]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_pm.c
drm/i915: Add VM to pin
[~andy/linux] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36  * framebuffer contents in-memory, aiming at reducing the required bandwidth
37  * during in-memory transfers and, therefore, reduce the power packet.
38  *
39  * The benefits of FBC are mostly visible with solid backgrounds and
40  * variation-less patterns.
41  *
42  * FBC-related functionality can be enabled by the means of the
43  * i915.i915_enable_fbc parameter
44  */
45
46 static bool intel_crtc_active(struct drm_crtc *crtc)
47 {
48         /* Be paranoid as we can arrive here with only partial
49          * state retrieved from the hardware during setup.
50          */
51         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
52 }
53
54 static void i8xx_disable_fbc(struct drm_device *dev)
55 {
56         struct drm_i915_private *dev_priv = dev->dev_private;
57         u32 fbc_ctl;
58
59         /* Disable compression */
60         fbc_ctl = I915_READ(FBC_CONTROL);
61         if ((fbc_ctl & FBC_CTL_EN) == 0)
62                 return;
63
64         fbc_ctl &= ~FBC_CTL_EN;
65         I915_WRITE(FBC_CONTROL, fbc_ctl);
66
67         /* Wait for compressing bit to clear */
68         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
69                 DRM_DEBUG_KMS("FBC idle timed out\n");
70                 return;
71         }
72
73         DRM_DEBUG_KMS("disabled FBC\n");
74 }
75
76 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
77 {
78         struct drm_device *dev = crtc->dev;
79         struct drm_i915_private *dev_priv = dev->dev_private;
80         struct drm_framebuffer *fb = crtc->fb;
81         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
82         struct drm_i915_gem_object *obj = intel_fb->obj;
83         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84         int cfb_pitch;
85         int plane, i;
86         u32 fbc_ctl, fbc_ctl2;
87
88         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
89         if (fb->pitches[0] < cfb_pitch)
90                 cfb_pitch = fb->pitches[0];
91
92         /* FBC_CTL wants 64B units */
93         cfb_pitch = (cfb_pitch / 64) - 1;
94         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
95
96         /* Clear old tags */
97         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
98                 I915_WRITE(FBC_TAG + (i * 4), 0);
99
100         /* Set it up... */
101         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
102         fbc_ctl2 |= plane;
103         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
104         I915_WRITE(FBC_FENCE_OFF, crtc->y);
105
106         /* enable it... */
107         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
108         if (IS_I945GM(dev))
109                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
110         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
111         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
112         fbc_ctl |= obj->fence_reg;
113         I915_WRITE(FBC_CONTROL, fbc_ctl);
114
115         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
116                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
117 }
118
119 static bool i8xx_fbc_enabled(struct drm_device *dev)
120 {
121         struct drm_i915_private *dev_priv = dev->dev_private;
122
123         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
124 }
125
126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
127 {
128         struct drm_device *dev = crtc->dev;
129         struct drm_i915_private *dev_priv = dev->dev_private;
130         struct drm_framebuffer *fb = crtc->fb;
131         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
132         struct drm_i915_gem_object *obj = intel_fb->obj;
133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
134         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
135         unsigned long stall_watermark = 200;
136         u32 dpfc_ctl;
137
138         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
139         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
140         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
141
142         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
143                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
144                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
145         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
146
147         /* enable it... */
148         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
149
150         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
151 }
152
153 static void g4x_disable_fbc(struct drm_device *dev)
154 {
155         struct drm_i915_private *dev_priv = dev->dev_private;
156         u32 dpfc_ctl;
157
158         /* Disable compression */
159         dpfc_ctl = I915_READ(DPFC_CONTROL);
160         if (dpfc_ctl & DPFC_CTL_EN) {
161                 dpfc_ctl &= ~DPFC_CTL_EN;
162                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
163
164                 DRM_DEBUG_KMS("disabled FBC\n");
165         }
166 }
167
168 static bool g4x_fbc_enabled(struct drm_device *dev)
169 {
170         struct drm_i915_private *dev_priv = dev->dev_private;
171
172         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
173 }
174
175 static void sandybridge_blit_fbc_update(struct drm_device *dev)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         u32 blt_ecoskpd;
179
180         /* Make sure blitter notifies FBC of writes */
181         gen6_gt_force_wake_get(dev_priv);
182         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
183         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
184                 GEN6_BLITTER_LOCK_SHIFT;
185         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
186         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
187         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
189                          GEN6_BLITTER_LOCK_SHIFT);
190         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
191         POSTING_READ(GEN6_BLITTER_ECOSKPD);
192         gen6_gt_force_wake_put(dev_priv);
193 }
194
195 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
196 {
197         struct drm_device *dev = crtc->dev;
198         struct drm_i915_private *dev_priv = dev->dev_private;
199         struct drm_framebuffer *fb = crtc->fb;
200         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
201         struct drm_i915_gem_object *obj = intel_fb->obj;
202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
203         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
204         unsigned long stall_watermark = 200;
205         u32 dpfc_ctl;
206
207         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
208         dpfc_ctl &= DPFC_RESERVED;
209         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
210         /* Set persistent mode for front-buffer rendering, ala X. */
211         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
212         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
213         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
214
215         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
216                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
217                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
218         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
219         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
220         /* enable it... */
221         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
222
223         if (IS_GEN6(dev)) {
224                 I915_WRITE(SNB_DPFC_CTL_SA,
225                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
226                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
227                 sandybridge_blit_fbc_update(dev);
228         }
229
230         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
231 }
232
233 static void ironlake_disable_fbc(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         u32 dpfc_ctl;
237
238         /* Disable compression */
239         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
240         if (dpfc_ctl & DPFC_CTL_EN) {
241                 dpfc_ctl &= ~DPFC_CTL_EN;
242                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
243
244                 if (IS_IVYBRIDGE(dev))
245                         /* WaFbcDisableDpfcClockGating:ivb */
246                         I915_WRITE(ILK_DSPCLK_GATE_D,
247                                    I915_READ(ILK_DSPCLK_GATE_D) &
248                                    ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
249
250                 if (IS_HASWELL(dev))
251                         /* WaFbcDisableDpfcClockGating:hsw */
252                         I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
253                                    I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
254                                    ~HSW_DPFC_GATING_DISABLE);
255
256                 DRM_DEBUG_KMS("disabled FBC\n");
257         }
258 }
259
260 static bool ironlake_fbc_enabled(struct drm_device *dev)
261 {
262         struct drm_i915_private *dev_priv = dev->dev_private;
263
264         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
265 }
266
267 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
268 {
269         struct drm_device *dev = crtc->dev;
270         struct drm_i915_private *dev_priv = dev->dev_private;
271         struct drm_framebuffer *fb = crtc->fb;
272         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
273         struct drm_i915_gem_object *obj = intel_fb->obj;
274         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
275
276         I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
277
278         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
279                    IVB_DPFC_CTL_FENCE_EN |
280                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
281
282         if (IS_IVYBRIDGE(dev)) {
283                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
284                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
285                 /* WaFbcDisableDpfcClockGating:ivb */
286                 I915_WRITE(ILK_DSPCLK_GATE_D,
287                            I915_READ(ILK_DSPCLK_GATE_D) |
288                            ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
289         } else {
290                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
291                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
292                            HSW_BYPASS_FBC_QUEUE);
293                 /* WaFbcDisableDpfcClockGating:hsw */
294                 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
295                            I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
296                            HSW_DPFC_GATING_DISABLE);
297         }
298
299         I915_WRITE(SNB_DPFC_CTL_SA,
300                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
301         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
302
303         sandybridge_blit_fbc_update(dev);
304
305         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
306 }
307
308 bool intel_fbc_enabled(struct drm_device *dev)
309 {
310         struct drm_i915_private *dev_priv = dev->dev_private;
311
312         if (!dev_priv->display.fbc_enabled)
313                 return false;
314
315         return dev_priv->display.fbc_enabled(dev);
316 }
317
318 static void intel_fbc_work_fn(struct work_struct *__work)
319 {
320         struct intel_fbc_work *work =
321                 container_of(to_delayed_work(__work),
322                              struct intel_fbc_work, work);
323         struct drm_device *dev = work->crtc->dev;
324         struct drm_i915_private *dev_priv = dev->dev_private;
325
326         mutex_lock(&dev->struct_mutex);
327         if (work == dev_priv->fbc.fbc_work) {
328                 /* Double check that we haven't switched fb without cancelling
329                  * the prior work.
330                  */
331                 if (work->crtc->fb == work->fb) {
332                         dev_priv->display.enable_fbc(work->crtc,
333                                                      work->interval);
334
335                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
336                         dev_priv->fbc.fb_id = work->crtc->fb->base.id;
337                         dev_priv->fbc.y = work->crtc->y;
338                 }
339
340                 dev_priv->fbc.fbc_work = NULL;
341         }
342         mutex_unlock(&dev->struct_mutex);
343
344         kfree(work);
345 }
346
347 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
348 {
349         if (dev_priv->fbc.fbc_work == NULL)
350                 return;
351
352         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
353
354         /* Synchronisation is provided by struct_mutex and checking of
355          * dev_priv->fbc.fbc_work, so we can perform the cancellation
356          * entirely asynchronously.
357          */
358         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
359                 /* tasklet was killed before being run, clean up */
360                 kfree(dev_priv->fbc.fbc_work);
361
362         /* Mark the work as no longer wanted so that if it does
363          * wake-up (because the work was already running and waiting
364          * for our mutex), it will discover that is no longer
365          * necessary to run.
366          */
367         dev_priv->fbc.fbc_work = NULL;
368 }
369
370 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
371 {
372         struct intel_fbc_work *work;
373         struct drm_device *dev = crtc->dev;
374         struct drm_i915_private *dev_priv = dev->dev_private;
375
376         if (!dev_priv->display.enable_fbc)
377                 return;
378
379         intel_cancel_fbc_work(dev_priv);
380
381         work = kzalloc(sizeof *work, GFP_KERNEL);
382         if (work == NULL) {
383                 DRM_ERROR("Failed to allocate FBC work structure\n");
384                 dev_priv->display.enable_fbc(crtc, interval);
385                 return;
386         }
387
388         work->crtc = crtc;
389         work->fb = crtc->fb;
390         work->interval = interval;
391         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
393         dev_priv->fbc.fbc_work = work;
394
395         /* Delay the actual enabling to let pageflipping cease and the
396          * display to settle before starting the compression. Note that
397          * this delay also serves a second purpose: it allows for a
398          * vblank to pass after disabling the FBC before we attempt
399          * to modify the control registers.
400          *
401          * A more complicated solution would involve tracking vblanks
402          * following the termination of the page-flipping sequence
403          * and indeed performing the enable as a co-routine and not
404          * waiting synchronously upon the vblank.
405          *
406          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
407          */
408         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409 }
410
411 void intel_disable_fbc(struct drm_device *dev)
412 {
413         struct drm_i915_private *dev_priv = dev->dev_private;
414
415         intel_cancel_fbc_work(dev_priv);
416
417         if (!dev_priv->display.disable_fbc)
418                 return;
419
420         dev_priv->display.disable_fbc(dev);
421         dev_priv->fbc.plane = -1;
422 }
423
424 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425                               enum no_fbc_reason reason)
426 {
427         if (dev_priv->fbc.no_fbc_reason == reason)
428                 return false;
429
430         dev_priv->fbc.no_fbc_reason = reason;
431         return true;
432 }
433
434 /**
435  * intel_update_fbc - enable/disable FBC as needed
436  * @dev: the drm_device
437  *
438  * Set up the framebuffer compression hardware at mode set time.  We
439  * enable it if possible:
440  *   - plane A only (on pre-965)
441  *   - no pixel mulitply/line duplication
442  *   - no alpha buffer discard
443  *   - no dual wide
444  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
445  *
446  * We can't assume that any compression will take place (worst case),
447  * so the compressed buffer has to be the same size as the uncompressed
448  * one.  It also must reside (along with the line length buffer) in
449  * stolen memory.
450  *
451  * We need to enable/disable FBC on a global basis.
452  */
453 void intel_update_fbc(struct drm_device *dev)
454 {
455         struct drm_i915_private *dev_priv = dev->dev_private;
456         struct drm_crtc *crtc = NULL, *tmp_crtc;
457         struct intel_crtc *intel_crtc;
458         struct drm_framebuffer *fb;
459         struct intel_framebuffer *intel_fb;
460         struct drm_i915_gem_object *obj;
461         unsigned int max_hdisplay, max_vdisplay;
462
463         if (!I915_HAS_FBC(dev)) {
464                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
465                 return;
466         }
467
468         if (!i915_powersave) {
469                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
470                         DRM_DEBUG_KMS("fbc disabled per module param\n");
471                 return;
472         }
473
474         /*
475          * If FBC is already on, we just have to verify that we can
476          * keep it that way...
477          * Need to disable if:
478          *   - more than one pipe is active
479          *   - changing FBC params (stride, fence, mode)
480          *   - new fb is too large to fit in compressed buffer
481          *   - going to an unsupported config (interlace, pixel multiply, etc.)
482          */
483         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
484                 if (intel_crtc_active(tmp_crtc) &&
485                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
486                         if (crtc) {
487                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
488                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
489                                 goto out_disable;
490                         }
491                         crtc = tmp_crtc;
492                 }
493         }
494
495         if (!crtc || crtc->fb == NULL) {
496                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
497                         DRM_DEBUG_KMS("no output, disabling\n");
498                 goto out_disable;
499         }
500
501         intel_crtc = to_intel_crtc(crtc);
502         fb = crtc->fb;
503         intel_fb = to_intel_framebuffer(fb);
504         obj = intel_fb->obj;
505
506         if (i915_enable_fbc < 0 &&
507             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
508                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
509                         DRM_DEBUG_KMS("disabled per chip default\n");
510                 goto out_disable;
511         }
512         if (!i915_enable_fbc) {
513                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
514                         DRM_DEBUG_KMS("fbc disabled per module param\n");
515                 goto out_disable;
516         }
517         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
518             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
519                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
520                         DRM_DEBUG_KMS("mode incompatible with compression, "
521                                       "disabling\n");
522                 goto out_disable;
523         }
524
525         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
526                 max_hdisplay = 4096;
527                 max_vdisplay = 2048;
528         } else {
529                 max_hdisplay = 2048;
530                 max_vdisplay = 1536;
531         }
532         if ((crtc->mode.hdisplay > max_hdisplay) ||
533             (crtc->mode.vdisplay > max_vdisplay)) {
534                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
535                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
536                 goto out_disable;
537         }
538         if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
539             intel_crtc->plane != 0) {
540                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
541                         DRM_DEBUG_KMS("plane not 0, disabling compression\n");
542                 goto out_disable;
543         }
544
545         /* The use of a CPU fence is mandatory in order to detect writes
546          * by the CPU to the scanout and trigger updates to the FBC.
547          */
548         if (obj->tiling_mode != I915_TILING_X ||
549             obj->fence_reg == I915_FENCE_REG_NONE) {
550                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
551                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
552                 goto out_disable;
553         }
554
555         /* If the kernel debugger is active, always disable compression */
556         if (in_dbg_master())
557                 goto out_disable;
558
559         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
560                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
561                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
562                 goto out_disable;
563         }
564
565         /* If the scanout has not changed, don't modify the FBC settings.
566          * Note that we make the fundamental assumption that the fb->obj
567          * cannot be unpinned (and have its GTT offset and fence revoked)
568          * without first being decoupled from the scanout and FBC disabled.
569          */
570         if (dev_priv->fbc.plane == intel_crtc->plane &&
571             dev_priv->fbc.fb_id == fb->base.id &&
572             dev_priv->fbc.y == crtc->y)
573                 return;
574
575         if (intel_fbc_enabled(dev)) {
576                 /* We update FBC along two paths, after changing fb/crtc
577                  * configuration (modeswitching) and after page-flipping
578                  * finishes. For the latter, we know that not only did
579                  * we disable the FBC at the start of the page-flip
580                  * sequence, but also more than one vblank has passed.
581                  *
582                  * For the former case of modeswitching, it is possible
583                  * to switch between two FBC valid configurations
584                  * instantaneously so we do need to disable the FBC
585                  * before we can modify its control registers. We also
586                  * have to wait for the next vblank for that to take
587                  * effect. However, since we delay enabling FBC we can
588                  * assume that a vblank has passed since disabling and
589                  * that we can safely alter the registers in the deferred
590                  * callback.
591                  *
592                  * In the scenario that we go from a valid to invalid
593                  * and then back to valid FBC configuration we have
594                  * no strict enforcement that a vblank occurred since
595                  * disabling the FBC. However, along all current pipe
596                  * disabling paths we do need to wait for a vblank at
597                  * some point. And we wait before enabling FBC anyway.
598                  */
599                 DRM_DEBUG_KMS("disabling active FBC for update\n");
600                 intel_disable_fbc(dev);
601         }
602
603         intel_enable_fbc(crtc, 500);
604         dev_priv->fbc.no_fbc_reason = FBC_OK;
605         return;
606
607 out_disable:
608         /* Multiple disables should be harmless */
609         if (intel_fbc_enabled(dev)) {
610                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
611                 intel_disable_fbc(dev);
612         }
613         i915_gem_stolen_cleanup_compression(dev);
614 }
615
616 static void i915_pineview_get_mem_freq(struct drm_device *dev)
617 {
618         drm_i915_private_t *dev_priv = dev->dev_private;
619         u32 tmp;
620
621         tmp = I915_READ(CLKCFG);
622
623         switch (tmp & CLKCFG_FSB_MASK) {
624         case CLKCFG_FSB_533:
625                 dev_priv->fsb_freq = 533; /* 133*4 */
626                 break;
627         case CLKCFG_FSB_800:
628                 dev_priv->fsb_freq = 800; /* 200*4 */
629                 break;
630         case CLKCFG_FSB_667:
631                 dev_priv->fsb_freq =  667; /* 167*4 */
632                 break;
633         case CLKCFG_FSB_400:
634                 dev_priv->fsb_freq = 400; /* 100*4 */
635                 break;
636         }
637
638         switch (tmp & CLKCFG_MEM_MASK) {
639         case CLKCFG_MEM_533:
640                 dev_priv->mem_freq = 533;
641                 break;
642         case CLKCFG_MEM_667:
643                 dev_priv->mem_freq = 667;
644                 break;
645         case CLKCFG_MEM_800:
646                 dev_priv->mem_freq = 800;
647                 break;
648         }
649
650         /* detect pineview DDR3 setting */
651         tmp = I915_READ(CSHRDDR3CTL);
652         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
653 }
654
655 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
656 {
657         drm_i915_private_t *dev_priv = dev->dev_private;
658         u16 ddrpll, csipll;
659
660         ddrpll = I915_READ16(DDRMPLL1);
661         csipll = I915_READ16(CSIPLL0);
662
663         switch (ddrpll & 0xff) {
664         case 0xc:
665                 dev_priv->mem_freq = 800;
666                 break;
667         case 0x10:
668                 dev_priv->mem_freq = 1066;
669                 break;
670         case 0x14:
671                 dev_priv->mem_freq = 1333;
672                 break;
673         case 0x18:
674                 dev_priv->mem_freq = 1600;
675                 break;
676         default:
677                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
678                                  ddrpll & 0xff);
679                 dev_priv->mem_freq = 0;
680                 break;
681         }
682
683         dev_priv->ips.r_t = dev_priv->mem_freq;
684
685         switch (csipll & 0x3ff) {
686         case 0x00c:
687                 dev_priv->fsb_freq = 3200;
688                 break;
689         case 0x00e:
690                 dev_priv->fsb_freq = 3733;
691                 break;
692         case 0x010:
693                 dev_priv->fsb_freq = 4266;
694                 break;
695         case 0x012:
696                 dev_priv->fsb_freq = 4800;
697                 break;
698         case 0x014:
699                 dev_priv->fsb_freq = 5333;
700                 break;
701         case 0x016:
702                 dev_priv->fsb_freq = 5866;
703                 break;
704         case 0x018:
705                 dev_priv->fsb_freq = 6400;
706                 break;
707         default:
708                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
709                                  csipll & 0x3ff);
710                 dev_priv->fsb_freq = 0;
711                 break;
712         }
713
714         if (dev_priv->fsb_freq == 3200) {
715                 dev_priv->ips.c_m = 0;
716         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
717                 dev_priv->ips.c_m = 1;
718         } else {
719                 dev_priv->ips.c_m = 2;
720         }
721 }
722
723 static const struct cxsr_latency cxsr_latency_table[] = {
724         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
725         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
726         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
727         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
728         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
729
730         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
731         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
732         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
733         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
734         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
735
736         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
737         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
738         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
739         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
740         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
741
742         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
743         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
744         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
745         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
746         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
747
748         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
749         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
750         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
751         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
752         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
753
754         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
755         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
756         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
757         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
758         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
759 };
760
761 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
762                                                          int is_ddr3,
763                                                          int fsb,
764                                                          int mem)
765 {
766         const struct cxsr_latency *latency;
767         int i;
768
769         if (fsb == 0 || mem == 0)
770                 return NULL;
771
772         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
773                 latency = &cxsr_latency_table[i];
774                 if (is_desktop == latency->is_desktop &&
775                     is_ddr3 == latency->is_ddr3 &&
776                     fsb == latency->fsb_freq && mem == latency->mem_freq)
777                         return latency;
778         }
779
780         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
781
782         return NULL;
783 }
784
785 static void pineview_disable_cxsr(struct drm_device *dev)
786 {
787         struct drm_i915_private *dev_priv = dev->dev_private;
788
789         /* deactivate cxsr */
790         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
791 }
792
793 /*
794  * Latency for FIFO fetches is dependent on several factors:
795  *   - memory configuration (speed, channels)
796  *   - chipset
797  *   - current MCH state
798  * It can be fairly high in some situations, so here we assume a fairly
799  * pessimal value.  It's a tradeoff between extra memory fetches (if we
800  * set this value too high, the FIFO will fetch frequently to stay full)
801  * and power consumption (set it too low to save power and we might see
802  * FIFO underruns and display "flicker").
803  *
804  * A value of 5us seems to be a good balance; safe for very low end
805  * platforms but not overly aggressive on lower latency configs.
806  */
807 static const int latency_ns = 5000;
808
809 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
810 {
811         struct drm_i915_private *dev_priv = dev->dev_private;
812         uint32_t dsparb = I915_READ(DSPARB);
813         int size;
814
815         size = dsparb & 0x7f;
816         if (plane)
817                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
818
819         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
820                       plane ? "B" : "A", size);
821
822         return size;
823 }
824
825 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
826 {
827         struct drm_i915_private *dev_priv = dev->dev_private;
828         uint32_t dsparb = I915_READ(DSPARB);
829         int size;
830
831         size = dsparb & 0x1ff;
832         if (plane)
833                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
834         size >>= 1; /* Convert to cachelines */
835
836         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
837                       plane ? "B" : "A", size);
838
839         return size;
840 }
841
842 static int i845_get_fifo_size(struct drm_device *dev, int plane)
843 {
844         struct drm_i915_private *dev_priv = dev->dev_private;
845         uint32_t dsparb = I915_READ(DSPARB);
846         int size;
847
848         size = dsparb & 0x7f;
849         size >>= 2; /* Convert to cachelines */
850
851         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
852                       plane ? "B" : "A",
853                       size);
854
855         return size;
856 }
857
858 static int i830_get_fifo_size(struct drm_device *dev, int plane)
859 {
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         uint32_t dsparb = I915_READ(DSPARB);
862         int size;
863
864         size = dsparb & 0x7f;
865         size >>= 1; /* Convert to cachelines */
866
867         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
868                       plane ? "B" : "A", size);
869
870         return size;
871 }
872
873 /* Pineview has different values for various configs */
874 static const struct intel_watermark_params pineview_display_wm = {
875         PINEVIEW_DISPLAY_FIFO,
876         PINEVIEW_MAX_WM,
877         PINEVIEW_DFT_WM,
878         PINEVIEW_GUARD_WM,
879         PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_display_hplloff_wm = {
882         PINEVIEW_DISPLAY_FIFO,
883         PINEVIEW_MAX_WM,
884         PINEVIEW_DFT_HPLLOFF_WM,
885         PINEVIEW_GUARD_WM,
886         PINEVIEW_FIFO_LINE_SIZE
887 };
888 static const struct intel_watermark_params pineview_cursor_wm = {
889         PINEVIEW_CURSOR_FIFO,
890         PINEVIEW_CURSOR_MAX_WM,
891         PINEVIEW_CURSOR_DFT_WM,
892         PINEVIEW_CURSOR_GUARD_WM,
893         PINEVIEW_FIFO_LINE_SIZE,
894 };
895 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
896         PINEVIEW_CURSOR_FIFO,
897         PINEVIEW_CURSOR_MAX_WM,
898         PINEVIEW_CURSOR_DFT_WM,
899         PINEVIEW_CURSOR_GUARD_WM,
900         PINEVIEW_FIFO_LINE_SIZE
901 };
902 static const struct intel_watermark_params g4x_wm_info = {
903         G4X_FIFO_SIZE,
904         G4X_MAX_WM,
905         G4X_MAX_WM,
906         2,
907         G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params g4x_cursor_wm_info = {
910         I965_CURSOR_FIFO,
911         I965_CURSOR_MAX_WM,
912         I965_CURSOR_DFT_WM,
913         2,
914         G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_wm_info = {
917         VALLEYVIEW_FIFO_SIZE,
918         VALLEYVIEW_MAX_WM,
919         VALLEYVIEW_MAX_WM,
920         2,
921         G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params valleyview_cursor_wm_info = {
924         I965_CURSOR_FIFO,
925         VALLEYVIEW_CURSOR_MAX_WM,
926         I965_CURSOR_DFT_WM,
927         2,
928         G4X_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i965_cursor_wm_info = {
931         I965_CURSOR_FIFO,
932         I965_CURSOR_MAX_WM,
933         I965_CURSOR_DFT_WM,
934         2,
935         I915_FIFO_LINE_SIZE,
936 };
937 static const struct intel_watermark_params i945_wm_info = {
938         I945_FIFO_SIZE,
939         I915_MAX_WM,
940         1,
941         2,
942         I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i915_wm_info = {
945         I915_FIFO_SIZE,
946         I915_MAX_WM,
947         1,
948         2,
949         I915_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i855_wm_info = {
952         I855GM_FIFO_SIZE,
953         I915_MAX_WM,
954         1,
955         2,
956         I830_FIFO_LINE_SIZE
957 };
958 static const struct intel_watermark_params i830_wm_info = {
959         I830_FIFO_SIZE,
960         I915_MAX_WM,
961         1,
962         2,
963         I830_FIFO_LINE_SIZE
964 };
965
966 static const struct intel_watermark_params ironlake_display_wm_info = {
967         ILK_DISPLAY_FIFO,
968         ILK_DISPLAY_MAXWM,
969         ILK_DISPLAY_DFTWM,
970         2,
971         ILK_FIFO_LINE_SIZE
972 };
973 static const struct intel_watermark_params ironlake_cursor_wm_info = {
974         ILK_CURSOR_FIFO,
975         ILK_CURSOR_MAXWM,
976         ILK_CURSOR_DFTWM,
977         2,
978         ILK_FIFO_LINE_SIZE
979 };
980 static const struct intel_watermark_params ironlake_display_srwm_info = {
981         ILK_DISPLAY_SR_FIFO,
982         ILK_DISPLAY_MAX_SRWM,
983         ILK_DISPLAY_DFT_SRWM,
984         2,
985         ILK_FIFO_LINE_SIZE
986 };
987 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
988         ILK_CURSOR_SR_FIFO,
989         ILK_CURSOR_MAX_SRWM,
990         ILK_CURSOR_DFT_SRWM,
991         2,
992         ILK_FIFO_LINE_SIZE
993 };
994
995 static const struct intel_watermark_params sandybridge_display_wm_info = {
996         SNB_DISPLAY_FIFO,
997         SNB_DISPLAY_MAXWM,
998         SNB_DISPLAY_DFTWM,
999         2,
1000         SNB_FIFO_LINE_SIZE
1001 };
1002 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1003         SNB_CURSOR_FIFO,
1004         SNB_CURSOR_MAXWM,
1005         SNB_CURSOR_DFTWM,
1006         2,
1007         SNB_FIFO_LINE_SIZE
1008 };
1009 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1010         SNB_DISPLAY_SR_FIFO,
1011         SNB_DISPLAY_MAX_SRWM,
1012         SNB_DISPLAY_DFT_SRWM,
1013         2,
1014         SNB_FIFO_LINE_SIZE
1015 };
1016 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1017         SNB_CURSOR_SR_FIFO,
1018         SNB_CURSOR_MAX_SRWM,
1019         SNB_CURSOR_DFT_SRWM,
1020         2,
1021         SNB_FIFO_LINE_SIZE
1022 };
1023
1024
1025 /**
1026  * intel_calculate_wm - calculate watermark level
1027  * @clock_in_khz: pixel clock
1028  * @wm: chip FIFO params
1029  * @pixel_size: display pixel size
1030  * @latency_ns: memory latency for the platform
1031  *
1032  * Calculate the watermark level (the level at which the display plane will
1033  * start fetching from memory again).  Each chip has a different display
1034  * FIFO size and allocation, so the caller needs to figure that out and pass
1035  * in the correct intel_watermark_params structure.
1036  *
1037  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1038  * on the pixel size.  When it reaches the watermark level, it'll start
1039  * fetching FIFO line sized based chunks from memory until the FIFO fills
1040  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1041  * will occur, and a display engine hang could result.
1042  */
1043 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1044                                         const struct intel_watermark_params *wm,
1045                                         int fifo_size,
1046                                         int pixel_size,
1047                                         unsigned long latency_ns)
1048 {
1049         long entries_required, wm_size;
1050
1051         /*
1052          * Note: we need to make sure we don't overflow for various clock &
1053          * latency values.
1054          * clocks go from a few thousand to several hundred thousand.
1055          * latency is usually a few thousand
1056          */
1057         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1058                 1000;
1059         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1060
1061         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1062
1063         wm_size = fifo_size - (entries_required + wm->guard_size);
1064
1065         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1066
1067         /* Don't promote wm_size to unsigned... */
1068         if (wm_size > (long)wm->max_wm)
1069                 wm_size = wm->max_wm;
1070         if (wm_size <= 0)
1071                 wm_size = wm->default_wm;
1072         return wm_size;
1073 }
1074
1075 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1076 {
1077         struct drm_crtc *crtc, *enabled = NULL;
1078
1079         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1080                 if (intel_crtc_active(crtc)) {
1081                         if (enabled)
1082                                 return NULL;
1083                         enabled = crtc;
1084                 }
1085         }
1086
1087         return enabled;
1088 }
1089
1090 static void pineview_update_wm(struct drm_device *dev)
1091 {
1092         struct drm_i915_private *dev_priv = dev->dev_private;
1093         struct drm_crtc *crtc;
1094         const struct cxsr_latency *latency;
1095         u32 reg;
1096         unsigned long wm;
1097
1098         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1099                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1100         if (!latency) {
1101                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1102                 pineview_disable_cxsr(dev);
1103                 return;
1104         }
1105
1106         crtc = single_enabled_crtc(dev);
1107         if (crtc) {
1108                 int clock = crtc->mode.clock;
1109                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1110
1111                 /* Display SR */
1112                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1113                                         pineview_display_wm.fifo_size,
1114                                         pixel_size, latency->display_sr);
1115                 reg = I915_READ(DSPFW1);
1116                 reg &= ~DSPFW_SR_MASK;
1117                 reg |= wm << DSPFW_SR_SHIFT;
1118                 I915_WRITE(DSPFW1, reg);
1119                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1120
1121                 /* cursor SR */
1122                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1123                                         pineview_display_wm.fifo_size,
1124                                         pixel_size, latency->cursor_sr);
1125                 reg = I915_READ(DSPFW3);
1126                 reg &= ~DSPFW_CURSOR_SR_MASK;
1127                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1128                 I915_WRITE(DSPFW3, reg);
1129
1130                 /* Display HPLL off SR */
1131                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1132                                         pineview_display_hplloff_wm.fifo_size,
1133                                         pixel_size, latency->display_hpll_disable);
1134                 reg = I915_READ(DSPFW3);
1135                 reg &= ~DSPFW_HPLL_SR_MASK;
1136                 reg |= wm & DSPFW_HPLL_SR_MASK;
1137                 I915_WRITE(DSPFW3, reg);
1138
1139                 /* cursor HPLL off SR */
1140                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1141                                         pineview_display_hplloff_wm.fifo_size,
1142                                         pixel_size, latency->cursor_hpll_disable);
1143                 reg = I915_READ(DSPFW3);
1144                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1145                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1146                 I915_WRITE(DSPFW3, reg);
1147                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1148
1149                 /* activate cxsr */
1150                 I915_WRITE(DSPFW3,
1151                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1152                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1153         } else {
1154                 pineview_disable_cxsr(dev);
1155                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1156         }
1157 }
1158
1159 static bool g4x_compute_wm0(struct drm_device *dev,
1160                             int plane,
1161                             const struct intel_watermark_params *display,
1162                             int display_latency_ns,
1163                             const struct intel_watermark_params *cursor,
1164                             int cursor_latency_ns,
1165                             int *plane_wm,
1166                             int *cursor_wm)
1167 {
1168         struct drm_crtc *crtc;
1169         int htotal, hdisplay, clock, pixel_size;
1170         int line_time_us, line_count;
1171         int entries, tlb_miss;
1172
1173         crtc = intel_get_crtc_for_plane(dev, plane);
1174         if (!intel_crtc_active(crtc)) {
1175                 *cursor_wm = cursor->guard_size;
1176                 *plane_wm = display->guard_size;
1177                 return false;
1178         }
1179
1180         htotal = crtc->mode.htotal;
1181         hdisplay = crtc->mode.hdisplay;
1182         clock = crtc->mode.clock;
1183         pixel_size = crtc->fb->bits_per_pixel / 8;
1184
1185         /* Use the small buffer method to calculate plane watermark */
1186         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1187         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1188         if (tlb_miss > 0)
1189                 entries += tlb_miss;
1190         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1191         *plane_wm = entries + display->guard_size;
1192         if (*plane_wm > (int)display->max_wm)
1193                 *plane_wm = display->max_wm;
1194
1195         /* Use the large buffer method to calculate cursor watermark */
1196         line_time_us = ((htotal * 1000) / clock);
1197         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1198         entries = line_count * 64 * pixel_size;
1199         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1200         if (tlb_miss > 0)
1201                 entries += tlb_miss;
1202         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1203         *cursor_wm = entries + cursor->guard_size;
1204         if (*cursor_wm > (int)cursor->max_wm)
1205                 *cursor_wm = (int)cursor->max_wm;
1206
1207         return true;
1208 }
1209
1210 /*
1211  * Check the wm result.
1212  *
1213  * If any calculated watermark values is larger than the maximum value that
1214  * can be programmed into the associated watermark register, that watermark
1215  * must be disabled.
1216  */
1217 static bool g4x_check_srwm(struct drm_device *dev,
1218                            int display_wm, int cursor_wm,
1219                            const struct intel_watermark_params *display,
1220                            const struct intel_watermark_params *cursor)
1221 {
1222         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1223                       display_wm, cursor_wm);
1224
1225         if (display_wm > display->max_wm) {
1226                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1227                               display_wm, display->max_wm);
1228                 return false;
1229         }
1230
1231         if (cursor_wm > cursor->max_wm) {
1232                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1233                               cursor_wm, cursor->max_wm);
1234                 return false;
1235         }
1236
1237         if (!(display_wm || cursor_wm)) {
1238                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1239                 return false;
1240         }
1241
1242         return true;
1243 }
1244
1245 static bool g4x_compute_srwm(struct drm_device *dev,
1246                              int plane,
1247                              int latency_ns,
1248                              const struct intel_watermark_params *display,
1249                              const struct intel_watermark_params *cursor,
1250                              int *display_wm, int *cursor_wm)
1251 {
1252         struct drm_crtc *crtc;
1253         int hdisplay, htotal, pixel_size, clock;
1254         unsigned long line_time_us;
1255         int line_count, line_size;
1256         int small, large;
1257         int entries;
1258
1259         if (!latency_ns) {
1260                 *display_wm = *cursor_wm = 0;
1261                 return false;
1262         }
1263
1264         crtc = intel_get_crtc_for_plane(dev, plane);
1265         hdisplay = crtc->mode.hdisplay;
1266         htotal = crtc->mode.htotal;
1267         clock = crtc->mode.clock;
1268         pixel_size = crtc->fb->bits_per_pixel / 8;
1269
1270         line_time_us = (htotal * 1000) / clock;
1271         line_count = (latency_ns / line_time_us + 1000) / 1000;
1272         line_size = hdisplay * pixel_size;
1273
1274         /* Use the minimum of the small and large buffer method for primary */
1275         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1276         large = line_count * line_size;
1277
1278         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1279         *display_wm = entries + display->guard_size;
1280
1281         /* calculate the self-refresh watermark for display cursor */
1282         entries = line_count * pixel_size * 64;
1283         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1284         *cursor_wm = entries + cursor->guard_size;
1285
1286         return g4x_check_srwm(dev,
1287                               *display_wm, *cursor_wm,
1288                               display, cursor);
1289 }
1290
1291 static bool vlv_compute_drain_latency(struct drm_device *dev,
1292                                      int plane,
1293                                      int *plane_prec_mult,
1294                                      int *plane_dl,
1295                                      int *cursor_prec_mult,
1296                                      int *cursor_dl)
1297 {
1298         struct drm_crtc *crtc;
1299         int clock, pixel_size;
1300         int entries;
1301
1302         crtc = intel_get_crtc_for_plane(dev, plane);
1303         if (!intel_crtc_active(crtc))
1304                 return false;
1305
1306         clock = crtc->mode.clock;       /* VESA DOT Clock */
1307         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1308
1309         entries = (clock / 1000) * pixel_size;
1310         *plane_prec_mult = (entries > 256) ?
1311                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1312         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1313                                                      pixel_size);
1314
1315         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1316         *cursor_prec_mult = (entries > 256) ?
1317                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1318         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1319
1320         return true;
1321 }
1322
1323 /*
1324  * Update drain latency registers of memory arbiter
1325  *
1326  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1327  * to be programmed. Each plane has a drain latency multiplier and a drain
1328  * latency value.
1329  */
1330
1331 static void vlv_update_drain_latency(struct drm_device *dev)
1332 {
1333         struct drm_i915_private *dev_priv = dev->dev_private;
1334         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1335         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1336         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1337                                                         either 16 or 32 */
1338
1339         /* For plane A, Cursor A */
1340         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1341                                       &cursor_prec_mult, &cursora_dl)) {
1342                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1343                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1344                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1345                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1346
1347                 I915_WRITE(VLV_DDL1, cursora_prec |
1348                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1349                                 planea_prec | planea_dl);
1350         }
1351
1352         /* For plane B, Cursor B */
1353         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1354                                       &cursor_prec_mult, &cursorb_dl)) {
1355                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1356                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1357                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1358                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1359
1360                 I915_WRITE(VLV_DDL2, cursorb_prec |
1361                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1362                                 planeb_prec | planeb_dl);
1363         }
1364 }
1365
1366 #define single_plane_enabled(mask) is_power_of_2(mask)
1367
1368 static void valleyview_update_wm(struct drm_device *dev)
1369 {
1370         static const int sr_latency_ns = 12000;
1371         struct drm_i915_private *dev_priv = dev->dev_private;
1372         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1373         int plane_sr, cursor_sr;
1374         int ignore_plane_sr, ignore_cursor_sr;
1375         unsigned int enabled = 0;
1376
1377         vlv_update_drain_latency(dev);
1378
1379         if (g4x_compute_wm0(dev, PIPE_A,
1380                             &valleyview_wm_info, latency_ns,
1381                             &valleyview_cursor_wm_info, latency_ns,
1382                             &planea_wm, &cursora_wm))
1383                 enabled |= 1 << PIPE_A;
1384
1385         if (g4x_compute_wm0(dev, PIPE_B,
1386                             &valleyview_wm_info, latency_ns,
1387                             &valleyview_cursor_wm_info, latency_ns,
1388                             &planeb_wm, &cursorb_wm))
1389                 enabled |= 1 << PIPE_B;
1390
1391         if (single_plane_enabled(enabled) &&
1392             g4x_compute_srwm(dev, ffs(enabled) - 1,
1393                              sr_latency_ns,
1394                              &valleyview_wm_info,
1395                              &valleyview_cursor_wm_info,
1396                              &plane_sr, &ignore_cursor_sr) &&
1397             g4x_compute_srwm(dev, ffs(enabled) - 1,
1398                              2*sr_latency_ns,
1399                              &valleyview_wm_info,
1400                              &valleyview_cursor_wm_info,
1401                              &ignore_plane_sr, &cursor_sr)) {
1402                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1403         } else {
1404                 I915_WRITE(FW_BLC_SELF_VLV,
1405                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1406                 plane_sr = cursor_sr = 0;
1407         }
1408
1409         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1410                       planea_wm, cursora_wm,
1411                       planeb_wm, cursorb_wm,
1412                       plane_sr, cursor_sr);
1413
1414         I915_WRITE(DSPFW1,
1415                    (plane_sr << DSPFW_SR_SHIFT) |
1416                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1417                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1418                    planea_wm);
1419         I915_WRITE(DSPFW2,
1420                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1421                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1422         I915_WRITE(DSPFW3,
1423                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1424                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1425 }
1426
1427 static void g4x_update_wm(struct drm_device *dev)
1428 {
1429         static const int sr_latency_ns = 12000;
1430         struct drm_i915_private *dev_priv = dev->dev_private;
1431         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1432         int plane_sr, cursor_sr;
1433         unsigned int enabled = 0;
1434
1435         if (g4x_compute_wm0(dev, PIPE_A,
1436                             &g4x_wm_info, latency_ns,
1437                             &g4x_cursor_wm_info, latency_ns,
1438                             &planea_wm, &cursora_wm))
1439                 enabled |= 1 << PIPE_A;
1440
1441         if (g4x_compute_wm0(dev, PIPE_B,
1442                             &g4x_wm_info, latency_ns,
1443                             &g4x_cursor_wm_info, latency_ns,
1444                             &planeb_wm, &cursorb_wm))
1445                 enabled |= 1 << PIPE_B;
1446
1447         if (single_plane_enabled(enabled) &&
1448             g4x_compute_srwm(dev, ffs(enabled) - 1,
1449                              sr_latency_ns,
1450                              &g4x_wm_info,
1451                              &g4x_cursor_wm_info,
1452                              &plane_sr, &cursor_sr)) {
1453                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1454         } else {
1455                 I915_WRITE(FW_BLC_SELF,
1456                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1457                 plane_sr = cursor_sr = 0;
1458         }
1459
1460         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1461                       planea_wm, cursora_wm,
1462                       planeb_wm, cursorb_wm,
1463                       plane_sr, cursor_sr);
1464
1465         I915_WRITE(DSPFW1,
1466                    (plane_sr << DSPFW_SR_SHIFT) |
1467                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1468                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1469                    planea_wm);
1470         I915_WRITE(DSPFW2,
1471                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1472                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1473         /* HPLL off in SR has some issues on G4x... disable it */
1474         I915_WRITE(DSPFW3,
1475                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1476                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1477 }
1478
1479 static void i965_update_wm(struct drm_device *dev)
1480 {
1481         struct drm_i915_private *dev_priv = dev->dev_private;
1482         struct drm_crtc *crtc;
1483         int srwm = 1;
1484         int cursor_sr = 16;
1485
1486         /* Calc sr entries for one plane configs */
1487         crtc = single_enabled_crtc(dev);
1488         if (crtc) {
1489                 /* self-refresh has much higher latency */
1490                 static const int sr_latency_ns = 12000;
1491                 int clock = crtc->mode.clock;
1492                 int htotal = crtc->mode.htotal;
1493                 int hdisplay = crtc->mode.hdisplay;
1494                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1495                 unsigned long line_time_us;
1496                 int entries;
1497
1498                 line_time_us = ((htotal * 1000) / clock);
1499
1500                 /* Use ns/us then divide to preserve precision */
1501                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1502                         pixel_size * hdisplay;
1503                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1504                 srwm = I965_FIFO_SIZE - entries;
1505                 if (srwm < 0)
1506                         srwm = 1;
1507                 srwm &= 0x1ff;
1508                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1509                               entries, srwm);
1510
1511                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1512                         pixel_size * 64;
1513                 entries = DIV_ROUND_UP(entries,
1514                                           i965_cursor_wm_info.cacheline_size);
1515                 cursor_sr = i965_cursor_wm_info.fifo_size -
1516                         (entries + i965_cursor_wm_info.guard_size);
1517
1518                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1519                         cursor_sr = i965_cursor_wm_info.max_wm;
1520
1521                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1522                               "cursor %d\n", srwm, cursor_sr);
1523
1524                 if (IS_CRESTLINE(dev))
1525                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1526         } else {
1527                 /* Turn off self refresh if both pipes are enabled */
1528                 if (IS_CRESTLINE(dev))
1529                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1530                                    & ~FW_BLC_SELF_EN);
1531         }
1532
1533         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1534                       srwm);
1535
1536         /* 965 has limitations... */
1537         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1538                    (8 << 16) | (8 << 8) | (8 << 0));
1539         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1540         /* update cursor SR watermark */
1541         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1542 }
1543
1544 static void i9xx_update_wm(struct drm_device *dev)
1545 {
1546         struct drm_i915_private *dev_priv = dev->dev_private;
1547         const struct intel_watermark_params *wm_info;
1548         uint32_t fwater_lo;
1549         uint32_t fwater_hi;
1550         int cwm, srwm = 1;
1551         int fifo_size;
1552         int planea_wm, planeb_wm;
1553         struct drm_crtc *crtc, *enabled = NULL;
1554
1555         if (IS_I945GM(dev))
1556                 wm_info = &i945_wm_info;
1557         else if (!IS_GEN2(dev))
1558                 wm_info = &i915_wm_info;
1559         else
1560                 wm_info = &i855_wm_info;
1561
1562         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1563         crtc = intel_get_crtc_for_plane(dev, 0);
1564         if (intel_crtc_active(crtc)) {
1565                 int cpp = crtc->fb->bits_per_pixel / 8;
1566                 if (IS_GEN2(dev))
1567                         cpp = 4;
1568
1569                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1570                                                wm_info, fifo_size, cpp,
1571                                                latency_ns);
1572                 enabled = crtc;
1573         } else
1574                 planea_wm = fifo_size - wm_info->guard_size;
1575
1576         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1577         crtc = intel_get_crtc_for_plane(dev, 1);
1578         if (intel_crtc_active(crtc)) {
1579                 int cpp = crtc->fb->bits_per_pixel / 8;
1580                 if (IS_GEN2(dev))
1581                         cpp = 4;
1582
1583                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1584                                                wm_info, fifo_size, cpp,
1585                                                latency_ns);
1586                 if (enabled == NULL)
1587                         enabled = crtc;
1588                 else
1589                         enabled = NULL;
1590         } else
1591                 planeb_wm = fifo_size - wm_info->guard_size;
1592
1593         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1594
1595         /*
1596          * Overlay gets an aggressive default since video jitter is bad.
1597          */
1598         cwm = 2;
1599
1600         /* Play safe and disable self-refresh before adjusting watermarks. */
1601         if (IS_I945G(dev) || IS_I945GM(dev))
1602                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1603         else if (IS_I915GM(dev))
1604                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1605
1606         /* Calc sr entries for one plane configs */
1607         if (HAS_FW_BLC(dev) && enabled) {
1608                 /* self-refresh has much higher latency */
1609                 static const int sr_latency_ns = 6000;
1610                 int clock = enabled->mode.clock;
1611                 int htotal = enabled->mode.htotal;
1612                 int hdisplay = enabled->mode.hdisplay;
1613                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1614                 unsigned long line_time_us;
1615                 int entries;
1616
1617                 line_time_us = (htotal * 1000) / clock;
1618
1619                 /* Use ns/us then divide to preserve precision */
1620                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1621                         pixel_size * hdisplay;
1622                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1623                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1624                 srwm = wm_info->fifo_size - entries;
1625                 if (srwm < 0)
1626                         srwm = 1;
1627
1628                 if (IS_I945G(dev) || IS_I945GM(dev))
1629                         I915_WRITE(FW_BLC_SELF,
1630                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1631                 else if (IS_I915GM(dev))
1632                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1633         }
1634
1635         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1636                       planea_wm, planeb_wm, cwm, srwm);
1637
1638         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1639         fwater_hi = (cwm & 0x1f);
1640
1641         /* Set request length to 8 cachelines per fetch */
1642         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1643         fwater_hi = fwater_hi | (1 << 8);
1644
1645         I915_WRITE(FW_BLC, fwater_lo);
1646         I915_WRITE(FW_BLC2, fwater_hi);
1647
1648         if (HAS_FW_BLC(dev)) {
1649                 if (enabled) {
1650                         if (IS_I945G(dev) || IS_I945GM(dev))
1651                                 I915_WRITE(FW_BLC_SELF,
1652                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1653                         else if (IS_I915GM(dev))
1654                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1655                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1656                 } else
1657                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1658         }
1659 }
1660
1661 static void i830_update_wm(struct drm_device *dev)
1662 {
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664         struct drm_crtc *crtc;
1665         uint32_t fwater_lo;
1666         int planea_wm;
1667
1668         crtc = single_enabled_crtc(dev);
1669         if (crtc == NULL)
1670                 return;
1671
1672         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1673                                        dev_priv->display.get_fifo_size(dev, 0),
1674                                        4, latency_ns);
1675         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1676         fwater_lo |= (3<<8) | planea_wm;
1677
1678         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1679
1680         I915_WRITE(FW_BLC, fwater_lo);
1681 }
1682
1683 #define ILK_LP0_PLANE_LATENCY           700
1684 #define ILK_LP0_CURSOR_LATENCY          1300
1685
1686 /*
1687  * Check the wm result.
1688  *
1689  * If any calculated watermark values is larger than the maximum value that
1690  * can be programmed into the associated watermark register, that watermark
1691  * must be disabled.
1692  */
1693 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1694                                 int fbc_wm, int display_wm, int cursor_wm,
1695                                 const struct intel_watermark_params *display,
1696                                 const struct intel_watermark_params *cursor)
1697 {
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699
1700         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1701                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1702
1703         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1704                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1705                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1706
1707                 /* fbc has it's own way to disable FBC WM */
1708                 I915_WRITE(DISP_ARB_CTL,
1709                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1710                 return false;
1711         } else if (INTEL_INFO(dev)->gen >= 6) {
1712                 /* enable FBC WM (except on ILK, where it must remain off) */
1713                 I915_WRITE(DISP_ARB_CTL,
1714                            I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1715         }
1716
1717         if (display_wm > display->max_wm) {
1718                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1719                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1720                 return false;
1721         }
1722
1723         if (cursor_wm > cursor->max_wm) {
1724                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1725                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1726                 return false;
1727         }
1728
1729         if (!(fbc_wm || display_wm || cursor_wm)) {
1730                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1731                 return false;
1732         }
1733
1734         return true;
1735 }
1736
1737 /*
1738  * Compute watermark values of WM[1-3],
1739  */
1740 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1741                                   int latency_ns,
1742                                   const struct intel_watermark_params *display,
1743                                   const struct intel_watermark_params *cursor,
1744                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1745 {
1746         struct drm_crtc *crtc;
1747         unsigned long line_time_us;
1748         int hdisplay, htotal, pixel_size, clock;
1749         int line_count, line_size;
1750         int small, large;
1751         int entries;
1752
1753         if (!latency_ns) {
1754                 *fbc_wm = *display_wm = *cursor_wm = 0;
1755                 return false;
1756         }
1757
1758         crtc = intel_get_crtc_for_plane(dev, plane);
1759         hdisplay = crtc->mode.hdisplay;
1760         htotal = crtc->mode.htotal;
1761         clock = crtc->mode.clock;
1762         pixel_size = crtc->fb->bits_per_pixel / 8;
1763
1764         line_time_us = (htotal * 1000) / clock;
1765         line_count = (latency_ns / line_time_us + 1000) / 1000;
1766         line_size = hdisplay * pixel_size;
1767
1768         /* Use the minimum of the small and large buffer method for primary */
1769         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1770         large = line_count * line_size;
1771
1772         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1773         *display_wm = entries + display->guard_size;
1774
1775         /*
1776          * Spec says:
1777          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1778          */
1779         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1780
1781         /* calculate the self-refresh watermark for display cursor */
1782         entries = line_count * pixel_size * 64;
1783         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1784         *cursor_wm = entries + cursor->guard_size;
1785
1786         return ironlake_check_srwm(dev, level,
1787                                    *fbc_wm, *display_wm, *cursor_wm,
1788                                    display, cursor);
1789 }
1790
1791 static void ironlake_update_wm(struct drm_device *dev)
1792 {
1793         struct drm_i915_private *dev_priv = dev->dev_private;
1794         int fbc_wm, plane_wm, cursor_wm;
1795         unsigned int enabled;
1796
1797         enabled = 0;
1798         if (g4x_compute_wm0(dev, PIPE_A,
1799                             &ironlake_display_wm_info,
1800                             ILK_LP0_PLANE_LATENCY,
1801                             &ironlake_cursor_wm_info,
1802                             ILK_LP0_CURSOR_LATENCY,
1803                             &plane_wm, &cursor_wm)) {
1804                 I915_WRITE(WM0_PIPEA_ILK,
1805                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1806                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1807                               " plane %d, " "cursor: %d\n",
1808                               plane_wm, cursor_wm);
1809                 enabled |= 1 << PIPE_A;
1810         }
1811
1812         if (g4x_compute_wm0(dev, PIPE_B,
1813                             &ironlake_display_wm_info,
1814                             ILK_LP0_PLANE_LATENCY,
1815                             &ironlake_cursor_wm_info,
1816                             ILK_LP0_CURSOR_LATENCY,
1817                             &plane_wm, &cursor_wm)) {
1818                 I915_WRITE(WM0_PIPEB_ILK,
1819                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1820                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1821                               " plane %d, cursor: %d\n",
1822                               plane_wm, cursor_wm);
1823                 enabled |= 1 << PIPE_B;
1824         }
1825
1826         /*
1827          * Calculate and update the self-refresh watermark only when one
1828          * display plane is used.
1829          */
1830         I915_WRITE(WM3_LP_ILK, 0);
1831         I915_WRITE(WM2_LP_ILK, 0);
1832         I915_WRITE(WM1_LP_ILK, 0);
1833
1834         if (!single_plane_enabled(enabled))
1835                 return;
1836         enabled = ffs(enabled) - 1;
1837
1838         /* WM1 */
1839         if (!ironlake_compute_srwm(dev, 1, enabled,
1840                                    ILK_READ_WM1_LATENCY() * 500,
1841                                    &ironlake_display_srwm_info,
1842                                    &ironlake_cursor_srwm_info,
1843                                    &fbc_wm, &plane_wm, &cursor_wm))
1844                 return;
1845
1846         I915_WRITE(WM1_LP_ILK,
1847                    WM1_LP_SR_EN |
1848                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1849                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1850                    (plane_wm << WM1_LP_SR_SHIFT) |
1851                    cursor_wm);
1852
1853         /* WM2 */
1854         if (!ironlake_compute_srwm(dev, 2, enabled,
1855                                    ILK_READ_WM2_LATENCY() * 500,
1856                                    &ironlake_display_srwm_info,
1857                                    &ironlake_cursor_srwm_info,
1858                                    &fbc_wm, &plane_wm, &cursor_wm))
1859                 return;
1860
1861         I915_WRITE(WM2_LP_ILK,
1862                    WM2_LP_EN |
1863                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1864                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1865                    (plane_wm << WM1_LP_SR_SHIFT) |
1866                    cursor_wm);
1867
1868         /*
1869          * WM3 is unsupported on ILK, probably because we don't have latency
1870          * data for that power state
1871          */
1872 }
1873
1874 static void sandybridge_update_wm(struct drm_device *dev)
1875 {
1876         struct drm_i915_private *dev_priv = dev->dev_private;
1877         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1878         u32 val;
1879         int fbc_wm, plane_wm, cursor_wm;
1880         unsigned int enabled;
1881
1882         enabled = 0;
1883         if (g4x_compute_wm0(dev, PIPE_A,
1884                             &sandybridge_display_wm_info, latency,
1885                             &sandybridge_cursor_wm_info, latency,
1886                             &plane_wm, &cursor_wm)) {
1887                 val = I915_READ(WM0_PIPEA_ILK);
1888                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1889                 I915_WRITE(WM0_PIPEA_ILK, val |
1890                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1891                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1892                               " plane %d, " "cursor: %d\n",
1893                               plane_wm, cursor_wm);
1894                 enabled |= 1 << PIPE_A;
1895         }
1896
1897         if (g4x_compute_wm0(dev, PIPE_B,
1898                             &sandybridge_display_wm_info, latency,
1899                             &sandybridge_cursor_wm_info, latency,
1900                             &plane_wm, &cursor_wm)) {
1901                 val = I915_READ(WM0_PIPEB_ILK);
1902                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1903                 I915_WRITE(WM0_PIPEB_ILK, val |
1904                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1905                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1906                               " plane %d, cursor: %d\n",
1907                               plane_wm, cursor_wm);
1908                 enabled |= 1 << PIPE_B;
1909         }
1910
1911         /*
1912          * Calculate and update the self-refresh watermark only when one
1913          * display plane is used.
1914          *
1915          * SNB support 3 levels of watermark.
1916          *
1917          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1918          * and disabled in the descending order
1919          *
1920          */
1921         I915_WRITE(WM3_LP_ILK, 0);
1922         I915_WRITE(WM2_LP_ILK, 0);
1923         I915_WRITE(WM1_LP_ILK, 0);
1924
1925         if (!single_plane_enabled(enabled) ||
1926             dev_priv->sprite_scaling_enabled)
1927                 return;
1928         enabled = ffs(enabled) - 1;
1929
1930         /* WM1 */
1931         if (!ironlake_compute_srwm(dev, 1, enabled,
1932                                    SNB_READ_WM1_LATENCY() * 500,
1933                                    &sandybridge_display_srwm_info,
1934                                    &sandybridge_cursor_srwm_info,
1935                                    &fbc_wm, &plane_wm, &cursor_wm))
1936                 return;
1937
1938         I915_WRITE(WM1_LP_ILK,
1939                    WM1_LP_SR_EN |
1940                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1941                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1942                    (plane_wm << WM1_LP_SR_SHIFT) |
1943                    cursor_wm);
1944
1945         /* WM2 */
1946         if (!ironlake_compute_srwm(dev, 2, enabled,
1947                                    SNB_READ_WM2_LATENCY() * 500,
1948                                    &sandybridge_display_srwm_info,
1949                                    &sandybridge_cursor_srwm_info,
1950                                    &fbc_wm, &plane_wm, &cursor_wm))
1951                 return;
1952
1953         I915_WRITE(WM2_LP_ILK,
1954                    WM2_LP_EN |
1955                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1956                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1957                    (plane_wm << WM1_LP_SR_SHIFT) |
1958                    cursor_wm);
1959
1960         /* WM3 */
1961         if (!ironlake_compute_srwm(dev, 3, enabled,
1962                                    SNB_READ_WM3_LATENCY() * 500,
1963                                    &sandybridge_display_srwm_info,
1964                                    &sandybridge_cursor_srwm_info,
1965                                    &fbc_wm, &plane_wm, &cursor_wm))
1966                 return;
1967
1968         I915_WRITE(WM3_LP_ILK,
1969                    WM3_LP_EN |
1970                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1971                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1972                    (plane_wm << WM1_LP_SR_SHIFT) |
1973                    cursor_wm);
1974 }
1975
1976 static void ivybridge_update_wm(struct drm_device *dev)
1977 {
1978         struct drm_i915_private *dev_priv = dev->dev_private;
1979         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1980         u32 val;
1981         int fbc_wm, plane_wm, cursor_wm;
1982         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1983         unsigned int enabled;
1984
1985         enabled = 0;
1986         if (g4x_compute_wm0(dev, PIPE_A,
1987                             &sandybridge_display_wm_info, latency,
1988                             &sandybridge_cursor_wm_info, latency,
1989                             &plane_wm, &cursor_wm)) {
1990                 val = I915_READ(WM0_PIPEA_ILK);
1991                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1992                 I915_WRITE(WM0_PIPEA_ILK, val |
1993                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1994                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1995                               " plane %d, " "cursor: %d\n",
1996                               plane_wm, cursor_wm);
1997                 enabled |= 1 << PIPE_A;
1998         }
1999
2000         if (g4x_compute_wm0(dev, PIPE_B,
2001                             &sandybridge_display_wm_info, latency,
2002                             &sandybridge_cursor_wm_info, latency,
2003                             &plane_wm, &cursor_wm)) {
2004                 val = I915_READ(WM0_PIPEB_ILK);
2005                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2006                 I915_WRITE(WM0_PIPEB_ILK, val |
2007                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2008                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2009                               " plane %d, cursor: %d\n",
2010                               plane_wm, cursor_wm);
2011                 enabled |= 1 << PIPE_B;
2012         }
2013
2014         if (g4x_compute_wm0(dev, PIPE_C,
2015                             &sandybridge_display_wm_info, latency,
2016                             &sandybridge_cursor_wm_info, latency,
2017                             &plane_wm, &cursor_wm)) {
2018                 val = I915_READ(WM0_PIPEC_IVB);
2019                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2020                 I915_WRITE(WM0_PIPEC_IVB, val |
2021                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2022                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2023                               " plane %d, cursor: %d\n",
2024                               plane_wm, cursor_wm);
2025                 enabled |= 1 << PIPE_C;
2026         }
2027
2028         /*
2029          * Calculate and update the self-refresh watermark only when one
2030          * display plane is used.
2031          *
2032          * SNB support 3 levels of watermark.
2033          *
2034          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2035          * and disabled in the descending order
2036          *
2037          */
2038         I915_WRITE(WM3_LP_ILK, 0);
2039         I915_WRITE(WM2_LP_ILK, 0);
2040         I915_WRITE(WM1_LP_ILK, 0);
2041
2042         if (!single_plane_enabled(enabled) ||
2043             dev_priv->sprite_scaling_enabled)
2044                 return;
2045         enabled = ffs(enabled) - 1;
2046
2047         /* WM1 */
2048         if (!ironlake_compute_srwm(dev, 1, enabled,
2049                                    SNB_READ_WM1_LATENCY() * 500,
2050                                    &sandybridge_display_srwm_info,
2051                                    &sandybridge_cursor_srwm_info,
2052                                    &fbc_wm, &plane_wm, &cursor_wm))
2053                 return;
2054
2055         I915_WRITE(WM1_LP_ILK,
2056                    WM1_LP_SR_EN |
2057                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2058                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2059                    (plane_wm << WM1_LP_SR_SHIFT) |
2060                    cursor_wm);
2061
2062         /* WM2 */
2063         if (!ironlake_compute_srwm(dev, 2, enabled,
2064                                    SNB_READ_WM2_LATENCY() * 500,
2065                                    &sandybridge_display_srwm_info,
2066                                    &sandybridge_cursor_srwm_info,
2067                                    &fbc_wm, &plane_wm, &cursor_wm))
2068                 return;
2069
2070         I915_WRITE(WM2_LP_ILK,
2071                    WM2_LP_EN |
2072                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2073                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2074                    (plane_wm << WM1_LP_SR_SHIFT) |
2075                    cursor_wm);
2076
2077         /* WM3, note we have to correct the cursor latency */
2078         if (!ironlake_compute_srwm(dev, 3, enabled,
2079                                    SNB_READ_WM3_LATENCY() * 500,
2080                                    &sandybridge_display_srwm_info,
2081                                    &sandybridge_cursor_srwm_info,
2082                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2083             !ironlake_compute_srwm(dev, 3, enabled,
2084                                    2 * SNB_READ_WM3_LATENCY() * 500,
2085                                    &sandybridge_display_srwm_info,
2086                                    &sandybridge_cursor_srwm_info,
2087                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2088                 return;
2089
2090         I915_WRITE(WM3_LP_ILK,
2091                    WM3_LP_EN |
2092                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2093                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2094                    (plane_wm << WM1_LP_SR_SHIFT) |
2095                    cursor_wm);
2096 }
2097
2098 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2099                                     struct drm_crtc *crtc)
2100 {
2101         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2102         uint32_t pixel_rate, pfit_size;
2103
2104         pixel_rate = intel_crtc->config.adjusted_mode.clock;
2105
2106         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2107          * adjust the pixel_rate here. */
2108
2109         pfit_size = intel_crtc->config.pch_pfit.size;
2110         if (pfit_size) {
2111                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2112
2113                 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2114                 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2115                 pfit_w = (pfit_size >> 16) & 0xFFFF;
2116                 pfit_h = pfit_size & 0xFFFF;
2117                 if (pipe_w < pfit_w)
2118                         pipe_w = pfit_w;
2119                 if (pipe_h < pfit_h)
2120                         pipe_h = pfit_h;
2121
2122                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2123                                      pfit_w * pfit_h);
2124         }
2125
2126         return pixel_rate;
2127 }
2128
2129 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2130                                uint32_t latency)
2131 {
2132         uint64_t ret;
2133
2134         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2135         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2136
2137         return ret;
2138 }
2139
2140 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2141                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2142                                uint32_t latency)
2143 {
2144         uint32_t ret;
2145
2146         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2147         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2148         ret = DIV_ROUND_UP(ret, 64) + 2;
2149         return ret;
2150 }
2151
2152 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2153                            uint8_t bytes_per_pixel)
2154 {
2155         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2156 }
2157
2158 struct hsw_pipe_wm_parameters {
2159         bool active;
2160         bool sprite_enabled;
2161         uint8_t pri_bytes_per_pixel;
2162         uint8_t spr_bytes_per_pixel;
2163         uint8_t cur_bytes_per_pixel;
2164         uint32_t pri_horiz_pixels;
2165         uint32_t spr_horiz_pixels;
2166         uint32_t cur_horiz_pixels;
2167         uint32_t pipe_htotal;
2168         uint32_t pixel_rate;
2169 };
2170
2171 struct hsw_wm_maximums {
2172         uint16_t pri;
2173         uint16_t spr;
2174         uint16_t cur;
2175         uint16_t fbc;
2176 };
2177
2178 struct hsw_lp_wm_result {
2179         bool enable;
2180         bool fbc_enable;
2181         uint32_t pri_val;
2182         uint32_t spr_val;
2183         uint32_t cur_val;
2184         uint32_t fbc_val;
2185 };
2186
2187 struct hsw_wm_values {
2188         uint32_t wm_pipe[3];
2189         uint32_t wm_lp[3];
2190         uint32_t wm_lp_spr[3];
2191         uint32_t wm_linetime[3];
2192         bool enable_fbc_wm;
2193 };
2194
2195 enum hsw_data_buf_partitioning {
2196         HSW_DATA_BUF_PART_1_2,
2197         HSW_DATA_BUF_PART_5_6,
2198 };
2199
2200 /* For both WM_PIPE and WM_LP. */
2201 static uint32_t ilk_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2202                                    uint32_t mem_value,
2203                                    bool is_lp)
2204 {
2205         uint32_t method1, method2;
2206
2207         /* TODO: for now, assume the primary plane is always enabled. */
2208         if (!params->active)
2209                 return 0;
2210
2211         method1 = ilk_wm_method1(params->pixel_rate,
2212                                  params->pri_bytes_per_pixel,
2213                                  mem_value);
2214
2215         if (!is_lp)
2216                 return method1;
2217
2218         method2 = ilk_wm_method2(params->pixel_rate,
2219                                  params->pipe_htotal,
2220                                  params->pri_horiz_pixels,
2221                                  params->pri_bytes_per_pixel,
2222                                  mem_value);
2223
2224         return min(method1, method2);
2225 }
2226
2227 /* For both WM_PIPE and WM_LP. */
2228 static uint32_t ilk_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2229                                    uint32_t mem_value)
2230 {
2231         uint32_t method1, method2;
2232
2233         if (!params->active || !params->sprite_enabled)
2234                 return 0;
2235
2236         method1 = ilk_wm_method1(params->pixel_rate,
2237                                  params->spr_bytes_per_pixel,
2238                                  mem_value);
2239         method2 = ilk_wm_method2(params->pixel_rate,
2240                                  params->pipe_htotal,
2241                                  params->spr_horiz_pixels,
2242                                  params->spr_bytes_per_pixel,
2243                                  mem_value);
2244         return min(method1, method2);
2245 }
2246
2247 /* For both WM_PIPE and WM_LP. */
2248 static uint32_t ilk_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2249                                    uint32_t mem_value)
2250 {
2251         if (!params->active)
2252                 return 0;
2253
2254         return ilk_wm_method2(params->pixel_rate,
2255                               params->pipe_htotal,
2256                               params->cur_horiz_pixels,
2257                               params->cur_bytes_per_pixel,
2258                               mem_value);
2259 }
2260
2261 /* Only for WM_LP. */
2262 static uint32_t ilk_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2263                                    uint32_t pri_val)
2264 {
2265         if (!params->active)
2266                 return 0;
2267
2268         return ilk_wm_fbc(pri_val,
2269                           params->pri_horiz_pixels,
2270                           params->pri_bytes_per_pixel);
2271 }
2272
2273 static bool hsw_compute_lp_wm(uint32_t mem_value, struct hsw_wm_maximums *max,
2274                               struct hsw_pipe_wm_parameters *params,
2275                               struct hsw_lp_wm_result *result)
2276 {
2277         enum pipe pipe;
2278         uint32_t pri_val[3], spr_val[3], cur_val[3], fbc_val[3];
2279
2280         for (pipe = PIPE_A; pipe <= PIPE_C; pipe++) {
2281                 struct hsw_pipe_wm_parameters *p = &params[pipe];
2282
2283                 pri_val[pipe] = ilk_compute_pri_wm(p, mem_value, true);
2284                 spr_val[pipe] = ilk_compute_spr_wm(p, mem_value);
2285                 cur_val[pipe] = ilk_compute_cur_wm(p, mem_value);
2286                 fbc_val[pipe] = ilk_compute_fbc_wm(p, pri_val[pipe]);
2287         }
2288
2289         result->pri_val = max3(pri_val[0], pri_val[1], pri_val[2]);
2290         result->spr_val = max3(spr_val[0], spr_val[1], spr_val[2]);
2291         result->cur_val = max3(cur_val[0], cur_val[1], cur_val[2]);
2292         result->fbc_val = max3(fbc_val[0], fbc_val[1], fbc_val[2]);
2293
2294         if (result->fbc_val > max->fbc) {
2295                 result->fbc_enable = false;
2296                 result->fbc_val = 0;
2297         } else {
2298                 result->fbc_enable = true;
2299         }
2300
2301         result->enable = result->pri_val <= max->pri &&
2302                          result->spr_val <= max->spr &&
2303                          result->cur_val <= max->cur;
2304         return result->enable;
2305 }
2306
2307 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2308                                     uint32_t mem_value, enum pipe pipe,
2309                                     struct hsw_pipe_wm_parameters *params)
2310 {
2311         uint32_t pri_val, cur_val, spr_val;
2312
2313         pri_val = ilk_compute_pri_wm(params, mem_value, false);
2314         spr_val = ilk_compute_spr_wm(params, mem_value);
2315         cur_val = ilk_compute_cur_wm(params, mem_value);
2316
2317         WARN(pri_val > 127,
2318              "Primary WM error, mode not supported for pipe %c\n",
2319              pipe_name(pipe));
2320         WARN(spr_val > 127,
2321              "Sprite WM error, mode not supported for pipe %c\n",
2322              pipe_name(pipe));
2323         WARN(cur_val > 63,
2324              "Cursor WM error, mode not supported for pipe %c\n",
2325              pipe_name(pipe));
2326
2327         return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2328                (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2329                cur_val;
2330 }
2331
2332 static uint32_t
2333 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2334 {
2335         struct drm_i915_private *dev_priv = dev->dev_private;
2336         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2337         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2338         u32 linetime, ips_linetime;
2339
2340         if (!intel_crtc_active(crtc))
2341                 return 0;
2342
2343         /* The WM are computed with base on how long it takes to fill a single
2344          * row at the given clock rate, multiplied by 8.
2345          * */
2346         linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2347         ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2348                                          intel_ddi_get_cdclk_freq(dev_priv));
2349
2350         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2351                PIPE_WM_LINETIME_TIME(linetime);
2352 }
2353
2354 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2355 {
2356         struct drm_i915_private *dev_priv = dev->dev_private;
2357
2358         if (IS_HASWELL(dev)) {
2359                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2360
2361                 wm[0] = (sskpd >> 56) & 0xFF;
2362                 if (wm[0] == 0)
2363                         wm[0] = sskpd & 0xF;
2364                 wm[1] = (sskpd >> 4) & 0xFF;
2365                 wm[2] = (sskpd >> 12) & 0xFF;
2366                 wm[3] = (sskpd >> 20) & 0x1FF;
2367                 wm[4] = (sskpd >> 32) & 0x1FF;
2368         } else if (INTEL_INFO(dev)->gen >= 6) {
2369                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2370
2371                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2372                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2373                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2374                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2375         }
2376 }
2377
2378 static void hsw_compute_wm_parameters(struct drm_device *dev,
2379                                       struct hsw_pipe_wm_parameters *params,
2380                                       struct hsw_wm_maximums *lp_max_1_2,
2381                                       struct hsw_wm_maximums *lp_max_5_6)
2382 {
2383         struct drm_crtc *crtc;
2384         struct drm_plane *plane;
2385         enum pipe pipe;
2386         int pipes_active = 0, sprites_enabled = 0;
2387
2388         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2389                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2390                 struct hsw_pipe_wm_parameters *p;
2391
2392                 pipe = intel_crtc->pipe;
2393                 p = &params[pipe];
2394
2395                 p->active = intel_crtc_active(crtc);
2396                 if (!p->active)
2397                         continue;
2398
2399                 pipes_active++;
2400
2401                 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2402                 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2403                 p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2404                 p->cur_bytes_per_pixel = 4;
2405                 p->pri_horiz_pixels =
2406                         intel_crtc->config.requested_mode.hdisplay;
2407                 p->cur_horiz_pixels = 64;
2408         }
2409
2410         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2411                 struct intel_plane *intel_plane = to_intel_plane(plane);
2412                 struct hsw_pipe_wm_parameters *p;
2413
2414                 pipe = intel_plane->pipe;
2415                 p = &params[pipe];
2416
2417                 p->sprite_enabled = intel_plane->wm.enabled;
2418                 p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
2419                 p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
2420
2421                 if (p->sprite_enabled)
2422                         sprites_enabled++;
2423         }
2424
2425         if (pipes_active > 1) {
2426                 lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
2427                 lp_max_1_2->spr = lp_max_5_6->spr = 128;
2428                 lp_max_1_2->cur = lp_max_5_6->cur = 64;
2429         } else {
2430                 lp_max_1_2->pri = sprites_enabled ? 384 : 768;
2431                 lp_max_5_6->pri = sprites_enabled ? 128 : 768;
2432                 lp_max_1_2->spr = 384;
2433                 lp_max_5_6->spr = 640;
2434                 lp_max_1_2->cur = lp_max_5_6->cur = 255;
2435         }
2436         lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
2437 }
2438
2439 static void hsw_compute_wm_results(struct drm_device *dev,
2440                                    struct hsw_pipe_wm_parameters *params,
2441                                    uint16_t *wm,
2442                                    struct hsw_wm_maximums *lp_maximums,
2443                                    struct hsw_wm_values *results)
2444 {
2445         struct drm_i915_private *dev_priv = dev->dev_private;
2446         struct drm_crtc *crtc;
2447         struct hsw_lp_wm_result lp_results[4] = {};
2448         enum pipe pipe;
2449         int level, max_level, wm_lp;
2450
2451         for (level = 1; level <= 4; level++)
2452                 if (!hsw_compute_lp_wm(wm[level] * 5, lp_maximums, params,
2453                                        &lp_results[level - 1]))
2454                         break;
2455         max_level = level - 1;
2456
2457         /* The spec says it is preferred to disable FBC WMs instead of disabling
2458          * a WM level. */
2459         results->enable_fbc_wm = true;
2460         for (level = 1; level <= max_level; level++) {
2461                 if (!lp_results[level - 1].fbc_enable) {
2462                         results->enable_fbc_wm = false;
2463                         break;
2464                 }
2465         }
2466
2467         memset(results, 0, sizeof(*results));
2468         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2469                 const struct hsw_lp_wm_result *r;
2470
2471                 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2472                 if (level > max_level)
2473                         break;
2474
2475                 r = &lp_results[level - 1];
2476                 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2477                                                           r->fbc_val,
2478                                                           r->pri_val,
2479                                                           r->cur_val);
2480                 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2481         }
2482
2483         for_each_pipe(pipe)
2484                 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, wm[0],
2485                                                              pipe,
2486                                                              &params[pipe]);
2487
2488         for_each_pipe(pipe) {
2489                 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2490                 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2491         }
2492 }
2493
2494 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2495  * case both are at the same level. Prefer r1 in case they're the same. */
2496 static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2497                                                   struct hsw_wm_values *r2)
2498 {
2499         int i, val_r1 = 0, val_r2 = 0;
2500
2501         for (i = 0; i < 3; i++) {
2502                 if (r1->wm_lp[i] & WM3_LP_EN)
2503                         val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2504                 if (r2->wm_lp[i] & WM3_LP_EN)
2505                         val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2506         }
2507
2508         if (val_r1 == val_r2) {
2509                 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2510                         return r2;
2511                 else
2512                         return r1;
2513         } else if (val_r1 > val_r2) {
2514                 return r1;
2515         } else {
2516                 return r2;
2517         }
2518 }
2519
2520 /*
2521  * The spec says we shouldn't write when we don't need, because every write
2522  * causes WMs to be re-evaluated, expending some power.
2523  */
2524 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2525                                 struct hsw_wm_values *results,
2526                                 enum hsw_data_buf_partitioning partitioning)
2527 {
2528         struct hsw_wm_values previous;
2529         uint32_t val;
2530         enum hsw_data_buf_partitioning prev_partitioning;
2531         bool prev_enable_fbc_wm;
2532
2533         previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2534         previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2535         previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2536         previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2537         previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2538         previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2539         previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2540         previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2541         previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2542         previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2543         previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2544         previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2545
2546         prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2547                             HSW_DATA_BUF_PART_5_6 : HSW_DATA_BUF_PART_1_2;
2548
2549         prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2550
2551         if (memcmp(results->wm_pipe, previous.wm_pipe,
2552                    sizeof(results->wm_pipe)) == 0 &&
2553             memcmp(results->wm_lp, previous.wm_lp,
2554                    sizeof(results->wm_lp)) == 0 &&
2555             memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2556                    sizeof(results->wm_lp_spr)) == 0 &&
2557             memcmp(results->wm_linetime, previous.wm_linetime,
2558                    sizeof(results->wm_linetime)) == 0 &&
2559             partitioning == prev_partitioning &&
2560             results->enable_fbc_wm == prev_enable_fbc_wm)
2561                 return;
2562
2563         if (previous.wm_lp[2] != 0)
2564                 I915_WRITE(WM3_LP_ILK, 0);
2565         if (previous.wm_lp[1] != 0)
2566                 I915_WRITE(WM2_LP_ILK, 0);
2567         if (previous.wm_lp[0] != 0)
2568                 I915_WRITE(WM1_LP_ILK, 0);
2569
2570         if (previous.wm_pipe[0] != results->wm_pipe[0])
2571                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2572         if (previous.wm_pipe[1] != results->wm_pipe[1])
2573                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2574         if (previous.wm_pipe[2] != results->wm_pipe[2])
2575                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2576
2577         if (previous.wm_linetime[0] != results->wm_linetime[0])
2578                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2579         if (previous.wm_linetime[1] != results->wm_linetime[1])
2580                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2581         if (previous.wm_linetime[2] != results->wm_linetime[2])
2582                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2583
2584         if (prev_partitioning != partitioning) {
2585                 val = I915_READ(WM_MISC);
2586                 if (partitioning == HSW_DATA_BUF_PART_1_2)
2587                         val &= ~WM_MISC_DATA_PARTITION_5_6;
2588                 else
2589                         val |= WM_MISC_DATA_PARTITION_5_6;
2590                 I915_WRITE(WM_MISC, val);
2591         }
2592
2593         if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2594                 val = I915_READ(DISP_ARB_CTL);
2595                 if (results->enable_fbc_wm)
2596                         val &= ~DISP_FBC_WM_DIS;
2597                 else
2598                         val |= DISP_FBC_WM_DIS;
2599                 I915_WRITE(DISP_ARB_CTL, val);
2600         }
2601
2602         if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2603                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2604         if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2605                 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2606         if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2607                 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2608
2609         if (results->wm_lp[0] != 0)
2610                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2611         if (results->wm_lp[1] != 0)
2612                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2613         if (results->wm_lp[2] != 0)
2614                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2615 }
2616
2617 static void haswell_update_wm(struct drm_device *dev)
2618 {
2619         struct drm_i915_private *dev_priv = dev->dev_private;
2620         struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2621         struct hsw_pipe_wm_parameters params[3];
2622         struct hsw_wm_values results_1_2, results_5_6, *best_results;
2623         uint16_t wm[5] = {};
2624         enum hsw_data_buf_partitioning partitioning;
2625
2626         intel_read_wm_latency(dev, wm);
2627         hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
2628
2629         hsw_compute_wm_results(dev, params, wm, &lp_max_1_2, &results_1_2);
2630         if (lp_max_1_2.pri != lp_max_5_6.pri) {
2631                 hsw_compute_wm_results(dev, params, wm, &lp_max_5_6,
2632                                        &results_5_6);
2633                 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2634         } else {
2635                 best_results = &results_1_2;
2636         }
2637
2638         partitioning = (best_results == &results_1_2) ?
2639                        HSW_DATA_BUF_PART_1_2 : HSW_DATA_BUF_PART_5_6;
2640
2641         hsw_write_wm_values(dev_priv, best_results, partitioning);
2642 }
2643
2644 static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
2645                                      uint32_t sprite_width, int pixel_size,
2646                                      bool enabled, bool scaled)
2647 {
2648         struct drm_plane *plane;
2649
2650         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2651                 struct intel_plane *intel_plane = to_intel_plane(plane);
2652
2653                 if (intel_plane->pipe == pipe) {
2654                         intel_plane->wm.enabled = enabled;
2655                         intel_plane->wm.scaled = scaled;
2656                         intel_plane->wm.horiz_pixels = sprite_width;
2657                         intel_plane->wm.bytes_per_pixel = pixel_size;
2658                         break;
2659                 }
2660         }
2661
2662         haswell_update_wm(dev);
2663 }
2664
2665 static bool
2666 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2667                               uint32_t sprite_width, int pixel_size,
2668                               const struct intel_watermark_params *display,
2669                               int display_latency_ns, int *sprite_wm)
2670 {
2671         struct drm_crtc *crtc;
2672         int clock;
2673         int entries, tlb_miss;
2674
2675         crtc = intel_get_crtc_for_plane(dev, plane);
2676         if (!intel_crtc_active(crtc)) {
2677                 *sprite_wm = display->guard_size;
2678                 return false;
2679         }
2680
2681         clock = crtc->mode.clock;
2682
2683         /* Use the small buffer method to calculate the sprite watermark */
2684         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2685         tlb_miss = display->fifo_size*display->cacheline_size -
2686                 sprite_width * 8;
2687         if (tlb_miss > 0)
2688                 entries += tlb_miss;
2689         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2690         *sprite_wm = entries + display->guard_size;
2691         if (*sprite_wm > (int)display->max_wm)
2692                 *sprite_wm = display->max_wm;
2693
2694         return true;
2695 }
2696
2697 static bool
2698 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2699                                 uint32_t sprite_width, int pixel_size,
2700                                 const struct intel_watermark_params *display,
2701                                 int latency_ns, int *sprite_wm)
2702 {
2703         struct drm_crtc *crtc;
2704         unsigned long line_time_us;
2705         int clock;
2706         int line_count, line_size;
2707         int small, large;
2708         int entries;
2709
2710         if (!latency_ns) {
2711                 *sprite_wm = 0;
2712                 return false;
2713         }
2714
2715         crtc = intel_get_crtc_for_plane(dev, plane);
2716         clock = crtc->mode.clock;
2717         if (!clock) {
2718                 *sprite_wm = 0;
2719                 return false;
2720         }
2721
2722         line_time_us = (sprite_width * 1000) / clock;
2723         if (!line_time_us) {
2724                 *sprite_wm = 0;
2725                 return false;
2726         }
2727
2728         line_count = (latency_ns / line_time_us + 1000) / 1000;
2729         line_size = sprite_width * pixel_size;
2730
2731         /* Use the minimum of the small and large buffer method for primary */
2732         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2733         large = line_count * line_size;
2734
2735         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2736         *sprite_wm = entries + display->guard_size;
2737
2738         return *sprite_wm > 0x3ff ? false : true;
2739 }
2740
2741 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2742                                          uint32_t sprite_width, int pixel_size,
2743                                          bool enable, bool scaled)
2744 {
2745         struct drm_i915_private *dev_priv = dev->dev_private;
2746         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2747         u32 val;
2748         int sprite_wm, reg;
2749         int ret;
2750
2751         if (!enable)
2752                 return;
2753
2754         switch (pipe) {
2755         case 0:
2756                 reg = WM0_PIPEA_ILK;
2757                 break;
2758         case 1:
2759                 reg = WM0_PIPEB_ILK;
2760                 break;
2761         case 2:
2762                 reg = WM0_PIPEC_IVB;
2763                 break;
2764         default:
2765                 return; /* bad pipe */
2766         }
2767
2768         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2769                                             &sandybridge_display_wm_info,
2770                                             latency, &sprite_wm);
2771         if (!ret) {
2772                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2773                               pipe_name(pipe));
2774                 return;
2775         }
2776
2777         val = I915_READ(reg);
2778         val &= ~WM0_PIPE_SPRITE_MASK;
2779         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2780         DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2781
2782
2783         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2784                                               pixel_size,
2785                                               &sandybridge_display_srwm_info,
2786                                               SNB_READ_WM1_LATENCY() * 500,
2787                                               &sprite_wm);
2788         if (!ret) {
2789                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2790                               pipe_name(pipe));
2791                 return;
2792         }
2793         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2794
2795         /* Only IVB has two more LP watermarks for sprite */
2796         if (!IS_IVYBRIDGE(dev))
2797                 return;
2798
2799         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2800                                               pixel_size,
2801                                               &sandybridge_display_srwm_info,
2802                                               SNB_READ_WM2_LATENCY() * 500,
2803                                               &sprite_wm);
2804         if (!ret) {
2805                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2806                               pipe_name(pipe));
2807                 return;
2808         }
2809         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2810
2811         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2812                                               pixel_size,
2813                                               &sandybridge_display_srwm_info,
2814                                               SNB_READ_WM3_LATENCY() * 500,
2815                                               &sprite_wm);
2816         if (!ret) {
2817                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2818                               pipe_name(pipe));
2819                 return;
2820         }
2821         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2822 }
2823
2824 /**
2825  * intel_update_watermarks - update FIFO watermark values based on current modes
2826  *
2827  * Calculate watermark values for the various WM regs based on current mode
2828  * and plane configuration.
2829  *
2830  * There are several cases to deal with here:
2831  *   - normal (i.e. non-self-refresh)
2832  *   - self-refresh (SR) mode
2833  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2834  *   - lines are small relative to FIFO size (buffer can hold more than 2
2835  *     lines), so need to account for TLB latency
2836  *
2837  *   The normal calculation is:
2838  *     watermark = dotclock * bytes per pixel * latency
2839  *   where latency is platform & configuration dependent (we assume pessimal
2840  *   values here).
2841  *
2842  *   The SR calculation is:
2843  *     watermark = (trunc(latency/line time)+1) * surface width *
2844  *       bytes per pixel
2845  *   where
2846  *     line time = htotal / dotclock
2847  *     surface width = hdisplay for normal plane and 64 for cursor
2848  *   and latency is assumed to be high, as above.
2849  *
2850  * The final value programmed to the register should always be rounded up,
2851  * and include an extra 2 entries to account for clock crossings.
2852  *
2853  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2854  * to set the non-SR watermarks to 8.
2855  */
2856 void intel_update_watermarks(struct drm_device *dev)
2857 {
2858         struct drm_i915_private *dev_priv = dev->dev_private;
2859
2860         if (dev_priv->display.update_wm)
2861                 dev_priv->display.update_wm(dev);
2862 }
2863
2864 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2865                                     uint32_t sprite_width, int pixel_size,
2866                                     bool enable, bool scaled)
2867 {
2868         struct drm_i915_private *dev_priv = dev->dev_private;
2869
2870         if (dev_priv->display.update_sprite_wm)
2871                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2872                                                    pixel_size, enable, scaled);
2873 }
2874
2875 static struct drm_i915_gem_object *
2876 intel_alloc_context_page(struct drm_device *dev)
2877 {
2878         struct drm_i915_gem_object *ctx;
2879         int ret;
2880
2881         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2882
2883         ctx = i915_gem_alloc_object(dev, 4096);
2884         if (!ctx) {
2885                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2886                 return NULL;
2887         }
2888
2889         ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
2890         if (ret) {
2891                 DRM_ERROR("failed to pin power context: %d\n", ret);
2892                 goto err_unref;
2893         }
2894
2895         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2896         if (ret) {
2897                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2898                 goto err_unpin;
2899         }
2900
2901         return ctx;
2902
2903 err_unpin:
2904         i915_gem_object_unpin(ctx);
2905 err_unref:
2906         drm_gem_object_unreference(&ctx->base);
2907         return NULL;
2908 }
2909
2910 /**
2911  * Lock protecting IPS related data structures
2912  */
2913 DEFINE_SPINLOCK(mchdev_lock);
2914
2915 /* Global for IPS driver to get at the current i915 device. Protected by
2916  * mchdev_lock. */
2917 static struct drm_i915_private *i915_mch_dev;
2918
2919 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2920 {
2921         struct drm_i915_private *dev_priv = dev->dev_private;
2922         u16 rgvswctl;
2923
2924         assert_spin_locked(&mchdev_lock);
2925
2926         rgvswctl = I915_READ16(MEMSWCTL);
2927         if (rgvswctl & MEMCTL_CMD_STS) {
2928                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2929                 return false; /* still busy with another command */
2930         }
2931
2932         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2933                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2934         I915_WRITE16(MEMSWCTL, rgvswctl);
2935         POSTING_READ16(MEMSWCTL);
2936
2937         rgvswctl |= MEMCTL_CMD_STS;
2938         I915_WRITE16(MEMSWCTL, rgvswctl);
2939
2940         return true;
2941 }
2942
2943 static void ironlake_enable_drps(struct drm_device *dev)
2944 {
2945         struct drm_i915_private *dev_priv = dev->dev_private;
2946         u32 rgvmodectl = I915_READ(MEMMODECTL);
2947         u8 fmax, fmin, fstart, vstart;
2948
2949         spin_lock_irq(&mchdev_lock);
2950
2951         /* Enable temp reporting */
2952         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2953         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2954
2955         /* 100ms RC evaluation intervals */
2956         I915_WRITE(RCUPEI, 100000);
2957         I915_WRITE(RCDNEI, 100000);
2958
2959         /* Set max/min thresholds to 90ms and 80ms respectively */
2960         I915_WRITE(RCBMAXAVG, 90000);
2961         I915_WRITE(RCBMINAVG, 80000);
2962
2963         I915_WRITE(MEMIHYST, 1);
2964
2965         /* Set up min, max, and cur for interrupt handling */
2966         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2967         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2968         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2969                 MEMMODE_FSTART_SHIFT;
2970
2971         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2972                 PXVFREQ_PX_SHIFT;
2973
2974         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2975         dev_priv->ips.fstart = fstart;
2976
2977         dev_priv->ips.max_delay = fstart;
2978         dev_priv->ips.min_delay = fmin;
2979         dev_priv->ips.cur_delay = fstart;
2980
2981         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2982                          fmax, fmin, fstart);
2983
2984         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2985
2986         /*
2987          * Interrupts will be enabled in ironlake_irq_postinstall
2988          */
2989
2990         I915_WRITE(VIDSTART, vstart);
2991         POSTING_READ(VIDSTART);
2992
2993         rgvmodectl |= MEMMODE_SWMODE_EN;
2994         I915_WRITE(MEMMODECTL, rgvmodectl);
2995
2996         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2997                 DRM_ERROR("stuck trying to change perf mode\n");
2998         mdelay(1);
2999
3000         ironlake_set_drps(dev, fstart);
3001
3002         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3003                 I915_READ(0x112e0);
3004         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3005         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3006         getrawmonotonic(&dev_priv->ips.last_time2);
3007
3008         spin_unlock_irq(&mchdev_lock);
3009 }
3010
3011 static void ironlake_disable_drps(struct drm_device *dev)
3012 {
3013         struct drm_i915_private *dev_priv = dev->dev_private;
3014         u16 rgvswctl;
3015
3016         spin_lock_irq(&mchdev_lock);
3017
3018         rgvswctl = I915_READ16(MEMSWCTL);
3019
3020         /* Ack interrupts, disable EFC interrupt */
3021         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3022         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3023         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3024         I915_WRITE(DEIIR, DE_PCU_EVENT);
3025         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3026
3027         /* Go back to the starting frequency */
3028         ironlake_set_drps(dev, dev_priv->ips.fstart);
3029         mdelay(1);
3030         rgvswctl |= MEMCTL_CMD_STS;
3031         I915_WRITE(MEMSWCTL, rgvswctl);
3032         mdelay(1);
3033
3034         spin_unlock_irq(&mchdev_lock);
3035 }
3036
3037 /* There's a funny hw issue where the hw returns all 0 when reading from
3038  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3039  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3040  * all limits and the gpu stuck at whatever frequency it is at atm).
3041  */
3042 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3043 {
3044         u32 limits;
3045
3046         limits = 0;
3047
3048         if (*val >= dev_priv->rps.max_delay)
3049                 *val = dev_priv->rps.max_delay;
3050         limits |= dev_priv->rps.max_delay << 24;
3051
3052         /* Only set the down limit when we've reached the lowest level to avoid
3053          * getting more interrupts, otherwise leave this clear. This prevents a
3054          * race in the hw when coming out of rc6: There's a tiny window where
3055          * the hw runs at the minimal clock before selecting the desired
3056          * frequency, if the down threshold expires in that window we will not
3057          * receive a down interrupt. */
3058         if (*val <= dev_priv->rps.min_delay) {
3059                 *val = dev_priv->rps.min_delay;
3060                 limits |= dev_priv->rps.min_delay << 16;
3061         }
3062
3063         return limits;
3064 }
3065
3066 void gen6_set_rps(struct drm_device *dev, u8 val)
3067 {
3068         struct drm_i915_private *dev_priv = dev->dev_private;
3069         u32 limits = gen6_rps_limits(dev_priv, &val);
3070
3071         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3072         WARN_ON(val > dev_priv->rps.max_delay);
3073         WARN_ON(val < dev_priv->rps.min_delay);
3074
3075         if (val == dev_priv->rps.cur_delay)
3076                 return;
3077
3078         if (IS_HASWELL(dev))
3079                 I915_WRITE(GEN6_RPNSWREQ,
3080                            HSW_FREQUENCY(val));
3081         else
3082                 I915_WRITE(GEN6_RPNSWREQ,
3083                            GEN6_FREQUENCY(val) |
3084                            GEN6_OFFSET(0) |
3085                            GEN6_AGGRESSIVE_TURBO);
3086
3087         /* Make sure we continue to get interrupts
3088          * until we hit the minimum or maximum frequencies.
3089          */
3090         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3091
3092         POSTING_READ(GEN6_RPNSWREQ);
3093
3094         dev_priv->rps.cur_delay = val;
3095
3096         trace_intel_gpu_freq_change(val * 50);
3097 }
3098
3099 /*
3100  * Wait until the previous freq change has completed,
3101  * or the timeout elapsed, and then update our notion
3102  * of the current GPU frequency.
3103  */
3104 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3105 {
3106         u32 pval;
3107
3108         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3109
3110         if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3111                 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3112
3113         pval >>= 8;
3114
3115         if (pval != dev_priv->rps.cur_delay)
3116                 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3117                                  vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3118                                  dev_priv->rps.cur_delay,
3119                                  vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3120
3121         dev_priv->rps.cur_delay = pval;
3122 }
3123
3124 void valleyview_set_rps(struct drm_device *dev, u8 val)
3125 {
3126         struct drm_i915_private *dev_priv = dev->dev_private;
3127
3128         gen6_rps_limits(dev_priv, &val);
3129
3130         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3131         WARN_ON(val > dev_priv->rps.max_delay);
3132         WARN_ON(val < dev_priv->rps.min_delay);
3133
3134         vlv_update_rps_cur_delay(dev_priv);
3135
3136         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3137                          vlv_gpu_freq(dev_priv->mem_freq,
3138                                       dev_priv->rps.cur_delay),
3139                          dev_priv->rps.cur_delay,
3140                          vlv_gpu_freq(dev_priv->mem_freq, val), val);
3141
3142         if (val == dev_priv->rps.cur_delay)
3143                 return;
3144
3145         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3146
3147         dev_priv->rps.cur_delay = val;
3148
3149         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3150 }
3151
3152 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3153 {
3154         struct drm_i915_private *dev_priv = dev->dev_private;
3155
3156         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3157         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3158         /* Complete PM interrupt masking here doesn't race with the rps work
3159          * item again unmasking PM interrupts because that is using a different
3160          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3161          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3162
3163         spin_lock_irq(&dev_priv->irq_lock);
3164         dev_priv->rps.pm_iir = 0;
3165         spin_unlock_irq(&dev_priv->irq_lock);
3166
3167         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3168 }
3169
3170 static void gen6_disable_rps(struct drm_device *dev)
3171 {
3172         struct drm_i915_private *dev_priv = dev->dev_private;
3173
3174         I915_WRITE(GEN6_RC_CONTROL, 0);
3175         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3176
3177         gen6_disable_rps_interrupts(dev);
3178 }
3179
3180 static void valleyview_disable_rps(struct drm_device *dev)
3181 {
3182         struct drm_i915_private *dev_priv = dev->dev_private;
3183
3184         I915_WRITE(GEN6_RC_CONTROL, 0);
3185
3186         gen6_disable_rps_interrupts(dev);
3187
3188         if (dev_priv->vlv_pctx) {
3189                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3190                 dev_priv->vlv_pctx = NULL;
3191         }
3192 }
3193
3194 int intel_enable_rc6(const struct drm_device *dev)
3195 {
3196         /* No RC6 before Ironlake */
3197         if (INTEL_INFO(dev)->gen < 5)
3198                 return 0;
3199
3200         /* Respect the kernel parameter if it is set */
3201         if (i915_enable_rc6 >= 0)
3202                 return i915_enable_rc6;
3203
3204         /* Disable RC6 on Ironlake */
3205         if (INTEL_INFO(dev)->gen == 5)
3206                 return 0;
3207
3208         if (IS_HASWELL(dev)) {
3209                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3210                 return INTEL_RC6_ENABLE;
3211         }
3212
3213         /* snb/ivb have more than one rc6 state. */
3214         if (INTEL_INFO(dev)->gen == 6) {
3215                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3216                 return INTEL_RC6_ENABLE;
3217         }
3218
3219         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3220         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3221 }
3222
3223 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3224 {
3225         struct drm_i915_private *dev_priv = dev->dev_private;
3226
3227         spin_lock_irq(&dev_priv->irq_lock);
3228         WARN_ON(dev_priv->rps.pm_iir);
3229         I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
3230         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3231         spin_unlock_irq(&dev_priv->irq_lock);
3232         /* unmask all PM interrupts */
3233         I915_WRITE(GEN6_PMINTRMSK, 0);
3234 }
3235
3236 static void gen6_enable_rps(struct drm_device *dev)
3237 {
3238         struct drm_i915_private *dev_priv = dev->dev_private;
3239         struct intel_ring_buffer *ring;
3240         u32 rp_state_cap;
3241         u32 gt_perf_status;
3242         u32 rc6vids, pcu_mbox, rc6_mask = 0;
3243         u32 gtfifodbg;
3244         int rc6_mode;
3245         int i, ret;
3246
3247         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3248
3249         /* Here begins a magic sequence of register writes to enable
3250          * auto-downclocking.
3251          *
3252          * Perhaps there might be some value in exposing these to
3253          * userspace...
3254          */
3255         I915_WRITE(GEN6_RC_STATE, 0);
3256
3257         /* Clear the DBG now so we don't confuse earlier errors */
3258         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3259                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3260                 I915_WRITE(GTFIFODBG, gtfifodbg);
3261         }
3262
3263         gen6_gt_force_wake_get(dev_priv);
3264
3265         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3266         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3267
3268         /* In units of 50MHz */
3269         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3270         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3271         dev_priv->rps.cur_delay = 0;
3272
3273         /* disable the counters and set deterministic thresholds */
3274         I915_WRITE(GEN6_RC_CONTROL, 0);
3275
3276         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3277         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3278         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3279         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3280         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3281
3282         for_each_ring(ring, dev_priv, i)
3283                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3284
3285         I915_WRITE(GEN6_RC_SLEEP, 0);
3286         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3287         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3288         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3289         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3290
3291         /* Check if we are enabling RC6 */
3292         rc6_mode = intel_enable_rc6(dev_priv->dev);
3293         if (rc6_mode & INTEL_RC6_ENABLE)
3294                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3295
3296         /* We don't use those on Haswell */
3297         if (!IS_HASWELL(dev)) {
3298                 if (rc6_mode & INTEL_RC6p_ENABLE)
3299                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3300
3301                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3302                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3303         }
3304
3305         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3306                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3307                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3308                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3309
3310         I915_WRITE(GEN6_RC_CONTROL,
3311                    rc6_mask |
3312                    GEN6_RC_CTL_EI_MODE(1) |
3313                    GEN6_RC_CTL_HW_ENABLE);
3314
3315         if (IS_HASWELL(dev)) {
3316                 I915_WRITE(GEN6_RPNSWREQ,
3317                            HSW_FREQUENCY(10));
3318                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3319                            HSW_FREQUENCY(12));
3320         } else {
3321                 I915_WRITE(GEN6_RPNSWREQ,
3322                            GEN6_FREQUENCY(10) |
3323                            GEN6_OFFSET(0) |
3324                            GEN6_AGGRESSIVE_TURBO);
3325                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3326                            GEN6_FREQUENCY(12));
3327         }
3328
3329         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3330         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3331                    dev_priv->rps.max_delay << 24 |
3332                    dev_priv->rps.min_delay << 16);
3333
3334         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3335         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3336         I915_WRITE(GEN6_RP_UP_EI, 66000);
3337         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3338
3339         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3340         I915_WRITE(GEN6_RP_CONTROL,
3341                    GEN6_RP_MEDIA_TURBO |
3342                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3343                    GEN6_RP_MEDIA_IS_GFX |
3344                    GEN6_RP_ENABLE |
3345                    GEN6_RP_UP_BUSY_AVG |
3346                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3347
3348         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3349         if (!ret) {
3350                 pcu_mbox = 0;
3351                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3352                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3353                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3354                                          (dev_priv->rps.max_delay & 0xff) * 50,
3355                                          (pcu_mbox & 0xff) * 50);
3356                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
3357                 }
3358         } else {
3359                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3360         }
3361
3362         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3363
3364         gen6_enable_rps_interrupts(dev);
3365
3366         rc6vids = 0;
3367         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3368         if (IS_GEN6(dev) && ret) {
3369                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3370         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3371                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3372                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3373                 rc6vids &= 0xffff00;
3374                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3375                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3376                 if (ret)
3377                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3378         }
3379
3380         gen6_gt_force_wake_put(dev_priv);
3381 }
3382
3383 static void gen6_update_ring_freq(struct drm_device *dev)
3384 {
3385         struct drm_i915_private *dev_priv = dev->dev_private;
3386         int min_freq = 15;
3387         unsigned int gpu_freq;
3388         unsigned int max_ia_freq, min_ring_freq;
3389         int scaling_factor = 180;
3390
3391         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3392
3393         max_ia_freq = cpufreq_quick_get_max(0);
3394         /*
3395          * Default to measured freq if none found, PCU will ensure we don't go
3396          * over
3397          */
3398         if (!max_ia_freq)
3399                 max_ia_freq = tsc_khz;
3400
3401         /* Convert from kHz to MHz */
3402         max_ia_freq /= 1000;
3403
3404         min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3405         /* convert DDR frequency from units of 133.3MHz to bandwidth */
3406         min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3407
3408         /*
3409          * For each potential GPU frequency, load a ring frequency we'd like
3410          * to use for memory access.  We do this by specifying the IA frequency
3411          * the PCU should use as a reference to determine the ring frequency.
3412          */
3413         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3414              gpu_freq--) {
3415                 int diff = dev_priv->rps.max_delay - gpu_freq;
3416                 unsigned int ia_freq = 0, ring_freq = 0;
3417
3418                 if (IS_HASWELL(dev)) {
3419                         ring_freq = (gpu_freq * 5 + 3) / 4;
3420                         ring_freq = max(min_ring_freq, ring_freq);
3421                         /* leave ia_freq as the default, chosen by cpufreq */
3422                 } else {
3423                         /* On older processors, there is no separate ring
3424                          * clock domain, so in order to boost the bandwidth
3425                          * of the ring, we need to upclock the CPU (ia_freq).
3426                          *
3427                          * For GPU frequencies less than 750MHz,
3428                          * just use the lowest ring freq.
3429                          */
3430                         if (gpu_freq < min_freq)
3431                                 ia_freq = 800;
3432                         else
3433                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3434                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3435                 }
3436
3437                 sandybridge_pcode_write(dev_priv,
3438                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3439                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3440                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3441                                         gpu_freq);
3442         }
3443 }
3444
3445 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3446 {
3447         u32 val, rp0;
3448
3449         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3450
3451         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3452         /* Clamp to max */
3453         rp0 = min_t(u32, rp0, 0xea);
3454
3455         return rp0;
3456 }
3457
3458 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3459 {
3460         u32 val, rpe;
3461
3462         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3463         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3464         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3465         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3466
3467         return rpe;
3468 }
3469
3470 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3471 {
3472         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3473 }
3474
3475 static void vlv_rps_timer_work(struct work_struct *work)
3476 {
3477         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3478                                                     rps.vlv_work.work);
3479
3480         /*
3481          * Timer fired, we must be idle.  Drop to min voltage state.
3482          * Note: we use RPe here since it should match the
3483          * Vmin we were shooting for.  That should give us better
3484          * perf when we come back out of RC6 than if we used the
3485          * min freq available.
3486          */
3487         mutex_lock(&dev_priv->rps.hw_lock);
3488         if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3489                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3490         mutex_unlock(&dev_priv->rps.hw_lock);
3491 }
3492
3493 static void valleyview_setup_pctx(struct drm_device *dev)
3494 {
3495         struct drm_i915_private *dev_priv = dev->dev_private;
3496         struct drm_i915_gem_object *pctx;
3497         unsigned long pctx_paddr;
3498         u32 pcbr;
3499         int pctx_size = 24*1024;
3500
3501         pcbr = I915_READ(VLV_PCBR);
3502         if (pcbr) {
3503                 /* BIOS set it up already, grab the pre-alloc'd space */
3504                 int pcbr_offset;
3505
3506                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3507                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3508                                                                       pcbr_offset,
3509                                                                       I915_GTT_OFFSET_NONE,
3510                                                                       pctx_size);
3511                 goto out;
3512         }
3513
3514         /*
3515          * From the Gunit register HAS:
3516          * The Gfx driver is expected to program this register and ensure
3517          * proper allocation within Gfx stolen memory.  For example, this
3518          * register should be programmed such than the PCBR range does not
3519          * overlap with other ranges, such as the frame buffer, protected
3520          * memory, or any other relevant ranges.
3521          */
3522         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3523         if (!pctx) {
3524                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3525                 return;
3526         }
3527
3528         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3529         I915_WRITE(VLV_PCBR, pctx_paddr);
3530
3531 out:
3532         dev_priv->vlv_pctx = pctx;
3533 }
3534
3535 static void valleyview_enable_rps(struct drm_device *dev)
3536 {
3537         struct drm_i915_private *dev_priv = dev->dev_private;
3538         struct intel_ring_buffer *ring;
3539         u32 gtfifodbg, val;
3540         int i;
3541
3542         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3543
3544         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3545                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3546                 I915_WRITE(GTFIFODBG, gtfifodbg);
3547         }
3548
3549         valleyview_setup_pctx(dev);
3550
3551         gen6_gt_force_wake_get(dev_priv);
3552
3553         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3554         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3555         I915_WRITE(GEN6_RP_UP_EI, 66000);
3556         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3557
3558         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3559
3560         I915_WRITE(GEN6_RP_CONTROL,
3561                    GEN6_RP_MEDIA_TURBO |
3562                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3563                    GEN6_RP_MEDIA_IS_GFX |
3564                    GEN6_RP_ENABLE |
3565                    GEN6_RP_UP_BUSY_AVG |
3566                    GEN6_RP_DOWN_IDLE_CONT);
3567
3568         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3569         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3570         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3571
3572         for_each_ring(ring, dev_priv, i)
3573                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3574
3575         I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3576
3577         /* allows RC6 residency counter to work */
3578         I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3579         I915_WRITE(GEN6_RC_CONTROL,
3580                    GEN7_RC_CTL_TO_MODE);
3581
3582         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3583         switch ((val >> 6) & 3) {
3584         case 0:
3585         case 1:
3586                 dev_priv->mem_freq = 800;
3587                 break;
3588         case 2:
3589                 dev_priv->mem_freq = 1066;
3590                 break;
3591         case 3:
3592                 dev_priv->mem_freq = 1333;
3593                 break;
3594         }
3595         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3596
3597         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3598         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3599
3600         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3601         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3602                          vlv_gpu_freq(dev_priv->mem_freq,
3603                                       dev_priv->rps.cur_delay),
3604                          dev_priv->rps.cur_delay);
3605
3606         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3607         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3608         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3609                          vlv_gpu_freq(dev_priv->mem_freq,
3610                                       dev_priv->rps.max_delay),
3611                          dev_priv->rps.max_delay);
3612
3613         dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3614         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3615                          vlv_gpu_freq(dev_priv->mem_freq,
3616                                       dev_priv->rps.rpe_delay),
3617                          dev_priv->rps.rpe_delay);
3618
3619         dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3620         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3621                          vlv_gpu_freq(dev_priv->mem_freq,
3622                                       dev_priv->rps.min_delay),
3623                          dev_priv->rps.min_delay);
3624
3625         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3626                          vlv_gpu_freq(dev_priv->mem_freq,
3627                                       dev_priv->rps.rpe_delay),
3628                          dev_priv->rps.rpe_delay);
3629
3630         INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3631
3632         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3633
3634         gen6_enable_rps_interrupts(dev);
3635
3636         gen6_gt_force_wake_put(dev_priv);
3637 }
3638
3639 void ironlake_teardown_rc6(struct drm_device *dev)
3640 {
3641         struct drm_i915_private *dev_priv = dev->dev_private;
3642
3643         if (dev_priv->ips.renderctx) {
3644                 i915_gem_object_unpin(dev_priv->ips.renderctx);
3645                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3646                 dev_priv->ips.renderctx = NULL;
3647         }
3648
3649         if (dev_priv->ips.pwrctx) {
3650                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3651                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3652                 dev_priv->ips.pwrctx = NULL;
3653         }
3654 }
3655
3656 static void ironlake_disable_rc6(struct drm_device *dev)
3657 {
3658         struct drm_i915_private *dev_priv = dev->dev_private;
3659
3660         if (I915_READ(PWRCTXA)) {
3661                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3662                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3663                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3664                          50);
3665
3666                 I915_WRITE(PWRCTXA, 0);
3667                 POSTING_READ(PWRCTXA);
3668
3669                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3670                 POSTING_READ(RSTDBYCTL);
3671         }
3672 }
3673
3674 static int ironlake_setup_rc6(struct drm_device *dev)
3675 {
3676         struct drm_i915_private *dev_priv = dev->dev_private;
3677
3678         if (dev_priv->ips.renderctx == NULL)
3679                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3680         if (!dev_priv->ips.renderctx)
3681                 return -ENOMEM;
3682
3683         if (dev_priv->ips.pwrctx == NULL)
3684                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3685         if (!dev_priv->ips.pwrctx) {
3686                 ironlake_teardown_rc6(dev);
3687                 return -ENOMEM;
3688         }
3689
3690         return 0;
3691 }
3692
3693 static void ironlake_enable_rc6(struct drm_device *dev)
3694 {
3695         struct drm_i915_private *dev_priv = dev->dev_private;
3696         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3697         bool was_interruptible;
3698         int ret;
3699
3700         /* rc6 disabled by default due to repeated reports of hanging during
3701          * boot and resume.
3702          */
3703         if (!intel_enable_rc6(dev))
3704                 return;
3705
3706         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3707
3708         ret = ironlake_setup_rc6(dev);
3709         if (ret)
3710                 return;
3711
3712         was_interruptible = dev_priv->mm.interruptible;
3713         dev_priv->mm.interruptible = false;
3714
3715         /*
3716          * GPU can automatically power down the render unit if given a page
3717          * to save state.
3718          */
3719         ret = intel_ring_begin(ring, 6);
3720         if (ret) {
3721                 ironlake_teardown_rc6(dev);
3722                 dev_priv->mm.interruptible = was_interruptible;
3723                 return;
3724         }
3725
3726         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3727         intel_ring_emit(ring, MI_SET_CONTEXT);
3728         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3729                         MI_MM_SPACE_GTT |
3730                         MI_SAVE_EXT_STATE_EN |
3731                         MI_RESTORE_EXT_STATE_EN |
3732                         MI_RESTORE_INHIBIT);
3733         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3734         intel_ring_emit(ring, MI_NOOP);
3735         intel_ring_emit(ring, MI_FLUSH);
3736         intel_ring_advance(ring);
3737
3738         /*
3739          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3740          * does an implicit flush, combined with MI_FLUSH above, it should be
3741          * safe to assume that renderctx is valid
3742          */
3743         ret = intel_ring_idle(ring);
3744         dev_priv->mm.interruptible = was_interruptible;
3745         if (ret) {
3746                 DRM_ERROR("failed to enable ironlake power savings\n");
3747                 ironlake_teardown_rc6(dev);
3748                 return;
3749         }
3750
3751         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3752         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3753 }
3754
3755 static unsigned long intel_pxfreq(u32 vidfreq)
3756 {
3757         unsigned long freq;
3758         int div = (vidfreq & 0x3f0000) >> 16;
3759         int post = (vidfreq & 0x3000) >> 12;
3760         int pre = (vidfreq & 0x7);
3761
3762         if (!pre)
3763                 return 0;
3764
3765         freq = ((div * 133333) / ((1<<post) * pre));
3766
3767         return freq;
3768 }
3769
3770 static const struct cparams {
3771         u16 i;
3772         u16 t;
3773         u16 m;
3774         u16 c;
3775 } cparams[] = {
3776         { 1, 1333, 301, 28664 },
3777         { 1, 1066, 294, 24460 },
3778         { 1, 800, 294, 25192 },
3779         { 0, 1333, 276, 27605 },
3780         { 0, 1066, 276, 27605 },
3781         { 0, 800, 231, 23784 },
3782 };
3783
3784 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3785 {
3786         u64 total_count, diff, ret;
3787         u32 count1, count2, count3, m = 0, c = 0;
3788         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3789         int i;
3790
3791         assert_spin_locked(&mchdev_lock);
3792
3793         diff1 = now - dev_priv->ips.last_time1;
3794
3795         /* Prevent division-by-zero if we are asking too fast.
3796          * Also, we don't get interesting results if we are polling
3797          * faster than once in 10ms, so just return the saved value
3798          * in such cases.
3799          */
3800         if (diff1 <= 10)
3801                 return dev_priv->ips.chipset_power;
3802
3803         count1 = I915_READ(DMIEC);
3804         count2 = I915_READ(DDREC);
3805         count3 = I915_READ(CSIEC);
3806
3807         total_count = count1 + count2 + count3;
3808
3809         /* FIXME: handle per-counter overflow */
3810         if (total_count < dev_priv->ips.last_count1) {
3811                 diff = ~0UL - dev_priv->ips.last_count1;
3812                 diff += total_count;
3813         } else {
3814                 diff = total_count - dev_priv->ips.last_count1;
3815         }
3816
3817         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3818                 if (cparams[i].i == dev_priv->ips.c_m &&
3819                     cparams[i].t == dev_priv->ips.r_t) {
3820                         m = cparams[i].m;
3821                         c = cparams[i].c;
3822                         break;
3823                 }
3824         }
3825
3826         diff = div_u64(diff, diff1);
3827         ret = ((m * diff) + c);
3828         ret = div_u64(ret, 10);
3829
3830         dev_priv->ips.last_count1 = total_count;
3831         dev_priv->ips.last_time1 = now;
3832
3833         dev_priv->ips.chipset_power = ret;
3834
3835         return ret;
3836 }
3837
3838 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3839 {
3840         unsigned long val;
3841
3842         if (dev_priv->info->gen != 5)
3843                 return 0;
3844
3845         spin_lock_irq(&mchdev_lock);
3846
3847         val = __i915_chipset_val(dev_priv);
3848
3849         spin_unlock_irq(&mchdev_lock);
3850
3851         return val;
3852 }
3853
3854 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3855 {
3856         unsigned long m, x, b;
3857         u32 tsfs;
3858
3859         tsfs = I915_READ(TSFS);
3860
3861         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3862         x = I915_READ8(TR1);
3863
3864         b = tsfs & TSFS_INTR_MASK;
3865
3866         return ((m * x) / 127) - b;
3867 }
3868
3869 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3870 {
3871         static const struct v_table {
3872                 u16 vd; /* in .1 mil */
3873                 u16 vm; /* in .1 mil */
3874         } v_table[] = {
3875                 { 0, 0, },
3876                 { 375, 0, },
3877                 { 500, 0, },
3878                 { 625, 0, },
3879                 { 750, 0, },
3880                 { 875, 0, },
3881                 { 1000, 0, },
3882                 { 1125, 0, },
3883                 { 4125, 3000, },
3884                 { 4125, 3000, },
3885                 { 4125, 3000, },
3886                 { 4125, 3000, },
3887                 { 4125, 3000, },
3888                 { 4125, 3000, },
3889                 { 4125, 3000, },
3890                 { 4125, 3000, },
3891                 { 4125, 3000, },
3892                 { 4125, 3000, },
3893                 { 4125, 3000, },
3894                 { 4125, 3000, },
3895                 { 4125, 3000, },
3896                 { 4125, 3000, },
3897                 { 4125, 3000, },
3898                 { 4125, 3000, },
3899                 { 4125, 3000, },
3900                 { 4125, 3000, },
3901                 { 4125, 3000, },
3902                 { 4125, 3000, },
3903                 { 4125, 3000, },
3904                 { 4125, 3000, },
3905                 { 4125, 3000, },
3906                 { 4125, 3000, },
3907                 { 4250, 3125, },
3908                 { 4375, 3250, },
3909                 { 4500, 3375, },
3910                 { 4625, 3500, },
3911                 { 4750, 3625, },
3912                 { 4875, 3750, },
3913                 { 5000, 3875, },
3914                 { 5125, 4000, },
3915                 { 5250, 4125, },
3916                 { 5375, 4250, },
3917                 { 5500, 4375, },
3918                 { 5625, 4500, },
3919                 { 5750, 4625, },
3920                 { 5875, 4750, },
3921                 { 6000, 4875, },
3922                 { 6125, 5000, },
3923                 { 6250, 5125, },
3924                 { 6375, 5250, },
3925                 { 6500, 5375, },
3926                 { 6625, 5500, },
3927                 { 6750, 5625, },
3928                 { 6875, 5750, },
3929                 { 7000, 5875, },
3930                 { 7125, 6000, },
3931                 { 7250, 6125, },
3932                 { 7375, 6250, },
3933                 { 7500, 6375, },
3934                 { 7625, 6500, },
3935                 { 7750, 6625, },
3936                 { 7875, 6750, },
3937                 { 8000, 6875, },
3938                 { 8125, 7000, },
3939                 { 8250, 7125, },
3940                 { 8375, 7250, },
3941                 { 8500, 7375, },
3942                 { 8625, 7500, },
3943                 { 8750, 7625, },
3944                 { 8875, 7750, },
3945                 { 9000, 7875, },
3946                 { 9125, 8000, },
3947                 { 9250, 8125, },
3948                 { 9375, 8250, },
3949                 { 9500, 8375, },
3950                 { 9625, 8500, },
3951                 { 9750, 8625, },
3952                 { 9875, 8750, },
3953                 { 10000, 8875, },
3954                 { 10125, 9000, },
3955                 { 10250, 9125, },
3956                 { 10375, 9250, },
3957                 { 10500, 9375, },
3958                 { 10625, 9500, },
3959                 { 10750, 9625, },
3960                 { 10875, 9750, },
3961                 { 11000, 9875, },
3962                 { 11125, 10000, },
3963                 { 11250, 10125, },
3964                 { 11375, 10250, },
3965                 { 11500, 10375, },
3966                 { 11625, 10500, },
3967                 { 11750, 10625, },
3968                 { 11875, 10750, },
3969                 { 12000, 10875, },
3970                 { 12125, 11000, },
3971                 { 12250, 11125, },
3972                 { 12375, 11250, },
3973                 { 12500, 11375, },
3974                 { 12625, 11500, },
3975                 { 12750, 11625, },
3976                 { 12875, 11750, },
3977                 { 13000, 11875, },
3978                 { 13125, 12000, },
3979                 { 13250, 12125, },
3980                 { 13375, 12250, },
3981                 { 13500, 12375, },
3982                 { 13625, 12500, },
3983                 { 13750, 12625, },
3984                 { 13875, 12750, },
3985                 { 14000, 12875, },
3986                 { 14125, 13000, },
3987                 { 14250, 13125, },
3988                 { 14375, 13250, },
3989                 { 14500, 13375, },
3990                 { 14625, 13500, },
3991                 { 14750, 13625, },
3992                 { 14875, 13750, },
3993                 { 15000, 13875, },
3994                 { 15125, 14000, },
3995                 { 15250, 14125, },
3996                 { 15375, 14250, },
3997                 { 15500, 14375, },
3998                 { 15625, 14500, },
3999                 { 15750, 14625, },
4000                 { 15875, 14750, },
4001                 { 16000, 14875, },
4002                 { 16125, 15000, },
4003         };
4004         if (dev_priv->info->is_mobile)
4005                 return v_table[pxvid].vm;
4006         else
4007                 return v_table[pxvid].vd;
4008 }
4009
4010 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4011 {
4012         struct timespec now, diff1;
4013         u64 diff;
4014         unsigned long diffms;
4015         u32 count;
4016
4017         assert_spin_locked(&mchdev_lock);
4018
4019         getrawmonotonic(&now);
4020         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4021
4022         /* Don't divide by 0 */
4023         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4024         if (!diffms)
4025                 return;
4026
4027         count = I915_READ(GFXEC);
4028
4029         if (count < dev_priv->ips.last_count2) {
4030                 diff = ~0UL - dev_priv->ips.last_count2;
4031                 diff += count;
4032         } else {
4033                 diff = count - dev_priv->ips.last_count2;
4034         }
4035
4036         dev_priv->ips.last_count2 = count;
4037         dev_priv->ips.last_time2 = now;
4038
4039         /* More magic constants... */
4040         diff = diff * 1181;
4041         diff = div_u64(diff, diffms * 10);
4042         dev_priv->ips.gfx_power = diff;
4043 }
4044
4045 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4046 {
4047         if (dev_priv->info->gen != 5)
4048                 return;
4049
4050         spin_lock_irq(&mchdev_lock);
4051
4052         __i915_update_gfx_val(dev_priv);
4053
4054         spin_unlock_irq(&mchdev_lock);
4055 }
4056
4057 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4058 {
4059         unsigned long t, corr, state1, corr2, state2;
4060         u32 pxvid, ext_v;
4061
4062         assert_spin_locked(&mchdev_lock);
4063
4064         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4065         pxvid = (pxvid >> 24) & 0x7f;
4066         ext_v = pvid_to_extvid(dev_priv, pxvid);
4067
4068         state1 = ext_v;
4069
4070         t = i915_mch_val(dev_priv);
4071
4072         /* Revel in the empirically derived constants */
4073
4074         /* Correction factor in 1/100000 units */
4075         if (t > 80)
4076                 corr = ((t * 2349) + 135940);
4077         else if (t >= 50)
4078                 corr = ((t * 964) + 29317);
4079         else /* < 50 */
4080                 corr = ((t * 301) + 1004);
4081
4082         corr = corr * ((150142 * state1) / 10000 - 78642);
4083         corr /= 100000;
4084         corr2 = (corr * dev_priv->ips.corr);
4085
4086         state2 = (corr2 * state1) / 10000;
4087         state2 /= 100; /* convert to mW */
4088
4089         __i915_update_gfx_val(dev_priv);
4090
4091         return dev_priv->ips.gfx_power + state2;
4092 }
4093
4094 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4095 {
4096         unsigned long val;
4097
4098         if (dev_priv->info->gen != 5)
4099                 return 0;
4100
4101         spin_lock_irq(&mchdev_lock);
4102
4103         val = __i915_gfx_val(dev_priv);
4104
4105         spin_unlock_irq(&mchdev_lock);
4106
4107         return val;
4108 }
4109
4110 /**
4111  * i915_read_mch_val - return value for IPS use
4112  *
4113  * Calculate and return a value for the IPS driver to use when deciding whether
4114  * we have thermal and power headroom to increase CPU or GPU power budget.
4115  */
4116 unsigned long i915_read_mch_val(void)
4117 {
4118         struct drm_i915_private *dev_priv;
4119         unsigned long chipset_val, graphics_val, ret = 0;
4120
4121         spin_lock_irq(&mchdev_lock);
4122         if (!i915_mch_dev)
4123                 goto out_unlock;
4124         dev_priv = i915_mch_dev;
4125
4126         chipset_val = __i915_chipset_val(dev_priv);
4127         graphics_val = __i915_gfx_val(dev_priv);
4128
4129         ret = chipset_val + graphics_val;
4130
4131 out_unlock:
4132         spin_unlock_irq(&mchdev_lock);
4133
4134         return ret;
4135 }
4136 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4137
4138 /**
4139  * i915_gpu_raise - raise GPU frequency limit
4140  *
4141  * Raise the limit; IPS indicates we have thermal headroom.
4142  */
4143 bool i915_gpu_raise(void)
4144 {
4145         struct drm_i915_private *dev_priv;
4146         bool ret = true;
4147
4148         spin_lock_irq(&mchdev_lock);
4149         if (!i915_mch_dev) {
4150                 ret = false;
4151                 goto out_unlock;
4152         }
4153         dev_priv = i915_mch_dev;
4154
4155         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4156                 dev_priv->ips.max_delay--;
4157
4158 out_unlock:
4159         spin_unlock_irq(&mchdev_lock);
4160
4161         return ret;
4162 }
4163 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4164
4165 /**
4166  * i915_gpu_lower - lower GPU frequency limit
4167  *
4168  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4169  * frequency maximum.
4170  */
4171 bool i915_gpu_lower(void)
4172 {
4173         struct drm_i915_private *dev_priv;
4174         bool ret = true;
4175
4176         spin_lock_irq(&mchdev_lock);
4177         if (!i915_mch_dev) {
4178                 ret = false;
4179                 goto out_unlock;
4180         }
4181         dev_priv = i915_mch_dev;
4182
4183         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4184                 dev_priv->ips.max_delay++;
4185
4186 out_unlock:
4187         spin_unlock_irq(&mchdev_lock);
4188
4189         return ret;
4190 }
4191 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4192
4193 /**
4194  * i915_gpu_busy - indicate GPU business to IPS
4195  *
4196  * Tell the IPS driver whether or not the GPU is busy.
4197  */
4198 bool i915_gpu_busy(void)
4199 {
4200         struct drm_i915_private *dev_priv;
4201         struct intel_ring_buffer *ring;
4202         bool ret = false;
4203         int i;
4204
4205         spin_lock_irq(&mchdev_lock);
4206         if (!i915_mch_dev)
4207                 goto out_unlock;
4208         dev_priv = i915_mch_dev;
4209
4210         for_each_ring(ring, dev_priv, i)
4211                 ret |= !list_empty(&ring->request_list);
4212
4213 out_unlock:
4214         spin_unlock_irq(&mchdev_lock);
4215
4216         return ret;
4217 }
4218 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4219
4220 /**
4221  * i915_gpu_turbo_disable - disable graphics turbo
4222  *
4223  * Disable graphics turbo by resetting the max frequency and setting the
4224  * current frequency to the default.
4225  */
4226 bool i915_gpu_turbo_disable(void)
4227 {
4228         struct drm_i915_private *dev_priv;
4229         bool ret = true;
4230
4231         spin_lock_irq(&mchdev_lock);
4232         if (!i915_mch_dev) {
4233                 ret = false;
4234                 goto out_unlock;
4235         }
4236         dev_priv = i915_mch_dev;
4237
4238         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4239
4240         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4241                 ret = false;
4242
4243 out_unlock:
4244         spin_unlock_irq(&mchdev_lock);
4245
4246         return ret;
4247 }
4248 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4249
4250 /**
4251  * Tells the intel_ips driver that the i915 driver is now loaded, if
4252  * IPS got loaded first.
4253  *
4254  * This awkward dance is so that neither module has to depend on the
4255  * other in order for IPS to do the appropriate communication of
4256  * GPU turbo limits to i915.
4257  */
4258 static void
4259 ips_ping_for_i915_load(void)
4260 {
4261         void (*link)(void);
4262
4263         link = symbol_get(ips_link_to_i915_driver);
4264         if (link) {
4265                 link();
4266                 symbol_put(ips_link_to_i915_driver);
4267         }
4268 }
4269
4270 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4271 {
4272         /* We only register the i915 ips part with intel-ips once everything is
4273          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4274         spin_lock_irq(&mchdev_lock);
4275         i915_mch_dev = dev_priv;
4276         spin_unlock_irq(&mchdev_lock);
4277
4278         ips_ping_for_i915_load();
4279 }
4280
4281 void intel_gpu_ips_teardown(void)
4282 {
4283         spin_lock_irq(&mchdev_lock);
4284         i915_mch_dev = NULL;
4285         spin_unlock_irq(&mchdev_lock);
4286 }
4287 static void intel_init_emon(struct drm_device *dev)
4288 {
4289         struct drm_i915_private *dev_priv = dev->dev_private;
4290         u32 lcfuse;
4291         u8 pxw[16];
4292         int i;
4293
4294         /* Disable to program */
4295         I915_WRITE(ECR, 0);
4296         POSTING_READ(ECR);
4297
4298         /* Program energy weights for various events */
4299         I915_WRITE(SDEW, 0x15040d00);
4300         I915_WRITE(CSIEW0, 0x007f0000);
4301         I915_WRITE(CSIEW1, 0x1e220004);
4302         I915_WRITE(CSIEW2, 0x04000004);
4303
4304         for (i = 0; i < 5; i++)
4305                 I915_WRITE(PEW + (i * 4), 0);
4306         for (i = 0; i < 3; i++)
4307                 I915_WRITE(DEW + (i * 4), 0);
4308
4309         /* Program P-state weights to account for frequency power adjustment */
4310         for (i = 0; i < 16; i++) {
4311                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4312                 unsigned long freq = intel_pxfreq(pxvidfreq);
4313                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4314                         PXVFREQ_PX_SHIFT;
4315                 unsigned long val;
4316
4317                 val = vid * vid;
4318                 val *= (freq / 1000);
4319                 val *= 255;
4320                 val /= (127*127*900);
4321                 if (val > 0xff)
4322                         DRM_ERROR("bad pxval: %ld\n", val);
4323                 pxw[i] = val;
4324         }
4325         /* Render standby states get 0 weight */
4326         pxw[14] = 0;
4327         pxw[15] = 0;
4328
4329         for (i = 0; i < 4; i++) {
4330                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4331                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4332                 I915_WRITE(PXW + (i * 4), val);
4333         }
4334
4335         /* Adjust magic regs to magic values (more experimental results) */
4336         I915_WRITE(OGW0, 0);
4337         I915_WRITE(OGW1, 0);
4338         I915_WRITE(EG0, 0x00007f00);
4339         I915_WRITE(EG1, 0x0000000e);
4340         I915_WRITE(EG2, 0x000e0000);
4341         I915_WRITE(EG3, 0x68000300);
4342         I915_WRITE(EG4, 0x42000000);
4343         I915_WRITE(EG5, 0x00140031);
4344         I915_WRITE(EG6, 0);
4345         I915_WRITE(EG7, 0);
4346
4347         for (i = 0; i < 8; i++)
4348                 I915_WRITE(PXWL + (i * 4), 0);
4349
4350         /* Enable PMON + select events */
4351         I915_WRITE(ECR, 0x80000019);
4352
4353         lcfuse = I915_READ(LCFUSE02);
4354
4355         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4356 }
4357
4358 void intel_disable_gt_powersave(struct drm_device *dev)
4359 {
4360         struct drm_i915_private *dev_priv = dev->dev_private;
4361
4362         /* Interrupts should be disabled already to avoid re-arming. */
4363         WARN_ON(dev->irq_enabled);
4364
4365         if (IS_IRONLAKE_M(dev)) {
4366                 ironlake_disable_drps(dev);
4367                 ironlake_disable_rc6(dev);
4368         } else if (INTEL_INFO(dev)->gen >= 6) {
4369                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4370                 cancel_work_sync(&dev_priv->rps.work);
4371                 if (IS_VALLEYVIEW(dev))
4372                         cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4373                 mutex_lock(&dev_priv->rps.hw_lock);
4374                 if (IS_VALLEYVIEW(dev))
4375                         valleyview_disable_rps(dev);
4376                 else
4377                         gen6_disable_rps(dev);
4378                 mutex_unlock(&dev_priv->rps.hw_lock);
4379         }
4380 }
4381
4382 static void intel_gen6_powersave_work(struct work_struct *work)
4383 {
4384         struct drm_i915_private *dev_priv =
4385                 container_of(work, struct drm_i915_private,
4386                              rps.delayed_resume_work.work);
4387         struct drm_device *dev = dev_priv->dev;
4388
4389         mutex_lock(&dev_priv->rps.hw_lock);
4390
4391         if (IS_VALLEYVIEW(dev)) {
4392                 valleyview_enable_rps(dev);
4393         } else {
4394                 gen6_enable_rps(dev);
4395                 gen6_update_ring_freq(dev);
4396         }
4397         mutex_unlock(&dev_priv->rps.hw_lock);
4398 }
4399
4400 void intel_enable_gt_powersave(struct drm_device *dev)
4401 {
4402         struct drm_i915_private *dev_priv = dev->dev_private;
4403
4404         if (IS_IRONLAKE_M(dev)) {
4405                 ironlake_enable_drps(dev);
4406                 ironlake_enable_rc6(dev);
4407                 intel_init_emon(dev);
4408         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4409                 /*
4410                  * PCU communication is slow and this doesn't need to be
4411                  * done at any specific time, so do this out of our fast path
4412                  * to make resume and init faster.
4413                  */
4414                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4415                                       round_jiffies_up_relative(HZ));
4416         }
4417 }
4418
4419 static void ibx_init_clock_gating(struct drm_device *dev)
4420 {
4421         struct drm_i915_private *dev_priv = dev->dev_private;
4422
4423         /*
4424          * On Ibex Peak and Cougar Point, we need to disable clock
4425          * gating for the panel power sequencer or it will fail to
4426          * start up when no ports are active.
4427          */
4428         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4429 }
4430
4431 static void g4x_disable_trickle_feed(struct drm_device *dev)
4432 {
4433         struct drm_i915_private *dev_priv = dev->dev_private;
4434         int pipe;
4435
4436         for_each_pipe(pipe) {
4437                 I915_WRITE(DSPCNTR(pipe),
4438                            I915_READ(DSPCNTR(pipe)) |
4439                            DISPPLANE_TRICKLE_FEED_DISABLE);
4440                 intel_flush_display_plane(dev_priv, pipe);
4441         }
4442 }
4443
4444 static void ironlake_init_clock_gating(struct drm_device *dev)
4445 {
4446         struct drm_i915_private *dev_priv = dev->dev_private;
4447         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4448
4449         /*
4450          * Required for FBC
4451          * WaFbcDisableDpfcClockGating:ilk
4452          */
4453         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4454                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4455                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4456
4457         I915_WRITE(PCH_3DCGDIS0,
4458                    MARIUNIT_CLOCK_GATE_DISABLE |
4459                    SVSMUNIT_CLOCK_GATE_DISABLE);
4460         I915_WRITE(PCH_3DCGDIS1,
4461                    VFMUNIT_CLOCK_GATE_DISABLE);
4462
4463         /*
4464          * According to the spec the following bits should be set in
4465          * order to enable memory self-refresh
4466          * The bit 22/21 of 0x42004
4467          * The bit 5 of 0x42020
4468          * The bit 15 of 0x45000
4469          */
4470         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4471                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4472                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4473         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4474         I915_WRITE(DISP_ARB_CTL,
4475                    (I915_READ(DISP_ARB_CTL) |
4476                     DISP_FBC_WM_DIS));
4477         I915_WRITE(WM3_LP_ILK, 0);
4478         I915_WRITE(WM2_LP_ILK, 0);
4479         I915_WRITE(WM1_LP_ILK, 0);
4480
4481         /*
4482          * Based on the document from hardware guys the following bits
4483          * should be set unconditionally in order to enable FBC.
4484          * The bit 22 of 0x42000
4485          * The bit 22 of 0x42004
4486          * The bit 7,8,9 of 0x42020.
4487          */
4488         if (IS_IRONLAKE_M(dev)) {
4489                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4490                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4491                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4492                            ILK_FBCQ_DIS);
4493                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4494                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4495                            ILK_DPARB_GATE);
4496         }
4497
4498         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4499
4500         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4501                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4502                    ILK_ELPIN_409_SELECT);
4503         I915_WRITE(_3D_CHICKEN2,
4504                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4505                    _3D_CHICKEN2_WM_READ_PIPELINED);
4506
4507         /* WaDisableRenderCachePipelinedFlush:ilk */
4508         I915_WRITE(CACHE_MODE_0,
4509                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4510
4511         g4x_disable_trickle_feed(dev);
4512
4513         ibx_init_clock_gating(dev);
4514 }
4515
4516 static void cpt_init_clock_gating(struct drm_device *dev)
4517 {
4518         struct drm_i915_private *dev_priv = dev->dev_private;
4519         int pipe;
4520         uint32_t val;
4521
4522         /*
4523          * On Ibex Peak and Cougar Point, we need to disable clock
4524          * gating for the panel power sequencer or it will fail to
4525          * start up when no ports are active.
4526          */
4527         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4528         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4529                    DPLS_EDP_PPS_FIX_DIS);
4530         /* The below fixes the weird display corruption, a few pixels shifted
4531          * downward, on (only) LVDS of some HP laptops with IVY.
4532          */
4533         for_each_pipe(pipe) {
4534                 val = I915_READ(TRANS_CHICKEN2(pipe));
4535                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4536                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4537                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4538                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4539                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4540                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4541                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4542                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4543         }
4544         /* WADP0ClockGatingDisable */
4545         for_each_pipe(pipe) {
4546                 I915_WRITE(TRANS_CHICKEN1(pipe),
4547                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4548         }
4549 }
4550
4551 static void gen6_check_mch_setup(struct drm_device *dev)
4552 {
4553         struct drm_i915_private *dev_priv = dev->dev_private;
4554         uint32_t tmp;
4555
4556         tmp = I915_READ(MCH_SSKPD);
4557         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4558                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4559                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4560                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4561         }
4562 }
4563
4564 static void gen6_init_clock_gating(struct drm_device *dev)
4565 {
4566         struct drm_i915_private *dev_priv = dev->dev_private;
4567         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4568
4569         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4570
4571         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4572                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4573                    ILK_ELPIN_409_SELECT);
4574
4575         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4576         I915_WRITE(_3D_CHICKEN,
4577                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4578
4579         /* WaSetupGtModeTdRowDispatch:snb */
4580         if (IS_SNB_GT1(dev))
4581                 I915_WRITE(GEN6_GT_MODE,
4582                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4583
4584         I915_WRITE(WM3_LP_ILK, 0);
4585         I915_WRITE(WM2_LP_ILK, 0);
4586         I915_WRITE(WM1_LP_ILK, 0);
4587
4588         I915_WRITE(CACHE_MODE_0,
4589                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4590
4591         I915_WRITE(GEN6_UCGCTL1,
4592                    I915_READ(GEN6_UCGCTL1) |
4593                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4594                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4595
4596         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4597          * gating disable must be set.  Failure to set it results in
4598          * flickering pixels due to Z write ordering failures after
4599          * some amount of runtime in the Mesa "fire" demo, and Unigine
4600          * Sanctuary and Tropics, and apparently anything else with
4601          * alpha test or pixel discard.
4602          *
4603          * According to the spec, bit 11 (RCCUNIT) must also be set,
4604          * but we didn't debug actual testcases to find it out.
4605          *
4606          * Also apply WaDisableVDSUnitClockGating:snb and
4607          * WaDisableRCPBUnitClockGating:snb.
4608          */
4609         I915_WRITE(GEN6_UCGCTL2,
4610                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4611                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4612                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4613
4614         /* Bspec says we need to always set all mask bits. */
4615         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4616                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4617
4618         /*
4619          * According to the spec the following bits should be
4620          * set in order to enable memory self-refresh and fbc:
4621          * The bit21 and bit22 of 0x42000
4622          * The bit21 and bit22 of 0x42004
4623          * The bit5 and bit7 of 0x42020
4624          * The bit14 of 0x70180
4625          * The bit14 of 0x71180
4626          *
4627          * WaFbcAsynchFlipDisableFbcQueue:snb
4628          */
4629         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4630                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4631                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4632         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4633                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4634                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4635         I915_WRITE(ILK_DSPCLK_GATE_D,
4636                    I915_READ(ILK_DSPCLK_GATE_D) |
4637                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4638                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4639
4640         /* WaMbcDriverBootEnable:snb */
4641         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4642                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4643
4644         g4x_disable_trickle_feed(dev);
4645
4646         /* The default value should be 0x200 according to docs, but the two
4647          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4648         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4649         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4650
4651         cpt_init_clock_gating(dev);
4652
4653         gen6_check_mch_setup(dev);
4654 }
4655
4656 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4657 {
4658         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4659
4660         reg &= ~GEN7_FF_SCHED_MASK;
4661         reg |= GEN7_FF_TS_SCHED_HW;
4662         reg |= GEN7_FF_VS_SCHED_HW;
4663         reg |= GEN7_FF_DS_SCHED_HW;
4664
4665         if (IS_HASWELL(dev_priv->dev))
4666                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4667
4668         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4669 }
4670
4671 static void lpt_init_clock_gating(struct drm_device *dev)
4672 {
4673         struct drm_i915_private *dev_priv = dev->dev_private;
4674
4675         /*
4676          * TODO: this bit should only be enabled when really needed, then
4677          * disabled when not needed anymore in order to save power.
4678          */
4679         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4680                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4681                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4682                            PCH_LP_PARTITION_LEVEL_DISABLE);
4683
4684         /* WADPOClockGatingDisable:hsw */
4685         I915_WRITE(_TRANSA_CHICKEN1,
4686                    I915_READ(_TRANSA_CHICKEN1) |
4687                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4688 }
4689
4690 static void lpt_suspend_hw(struct drm_device *dev)
4691 {
4692         struct drm_i915_private *dev_priv = dev->dev_private;
4693
4694         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4695                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4696
4697                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4698                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4699         }
4700 }
4701
4702 static void haswell_init_clock_gating(struct drm_device *dev)
4703 {
4704         struct drm_i915_private *dev_priv = dev->dev_private;
4705
4706         I915_WRITE(WM3_LP_ILK, 0);
4707         I915_WRITE(WM2_LP_ILK, 0);
4708         I915_WRITE(WM1_LP_ILK, 0);
4709
4710         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4711          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4712          */
4713         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4714
4715         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4716         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4717                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4718
4719         /* WaApplyL3ControlAndL3ChickenMode:hsw */
4720         I915_WRITE(GEN7_L3CNTLREG1,
4721                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4722         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4723                         GEN7_WA_L3_CHICKEN_MODE);
4724
4725         /* This is required by WaCatErrorRejectionIssue:hsw */
4726         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4727                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4728                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4729
4730         g4x_disable_trickle_feed(dev);
4731
4732         /* WaVSRefCountFullforceMissDisable:hsw */
4733         gen7_setup_fixed_func_scheduler(dev_priv);
4734
4735         /* WaDisable4x2SubspanOptimization:hsw */
4736         I915_WRITE(CACHE_MODE_1,
4737                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4738
4739         /* WaMbcDriverBootEnable:hsw */
4740         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4741                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4742
4743         /* WaSwitchSolVfFArbitrationPriority:hsw */
4744         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4745
4746         /* WaRsPkgCStateDisplayPMReq:hsw */
4747         I915_WRITE(CHICKEN_PAR1_1,
4748                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4749
4750         lpt_init_clock_gating(dev);
4751 }
4752
4753 static void ivybridge_init_clock_gating(struct drm_device *dev)
4754 {
4755         struct drm_i915_private *dev_priv = dev->dev_private;
4756         uint32_t snpcr;
4757
4758         I915_WRITE(WM3_LP_ILK, 0);
4759         I915_WRITE(WM2_LP_ILK, 0);
4760         I915_WRITE(WM1_LP_ILK, 0);
4761
4762         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4763
4764         /* WaDisableEarlyCull:ivb */
4765         I915_WRITE(_3D_CHICKEN3,
4766                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4767
4768         /* WaDisableBackToBackFlipFix:ivb */
4769         I915_WRITE(IVB_CHICKEN3,
4770                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4771                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4772
4773         /* WaDisablePSDDualDispatchEnable:ivb */
4774         if (IS_IVB_GT1(dev))
4775                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4776                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4777         else
4778                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4779                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4780
4781         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4782         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4783                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4784
4785         /* WaApplyL3ControlAndL3ChickenMode:ivb */
4786         I915_WRITE(GEN7_L3CNTLREG1,
4787                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4788         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4789                    GEN7_WA_L3_CHICKEN_MODE);
4790         if (IS_IVB_GT1(dev))
4791                 I915_WRITE(GEN7_ROW_CHICKEN2,
4792                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4793         else
4794                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4795                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4796
4797
4798         /* WaForceL3Serialization:ivb */
4799         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4800                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4801
4802         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4803          * gating disable must be set.  Failure to set it results in
4804          * flickering pixels due to Z write ordering failures after
4805          * some amount of runtime in the Mesa "fire" demo, and Unigine
4806          * Sanctuary and Tropics, and apparently anything else with
4807          * alpha test or pixel discard.
4808          *
4809          * According to the spec, bit 11 (RCCUNIT) must also be set,
4810          * but we didn't debug actual testcases to find it out.
4811          *
4812          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4813          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4814          */
4815         I915_WRITE(GEN6_UCGCTL2,
4816                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4817                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4818
4819         /* This is required by WaCatErrorRejectionIssue:ivb */
4820         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4821                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4822                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4823
4824         g4x_disable_trickle_feed(dev);
4825
4826         /* WaMbcDriverBootEnable:ivb */
4827         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4828                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4829
4830         /* WaVSRefCountFullforceMissDisable:ivb */
4831         gen7_setup_fixed_func_scheduler(dev_priv);
4832
4833         /* WaDisable4x2SubspanOptimization:ivb */
4834         I915_WRITE(CACHE_MODE_1,
4835                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4836
4837         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4838         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4839         snpcr |= GEN6_MBC_SNPCR_MED;
4840         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4841
4842         if (!HAS_PCH_NOP(dev))
4843                 cpt_init_clock_gating(dev);
4844
4845         gen6_check_mch_setup(dev);
4846 }
4847
4848 static void valleyview_init_clock_gating(struct drm_device *dev)
4849 {
4850         struct drm_i915_private *dev_priv = dev->dev_private;
4851
4852         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4853
4854         /* WaDisableEarlyCull:vlv */
4855         I915_WRITE(_3D_CHICKEN3,
4856                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4857
4858         /* WaDisableBackToBackFlipFix:vlv */
4859         I915_WRITE(IVB_CHICKEN3,
4860                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4861                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4862
4863         /* WaDisablePSDDualDispatchEnable:vlv */
4864         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4865                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4866                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4867
4868         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4869         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4870                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4871
4872         /* WaApplyL3ControlAndL3ChickenMode:vlv */
4873         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4874         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4875
4876         /* WaForceL3Serialization:vlv */
4877         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4878                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4879
4880         /* WaDisableDopClockGating:vlv */
4881         I915_WRITE(GEN7_ROW_CHICKEN2,
4882                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4883
4884         /* This is required by WaCatErrorRejectionIssue:vlv */
4885         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4886                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4887                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4888
4889         /* WaMbcDriverBootEnable:vlv */
4890         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4891                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4892
4893
4894         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4895          * gating disable must be set.  Failure to set it results in
4896          * flickering pixels due to Z write ordering failures after
4897          * some amount of runtime in the Mesa "fire" demo, and Unigine
4898          * Sanctuary and Tropics, and apparently anything else with
4899          * alpha test or pixel discard.
4900          *
4901          * According to the spec, bit 11 (RCCUNIT) must also be set,
4902          * but we didn't debug actual testcases to find it out.
4903          *
4904          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4905          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4906          *
4907          * Also apply WaDisableVDSUnitClockGating:vlv and
4908          * WaDisableRCPBUnitClockGating:vlv.
4909          */
4910         I915_WRITE(GEN6_UCGCTL2,
4911                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4912                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4913                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4914                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4915                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4916
4917         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4918
4919         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
4920
4921         I915_WRITE(CACHE_MODE_1,
4922                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4923
4924         /*
4925          * WaDisableVLVClockGating_VBIIssue:vlv
4926          * Disable clock gating on th GCFG unit to prevent a delay
4927          * in the reporting of vblank events.
4928          */
4929         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4930
4931         /* Conservative clock gating settings for now */
4932         I915_WRITE(0x9400, 0xffffffff);
4933         I915_WRITE(0x9404, 0xffffffff);
4934         I915_WRITE(0x9408, 0xffffffff);
4935         I915_WRITE(0x940c, 0xffffffff);
4936         I915_WRITE(0x9410, 0xffffffff);
4937         I915_WRITE(0x9414, 0xffffffff);
4938         I915_WRITE(0x9418, 0xffffffff);
4939 }
4940
4941 static void g4x_init_clock_gating(struct drm_device *dev)
4942 {
4943         struct drm_i915_private *dev_priv = dev->dev_private;
4944         uint32_t dspclk_gate;
4945
4946         I915_WRITE(RENCLK_GATE_D1, 0);
4947         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4948                    GS_UNIT_CLOCK_GATE_DISABLE |
4949                    CL_UNIT_CLOCK_GATE_DISABLE);
4950         I915_WRITE(RAMCLK_GATE_D, 0);
4951         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4952                 OVRUNIT_CLOCK_GATE_DISABLE |
4953                 OVCUNIT_CLOCK_GATE_DISABLE;
4954         if (IS_GM45(dev))
4955                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4956         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4957
4958         /* WaDisableRenderCachePipelinedFlush */
4959         I915_WRITE(CACHE_MODE_0,
4960                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4961
4962         g4x_disable_trickle_feed(dev);
4963 }
4964
4965 static void crestline_init_clock_gating(struct drm_device *dev)
4966 {
4967         struct drm_i915_private *dev_priv = dev->dev_private;
4968
4969         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4970         I915_WRITE(RENCLK_GATE_D2, 0);
4971         I915_WRITE(DSPCLK_GATE_D, 0);
4972         I915_WRITE(RAMCLK_GATE_D, 0);
4973         I915_WRITE16(DEUC, 0);
4974         I915_WRITE(MI_ARB_STATE,
4975                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4976 }
4977
4978 static void broadwater_init_clock_gating(struct drm_device *dev)
4979 {
4980         struct drm_i915_private *dev_priv = dev->dev_private;
4981
4982         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4983                    I965_RCC_CLOCK_GATE_DISABLE |
4984                    I965_RCPB_CLOCK_GATE_DISABLE |
4985                    I965_ISC_CLOCK_GATE_DISABLE |
4986                    I965_FBC_CLOCK_GATE_DISABLE);
4987         I915_WRITE(RENCLK_GATE_D2, 0);
4988         I915_WRITE(MI_ARB_STATE,
4989                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4990 }
4991
4992 static void gen3_init_clock_gating(struct drm_device *dev)
4993 {
4994         struct drm_i915_private *dev_priv = dev->dev_private;
4995         u32 dstate = I915_READ(D_STATE);
4996
4997         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4998                 DSTATE_DOT_CLOCK_GATING;
4999         I915_WRITE(D_STATE, dstate);
5000
5001         if (IS_PINEVIEW(dev))
5002                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5003
5004         /* IIR "flip pending" means done if this bit is set */
5005         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5006 }
5007
5008 static void i85x_init_clock_gating(struct drm_device *dev)
5009 {
5010         struct drm_i915_private *dev_priv = dev->dev_private;
5011
5012         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5013 }
5014
5015 static void i830_init_clock_gating(struct drm_device *dev)
5016 {
5017         struct drm_i915_private *dev_priv = dev->dev_private;
5018
5019         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5020 }
5021
5022 void intel_init_clock_gating(struct drm_device *dev)
5023 {
5024         struct drm_i915_private *dev_priv = dev->dev_private;
5025
5026         dev_priv->display.init_clock_gating(dev);
5027 }
5028
5029 void intel_suspend_hw(struct drm_device *dev)
5030 {
5031         if (HAS_PCH_LPT(dev))
5032                 lpt_suspend_hw(dev);
5033 }
5034
5035 /**
5036  * We should only use the power well if we explicitly asked the hardware to
5037  * enable it, so check if it's enabled and also check if we've requested it to
5038  * be enabled.
5039  */
5040 bool intel_display_power_enabled(struct drm_device *dev,
5041                                  enum intel_display_power_domain domain)
5042 {
5043         struct drm_i915_private *dev_priv = dev->dev_private;
5044
5045         if (!HAS_POWER_WELL(dev))
5046                 return true;
5047
5048         switch (domain) {
5049         case POWER_DOMAIN_PIPE_A:
5050         case POWER_DOMAIN_TRANSCODER_EDP:
5051                 return true;
5052         case POWER_DOMAIN_PIPE_B:
5053         case POWER_DOMAIN_PIPE_C:
5054         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5055         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5056         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5057         case POWER_DOMAIN_TRANSCODER_A:
5058         case POWER_DOMAIN_TRANSCODER_B:
5059         case POWER_DOMAIN_TRANSCODER_C:
5060                 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5061                        (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
5062         default:
5063                 BUG();
5064         }
5065 }
5066
5067 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5068 {
5069         struct drm_i915_private *dev_priv = dev->dev_private;
5070         bool is_enabled, enable_requested;
5071         uint32_t tmp;
5072
5073         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5074         is_enabled = tmp & HSW_PWR_WELL_STATE;
5075         enable_requested = tmp & HSW_PWR_WELL_ENABLE;
5076
5077         if (enable) {
5078                 if (!enable_requested)
5079                         I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
5080
5081                 if (!is_enabled) {
5082                         DRM_DEBUG_KMS("Enabling power well\n");
5083                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5084                                       HSW_PWR_WELL_STATE), 20))
5085                                 DRM_ERROR("Timeout enabling power well\n");
5086                 }
5087         } else {
5088                 if (enable_requested) {
5089                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5090                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5091                 }
5092         }
5093 }
5094
5095 static struct i915_power_well *hsw_pwr;
5096
5097 /* Display audio driver power well request */
5098 void i915_request_power_well(void)
5099 {
5100         if (WARN_ON(!hsw_pwr))
5101                 return;
5102
5103         spin_lock_irq(&hsw_pwr->lock);
5104         if (!hsw_pwr->count++ &&
5105                         !hsw_pwr->i915_request)
5106                 __intel_set_power_well(hsw_pwr->device, true);
5107         spin_unlock_irq(&hsw_pwr->lock);
5108 }
5109 EXPORT_SYMBOL_GPL(i915_request_power_well);
5110
5111 /* Display audio driver power well release */
5112 void i915_release_power_well(void)
5113 {
5114         if (WARN_ON(!hsw_pwr))
5115                 return;
5116
5117         spin_lock_irq(&hsw_pwr->lock);
5118         WARN_ON(!hsw_pwr->count);
5119         if (!--hsw_pwr->count &&
5120                        !hsw_pwr->i915_request)
5121                 __intel_set_power_well(hsw_pwr->device, false);
5122         spin_unlock_irq(&hsw_pwr->lock);
5123 }
5124 EXPORT_SYMBOL_GPL(i915_release_power_well);
5125
5126 int i915_init_power_well(struct drm_device *dev)
5127 {
5128         struct drm_i915_private *dev_priv = dev->dev_private;
5129
5130         hsw_pwr = &dev_priv->power_well;
5131
5132         hsw_pwr->device = dev;
5133         spin_lock_init(&hsw_pwr->lock);
5134         hsw_pwr->count = 0;
5135
5136         return 0;
5137 }
5138
5139 void i915_remove_power_well(struct drm_device *dev)
5140 {
5141         hsw_pwr = NULL;
5142 }
5143
5144 void intel_set_power_well(struct drm_device *dev, bool enable)
5145 {
5146         struct drm_i915_private *dev_priv = dev->dev_private;
5147         struct i915_power_well *power_well = &dev_priv->power_well;
5148
5149         if (!HAS_POWER_WELL(dev))
5150                 return;
5151
5152         if (!i915_disable_power_well && !enable)
5153                 return;
5154
5155         spin_lock_irq(&power_well->lock);
5156         power_well->i915_request = enable;
5157
5158         /* only reject "disable" power well request */
5159         if (power_well->count && !enable) {
5160                 spin_unlock_irq(&power_well->lock);
5161                 return;
5162         }
5163
5164         __intel_set_power_well(dev, enable);
5165         spin_unlock_irq(&power_well->lock);
5166 }
5167
5168 /*
5169  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5170  * when not needed anymore. We have 4 registers that can request the power well
5171  * to be enabled, and it will only be disabled if none of the registers is
5172  * requesting it to be enabled.
5173  */
5174 void intel_init_power_well(struct drm_device *dev)
5175 {
5176         struct drm_i915_private *dev_priv = dev->dev_private;
5177
5178         if (!HAS_POWER_WELL(dev))
5179                 return;
5180
5181         /* For now, we need the power well to be always enabled. */
5182         intel_set_power_well(dev, true);
5183
5184         /* We're taking over the BIOS, so clear any requests made by it since
5185          * the driver is in charge now. */
5186         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
5187                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5188 }
5189
5190 /* Set up chip specific power management-related functions */
5191 void intel_init_pm(struct drm_device *dev)
5192 {
5193         struct drm_i915_private *dev_priv = dev->dev_private;
5194
5195         if (I915_HAS_FBC(dev)) {
5196                 if (HAS_PCH_SPLIT(dev)) {
5197                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5198                         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5199                                 dev_priv->display.enable_fbc =
5200                                         gen7_enable_fbc;
5201                         else
5202                                 dev_priv->display.enable_fbc =
5203                                         ironlake_enable_fbc;
5204                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5205                 } else if (IS_GM45(dev)) {
5206                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5207                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5208                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5209                 } else if (IS_CRESTLINE(dev)) {
5210                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5211                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5212                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5213                 }
5214                 /* 855GM needs testing */
5215         }
5216
5217         /* For cxsr */
5218         if (IS_PINEVIEW(dev))
5219                 i915_pineview_get_mem_freq(dev);
5220         else if (IS_GEN5(dev))
5221                 i915_ironlake_get_mem_freq(dev);
5222
5223         /* For FIFO watermark updates */
5224         if (HAS_PCH_SPLIT(dev)) {
5225                 if (IS_GEN5(dev)) {
5226                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5227                                 dev_priv->display.update_wm = ironlake_update_wm;
5228                         else {
5229                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5230                                               "Disable CxSR\n");
5231                                 dev_priv->display.update_wm = NULL;
5232                         }
5233                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5234                 } else if (IS_GEN6(dev)) {
5235                         if (SNB_READ_WM0_LATENCY()) {
5236                                 dev_priv->display.update_wm = sandybridge_update_wm;
5237                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5238                         } else {
5239                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5240                                               "Disable CxSR\n");
5241                                 dev_priv->display.update_wm = NULL;
5242                         }
5243                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5244                 } else if (IS_IVYBRIDGE(dev)) {
5245                         if (SNB_READ_WM0_LATENCY()) {
5246                                 dev_priv->display.update_wm = ivybridge_update_wm;
5247                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5248                         } else {
5249                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5250                                               "Disable CxSR\n");
5251                                 dev_priv->display.update_wm = NULL;
5252                         }
5253                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5254                 } else if (IS_HASWELL(dev)) {
5255                         if (I915_READ64(MCH_SSKPD)) {
5256                                 dev_priv->display.update_wm = haswell_update_wm;
5257                                 dev_priv->display.update_sprite_wm =
5258                                         haswell_update_sprite_wm;
5259                         } else {
5260                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5261                                               "Disable CxSR\n");
5262                                 dev_priv->display.update_wm = NULL;
5263                         }
5264                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5265                 } else
5266                         dev_priv->display.update_wm = NULL;
5267         } else if (IS_VALLEYVIEW(dev)) {
5268                 dev_priv->display.update_wm = valleyview_update_wm;
5269                 dev_priv->display.init_clock_gating =
5270                         valleyview_init_clock_gating;
5271         } else if (IS_PINEVIEW(dev)) {
5272                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5273                                             dev_priv->is_ddr3,
5274                                             dev_priv->fsb_freq,
5275                                             dev_priv->mem_freq)) {
5276                         DRM_INFO("failed to find known CxSR latency "
5277                                  "(found ddr%s fsb freq %d, mem freq %d), "
5278                                  "disabling CxSR\n",
5279                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
5280                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5281                         /* Disable CxSR and never update its watermark again */
5282                         pineview_disable_cxsr(dev);
5283                         dev_priv->display.update_wm = NULL;
5284                 } else
5285                         dev_priv->display.update_wm = pineview_update_wm;
5286                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5287         } else if (IS_G4X(dev)) {
5288                 dev_priv->display.update_wm = g4x_update_wm;
5289                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5290         } else if (IS_GEN4(dev)) {
5291                 dev_priv->display.update_wm = i965_update_wm;
5292                 if (IS_CRESTLINE(dev))
5293                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5294                 else if (IS_BROADWATER(dev))
5295                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5296         } else if (IS_GEN3(dev)) {
5297                 dev_priv->display.update_wm = i9xx_update_wm;
5298                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5299                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5300         } else if (IS_I865G(dev)) {
5301                 dev_priv->display.update_wm = i830_update_wm;
5302                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5303                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5304         } else if (IS_I85X(dev)) {
5305                 dev_priv->display.update_wm = i9xx_update_wm;
5306                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5307                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5308         } else {
5309                 dev_priv->display.update_wm = i830_update_wm;
5310                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5311                 if (IS_845G(dev))
5312                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5313                 else
5314                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5315         }
5316 }
5317
5318 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5319 {
5320         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5321
5322         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5323                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5324                 return -EAGAIN;
5325         }
5326
5327         I915_WRITE(GEN6_PCODE_DATA, *val);
5328         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5329
5330         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5331                      500)) {
5332                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5333                 return -ETIMEDOUT;
5334         }
5335
5336         *val = I915_READ(GEN6_PCODE_DATA);
5337         I915_WRITE(GEN6_PCODE_DATA, 0);
5338
5339         return 0;
5340 }
5341
5342 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5343 {
5344         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5345
5346         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5347                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5348                 return -EAGAIN;
5349         }
5350
5351         I915_WRITE(GEN6_PCODE_DATA, val);
5352         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5353
5354         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5355                      500)) {
5356                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5357                 return -ETIMEDOUT;
5358         }
5359
5360         I915_WRITE(GEN6_PCODE_DATA, 0);
5361
5362         return 0;
5363 }
5364
5365 int vlv_gpu_freq(int ddr_freq, int val)
5366 {
5367         int mult, base;
5368
5369         switch (ddr_freq) {
5370         case 800:
5371                 mult = 20;
5372                 base = 120;
5373                 break;
5374         case 1066:
5375                 mult = 22;
5376                 base = 133;
5377                 break;
5378         case 1333:
5379                 mult = 21;
5380                 base = 125;
5381                 break;
5382         default:
5383                 return -1;
5384         }
5385
5386         return ((val - 0xbd) * mult) + base;
5387 }
5388
5389 int vlv_freq_opcode(int ddr_freq, int val)
5390 {
5391         int mult, base;
5392
5393         switch (ddr_freq) {
5394         case 800:
5395                 mult = 20;
5396                 base = 120;
5397                 break;
5398         case 1066:
5399                 mult = 22;
5400                 base = 133;
5401                 break;
5402         case 1333:
5403                 mult = 21;
5404                 base = 125;
5405                 break;
5406         default:
5407                 return -1;
5408         }
5409
5410         val /= mult;
5411         val -= base / mult;
5412         val += 0xbd;
5413
5414         if (val > 0xea)
5415                 val = 0xea;
5416
5417         return val;
5418 }
5419
5420 void intel_pm_init(struct drm_device *dev)
5421 {
5422         struct drm_i915_private *dev_priv = dev->dev_private;
5423
5424         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5425                           intel_gen6_powersave_work);
5426 }
5427