FIFO underruns and display "flicker").
780  *
781  * A value of 5us seems to be a good balance; safe for very low end
782  * platforms but not overly aggressive on lower latency configs.
783  */
784 static const int latency_ns = 5000;
785
786 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
787 {
788         struct drm_i915_private *dev_priv = dev->dev_private;
789         uint32_t dsparb = I915_READ(DSPARB);
790         int size;
791
792         size = dsparb & 0x7f;
793         if (plane)
794                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
795
796         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
797                       plane ? "B" : "A", size);
798
799         return size;
800 }
801
802 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
803 {
804         struct drm_i915_private *dev_priv = dev->dev_private;
805         uint32_t dsparb = I915_READ(DSPARB);
806         int size;
807
808         size = dsparb & 0x1ff;
809         if (plane)
810                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
811         size >>= 1; /* Convert to cachelines */
812
813         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
814                       plane ? "B" : "A", size);
815
816         return size;
817 }
818
819 static int i845_get_fifo_size(struct drm_device *dev, int plane)
820 {
821         struct drm_i915_private *dev_priv = dev->dev_private;
822         uint32_t dsparb = I915_READ(DSPARB);
823         int size;
824
825         size = dsparb & 0x7f;
826         size >>= 2; /* Convert to cachelines */
827
828         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
829                       plane ? "B" : "A",
830                       size);
831
832         return size;
833 }
834
835 static int i830_get_fifo_size(struct drm_device *dev, int plane)
836 {
837         struct drm_i915_private *dev_priv = dev->dev_private;
838         uint32_t dsparb = I915_READ(DSPARB);
839         int size;
840
841         size = dsparb & 0x7f;
842         size >>= 1; /* Convert to cachelines */
843
844         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
845                       plane ? "B" : "A", size);
846
847         return size;
848 }
849
850 /* Pineview has different values for various configs */
851 static const struct intel_watermark_params pineview_display_wm = {
852         PINEVIEW_DISPLAY_FIFO,
853         PINEVIEW_MAX_WM,
854         PINEVIEW_DFT_WM,
855         PINEVIEW_GUARD_WM,
856         PINEVIEW_FIFO_LINE_SIZE
857 };
858 static const struct intel_watermark_params pineview_display_hplloff_wm = {
859         PINEVIEW_DISPLAY_FIFO,
860         PINEVIEW_MAX_WM,
861         PINEVIEW_DFT_HPLLOFF_WM,
862         PINEVIEW_GUARD_WM,
863         PINEVIEW_FIFO_LINE_SIZE
864 };
865 static const struct intel_watermark_params pineview_cursor_wm = {
866         PINEVIEW_CURSOR_FIFO,
867         PINEVIEW_CURSOR_MAX_WM,
868         PINEVIEW_CURSOR_DFT_WM,
869         PINEVIEW_CURSOR_GUARD_WM,
870         PINEVIEW_FIFO_LINE_SIZE,
871 };
872 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
873         PINEVIEW_CURSOR_FIFO,
874         PINEVIEW_CURSOR_MAX_WM,
875         PINEVIEW_CURSOR_DFT_WM,
876         PINEVIEW_CURSOR_GUARD_WM,
877         PINEVIEW_FIFO_LINE_SIZE
878 };
879 static const struct intel_watermark_params g4x_wm_info = {
880         G4X_FIFO_SIZE,
881         G4X_MAX_WM,
882         G4X_MAX_WM,
883         2,
884         G4X_FIFO_LINE_SIZE,
885 };
886 static const struct intel_watermark_params g4x_cursor_wm_info = {
887         I965_CURSOR_FIFO,
888         I965_CURSOR_MAX_WM,
889         I965_CURSOR_DFT_WM,
890         2,
891         G4X_FIFO_LINE_SIZE,
892 };
893 static const struct intel_watermark_params valleyview_wm_info = {
894         VALLEYVIEW_FIFO_SIZE,
895         VALLEYVIEW_MAX_WM,
896         VALLEYVIEW_MAX_WM,
897         2,
898         G4X_FIFO_LINE_SIZE,
899 };
900 static const struct intel_watermark_params valleyview_cursor_wm_info = {
901         I965_CURSOR_FIFO,
902         VALLEYVIEW_CURSOR_MAX_WM,
903         I965_CURSOR_DFT_WM,
904         2,
905         G4X_FIFO_LINE_SIZE,
906 };
907 static const struct intel_watermark_params i965_cursor_wm_info = {
908         I965_CURSOR_FIFO,
909         I965_CURSOR_MAX_WM,
910         I965_CURSOR_DFT_WM,
911         2,
912         I915_FIFO_LINE_SIZE,
913 };
914 static const struct intel_watermark_params i945_wm_info = {
915         I945_FIFO_SIZE,
916         I915_MAX_WM,
917         1,
918         2,
919         I915_FIFO_LINE_SIZE
920 };
921 static const struct intel_watermark_params i915_wm_info = {
922         I915_FIFO_SIZE,
923         I915_MAX_WM,
924         1,
925         2,
926         I915_FIFO_LINE_SIZE
927 };
928 static const struct intel_watermark_params i855_wm_info = {
929         I855GM_FIFO_SIZE,
930         I915_MAX_WM,
931         1,
932         2,
933         I830_FIFO_LINE_SIZE
934 };
935 static const struct intel_watermark_params i830_wm_info = {
936         I830_FIFO_SIZE,
937         I915_MAX_WM,
938         1,
939         2,
940         I830_FIFO_LINE_SIZE
941 };
942
943 static const struct intel_watermark_params ironlake_display_wm_info = {
944         ILK_DISPLAY_FIFO,
945         ILK_DISPLAY_MAXWM,
946         ILK_DISPLAY_DFTWM,
947         2,
948         ILK_FIFO_LINE_SIZE
949 };
950 static const struct intel_watermark_params ironlake_cursor_wm_info = {
951         ILK_CURSOR_FIFO,
952         ILK_CURSOR_MAXWM,
953         ILK_CURSOR_DFTWM,
954         2,
955         ILK_FIFO_LINE_SIZE
956 };
957 static const struct intel_watermark_params ironlake_display_srwm_info = {
958         ILK_DISPLAY_SR_FIFO,
959         ILK_DISPLAY_MAX_SRWM,
960         ILK_DISPLAY_DFT_SRWM,
961         2,
962         ILK_FIFO_LINE_SIZE
963 };
964 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
965         ILK_CURSOR_SR_FIFO,
966         ILK_CURSOR_MAX_SRWM,
967         ILK_CURSOR_DFT_SRWM,
968         2,
969         ILK_FIFO_LINE_SIZE
970 };
971
972 static const struct intel_watermark_params sandybridge_display_wm_info = {
973         SNB_DISPLAY_FIFO,
974         SNB_DISPLAY_MAXWM,
975         SNB_DISPLAY_DFTWM,
976         2,
977         SNB_FIFO_LINE_SIZE
978 };
979 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
980         SNB_CURSOR_FIFO,
981         SNB_CURSOR_MAXWM,
982         SNB_CURSOR_DFTWM,
983         2,
984         SNB_FIFO_LINE_SIZE
985 };
986 static const struct intel_watermark_params sandybridge_display_srwm_info = {
987         SNB_DISPLAY_SR_FIFO,
988         SNB_DISPLAY_MAX_SRWM,
989         SNB_DISPLAY_DFT_SRWM,
990         2,
991         SNB_FIFO_LINE_SIZE
992 };
993 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
994         SNB_CURSOR_SR_FIFO,
995         SNB_CURSOR_MAX_SRWM,
996         SNB_CURSOR_DFT_SRWM,
997         2,
998         SNB_FIFO_LINE_SIZE
999 };
1000
1001
1002 /**
1003  * intel_calculate_wm - calculate watermark level
1004  * @clock_in_khz: pixel clock
1005  * @wm: chip FIFO params
1006  * @pixel_size: display pixel size
1007  * @latency_ns: memory latency for the platform
1008  *
1009  * Calculate the watermark level (the level at which the display plane will
1010  * start fetching from memory again).  Each chip has a different display
1011  * FIFO size and allocation, so the caller needs to figure that out and pass
1012  * in the correct intel_watermark_params structure.
1013  *
1014  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1015  * on the pixel size.  When it reaches the watermark level, it'll start
1016  * fetching FIFO line sized based chunks from memory until the FIFO fills
1017  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1018  * will occur, and a display engine hang could result.
1019  */
1020 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1021                                         const struct intel_watermark_params *wm,
1022                                         int fifo_size,
1023                                         int pixel_size,
1024                                         unsigned long latency_ns)
1025 {
1026         long entries_required, wm_size;
1027
1028         /*
1029          * Note: we need to make sure we don't overflow for various clock &
1030          * latency values.
1031          * clocks go from a few thousand to several hundred thousand.
1032          * latency is usually a few thousand
1033          */
1034         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1035                 1000;
1036         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1037
1038         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1039
1040         wm_size = fifo_size - (entries_required + wm->guard_size);
1041
1042         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1043
1044         /* Don't promote wm_size to unsigned... */
1045         if (wm_size > (long)wm->max_wm)
1046                 wm_size = wm->max_wm;
1047         if (wm_size <= 0)
1048                 wm_size = wm->default_wm;
1049         return wm_size;
1050 }
1051
1052 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1053 {
1054         struct drm_crtc *crtc, *enabled = NULL;
1055
1056         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1057                 if (intel_crtc_active(crtc)) {
1058                         if (enabled)
1059                                 return NULL;
1060                         enabled = crtc;
1061                 }
1062         }
1063
1064         return enabled;
1065 }
1066
1067 static void pineview_update_wm(struct drm_device *dev)
1068 {
1069         struct drm_i915_private *dev_priv = dev->dev_private;
1070         struct drm_crtc *crtc;
1071         const struct cxsr_latency *latency;
1072         u32 reg;
1073         unsigned long wm;
1074
1075         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1076                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1077         if (!latency) {
1078                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1079                 pineview_disable_cxsr(dev);
1080                 return;
1081         }
1082
1083         crtc = single_enabled_crtc(dev);
1084         if (crtc) {
1085                 int clock = crtc->mode.clock;
1086                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1087
1088                 /* Display SR */
1089                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1090                                         pineview_display_wm.fifo_size,
1091                                         pixel_size, latency->display_sr);
1092                 reg = I915_READ(DSPFW1);
1093                 reg &= ~DSPFW_SR_MASK;
1094                 reg |= wm << DSPFW_SR_SHIFT;
1095                 I915_WRITE(DSPFW1, reg);
1096                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1097
1098                 /* cursor SR */
1099                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1100                                         pineview_display_wm.fifo_size,
1101                                         pixel_size, latency->cursor_sr);
1102                 reg = I915_READ(DSPFW3);
1103                 reg &= ~DSPFW_CURSOR_SR_MASK;
1104                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1105                 I915_WRITE(DSPFW3, reg);
1106
1107                 /* Display HPLL off SR */
1108                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1109                                         pineview_display_hplloff_wm.fifo_size,
1110                                         pixel_size, latency->display_hpll_disable);
1111                 reg = I915_READ(DSPFW3);
1112                 reg &= ~DSPFW_HPLL_SR_MASK;
1113                 reg |= wm & DSPFW_HPLL_SR_MASK;
1114                 I915_WRITE(DSPFW3, reg);
1115
1116                 /* cursor HPLL off SR */
1117                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1118                                         pineview_display_hplloff_wm.fifo_size,
1119                                         pixel_size, latency->cursor_hpll_disable);
1120                 reg = I915_READ(DSPFW3);
1121                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1122                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1123                 I915_WRITE(DSPFW3, reg);
1124                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1125
1126                 /* activate cxsr */
1127                 I915_WRITE(DSPFW3,
1128                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1129                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1130         } else {
1131                 pineview_disable_cxsr(dev);
1132                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1133         }
1134 }
1135
1136 static bool g4x_compute_wm0(struct drm_device *dev,
1137                             int plane,
1138                             const struct intel_watermark_params *display,
1139                             int display_latency_ns,
1140                             const struct intel_watermark_params *cursor,
1141                             int cursor_latency_ns,
1142                             int *plane_wm,
1143                             int *cursor_wm)
1144 {
1145         struct drm_crtc *crtc;
1146         int htotal, hdisplay, clock, pixel_size;
1147         int line_time_us, line_count;
1148         int entries, tlb_miss;
1149
1150         crtc = intel_get_crtc_for_plane(dev, plane);
1151         if (!intel_crtc_active(crtc)) {
1152                 *cursor_wm = cursor->guard_size;
1153                 *plane_wm = display->guard_size;
1154                 return false;
1155         }
1156
1157         htotal = crtc->mode.htotal;
1158         hdisplay = crtc->mode.hdisplay;
1159         clock = crtc->mode.clock;
1160         pixel_size = crtc->fb->bits_per_pixel / 8;
1161
1162         /* Use the small buffer method to calculate plane watermark */
1163         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1164         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1165         if (tlb_miss > 0)
1166                 entries += tlb_miss;
1167         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1168         *plane_wm = entries + display->guard_size;
1169         if (*plane_wm > (int)display->max_wm)
1170                 *plane_wm = display->max_wm;
1171
1172         /* Use the large buffer method to calculate cursor watermark */
1173         line_time_us = ((htotal * 1000) / clock);
1174         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1175         entries = line_count * 64 * pixel_size;
1176         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1177         if (tlb_miss > 0)
1178                 entries += tlb_miss;
1179         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1180         *cursor_wm = entries + cursor->guard_size;
1181         if (*cursor_wm > (int)cursor->max_wm)
1182                 *cursor_wm = (int)cursor->max_wm;
1183
1184         return true;
1185 }
1186
1187 /*
1188  * Check the wm result.
1189  *
1190  * If any calculated watermark values is larger than the maximum value that
1191  * can be programmed into the associated watermark register, that watermark
1192  * must be disabled.
1193  */
1194 static bool g4x_check_srwm(struct drm_device *dev,
1195                            int display_wm, int cursor_wm,
1196                            const struct intel_watermark_params *display,
1197                            const struct intel_watermark_params *cursor)
1198 {
1199         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1200                       display_wm, cursor_wm);
1201
1202         if (display_wm > display->max_wm) {
1203                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1204                               display_wm, display->max_wm);
1205                 return false;
1206         }
1207
1208         if (cursor_wm > cursor->max_wm) {
1209                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1210                               cursor_wm, cursor->max_wm);
1211                 return false;
1212         }
1213
1214         if (!(display_wm || cursor_wm)) {
1215                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1216                 return false;
1217         }
1218
1219         return true;
1220 }
1221
1222 static bool g4x_compute_srwm(struct drm_device *dev,
1223                              int plane,
1224                              int latency_ns,
1225                              const struct intel_watermark_params *display,
1226                              const struct intel_watermark_params *cursor,
1227                              int *display_wm, int *cursor_wm)
1228 {
1229         struct drm_crtc *crtc;
1230         int hdisplay, htotal, pixel_size, clock;
1231         unsigned long line_time_us;
1232         int line_count, line_size;
1233         int small, large;
1234         int entries;
1235
1236         if (!latency_ns) {
1237                 *display_wm = *cursor_wm = 0;
1238                 return false;
1239         }
1240
1241         crtc = intel_get_crtc_for_plane(dev, plane);
1242         hdisplay = crtc->mode.hdisplay;
1243         htotal = crtc->mode.htotal;
1244         clock = crtc->mode.clock;
1245         pixel_size = crtc->fb->bits_per_pixel / 8;
1246
1247         line_time_us = (htotal * 1000) / clock;
1248         line_count = (latency_ns / line_time_us + 1000) / 1000;
1249         line_size = hdisplay * pixel_size;
1250
1251         /* Use the minimum of the small and large buffer method for primary */
1252         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1253         large = line_count * line_size;
1254
1255         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1256         *display_wm = entries + display->guard_size;
1257
1258         /* calculate the self-refresh watermark for display cursor */
1259         entries = line_count * pixel_size * 64;
1260         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1261         *cursor_wm = entries + cursor->guard_size;
1262
1263         return g4x_check_srwm(dev,
1264                               *display_wm, *cursor_wm,
1265                               display, cursor);
1266 }
1267
1268 static bool vlv_compute_drain_latency(struct drm_device *dev,
1269                                      int plane,
1270                                      int *plane_prec_mult,
1271                                      int *plane_dl,
1272                                      int *cursor_prec_mult,
1273                                      int *cursor_dl)
1274 {
1275         struct drm_crtc *crtc;
1276         int clock, pixel_size;
1277         int entries;
1278
1279         crtc = intel_get_crtc_for_plane(dev, plane);
1280         if (!intel_crtc_active(crtc))
1281                 return false;
1282
1283         clock = crtc->mode.clock;       /* VESA DOT Clock */
1284         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1285
1286         entries = (clock / 1000) * pixel_size;
1287         *plane_prec_mult = (entries > 256) ?
1288                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1289         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1290                                                      pixel_size);
1291
1292         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1293         *cursor_prec_mult = (entries > 256) ?
1294                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1295         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1296
1297         return true;
1298 }
1299
1300 /*
1301  * Update drain latency registers of memory arbiter
1302  *
1303  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1304  * to be programmed. Each plane has a drain latency multiplier and a drain
1305  * latency value.
1306  */
1307
1308 static void vlv_update_drain_latency(struct drm_device *dev)
1309 {
1310         struct drm_i915_private *dev_priv = dev->dev_private;
1311         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1312         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1313         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1314                                                         either 16 or 32 */
1315
1316         /* For plane A, Cursor A */
1317         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1318                                       &cursor_prec_mult, &cursora_dl)) {
1319                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1320                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1321                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1322                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1323
1324                 I915_WRITE(VLV_DDL1, cursora_prec |
1325                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1326                                 planea_prec | planea_dl);
1327         }
1328
1329         /* For plane B, Cursor B */
1330         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1331                                       &cursor_prec_mult, &cursorb_dl)) {
1332                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1333                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1334                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1335                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1336
1337                 I915_WRITE(VLV_DDL2, cursorb_prec |
1338                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1339                                 planeb_prec | planeb_dl);
1340         }
1341 }
1342
1343 #define single_plane_enabled(mask) is_power_of_2(mask)
1344
1345 static void valleyview_update_wm(struct drm_device *dev)
1346 {
1347         static const int sr_latency_ns = 12000;
1348         struct drm_i915_private *dev_priv = dev->dev_private;
1349         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1350         int plane_sr, cursor_sr;
1351         int ignore_plane_sr, ignore_cursor_sr;
1352         unsigned int enabled = 0;
1353
1354         vlv_update_drain_latency(dev);
1355
1356         if (g4x_compute_wm0(dev, PIPE_A,
1357                             &valleyview_wm_info, latency_ns,
1358                             &valleyview_cursor_wm_info, latency_ns,
1359                             &planea_wm, &cursora_wm))
1360                 enabled |= 1 << PIPE_A;
1361
1362         if (g4x_compute_wm0(dev, PIPE_B,
1363                             &valleyview_wm_info, latency_ns,
1364                             &valleyview_cursor_wm_info, latency_ns,
1365                             &planeb_wm, &cursorb_wm))
1366                 enabled |= 1 << PIPE_B;
1367
1368         if (single_plane_enabled(enabled) &&
1369             g4x_compute_srwm(dev, ffs(enabled) - 1,
1370                              sr_latency_ns,
1371                              &valleyview_wm_info,
1372                              &valleyview_cursor_wm_info,
1373                              &plane_sr, &ignore_cursor_sr) &&
1374             g4x_compute_srwm(dev, ffs(enabled) - 1,
1375                              2*sr_latency_ns,
1376                              &valleyview_wm_info,
1377                              &valleyview_cursor_wm_info,
1378                              &ignore_plane_sr, &cursor_sr)) {
1379                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1380         } else {
1381                 I915_WRITE(FW_BLC_SELF_VLV,
1382                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1383                 plane_sr = cursor_sr = 0;
1384         }
1385
1386         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1387                       planea_wm, cursora_wm,
1388                       planeb_wm, cursorb_wm,
1389                       plane_sr, cursor_sr);
1390
1391         I915_WRITE(DSPFW1,
1392                    (plane_sr << DSPFW_SR_SHIFT) |
1393                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1394                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1395                    planea_wm);
1396         I915_WRITE(DSPFW2,
1397                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1398                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1399         I915_WRITE(DSPFW3,
1400                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1401                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1402 }
1403
1404 static void g4x_update_wm(struct drm_device *dev)
1405 {
1406         static const int sr_latency_ns = 12000;
1407         struct drm_i915_private *dev_priv = dev->dev_private;
1408         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1409         int plane_sr, cursor_sr;
1410         unsigned int enabled = 0;
1411
1412         if (g4x_compute_wm0(dev, PIPE_A,
1413                             &g4x_wm_info, latency_ns,
1414                             &g4x_cursor_wm_info, latency_ns,
1415                             &planea_wm, &cursora_wm))
1416                 enabled |= 1 << PIPE_A;
1417
1418         if (g4x_compute_wm0(dev, PIPE_B,
1419                             &g4x_wm_info, latency_ns,
1420                             &g4x_cursor_wm_info, latency_ns,
1421                             &planeb_wm, &cursorb_wm))
1422                 enabled |= 1 << PIPE_B;
1423
1424         if (single_plane_enabled(enabled) &&
1425             g4x_compute_srwm(dev, ffs(enabled) - 1,
1426                              sr_latency_ns,
1427                              &g4x_wm_info,
1428                              &g4x_cursor_wm_info,
1429                              &plane_sr, &cursor_sr)) {
1430                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1431         } else {
1432                 I915_WRITE(FW_BLC_SELF,
1433                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1434                 plane_sr = cursor_sr = 0;
1435         }
1436
1437         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1438                       planea_wm, cursora_wm,
1439                       planeb_wm, cursorb_wm,
1440                       plane_sr, cursor_sr);
1441
1442         I915_WRITE(DSPFW1,
1443                    (plane_sr << DSPFW_SR_SHIFT) |
1444                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1445                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1446                    planea_wm);
1447         I915_WRITE(DSPFW2,
1448                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1449                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1450         /* HPLL off in SR has some issues on G4x... disable it */
1451         I915_WRITE(DSPFW3,
1452                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1453                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1454 }
1455
1456 static void i965_update_wm(struct drm_device *dev)
1457 {
1458         struct drm_i915_private *dev_priv = dev->dev_private;
1459         struct drm_crtc *crtc;
1460         int srwm = 1;
1461         int cursor_sr = 16;
1462
1463         /* Calc sr entries for one plane configs */
1464         crtc = single_enabled_crtc(dev);
1465         if (crtc) {
1466                 /* self-refresh has much higher latency */
1467                 static const int sr_latency_ns = 12000;
1468                 int clock = crtc->mode.clock;
1469                 int htotal = crtc->mode.htotal;
1470                 int hdisplay = crtc->mode.hdisplay;
1471                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1472                 unsigned long line_time_us;
1473                 int entries;
1474
1475                 line_time_us = ((htotal * 1000) / clock);
1476
1477                 /* Use ns/us then divide to preserve precision */
1478                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479                         pixel_size * hdisplay;
1480                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1481                 srwm = I965_FIFO_SIZE - entries;
1482                 if (srwm < 0)
1483                         srwm = 1;
1484                 srwm &= 0x1ff;
1485                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1486                               entries, srwm);
1487
1488                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1489                         pixel_size * 64;
1490                 entries = DIV_ROUND_UP(entries,
1491                                           i965_cursor_wm_info.cacheline_size);
1492                 cursor_sr = i965_cursor_wm_info.fifo_size -
1493                         (entries + i965_cursor_wm_info.guard_size);
1494
1495                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1496                         cursor_sr = i965_cursor_wm_info.max_wm;
1497
1498                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1499                               "cursor %d\n", srwm, cursor_sr);
1500
1501                 if (IS_CRESTLINE(dev))
1502                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1503         } else {
1504                 /* Turn off self refresh if both pipes are enabled */
1505                 if (IS_CRESTLINE(dev))
1506                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1507                                    & ~FW_BLC_SELF_EN);
1508         }
1509
1510         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1511                       srwm);
1512
1513         /* 965 has limitations... */
1514         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1515                    (8 << 16) | (8 << 8) | (8 << 0));
1516         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1517         /* update cursor SR watermark */
1518         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1519 }
1520
1521 static void i9xx_update_wm(struct drm_device *dev)
1522 {
1523         struct drm_i915_private *dev_priv = dev->dev_private;
1524         const struct intel_watermark_params *wm_info;
1525         uint32_t fwater_lo;
1526         uint32_t fwater_hi;
1527         int cwm, srwm = 1;
1528         int fifo_size;
1529         int planea_wm, planeb_wm;
1530         struct drm_crtc *crtc, *enabled = NULL;
1531
1532         if (IS_I945GM(dev))
1533                 wm_info = &i945_wm_info;
1534         else if (!IS_GEN2(dev))
1535                 wm_info = &i915_wm_info;
1536         else
1537                 wm_info = &i855_wm_info;
1538
1539         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1540         crtc = intel_get_crtc_for_plane(dev, 0);
1541         if (intel_crtc_active(crtc)) {
1542                 int cpp = crtc->fb->bits_per_pixel / 8;
1543                 if (IS_GEN2(dev))
1544                         cpp = 4;
1545
1546                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1547                                                wm_info, fifo_size, cpp,
1548                                                latency_ns);
1549                 enabled = crtc;
1550         } else
1551                 planea_wm = fifo_size - wm_info->guard_size;
1552
1553         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1554         crtc = intel_get_crtc_for_plane(dev, 1);
1555         if (intel_crtc_active(crtc)) {
1556                 int cpp = crtc->fb->bits_per_pixel / 8;
1557                 if (IS_GEN2(dev))
1558                         cpp = 4;
1559
1560                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1561                                                wm_info, fifo_size, cpp,
1562                                                latency_ns);
1563                 if (enabled == NULL)
1564                         enabled = crtc;
1565                 else
1566                         enabled = NULL;
1567         } else
1568                 planeb_wm = fifo_size - wm_info->guard_size;
1569
1570         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1571
1572         /*
1573          * Overlay gets an aggressive default since video jitter is bad.
1574          */
1575         cwm = 2;
1576
1577         /* Play safe and disable self-refresh before adjusting watermarks. */
1578         if (IS_I945G(dev) || IS_I945GM(dev))
1579                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1580         else if (IS_I915GM(dev))
1581                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1582
1583         /* Calc sr entries for one plane configs */
1584         if (HAS_FW_BLC(dev) && enabled) {
1585                 /* self-refresh has much higher latency */
1586                 static const int sr_latency_ns = 6000;
1587                 int clock = enabled->mode.clock;
1588                 int htotal = enabled->mode.htotal;
1589                 int hdisplay = enabled->mode.hdisplay;
1590                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1591                 unsigned long line_time_us;
1592                 int entries;
1593
1594                 line_time_us = (htotal * 1000) / clock;
1595
1596                 /* Use ns/us then divide to preserve precision */
1597                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1598                         pixel_size * hdisplay;
1599                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1600                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1601                 srwm = wm_info->fifo_size - entries;
1602                 if (srwm < 0)
1603                         srwm = 1;
1604
1605                 if (IS_I945G(dev) || IS_I945GM(dev))
1606                         I915_WRITE(FW_BLC_SELF,
1607                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1608                 else if (IS_I915GM(dev))
1609                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1610         }
1611
1612         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1613                       planea_wm, planeb_wm, cwm, srwm);
1614
1615         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1616         fwater_hi = (cwm & 0x1f);
1617
1618         /* Set request length to 8 cachelines per fetch */
1619         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1620         fwater_hi = fwater_hi | (1 << 8);
1621
1622         I915_WRITE(FW_BLC, fwater_lo);
1623         I915_WRITE(FW_BLC2, fwater_hi);
1624
1625         if (HAS_FW_BLC(dev)) {
1626                 if (enabled) {
1627                         if (IS_I945G(dev) || IS_I945GM(dev))
1628                                 I915_WRITE(FW_BLC_SELF,
1629                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1630                         else if (IS_I915GM(dev))
1631                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1632                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1633                 } else
1634                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1635         }
1636 }
1637
1638 static void i830_update_wm(struct drm_device *dev)
1639 {
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641         struct drm_crtc *crtc;
1642         uint32_t fwater_lo;
1643         int planea_wm;
1644
1645         crtc = single_enabled_crtc(dev);
1646         if (crtc == NULL)
1647                 return;
1648
1649         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1650                                        dev_priv->display.get_fifo_size(dev, 0),
1651                                        4, latency_ns);
1652         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1653         fwater_lo |= (3<<8) | planea_wm;
1654
1655         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1656
1657         I915_WRITE(FW_BLC, fwater_lo);
1658 }
1659
1660 #define ILK_LP0_PLANE_LATENCY           700
1661 #define ILK_LP0_CURSOR_LATENCY          1300
1662
1663 /*
1664  * Check the wm result.
1665  *
1666  * If any calculated watermark values is larger than the maximum value that
1667  * can be programmed into the associated watermark register, that watermark
1668  * must be disabled.
1669  */
1670 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1671                                 int fbc_wm, int display_wm, int cursor_wm,
1672                                 const struct intel_watermark_params *display,
1673                                 const struct intel_watermark_params *cursor)
1674 {
1675         struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1678                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1679
1680         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1681                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1682                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1683
1684                 /* fbc has it's own way to disable FBC WM */
1685                 I915_WRITE(DISP_ARB_CTL,
1686                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1687                 return false;
1688         } else if (INTEL_INFO(dev)->gen >= 6) {
1689                 /* enable FBC WM (except on ILK, where it must remain off) */
1690                 I915_WRITE(DISP_ARB_CTL,
1691                            I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1692         }
1693
1694         if (display_wm > display->max_wm) {
1695                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1696                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1697                 return false;
1698         }
1699
1700         if (cursor_wm > cursor->max_wm) {
1701                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1702                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1703                 return false;
1704         }
1705
1706         if (!(fbc_wm || display_wm || cursor_wm)) {
1707                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1708                 return false;
1709         }
1710
1711         return true;
1712 }
1713
1714 /*
1715  * Compute watermark values of WM[1-3],
1716  */
1717 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1718                                   int latency_ns,
1719                                   const struct intel_watermark_params *display,
1720                                   const struct intel_watermark_params *cursor,
1721                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1722 {
1723         struct drm_crtc *crtc;
1724         unsigned long line_time_us;
1725         int hdisplay, htotal, pixel_size, clock;
1726         int line_count, line_size;
1727         int small, large;
1728         int entries;
1729
1730         if (!latency_ns) {
1731                 *fbc_wm = *display_wm = *cursor_wm = 0;
1732                 return false;
1733         }
1734
1735         crtc = intel_get_crtc_for_plane(dev, plane);
1736         hdisplay = crtc->mode.hdisplay;
1737         htotal = crtc->mode.htotal;
1738         clock = crtc->mode.clock;
1739         pixel_size = crtc->fb->bits_per_pixel / 8;
1740
1741         line_time_us = (htotal * 1000) / clock;
1742         line_count = (latency_ns / line_time_us + 1000) / 1000;
1743         line_size = hdisplay * pixel_size;
1744
1745         /* Use the minimum of the small and large buffer method for primary */
1746         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1747         large = line_count * line_size;
1748
1749         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1750         *display_wm = entries + display->guard_size;
1751
1752         /*
1753          * Spec says:
1754          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1755          */
1756         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1757
1758         /* calculate the self-refresh watermark for display cursor */
1759         entries = line_count * pixel_size * 64;
1760         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1761         *cursor_wm = entries + cursor->guard_size;
1762
1763         return ironlake_check_srwm(dev, level,
1764                                    *fbc_wm, *display_wm, *cursor_wm,
1765                                    display, cursor);
1766 }
1767
1768 static void ironlake_update_wm(struct drm_device *dev)
1769 {
1770         struct drm_i915_private *dev_priv = dev->dev_private;
1771         int fbc_wm, plane_wm, cursor_wm;
1772         unsigned int enabled;
1773
1774         enabled = 0;
1775         if (g4x_compute_wm0(dev, PIPE_A,
1776                             &ironlake_display_wm_info,
1777                             ILK_LP0_PLANE_LATENCY,
1778                             &ironlake_cursor_wm_info,
1779                             ILK_LP0_CURSOR_LATENCY,
1780                             &plane_wm, &cursor_wm)) {
1781                 I915_WRITE(WM0_PIPEA_ILK,
1782                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1783                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1784                               " plane %d, " "cursor: %d\n",
1785                               plane_wm, cursor_wm);
1786                 enabled |= 1 << PIPE_A;
1787         }
1788
1789         if (g4x_compute_wm0(dev, PIPE_B,
1790                             &ironlake_display_wm_info,
1791                             ILK_LP0_PLANE_LATENCY,
1792                             &ironlake_cursor_wm_info,
1793                             ILK_LP0_CURSOR_LATENCY,
1794                             &plane_wm, &cursor_wm)) {
1795                 I915_WRITE(WM0_PIPEB_ILK,
1796                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1797                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1798                               " plane %d, cursor: %d\n",
1799                               plane_wm, cursor_wm);
1800                 enabled |= 1 << PIPE_B;
1801         }
1802
1803         /*
1804          * Calculate and update the self-refresh watermark only when one
1805          * display plane is used.
1806          */
1807         I915_WRITE(WM3_LP_ILK, 0);
1808         I915_WRITE(WM2_LP_ILK, 0);
1809         I915_WRITE(WM1_LP_ILK, 0);
1810
1811         if (!single_plane_enabled(enabled))
1812                 return;
1813         enabled = ffs(enabled) - 1;
1814
1815         /* WM1 */
1816         if (!ironlake_compute_srwm(dev, 1, enabled,
1817                                    ILK_READ_WM1_LATENCY() * 500,
1818                                    &ironlake_display_srwm_info,
1819                                    &ironlake_cursor_srwm_info,
1820                                    &fbc_wm, &plane_wm, &cursor_wm))
1821                 return;
1822
1823         I915_WRITE(WM1_LP_ILK,
1824                    WM1_LP_SR_EN |
1825                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1826                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1827                    (plane_wm << WM1_LP_SR_SHIFT) |
1828                    cursor_wm);
1829
1830         /* WM2 */
1831         if (!ironlake_compute_srwm(dev, 2, enabled,
1832                                    ILK_READ_WM2_LATENCY() * 500,
1833                                    &ironlake_display_srwm_info,
1834                                    &ironlake_cursor_srwm_info,
1835                                    &fbc_wm, &plane_wm, &cursor_wm))
1836                 return;
1837
1838         I915_WRITE(WM2_LP_ILK,
1839                    WM2_LP_EN |
1840                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1841                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1842                    (plane_wm << WM1_LP_SR_SHIFT) |
1843                    cursor_wm);
1844
1845         /*
1846          * WM3 is unsupported on ILK, probably because we don't have latency
1847          * data for that power state
1848          */
1849 }
1850
1851 static void sandybridge_update_wm(struct drm_device *dev)
1852 {
1853         struct drm_i915_private *dev_priv = dev->dev_private;
1854         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1855         u32 val;
1856         int fbc_wm, plane_wm, cursor_wm;
1857         unsigned int enabled;
1858
1859         enabled = 0;
1860         if (g4x_compute_wm0(dev, PIPE_A,
1861                             &sandybridge_display_wm_info, latency,
1862                             &sandybridge_cursor_wm_info, latency,
1863                             &plane_wm, &cursor_wm)) {
1864                 val = I915_READ(WM0_PIPEA_ILK);
1865                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1866                 I915_WRITE(WM0_PIPEA_ILK, val |
1867                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1868                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1869                               " plane %d, " "cursor: %d\n",
1870                               plane_wm, cursor_wm);
1871                 enabled |= 1 << PIPE_A;
1872         }
1873
1874         if (g4x_compute_wm0(dev, PIPE_B,
1875                             &sandybridge_display_wm_info, latency,
1876                             &sandybridge_cursor_wm_info, latency,
1877                             &plane_wm, &cursor_wm)) {
1878                 val = I915_READ(WM0_PIPEB_ILK);
1879                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1880                 I915_WRITE(WM0_PIPEB_ILK, val |
1881                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1882                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1883                               " plane %d, cursor: %d\n",
1884                               plane_wm, cursor_wm);
1885                 enabled |= 1 << PIPE_B;
1886         }
1887
1888         /*
1889          * Calculate and update the self-refresh watermark only when one
1890          * display plane is used.
1891          *
1892          * SNB support 3 levels of watermark.
1893          *
1894          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1895          * and disabled in the descending order
1896          *
1897          */
1898         I915_WRITE(WM3_LP_ILK, 0);
1899         I915_WRITE(WM2_LP_ILK, 0);
1900         I915_WRITE(WM1_LP_ILK, 0);
1901
1902         if (!single_plane_enabled(enabled) ||
1903             dev_priv->sprite_scaling_enabled)
1904                 return;
1905         enabled = ffs(enabled) - 1;
1906
1907         /* WM1 */
1908         if (!ironlake_compute_srwm(dev, 1, enabled,
1909                                    SNB_READ_WM1_LATENCY() * 500,
1910                                    &sandybridge_display_srwm_info,
1911                                    &sandybridge_cursor_srwm_info,
1912                                    &fbc_wm, &plane_wm, &cursor_wm))
1913                 return;
1914
1915         I915_WRITE(WM1_LP_ILK,
1916                    WM1_LP_SR_EN |
1917                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1918                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1919                    (plane_wm << WM1_LP_SR_SHIFT) |
1920                    cursor_wm);
1921
1922         /* WM2 */
1923         if (!ironlake_compute_srwm(dev, 2, enabled,
1924                                    SNB_READ_WM2_LATENCY() * 500,
1925                                    &sandybridge_display_srwm_info,
1926                                    &sandybridge_cursor_srwm_info,
1927                                    &fbc_wm, &plane_wm, &cursor_wm))
1928                 return;
1929
1930         I915_WRITE(WM2_LP_ILK,
1931                    WM2_LP_EN |
1932                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1933                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1934                    (plane_wm << WM1_LP_SR_SHIFT) |
1935                    cursor_wm);
1936
1937         /* WM3 */
1938         if (!ironlake_compute_srwm(dev, 3, enabled,
1939                                    SNB_READ_WM3_LATENCY() * 500,
1940                                    &sandybridge_display_srwm_info,
1941                                    &sandybridge_cursor_srwm_info,
1942                                    &fbc_wm, &plane_wm, &cursor_wm))
1943                 return;
1944
1945         I915_WRITE(WM3_LP_ILK,
1946                    WM3_LP_EN |
1947                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1948                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1949                    (plane_wm << WM1_LP_SR_SHIFT) |
1950                    cursor_wm);
1951 }
1952
1953 static void ivybridge_update_wm(struct drm_device *dev)
1954 {
1955         struct drm_i915_private *dev_priv = dev->dev_private;
1956         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1957         u32 val;
1958         int fbc_wm, plane_wm, cursor_wm;
1959         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1960         unsigned int enabled;
1961
1962         enabled = 0;
1963         if (g4x_compute_wm0(dev, PIPE_A,
1964                             &sandybridge_display_wm_info, latency,
1965                             &sandybridge_cursor_wm_info, latency,
1966                             &plane_wm, &cursor_wm)) {
1967                 val = I915_READ(WM0_PIPEA_ILK);
1968                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1969                 I915_WRITE(WM0_PIPEA_ILK, val |
1970                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1971                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1972                               " plane %d, " "cursor: %d\n",
1973                               plane_wm, cursor_wm);
1974                 enabled |= 1 << PIPE_A;
1975         }
1976
1977         if (g4x_compute_wm0(dev, PIPE_B,
1978                             &sandybridge_display_wm_info, latency,
1979                             &sandybridge_cursor_wm_info, latency,
1980                             &plane_wm, &cursor_wm)) {
1981                 val = I915_READ(WM0_PIPEB_ILK);
1982                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1983                 I915_WRITE(WM0_PIPEB_ILK, val |
1984                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1985                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1986                               " plane %d, cursor: %d\n",
1987                               plane_wm, cursor_wm);
1988                 enabled |= 1 << PIPE_B;
1989         }
1990
1991         if (g4x_compute_wm0(dev, PIPE_C,
1992                             &sandybridge_display_wm_info, latency,
1993                             &sandybridge_cursor_wm_info, latency,
1994                             &plane_wm, &cursor_wm)) {
1995                 val = I915_READ(WM0_PIPEC_IVB);
1996                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1997                 I915_WRITE(WM0_PIPEC_IVB, val |
1998                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1999                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2000                               " plane %d, cursor: %d\n",
2001                               plane_wm, cursor_wm);
2002                 enabled |= 1 << PIPE_C;
2003         }
2004
2005         /*
2006          * Calculate and update the self-refresh watermark only when one
2007          * display plane is used.
2008          *
2009          * SNB support 3 levels of watermark.
2010          *
2011          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2012          * and disabled in the descending order
2013          *
2014          */
2015         I915_WRITE(WM3_LP_ILK, 0);
2016         I915_WRITE(WM2_LP_ILK, 0);
2017         I915_WRITE(WM1_LP_ILK, 0);
2018
2019         if (!single_plane_enabled(enabled) ||
2020             dev_priv->sprite_scaling_enabled)
2021                 return;
2022         enabled = ffs(enabled) - 1;
2023
2024         /* WM1 */
2025         if (!ironlake_compute_srwm(dev, 1, enabled,
2026                                    SNB_READ_WM1_LATENCY() * 500,
2027                                    &sandybridge_display_srwm_info,
2028                                    &sandybridge_cursor_srwm_info,
2029                                    &fbc_wm, &plane_wm, &cursor_wm))
2030                 return;
2031
2032         I915_WRITE(WM1_LP_ILK,
2033                    WM1_LP_SR_EN |
2034                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2035                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2036                    (plane_wm << WM1_LP_SR_SHIFT) |
2037                    cursor_wm);
2038
2039         /* WM2 */
2040         if (!ironlake_compute_srwm(dev, 2, enabled,
2041                                    SNB_READ_WM2_LATENCY() * 500,
2042                                    &sandybridge_display_srwm_info,
2043                                    &sandybridge_cursor_srwm_info,
2044                                    &fbc_wm, &plane_wm, &cursor_wm))
2045                 return;
2046
2047         I915_WRITE(WM2_LP_ILK,
2048                    WM2_LP_EN |
2049                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2050                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2051                    (plane_wm << WM1_LP_SR_SHIFT) |
2052                    cursor_wm);
2053
2054         /* WM3, note we have to correct the cursor latency */
2055         if (!ironlake_compute_srwm(dev, 3, enabled,
2056                                    SNB_READ_WM3_LATENCY() * 500,
2057                                    &sandybridge_display_srwm_info,
2058                                    &sandybridge_cursor_srwm_info,
2059                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2060             !ironlake_compute_srwm(dev, 3, enabled,
2061                                    2 * SNB_READ_WM3_LATENCY() * 500,
2062                                    &sandybridge_display_srwm_info,
2063                                    &sandybridge_cursor_srwm_info,
2064                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2065                 return;
2066
2067         I915_WRITE(WM3_LP_ILK,
2068                    WM3_LP_EN |
2069                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2070                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2071                    (plane_wm << WM1_LP_SR_SHIFT) |
2072                    cursor_wm);
2073 }
2074
2075 static void
2076 haswell_update_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2077 {
2078         struct drm_i915_private *dev_priv = dev->dev_private;
2079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2080         enum pipe pipe = intel_crtc->pipe;
2081         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2082         u32 linetime, ips_linetime;
2083
2084         if (!intel_crtc_active(crtc)) {
2085                 I915_WRITE(PIPE_WM_LINETIME(pipe), 0);
2086                 return;
2087         }
2088
2089         /* The WM are computed with base on how long it takes to fill a single
2090          * row at the given clock rate, multiplied by 8.
2091          * */
2092         linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2093         ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2094                                          intel_ddi_get_cdclk_freq(dev_priv));
2095
2096         I915_WRITE(PIPE_WM_LINETIME(pipe),
2097                    PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2098                    PIPE_WM_LINETIME_TIME(linetime));
2099 }
2100
2101 static void haswell_update_wm(struct drm_device *dev)
2102 {
2103         struct drm_i915_private *dev_priv = dev->dev_private;
2104         struct drm_crtc *crtc;
2105         enum pipe pipe;
2106
2107         /* Disable the LP WMs before changine the linetime registers. This is
2108          * just a temporary code that will be replaced soon. */
2109         I915_WRITE(WM3_LP_ILK, 0);
2110         I915_WRITE(WM2_LP_ILK, 0);
2111         I915_WRITE(WM1_LP_ILK, 0);
2112
2113         for_each_pipe(pipe) {
2114                 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2115                 haswell_update_linetime_wm(dev, crtc);
2116         }
2117
2118         sandybridge_update_wm(dev);
2119 }
2120
2121 static bool
2122 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2123                               uint32_t sprite_width, int pixel_size,
2124                               const struct intel_watermark_params *display,
2125                               int display_latency_ns, int *sprite_wm)
2126 {
2127         struct drm_crtc *crtc;
2128         int clock;
2129         int entries, tlb_miss;
2130
2131         crtc = intel_get_crtc_for_plane(dev, plane);
2132         if (!intel_crtc_active(crtc)) {
2133                 *sprite_wm = display->guard_size;
2134                 return false;
2135         }
2136
2137         clock = crtc->mode.clock;
2138
2139         /* Use the small buffer method to calculate the sprite watermark */
2140         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2141         tlb_miss = display->fifo_size*display->cacheline_size -
2142                 sprite_width * 8;
2143         if (tlb_miss > 0)
2144                 entries += tlb_miss;
2145         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2146         *sprite_wm = entries + display->guard_size;
2147         if (*sprite_wm > (int)display->max_wm)
2148                 *sprite_wm = display->max_wm;
2149
2150         return true;
2151 }
2152
2153 static bool
2154 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2155                                 uint32_t sprite_width, int pixel_size,
2156                                 const struct intel_watermark_params *display,
2157                                 int latency_ns, int *sprite_wm)
2158 {
2159         struct drm_crtc *crtc;
2160         unsigned long line_time_us;
2161         int clock;
2162         int line_count, line_size;
2163         int small, large;
2164         int entries;
2165
2166         if (!latency_ns) {
2167                 *sprite_wm = 0;
2168                 return false;
2169         }
2170
2171         crtc = intel_get_crtc_for_plane(dev, plane);
2172         clock = crtc->mode.clock;
2173         if (!clock) {
2174                 *sprite_wm = 0;
2175                 return false;
2176         }
2177
2178         line_time_us = (sprite_width * 1000) / clock;
2179         if (!line_time_us) {
2180                 *sprite_wm = 0;
2181                 return false;
2182         }
2183
2184         line_count = (latency_ns / line_time_us + 1000) / 1000;
2185         line_size = sprite_width * pixel_size;
2186
2187         /* Use the minimum of the small and large buffer method for primary */
2188         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2189         large = line_count * line_size;
2190
2191         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2192         *sprite_wm = entries + display->guard_size;
2193
2194         return *sprite_wm > 0x3ff ? false : true;
2195 }
2196
2197 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2198                                          uint32_t sprite_width, int pixel_size)
2199 {
2200         struct drm_i915_private *dev_priv = dev->dev_private;
2201         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2202         u32 val;
2203         int sprite_wm, reg;
2204         int ret;
2205
2206         switch (pipe) {
2207         case 0:
2208                 reg = WM0_PIPEA_ILK;
2209                 break;
2210         case 1:
2211                 reg = WM0_PIPEB_ILK;
2212                 break;
2213         case 2:
2214                 reg = WM0_PIPEC_IVB;
2215                 break;
2216         default:
2217                 return; /* bad pipe */
2218         }
2219
2220         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2221                                             &sandybridge_display_wm_info,
2222                                             latency, &sprite_wm);
2223         if (!ret) {
2224                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2225                               pipe_name(pipe));
2226                 return;
2227         }
2228
2229         val = I915_READ(reg);
2230         val &= ~WM0_PIPE_SPRITE_MASK;
2231         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2232         DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2233
2234
2235         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2236                                               pixel_size,
2237                                               &sandybridge_display_srwm_info,
2238                                               SNB_READ_WM1_LATENCY() * 500,
2239                                               &sprite_wm);
2240         if (!ret) {
2241                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2242                               pipe_name(pipe));
2243                 return;
2244         }
2245         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2246
2247         /* Only IVB has two more LP watermarks for sprite */
2248         if (!IS_IVYBRIDGE(dev))
2249                 return;
2250
2251         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2252                                               pixel_size,
2253                                               &sandybridge_display_srwm_info,
2254                                               SNB_READ_WM2_LATENCY() * 500,
2255                                               &sprite_wm);
2256         if (!ret) {
2257                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2258                               pipe_name(pipe));
2259                 return;
2260         }
2261         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2262
2263         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2264                                               pixel_size,
2265                                               &sandybridge_display_srwm_info,
2266                                               SNB_READ_WM3_LATENCY() * 500,
2267                                               &sprite_wm);
2268         if (!ret) {
2269                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2270                               pipe_name(pipe));
2271                 return;
2272         }
2273         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2274 }
2275
2276 /**
2277  * intel_update_watermarks - update FIFO watermark values based on current modes
2278  *
2279  * Calculate watermark values for the various WM regs based on current mode
2280  * and plane configuration.
2281  *
2282  * There are several cases to deal with here:
2283  *   - normal (i.e. non-self-refresh)
2284  *   - self-refresh (SR) mode
2285  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2286  *   - lines are small relative to FIFO size (buffer can hold more than 2
2287  *     lines), so need to account for TLB latency
2288  *
2289  *   The normal calculation is:
2290  *     watermark = dotclock * bytes per pixel * latency
2291  *   where latency is platform & configuration dependent (we assume pessimal
2292  *   values here).
2293  *
2294  *   The SR calculation is:
2295  *     watermark = (trunc(latency/line time)+1) * surface width *
2296  *       bytes per pixel
2297  *   where
2298  *     line time = htotal / dotclock
2299  *     surface width = hdisplay for normal plane and 64 for cursor
2300  *   and latency is assumed to be high, as above.
2301  *
2302  * The final value programmed to the register should always be rounded up,
2303  * and include an extra 2 entries to account for clock crossings.
2304  *
2305  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2306  * to set the non-SR watermarks to 8.
2307  */
2308 void intel_update_watermarks(struct drm_device *dev)
2309 {
2310         struct drm_i915_private *dev_priv = dev->dev_private;
2311
2312         if (dev_priv->display.update_wm)
2313                 dev_priv->display.update_wm(dev);
2314 }
2315
2316 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2317                                     uint32_t sprite_width, int pixel_size)
2318 {
2319         struct drm_i915_private *dev_priv = dev->dev_private;
2320
2321         if (dev_priv->display.update_sprite_wm)
2322                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2323                                                    pixel_size);
2324 }
2325
2326 static struct drm_i915_gem_object *
2327 intel_alloc_context_page(struct drm_device *dev)
2328 {
2329         struct drm_i915_gem_object *ctx;
2330         int ret;
2331
2332         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2333
2334         ctx = i915_gem_alloc_object(dev, 4096);
2335         if (!ctx) {
2336                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2337                 return NULL;
2338         }
2339
2340         ret = i915_gem_object_pin(ctx, 4096, true, false);
2341         if (ret) {
2342                 DRM_ERROR("failed to pin power context: %d\n", ret);
2343                 goto err_unref;
2344         }
2345
2346         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2347         if (ret) {
2348                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2349                 goto err_unpin;
2350         }
2351
2352         return ctx;
2353
2354 err_unpin:
2355         i915_gem_object_unpin(ctx);
2356 err_unref:
2357         drm_gem_object_unreference(&ctx->base);
2358         return NULL;
2359 }
2360
2361 /**
2362  * Lock protecting IPS related data structures
2363  */
2364 DEFINE_SPINLOCK(mchdev_lock);
2365
2366 /* Global for IPS driver to get at the current i915 device. Protected by
2367  * mchdev_lock. */
2368 static struct drm_i915_private *i915_mch_dev;
2369
2370 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2371 {
2372         struct drm_i915_private *dev_priv = dev->dev_private;
2373         u16 rgvswctl;
2374
2375         assert_spin_locked(&mchdev_lock);
2376
2377         rgvswctl = I915_READ16(MEMSWCTL);
2378         if (rgvswctl & MEMCTL_CMD_STS) {
2379                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2380                 return false; /* still busy with another command */
2381         }
2382
2383         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2384                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2385         I915_WRITE16(MEMSWCTL, rgvswctl);
2386         POSTING_READ16(MEMSWCTL);
2387
2388         rgvswctl |= MEMCTL_CMD_STS;
2389         I915_WRITE16(MEMSWCTL, rgvswctl);
2390
2391         return true;
2392 }
2393
2394 static void ironlake_enable_drps(struct drm_device *dev)
2395 {
2396         struct drm_i915_private *dev_priv = dev->dev_private;
2397         u32 rgvmodectl = I915_READ(MEMMODECTL);
2398         u8 fmax, fmin, fstart, vstart;
2399
2400         spin_lock_irq(&mchdev_lock);
2401
2402         /* Enable temp reporting */
2403         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2404         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2405
2406         /* 100ms RC evaluation intervals */
2407         I915_WRITE(RCUPEI, 100000);
2408         I915_WRITE(RCDNEI, 100000);
2409
2410         /* Set max/min thresholds to 90ms and 80ms respectively */
2411         I915_WRITE(RCBMAXAVG, 90000);
2412         I915_WRITE(RCBMINAVG, 80000);
2413
2414         I915_WRITE(MEMIHYST, 1);
2415
2416         /* Set up min, max, and cur for interrupt handling */
2417         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2418         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2419         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2420                 MEMMODE_FSTART_SHIFT;
2421
2422         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2423                 PXVFREQ_PX_SHIFT;
2424
2425         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2426         dev_priv->ips.fstart = fstart;
2427
2428         dev_priv->ips.max_delay = fstart;
2429         dev_priv->ips.min_delay = fmin;
2430         dev_priv->ips.cur_delay = fstart;
2431
2432         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2433                          fmax, fmin, fstart);
2434
2435         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2436
2437         /*
2438          * Interrupts will be enabled in ironlake_irq_postinstall
2439          */
2440
2441         I915_WRITE(VIDSTART, vstart);
2442         POSTING_READ(VIDSTART);
2443
2444         rgvmodectl |= MEMMODE_SWMODE_EN;
2445         I915_WRITE(MEMMODECTL, rgvmodectl);
2446
2447         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2448                 DRM_ERROR("stuck trying to change perf mode\n");
2449         mdelay(1);
2450
2451         ironlake_set_drps(dev, fstart);
2452
2453         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2454                 I915_READ(0x112e0);
2455         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2456         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2457         getrawmonotonic(&dev_priv->ips.last_time2);
2458
2459         spin_unlock_irq(&mchdev_lock);
2460 }
2461
2462 static void ironlake_disable_drps(struct drm_device *dev)
2463 {
2464         struct drm_i915_private *dev_priv = dev->dev_private;
2465         u16 rgvswctl;
2466
2467         spin_lock_irq(&mchdev_lock);
2468
2469         rgvswctl = I915_READ16(MEMSWCTL);
2470
2471         /* Ack interrupts, disable EFC interrupt */
2472         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2473         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2474         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2475         I915_WRITE(DEIIR, DE_PCU_EVENT);
2476         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2477
2478         /* Go back to the starting frequency */
2479         ironlake_set_drps(dev, dev_priv->ips.fstart);
2480         mdelay(1);
2481         rgvswctl |= MEMCTL_CMD_STS;
2482         I915_WRITE(MEMSWCTL, rgvswctl);
2483         mdelay(1);
2484
2485         spin_unlock_irq(&mchdev_lock);
2486 }
2487
2488 /* There's a funny hw issue where the hw returns all 0 when reading from
2489  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2490  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2491  * all limits and the gpu stuck at whatever frequency it is at atm).
2492  */
2493 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2494 {
2495         u32 limits;
2496
2497         limits = 0;
2498
2499         if (*val >= dev_priv->rps.max_delay)
2500                 *val = dev_priv->rps.max_delay;
2501         limits |= dev_priv->rps.max_delay << 24;
2502
2503         /* Only set the down limit when we've reached the lowest level to avoid
2504          * getting more interrupts, otherwise leave this clear. This prevents a
2505          * race in the hw when coming out of rc6: There's a tiny window where
2506          * the hw runs at the minimal clock before selecting the desired
2507          * frequency, if the down threshold expires in that window we will not
2508          * receive a down interrupt. */
2509         if (*val <= dev_priv->rps.min_delay) {
2510                 *val = dev_priv->rps.min_delay;
2511                 limits |= dev_priv->rps.min_delay << 16;
2512         }
2513
2514         return limits;
2515 }
2516
2517 void gen6_set_rps(struct drm_device *dev, u8 val)
2518 {
2519         struct drm_i915_private *dev_priv = dev->dev_private;
2520         u32 limits = gen6_rps_limits(dev_priv, &val);
2521
2522         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2523         WARN_ON(val > dev_priv->rps.max_delay);
2524         WARN_ON(val < dev_priv->rps.min_delay);
2525
2526         if (val == dev_priv->rps.cur_delay)
2527                 return;
2528
2529         if (IS_HASWELL(dev))
2530                 I915_WRITE(GEN6_RPNSWREQ,
2531                            HSW_FREQUENCY(val));
2532         else
2533                 I915_WRITE(GEN6_RPNSWREQ,
2534                            GEN6_FREQUENCY(val) |
2535                            GEN6_OFFSET(0) |
2536                            GEN6_AGGRESSIVE_TURBO);
2537
2538         /* Make sure we continue to get interrupts
2539          * until we hit the minimum or maximum frequencies.
2540          */
2541         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2542
2543         POSTING_READ(GEN6_RPNSWREQ);
2544
2545         dev_priv->rps.cur_delay = val;
2546
2547         trace_intel_gpu_freq_change(val * 50);
2548 }
2549
2550 void valleyview_set_rps(struct drm_device *dev, u8 val)
2551 {
2552         struct drm_i915_private *dev_priv = dev->dev_private;
2553         unsigned long timeout = jiffies + msecs_to_jiffies(10);
2554         u32 limits = gen6_rps_limits(dev_priv, &val);
2555         u32 pval;
2556
2557         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2558         WARN_ON(val > dev_priv->rps.max_delay);
2559         WARN_ON(val < dev_priv->rps.min_delay);
2560
2561         DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
2562                          vlv_gpu_freq(dev_priv->mem_freq,
2563                                       dev_priv->rps.cur_delay),
2564                          vlv_gpu_freq(dev_priv->mem_freq, val));
2565
2566         if (val == dev_priv->rps.cur_delay)
2567                 return;
2568
2569         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
2570
2571         do {
2572                 pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
2573                 if (time_after(jiffies, timeout)) {
2574                         DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
2575                         break;
2576                 }
2577                 udelay(10);
2578         } while (pval & 1);
2579
2580         pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
2581         if ((pval >> 8) != val)
2582                 DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
2583                           val, pval >> 8);
2584
2585         /* Make sure we continue to get interrupts
2586          * until we hit the minimum or maximum frequencies.
2587          */
2588         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2589
2590         dev_priv->rps.cur_delay = pval >> 8;
2591
2592         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
2593 }
2594
2595
2596 static void gen6_disable_rps(struct drm_device *dev)
2597 {
2598         struct drm_i915_private *dev_priv = dev->dev_private;
2599
2600         I915_WRITE(GEN6_RC_CONTROL, 0);
2601         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2602         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2603         I915_WRITE(GEN6_PMIER, 0);
2604         /* Complete PM interrupt masking here doesn't race with the rps work
2605          * item again unmasking PM interrupts because that is using a different
2606          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2607          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2608
2609         spin_lock_irq(&dev_priv->rps.lock);
2610         dev_priv->rps.pm_iir = 0;
2611         spin_unlock_irq(&dev_priv->rps.lock);
2612
2613         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2614 }
2615
2616 static void valleyview_disable_rps(struct drm_device *dev)
2617 {
2618         struct drm_i915_private *dev_priv = dev->dev_private;
2619
2620         I915_WRITE(GEN6_RC_CONTROL, 0);
2621         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2622         I915_WRITE(GEN6_PMIER, 0);
2623         /* Complete PM interrupt masking here doesn't race with the rps work
2624          * item again unmasking PM interrupts because that is using a different
2625          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2626          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2627
2628         spin_lock_irq(&dev_priv->rps.lock);
2629         dev_priv->rps.pm_iir = 0;
2630         spin_unlock_irq(&dev_priv->rps.lock);
2631
2632         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2633
2634         if (dev_priv->vlv_pctx) {
2635                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
2636                 dev_priv->vlv_pctx = NULL;
2637         }
2638 }
2639
2640 int intel_enable_rc6(const struct drm_device *dev)
2641 {
2642         /* Respect the kernel parameter if it is set */
2643         if (i915_enable_rc6 >= 0)
2644                 return i915_enable_rc6;
2645
2646         /* Disable RC6 on Ironlake */
2647         if (INTEL_INFO(dev)->gen == 5)
2648                 return 0;
2649
2650         if (IS_HASWELL(dev)) {
2651                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2652                 return INTEL_RC6_ENABLE;
2653         }
2654
2655         /* snb/ivb have more than one rc6 state. */
2656         if (INTEL_INFO(dev)->gen == 6) {
2657                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2658                 return INTEL_RC6_ENABLE;
2659         }
2660
2661         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2662         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2663 }
2664
2665 static void gen6_enable_rps(struct drm_device *dev)
2666 {
2667         struct drm_i915_private *dev_priv = dev->dev_private;
2668         struct intel_ring_buffer *ring;
2669         u32 rp_state_cap;
2670         u32 gt_perf_status;
2671         u32 rc6vids, pcu_mbox, rc6_mask = 0;
2672         u32 gtfifodbg;
2673         int rc6_mode;
2674         int i, ret;
2675
2676         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2677
2678         /* Here begins a magic sequence of register writes to enable
2679          * auto-downclocking.
2680          *
2681          * Perhaps there might be some value in exposing these to
2682          * userspace...
2683          */
2684         I915_WRITE(GEN6_RC_STATE, 0);
2685
2686         /* Clear the DBG now so we don't confuse earlier errors */
2687         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2688                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2689                 I915_WRITE(GTFIFODBG, gtfifodbg);
2690         }
2691
2692         gen6_gt_force_wake_get(dev_priv);
2693
2694         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2695         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2696
2697         /* In units of 50MHz */
2698         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
2699         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2700         dev_priv->rps.cur_delay = 0;
2701
2702         /* disable the counters and set deterministic thresholds */
2703         I915_WRITE(GEN6_RC_CONTROL, 0);
2704
2705         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2706         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2707         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2708         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2709         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2710
2711         for_each_ring(ring, dev_priv, i)
2712                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2713
2714         I915_WRITE(GEN6_RC_SLEEP, 0);
2715         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2716         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2717         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2718         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2719
2720         /* Check if we are enabling RC6 */
2721         rc6_mode = intel_enable_rc6(dev_priv->dev);
2722         if (rc6_mode & INTEL_RC6_ENABLE)
2723                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2724
2725         /* We don't use those on Haswell */
2726         if (!IS_HASWELL(dev)) {
2727                 if (rc6_mode & INTEL_RC6p_ENABLE)
2728                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2729
2730                 if (rc6_mode & INTEL_RC6pp_ENABLE)
2731                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2732         }
2733
2734         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2735                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2736                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2737                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2738
2739         I915_WRITE(GEN6_RC_CONTROL,
2740                    rc6_mask |
2741                    GEN6_RC_CTL_EI_MODE(1) |
2742                    GEN6_RC_CTL_HW_ENABLE);
2743
2744         if (IS_HASWELL(dev)) {
2745                 I915_WRITE(GEN6_RPNSWREQ,
2746                            HSW_FREQUENCY(10));
2747                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2748                            HSW_FREQUENCY(12));
2749         } else {
2750                 I915_WRITE(GEN6_RPNSWREQ,
2751                            GEN6_FREQUENCY(10) |
2752                            GEN6_OFFSET(0) |
2753                            GEN6_AGGRESSIVE_TURBO);
2754                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2755                            GEN6_FREQUENCY(12));
2756         }
2757
2758         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2759         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2760                    dev_priv->rps.max_delay << 24 |
2761                    dev_priv->rps.min_delay << 16);
2762
2763         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2764         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2765         I915_WRITE(GEN6_RP_UP_EI, 66000);
2766         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2767
2768         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2769         I915_WRITE(GEN6_RP_CONTROL,
2770                    GEN6_RP_MEDIA_TURBO |
2771                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2772                    GEN6_RP_MEDIA_IS_GFX |
2773                    GEN6_RP_ENABLE |
2774                    GEN6_RP_UP_BUSY_AVG |
2775                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2776
2777         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2778         if (!ret) {
2779                 pcu_mbox = 0;
2780                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2781                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
2782                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
2783                                          (dev_priv->rps.max_delay & 0xff) * 50,
2784                                          (pcu_mbox & 0xff) * 50);
2785                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
2786                 }
2787         } else {
2788                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2789         }
2790
2791         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2792
2793         /* requires MSI enabled */
2794         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2795         spin_lock_irq(&dev_priv->rps.lock);
2796         WARN_ON(dev_priv->rps.pm_iir != 0);
2797         I915_WRITE(GEN6_PMIMR, 0);
2798         spin_unlock_irq(&dev_priv->rps.lock);
2799         /* enable all PM interrupts */
2800         I915_WRITE(GEN6_PMINTRMSK, 0);
2801
2802         rc6vids = 0;
2803         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2804         if (IS_GEN6(dev) && ret) {
2805                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2806         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2807                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2808                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2809                 rc6vids &= 0xffff00;
2810                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2811                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2812                 if (ret)
2813                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2814         }
2815
2816         gen6_gt_force_wake_put(dev_priv);
2817 }
2818
2819 static void gen6_update_ring_freq(struct drm_device *dev)
2820 {
2821         struct drm_i915_private *dev_priv = dev->dev_private;
2822         int min_freq = 15;
2823         unsigned int gpu_freq;
2824         unsigned int max_ia_freq, min_ring_freq;
2825         int scaling_factor = 180;
2826
2827         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2828
2829         max_ia_freq = cpufreq_quick_get_max(0);
2830         /*
2831          * Default to measured freq if none found, PCU will ensure we don't go
2832          * over
2833          */
2834         if (!max_ia_freq)
2835                 max_ia_freq = tsc_khz;
2836
2837         /* Convert from kHz to MHz */
2838         max_ia_freq /= 1000;
2839
2840         min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
2841         /* convert DDR frequency from units of 133.3MHz to bandwidth */
2842         min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
2843
2844         /*
2845          * For each potential GPU frequency, load a ring frequency we'd like
2846          * to use for memory access.  We do this by specifying the IA frequency
2847          * the PCU should use as a reference to determine the ring frequency.
2848          */
2849         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2850              gpu_freq--) {
2851                 int diff = dev_priv->rps.max_delay - gpu_freq;
2852                 unsigned int ia_freq = 0, ring_freq = 0;
2853
2854                 if (IS_HASWELL(dev)) {
2855                         ring_freq = (gpu_freq * 5 + 3) / 4;
2856                         ring_freq = max(min_ring_freq, ring_freq);
2857                         /* leave ia_freq as the default, chosen by cpufreq */
2858                 } else {
2859                         /* On older processors, there is no separate ring
2860                          * clock domain, so in order to boost the bandwidth
2861                          * of the ring, we need to upclock the CPU (ia_freq).
2862                          *
2863                          * For GPU frequencies less than 750MHz,
2864                          * just use the lowest ring freq.
2865                          */
2866                         if (gpu_freq < min_freq)
2867                                 ia_freq = 800;
2868                         else
2869                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2870                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2871                 }
2872
2873                 sandybridge_pcode_write(dev_priv,
2874                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2875                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
2876                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
2877                                         gpu_freq);
2878         }
2879 }
2880
2881 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
2882 {
2883         u32 val, rp0;
2884
2885         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
2886
2887         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
2888         /* Clamp to max */
2889         rp0 = min_t(u32, rp0, 0xea);
2890
2891         return rp0;
2892 }
2893
2894 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
2895 {
2896         u32 val, rpe;
2897
2898         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
2899         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
2900         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
2901         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
2902
2903         return rpe;
2904 }
2905
2906 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
2907 {
2908         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
2909 }
2910
2911 static void vlv_rps_timer_work(struct work_struct *work)
2912 {
2913         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
2914                                                     rps.vlv_work.work);
2915
2916         /*
2917          * Timer fired, we must be idle.  Drop to min voltage state.
2918          * Note: we use RPe here since it should match the
2919          * Vmin we were shooting for.  That should give us better
2920          * perf when we come back out of RC6 than if we used the
2921          * min freq available.
2922          */
2923         mutex_lock(&dev_priv->rps.hw_lock);
2924         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
2925         mutex_unlock(&dev_priv->rps.hw_lock);
2926 }
2927
2928 static void valleyview_setup_pctx(struct drm_device *dev)
2929 {
2930         struct drm_i915_private *dev_priv = dev->dev_private;
2931         struct drm_i915_gem_object *pctx;
2932         unsigned long pctx_paddr;
2933         u32 pcbr;
2934         int pctx_size = 24*1024;
2935
2936         pcbr = I915_READ(VLV_PCBR);
2937         if (pcbr) {
2938                 /* BIOS set it up already, grab the pre-alloc'd space */
2939                 int pcbr_offset;
2940
2941                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
2942                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
2943                                                                       pcbr_offset,
2944                                                                       -1,
2945                                                                       pctx_size);
2946                 goto out;
2947         }
2948
2949         /*
2950          * From the Gunit register HAS:
2951          * The Gfx driver is expected to program this register and ensure
2952          * proper allocation within Gfx stolen memory.  For example, this
2953          * register should be programmed such than the PCBR range does not
2954          * overlap with other ranges, such as the frame buffer, protected
2955          * memory, or any other relevant ranges.
2956          */
2957         pctx = i915_gem_object_create_stolen(dev, pctx_size);
2958         if (!pctx) {
2959                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
2960                 return;
2961         }
2962
2963         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
2964         I915_WRITE(VLV_PCBR, pctx_paddr);
2965
2966 out:
2967         dev_priv->vlv_pctx = pctx;
2968 }
2969
2970 static void valleyview_enable_rps(struct drm_device *dev)
2971 {
2972         struct drm_i915_private *dev_priv = dev->dev_private;
2973         struct intel_ring_buffer *ring;
2974         u32 gtfifodbg, val, rpe;
2975         int i;
2976
2977         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2978
2979         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2980                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2981                 I915_WRITE(GTFIFODBG, gtfifodbg);
2982         }
2983
2984         valleyview_setup_pctx(dev);
2985
2986         gen6_gt_force_wake_get(dev_priv);
2987
2988         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2989         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2990         I915_WRITE(GEN6_RP_UP_EI, 66000);
2991         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2992
2993         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2994
2995         I915_WRITE(GEN6_RP_CONTROL,
2996                    GEN6_RP_MEDIA_TURBO |
2997                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2998                    GEN6_RP_MEDIA_IS_GFX |
2999                    GEN6_RP_ENABLE |
3000                    GEN6_RP_UP_BUSY_AVG |
3001                    GEN6_RP_DOWN_IDLE_CONT);
3002
3003         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3004         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3005         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3006
3007         for_each_ring(ring, dev_priv, i)
3008                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3009
3010         I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3011
3012         /* allows RC6 residency counter to work */
3013         I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3014         I915_WRITE(GEN6_RC_CONTROL,
3015                    GEN7_RC_CTL_TO_MODE);
3016
3017         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3018         switch ((val >> 6) & 3) {
3019         case 0:
3020         case 1:
3021                 dev_priv->mem_freq = 800;
3022                 break;
3023         case 2:
3024                 dev_priv->mem_freq = 1066;
3025                 break;
3026         case 3:
3027                 dev_priv->mem_freq = 1333;
3028                 break;
3029         }
3030         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3031
3032         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3033         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3034
3035         DRM_DEBUG_DRIVER("current GPU freq: %d\n",
3036                          vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
3037         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3038
3039         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3040         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3041         DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
3042                                                      dev_priv->rps.max_delay));
3043
3044         rpe = valleyview_rps_rpe_freq(dev_priv);
3045         DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
3046                          vlv_gpu_freq(dev_priv->mem_freq, rpe));
3047         dev_priv->rps.rpe_delay = rpe;
3048
3049         val = valleyview_rps_min_freq(dev_priv);
3050         DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
3051                                                             val));
3052         dev_priv->rps.min_delay = val;
3053
3054         DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
3055                          vlv_gpu_freq(dev_priv->mem_freq, rpe));
3056
3057         INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3058
3059         valleyview_set_rps(dev_priv->dev, rpe);
3060
3061         /* requires MSI enabled */
3062         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
3063         spin_lock_irq(&dev_priv->rps.lock);
3064         WARN_ON(dev_priv->rps.pm_iir != 0);
3065         I915_WRITE(GEN6_PMIMR, 0);
3066         spin_unlock_irq(&dev_priv->rps.lock);
3067         /* enable all PM interrupts */
3068         I915_WRITE(GEN6_PMINTRMSK, 0);
3069
3070         gen6_gt_force_wake_put(dev_priv);
3071 }
3072
3073 void ironlake_teardown_rc6(struct drm_device *dev)
3074 {
3075         struct drm_i915_private *dev_priv = dev->dev_private;
3076
3077         if (dev_priv->ips.renderctx) {
3078                 i915_gem_object_unpin(dev_priv->ips.renderctx);
3079                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3080                 dev_priv->ips.renderctx = NULL;
3081         }
3082
3083         if (dev_priv->ips.pwrctx) {
3084                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3085                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3086                 dev_priv->ips.pwrctx = NULL;
3087         }
3088 }
3089
3090 static void ironlake_disable_rc6(struct drm_device *dev)
3091 {
3092         struct drm_i915_private *dev_priv = dev->dev_private;
3093
3094         if (I915_READ(PWRCTXA)) {
3095                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3096                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3097                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3098                          50);
3099
3100                 I915_WRITE(PWRCTXA, 0);
3101                 POSTING_READ(PWRCTXA);
3102
3103                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3104                 POSTING_READ(RSTDBYCTL);
3105         }
3106 }
3107
3108 static int ironlake_setup_rc6(struct drm_device *dev)
3109 {
3110         struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112         if (dev_priv->ips.renderctx == NULL)
3113                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3114         if (!dev_priv->ips.renderctx)
3115                 return -ENOMEM;
3116
3117         if (dev_priv->ips.pwrctx == NULL)
3118                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3119         if (!dev_priv->ips.pwrctx) {
3120                 ironlake_teardown_rc6(dev);
3121                 return -ENOMEM;
3122         }
3123
3124         return 0;
3125 }
3126
3127 static void ironlake_enable_rc6(struct drm_device *dev)
3128 {
3129         struct drm_i915_private *dev_priv = dev->dev_private;
3130         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3131         bool was_interruptible;
3132         int ret;
3133
3134         /* rc6 disabled by default due to repeated reports of hanging during
3135          * boot and resume.
3136          */
3137         if (!intel_enable_rc6(dev))
3138                 return;
3139
3140         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3141
3142         ret = ironlake_setup_rc6(dev);
3143         if (ret)
3144                 return;
3145
3146         was_interruptible = dev_priv->mm.interruptible;
3147         dev_priv->mm.interruptible = false;
3148
3149         /*
3150          * GPU can automatically power down the render unit if given a page
3151          * to save state.
3152          */
3153         ret = intel_ring_begin(ring, 6);
3154         if (ret) {
3155                 ironlake_teardown_rc6(dev);
3156                 dev_priv->mm.interruptible = was_interruptible;
3157                 return;
3158         }
3159
3160         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3161         intel_ring_emit(ring, MI_SET_CONTEXT);
3162         intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
3163                         MI_MM_SPACE_GTT |
3164                         MI_SAVE_EXT_STATE_EN |
3165                         MI_RESTORE_EXT_STATE_EN |
3166                         MI_RESTORE_INHIBIT);
3167         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3168         intel_ring_emit(ring, MI_NOOP);
3169         intel_ring_emit(ring, MI_FLUSH);
3170         intel_ring_advance(ring);
3171
3172         /*
3173          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3174          * does an implicit flush, combined with MI_FLUSH above, it should be
3175          * safe to assume that renderctx is valid
3176          */
3177         ret = intel_ring_idle(ring);
3178         dev_priv->mm.interruptible = was_interruptible;
3179         if (ret) {
3180                 DRM_ERROR("failed to enable ironlake power savings\n");
3181                 ironlake_teardown_rc6(dev);
3182                 return;
3183         }
3184
3185         I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
3186         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3187 }
3188
3189 static unsigned long intel_pxfreq(u32 vidfreq)
3190 {
3191         unsigned long freq;
3192         int div = (vidfreq & 0x3f0000) >> 16;
3193         int post = (vidfreq & 0x3000) >> 12;
3194         int pre = (vidfreq & 0x7);
3195
3196         if (!pre)
3197                 return 0;
3198
3199         freq = ((div * 133333) / ((1<<post) * pre));
3200
3201         return freq;
3202 }
3203
3204 static const struct cparams {
3205         u16 i;
3206         u16 t;
3207         u16 m;
3208         u16 c;
3209 } cparams[] = {
3210         { 1, 1333, 301, 28664 },
3211         { 1, 1066, 294, 24460 },
3212         { 1, 800, 294, 25192 },
3213         { 0, 1333, 276, 27605 },
3214         { 0, 1066, 276, 27605 },
3215         { 0, 800, 231, 23784 },
3216 };
3217
3218 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3219 {
3220         u64 total_count, diff, ret;
3221         u32 count1, count2, count3, m = 0, c = 0;
3222         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3223         int i;
3224
3225         assert_spin_locked(&mchdev_lock);
3226
3227         diff1 = now - dev_priv->ips.last_time1;
3228
3229         /* Prevent division-by-zero if we are asking too fast.
3230          * Also, we don't get interesting results if we are polling
3231          * faster than once in 10ms, so just return the saved value
3232          * in such cases.
3233          */
3234         if (diff1 <= 10)
3235                 return dev_priv->ips.chipset_power;
3236
3237         count1 = I915_READ(DMIEC);
3238         count2 = I915_READ(DDREC);
3239         count3 = I915_READ(CSIEC);
3240
3241         total_count = count1 + count2 + count3;
3242
3243         /* FIXME: handle per-counter overflow */
3244         if (total_count < dev_priv->ips.last_count1) {
3245                 diff = ~0UL - dev_priv->ips.last_count1;
3246                 diff += total_count;
3247         } else {
3248                 diff = total_count - dev_priv->ips.last_count1;
3249         }
3250
3251         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3252                 if (cparams[i].i == dev_priv->ips.c_m &&
3253                     cparams[i].t == dev_priv->ips.r_t) {
3254                         m = cparams[i].m;
3255                         c = cparams[i].c;
3256                         break;
3257                 }
3258         }
3259
3260         diff = div_u64(diff, diff1);
3261         ret = ((m * diff) + c);
3262         ret = div_u64(ret, 10);
3263
3264         dev_priv->ips.last_count1 = total_count;
3265         dev_priv->ips.last_time1 = now;
3266
3267         dev_priv->ips.chipset_power = ret;
3268
3269         return ret;
3270 }
3271
3272 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3273 {
3274         unsigned long val;
3275
3276         if (dev_priv->info->gen != 5)
3277                 return 0;
3278
3279         spin_lock_irq(&mchdev_lock);
3280
3281         val = __i915_chipset_val(dev_priv);
3282
3283         spin_unlock_irq(&mchdev_lock);
3284
3285         return val;
3286 }
3287
3288 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3289 {
3290         unsigned long m, x, b;
3291         u32 tsfs;
3292
3293         tsfs = I915_READ(TSFS);
3294
3295         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3296         x = I915_READ8(TR1);
3297
3298         b = tsfs & TSFS_INTR_MASK;
3299
3300         return ((m * x) / 127) - b;
3301 }
3302
3303 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3304 {
3305         static const struct v_table {
3306                 u16 vd; /* in .1 mil */
3307                 u16 vm; /* in .1 mil */
3308         } v_table[] = {
3309                 { 0, 0, },
3310                 { 375, 0, },
3311                 { 500, 0, },
3312                 { 625, 0, },
3313                 { 750, 0, },
3314                 { 875, 0, },
3315                 { 1000, 0, },
3316                 { 1125, 0, },
3317                 { 4125, 3000, },
3318                 { 4125, 3000, },
3319                 { 4125, 3000, },
3320                 { 4125, 3000, },
3321                 { 4125, 3000, },
3322                 { 4125, 3000, },
3323                 { 4125, 3000, },
3324                 { 4125, 3000, },
3325                 { 4125, 3000, },
3326                 { 4125, 3000, },
3327                 { 4125, 3000, },
3328                 { 4125, 3000, },
3329                 { 4125, 3000, },
3330                 { 4125, 3000, },
3331                 { 4125, 3000, },
3332                 { 4125, 3000, },
3333                 { 4125, 3000, },
3334                 { 4125, 3000, },
3335                 { 4125, 3000, },
3336                 { 4125, 3000, },
3337                 { 4125, 3000, },
3338                 { 4125, 3000, },
3339                 { 4125, 3000, },
3340                 { 4125, 3000, },
3341                 { 4250, 3125, },
3342                 { 4375, 3250, },
3343                 { 4500, 3375, },
3344                 { 4625, 3500, },
3345                 { 4750, 3625, },
3346                 { 4875, 3750, },
3347                 { 5000, 3875, },
3348                 { 5125, 4000, },
3349                 { 5250, 4125, },
3350                 { 5375, 4250, },
3351                 { 5500, 4375, },
3352                 { 5625, 4500, },
3353                 { 5750, 4625, },
3354                 { 5875, 4750, },
3355                 { 6000, 4875, },
3356                 { 6125, 5000, },
3357                 { 6250, 5125, },
3358                 { 6375, 5250, },
3359                 { 6500, 5375, },
3360                 { 6625, 5500, },
3361                 { 6750, 5625, },
3362                 { 6875, 5750, },
3363                 { 7000, 5875, },
3364                 { 7125, 6000, },
3365                 { 7250, 6125, },
3366                 { 7375, 6250, },
3367                 { 7500, 6375, },
3368                 { 7625, 6500, },
3369                 { 7750, 6625, },
3370                 { 7875, 6750, },
3371                 { 8000, 6875, },
3372                 { 8125, 7000, },
3373                 { 8250, 7125, },
3374                 { 8375, 7250, },
3375                 { 8500, 7375, },
3376                 { 8625, 7500, },
3377                 { 8750, 7625, },
3378                 { 8875, 7750, },
3379                 { 9000, 7875, },
3380                 { 9125, 8000, },
3381                 { 9250, 8125, },
3382                 { 9375, 8250, },
3383                 { 9500, 8375, },
3384                 { 9625, 8500, },
3385                 { 9750, 8625, },
3386                 { 9875, 8750, },
3387                 { 10000, 8875, },
3388                 { 10125, 9000, },
3389                 { 10250, 9125, },
3390                 { 10375, 9250, },
3391                 { 10500, 9375, },
3392                 { 10625, 9500, },
3393                 { 10750, 9625, },
3394                 { 10875, 9750, },
3395                 { 11000, 9875, },
3396                 { 11125, 10000, },
3397                 { 11250, 10125, },
3398                 { 11375, 10250, },
3399                 { 11500, 10375, },
3400                 { 11625, 10500, },
3401                 { 11750, 10625, },
3402                 { 11875, 10750, },
3403                 { 12000, 10875, },
3404                 { 12125, 11000, },
3405                 { 12250, 11125, },
3406                 { 12375, 11250, },
3407                 { 12500, 11375, },
3408                 { 12625, 11500, },
3409                 { 12750, 11625, },
3410                 { 12875, 11750, },
3411                 { 13000, 11875, },
3412                 { 13125, 12000, },
3413                 { 13250, 12125, },
3414                 { 13375, 12250, },
3415                 { 13500, 12375, },
3416                 { 13625, 12500, },
3417                 { 13750, 12625, },
3418                 { 13875, 12750, },
3419                 { 14000, 12875, },
3420                 { 14125, 13000, },
3421                 { 14250, 13125, },
3422                 { 14375, 13250, },
3423                 { 14500, 13375, },
3424                 { 14625, 13500, },
3425                 { 14750, 13625, },
3426                 { 14875, 13750, },
3427                 { 15000, 13875, },
3428                 { 15125, 14000, },
3429                 { 15250, 14125, },
3430                 { 15375, 14250, },
3431                 { 15500, 14375, },
3432                 { 15625, 14500, },
3433                 { 15750, 14625, },
3434                 { 15875, 14750, },
3435                 { 16000, 14875, },
3436                 { 16125, 15000, },
3437         };
3438         if (dev_priv->info->is_mobile)
3439                 return v_table[pxvid].vm;
3440         else
3441                 return v_table[pxvid].vd;
3442 }
3443
3444 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3445 {
3446         struct timespec now, diff1;
3447         u64 diff;
3448         unsigned long diffms;
3449         u32 count;
3450
3451         assert_spin_locked(&mchdev_lock);
3452
3453         getrawmonotonic(&now);
3454         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3455
3456         /* Don't divide by 0 */
3457         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3458         if (!diffms)
3459                 return;
3460
3461         count = I915_READ(GFXEC);
3462
3463         if (count < dev_priv->ips.last_count2) {
3464                 diff = ~0UL - dev_priv->ips.last_count2;
3465                 diff += count;
3466         } else {
3467                 diff = count - dev_priv->ips.last_count2;
3468         }
3469
3470         dev_priv->ips.last_count2 = count;
3471         dev_priv->ips.last_time2 = now;
3472
3473         /* More magic constants... */
3474         diff = diff * 1181;
3475         diff = div_u64(diff, diffms * 10);
3476         dev_priv->ips.gfx_power = diff;
3477 }
3478
3479 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3480 {
3481         if (dev_priv->info->gen != 5)
3482                 return;
3483
3484         spin_lock_irq(&mchdev_lock);
3485
3486         __i915_update_gfx_val(dev_priv);
3487
3488         spin_unlock_irq(&mchdev_lock);
3489 }
3490
3491 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3492 {
3493         unsigned long t, corr, state1, corr2, state2;
3494         u32 pxvid, ext_v;
3495
3496         assert_spin_locked(&mchdev_lock);
3497
3498         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3499         pxvid = (pxvid >> 24) & 0x7f;
3500         ext_v = pvid_to_extvid(dev_priv, pxvid);
3501
3502         state1 = ext_v;
3503
3504         t = i915_mch_val(dev_priv);
3505
3506         /* Revel in the empirically derived constants */
3507
3508         /* Correction factor in 1/100000 units */
3509         if (t > 80)
3510                 corr = ((t * 2349) + 135940);
3511         else if (t >= 50)
3512                 corr = ((t * 964) + 29317);
3513         else /* < 50 */
3514                 corr = ((t * 301) + 1004);
3515
3516         corr = corr * ((150142 * state1) / 10000 - 78642);
3517         corr /= 100000;
3518         corr2 = (corr * dev_priv->ips.corr);
3519
3520         state2 = (corr2 * state1) / 10000;
3521         state2 /= 100; /* convert to mW */
3522
3523         __i915_update_gfx_val(dev_priv);
3524
3525         return dev_priv->ips.gfx_power + state2;
3526 }
3527
3528 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3529 {
3530         unsigned long val;
3531
3532         if (dev_priv->info->gen != 5)
3533                 return 0;
3534
3535         spin_lock_irq(&mchdev_lock);
3536
3537         val = __i915_gfx_val(dev_priv);
3538
3539         spin_unlock_irq(&mchdev_lock);
3540
3541         return val;
3542 }
3543
3544 /**
3545  * i915_read_mch_val - return value for IPS use
3546  *
3547  * Calculate and return a value for the IPS driver to use when deciding whether
3548  * we have thermal and power headroom to increase CPU or GPU power budget.
3549  */
3550 unsigned long i915_read_mch_val(void)
3551 {
3552         struct drm_i915_private *dev_priv;
3553         unsigned long chipset_val, graphics_val, ret = 0;
3554
3555         spin_lock_irq(&mchdev_lock);
3556         if (!i915_mch_dev)
3557                 goto out_unlock;
3558         dev_priv = i915_mch_dev;
3559
3560         chipset_val = __i915_chipset_val(dev_priv);
3561         graphics_val = __i915_gfx_val(dev_priv);
3562
3563         ret = chipset_val + graphics_val;
3564
3565 out_unlock:
3566         spin_unlock_irq(&mchdev_lock);
3567
3568         return ret;
3569 }
3570 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3571
3572 /**
3573  * i915_gpu_raise - raise GPU frequency limit
3574  *
3575  * Raise the limit; IPS indicates we have thermal headroom.
3576  */
3577 bool i915_gpu_raise(void)
3578 {
3579         struct drm_i915_private *dev_priv;
3580         bool ret = true;
3581
3582         spin_lock_irq(&mchdev_lock);
3583         if (!i915_mch_dev) {
3584                 ret = false;
3585                 goto out_unlock;
3586         }
3587         dev_priv = i915_mch_dev;
3588
3589         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3590                 dev_priv->ips.max_delay--;
3591
3592 out_unlock:
3593         spin_unlock_irq(&mchdev_lock);
3594
3595         return ret;
3596 }
3597 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3598
3599 /**
3600  * i915_gpu_lower - lower GPU frequency limit
3601  *
3602  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3603  * frequency maximum.
3604  */
3605 bool i915_gpu_lower(void)
3606 {
3607         struct drm_i915_private *dev_priv;
3608         bool ret = true;
3609
3610         spin_lock_irq(&mchdev_lock);
3611         if (!i915_mch_dev) {
3612                 ret = false;
3613                 goto out_unlock;
3614         }
3615         dev_priv = i915_mch_dev;
3616
3617         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3618                 dev_priv->ips.max_delay++;
3619
3620 out_unlock:
3621         spin_unlock_irq(&mchdev_lock);
3622
3623         return ret;
3624 }
3625 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3626
3627 /**
3628  * i915_gpu_busy - indicate GPU business to IPS
3629  *
3630  * Tell the IPS driver whether or not the GPU is busy.
3631  */
3632 bool i915_gpu_busy(void)
3633 {
3634         struct drm_i915_private *dev_priv;
3635         struct intel_ring_buffer *ring;
3636         bool ret = false;
3637         int i;
3638
3639         spin_lock_irq(&mchdev_lock);
3640         if (!i915_mch_dev)
3641                 goto out_unlock;
3642         dev_priv = i915_mch_dev;
3643
3644         for_each_ring(ring, dev_priv, i)
3645                 ret |= !list_empty(&ring->request_list);
3646
3647 out_unlock:
3648         spin_unlock_irq(&mchdev_lock);
3649
3650         return ret;
3651 }
3652 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3653
3654 /**
3655  * i915_gpu_turbo_disable - disable graphics turbo
3656  *
3657  * Disable graphics turbo by resetting the max frequency and setting the
3658  * current frequency to the default.
3659  */
3660 bool i915_gpu_turbo_disable(void)
3661 {
3662         struct drm_i915_private *dev_priv;
3663         bool ret = true;
3664
3665         spin_lock_irq(&mchdev_lock);
3666         if (!i915_mch_dev) {
3667                 ret = false;
3668                 goto out_unlock;
3669         }
3670         dev_priv = i915_mch_dev;
3671
3672         dev_priv->ips.max_delay = dev_priv->ips.fstart;
3673
3674         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3675                 ret = false;
3676
3677 out_unlock:
3678         spin_unlock_irq(&mchdev_lock);
3679
3680         return ret;
3681 }
3682 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3683
3684 /**
3685  * Tells the intel_ips driver that the i915 driver is now loaded, if
3686  * IPS got loaded first.
3687  *
3688  * This awkward dance is so that neither module has to depend on the
3689  * other in order for IPS to do the appropriate communication of
3690  * GPU turbo limits to i915.
3691  */
3692 static void
3693 ips_ping_for_i915_load(void)
3694 {
3695         void (*link)(void);
3696
3697         link = symbol_get(ips_link_to_i915_driver);
3698         if (link) {
3699                 link();
3700                 symbol_put(ips_link_to_i915_driver);
3701         }
3702 }
3703
3704 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3705 {
3706         /* We only register the i915 ips part with intel-ips once everything is
3707          * set up, to avoid intel-ips sneaking in and reading bogus values. */
3708         spin_lock_irq(&mchdev_lock);
3709         i915_mch_dev = dev_priv;
3710         spin_unlock_irq(&mchdev_lock);
3711
3712         ips_ping_for_i915_load();
3713 }
3714
3715 void intel_gpu_ips_teardown(void)
3716 {
3717         spin_lock_irq(&mchdev_lock);
3718         i915_mch_dev = NULL;
3719         spin_unlock_irq(&mchdev_lock);
3720 }
3721 static void intel_init_emon(struct drm_device *dev)
3722 {
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724         u32 lcfuse;
3725         u8 pxw[16];
3726         int i;
3727
3728         /* Disable to program */
3729         I915_WRITE(ECR, 0);
3730         POSTING_READ(ECR);
3731
3732         /* Program energy weights for various events */
3733         I915_WRITE(SDEW, 0x15040d00);
3734         I915_WRITE(CSIEW0, 0x007f0000);
3735         I915_WRITE(CSIEW1, 0x1e220004);
3736         I915_WRITE(CSIEW2, 0x04000004);
3737
3738         for (i = 0; i < 5; i++)
3739                 I915_WRITE(PEW + (i * 4), 0);
3740         for (i = 0; i < 3; i++)
3741                 I915_WRITE(DEW + (i * 4), 0);
3742
3743         /* Program P-state weights to account for frequency power adjustment */
3744         for (i = 0; i < 16; i++) {
3745                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3746                 unsigned long freq = intel_pxfreq(pxvidfreq);
3747                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3748                         PXVFREQ_PX_SHIFT;
3749                 unsigned long val;
3750
3751                 val = vid * vid;
3752                 val *= (freq / 1000);
3753                 val *= 255;
3754                 val /= (127*127*900);
3755                 if (val > 0xff)
3756                         DRM_ERROR("bad pxval: %ld\n", val);
3757                 pxw[i] = val;
3758         }
3759         /* Render standby states get 0 weight */
3760         pxw[14] = 0;
3761         pxw[15] = 0;
3762
3763         for (i = 0; i < 4; i++) {
3764                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3765                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3766                 I915_WRITE(PXW + (i * 4), val);
3767         }
3768
3769         /* Adjust magic regs to magic values (more experimental results) */
3770         I915_WRITE(OGW0, 0);
3771         I915_WRITE(OGW1, 0);
3772         I915_WRITE(EG0, 0x00007f00);
3773         I915_WRITE(EG1, 0x0000000e);
3774         I915_WRITE(EG2, 0x000e0000);
3775         I915_WRITE(EG3, 0x68000300);
3776         I915_WRITE(EG4, 0x42000000);
3777         I915_WRITE(EG5, 0x00140031);
3778         I915_WRITE(EG6, 0);
3779         I915_WRITE(EG7, 0);
3780
3781         for (i = 0; i < 8; i++)
3782                 I915_WRITE(PXWL + (i * 4), 0);
3783
3784         /* Enable PMON + select events */
3785         I915_WRITE(ECR, 0x80000019);
3786
3787         lcfuse = I915_READ(LCFUSE02);
3788
3789         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3790 }
3791
3792 void intel_disable_gt_powersave(struct drm_device *dev)
3793 {
3794         struct drm_i915_private *dev_priv = dev->dev_private;
3795
3796         /* Interrupts should be disabled already to avoid re-arming. */
3797         WARN_ON(dev->irq_enabled);
3798
3799         if (IS_IRONLAKE_M(dev)) {
3800                 ironlake_disable_drps(dev);
3801                 ironlake_disable_rc6(dev);
3802         } else if (INTEL_INFO(dev)->gen >= 6) {
3803                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3804                 cancel_work_sync(&dev_priv->rps.work);
3805                 if (IS_VALLEYVIEW(dev))
3806                         cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
3807                 mutex_lock(&dev_priv->rps.hw_lock);
3808                 if (IS_VALLEYVIEW(dev))
3809                         valleyview_disable_rps(dev);
3810                 else
3811                         gen6_disable_rps(dev);
3812                 mutex_unlock(&dev_priv->rps.hw_lock);
3813         }
3814 }
3815
3816 static void intel_gen6_powersave_work(struct work_struct *work)
3817 {
3818         struct drm_i915_private *dev_priv =
3819                 container_of(work, struct drm_i915_private,
3820                              rps.delayed_resume_work.work);
3821         struct drm_device *dev = dev_priv->dev;
3822
3823         mutex_lock(&dev_priv->rps.hw_lock);
3824
3825         if (IS_VALLEYVIEW(dev)) {
3826                 valleyview_enable_rps(dev);
3827         } else {
3828                 gen6_enable_rps(dev);
3829                 gen6_update_ring_freq(dev);
3830         }
3831         mutex_unlock(&dev_priv->rps.hw_lock);
3832 }
3833
3834 void intel_enable_gt_powersave(struct drm_device *dev)
3835 {
3836         struct drm_i915_private *dev_priv = dev->dev_private;
3837
3838         if (IS_IRONLAKE_M(dev)) {
3839                 ironlake_enable_drps(dev);
3840                 ironlake_enable_rc6(dev);
3841                 intel_init_emon(dev);
3842         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
3843                 /*
3844                  * PCU communication is slow and this doesn't need to be
3845                  * done at any specific time, so do this out of our fast path
3846                  * to make resume and init faster.
3847                  */
3848                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3849                                       round_jiffies_up_relative(HZ));
3850         }
3851 }
3852
3853 static void ibx_init_clock_gating(struct drm_device *dev)
3854 {
3855         struct drm_i915_private *dev_priv = dev->dev_private;
3856
3857         /*
3858          * On Ibex Peak and Cougar Point, we need to disable clock
3859          * gating for the panel power sequencer or it will fail to
3860          * start up when no ports are active.
3861          */
3862         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3863 }
3864
3865 static void ironlake_init_clock_gating(struct drm_device *dev)
3866 {
3867         struct drm_i915_private *dev_priv = dev->dev_private;
3868         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3869
3870         /* Required for FBC */
3871         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3872                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3873                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3874
3875         I915_WRITE(PCH_3DCGDIS0,
3876                    MARIUNIT_CLOCK_GATE_DISABLE |
3877                    SVSMUNIT_CLOCK_GATE_DISABLE);
3878         I915_WRITE(PCH_3DCGDIS1,
3879                    VFMUNIT_CLOCK_GATE_DISABLE);
3880
3881         /*
3882          * According to the spec the following bits should be set in
3883          * order to enable memory self-refresh
3884          * The bit 22/21 of 0x42004
3885          * The bit 5 of 0x42020
3886          * The bit 15 of 0x45000
3887          */
3888         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3889                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3890                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3891         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3892         I915_WRITE(DISP_ARB_CTL,
3893                    (I915_READ(DISP_ARB_CTL) |
3894                     DISP_FBC_WM_DIS));
3895         I915_WRITE(WM3_LP_ILK, 0);
3896         I915_WRITE(WM2_LP_ILK, 0);
3897         I915_WRITE(WM1_LP_ILK, 0);
3898
3899         /*
3900          * Based on the document from hardware guys the following bits
3901          * should be set unconditionally in order to enable FBC.
3902          * The bit 22 of 0x42000
3903          * The bit 22 of 0x42004
3904          * The bit 7,8,9 of 0x42020.
3905          */
3906         if (IS_IRONLAKE_M(dev)) {
3907                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3908                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3909                            ILK_FBCQ_DIS);
3910                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3911                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3912                            ILK_DPARB_GATE);
3913         }
3914
3915         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3916
3917         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3918                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3919                    ILK_ELPIN_409_SELECT);
3920         I915_WRITE(_3D_CHICKEN2,
3921                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3922                    _3D_CHICKEN2_WM_READ_PIPELINED);
3923
3924         /* WaDisableRenderCachePipelinedFlush:ilk */
3925         I915_WRITE(CACHE_MODE_0,
3926                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3927
3928         ibx_init_clock_gating(dev);
3929 }
3930
3931 static void cpt_init_clock_gating(struct drm_device *dev)
3932 {
3933         struct drm_i915_private *dev_priv = dev->dev_private;
3934         int pipe;
3935         uint32_t val;
3936
3937         /*
3938          * On Ibex Peak and Cougar Point, we need to disable clock
3939          * gating for the panel power sequencer or it will fail to
3940          * start up when no ports are active.
3941          */
3942         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3943         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3944                    DPLS_EDP_PPS_FIX_DIS);
3945         /* The below fixes the weird display corruption, a few pixels shifted
3946          * downward, on (only) LVDS of some HP laptops with IVY.
3947          */
3948         for_each_pipe(pipe) {
3949                 val = I915_READ(TRANS_CHICKEN2(pipe));
3950                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
3951                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3952                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
3953                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3954                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
3955                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
3956                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
3957                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
3958         }
3959         /* WADP0ClockGatingDisable */
3960         for_each_pipe(pipe) {
3961                 I915_WRITE(TRANS_CHICKEN1(pipe),
3962                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3963         }
3964 }
3965
3966 static void gen6_check_mch_setup(struct drm_device *dev)
3967 {
3968         struct drm_i915_private *dev_priv = dev->dev_private;
3969         uint32_t tmp;
3970
3971         tmp = I915_READ(MCH_SSKPD);
3972         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
3973                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
3974                 DRM_INFO("This can cause pipe underruns and display issues.\n");
3975                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
3976         }
3977 }
3978
3979 static void gen6_init_clock_gating(struct drm_device *dev)
3980 {
3981         struct drm_i915_private *dev_priv = dev->dev_private;
3982         int pipe;
3983         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3984
3985         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3986
3987         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3988                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3989                    ILK_ELPIN_409_SELECT);
3990
3991         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3992         I915_WRITE(_3D_CHICKEN,
3993                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3994
3995         /* WaSetupGtModeTdRowDispatch:snb */
3996         if (IS_SNB_GT1(dev))
3997                 I915_WRITE(GEN6_GT_MODE,
3998                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3999
4000         I915_WRITE(WM3_LP_ILK, 0);
4001         I915_WRITE(WM2_LP_ILK, 0);
4002         I915_WRITE(WM1_LP_ILK, 0);
4003
4004         I915_WRITE(CACHE_MODE_0,
4005                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4006
4007         I915_WRITE(GEN6_UCGCTL1,
4008                    I915_READ(GEN6_UCGCTL1) |
4009                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4010                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4011
4012         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4013          * gating disable must be set.  Failure to set it results in
4014          * flickering pixels due to Z write ordering failures after
4015          * some amount of runtime in the Mesa "fire" demo, and Unigine
4016          * Sanctuary and Tropics, and apparently anything else with
4017          * alpha test or pixel discard.
4018          *
4019          * According to the spec, bit 11 (RCCUNIT) must also be set,
4020          * but we didn't debug actual testcases to find it out.
4021          *
4022          * Also apply WaDisableVDSUnitClockGating:snb and
4023          * WaDisableRCPBUnitClockGating:snb.
4024          */
4025         I915_WRITE(GEN6_UCGCTL2,
4026                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4027                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4028                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4029
4030         /* Bspec says we need to always set all mask bits. */
4031         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4032                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4033
4034         /*
4035          * According to the spec the following bits should be
4036          * set in order to enable memory self-refresh and fbc:
4037          * The bit21 and bit22 of 0x42000
4038          * The bit21 and bit22 of 0x42004
4039          * The bit5 and bit7 of 0x42020
4040          * The bit14 of 0x70180
4041          * The bit14 of 0x71180
4042          */
4043         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4044                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4045                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4046         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4047                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4048                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4049         I915_WRITE(ILK_DSPCLK_GATE_D,
4050                    I915_READ(ILK_DSPCLK_GATE_D) |
4051                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4052                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4053
4054         /* WaMbcDriverBootEnable:snb */
4055         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4056                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4057
4058         for_each_pipe(pipe) {
4059                 I915_WRITE(DSPCNTR(pipe),
4060                            I915_READ(DSPCNTR(pipe)) |
4061                            DISPPLANE_TRICKLE_FEED_DISABLE);
4062                 intel_flush_display_plane(dev_priv, pipe);
4063         }
4064
4065         /* The default value should be 0x200 according to docs, but the two
4066          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4067         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4068         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4069
4070         cpt_init_clock_gating(dev);
4071
4072         gen6_check_mch_setup(dev);
4073 }
4074
4075 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4076 {
4077         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4078
4079         reg &= ~GEN7_FF_SCHED_MASK;
4080         reg |= GEN7_FF_TS_SCHED_HW;
4081         reg |= GEN7_FF_VS_SCHED_HW;
4082         reg |= GEN7_FF_DS_SCHED_HW;
4083
4084         if (IS_HASWELL(dev_priv->dev))
4085                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4086
4087         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4088 }
4089
4090 static void lpt_init_clock_gating(struct drm_device *dev)
4091 {
4092         struct drm_i915_private *dev_priv = dev->dev_private;
4093
4094         /*
4095          * TODO: this bit should only be enabled when really needed, then
4096          * disabled when not needed anymore in order to save power.
4097          */
4098         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4099                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4100                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4101                            PCH_LP_PARTITION_LEVEL_DISABLE);
4102
4103         /* WADPOClockGatingDisable:hsw */
4104         I915_WRITE(_TRANSA_CHICKEN1,
4105                    I915_READ(_TRANSA_CHICKEN1) |
4106                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4107 }
4108
4109 static void lpt_suspend_hw(struct drm_device *dev)
4110 {
4111         struct drm_i915_private *dev_priv = dev->dev_private;
4112
4113         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4114                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4115
4116                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4117                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4118         }
4119 }
4120
4121 static void haswell_init_clock_gating(struct drm_device *dev)
4122 {
4123         struct drm_i915_private *dev_priv = dev->dev_private;
4124         int pipe;
4125
4126         I915_WRITE(WM3_LP_ILK, 0);
4127         I915_WRITE(WM2_LP_ILK, 0);
4128         I915_WRITE(WM1_LP_ILK, 0);
4129
4130         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4131          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4132          */
4133         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4134
4135         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4136         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4137                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4138
4139         /* WaApplyL3ControlAndL3ChickenMode:hsw */
4140         I915_WRITE(GEN7_L3CNTLREG1,
4141                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4142         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4143                         GEN7_WA_L3_CHICKEN_MODE);
4144
4145         /* This is required by WaCatErrorRejectionIssue:hsw */
4146         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4147                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4148                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4149
4150         for_each_pipe(pipe) {
4151                 I915_WRITE(DSPCNTR(pipe),
4152                            I915_READ(DSPCNTR(pipe)) |
4153                            DISPPLANE_TRICKLE_FEED_DISABLE);
4154                 intel_flush_display_plane(dev_priv, pipe);
4155         }
4156
4157         /* WaVSRefCountFullforceMissDisable:hsw */
4158         gen7_setup_fixed_func_scheduler(dev_priv);
4159
4160         /* WaDisable4x2SubspanOptimization:hsw */
4161         I915_WRITE(CACHE_MODE_1,
4162                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4163
4164         /* WaMbcDriverBootEnable:hsw */
4165         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4166                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4167
4168         /* WaSwitchSolVfFArbitrationPriority:hsw */
4169         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4170
4171         /* WaRsPkgCStateDisplayPMReq:hsw */
4172         I915_WRITE(CHICKEN_PAR1_1,
4173                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4174
4175         lpt_init_clock_gating(dev);
4176 }
4177
4178 static void ivybridge_init_clock_gating(struct drm_device *dev)
4179 {
4180         struct drm_i915_private *dev_priv = dev->dev_private;
4181         int pipe;
4182         uint32_t snpcr;
4183
4184         I915_WRITE(WM3_LP_ILK, 0);
4185         I915_WRITE(WM2_LP_ILK, 0);
4186         I915_WRITE(WM1_LP_ILK, 0);
4187
4188         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4189
4190         /* WaDisableEarlyCull:ivb */
4191         I915_WRITE(_3D_CHICKEN3,
4192                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4193
4194         /* WaDisableBackToBackFlipFix:ivb */
4195         I915_WRITE(IVB_CHICKEN3,
4196                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4197                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4198
4199         /* WaDisablePSDDualDispatchEnable:ivb */
4200         if (IS_IVB_GT1(dev))
4201                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4202                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4203         else
4204                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4205                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4206
4207         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4208         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4209                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4210
4211         /* WaApplyL3ControlAndL3ChickenMode:ivb */
4212         I915_WRITE(GEN7_L3CNTLREG1,
4213                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4214         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4215                    GEN7_WA_L3_CHICKEN_MODE);
4216         if (IS_IVB_GT1(dev))
4217                 I915_WRITE(GEN7_ROW_CHICKEN2,
4218                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4219         else
4220                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4221                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4222
4223
4224         /* WaForceL3Serialization:ivb */
4225         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4226                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4227
4228         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4229          * gating disable must be set.  Failure to set it results in
4230          * flickering pixels due to Z write ordering failures after
4231          * some amount of runtime in the Mesa "fire" demo, and Unigine
4232          * Sanctuary and Tropics, and apparently anything else with
4233          * alpha test or pixel discard.
4234          *
4235          * According to the spec, bit 11 (RCCUNIT) must also be set,
4236          * but we didn't debug actual testcases to find it out.
4237          *
4238          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4239          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4240          */
4241         I915_WRITE(GEN6_UCGCTL2,
4242                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4243                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4244
4245         /* This is required by WaCatErrorRejectionIssue:ivb */
4246         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4247                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4248                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4249
4250         for_each_pipe(pipe) {
4251                 I915_WRITE(DSPCNTR(pipe),
4252                            I915_READ(DSPCNTR(pipe)) |
4253                            DISPPLANE_TRICKLE_FEED_DISABLE);
4254                 intel_flush_display_plane(dev_priv, pipe);
4255         }
4256
4257         /* WaMbcDriverBootEnable:ivb */
4258         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4259                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4260
4261         /* WaVSRefCountFullforceMissDisable:ivb */
4262         gen7_setup_fixed_func_scheduler(dev_priv);
4263
4264         /* WaDisable4x2SubspanOptimization:ivb */
4265         I915_WRITE(CACHE_MODE_1,
4266                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4267
4268         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4269         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4270         snpcr |= GEN6_MBC_SNPCR_MED;
4271         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4272
4273         if (!HAS_PCH_NOP(dev))
4274                 cpt_init_clock_gating(dev);
4275
4276         gen6_check_mch_setup(dev);
4277 }
4278
4279 static void valleyview_init_clock_gating(struct drm_device *dev)
4280 {
4281         struct drm_i915_private *dev_priv = dev->dev_private;
4282         int pipe;
4283
4284         I915_WRITE(WM3_LP_ILK, 0);
4285         I915_WRITE(WM2_LP_ILK, 0);
4286         I915_WRITE(WM1_LP_ILK, 0);
4287
4288         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4289
4290         /* WaDisableEarlyCull:vlv */
4291         I915_WRITE(_3D_CHICKEN3,
4292                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4293
4294         /* WaDisableBackToBackFlipFix:vlv */
4295         I915_WRITE(IVB_CHICKEN3,
4296                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4297                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4298
4299         /* WaDisablePSDDualDispatchEnable:vlv */
4300         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4301                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4302                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4303
4304         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4305         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4306                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4307
4308         /* WaApplyL3ControlAndL3ChickenMode:vlv */
4309         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4310         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4311
4312         /* WaForceL3Serialization:vlv */
4313         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4314                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4315
4316         /* WaDisableDopClockGating:vlv */
4317         I915_WRITE(GEN7_ROW_CHICKEN2,
4318                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4319
4320         /* WaForceL3Serialization:vlv */
4321         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4322                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4323
4324         /* This is required by WaCatErrorRejectionIssue:vlv */
4325         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4326                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4327                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4328
4329         /* WaMbcDriverBootEnable:vlv */
4330         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4331                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4332
4333
4334         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4335          * gating disable must be set.  Failure to set it results in
4336          * flickering pixels due to Z write ordering failures after
4337          * some amount of runtime in the Mesa "fire" demo, and Unigine
4338          * Sanctuary and Tropics, and apparently anything else with
4339          * alpha test or pixel discard.
4340          *
4341          * According to the spec, bit 11 (RCCUNIT) must also be set,
4342          * but we didn't debug actual testcases to find it out.
4343          *
4344          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4345          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4346          *
4347          * Also apply WaDisableVDSUnitClockGating:vlv and
4348          * WaDisableRCPBUnitClockGating:vlv.
4349          */
4350         I915_WRITE(GEN6_UCGCTL2,
4351                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4352                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4353                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4354                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4355                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4356
4357         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4358
4359         for_each_pipe(pipe) {
4360                 I915_WRITE(DSPCNTR(pipe),
4361                            I915_READ(DSPCNTR(pipe)) |
4362                            DISPPLANE_TRICKLE_FEED_DISABLE);
4363                 intel_flush_display_plane(dev_priv, pipe);
4364         }
4365
4366         I915_WRITE(CACHE_MODE_1,
4367                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4368
4369         /*
4370          * WaDisableVLVClockGating_VBIIssue:vlv
4371          * Disable clock gating on th GCFG unit to prevent a delay
4372          * in the reporting of vblank events.
4373          */
4374         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4375
4376         /* Conservative clock gating settings for now */
4377         I915_WRITE(0x9400, 0xffffffff);
4378         I915_WRITE(0x9404, 0xffffffff);
4379         I915_WRITE(0x9408, 0xffffffff);
4380         I915_WRITE(0x940c, 0xffffffff);
4381         I915_WRITE(0x9410, 0xffffffff);
4382         I915_WRITE(0x9414, 0xffffffff);
4383         I915_WRITE(0x9418, 0xffffffff);
4384 }
4385
4386 static void g4x_init_clock_gating(struct drm_device *dev)
4387 {
4388         struct drm_i915_private *dev_priv = dev->dev_private;
4389         uint32_t dspclk_gate;
4390
4391         I915_WRITE(RENCLK_GATE_D1, 0);
4392         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4393                    GS_UNIT_CLOCK_GATE_DISABLE |
4394                    CL_UNIT_CLOCK_GATE_DISABLE);
4395         I915_WRITE(RAMCLK_GATE_D, 0);
4396         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4397                 OVRUNIT_CLOCK_GATE_DISABLE |
4398                 OVCUNIT_CLOCK_GATE_DISABLE;
4399         if (IS_GM45(dev))
4400                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4401         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4402
4403         /* WaDisableRenderCachePipelinedFlush */
4404         I915_WRITE(CACHE_MODE_0,
4405                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4406 }
4407
4408 static void crestline_init_clock_gating(struct drm_device *dev)
4409 {
4410         struct drm_i915_private *dev_priv = dev->dev_private;
4411
4412         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4413         I915_WRITE(RENCLK_GATE_D2, 0);
4414         I915_WRITE(DSPCLK_GATE_D, 0);
4415         I915_WRITE(RAMCLK_GATE_D, 0);
4416         I915_WRITE16(DEUC, 0);
4417 }
4418
4419 static void broadwater_init_clock_gating(struct drm_device *dev)
4420 {
4421         struct drm_i915_private *dev_priv = dev->dev_private;
4422
4423         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4424                    I965_RCC_CLOCK_GATE_DISABLE |
4425                    I965_RCPB_CLOCK_GATE_DISABLE |
4426                    I965_ISC_CLOCK_GATE_DISABLE |
4427                    I965_FBC_CLOCK_GATE_DISABLE);
4428         I915_WRITE(RENCLK_GATE_D2, 0);
4429 }
4430
4431 static void gen3_init_clock_gating(struct drm_device *dev)
4432 {
4433         struct drm_i915_private *dev_priv = dev->dev_private;
4434         u32 dstate = I915_READ(D_STATE);
4435
4436         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4437                 DSTATE_DOT_CLOCK_GATING;
4438         I915_WRITE(D_STATE, dstate);
4439
4440         if (IS_PINEVIEW(dev))
4441                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4442
4443         /* IIR "flip pending" means done if this bit is set */
4444         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4445 }
4446
4447 static void i85x_init_clock_gating(struct drm_device *dev)
4448 {
4449         struct drm_i915_private *dev_priv = dev->dev_private;
4450
4451         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4452 }
4453
4454 static void i830_init_clock_gating(struct drm_device *dev)
4455 {
4456         struct drm_i915_private *dev_priv = dev->dev_private;
4457
4458         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4459 }
4460
4461 void intel_init_clock_gating(struct drm_device *dev)
4462 {
4463         struct drm_i915_private *dev_priv = dev->dev_private;
4464
4465         dev_priv->display.init_clock_gating(dev);
4466 }
4467
4468 void intel_suspend_hw(struct drm_device *dev)
4469 {
4470         if (HAS_PCH_LPT(dev))
4471                 lpt_suspend_hw(dev);
4472 }
4473
4474 /**
4475  * We should only use the power well if we explicitly asked the hardware to
4476  * enable it, so check if it's enabled and also check if we've requested it to
4477  * be enabled.
4478  */
4479 bool intel_display_power_enabled(struct drm_device *dev,
4480                                  enum intel_display_power_domain domain)
4481 {
4482         struct drm_i915_private *dev_priv = dev->dev_private;
4483
4484         if (!HAS_POWER_WELL(dev))
4485                 return true;
4486
4487         switch (domain) {
4488         case POWER_DOMAIN_PIPE_A:
4489         case POWER_DOMAIN_TRANSCODER_EDP:
4490                 return true;
4491         case POWER_DOMAIN_PIPE_B:
4492         case POWER_DOMAIN_PIPE_C:
4493         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
4494         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
4495         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
4496         case POWER_DOMAIN_TRANSCODER_A:
4497         case POWER_DOMAIN_TRANSCODER_B:
4498         case POWER_DOMAIN_TRANSCODER_C:
4499                 return I915_READ(HSW_PWR_WELL_DRIVER) ==
4500                        (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
4501         default:
4502                 BUG();
4503         }
4504 }
4505
4506 void intel_set_power_well(struct drm_device *dev, bool enable)
4507 {
4508         struct drm_i915_private *dev_priv = dev->dev_private;
4509         bool is_enabled, enable_requested;
4510         uint32_t tmp;
4511
4512         if (!HAS_POWER_WELL(dev))
4513                 return;
4514
4515         if (!i915_disable_power_well && !enable)
4516                 return;
4517
4518         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4519         is_enabled = tmp & HSW_PWR_WELL_STATE;
4520         enable_requested = tmp & HSW_PWR_WELL_ENABLE;
4521
4522         if (enable) {
4523                 if (!enable_requested)
4524                         I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
4525
4526                 if (!is_enabled) {
4527                         DRM_DEBUG_KMS("Enabling power well\n");
4528                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4529                                       HSW_PWR_WELL_STATE), 20))
4530                                 DRM_ERROR("Timeout enabling power well\n");
4531                 }
4532         } else {
4533                 if (enable_requested) {
4534                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4535                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
4536                 }
4537         }
4538 }
4539
4540 /*
4541  * Starting with Haswell, we have a "Power Down Well" that can be turned off
4542  * when not needed anymore. We have 4 registers that can request the power well
4543  * to be enabled, and it will only be disabled if none of the registers is
4544  * requesting it to be enabled.
4545  */
4546 void intel_init_power_well(struct drm_device *dev)
4547 {
4548         struct drm_i915_private *dev_priv = dev->dev_private;
4549
4550         if (!HAS_POWER_WELL(dev))
4551                 return;
4552
4553         /* For now, we need the power well to be always enabled. */
4554         intel_set_power_well(dev, true);
4555
4556         /* We're taking over the BIOS, so clear any requests made by it since
4557          * the driver is in charge now. */
4558         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
4559                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
4560 }
4561
4562 /* Set up chip specific power management-related functions */
4563 void intel_init_pm(struct drm_device *dev)
4564 {
4565         struct drm_i915_private *dev_priv = dev->dev_private;
4566
4567         if (I915_HAS_FBC(dev)) {
4568                 if (HAS_PCH_SPLIT(dev)) {
4569                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4570                         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4571                                 dev_priv->display.enable_fbc =
4572                                         gen7_enable_fbc;
4573                         else
4574                                 dev_priv->display.enable_fbc =
4575                                         ironlake_enable_fbc;
4576                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
4577                 } else if (IS_GM45(dev)) {
4578                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4579                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4580                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4581                 } else if (IS_CRESTLINE(dev)) {
4582                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4583                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4584                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4585                 }
4586                 /* 855GM needs testing */
4587         }
4588
4589         /* For cxsr */
4590         if (IS_PINEVIEW(dev))
4591                 i915_pineview_get_mem_freq(dev);
4592         else if (IS_GEN5(dev))
4593                 i915_ironlake_get_mem_freq(dev);
4594
4595         /* For FIFO watermark updates */
4596         if (HAS_PCH_SPLIT(dev)) {
4597                 if (IS_GEN5(dev)) {
4598                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4599                                 dev_priv->display.update_wm = ironlake_update_wm;
4600                         else {
4601                                 DRM_DEBUG_KMS("Failed to get proper latency. "
4602                                               "Disable CxSR\n");
4603                                 dev_priv->display.update_wm = NULL;
4604                         }
4605                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4606                 } else if (IS_GEN6(dev)) {
4607                         if (SNB_READ_WM0_LATENCY()) {
4608                                 dev_priv->display.update_wm = sandybridge_update_wm;
4609                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4610                         } else {
4611                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4612                                               "Disable CxSR\n");
4613                                 dev_priv->display.update_wm = NULL;
4614                         }
4615                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4616                 } else if (IS_IVYBRIDGE(dev)) {
4617                         if (SNB_READ_WM0_LATENCY()) {
4618                                 dev_priv->display.update_wm = ivybridge_update_wm;
4619                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4620                         } else {
4621                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4622                                               "Disable CxSR\n");
4623                                 dev_priv->display.update_wm = NULL;
4624                         }
4625                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4626                 } else if (IS_HASWELL(dev)) {
4627                         if (I915_READ64(MCH_SSKPD)) {
4628                                 dev_priv->display.update_wm = haswell_update_wm;
4629                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4630                         } else {
4631                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4632                                               "Disable CxSR\n");
4633                                 dev_priv->display.update_wm = NULL;
4634                         }
4635                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4636                 } else
4637                         dev_priv->display.update_wm = NULL;
4638         } else if (IS_VALLEYVIEW(dev)) {
4639                 dev_priv->display.update_wm = valleyview_update_wm;
4640                 dev_priv->display.init_clock_gating =
4641                         valleyview_init_clock_gating;
4642         } else if (IS_PINEVIEW(dev)) {
4643                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4644                                             dev_priv->is_ddr3,
4645                                             dev_priv->fsb_freq,
4646                                             dev_priv->mem_freq)) {
4647                         DRM_INFO("failed to find known CxSR latency "
4648                                  "(found ddr%s fsb freq %d, mem freq %d), "
4649                                  "disabling CxSR\n",
4650                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
4651                                  dev_priv->fsb_freq, dev_priv->mem_freq);
4652                         /* Disable CxSR and never update its watermark again */
4653                         pineview_disable_cxsr(dev);
4654                         dev_priv->display.update_wm = NULL;
4655                 } else
4656                         dev_priv->display.update_wm = pineview_update_wm;
4657                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4658         } else if (IS_G4X(dev)) {
4659                 dev_priv->display.update_wm = g4x_update_wm;
4660                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4661         } else if (IS_GEN4(dev)) {
4662                 dev_priv->display.update_wm = i965_update_wm;
4663                 if (IS_CRESTLINE(dev))
4664                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4665                 else if (IS_BROADWATER(dev))
4666                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4667         } else if (IS_GEN3(dev)) {
4668                 dev_priv->display.update_wm = i9xx_update_wm;
4669                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4670                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4671         } else if (IS_I865G(dev)) {
4672                 dev_priv->display.update_wm = i830_update_wm;
4673                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4674                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4675         } else if (IS_I85X(dev)) {
4676                 dev_priv->display.update_wm = i9xx_update_wm;
4677                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4678                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4679         } else {
4680                 dev_priv->display.update_wm = i830_update_wm;
4681                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4682                 if (IS_845G(dev))
4683                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4684                 else
4685                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4686         }
4687 }
4688
4689 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4690 {
4691         u32 gt_thread_status_mask;
4692
4693         if (IS_HASWELL(dev_priv->dev))
4694                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4695         else
4696                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4697
4698         /* w/a for a sporadic read returning 0 by waiting for the GT
4699          * thread to wake up.
4700          */
4701         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4702                 DRM_ERROR("GT thread status wait timed out\n");
4703 }
4704
4705 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4706 {
4707         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4708         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4709 }
4710
4711 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4712 {
4713         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
4714                             FORCEWAKE_ACK_TIMEOUT_MS))
4715                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4716
4717         I915_WRITE_NOTRACE(FORCEWAKE, 1);
4718         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4719
4720         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
4721                             FORCEWAKE_ACK_TIMEOUT_MS))
4722                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4723
4724         /* WaRsForcewakeWaitTC0:snb */
4725         __gen6_gt_wait_for_thread_c0(dev_priv);
4726 }
4727
4728 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4729 {
4730         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4731         /* something from same cacheline, but !FORCEWAKE_MT */
4732         POSTING_READ(ECOBUS);
4733 }
4734
4735 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4736 {
4737         u32 forcewake_ack;
4738
4739         if (IS_HASWELL(dev_priv->dev))
4740                 forcewake_ack = FORCEWAKE_ACK_HSW;
4741         else
4742                 forcewake_ack = FORCEWAKE_MT_ACK;
4743
4744         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
4745                             FORCEWAKE_ACK_TIMEOUT_MS))
4746                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4747
4748         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4749         /* something from same cacheline, but !FORCEWAKE_MT */
4750         POSTING_READ(ECOBUS);
4751
4752         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
4753                             FORCEWAKE_ACK_TIMEOUT_MS))
4754                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4755
4756         /* WaRsForcewakeWaitTC0:ivb,hsw */
4757         __gen6_gt_wait_for_thread_c0(dev_priv);
4758 }
4759
4760 /*
4761  * Generally this is called implicitly by the register read function. However,
4762  * if some sequence requires the GT to not power down then this function should
4763  * be called at the beginning of the sequence followed by a call to
4764  * gen6_gt_force_wake_put() at the end of the sequence.
4765  */
4766 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4767 {
4768         unsigned long irqflags;
4769
4770         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4771         if (dev_priv->forcewake_count++ == 0)
4772                 dev_priv->gt.force_wake_get(dev_priv);
4773         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4774 }
4775
4776 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4777 {
4778         u32 gtfifodbg;
4779         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4780         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4781              "MMIO read or write has been dropped %x\n", gtfifodbg))
4782                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4783 }
4784
4785 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4786 {
4787         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4788         /* something from same cacheline, but !FORCEWAKE */
4789         POSTING_READ(ECOBUS);
4790         gen6_gt_check_fifodbg(dev_priv);
4791 }
4792
4793 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4794 {
4795         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4796         /* something from same cacheline, but !FORCEWAKE_MT */
4797         POSTING_READ(ECOBUS);
4798         gen6_gt_check_fifodbg(dev_priv);
4799 }
4800
4801 /*
4802  * see gen6_gt_force_wake_get()
4803  */
4804 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4805 {
4806         unsigned long irqflags;
4807
4808         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4809         if (--dev_priv->forcewake_count == 0)
4810                 dev_priv->gt.force_wake_put(dev_priv);
4811         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4812 }
4813
4814 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4815 {
4816         int ret = 0;
4817
4818         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4819                 int loop = 500;
4820                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4821                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4822                         udelay(10);
4823                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4824                 }
4825                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4826                         ++ret;
4827                 dev_priv->gt_fifo_count = fifo;
4828         }
4829         dev_priv->gt_fifo_count--;
4830
4831         return ret;
4832 }
4833
4834 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4835 {
4836         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4837         /* something from same cacheline, but !FORCEWAKE_VLV */
4838         POSTING_READ(FORCEWAKE_ACK_VLV);
4839 }
4840
4841 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4842 {
4843         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
4844                             FORCEWAKE_ACK_TIMEOUT_MS))
4845                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4846
4847         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4848         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4849                            _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4850
4851         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
4852                             FORCEWAKE_ACK_TIMEOUT_MS))
4853                 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
4854
4855         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
4856                              FORCEWAKE_KERNEL),
4857                             FORCEWAKE_ACK_TIMEOUT_MS))
4858                 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
4859
4860         /* WaRsForcewakeWaitTC0:vlv */
4861         __gen6_gt_wait_for_thread_c0(dev_priv);
4862 }
4863
4864 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4865 {
4866         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4867         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
4868                            _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4869         /* The below doubles as a POSTING_READ */
4870         gen6_gt_check_fifodbg(dev_priv);
4871 }
4872
4873 void intel_gt_reset(struct drm_device *dev)
4874 {
4875         struct drm_i915_private *dev_priv = dev->dev_private;
4876
4877         if (IS_VALLEYVIEW(dev)) {
4878                 vlv_force_wake_reset(dev_priv);
4879         } else if (INTEL_INFO(dev)->gen >= 6) {
4880                 __gen6_gt_force_wake_reset(dev_priv);
4881                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4882                         __gen6_gt_force_wake_mt_reset(dev_priv);
4883         }
4884 }
4885
4886 void intel_gt_init(struct drm_device *dev)
4887 {
4888         struct drm_i915_private *dev_priv = dev->dev_private;
4889
4890         spin_lock_init(&dev_priv->gt_lock);
4891
4892         intel_gt_reset(dev);
4893
4894         if (IS_VALLEYVIEW(dev)) {
4895                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4896                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4897         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4898                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4899                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4900         } else if (IS_GEN6(dev)) {
4901                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4902                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4903         }
4904         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4905                           intel_gen6_powersave_work);
4906 }
4907
4908 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4909 {
4910         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4911
4912         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4913                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4914                 return -EAGAIN;
4915         }
4916
4917         I915_WRITE(GEN6_PCODE_DATA, *val);
4918         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4919
4920         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4921                      500)) {
4922                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4923                 return -ETIMEDOUT;
4924         }
4925
4926         *val = I915_READ(GEN6_PCODE_DATA);
4927         I915_WRITE(GEN6_PCODE_DATA, 0);
4928
4929         return 0;
4930 }
4931
4932 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4933 {
4934         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4935
4936         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4937                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4938                 return -EAGAIN;
4939         }
4940
4941         I915_WRITE(GEN6_PCODE_DATA, val);
4942         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4943
4944         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4945                      500)) {
4946                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4947                 return -ETIMEDOUT;
4948         }
4949
4950         I915_WRITE(GEN6_PCODE_DATA, 0);
4951
4952         return 0;
4953 }
4954
4955 int vlv_gpu_freq(int ddr_freq, int val)
4956 {
4957         int mult, base;
4958
4959         switch (ddr_freq) {
4960         case 800:
4961                 mult = 20;
4962                 base = 120;
4963                 break;
4964         case 1066:
4965                 mult = 22;
4966                 base = 133;
4967                 break;
4968         case 1333:
4969                 mult = 21;
4970                 base = 125;
4971                 break;
4972         default:
4973                 return -1;
4974         }
4975
4976         return ((val - 0xbd) * mult) + base;
4977 }
4978
4979 int vlv_freq_opcode(int ddr_freq, int val)
4980 {
4981         int mult, base;
4982
4983         switch (ddr_freq) {
4984         case 800:
4985                 mult = 20;
4986                 base = 120;
4987                 break;
4988         case 1066:
4989                 mult = 22;
4990                 base = 133;
4991                 break;
4992         case 1333:
4993                 mult = 21;
4994                 base = 125;
4995                 break;
4996         default:
4997                 return -1;
4998         }
4999
5000         val /= mult;
5001         val -= base / mult;
5002         val += 0xbd;
5003
5004         if (val > 0xea)
5005                 val = 0xea;
5006
5007         return val;
5008 }
5009