]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: don't touch the VDD when disabling the panel
[~andy/linux] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95 static int
96 intel_dp_max_link_bw(struct intel_dp *intel_dp)
97 {
98         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100         switch (max_link_bw) {
101         case DP_LINK_BW_1_62:
102         case DP_LINK_BW_2_7:
103                 break;
104         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105                 max_link_bw = DP_LINK_BW_2_7;
106                 break;
107         default:
108                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109                      max_link_bw);
110                 max_link_bw = DP_LINK_BW_1_62;
111                 break;
112         }
113         return max_link_bw;
114 }
115
116 /*
117  * The units on the numbers in the next two are... bizarre.  Examples will
118  * make it clearer; this one parallels an example in the eDP spec.
119  *
120  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121  *
122  *     270000 * 1 * 8 / 10 == 216000
123  *
124  * The actual data capacity of that configuration is 2.16Gbit/s, so the
125  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
126  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127  * 119000.  At 18bpp that's 2142000 kilobits per second.
128  *
129  * Thus the strange-looking division by 10 in intel_dp_link_required, to
130  * get the result in decakilobits instead of kilobits.
131  */
132
133 static int
134 intel_dp_link_required(int pixel_clock, int bpp)
135 {
136         return (pixel_clock * bpp + 9) / 10;
137 }
138
139 static int
140 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141 {
142         return (max_link_clock * max_lanes * 8) / 10;
143 }
144
145 static enum drm_mode_status
146 intel_dp_mode_valid(struct drm_connector *connector,
147                     struct drm_display_mode *mode)
148 {
149         struct intel_dp *intel_dp = intel_attached_dp(connector);
150         struct intel_connector *intel_connector = to_intel_connector(connector);
151         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152         int target_clock = mode->clock;
153         int max_rate, mode_rate, max_lanes, max_link_clock;
154
155         if (is_edp(intel_dp) && fixed_mode) {
156                 if (mode->hdisplay > fixed_mode->hdisplay)
157                         return MODE_PANEL;
158
159                 if (mode->vdisplay > fixed_mode->vdisplay)
160                         return MODE_PANEL;
161
162                 target_clock = fixed_mode->clock;
163         }
164
165         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169         mode_rate = intel_dp_link_required(target_clock, 18);
170
171         if (mode_rate > max_rate)
172                 return MODE_CLOCK_HIGH;
173
174         if (mode->clock < 10000)
175                 return MODE_CLOCK_LOW;
176
177         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178                 return MODE_H_ILLEGAL;
179
180         return MODE_OK;
181 }
182
183 static uint32_t
184 pack_aux(uint8_t *src, int src_bytes)
185 {
186         int     i;
187         uint32_t v = 0;
188
189         if (src_bytes > 4)
190                 src_bytes = 4;
191         for (i = 0; i < src_bytes; i++)
192                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
193         return v;
194 }
195
196 static void
197 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198 {
199         int i;
200         if (dst_bytes > 4)
201                 dst_bytes = 4;
202         for (i = 0; i < dst_bytes; i++)
203                 dst[i] = src >> ((3-i) * 8);
204 }
205
206 /* hrawclock is 1/4 the FSB frequency */
207 static int
208 intel_hrawclk(struct drm_device *dev)
209 {
210         struct drm_i915_private *dev_priv = dev->dev_private;
211         uint32_t clkcfg;
212
213         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214         if (IS_VALLEYVIEW(dev))
215                 return 200;
216
217         clkcfg = I915_READ(CLKCFG);
218         switch (clkcfg & CLKCFG_FSB_MASK) {
219         case CLKCFG_FSB_400:
220                 return 100;
221         case CLKCFG_FSB_533:
222                 return 133;
223         case CLKCFG_FSB_667:
224                 return 166;
225         case CLKCFG_FSB_800:
226                 return 200;
227         case CLKCFG_FSB_1067:
228                 return 266;
229         case CLKCFG_FSB_1333:
230                 return 333;
231         /* these two are just a guess; one of them might be right */
232         case CLKCFG_FSB_1600:
233         case CLKCFG_FSB_1600_ALT:
234                 return 400;
235         default:
236                 return 133;
237         }
238 }
239
240 static void
241 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
242                                     struct intel_dp *intel_dp,
243                                     struct edp_power_seq *out);
244 static void
245 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
246                                               struct intel_dp *intel_dp,
247                                               struct edp_power_seq *out);
248
249 static enum pipe
250 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
251 {
252         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
253         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
254         struct drm_device *dev = intel_dig_port->base.base.dev;
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         enum port port = intel_dig_port->port;
257         enum pipe pipe;
258
259         /* modeset should have pipe */
260         if (crtc)
261                 return to_intel_crtc(crtc)->pipe;
262
263         /* init time, try to find a pipe with this port selected */
264         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
265                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
266                         PANEL_PORT_SELECT_MASK;
267                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
268                         return pipe;
269                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
270                         return pipe;
271         }
272
273         /* shrug */
274         return PIPE_A;
275 }
276
277 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
278 {
279         struct drm_device *dev = intel_dp_to_dev(intel_dp);
280
281         if (HAS_PCH_SPLIT(dev))
282                 return PCH_PP_CONTROL;
283         else
284                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
285 }
286
287 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
288 {
289         struct drm_device *dev = intel_dp_to_dev(intel_dp);
290
291         if (HAS_PCH_SPLIT(dev))
292                 return PCH_PP_STATUS;
293         else
294                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
295 }
296
297 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
298 {
299         struct drm_device *dev = intel_dp_to_dev(intel_dp);
300         struct drm_i915_private *dev_priv = dev->dev_private;
301
302         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
303 }
304
305 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
306 {
307         struct drm_device *dev = intel_dp_to_dev(intel_dp);
308         struct drm_i915_private *dev_priv = dev->dev_private;
309
310         return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
311 }
312
313 static void
314 intel_dp_check_edp(struct intel_dp *intel_dp)
315 {
316         struct drm_device *dev = intel_dp_to_dev(intel_dp);
317         struct drm_i915_private *dev_priv = dev->dev_private;
318
319         if (!is_edp(intel_dp))
320                 return;
321
322         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
323                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
324                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
325                               I915_READ(_pp_stat_reg(intel_dp)),
326                               I915_READ(_pp_ctrl_reg(intel_dp)));
327         }
328 }
329
330 static uint32_t
331 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
332 {
333         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334         struct drm_device *dev = intel_dig_port->base.base.dev;
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
337         uint32_t status;
338         bool done;
339
340 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
341         if (has_aux_irq)
342                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
343                                           msecs_to_jiffies_timeout(10));
344         else
345                 done = wait_for_atomic(C, 10) == 0;
346         if (!done)
347                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
348                           has_aux_irq);
349 #undef C
350
351         return status;
352 }
353
354 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
355                                       int index)
356 {
357         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358         struct drm_device *dev = intel_dig_port->base.base.dev;
359         struct drm_i915_private *dev_priv = dev->dev_private;
360
361         /* The clock divider is based off the hrawclk,
362          * and would like to run at 2MHz. So, take the
363          * hrawclk value and divide by 2 and use that
364          *
365          * Note that PCH attached eDP panels should use a 125MHz input
366          * clock divider.
367          */
368         if (IS_VALLEYVIEW(dev)) {
369                 return index ? 0 : 100;
370         } else if (intel_dig_port->port == PORT_A) {
371                 if (index)
372                         return 0;
373                 if (HAS_DDI(dev))
374                         return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
375                 else if (IS_GEN6(dev) || IS_GEN7(dev))
376                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
377                 else
378                         return 225; /* eDP input clock at 450Mhz */
379         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
380                 /* Workaround for non-ULT HSW */
381                 switch (index) {
382                 case 0: return 63;
383                 case 1: return 72;
384                 default: return 0;
385                 }
386         } else if (HAS_PCH_SPLIT(dev)) {
387                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388         } else {
389                 return index ? 0 :intel_hrawclk(dev) / 2;
390         }
391 }
392
393 static int
394 intel_dp_aux_ch(struct intel_dp *intel_dp,
395                 uint8_t *send, int send_bytes,
396                 uint8_t *recv, int recv_size)
397 {
398         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399         struct drm_device *dev = intel_dig_port->base.base.dev;
400         struct drm_i915_private *dev_priv = dev->dev_private;
401         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
402         uint32_t ch_data = ch_ctl + 4;
403         uint32_t aux_clock_divider;
404         int i, ret, recv_bytes;
405         uint32_t status;
406         int try, precharge, clock = 0;
407         bool has_aux_irq = true;
408         uint32_t timeout;
409
410         /* dp aux is extremely sensitive to irq latency, hence request the
411          * lowest possible wakeup latency and so prevent the cpu from going into
412          * deep sleep states.
413          */
414         pm_qos_update_request(&dev_priv->pm_qos, 0);
415
416         intel_dp_check_edp(intel_dp);
417
418         if (IS_GEN6(dev))
419                 precharge = 3;
420         else
421                 precharge = 5;
422
423         if (IS_BROADWELL(dev) && ch_ctl == DPA_AUX_CH_CTL)
424                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
425         else
426                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
427
428         intel_aux_display_runtime_get(dev_priv);
429
430         /* Try to wait for any previous AUX channel activity */
431         for (try = 0; try < 3; try++) {
432                 status = I915_READ_NOTRACE(ch_ctl);
433                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
434                         break;
435                 msleep(1);
436         }
437
438         if (try == 3) {
439                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
440                      I915_READ(ch_ctl));
441                 ret = -EBUSY;
442                 goto out;
443         }
444
445         /* Only 5 data registers! */
446         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
447                 ret = -E2BIG;
448                 goto out;
449         }
450
451         while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
452                 /* Must try at least 3 times according to DP spec */
453                 for (try = 0; try < 5; try++) {
454                         /* Load the send data into the aux channel data registers */
455                         for (i = 0; i < send_bytes; i += 4)
456                                 I915_WRITE(ch_data + i,
457                                            pack_aux(send + i, send_bytes - i));
458
459                         /* Send the command and wait for it to complete */
460                         I915_WRITE(ch_ctl,
461                                    DP_AUX_CH_CTL_SEND_BUSY |
462                                    (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
463                                    timeout |
464                                    (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
465                                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
466                                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
467                                    DP_AUX_CH_CTL_DONE |
468                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
469                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
470
471                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
472
473                         /* Clear done status and any errors */
474                         I915_WRITE(ch_ctl,
475                                    status |
476                                    DP_AUX_CH_CTL_DONE |
477                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
478                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
479
480                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
481                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
482                                 continue;
483                         if (status & DP_AUX_CH_CTL_DONE)
484                                 break;
485                 }
486                 if (status & DP_AUX_CH_CTL_DONE)
487                         break;
488         }
489
490         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
491                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
492                 ret = -EBUSY;
493                 goto out;
494         }
495
496         /* Check for timeout or receive error.
497          * Timeouts occur when the sink is not connected
498          */
499         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
500                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
501                 ret = -EIO;
502                 goto out;
503         }
504
505         /* Timeouts occur when the device isn't connected, so they're
506          * "normal" -- don't fill the kernel log with these */
507         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
508                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
509                 ret = -ETIMEDOUT;
510                 goto out;
511         }
512
513         /* Unload any bytes sent back from the other side */
514         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
515                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
516         if (recv_bytes > recv_size)
517                 recv_bytes = recv_size;
518
519         for (i = 0; i < recv_bytes; i += 4)
520                 unpack_aux(I915_READ(ch_data + i),
521                            recv + i, recv_bytes - i);
522
523         ret = recv_bytes;
524 out:
525         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
526         intel_aux_display_runtime_put(dev_priv);
527
528         return ret;
529 }
530
531 /* Write data to the aux channel in native mode */
532 static int
533 intel_dp_aux_native_write(struct intel_dp *intel_dp,
534                           uint16_t address, uint8_t *send, int send_bytes)
535 {
536         int ret;
537         uint8_t msg[20];
538         int msg_bytes;
539         uint8_t ack;
540
541         if (WARN_ON(send_bytes > 16))
542                 return -E2BIG;
543
544         intel_dp_check_edp(intel_dp);
545         msg[0] = AUX_NATIVE_WRITE << 4;
546         msg[1] = address >> 8;
547         msg[2] = address & 0xff;
548         msg[3] = send_bytes - 1;
549         memcpy(&msg[4], send, send_bytes);
550         msg_bytes = send_bytes + 4;
551         for (;;) {
552                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
553                 if (ret < 0)
554                         return ret;
555                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
556                         break;
557                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
558                         udelay(100);
559                 else
560                         return -EIO;
561         }
562         return send_bytes;
563 }
564
565 /* Write a single byte to the aux channel in native mode */
566 static int
567 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
568                             uint16_t address, uint8_t byte)
569 {
570         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
571 }
572
573 /* read bytes from a native aux channel */
574 static int
575 intel_dp_aux_native_read(struct intel_dp *intel_dp,
576                          uint16_t address, uint8_t *recv, int recv_bytes)
577 {
578         uint8_t msg[4];
579         int msg_bytes;
580         uint8_t reply[20];
581         int reply_bytes;
582         uint8_t ack;
583         int ret;
584
585         if (WARN_ON(recv_bytes > 19))
586                 return -E2BIG;
587
588         intel_dp_check_edp(intel_dp);
589         msg[0] = AUX_NATIVE_READ << 4;
590         msg[1] = address >> 8;
591         msg[2] = address & 0xff;
592         msg[3] = recv_bytes - 1;
593
594         msg_bytes = 4;
595         reply_bytes = recv_bytes + 1;
596
597         for (;;) {
598                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
599                                       reply, reply_bytes);
600                 if (ret == 0)
601                         return -EPROTO;
602                 if (ret < 0)
603                         return ret;
604                 ack = reply[0];
605                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
606                         memcpy(recv, reply + 1, ret - 1);
607                         return ret - 1;
608                 }
609                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
610                         udelay(100);
611                 else
612                         return -EIO;
613         }
614 }
615
616 static int
617 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
618                     uint8_t write_byte, uint8_t *read_byte)
619 {
620         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
621         struct intel_dp *intel_dp = container_of(adapter,
622                                                 struct intel_dp,
623                                                 adapter);
624         uint16_t address = algo_data->address;
625         uint8_t msg[5];
626         uint8_t reply[2];
627         unsigned retry;
628         int msg_bytes;
629         int reply_bytes;
630         int ret;
631
632         ironlake_edp_panel_vdd_on(intel_dp);
633         intel_dp_check_edp(intel_dp);
634         /* Set up the command byte */
635         if (mode & MODE_I2C_READ)
636                 msg[0] = AUX_I2C_READ << 4;
637         else
638                 msg[0] = AUX_I2C_WRITE << 4;
639
640         if (!(mode & MODE_I2C_STOP))
641                 msg[0] |= AUX_I2C_MOT << 4;
642
643         msg[1] = address >> 8;
644         msg[2] = address;
645
646         switch (mode) {
647         case MODE_I2C_WRITE:
648                 msg[3] = 0;
649                 msg[4] = write_byte;
650                 msg_bytes = 5;
651                 reply_bytes = 1;
652                 break;
653         case MODE_I2C_READ:
654                 msg[3] = 0;
655                 msg_bytes = 4;
656                 reply_bytes = 2;
657                 break;
658         default:
659                 msg_bytes = 3;
660                 reply_bytes = 1;
661                 break;
662         }
663
664         /*
665          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
666          * required to retry at least seven times upon receiving AUX_DEFER
667          * before giving up the AUX transaction.
668          */
669         for (retry = 0; retry < 7; retry++) {
670                 ret = intel_dp_aux_ch(intel_dp,
671                                       msg, msg_bytes,
672                                       reply, reply_bytes);
673                 if (ret < 0) {
674                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
675                         goto out;
676                 }
677
678                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
679                 case AUX_NATIVE_REPLY_ACK:
680                         /* I2C-over-AUX Reply field is only valid
681                          * when paired with AUX ACK.
682                          */
683                         break;
684                 case AUX_NATIVE_REPLY_NACK:
685                         DRM_DEBUG_KMS("aux_ch native nack\n");
686                         ret = -EREMOTEIO;
687                         goto out;
688                 case AUX_NATIVE_REPLY_DEFER:
689                         /*
690                          * For now, just give more slack to branch devices. We
691                          * could check the DPCD for I2C bit rate capabilities,
692                          * and if available, adjust the interval. We could also
693                          * be more careful with DP-to-Legacy adapters where a
694                          * long legacy cable may force very low I2C bit rates.
695                          */
696                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
697                             DP_DWN_STRM_PORT_PRESENT)
698                                 usleep_range(500, 600);
699                         else
700                                 usleep_range(300, 400);
701                         continue;
702                 default:
703                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
704                                   reply[0]);
705                         ret = -EREMOTEIO;
706                         goto out;
707                 }
708
709                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
710                 case AUX_I2C_REPLY_ACK:
711                         if (mode == MODE_I2C_READ) {
712                                 *read_byte = reply[1];
713                         }
714                         ret = reply_bytes - 1;
715                         goto out;
716                 case AUX_I2C_REPLY_NACK:
717                         DRM_DEBUG_KMS("aux_i2c nack\n");
718                         ret = -EREMOTEIO;
719                         goto out;
720                 case AUX_I2C_REPLY_DEFER:
721                         DRM_DEBUG_KMS("aux_i2c defer\n");
722                         udelay(100);
723                         break;
724                 default:
725                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
726                         ret = -EREMOTEIO;
727                         goto out;
728                 }
729         }
730
731         DRM_ERROR("too many retries, giving up\n");
732         ret = -EREMOTEIO;
733
734 out:
735         ironlake_edp_panel_vdd_off(intel_dp, false);
736         return ret;
737 }
738
739 static int
740 intel_dp_i2c_init(struct intel_dp *intel_dp,
741                   struct intel_connector *intel_connector, const char *name)
742 {
743         int     ret;
744
745         DRM_DEBUG_KMS("i2c_init %s\n", name);
746         intel_dp->algo.running = false;
747         intel_dp->algo.address = 0;
748         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
749
750         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
751         intel_dp->adapter.owner = THIS_MODULE;
752         intel_dp->adapter.class = I2C_CLASS_DDC;
753         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
754         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
755         intel_dp->adapter.algo_data = &intel_dp->algo;
756         intel_dp->adapter.dev.parent = intel_connector->base.kdev;
757
758         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
759         return ret;
760 }
761
762 static void
763 intel_dp_set_clock(struct intel_encoder *encoder,
764                    struct intel_crtc_config *pipe_config, int link_bw)
765 {
766         struct drm_device *dev = encoder->base.dev;
767         const struct dp_link_dpll *divisor = NULL;
768         int i, count = 0;
769
770         if (IS_G4X(dev)) {
771                 divisor = gen4_dpll;
772                 count = ARRAY_SIZE(gen4_dpll);
773         } else if (IS_HASWELL(dev)) {
774                 /* Haswell has special-purpose DP DDI clocks. */
775         } else if (HAS_PCH_SPLIT(dev)) {
776                 divisor = pch_dpll;
777                 count = ARRAY_SIZE(pch_dpll);
778         } else if (IS_VALLEYVIEW(dev)) {
779                 divisor = vlv_dpll;
780                 count = ARRAY_SIZE(vlv_dpll);
781         }
782
783         if (divisor && count) {
784                 for (i = 0; i < count; i++) {
785                         if (link_bw == divisor[i].link_bw) {
786                                 pipe_config->dpll = divisor[i].dpll;
787                                 pipe_config->clock_set = true;
788                                 break;
789                         }
790                 }
791         }
792 }
793
794 bool
795 intel_dp_compute_config(struct intel_encoder *encoder,
796                         struct intel_crtc_config *pipe_config)
797 {
798         struct drm_device *dev = encoder->base.dev;
799         struct drm_i915_private *dev_priv = dev->dev_private;
800         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
801         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
802         enum port port = dp_to_dig_port(intel_dp)->port;
803         struct intel_crtc *intel_crtc = encoder->new_crtc;
804         struct intel_connector *intel_connector = intel_dp->attached_connector;
805         int lane_count, clock;
806         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
807         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
808         int bpp, mode_rate;
809         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
810         int link_avail, link_clock;
811
812         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
813                 pipe_config->has_pch_encoder = true;
814
815         pipe_config->has_dp_encoder = true;
816
817         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
818                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
819                                        adjusted_mode);
820                 if (!HAS_PCH_SPLIT(dev))
821                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
822                                                  intel_connector->panel.fitting_mode);
823                 else
824                         intel_pch_panel_fitting(intel_crtc, pipe_config,
825                                                 intel_connector->panel.fitting_mode);
826         }
827
828         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
829                 return false;
830
831         DRM_DEBUG_KMS("DP link computation with max lane count %i "
832                       "max bw %02x pixel clock %iKHz\n",
833                       max_lane_count, bws[max_clock],
834                       adjusted_mode->crtc_clock);
835
836         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
837          * bpc in between. */
838         bpp = pipe_config->pipe_bpp;
839         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
840             dev_priv->vbt.edp_bpp < bpp) {
841                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
842                               dev_priv->vbt.edp_bpp);
843                 bpp = dev_priv->vbt.edp_bpp;
844         }
845
846         for (; bpp >= 6*3; bpp -= 2*3) {
847                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
848                                                    bpp);
849
850                 for (clock = 0; clock <= max_clock; clock++) {
851                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
852                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
853                                 link_avail = intel_dp_max_data_rate(link_clock,
854                                                                     lane_count);
855
856                                 if (mode_rate <= link_avail) {
857                                         goto found;
858                                 }
859                         }
860                 }
861         }
862
863         return false;
864
865 found:
866         if (intel_dp->color_range_auto) {
867                 /*
868                  * See:
869                  * CEA-861-E - 5.1 Default Encoding Parameters
870                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
871                  */
872                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
873                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
874                 else
875                         intel_dp->color_range = 0;
876         }
877
878         if (intel_dp->color_range)
879                 pipe_config->limited_color_range = true;
880
881         intel_dp->link_bw = bws[clock];
882         intel_dp->lane_count = lane_count;
883         pipe_config->pipe_bpp = bpp;
884         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
885
886         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
887                       intel_dp->link_bw, intel_dp->lane_count,
888                       pipe_config->port_clock, bpp);
889         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
890                       mode_rate, link_avail);
891
892         intel_link_compute_m_n(bpp, lane_count,
893                                adjusted_mode->crtc_clock,
894                                pipe_config->port_clock,
895                                &pipe_config->dp_m_n);
896
897         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
898
899         return true;
900 }
901
902 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
903 {
904         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
905         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
906         struct drm_device *dev = crtc->base.dev;
907         struct drm_i915_private *dev_priv = dev->dev_private;
908         u32 dpa_ctl;
909
910         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
911         dpa_ctl = I915_READ(DP_A);
912         dpa_ctl &= ~DP_PLL_FREQ_MASK;
913
914         if (crtc->config.port_clock == 162000) {
915                 /* For a long time we've carried around a ILK-DevA w/a for the
916                  * 160MHz clock. If we're really unlucky, it's still required.
917                  */
918                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
919                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
920                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
921         } else {
922                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
923                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
924         }
925
926         I915_WRITE(DP_A, dpa_ctl);
927
928         POSTING_READ(DP_A);
929         udelay(500);
930 }
931
932 static void intel_dp_mode_set(struct intel_encoder *encoder)
933 {
934         struct drm_device *dev = encoder->base.dev;
935         struct drm_i915_private *dev_priv = dev->dev_private;
936         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
937         enum port port = dp_to_dig_port(intel_dp)->port;
938         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
939         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
940
941         /*
942          * There are four kinds of DP registers:
943          *
944          *      IBX PCH
945          *      SNB CPU
946          *      IVB CPU
947          *      CPT PCH
948          *
949          * IBX PCH and CPU are the same for almost everything,
950          * except that the CPU DP PLL is configured in this
951          * register
952          *
953          * CPT PCH is quite different, having many bits moved
954          * to the TRANS_DP_CTL register instead. That
955          * configuration happens (oddly) in ironlake_pch_enable
956          */
957
958         /* Preserve the BIOS-computed detected bit. This is
959          * supposed to be read-only.
960          */
961         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
962
963         /* Handle DP bits in common between all three register formats */
964         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
965         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
966
967         if (intel_dp->has_audio) {
968                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
969                                  pipe_name(crtc->pipe));
970                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
971                 intel_write_eld(&encoder->base, adjusted_mode);
972         }
973
974         /* Split out the IBX/CPU vs CPT settings */
975
976         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
977                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
978                         intel_dp->DP |= DP_SYNC_HS_HIGH;
979                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
980                         intel_dp->DP |= DP_SYNC_VS_HIGH;
981                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
982
983                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
984                         intel_dp->DP |= DP_ENHANCED_FRAMING;
985
986                 intel_dp->DP |= crtc->pipe << 29;
987         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
988                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
989                         intel_dp->DP |= intel_dp->color_range;
990
991                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
992                         intel_dp->DP |= DP_SYNC_HS_HIGH;
993                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
994                         intel_dp->DP |= DP_SYNC_VS_HIGH;
995                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
996
997                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
998                         intel_dp->DP |= DP_ENHANCED_FRAMING;
999
1000                 if (crtc->pipe == 1)
1001                         intel_dp->DP |= DP_PIPEB_SELECT;
1002         } else {
1003                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1004         }
1005
1006         if (port == PORT_A && !IS_VALLEYVIEW(dev))
1007                 ironlake_set_pll_cpu_edp(intel_dp);
1008 }
1009
1010 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1011 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1012
1013 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1014 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1015
1016 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1017 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1018
1019 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1020                                        u32 mask,
1021                                        u32 value)
1022 {
1023         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1024         struct drm_i915_private *dev_priv = dev->dev_private;
1025         u32 pp_stat_reg, pp_ctrl_reg;
1026
1027         pp_stat_reg = _pp_stat_reg(intel_dp);
1028         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1029
1030         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1031                         mask, value,
1032                         I915_READ(pp_stat_reg),
1033                         I915_READ(pp_ctrl_reg));
1034
1035         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1036                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1037                                 I915_READ(pp_stat_reg),
1038                                 I915_READ(pp_ctrl_reg));
1039         }
1040
1041         DRM_DEBUG_KMS("Wait complete\n");
1042 }
1043
1044 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1045 {
1046         DRM_DEBUG_KMS("Wait for panel power on\n");
1047         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1048 }
1049
1050 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1051 {
1052         DRM_DEBUG_KMS("Wait for panel power off time\n");
1053         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1054 }
1055
1056 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1057 {
1058         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1059         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1060 }
1061
1062
1063 /* Read the current pp_control value, unlocking the register if it
1064  * is locked
1065  */
1066
1067 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1068 {
1069         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         u32 control;
1072
1073         control = I915_READ(_pp_ctrl_reg(intel_dp));
1074         control &= ~PANEL_UNLOCK_MASK;
1075         control |= PANEL_UNLOCK_REGS;
1076         return control;
1077 }
1078
1079 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1080 {
1081         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1082         struct drm_i915_private *dev_priv = dev->dev_private;
1083         u32 pp;
1084         u32 pp_stat_reg, pp_ctrl_reg;
1085
1086         if (!is_edp(intel_dp))
1087                 return;
1088
1089         WARN(intel_dp->want_panel_vdd,
1090              "eDP VDD already requested on\n");
1091
1092         intel_dp->want_panel_vdd = true;
1093
1094         if (ironlake_edp_have_panel_vdd(intel_dp))
1095                 return;
1096
1097         intel_runtime_pm_get(dev_priv);
1098
1099         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1100
1101         if (!ironlake_edp_have_panel_power(intel_dp))
1102                 ironlake_wait_panel_power_cycle(intel_dp);
1103
1104         pp = ironlake_get_pp_control(intel_dp);
1105         pp |= EDP_FORCE_VDD;
1106
1107         pp_stat_reg = _pp_stat_reg(intel_dp);
1108         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1109
1110         I915_WRITE(pp_ctrl_reg, pp);
1111         POSTING_READ(pp_ctrl_reg);
1112         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1113                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1114         /*
1115          * If the panel wasn't on, delay before accessing aux channel
1116          */
1117         if (!ironlake_edp_have_panel_power(intel_dp)) {
1118                 DRM_DEBUG_KMS("eDP was not running\n");
1119                 msleep(intel_dp->panel_power_up_delay);
1120         }
1121 }
1122
1123 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1124 {
1125         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1126         struct drm_i915_private *dev_priv = dev->dev_private;
1127         u32 pp;
1128         u32 pp_stat_reg, pp_ctrl_reg;
1129
1130         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1131
1132         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1133                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1134
1135                 pp = ironlake_get_pp_control(intel_dp);
1136                 pp &= ~EDP_FORCE_VDD;
1137
1138                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1139                 pp_stat_reg = _pp_stat_reg(intel_dp);
1140
1141                 I915_WRITE(pp_ctrl_reg, pp);
1142                 POSTING_READ(pp_ctrl_reg);
1143
1144                 /* Make sure sequencer is idle before allowing subsequent activity */
1145                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1146                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1147                 msleep(intel_dp->panel_power_down_delay);
1148
1149                 intel_runtime_pm_put(dev_priv);
1150         }
1151 }
1152
1153 static void ironlake_panel_vdd_work(struct work_struct *__work)
1154 {
1155         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1156                                                  struct intel_dp, panel_vdd_work);
1157         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1158
1159         mutex_lock(&dev->mode_config.mutex);
1160         ironlake_panel_vdd_off_sync(intel_dp);
1161         mutex_unlock(&dev->mode_config.mutex);
1162 }
1163
1164 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1165 {
1166         if (!is_edp(intel_dp))
1167                 return;
1168
1169         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1170
1171         intel_dp->want_panel_vdd = false;
1172
1173         if (sync) {
1174                 ironlake_panel_vdd_off_sync(intel_dp);
1175         } else {
1176                 /*
1177                  * Queue the timer to fire a long
1178                  * time from now (relative to the power down delay)
1179                  * to keep the panel power up across a sequence of operations
1180                  */
1181                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1182                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1183         }
1184 }
1185
1186 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1187 {
1188         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1189         struct drm_i915_private *dev_priv = dev->dev_private;
1190         u32 pp;
1191         u32 pp_ctrl_reg;
1192
1193         if (!is_edp(intel_dp))
1194                 return;
1195
1196         DRM_DEBUG_KMS("Turn eDP power on\n");
1197
1198         if (ironlake_edp_have_panel_power(intel_dp)) {
1199                 DRM_DEBUG_KMS("eDP power already on\n");
1200                 return;
1201         }
1202
1203         ironlake_wait_panel_power_cycle(intel_dp);
1204
1205         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1206         pp = ironlake_get_pp_control(intel_dp);
1207         if (IS_GEN5(dev)) {
1208                 /* ILK workaround: disable reset around power sequence */
1209                 pp &= ~PANEL_POWER_RESET;
1210                 I915_WRITE(pp_ctrl_reg, pp);
1211                 POSTING_READ(pp_ctrl_reg);
1212         }
1213
1214         pp |= POWER_TARGET_ON;
1215         if (!IS_GEN5(dev))
1216                 pp |= PANEL_POWER_RESET;
1217
1218         I915_WRITE(pp_ctrl_reg, pp);
1219         POSTING_READ(pp_ctrl_reg);
1220
1221         ironlake_wait_panel_on(intel_dp);
1222
1223         if (IS_GEN5(dev)) {
1224                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1225                 I915_WRITE(pp_ctrl_reg, pp);
1226                 POSTING_READ(pp_ctrl_reg);
1227         }
1228 }
1229
1230 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1231 {
1232         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1233         struct drm_i915_private *dev_priv = dev->dev_private;
1234         u32 pp;
1235         u32 pp_ctrl_reg;
1236
1237         if (!is_edp(intel_dp))
1238                 return;
1239
1240         DRM_DEBUG_KMS("Turn eDP power off\n");
1241
1242         pp = ironlake_get_pp_control(intel_dp);
1243         /* We need to switch off panel power _and_ force vdd, for otherwise some
1244          * panels get very unhappy and cease to work. */
1245         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1246
1247         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1248
1249         I915_WRITE(pp_ctrl_reg, pp);
1250         POSTING_READ(pp_ctrl_reg);
1251
1252         ironlake_wait_panel_off(intel_dp);
1253 }
1254
1255 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1256 {
1257         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1258         struct drm_device *dev = intel_dig_port->base.base.dev;
1259         struct drm_i915_private *dev_priv = dev->dev_private;
1260         u32 pp;
1261         u32 pp_ctrl_reg;
1262
1263         if (!is_edp(intel_dp))
1264                 return;
1265
1266         DRM_DEBUG_KMS("\n");
1267         /*
1268          * If we enable the backlight right away following a panel power
1269          * on, we may see slight flicker as the panel syncs with the eDP
1270          * link.  So delay a bit to make sure the image is solid before
1271          * allowing it to appear.
1272          */
1273         msleep(intel_dp->backlight_on_delay);
1274         pp = ironlake_get_pp_control(intel_dp);
1275         pp |= EDP_BLC_ENABLE;
1276
1277         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1278
1279         I915_WRITE(pp_ctrl_reg, pp);
1280         POSTING_READ(pp_ctrl_reg);
1281
1282         intel_panel_enable_backlight(intel_dp->attached_connector);
1283 }
1284
1285 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1286 {
1287         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1288         struct drm_i915_private *dev_priv = dev->dev_private;
1289         u32 pp;
1290         u32 pp_ctrl_reg;
1291
1292         if (!is_edp(intel_dp))
1293                 return;
1294
1295         intel_panel_disable_backlight(intel_dp->attached_connector);
1296
1297         DRM_DEBUG_KMS("\n");
1298         pp = ironlake_get_pp_control(intel_dp);
1299         pp &= ~EDP_BLC_ENABLE;
1300
1301         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1302
1303         I915_WRITE(pp_ctrl_reg, pp);
1304         POSTING_READ(pp_ctrl_reg);
1305         msleep(intel_dp->backlight_off_delay);
1306 }
1307
1308 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1309 {
1310         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1311         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1312         struct drm_device *dev = crtc->dev;
1313         struct drm_i915_private *dev_priv = dev->dev_private;
1314         u32 dpa_ctl;
1315
1316         assert_pipe_disabled(dev_priv,
1317                              to_intel_crtc(crtc)->pipe);
1318
1319         DRM_DEBUG_KMS("\n");
1320         dpa_ctl = I915_READ(DP_A);
1321         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1322         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1323
1324         /* We don't adjust intel_dp->DP while tearing down the link, to
1325          * facilitate link retraining (e.g. after hotplug). Hence clear all
1326          * enable bits here to ensure that we don't enable too much. */
1327         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1328         intel_dp->DP |= DP_PLL_ENABLE;
1329         I915_WRITE(DP_A, intel_dp->DP);
1330         POSTING_READ(DP_A);
1331         udelay(200);
1332 }
1333
1334 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1335 {
1336         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1337         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1338         struct drm_device *dev = crtc->dev;
1339         struct drm_i915_private *dev_priv = dev->dev_private;
1340         u32 dpa_ctl;
1341
1342         assert_pipe_disabled(dev_priv,
1343                              to_intel_crtc(crtc)->pipe);
1344
1345         dpa_ctl = I915_READ(DP_A);
1346         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1347              "dp pll off, should be on\n");
1348         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1349
1350         /* We can't rely on the value tracked for the DP register in
1351          * intel_dp->DP because link_down must not change that (otherwise link
1352          * re-training will fail. */
1353         dpa_ctl &= ~DP_PLL_ENABLE;
1354         I915_WRITE(DP_A, dpa_ctl);
1355         POSTING_READ(DP_A);
1356         udelay(200);
1357 }
1358
1359 /* If the sink supports it, try to set the power state appropriately */
1360 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1361 {
1362         int ret, i;
1363
1364         /* Should have a valid DPCD by this point */
1365         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1366                 return;
1367
1368         if (mode != DRM_MODE_DPMS_ON) {
1369                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1370                                                   DP_SET_POWER_D3);
1371                 if (ret != 1)
1372                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1373         } else {
1374                 /*
1375                  * When turning on, we need to retry for 1ms to give the sink
1376                  * time to wake up.
1377                  */
1378                 for (i = 0; i < 3; i++) {
1379                         ret = intel_dp_aux_native_write_1(intel_dp,
1380                                                           DP_SET_POWER,
1381                                                           DP_SET_POWER_D0);
1382                         if (ret == 1)
1383                                 break;
1384                         msleep(1);
1385                 }
1386         }
1387 }
1388
1389 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1390                                   enum pipe *pipe)
1391 {
1392         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1393         enum port port = dp_to_dig_port(intel_dp)->port;
1394         struct drm_device *dev = encoder->base.dev;
1395         struct drm_i915_private *dev_priv = dev->dev_private;
1396         u32 tmp = I915_READ(intel_dp->output_reg);
1397
1398         if (!(tmp & DP_PORT_EN))
1399                 return false;
1400
1401         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1402                 *pipe = PORT_TO_PIPE_CPT(tmp);
1403         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1404                 *pipe = PORT_TO_PIPE(tmp);
1405         } else {
1406                 u32 trans_sel;
1407                 u32 trans_dp;
1408                 int i;
1409
1410                 switch (intel_dp->output_reg) {
1411                 case PCH_DP_B:
1412                         trans_sel = TRANS_DP_PORT_SEL_B;
1413                         break;
1414                 case PCH_DP_C:
1415                         trans_sel = TRANS_DP_PORT_SEL_C;
1416                         break;
1417                 case PCH_DP_D:
1418                         trans_sel = TRANS_DP_PORT_SEL_D;
1419                         break;
1420                 default:
1421                         return true;
1422                 }
1423
1424                 for_each_pipe(i) {
1425                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1426                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1427                                 *pipe = i;
1428                                 return true;
1429                         }
1430                 }
1431
1432                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1433                               intel_dp->output_reg);
1434         }
1435
1436         return true;
1437 }
1438
1439 static void intel_dp_get_config(struct intel_encoder *encoder,
1440                                 struct intel_crtc_config *pipe_config)
1441 {
1442         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1443         u32 tmp, flags = 0;
1444         struct drm_device *dev = encoder->base.dev;
1445         struct drm_i915_private *dev_priv = dev->dev_private;
1446         enum port port = dp_to_dig_port(intel_dp)->port;
1447         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1448         int dotclock;
1449
1450         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1451                 tmp = I915_READ(intel_dp->output_reg);
1452                 if (tmp & DP_SYNC_HS_HIGH)
1453                         flags |= DRM_MODE_FLAG_PHSYNC;
1454                 else
1455                         flags |= DRM_MODE_FLAG_NHSYNC;
1456
1457                 if (tmp & DP_SYNC_VS_HIGH)
1458                         flags |= DRM_MODE_FLAG_PVSYNC;
1459                 else
1460                         flags |= DRM_MODE_FLAG_NVSYNC;
1461         } else {
1462                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1463                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1464                         flags |= DRM_MODE_FLAG_PHSYNC;
1465                 else
1466                         flags |= DRM_MODE_FLAG_NHSYNC;
1467
1468                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1469                         flags |= DRM_MODE_FLAG_PVSYNC;
1470                 else
1471                         flags |= DRM_MODE_FLAG_NVSYNC;
1472         }
1473
1474         pipe_config->adjusted_mode.flags |= flags;
1475
1476         pipe_config->has_dp_encoder = true;
1477
1478         intel_dp_get_m_n(crtc, pipe_config);
1479
1480         if (port == PORT_A) {
1481                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1482                         pipe_config->port_clock = 162000;
1483                 else
1484                         pipe_config->port_clock = 270000;
1485         }
1486
1487         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1488                                             &pipe_config->dp_m_n);
1489
1490         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1491                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1492
1493         pipe_config->adjusted_mode.crtc_clock = dotclock;
1494
1495         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1496             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1497                 /*
1498                  * This is a big fat ugly hack.
1499                  *
1500                  * Some machines in UEFI boot mode provide us a VBT that has 18
1501                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1502                  * unknown we fail to light up. Yet the same BIOS boots up with
1503                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1504                  * max, not what it tells us to use.
1505                  *
1506                  * Note: This will still be broken if the eDP panel is not lit
1507                  * up by the BIOS, and thus we can't get the mode at module
1508                  * load.
1509                  */
1510                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1511                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1512                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1513         }
1514 }
1515
1516 static bool is_edp_psr(struct drm_device *dev)
1517 {
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520         return dev_priv->psr.sink_support;
1521 }
1522
1523 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1524 {
1525         struct drm_i915_private *dev_priv = dev->dev_private;
1526
1527         if (!HAS_PSR(dev))
1528                 return false;
1529
1530         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1531 }
1532
1533 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1534                                     struct edp_vsc_psr *vsc_psr)
1535 {
1536         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1537         struct drm_device *dev = dig_port->base.base.dev;
1538         struct drm_i915_private *dev_priv = dev->dev_private;
1539         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1540         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1541         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1542         uint32_t *data = (uint32_t *) vsc_psr;
1543         unsigned int i;
1544
1545         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1546            the video DIP being updated before program video DIP data buffer
1547            registers for DIP being updated. */
1548         I915_WRITE(ctl_reg, 0);
1549         POSTING_READ(ctl_reg);
1550
1551         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1552                 if (i < sizeof(struct edp_vsc_psr))
1553                         I915_WRITE(data_reg + i, *data++);
1554                 else
1555                         I915_WRITE(data_reg + i, 0);
1556         }
1557
1558         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1559         POSTING_READ(ctl_reg);
1560 }
1561
1562 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1563 {
1564         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1565         struct drm_i915_private *dev_priv = dev->dev_private;
1566         struct edp_vsc_psr psr_vsc;
1567
1568         if (intel_dp->psr_setup_done)
1569                 return;
1570
1571         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1572         memset(&psr_vsc, 0, sizeof(psr_vsc));
1573         psr_vsc.sdp_header.HB0 = 0;
1574         psr_vsc.sdp_header.HB1 = 0x7;
1575         psr_vsc.sdp_header.HB2 = 0x2;
1576         psr_vsc.sdp_header.HB3 = 0x8;
1577         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1578
1579         /* Avoid continuous PSR exit by masking memup and hpd */
1580         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1581                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1582
1583         intel_dp->psr_setup_done = true;
1584 }
1585
1586 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1587 {
1588         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1589         struct drm_i915_private *dev_priv = dev->dev_private;
1590         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1591         int precharge = 0x3;
1592         int msg_size = 5;       /* Header(4) + Message(1) */
1593
1594         /* Enable PSR in sink */
1595         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1596                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1597                                             DP_PSR_ENABLE &
1598                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1599         else
1600                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1601                                             DP_PSR_ENABLE |
1602                                             DP_PSR_MAIN_LINK_ACTIVE);
1603
1604         /* Setup AUX registers */
1605         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1606         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1607         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1608                    DP_AUX_CH_CTL_TIME_OUT_400us |
1609                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1610                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1611                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1612 }
1613
1614 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1615 {
1616         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         uint32_t max_sleep_time = 0x1f;
1619         uint32_t idle_frames = 1;
1620         uint32_t val = 0x0;
1621         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1622
1623         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1624                 val |= EDP_PSR_LINK_STANDBY;
1625                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1626                 val |= EDP_PSR_TP1_TIME_0us;
1627                 val |= EDP_PSR_SKIP_AUX_EXIT;
1628         } else
1629                 val |= EDP_PSR_LINK_DISABLE;
1630
1631         I915_WRITE(EDP_PSR_CTL(dev), val |
1632                    IS_BROADWELL(dev) ? 0 : link_entry_time |
1633                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1634                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1635                    EDP_PSR_ENABLE);
1636 }
1637
1638 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1639 {
1640         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1641         struct drm_device *dev = dig_port->base.base.dev;
1642         struct drm_i915_private *dev_priv = dev->dev_private;
1643         struct drm_crtc *crtc = dig_port->base.base.crtc;
1644         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1645         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1646         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1647
1648         dev_priv->psr.source_ok = false;
1649
1650         if (!HAS_PSR(dev)) {
1651                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1652                 return false;
1653         }
1654
1655         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1656             (dig_port->port != PORT_A)) {
1657                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1658                 return false;
1659         }
1660
1661         if (!i915_enable_psr) {
1662                 DRM_DEBUG_KMS("PSR disable by flag\n");
1663                 return false;
1664         }
1665
1666         crtc = dig_port->base.base.crtc;
1667         if (crtc == NULL) {
1668                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1669                 return false;
1670         }
1671
1672         intel_crtc = to_intel_crtc(crtc);
1673         if (!intel_crtc_active(crtc)) {
1674                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1675                 return false;
1676         }
1677
1678         obj = to_intel_framebuffer(crtc->fb)->obj;
1679         if (obj->tiling_mode != I915_TILING_X ||
1680             obj->fence_reg == I915_FENCE_REG_NONE) {
1681                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1682                 return false;
1683         }
1684
1685         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1686                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1687                 return false;
1688         }
1689
1690         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1691             S3D_ENABLE) {
1692                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1693                 return false;
1694         }
1695
1696         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1697                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1698                 return false;
1699         }
1700
1701         dev_priv->psr.source_ok = true;
1702         return true;
1703 }
1704
1705 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1706 {
1707         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1708
1709         if (!intel_edp_psr_match_conditions(intel_dp) ||
1710             intel_edp_is_psr_enabled(dev))
1711                 return;
1712
1713         /* Setup PSR once */
1714         intel_edp_psr_setup(intel_dp);
1715
1716         /* Enable PSR on the panel */
1717         intel_edp_psr_enable_sink(intel_dp);
1718
1719         /* Enable PSR on the host */
1720         intel_edp_psr_enable_source(intel_dp);
1721 }
1722
1723 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1724 {
1725         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1726
1727         if (intel_edp_psr_match_conditions(intel_dp) &&
1728             !intel_edp_is_psr_enabled(dev))
1729                 intel_edp_psr_do_enable(intel_dp);
1730 }
1731
1732 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1733 {
1734         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1735         struct drm_i915_private *dev_priv = dev->dev_private;
1736
1737         if (!intel_edp_is_psr_enabled(dev))
1738                 return;
1739
1740         I915_WRITE(EDP_PSR_CTL(dev),
1741                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1742
1743         /* Wait till PSR is idle */
1744         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1745                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1746                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1747 }
1748
1749 void intel_edp_psr_update(struct drm_device *dev)
1750 {
1751         struct intel_encoder *encoder;
1752         struct intel_dp *intel_dp = NULL;
1753
1754         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1755                 if (encoder->type == INTEL_OUTPUT_EDP) {
1756                         intel_dp = enc_to_intel_dp(&encoder->base);
1757
1758                         if (!is_edp_psr(dev))
1759                                 return;
1760
1761                         if (!intel_edp_psr_match_conditions(intel_dp))
1762                                 intel_edp_psr_disable(intel_dp);
1763                         else
1764                                 if (!intel_edp_is_psr_enabled(dev))
1765                                         intel_edp_psr_do_enable(intel_dp);
1766                 }
1767 }
1768
1769 static void intel_disable_dp(struct intel_encoder *encoder)
1770 {
1771         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1772         enum port port = dp_to_dig_port(intel_dp)->port;
1773         struct drm_device *dev = encoder->base.dev;
1774
1775         /* Make sure the panel is off before trying to change the mode. But also
1776          * ensure that we have vdd while we switch off the panel. */
1777         ironlake_edp_backlight_off(intel_dp);
1778         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1779         ironlake_edp_panel_off(intel_dp);
1780
1781         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1782         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1783                 intel_dp_link_down(intel_dp);
1784 }
1785
1786 static void intel_post_disable_dp(struct intel_encoder *encoder)
1787 {
1788         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1789         enum port port = dp_to_dig_port(intel_dp)->port;
1790         struct drm_device *dev = encoder->base.dev;
1791
1792         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1793                 intel_dp_link_down(intel_dp);
1794                 if (!IS_VALLEYVIEW(dev))
1795                         ironlake_edp_pll_off(intel_dp);
1796         }
1797 }
1798
1799 static void intel_enable_dp(struct intel_encoder *encoder)
1800 {
1801         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1802         struct drm_device *dev = encoder->base.dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1805
1806         if (WARN_ON(dp_reg & DP_PORT_EN))
1807                 return;
1808
1809         ironlake_edp_panel_vdd_on(intel_dp);
1810         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1811         intel_dp_start_link_train(intel_dp);
1812         ironlake_edp_panel_on(intel_dp);
1813         ironlake_edp_panel_vdd_off(intel_dp, true);
1814         intel_dp_complete_link_train(intel_dp);
1815         intel_dp_stop_link_train(intel_dp);
1816 }
1817
1818 static void g4x_enable_dp(struct intel_encoder *encoder)
1819 {
1820         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1821
1822         intel_enable_dp(encoder);
1823         ironlake_edp_backlight_on(intel_dp);
1824 }
1825
1826 static void vlv_enable_dp(struct intel_encoder *encoder)
1827 {
1828         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1829
1830         ironlake_edp_backlight_on(intel_dp);
1831 }
1832
1833 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1834 {
1835         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1836         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1837
1838         if (dport->port == PORT_A)
1839                 ironlake_edp_pll_on(intel_dp);
1840 }
1841
1842 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1843 {
1844         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1845         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1846         struct drm_device *dev = encoder->base.dev;
1847         struct drm_i915_private *dev_priv = dev->dev_private;
1848         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1849         enum dpio_channel port = vlv_dport_to_channel(dport);
1850         int pipe = intel_crtc->pipe;
1851         struct edp_power_seq power_seq;
1852         u32 val;
1853
1854         mutex_lock(&dev_priv->dpio_lock);
1855
1856         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1857         val = 0;
1858         if (pipe)
1859                 val |= (1<<21);
1860         else
1861                 val &= ~(1<<21);
1862         val |= 0x001000c4;
1863         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1864         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1865         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1866
1867         mutex_unlock(&dev_priv->dpio_lock);
1868
1869         /* init power sequencer on this pipe and port */
1870         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1871         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1872                                                       &power_seq);
1873
1874         intel_enable_dp(encoder);
1875
1876         vlv_wait_port_ready(dev_priv, dport);
1877 }
1878
1879 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1880 {
1881         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1882         struct drm_device *dev = encoder->base.dev;
1883         struct drm_i915_private *dev_priv = dev->dev_private;
1884         struct intel_crtc *intel_crtc =
1885                 to_intel_crtc(encoder->base.crtc);
1886         enum dpio_channel port = vlv_dport_to_channel(dport);
1887         int pipe = intel_crtc->pipe;
1888
1889         /* Program Tx lane resets to default */
1890         mutex_lock(&dev_priv->dpio_lock);
1891         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1892                          DPIO_PCS_TX_LANE2_RESET |
1893                          DPIO_PCS_TX_LANE1_RESET);
1894         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1895                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1896                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1897                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1898                                  DPIO_PCS_CLK_SOFT_RESET);
1899
1900         /* Fix up inter-pair skew failure */
1901         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1902         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1903         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1904         mutex_unlock(&dev_priv->dpio_lock);
1905 }
1906
1907 /*
1908  * Native read with retry for link status and receiver capability reads for
1909  * cases where the sink may still be asleep.
1910  */
1911 static bool
1912 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1913                                uint8_t *recv, int recv_bytes)
1914 {
1915         int ret, i;
1916
1917         /*
1918          * Sinks are *supposed* to come up within 1ms from an off state,
1919          * but we're also supposed to retry 3 times per the spec.
1920          */
1921         for (i = 0; i < 3; i++) {
1922                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1923                                                recv_bytes);
1924                 if (ret == recv_bytes)
1925                         return true;
1926                 msleep(1);
1927         }
1928
1929         return false;
1930 }
1931
1932 /*
1933  * Fetch AUX CH registers 0x202 - 0x207 which contain
1934  * link status information
1935  */
1936 static bool
1937 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1938 {
1939         return intel_dp_aux_native_read_retry(intel_dp,
1940                                               DP_LANE0_1_STATUS,
1941                                               link_status,
1942                                               DP_LINK_STATUS_SIZE);
1943 }
1944
1945 /*
1946  * These are source-specific values; current Intel hardware supports
1947  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1948  */
1949
1950 static uint8_t
1951 intel_dp_voltage_max(struct intel_dp *intel_dp)
1952 {
1953         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1954         enum port port = dp_to_dig_port(intel_dp)->port;
1955
1956         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1957                 return DP_TRAIN_VOLTAGE_SWING_1200;
1958         else if (IS_GEN7(dev) && port == PORT_A)
1959                 return DP_TRAIN_VOLTAGE_SWING_800;
1960         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1961                 return DP_TRAIN_VOLTAGE_SWING_1200;
1962         else
1963                 return DP_TRAIN_VOLTAGE_SWING_800;
1964 }
1965
1966 static uint8_t
1967 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1968 {
1969         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1970         enum port port = dp_to_dig_port(intel_dp)->port;
1971
1972         if (IS_BROADWELL(dev)) {
1973                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1974                 case DP_TRAIN_VOLTAGE_SWING_400:
1975                 case DP_TRAIN_VOLTAGE_SWING_600:
1976                         return DP_TRAIN_PRE_EMPHASIS_6;
1977                 case DP_TRAIN_VOLTAGE_SWING_800:
1978                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1979                 case DP_TRAIN_VOLTAGE_SWING_1200:
1980                 default:
1981                         return DP_TRAIN_PRE_EMPHASIS_0;
1982                 }
1983         } else if (IS_HASWELL(dev)) {
1984                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1985                 case DP_TRAIN_VOLTAGE_SWING_400:
1986                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1987                 case DP_TRAIN_VOLTAGE_SWING_600:
1988                         return DP_TRAIN_PRE_EMPHASIS_6;
1989                 case DP_TRAIN_VOLTAGE_SWING_800:
1990                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1991                 case DP_TRAIN_VOLTAGE_SWING_1200:
1992                 default:
1993                         return DP_TRAIN_PRE_EMPHASIS_0;
1994                 }
1995         } else if (IS_VALLEYVIEW(dev)) {
1996                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1997                 case DP_TRAIN_VOLTAGE_SWING_400:
1998                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1999                 case DP_TRAIN_VOLTAGE_SWING_600:
2000                         return DP_TRAIN_PRE_EMPHASIS_6;
2001                 case DP_TRAIN_VOLTAGE_SWING_800:
2002                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2003                 case DP_TRAIN_VOLTAGE_SWING_1200:
2004                 default:
2005                         return DP_TRAIN_PRE_EMPHASIS_0;
2006                 }
2007         } else if (IS_GEN7(dev) && port == PORT_A) {
2008                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2009                 case DP_TRAIN_VOLTAGE_SWING_400:
2010                         return DP_TRAIN_PRE_EMPHASIS_6;
2011                 case DP_TRAIN_VOLTAGE_SWING_600:
2012                 case DP_TRAIN_VOLTAGE_SWING_800:
2013                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2014                 default:
2015                         return DP_TRAIN_PRE_EMPHASIS_0;
2016                 }
2017         } else {
2018                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2019                 case DP_TRAIN_VOLTAGE_SWING_400:
2020                         return DP_TRAIN_PRE_EMPHASIS_6;
2021                 case DP_TRAIN_VOLTAGE_SWING_600:
2022                         return DP_TRAIN_PRE_EMPHASIS_6;
2023                 case DP_TRAIN_VOLTAGE_SWING_800:
2024                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2025                 case DP_TRAIN_VOLTAGE_SWING_1200:
2026                 default:
2027                         return DP_TRAIN_PRE_EMPHASIS_0;
2028                 }
2029         }
2030 }
2031
2032 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2033 {
2034         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2035         struct drm_i915_private *dev_priv = dev->dev_private;
2036         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2037         struct intel_crtc *intel_crtc =
2038                 to_intel_crtc(dport->base.base.crtc);
2039         unsigned long demph_reg_value, preemph_reg_value,
2040                 uniqtranscale_reg_value;
2041         uint8_t train_set = intel_dp->train_set[0];
2042         enum dpio_channel port = vlv_dport_to_channel(dport);
2043         int pipe = intel_crtc->pipe;
2044
2045         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2046         case DP_TRAIN_PRE_EMPHASIS_0:
2047                 preemph_reg_value = 0x0004000;
2048                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2049                 case DP_TRAIN_VOLTAGE_SWING_400:
2050                         demph_reg_value = 0x2B405555;
2051                         uniqtranscale_reg_value = 0x552AB83A;
2052                         break;
2053                 case DP_TRAIN_VOLTAGE_SWING_600:
2054                         demph_reg_value = 0x2B404040;
2055                         uniqtranscale_reg_value = 0x5548B83A;
2056                         break;
2057                 case DP_TRAIN_VOLTAGE_SWING_800:
2058                         demph_reg_value = 0x2B245555;
2059                         uniqtranscale_reg_value = 0x5560B83A;
2060                         break;
2061                 case DP_TRAIN_VOLTAGE_SWING_1200:
2062                         demph_reg_value = 0x2B405555;
2063                         uniqtranscale_reg_value = 0x5598DA3A;
2064                         break;
2065                 default:
2066                         return 0;
2067                 }
2068                 break;
2069         case DP_TRAIN_PRE_EMPHASIS_3_5:
2070                 preemph_reg_value = 0x0002000;
2071                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2072                 case DP_TRAIN_VOLTAGE_SWING_400:
2073                         demph_reg_value = 0x2B404040;
2074                         uniqtranscale_reg_value = 0x5552B83A;
2075                         break;
2076                 case DP_TRAIN_VOLTAGE_SWING_600:
2077                         demph_reg_value = 0x2B404848;
2078                         uniqtranscale_reg_value = 0x5580B83A;
2079                         break;
2080                 case DP_TRAIN_VOLTAGE_SWING_800:
2081                         demph_reg_value = 0x2B404040;
2082                         uniqtranscale_reg_value = 0x55ADDA3A;
2083                         break;
2084                 default:
2085                         return 0;
2086                 }
2087                 break;
2088         case DP_TRAIN_PRE_EMPHASIS_6:
2089                 preemph_reg_value = 0x0000000;
2090                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2091                 case DP_TRAIN_VOLTAGE_SWING_400:
2092                         demph_reg_value = 0x2B305555;
2093                         uniqtranscale_reg_value = 0x5570B83A;
2094                         break;
2095                 case DP_TRAIN_VOLTAGE_SWING_600:
2096                         demph_reg_value = 0x2B2B4040;
2097                         uniqtranscale_reg_value = 0x55ADDA3A;
2098                         break;
2099                 default:
2100                         return 0;
2101                 }
2102                 break;
2103         case DP_TRAIN_PRE_EMPHASIS_9_5:
2104                 preemph_reg_value = 0x0006000;
2105                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2106                 case DP_TRAIN_VOLTAGE_SWING_400:
2107                         demph_reg_value = 0x1B405555;
2108                         uniqtranscale_reg_value = 0x55ADDA3A;
2109                         break;
2110                 default:
2111                         return 0;
2112                 }
2113                 break;
2114         default:
2115                 return 0;
2116         }
2117
2118         mutex_lock(&dev_priv->dpio_lock);
2119         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2120         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2121         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2122                          uniqtranscale_reg_value);
2123         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2124         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2125         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2126         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2127         mutex_unlock(&dev_priv->dpio_lock);
2128
2129         return 0;
2130 }
2131
2132 static void
2133 intel_get_adjust_train(struct intel_dp *intel_dp,
2134                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2135 {
2136         uint8_t v = 0;
2137         uint8_t p = 0;
2138         int lane;
2139         uint8_t voltage_max;
2140         uint8_t preemph_max;
2141
2142         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2143                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2144                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2145
2146                 if (this_v > v)
2147                         v = this_v;
2148                 if (this_p > p)
2149                         p = this_p;
2150         }
2151
2152         voltage_max = intel_dp_voltage_max(intel_dp);
2153         if (v >= voltage_max)
2154                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2155
2156         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2157         if (p >= preemph_max)
2158                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2159
2160         for (lane = 0; lane < 4; lane++)
2161                 intel_dp->train_set[lane] = v | p;
2162 }
2163
2164 static uint32_t
2165 intel_gen4_signal_levels(uint8_t train_set)
2166 {
2167         uint32_t        signal_levels = 0;
2168
2169         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2170         case DP_TRAIN_VOLTAGE_SWING_400:
2171         default:
2172                 signal_levels |= DP_VOLTAGE_0_4;
2173                 break;
2174         case DP_TRAIN_VOLTAGE_SWING_600:
2175                 signal_levels |= DP_VOLTAGE_0_6;
2176                 break;
2177         case DP_TRAIN_VOLTAGE_SWING_800:
2178                 signal_levels |= DP_VOLTAGE_0_8;
2179                 break;
2180         case DP_TRAIN_VOLTAGE_SWING_1200:
2181                 signal_levels |= DP_VOLTAGE_1_2;
2182                 break;
2183         }
2184         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2185         case DP_TRAIN_PRE_EMPHASIS_0:
2186         default:
2187                 signal_levels |= DP_PRE_EMPHASIS_0;
2188                 break;
2189         case DP_TRAIN_PRE_EMPHASIS_3_5:
2190                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2191                 break;
2192         case DP_TRAIN_PRE_EMPHASIS_6:
2193                 signal_levels |= DP_PRE_EMPHASIS_6;
2194                 break;
2195         case DP_TRAIN_PRE_EMPHASIS_9_5:
2196                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2197                 break;
2198         }
2199         return signal_levels;
2200 }
2201
2202 /* Gen6's DP voltage swing and pre-emphasis control */
2203 static uint32_t
2204 intel_gen6_edp_signal_levels(uint8_t train_set)
2205 {
2206         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2207                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2208         switch (signal_levels) {
2209         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2210         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2211                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2212         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2213                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2214         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2215         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2216                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2217         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2218         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2219                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2220         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2221         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2222                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2223         default:
2224                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2225                               "0x%x\n", signal_levels);
2226                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2227         }
2228 }
2229
2230 /* Gen7's DP voltage swing and pre-emphasis control */
2231 static uint32_t
2232 intel_gen7_edp_signal_levels(uint8_t train_set)
2233 {
2234         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2235                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2236         switch (signal_levels) {
2237         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2238                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2239         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2240                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2241         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2242                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2243
2244         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2245                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2246         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2247                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2248
2249         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2250                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2251         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2252                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2253
2254         default:
2255                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2256                               "0x%x\n", signal_levels);
2257                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2258         }
2259 }
2260
2261 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2262 static uint32_t
2263 intel_hsw_signal_levels(uint8_t train_set)
2264 {
2265         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2266                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2267         switch (signal_levels) {
2268         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2269                 return DDI_BUF_EMP_400MV_0DB_HSW;
2270         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2271                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2272         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2273                 return DDI_BUF_EMP_400MV_6DB_HSW;
2274         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2275                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2276
2277         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2278                 return DDI_BUF_EMP_600MV_0DB_HSW;
2279         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2280                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2281         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2282                 return DDI_BUF_EMP_600MV_6DB_HSW;
2283
2284         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2285                 return DDI_BUF_EMP_800MV_0DB_HSW;
2286         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2287                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2288         default:
2289                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2290                               "0x%x\n", signal_levels);
2291                 return DDI_BUF_EMP_400MV_0DB_HSW;
2292         }
2293 }
2294
2295 static uint32_t
2296 intel_bdw_signal_levels(uint8_t train_set)
2297 {
2298         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2299                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2300         switch (signal_levels) {
2301         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2302                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2303         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2304                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2305         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2306                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2307
2308         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2309                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2310         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2311                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2312         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2313                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2314
2315         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2316                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2317         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2318                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2319
2320         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2321                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2322
2323         default:
2324                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2325                               "0x%x\n", signal_levels);
2326                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2327         }
2328 }
2329
2330 /* Properly updates "DP" with the correct signal levels. */
2331 static void
2332 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2333 {
2334         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2335         enum port port = intel_dig_port->port;
2336         struct drm_device *dev = intel_dig_port->base.base.dev;
2337         uint32_t signal_levels, mask;
2338         uint8_t train_set = intel_dp->train_set[0];
2339
2340         if (IS_BROADWELL(dev)) {
2341                 signal_levels = intel_bdw_signal_levels(train_set);
2342                 mask = DDI_BUF_EMP_MASK;
2343         } else if (IS_HASWELL(dev)) {
2344                 signal_levels = intel_hsw_signal_levels(train_set);
2345                 mask = DDI_BUF_EMP_MASK;
2346         } else if (IS_VALLEYVIEW(dev)) {
2347                 signal_levels = intel_vlv_signal_levels(intel_dp);
2348                 mask = 0;
2349         } else if (IS_GEN7(dev) && port == PORT_A) {
2350                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2351                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2352         } else if (IS_GEN6(dev) && port == PORT_A) {
2353                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2354                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2355         } else {
2356                 signal_levels = intel_gen4_signal_levels(train_set);
2357                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2358         }
2359
2360         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2361
2362         *DP = (*DP & ~mask) | signal_levels;
2363 }
2364
2365 static bool
2366 intel_dp_set_link_train(struct intel_dp *intel_dp,
2367                         uint32_t *DP,
2368                         uint8_t dp_train_pat)
2369 {
2370         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2371         struct drm_device *dev = intel_dig_port->base.base.dev;
2372         struct drm_i915_private *dev_priv = dev->dev_private;
2373         enum port port = intel_dig_port->port;
2374         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2375         int ret, len;
2376
2377         if (HAS_DDI(dev)) {
2378                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2379
2380                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2381                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2382                 else
2383                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2384
2385                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2386                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2387                 case DP_TRAINING_PATTERN_DISABLE:
2388                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2389
2390                         break;
2391                 case DP_TRAINING_PATTERN_1:
2392                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2393                         break;
2394                 case DP_TRAINING_PATTERN_2:
2395                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2396                         break;
2397                 case DP_TRAINING_PATTERN_3:
2398                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2399                         break;
2400                 }
2401                 I915_WRITE(DP_TP_CTL(port), temp);
2402
2403         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2404                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2405
2406                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2407                 case DP_TRAINING_PATTERN_DISABLE:
2408                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2409                         break;
2410                 case DP_TRAINING_PATTERN_1:
2411                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2412                         break;
2413                 case DP_TRAINING_PATTERN_2:
2414                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2415                         break;
2416                 case DP_TRAINING_PATTERN_3:
2417                         DRM_ERROR("DP training pattern 3 not supported\n");
2418                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2419                         break;
2420                 }
2421
2422         } else {
2423                 *DP &= ~DP_LINK_TRAIN_MASK;
2424
2425                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2426                 case DP_TRAINING_PATTERN_DISABLE:
2427                         *DP |= DP_LINK_TRAIN_OFF;
2428                         break;
2429                 case DP_TRAINING_PATTERN_1:
2430                         *DP |= DP_LINK_TRAIN_PAT_1;
2431                         break;
2432                 case DP_TRAINING_PATTERN_2:
2433                         *DP |= DP_LINK_TRAIN_PAT_2;
2434                         break;
2435                 case DP_TRAINING_PATTERN_3:
2436                         DRM_ERROR("DP training pattern 3 not supported\n");
2437                         *DP |= DP_LINK_TRAIN_PAT_2;
2438                         break;
2439                 }
2440         }
2441
2442         I915_WRITE(intel_dp->output_reg, *DP);
2443         POSTING_READ(intel_dp->output_reg);
2444
2445         buf[0] = dp_train_pat;
2446         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2447             DP_TRAINING_PATTERN_DISABLE) {
2448                 /* don't write DP_TRAINING_LANEx_SET on disable */
2449                 len = 1;
2450         } else {
2451                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2452                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2453                 len = intel_dp->lane_count + 1;
2454         }
2455
2456         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2457                                         buf, len);
2458
2459         return ret == len;
2460 }
2461
2462 static bool
2463 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2464                         uint8_t dp_train_pat)
2465 {
2466         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2467         intel_dp_set_signal_levels(intel_dp, DP);
2468         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2469 }
2470
2471 static bool
2472 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2473                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2474 {
2475         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2476         struct drm_device *dev = intel_dig_port->base.base.dev;
2477         struct drm_i915_private *dev_priv = dev->dev_private;
2478         int ret;
2479
2480         intel_get_adjust_train(intel_dp, link_status);
2481         intel_dp_set_signal_levels(intel_dp, DP);
2482
2483         I915_WRITE(intel_dp->output_reg, *DP);
2484         POSTING_READ(intel_dp->output_reg);
2485
2486         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2487                                         intel_dp->train_set,
2488                                         intel_dp->lane_count);
2489
2490         return ret == intel_dp->lane_count;
2491 }
2492
2493 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2494 {
2495         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2496         struct drm_device *dev = intel_dig_port->base.base.dev;
2497         struct drm_i915_private *dev_priv = dev->dev_private;
2498         enum port port = intel_dig_port->port;
2499         uint32_t val;
2500
2501         if (!HAS_DDI(dev))
2502                 return;
2503
2504         val = I915_READ(DP_TP_CTL(port));
2505         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2506         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2507         I915_WRITE(DP_TP_CTL(port), val);
2508
2509         /*
2510          * On PORT_A we can have only eDP in SST mode. There the only reason
2511          * we need to set idle transmission mode is to work around a HW issue
2512          * where we enable the pipe while not in idle link-training mode.
2513          * In this case there is requirement to wait for a minimum number of
2514          * idle patterns to be sent.
2515          */
2516         if (port == PORT_A)
2517                 return;
2518
2519         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2520                      1))
2521                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2522 }
2523
2524 /* Enable corresponding port and start training pattern 1 */
2525 void
2526 intel_dp_start_link_train(struct intel_dp *intel_dp)
2527 {
2528         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2529         struct drm_device *dev = encoder->dev;
2530         int i;
2531         uint8_t voltage;
2532         int voltage_tries, loop_tries;
2533         uint32_t DP = intel_dp->DP;
2534         uint8_t link_config[2];
2535
2536         if (HAS_DDI(dev))
2537                 intel_ddi_prepare_link_retrain(encoder);
2538
2539         /* Write the link configuration data */
2540         link_config[0] = intel_dp->link_bw;
2541         link_config[1] = intel_dp->lane_count;
2542         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2543                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2544         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2545
2546         link_config[0] = 0;
2547         link_config[1] = DP_SET_ANSI_8B10B;
2548         intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2549
2550         DP |= DP_PORT_EN;
2551
2552         /* clock recovery */
2553         if (!intel_dp_reset_link_train(intel_dp, &DP,
2554                                        DP_TRAINING_PATTERN_1 |
2555                                        DP_LINK_SCRAMBLING_DISABLE)) {
2556                 DRM_ERROR("failed to enable link training\n");
2557                 return;
2558         }
2559
2560         voltage = 0xff;
2561         voltage_tries = 0;
2562         loop_tries = 0;
2563         for (;;) {
2564                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2565
2566                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2567                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2568                         DRM_ERROR("failed to get link status\n");
2569                         break;
2570                 }
2571
2572                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2573                         DRM_DEBUG_KMS("clock recovery OK\n");
2574                         break;
2575                 }
2576
2577                 /* Check to see if we've tried the max voltage */
2578                 for (i = 0; i < intel_dp->lane_count; i++)
2579                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2580                                 break;
2581                 if (i == intel_dp->lane_count) {
2582                         ++loop_tries;
2583                         if (loop_tries == 5) {
2584                                 DRM_ERROR("too many full retries, give up\n");
2585                                 break;
2586                         }
2587                         intel_dp_reset_link_train(intel_dp, &DP,
2588                                                   DP_TRAINING_PATTERN_1 |
2589                                                   DP_LINK_SCRAMBLING_DISABLE);
2590                         voltage_tries = 0;
2591                         continue;
2592                 }
2593
2594                 /* Check to see if we've tried the same voltage 5 times */
2595                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2596                         ++voltage_tries;
2597                         if (voltage_tries == 5) {
2598                                 DRM_ERROR("too many voltage retries, give up\n");
2599                                 break;
2600                         }
2601                 } else
2602                         voltage_tries = 0;
2603                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2604
2605                 /* Update training set as requested by target */
2606                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2607                         DRM_ERROR("failed to update link training\n");
2608                         break;
2609                 }
2610         }
2611
2612         intel_dp->DP = DP;
2613 }
2614
2615 void
2616 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2617 {
2618         bool channel_eq = false;
2619         int tries, cr_tries;
2620         uint32_t DP = intel_dp->DP;
2621
2622         /* channel equalization */
2623         if (!intel_dp_set_link_train(intel_dp, &DP,
2624                                      DP_TRAINING_PATTERN_2 |
2625                                      DP_LINK_SCRAMBLING_DISABLE)) {
2626                 DRM_ERROR("failed to start channel equalization\n");
2627                 return;
2628         }
2629
2630         tries = 0;
2631         cr_tries = 0;
2632         channel_eq = false;
2633         for (;;) {
2634                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2635
2636                 if (cr_tries > 5) {
2637                         DRM_ERROR("failed to train DP, aborting\n");
2638                         intel_dp_link_down(intel_dp);
2639                         break;
2640                 }
2641
2642                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2643                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2644                         DRM_ERROR("failed to get link status\n");
2645                         break;
2646                 }
2647
2648                 /* Make sure clock is still ok */
2649                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2650                         intel_dp_start_link_train(intel_dp);
2651                         intel_dp_set_link_train(intel_dp, &DP,
2652                                                 DP_TRAINING_PATTERN_2 |
2653                                                 DP_LINK_SCRAMBLING_DISABLE);
2654                         cr_tries++;
2655                         continue;
2656                 }
2657
2658                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2659                         channel_eq = true;
2660                         break;
2661                 }
2662
2663                 /* Try 5 times, then try clock recovery if that fails */
2664                 if (tries > 5) {
2665                         intel_dp_link_down(intel_dp);
2666                         intel_dp_start_link_train(intel_dp);
2667                         intel_dp_set_link_train(intel_dp, &DP,
2668                                                 DP_TRAINING_PATTERN_2 |
2669                                                 DP_LINK_SCRAMBLING_DISABLE);
2670                         tries = 0;
2671                         cr_tries++;
2672                         continue;
2673                 }
2674
2675                 /* Update training set as requested by target */
2676                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2677                         DRM_ERROR("failed to update link training\n");
2678                         break;
2679                 }
2680                 ++tries;
2681         }
2682
2683         intel_dp_set_idle_link_train(intel_dp);
2684
2685         intel_dp->DP = DP;
2686
2687         if (channel_eq)
2688                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2689
2690 }
2691
2692 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2693 {
2694         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2695                                 DP_TRAINING_PATTERN_DISABLE);
2696 }
2697
2698 static void
2699 intel_dp_link_down(struct intel_dp *intel_dp)
2700 {
2701         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2702         enum port port = intel_dig_port->port;
2703         struct drm_device *dev = intel_dig_port->base.base.dev;
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         struct intel_crtc *intel_crtc =
2706                 to_intel_crtc(intel_dig_port->base.base.crtc);
2707         uint32_t DP = intel_dp->DP;
2708
2709         /*
2710          * DDI code has a strict mode set sequence and we should try to respect
2711          * it, otherwise we might hang the machine in many different ways. So we
2712          * really should be disabling the port only on a complete crtc_disable
2713          * sequence. This function is just called under two conditions on DDI
2714          * code:
2715          * - Link train failed while doing crtc_enable, and on this case we
2716          *   really should respect the mode set sequence and wait for a
2717          *   crtc_disable.
2718          * - Someone turned the monitor off and intel_dp_check_link_status
2719          *   called us. We don't need to disable the whole port on this case, so
2720          *   when someone turns the monitor on again,
2721          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2722          *   train.
2723          */
2724         if (HAS_DDI(dev))
2725                 return;
2726
2727         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2728                 return;
2729
2730         DRM_DEBUG_KMS("\n");
2731
2732         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2733                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2734                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2735         } else {
2736                 DP &= ~DP_LINK_TRAIN_MASK;
2737                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2738         }
2739         POSTING_READ(intel_dp->output_reg);
2740
2741         /* We don't really know why we're doing this */
2742         intel_wait_for_vblank(dev, intel_crtc->pipe);
2743
2744         if (HAS_PCH_IBX(dev) &&
2745             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2746                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2747
2748                 /* Hardware workaround: leaving our transcoder select
2749                  * set to transcoder B while it's off will prevent the
2750                  * corresponding HDMI output on transcoder A.
2751                  *
2752                  * Combine this with another hardware workaround:
2753                  * transcoder select bit can only be cleared while the
2754                  * port is enabled.
2755                  */
2756                 DP &= ~DP_PIPEB_SELECT;
2757                 I915_WRITE(intel_dp->output_reg, DP);
2758
2759                 /* Changes to enable or select take place the vblank
2760                  * after being written.
2761                  */
2762                 if (WARN_ON(crtc == NULL)) {
2763                         /* We should never try to disable a port without a crtc
2764                          * attached. For paranoia keep the code around for a
2765                          * bit. */
2766                         POSTING_READ(intel_dp->output_reg);
2767                         msleep(50);
2768                 } else
2769                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2770         }
2771
2772         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2773         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2774         POSTING_READ(intel_dp->output_reg);
2775         msleep(intel_dp->panel_power_down_delay);
2776 }
2777
2778 static bool
2779 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2780 {
2781         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2782         struct drm_device *dev = dig_port->base.base.dev;
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784
2785         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2786
2787         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2788                                            sizeof(intel_dp->dpcd)) == 0)
2789                 return false; /* aux transfer failed */
2790
2791         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2792                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2793         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2794
2795         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2796                 return false; /* DPCD not present */
2797
2798         /* Check if the panel supports PSR */
2799         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2800         if (is_edp(intel_dp)) {
2801                 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2802                                                intel_dp->psr_dpcd,
2803                                                sizeof(intel_dp->psr_dpcd));
2804                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2805                         dev_priv->psr.sink_support = true;
2806                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2807                 }
2808         }
2809
2810         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2811               DP_DWN_STRM_PORT_PRESENT))
2812                 return true; /* native DP sink */
2813
2814         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2815                 return true; /* no per-port downstream info */
2816
2817         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2818                                            intel_dp->downstream_ports,
2819                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2820                 return false; /* downstream port status fetch failed */
2821
2822         return true;
2823 }
2824
2825 static void
2826 intel_dp_probe_oui(struct intel_dp *intel_dp)
2827 {
2828         u8 buf[3];
2829
2830         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2831                 return;
2832
2833         ironlake_edp_panel_vdd_on(intel_dp);
2834
2835         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2836                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2837                               buf[0], buf[1], buf[2]);
2838
2839         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2840                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2841                               buf[0], buf[1], buf[2]);
2842
2843         ironlake_edp_panel_vdd_off(intel_dp, false);
2844 }
2845
2846 static bool
2847 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2848 {
2849         int ret;
2850
2851         ret = intel_dp_aux_native_read_retry(intel_dp,
2852                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2853                                              sink_irq_vector, 1);
2854         if (!ret)
2855                 return false;
2856
2857         return true;
2858 }
2859
2860 static void
2861 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2862 {
2863         /* NAK by default */
2864         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2865 }
2866
2867 /*
2868  * According to DP spec
2869  * 5.1.2:
2870  *  1. Read DPCD
2871  *  2. Configure link according to Receiver Capabilities
2872  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2873  *  4. Check link status on receipt of hot-plug interrupt
2874  */
2875
2876 void
2877 intel_dp_check_link_status(struct intel_dp *intel_dp)
2878 {
2879         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2880         u8 sink_irq_vector;
2881         u8 link_status[DP_LINK_STATUS_SIZE];
2882
2883         if (!intel_encoder->connectors_active)
2884                 return;
2885
2886         if (WARN_ON(!intel_encoder->base.crtc))
2887                 return;
2888
2889         /* Try to read receiver status if the link appears to be up */
2890         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2891                 intel_dp_link_down(intel_dp);
2892                 return;
2893         }
2894
2895         /* Now read the DPCD to see if it's actually running */
2896         if (!intel_dp_get_dpcd(intel_dp)) {
2897                 intel_dp_link_down(intel_dp);
2898                 return;
2899         }
2900
2901         /* Try to read the source of the interrupt */
2902         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2903             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2904                 /* Clear interrupt source */
2905                 intel_dp_aux_native_write_1(intel_dp,
2906                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2907                                             sink_irq_vector);
2908
2909                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2910                         intel_dp_handle_test_request(intel_dp);
2911                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2912                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2913         }
2914
2915         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2916                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2917                               drm_get_encoder_name(&intel_encoder->base));
2918                 intel_dp_start_link_train(intel_dp);
2919                 intel_dp_complete_link_train(intel_dp);
2920                 intel_dp_stop_link_train(intel_dp);
2921         }
2922 }
2923
2924 /* XXX this is probably wrong for multiple downstream ports */
2925 static enum drm_connector_status
2926 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2927 {
2928         uint8_t *dpcd = intel_dp->dpcd;
2929         uint8_t type;
2930
2931         if (!intel_dp_get_dpcd(intel_dp))
2932                 return connector_status_disconnected;
2933
2934         /* if there's no downstream port, we're done */
2935         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2936                 return connector_status_connected;
2937
2938         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2939         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2940             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2941                 uint8_t reg;
2942                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2943                                                     &reg, 1))
2944                         return connector_status_unknown;
2945                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2946                                               : connector_status_disconnected;
2947         }
2948
2949         /* If no HPD, poke DDC gently */
2950         if (drm_probe_ddc(&intel_dp->adapter))
2951                 return connector_status_connected;
2952
2953         /* Well we tried, say unknown for unreliable port types */
2954         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2955                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2956                 if (type == DP_DS_PORT_TYPE_VGA ||
2957                     type == DP_DS_PORT_TYPE_NON_EDID)
2958                         return connector_status_unknown;
2959         } else {
2960                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2961                         DP_DWN_STRM_PORT_TYPE_MASK;
2962                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2963                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
2964                         return connector_status_unknown;
2965         }
2966
2967         /* Anything else is out of spec, warn and ignore */
2968         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2969         return connector_status_disconnected;
2970 }
2971
2972 static enum drm_connector_status
2973 ironlake_dp_detect(struct intel_dp *intel_dp)
2974 {
2975         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2976         struct drm_i915_private *dev_priv = dev->dev_private;
2977         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2978         enum drm_connector_status status;
2979
2980         /* Can't disconnect eDP, but you can close the lid... */
2981         if (is_edp(intel_dp)) {
2982                 status = intel_panel_detect(dev);
2983                 if (status == connector_status_unknown)
2984                         status = connector_status_connected;
2985                 return status;
2986         }
2987
2988         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2989                 return connector_status_disconnected;
2990
2991         return intel_dp_detect_dpcd(intel_dp);
2992 }
2993
2994 static enum drm_connector_status
2995 g4x_dp_detect(struct intel_dp *intel_dp)
2996 {
2997         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2998         struct drm_i915_private *dev_priv = dev->dev_private;
2999         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3000         uint32_t bit;
3001
3002         /* Can't disconnect eDP, but you can close the lid... */
3003         if (is_edp(intel_dp)) {
3004                 enum drm_connector_status status;
3005
3006                 status = intel_panel_detect(dev);
3007                 if (status == connector_status_unknown)
3008                         status = connector_status_connected;
3009                 return status;
3010         }
3011
3012         switch (intel_dig_port->port) {
3013         case PORT_B:
3014                 bit = PORTB_HOTPLUG_LIVE_STATUS;
3015                 break;
3016         case PORT_C:
3017                 bit = PORTC_HOTPLUG_LIVE_STATUS;
3018                 break;
3019         case PORT_D:
3020                 bit = PORTD_HOTPLUG_LIVE_STATUS;
3021                 break;
3022         default:
3023                 return connector_status_unknown;
3024         }
3025
3026         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3027                 return connector_status_disconnected;
3028
3029         return intel_dp_detect_dpcd(intel_dp);
3030 }
3031
3032 static struct edid *
3033 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3034 {
3035         struct intel_connector *intel_connector = to_intel_connector(connector);
3036
3037         /* use cached edid if we have one */
3038         if (intel_connector->edid) {
3039                 /* invalid edid */
3040                 if (IS_ERR(intel_connector->edid))
3041                         return NULL;
3042
3043                 return drm_edid_duplicate(intel_connector->edid);
3044         }
3045
3046         return drm_get_edid(connector, adapter);
3047 }
3048
3049 static int
3050 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3051 {
3052         struct intel_connector *intel_connector = to_intel_connector(connector);
3053
3054         /* use cached edid if we have one */
3055         if (intel_connector->edid) {
3056                 /* invalid edid */
3057                 if (IS_ERR(intel_connector->edid))
3058                         return 0;
3059
3060                 return intel_connector_update_modes(connector,
3061                                                     intel_connector->edid);
3062         }
3063
3064         return intel_ddc_get_modes(connector, adapter);
3065 }
3066
3067 static enum drm_connector_status
3068 intel_dp_detect(struct drm_connector *connector, bool force)
3069 {
3070         struct intel_dp *intel_dp = intel_attached_dp(connector);
3071         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3072         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3073         struct drm_device *dev = connector->dev;
3074         struct drm_i915_private *dev_priv = dev->dev_private;
3075         enum drm_connector_status status;
3076         struct edid *edid = NULL;
3077
3078         intel_runtime_pm_get(dev_priv);
3079
3080         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3081                       connector->base.id, drm_get_connector_name(connector));
3082
3083         intel_dp->has_audio = false;
3084
3085         if (HAS_PCH_SPLIT(dev))
3086                 status = ironlake_dp_detect(intel_dp);
3087         else
3088                 status = g4x_dp_detect(intel_dp);
3089
3090         if (status != connector_status_connected)
3091                 goto out;
3092
3093         intel_dp_probe_oui(intel_dp);
3094
3095         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3096                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3097         } else {
3098                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3099                 if (edid) {
3100                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3101                         kfree(edid);
3102                 }
3103         }
3104
3105         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3106                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3107         status = connector_status_connected;
3108
3109 out:
3110         intel_runtime_pm_put(dev_priv);
3111         return status;
3112 }
3113
3114 static int intel_dp_get_modes(struct drm_connector *connector)
3115 {
3116         struct intel_dp *intel_dp = intel_attached_dp(connector);
3117         struct intel_connector *intel_connector = to_intel_connector(connector);
3118         struct drm_device *dev = connector->dev;
3119         int ret;
3120
3121         /* We should parse the EDID data and find out if it has an audio sink
3122          */
3123
3124         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3125         if (ret)
3126                 return ret;
3127
3128         /* if eDP has no EDID, fall back to fixed mode */
3129         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3130                 struct drm_display_mode *mode;
3131                 mode = drm_mode_duplicate(dev,
3132                                           intel_connector->panel.fixed_mode);
3133                 if (mode) {
3134                         drm_mode_probed_add(connector, mode);
3135                         return 1;
3136                 }
3137         }
3138         return 0;
3139 }
3140
3141 static bool
3142 intel_dp_detect_audio(struct drm_connector *connector)
3143 {
3144         struct intel_dp *intel_dp = intel_attached_dp(connector);
3145         struct edid *edid;
3146         bool has_audio = false;
3147
3148         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3149         if (edid) {
3150                 has_audio = drm_detect_monitor_audio(edid);
3151                 kfree(edid);
3152         }
3153
3154         return has_audio;
3155 }
3156
3157 static int
3158 intel_dp_set_property(struct drm_connector *connector,
3159                       struct drm_property *property,
3160                       uint64_t val)
3161 {
3162         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3163         struct intel_connector *intel_connector = to_intel_connector(connector);
3164         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3165         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3166         int ret;
3167
3168         ret = drm_object_property_set_value(&connector->base, property, val);
3169         if (ret)
3170                 return ret;
3171
3172         if (property == dev_priv->force_audio_property) {
3173                 int i = val;
3174                 bool has_audio;
3175
3176                 if (i == intel_dp->force_audio)
3177                         return 0;
3178
3179                 intel_dp->force_audio = i;
3180
3181                 if (i == HDMI_AUDIO_AUTO)
3182                         has_audio = intel_dp_detect_audio(connector);
3183                 else
3184                         has_audio = (i == HDMI_AUDIO_ON);
3185
3186                 if (has_audio == intel_dp->has_audio)
3187                         return 0;
3188
3189                 intel_dp->has_audio = has_audio;
3190                 goto done;
3191         }
3192
3193         if (property == dev_priv->broadcast_rgb_property) {
3194                 bool old_auto = intel_dp->color_range_auto;
3195                 uint32_t old_range = intel_dp->color_range;
3196
3197                 switch (val) {
3198                 case INTEL_BROADCAST_RGB_AUTO:
3199                         intel_dp->color_range_auto = true;
3200                         break;
3201                 case INTEL_BROADCAST_RGB_FULL:
3202                         intel_dp->color_range_auto = false;
3203                         intel_dp->color_range = 0;
3204                         break;
3205                 case INTEL_BROADCAST_RGB_LIMITED:
3206                         intel_dp->color_range_auto = false;
3207                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3208                         break;
3209                 default:
3210                         return -EINVAL;
3211                 }
3212
3213                 if (old_auto == intel_dp->color_range_auto &&
3214                     old_range == intel_dp->color_range)
3215                         return 0;
3216
3217                 goto done;
3218         }
3219
3220         if (is_edp(intel_dp) &&
3221             property == connector->dev->mode_config.scaling_mode_property) {
3222                 if (val == DRM_MODE_SCALE_NONE) {
3223                         DRM_DEBUG_KMS("no scaling not supported\n");
3224                         return -EINVAL;
3225                 }
3226
3227                 if (intel_connector->panel.fitting_mode == val) {
3228                         /* the eDP scaling property is not changed */
3229                         return 0;
3230                 }
3231                 intel_connector->panel.fitting_mode = val;
3232
3233                 goto done;
3234         }
3235
3236         return -EINVAL;
3237
3238 done:
3239         if (intel_encoder->base.crtc)
3240                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3241
3242         return 0;
3243 }
3244
3245 static void
3246 intel_dp_connector_destroy(struct drm_connector *connector)
3247 {
3248         struct intel_connector *intel_connector = to_intel_connector(connector);
3249
3250         if (!IS_ERR_OR_NULL(intel_connector->edid))
3251                 kfree(intel_connector->edid);
3252
3253         /* Can't call is_edp() since the encoder may have been destroyed
3254          * already. */
3255         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3256                 intel_panel_fini(&intel_connector->panel);
3257
3258         drm_connector_cleanup(connector);
3259         kfree(connector);
3260 }
3261
3262 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3263 {
3264         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3265         struct intel_dp *intel_dp = &intel_dig_port->dp;
3266         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3267
3268         i2c_del_adapter(&intel_dp->adapter);
3269         drm_encoder_cleanup(encoder);
3270         if (is_edp(intel_dp)) {
3271                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3272                 mutex_lock(&dev->mode_config.mutex);
3273                 ironlake_panel_vdd_off_sync(intel_dp);
3274                 mutex_unlock(&dev->mode_config.mutex);
3275         }
3276         kfree(intel_dig_port);
3277 }
3278
3279 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3280         .dpms = intel_connector_dpms,
3281         .detect = intel_dp_detect,
3282         .fill_modes = drm_helper_probe_single_connector_modes,
3283         .set_property = intel_dp_set_property,
3284         .destroy = intel_dp_connector_destroy,
3285 };
3286
3287 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3288         .get_modes = intel_dp_get_modes,
3289         .mode_valid = intel_dp_mode_valid,
3290         .best_encoder = intel_best_encoder,
3291 };
3292
3293 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3294         .destroy = intel_dp_encoder_destroy,
3295 };
3296
3297 static void
3298 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3299 {
3300         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3301
3302         intel_dp_check_link_status(intel_dp);
3303 }
3304
3305 /* Return which DP Port should be selected for Transcoder DP control */
3306 int
3307 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3308 {
3309         struct drm_device *dev = crtc->dev;
3310         struct intel_encoder *intel_encoder;
3311         struct intel_dp *intel_dp;
3312
3313         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3314                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3315
3316                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3317                     intel_encoder->type == INTEL_OUTPUT_EDP)
3318                         return intel_dp->output_reg;
3319         }
3320
3321         return -1;
3322 }
3323
3324 /* check the VBT to see whether the eDP is on DP-D port */
3325 bool intel_dpd_is_edp(struct drm_device *dev)
3326 {
3327         struct drm_i915_private *dev_priv = dev->dev_private;
3328         union child_device_config *p_child;
3329         int i;
3330
3331         if (!dev_priv->vbt.child_dev_num)
3332                 return false;
3333
3334         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3335                 p_child = dev_priv->vbt.child_dev + i;
3336
3337                 if (p_child->common.dvo_port == PORT_IDPD &&
3338                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3339                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3340                         return true;
3341         }
3342         return false;
3343 }
3344
3345 static void
3346 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3347 {
3348         struct intel_connector *intel_connector = to_intel_connector(connector);
3349
3350         intel_attach_force_audio_property(connector);
3351         intel_attach_broadcast_rgb_property(connector);
3352         intel_dp->color_range_auto = true;
3353
3354         if (is_edp(intel_dp)) {
3355                 drm_mode_create_scaling_mode_property(connector->dev);
3356                 drm_object_attach_property(
3357                         &connector->base,
3358                         connector->dev->mode_config.scaling_mode_property,
3359                         DRM_MODE_SCALE_ASPECT);
3360                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3361         }
3362 }
3363
3364 static void
3365 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3366                                     struct intel_dp *intel_dp,
3367                                     struct edp_power_seq *out)
3368 {
3369         struct drm_i915_private *dev_priv = dev->dev_private;
3370         struct edp_power_seq cur, vbt, spec, final;
3371         u32 pp_on, pp_off, pp_div, pp;
3372         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3373
3374         if (HAS_PCH_SPLIT(dev)) {
3375                 pp_ctrl_reg = PCH_PP_CONTROL;
3376                 pp_on_reg = PCH_PP_ON_DELAYS;
3377                 pp_off_reg = PCH_PP_OFF_DELAYS;
3378                 pp_div_reg = PCH_PP_DIVISOR;
3379         } else {
3380                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3381
3382                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3383                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3384                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3385                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3386         }
3387
3388         /* Workaround: Need to write PP_CONTROL with the unlock key as
3389          * the very first thing. */
3390         pp = ironlake_get_pp_control(intel_dp);
3391         I915_WRITE(pp_ctrl_reg, pp);
3392
3393         pp_on = I915_READ(pp_on_reg);
3394         pp_off = I915_READ(pp_off_reg);
3395         pp_div = I915_READ(pp_div_reg);
3396
3397         /* Pull timing values out of registers */
3398         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3399                 PANEL_POWER_UP_DELAY_SHIFT;
3400
3401         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3402                 PANEL_LIGHT_ON_DELAY_SHIFT;
3403
3404         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3405                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3406
3407         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3408                 PANEL_POWER_DOWN_DELAY_SHIFT;
3409
3410         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3411                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3412
3413         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3414                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3415
3416         vbt = dev_priv->vbt.edp_pps;
3417
3418         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3419          * our hw here, which are all in 100usec. */
3420         spec.t1_t3 = 210 * 10;
3421         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3422         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3423         spec.t10 = 500 * 10;
3424         /* This one is special and actually in units of 100ms, but zero
3425          * based in the hw (so we need to add 100 ms). But the sw vbt
3426          * table multiplies it with 1000 to make it in units of 100usec,
3427          * too. */
3428         spec.t11_t12 = (510 + 100) * 10;
3429
3430         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3431                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3432
3433         /* Use the max of the register settings and vbt. If both are
3434          * unset, fall back to the spec limits. */
3435 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3436                                        spec.field : \
3437                                        max(cur.field, vbt.field))
3438         assign_final(t1_t3);
3439         assign_final(t8);
3440         assign_final(t9);
3441         assign_final(t10);
3442         assign_final(t11_t12);
3443 #undef assign_final
3444
3445 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3446         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3447         intel_dp->backlight_on_delay = get_delay(t8);
3448         intel_dp->backlight_off_delay = get_delay(t9);
3449         intel_dp->panel_power_down_delay = get_delay(t10);
3450         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3451 #undef get_delay
3452
3453         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3454                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3455                       intel_dp->panel_power_cycle_delay);
3456
3457         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3458                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3459
3460         if (out)
3461                 *out = final;
3462 }
3463
3464 static void
3465 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3466                                               struct intel_dp *intel_dp,
3467                                               struct edp_power_seq *seq)
3468 {
3469         struct drm_i915_private *dev_priv = dev->dev_private;
3470         u32 pp_on, pp_off, pp_div, port_sel = 0;
3471         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3472         int pp_on_reg, pp_off_reg, pp_div_reg;
3473
3474         if (HAS_PCH_SPLIT(dev)) {
3475                 pp_on_reg = PCH_PP_ON_DELAYS;
3476                 pp_off_reg = PCH_PP_OFF_DELAYS;
3477                 pp_div_reg = PCH_PP_DIVISOR;
3478         } else {
3479                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3480
3481                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3482                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3483                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3484         }
3485
3486         /* And finally store the new values in the power sequencer. */
3487         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3488                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3489         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3490                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3491         /* Compute the divisor for the pp clock, simply match the Bspec
3492          * formula. */
3493         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3494         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3495                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3496
3497         /* Haswell doesn't have any port selection bits for the panel
3498          * power sequencer any more. */
3499         if (IS_VALLEYVIEW(dev)) {
3500                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3501                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3502                 else
3503                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3504         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3505                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3506                         port_sel = PANEL_PORT_SELECT_DPA;
3507                 else
3508                         port_sel = PANEL_PORT_SELECT_DPD;
3509         }
3510
3511         pp_on |= port_sel;
3512
3513         I915_WRITE(pp_on_reg, pp_on);
3514         I915_WRITE(pp_off_reg, pp_off);
3515         I915_WRITE(pp_div_reg, pp_div);
3516
3517         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3518                       I915_READ(pp_on_reg),
3519                       I915_READ(pp_off_reg),
3520                       I915_READ(pp_div_reg));
3521 }
3522
3523 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3524                                      struct intel_connector *intel_connector)
3525 {
3526         struct drm_connector *connector = &intel_connector->base;
3527         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3528         struct drm_device *dev = intel_dig_port->base.base.dev;
3529         struct drm_i915_private *dev_priv = dev->dev_private;
3530         struct drm_display_mode *fixed_mode = NULL;
3531         struct edp_power_seq power_seq = { 0 };
3532         bool has_dpcd;
3533         struct drm_display_mode *scan;
3534         struct edid *edid;
3535
3536         if (!is_edp(intel_dp))
3537                 return true;
3538
3539         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3540
3541         /* Cache DPCD and EDID for edp. */
3542         ironlake_edp_panel_vdd_on(intel_dp);
3543         has_dpcd = intel_dp_get_dpcd(intel_dp);
3544         ironlake_edp_panel_vdd_off(intel_dp, false);
3545
3546         if (has_dpcd) {
3547                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3548                         dev_priv->no_aux_handshake =
3549                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3550                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3551         } else {
3552                 /* if this fails, presume the device is a ghost */
3553                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3554                 return false;
3555         }
3556
3557         /* We now know it's not a ghost, init power sequence regs. */
3558         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3559                                                       &power_seq);
3560
3561         edid = drm_get_edid(connector, &intel_dp->adapter);
3562         if (edid) {
3563                 if (drm_add_edid_modes(connector, edid)) {
3564                         drm_mode_connector_update_edid_property(connector,
3565                                                                 edid);
3566                         drm_edid_to_eld(connector, edid);
3567                 } else {
3568                         kfree(edid);
3569                         edid = ERR_PTR(-EINVAL);
3570                 }
3571         } else {
3572                 edid = ERR_PTR(-ENOENT);
3573         }
3574         intel_connector->edid = edid;
3575
3576         /* prefer fixed mode from EDID if available */
3577         list_for_each_entry(scan, &connector->probed_modes, head) {
3578                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3579                         fixed_mode = drm_mode_duplicate(dev, scan);
3580                         break;
3581                 }
3582         }
3583
3584         /* fallback to VBT if available for eDP */
3585         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3586                 fixed_mode = drm_mode_duplicate(dev,
3587                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3588                 if (fixed_mode)
3589                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3590         }
3591
3592         intel_panel_init(&intel_connector->panel, fixed_mode);
3593         intel_panel_setup_backlight(connector);
3594
3595         return true;
3596 }
3597
3598 bool
3599 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3600                         struct intel_connector *intel_connector)
3601 {
3602         struct drm_connector *connector = &intel_connector->base;
3603         struct intel_dp *intel_dp = &intel_dig_port->dp;
3604         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3605         struct drm_device *dev = intel_encoder->base.dev;
3606         struct drm_i915_private *dev_priv = dev->dev_private;
3607         enum port port = intel_dig_port->port;
3608         const char *name = NULL;
3609         int type, error;
3610
3611         /* Preserve the current hw state. */
3612         intel_dp->DP = I915_READ(intel_dp->output_reg);
3613         intel_dp->attached_connector = intel_connector;
3614
3615         type = DRM_MODE_CONNECTOR_DisplayPort;
3616         /*
3617          * FIXME : We need to initialize built-in panels before external panels.
3618          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3619          */
3620         switch (port) {
3621         case PORT_A:
3622                 type = DRM_MODE_CONNECTOR_eDP;
3623                 break;
3624         case PORT_C:
3625                 if (IS_VALLEYVIEW(dev))
3626                         type = DRM_MODE_CONNECTOR_eDP;
3627                 break;
3628         case PORT_D:
3629                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3630                         type = DRM_MODE_CONNECTOR_eDP;
3631                 break;
3632         default:        /* silence GCC warning */
3633                 break;
3634         }
3635
3636         /*
3637          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3638          * for DP the encoder type can be set by the caller to
3639          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3640          */
3641         if (type == DRM_MODE_CONNECTOR_eDP)
3642                 intel_encoder->type = INTEL_OUTPUT_EDP;
3643
3644         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3645                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3646                         port_name(port));
3647
3648         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3649         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3650
3651         connector->interlace_allowed = true;
3652         connector->doublescan_allowed = 0;
3653
3654         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3655                           ironlake_panel_vdd_work);
3656
3657         intel_connector_attach_encoder(intel_connector, intel_encoder);
3658         drm_sysfs_connector_add(connector);
3659
3660         if (HAS_DDI(dev))
3661                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3662         else
3663                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3664
3665         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3666         if (HAS_DDI(dev)) {
3667                 switch (intel_dig_port->port) {
3668                 case PORT_A:
3669                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3670                         break;
3671                 case PORT_B:
3672                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3673                         break;
3674                 case PORT_C:
3675                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3676                         break;
3677                 case PORT_D:
3678                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3679                         break;
3680                 default:
3681                         BUG();
3682                 }
3683         }
3684
3685         /* Set up the DDC bus. */
3686         switch (port) {
3687         case PORT_A:
3688                 intel_encoder->hpd_pin = HPD_PORT_A;
3689                 name = "DPDDC-A";
3690                 break;
3691         case PORT_B:
3692                 intel_encoder->hpd_pin = HPD_PORT_B;
3693                 name = "DPDDC-B";
3694                 break;
3695         case PORT_C:
3696                 intel_encoder->hpd_pin = HPD_PORT_C;
3697                 name = "DPDDC-C";
3698                 break;
3699         case PORT_D:
3700                 intel_encoder->hpd_pin = HPD_PORT_D;
3701                 name = "DPDDC-D";
3702                 break;
3703         default:
3704                 BUG();
3705         }
3706
3707         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3708         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3709              error, port_name(port));
3710
3711         intel_dp->psr_setup_done = false;
3712
3713         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3714                 i2c_del_adapter(&intel_dp->adapter);
3715                 if (is_edp(intel_dp)) {
3716                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3717                         mutex_lock(&dev->mode_config.mutex);
3718                         ironlake_panel_vdd_off_sync(intel_dp);
3719                         mutex_unlock(&dev->mode_config.mutex);
3720                 }
3721                 drm_sysfs_connector_remove(connector);
3722                 drm_connector_cleanup(connector);
3723                 return false;
3724         }
3725
3726         intel_dp_add_properties(intel_dp, connector);
3727
3728         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3729          * 0xd.  Failure to do so will result in spurious interrupts being
3730          * generated on the port when a cable is not attached.
3731          */
3732         if (IS_G4X(dev) && !IS_GM45(dev)) {
3733                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3734                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3735         }
3736
3737         return true;
3738 }
3739
3740 void
3741 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3742 {
3743         struct intel_digital_port *intel_dig_port;
3744         struct intel_encoder *intel_encoder;
3745         struct drm_encoder *encoder;
3746         struct intel_connector *intel_connector;
3747
3748         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3749         if (!intel_dig_port)
3750                 return;
3751
3752         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3753         if (!intel_connector) {
3754                 kfree(intel_dig_port);
3755                 return;
3756         }
3757
3758         intel_encoder = &intel_dig_port->base;
3759         encoder = &intel_encoder->base;
3760
3761         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3762                          DRM_MODE_ENCODER_TMDS);
3763
3764         intel_encoder->compute_config = intel_dp_compute_config;
3765         intel_encoder->mode_set = intel_dp_mode_set;
3766         intel_encoder->disable = intel_disable_dp;
3767         intel_encoder->post_disable = intel_post_disable_dp;
3768         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3769         intel_encoder->get_config = intel_dp_get_config;
3770         if (IS_VALLEYVIEW(dev)) {
3771                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3772                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3773                 intel_encoder->enable = vlv_enable_dp;
3774         } else {
3775                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3776                 intel_encoder->enable = g4x_enable_dp;
3777         }
3778
3779         intel_dig_port->port = port;
3780         intel_dig_port->dp.output_reg = output_reg;
3781
3782         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3783         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3784         intel_encoder->cloneable = false;
3785         intel_encoder->hot_plug = intel_dp_hot_plug;
3786
3787         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3788                 drm_encoder_cleanup(encoder);
3789                 kfree(intel_dig_port);
3790                 kfree(intel_connector);
3791         }
3792 }