]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_dp.c
fa11979cb760484f8869f0b3fa2d2677cb4453d3
[~andy/linux] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 5, .m2 = 3 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95 static int
96 intel_dp_max_link_bw(struct intel_dp *intel_dp)
97 {
98         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100         switch (max_link_bw) {
101         case DP_LINK_BW_1_62:
102         case DP_LINK_BW_2_7:
103                 break;
104         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105                 max_link_bw = DP_LINK_BW_2_7;
106                 break;
107         default:
108                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109                      max_link_bw);
110                 max_link_bw = DP_LINK_BW_1_62;
111                 break;
112         }
113         return max_link_bw;
114 }
115
116 /*
117  * The units on the numbers in the next two are... bizarre.  Examples will
118  * make it clearer; this one parallels an example in the eDP spec.
119  *
120  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121  *
122  *     270000 * 1 * 8 / 10 == 216000
123  *
124  * The actual data capacity of that configuration is 2.16Gbit/s, so the
125  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
126  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127  * 119000.  At 18bpp that's 2142000 kilobits per second.
128  *
129  * Thus the strange-looking division by 10 in intel_dp_link_required, to
130  * get the result in decakilobits instead of kilobits.
131  */
132
133 static int
134 intel_dp_link_required(int pixel_clock, int bpp)
135 {
136         return (pixel_clock * bpp + 9) / 10;
137 }
138
139 static int
140 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141 {
142         return (max_link_clock * max_lanes * 8) / 10;
143 }
144
145 static int
146 intel_dp_mode_valid(struct drm_connector *connector,
147                     struct drm_display_mode *mode)
148 {
149         struct intel_dp *intel_dp = intel_attached_dp(connector);
150         struct intel_connector *intel_connector = to_intel_connector(connector);
151         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152         int target_clock = mode->clock;
153         int max_rate, mode_rate, max_lanes, max_link_clock;
154
155         if (is_edp(intel_dp) && fixed_mode) {
156                 if (mode->hdisplay > fixed_mode->hdisplay)
157                         return MODE_PANEL;
158
159                 if (mode->vdisplay > fixed_mode->vdisplay)
160                         return MODE_PANEL;
161
162                 target_clock = fixed_mode->clock;
163         }
164
165         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169         mode_rate = intel_dp_link_required(target_clock, 18);
170
171         if (mode_rate > max_rate)
172                 return MODE_CLOCK_HIGH;
173
174         if (mode->clock < 10000)
175                 return MODE_CLOCK_LOW;
176
177         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178                 return MODE_H_ILLEGAL;
179
180         return MODE_OK;
181 }
182
183 static uint32_t
184 pack_aux(uint8_t *src, int src_bytes)
185 {
186         int     i;
187         uint32_t v = 0;
188
189         if (src_bytes > 4)
190                 src_bytes = 4;
191         for (i = 0; i < src_bytes; i++)
192                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
193         return v;
194 }
195
196 static void
197 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198 {
199         int i;
200         if (dst_bytes > 4)
201                 dst_bytes = 4;
202         for (i = 0; i < dst_bytes; i++)
203                 dst[i] = src >> ((3-i) * 8);
204 }
205
206 /* hrawclock is 1/4 the FSB frequency */
207 static int
208 intel_hrawclk(struct drm_device *dev)
209 {
210         struct drm_i915_private *dev_priv = dev->dev_private;
211         uint32_t clkcfg;
212
213         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214         if (IS_VALLEYVIEW(dev))
215                 return 200;
216
217         clkcfg = I915_READ(CLKCFG);
218         switch (clkcfg & CLKCFG_FSB_MASK) {
219         case CLKCFG_FSB_400:
220                 return 100;
221         case CLKCFG_FSB_533:
222                 return 133;
223         case CLKCFG_FSB_667:
224                 return 166;
225         case CLKCFG_FSB_800:
226                 return 200;
227         case CLKCFG_FSB_1067:
228                 return 266;
229         case CLKCFG_FSB_1333:
230                 return 333;
231         /* these two are just a guess; one of them might be right */
232         case CLKCFG_FSB_1600:
233         case CLKCFG_FSB_1600_ALT:
234                 return 400;
235         default:
236                 return 133;
237         }
238 }
239
240 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
241 {
242         struct drm_device *dev = intel_dp_to_dev(intel_dp);
243         struct drm_i915_private *dev_priv = dev->dev_private;
244         u32 pp_stat_reg;
245
246         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
247         return (I915_READ(pp_stat_reg) & PP_ON) != 0;
248 }
249
250 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
251 {
252         struct drm_device *dev = intel_dp_to_dev(intel_dp);
253         struct drm_i915_private *dev_priv = dev->dev_private;
254         u32 pp_ctrl_reg;
255
256         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
257         return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
258 }
259
260 static void
261 intel_dp_check_edp(struct intel_dp *intel_dp)
262 {
263         struct drm_device *dev = intel_dp_to_dev(intel_dp);
264         struct drm_i915_private *dev_priv = dev->dev_private;
265         u32 pp_stat_reg, pp_ctrl_reg;
266
267         if (!is_edp(intel_dp))
268                 return;
269
270         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
271         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
272
273         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
274                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
275                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
276                                 I915_READ(pp_stat_reg),
277                                 I915_READ(pp_ctrl_reg));
278         }
279 }
280
281 static uint32_t
282 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
283 {
284         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
285         struct drm_device *dev = intel_dig_port->base.base.dev;
286         struct drm_i915_private *dev_priv = dev->dev_private;
287         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
288         uint32_t status;
289         bool done;
290
291 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
292         if (has_aux_irq)
293                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
294                                           msecs_to_jiffies_timeout(10));
295         else
296                 done = wait_for_atomic(C, 10) == 0;
297         if (!done)
298                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
299                           has_aux_irq);
300 #undef C
301
302         return status;
303 }
304
305 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
306                                       int index)
307 {
308         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
309         struct drm_device *dev = intel_dig_port->base.base.dev;
310         struct drm_i915_private *dev_priv = dev->dev_private;
311
312         /* The clock divider is based off the hrawclk,
313          * and would like to run at 2MHz. So, take the
314          * hrawclk value and divide by 2 and use that
315          *
316          * Note that PCH attached eDP panels should use a 125MHz input
317          * clock divider.
318          */
319         if (IS_VALLEYVIEW(dev)) {
320                 return index ? 0 : 100;
321         } else if (intel_dig_port->port == PORT_A) {
322                 if (index)
323                         return 0;
324                 if (HAS_DDI(dev))
325                         return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
326                 else if (IS_GEN6(dev) || IS_GEN7(dev))
327                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
328                 else
329                         return 225; /* eDP input clock at 450Mhz */
330         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
331                 /* Workaround for non-ULT HSW */
332                 switch (index) {
333                 case 0: return 63;
334                 case 1: return 72;
335                 default: return 0;
336                 }
337         } else if (HAS_PCH_SPLIT(dev)) {
338                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
339         } else {
340                 return index ? 0 :intel_hrawclk(dev) / 2;
341         }
342 }
343
344 static int
345 intel_dp_aux_ch(struct intel_dp *intel_dp,
346                 uint8_t *send, int send_bytes,
347                 uint8_t *recv, int recv_size)
348 {
349         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
350         struct drm_device *dev = intel_dig_port->base.base.dev;
351         struct drm_i915_private *dev_priv = dev->dev_private;
352         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
353         uint32_t ch_data = ch_ctl + 4;
354         uint32_t aux_clock_divider;
355         int i, ret, recv_bytes;
356         uint32_t status;
357         int try, precharge, clock = 0;
358         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
359
360         /* dp aux is extremely sensitive to irq latency, hence request the
361          * lowest possible wakeup latency and so prevent the cpu from going into
362          * deep sleep states.
363          */
364         pm_qos_update_request(&dev_priv->pm_qos, 0);
365
366         intel_dp_check_edp(intel_dp);
367
368         if (IS_GEN6(dev))
369                 precharge = 3;
370         else
371                 precharge = 5;
372
373         intel_aux_display_runtime_get(dev_priv);
374
375         /* Try to wait for any previous AUX channel activity */
376         for (try = 0; try < 3; try++) {
377                 status = I915_READ_NOTRACE(ch_ctl);
378                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
379                         break;
380                 msleep(1);
381         }
382
383         if (try == 3) {
384                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
385                      I915_READ(ch_ctl));
386                 ret = -EBUSY;
387                 goto out;
388         }
389
390         while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
391                 /* Must try at least 3 times according to DP spec */
392                 for (try = 0; try < 5; try++) {
393                         /* Load the send data into the aux channel data registers */
394                         for (i = 0; i < send_bytes; i += 4)
395                                 I915_WRITE(ch_data + i,
396                                            pack_aux(send + i, send_bytes - i));
397
398                         /* Send the command and wait for it to complete */
399                         I915_WRITE(ch_ctl,
400                                    DP_AUX_CH_CTL_SEND_BUSY |
401                                    (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
402                                    DP_AUX_CH_CTL_TIME_OUT_400us |
403                                    (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
404                                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
405                                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
406                                    DP_AUX_CH_CTL_DONE |
407                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
408                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
409
410                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
411
412                         /* Clear done status and any errors */
413                         I915_WRITE(ch_ctl,
414                                    status |
415                                    DP_AUX_CH_CTL_DONE |
416                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
417                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
418
419                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
420                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
421                                 continue;
422                         if (status & DP_AUX_CH_CTL_DONE)
423                                 break;
424                 }
425                 if (status & DP_AUX_CH_CTL_DONE)
426                         break;
427         }
428
429         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
430                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
431                 ret = -EBUSY;
432                 goto out;
433         }
434
435         /* Check for timeout or receive error.
436          * Timeouts occur when the sink is not connected
437          */
438         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
439                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
440                 ret = -EIO;
441                 goto out;
442         }
443
444         /* Timeouts occur when the device isn't connected, so they're
445          * "normal" -- don't fill the kernel log with these */
446         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
447                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
448                 ret = -ETIMEDOUT;
449                 goto out;
450         }
451
452         /* Unload any bytes sent back from the other side */
453         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
454                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
455         if (recv_bytes > recv_size)
456                 recv_bytes = recv_size;
457
458         for (i = 0; i < recv_bytes; i += 4)
459                 unpack_aux(I915_READ(ch_data + i),
460                            recv + i, recv_bytes - i);
461
462         ret = recv_bytes;
463 out:
464         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
465         intel_aux_display_runtime_put(dev_priv);
466
467         return ret;
468 }
469
470 /* Write data to the aux channel in native mode */
471 static int
472 intel_dp_aux_native_write(struct intel_dp *intel_dp,
473                           uint16_t address, uint8_t *send, int send_bytes)
474 {
475         int ret;
476         uint8_t msg[20];
477         int msg_bytes;
478         uint8_t ack;
479
480         intel_dp_check_edp(intel_dp);
481         if (send_bytes > 16)
482                 return -1;
483         msg[0] = AUX_NATIVE_WRITE << 4;
484         msg[1] = address >> 8;
485         msg[2] = address & 0xff;
486         msg[3] = send_bytes - 1;
487         memcpy(&msg[4], send, send_bytes);
488         msg_bytes = send_bytes + 4;
489         for (;;) {
490                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
491                 if (ret < 0)
492                         return ret;
493                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
494                         break;
495                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
496                         udelay(100);
497                 else
498                         return -EIO;
499         }
500         return send_bytes;
501 }
502
503 /* Write a single byte to the aux channel in native mode */
504 static int
505 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
506                             uint16_t address, uint8_t byte)
507 {
508         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
509 }
510
511 /* read bytes from a native aux channel */
512 static int
513 intel_dp_aux_native_read(struct intel_dp *intel_dp,
514                          uint16_t address, uint8_t *recv, int recv_bytes)
515 {
516         uint8_t msg[4];
517         int msg_bytes;
518         uint8_t reply[20];
519         int reply_bytes;
520         uint8_t ack;
521         int ret;
522
523         intel_dp_check_edp(intel_dp);
524         msg[0] = AUX_NATIVE_READ << 4;
525         msg[1] = address >> 8;
526         msg[2] = address & 0xff;
527         msg[3] = recv_bytes - 1;
528
529         msg_bytes = 4;
530         reply_bytes = recv_bytes + 1;
531
532         for (;;) {
533                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
534                                       reply, reply_bytes);
535                 if (ret == 0)
536                         return -EPROTO;
537                 if (ret < 0)
538                         return ret;
539                 ack = reply[0];
540                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
541                         memcpy(recv, reply + 1, ret - 1);
542                         return ret - 1;
543                 }
544                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
545                         udelay(100);
546                 else
547                         return -EIO;
548         }
549 }
550
551 static int
552 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
553                     uint8_t write_byte, uint8_t *read_byte)
554 {
555         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
556         struct intel_dp *intel_dp = container_of(adapter,
557                                                 struct intel_dp,
558                                                 adapter);
559         uint16_t address = algo_data->address;
560         uint8_t msg[5];
561         uint8_t reply[2];
562         unsigned retry;
563         int msg_bytes;
564         int reply_bytes;
565         int ret;
566
567         intel_dp_check_edp(intel_dp);
568         /* Set up the command byte */
569         if (mode & MODE_I2C_READ)
570                 msg[0] = AUX_I2C_READ << 4;
571         else
572                 msg[0] = AUX_I2C_WRITE << 4;
573
574         if (!(mode & MODE_I2C_STOP))
575                 msg[0] |= AUX_I2C_MOT << 4;
576
577         msg[1] = address >> 8;
578         msg[2] = address;
579
580         switch (mode) {
581         case MODE_I2C_WRITE:
582                 msg[3] = 0;
583                 msg[4] = write_byte;
584                 msg_bytes = 5;
585                 reply_bytes = 1;
586                 break;
587         case MODE_I2C_READ:
588                 msg[3] = 0;
589                 msg_bytes = 4;
590                 reply_bytes = 2;
591                 break;
592         default:
593                 msg_bytes = 3;
594                 reply_bytes = 1;
595                 break;
596         }
597
598         for (retry = 0; retry < 5; retry++) {
599                 ret = intel_dp_aux_ch(intel_dp,
600                                       msg, msg_bytes,
601                                       reply, reply_bytes);
602                 if (ret < 0) {
603                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
604                         return ret;
605                 }
606
607                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
608                 case AUX_NATIVE_REPLY_ACK:
609                         /* I2C-over-AUX Reply field is only valid
610                          * when paired with AUX ACK.
611                          */
612                         break;
613                 case AUX_NATIVE_REPLY_NACK:
614                         DRM_DEBUG_KMS("aux_ch native nack\n");
615                         return -EREMOTEIO;
616                 case AUX_NATIVE_REPLY_DEFER:
617                         udelay(100);
618                         continue;
619                 default:
620                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
621                                   reply[0]);
622                         return -EREMOTEIO;
623                 }
624
625                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
626                 case AUX_I2C_REPLY_ACK:
627                         if (mode == MODE_I2C_READ) {
628                                 *read_byte = reply[1];
629                         }
630                         return reply_bytes - 1;
631                 case AUX_I2C_REPLY_NACK:
632                         DRM_DEBUG_KMS("aux_i2c nack\n");
633                         return -EREMOTEIO;
634                 case AUX_I2C_REPLY_DEFER:
635                         DRM_DEBUG_KMS("aux_i2c defer\n");
636                         udelay(100);
637                         break;
638                 default:
639                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
640                         return -EREMOTEIO;
641                 }
642         }
643
644         DRM_ERROR("too many retries, giving up\n");
645         return -EREMOTEIO;
646 }
647
648 static int
649 intel_dp_i2c_init(struct intel_dp *intel_dp,
650                   struct intel_connector *intel_connector, const char *name)
651 {
652         int     ret;
653
654         DRM_DEBUG_KMS("i2c_init %s\n", name);
655         intel_dp->algo.running = false;
656         intel_dp->algo.address = 0;
657         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
658
659         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
660         intel_dp->adapter.owner = THIS_MODULE;
661         intel_dp->adapter.class = I2C_CLASS_DDC;
662         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
663         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
664         intel_dp->adapter.algo_data = &intel_dp->algo;
665         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
666
667         ironlake_edp_panel_vdd_on(intel_dp);
668         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
669         ironlake_edp_panel_vdd_off(intel_dp, false);
670         return ret;
671 }
672
673 static void
674 intel_dp_set_clock(struct intel_encoder *encoder,
675                    struct intel_crtc_config *pipe_config, int link_bw)
676 {
677         struct drm_device *dev = encoder->base.dev;
678         const struct dp_link_dpll *divisor = NULL;
679         int i, count = 0;
680
681         if (IS_G4X(dev)) {
682                 divisor = gen4_dpll;
683                 count = ARRAY_SIZE(gen4_dpll);
684         } else if (IS_HASWELL(dev)) {
685                 /* Haswell has special-purpose DP DDI clocks. */
686         } else if (HAS_PCH_SPLIT(dev)) {
687                 divisor = pch_dpll;
688                 count = ARRAY_SIZE(pch_dpll);
689         } else if (IS_VALLEYVIEW(dev)) {
690                 divisor = vlv_dpll;
691                 count = ARRAY_SIZE(vlv_dpll);
692         }
693
694         if (divisor && count) {
695                 for (i = 0; i < count; i++) {
696                         if (link_bw == divisor[i].link_bw) {
697                                 pipe_config->dpll = divisor[i].dpll;
698                                 pipe_config->clock_set = true;
699                                 break;
700                         }
701                 }
702         }
703 }
704
705 bool
706 intel_dp_compute_config(struct intel_encoder *encoder,
707                         struct intel_crtc_config *pipe_config)
708 {
709         struct drm_device *dev = encoder->base.dev;
710         struct drm_i915_private *dev_priv = dev->dev_private;
711         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
712         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
713         enum port port = dp_to_dig_port(intel_dp)->port;
714         struct intel_crtc *intel_crtc = encoder->new_crtc;
715         struct intel_connector *intel_connector = intel_dp->attached_connector;
716         int lane_count, clock;
717         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
718         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
719         int bpp, mode_rate;
720         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
721         int link_avail, link_clock;
722
723         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
724                 pipe_config->has_pch_encoder = true;
725
726         pipe_config->has_dp_encoder = true;
727
728         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
729                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
730                                        adjusted_mode);
731                 if (!HAS_PCH_SPLIT(dev))
732                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
733                                                  intel_connector->panel.fitting_mode);
734                 else
735                         intel_pch_panel_fitting(intel_crtc, pipe_config,
736                                                 intel_connector->panel.fitting_mode);
737         }
738
739         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
740                 return false;
741
742         DRM_DEBUG_KMS("DP link computation with max lane count %i "
743                       "max bw %02x pixel clock %iKHz\n",
744                       max_lane_count, bws[max_clock], adjusted_mode->clock);
745
746         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
747          * bpc in between. */
748         bpp = pipe_config->pipe_bpp;
749         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
750                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
751                               dev_priv->vbt.edp_bpp);
752                 bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
753         }
754
755         for (; bpp >= 6*3; bpp -= 2*3) {
756                 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
757
758                 for (clock = 0; clock <= max_clock; clock++) {
759                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
760                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
761                                 link_avail = intel_dp_max_data_rate(link_clock,
762                                                                     lane_count);
763
764                                 if (mode_rate <= link_avail) {
765                                         goto found;
766                                 }
767                         }
768                 }
769         }
770
771         return false;
772
773 found:
774         if (intel_dp->color_range_auto) {
775                 /*
776                  * See:
777                  * CEA-861-E - 5.1 Default Encoding Parameters
778                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
779                  */
780                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
781                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
782                 else
783                         intel_dp->color_range = 0;
784         }
785
786         if (intel_dp->color_range)
787                 pipe_config->limited_color_range = true;
788
789         intel_dp->link_bw = bws[clock];
790         intel_dp->lane_count = lane_count;
791         pipe_config->pipe_bpp = bpp;
792         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
793
794         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
795                       intel_dp->link_bw, intel_dp->lane_count,
796                       pipe_config->port_clock, bpp);
797         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
798                       mode_rate, link_avail);
799
800         intel_link_compute_m_n(bpp, lane_count,
801                                adjusted_mode->clock, pipe_config->port_clock,
802                                &pipe_config->dp_m_n);
803
804         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
805
806         return true;
807 }
808
809 void intel_dp_init_link_config(struct intel_dp *intel_dp)
810 {
811         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
812         intel_dp->link_configuration[0] = intel_dp->link_bw;
813         intel_dp->link_configuration[1] = intel_dp->lane_count;
814         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
815         /*
816          * Check for DPCD version > 1.1 and enhanced framing support
817          */
818         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
819             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
820                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
821         }
822 }
823
824 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
825 {
826         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
827         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
828         struct drm_device *dev = crtc->base.dev;
829         struct drm_i915_private *dev_priv = dev->dev_private;
830         u32 dpa_ctl;
831
832         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
833         dpa_ctl = I915_READ(DP_A);
834         dpa_ctl &= ~DP_PLL_FREQ_MASK;
835
836         if (crtc->config.port_clock == 162000) {
837                 /* For a long time we've carried around a ILK-DevA w/a for the
838                  * 160MHz clock. If we're really unlucky, it's still required.
839                  */
840                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
841                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
842                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
843         } else {
844                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
845                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
846         }
847
848         I915_WRITE(DP_A, dpa_ctl);
849
850         POSTING_READ(DP_A);
851         udelay(500);
852 }
853
854 static void intel_dp_mode_set(struct intel_encoder *encoder)
855 {
856         struct drm_device *dev = encoder->base.dev;
857         struct drm_i915_private *dev_priv = dev->dev_private;
858         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
859         enum port port = dp_to_dig_port(intel_dp)->port;
860         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
861         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
862
863         /*
864          * There are four kinds of DP registers:
865          *
866          *      IBX PCH
867          *      SNB CPU
868          *      IVB CPU
869          *      CPT PCH
870          *
871          * IBX PCH and CPU are the same for almost everything,
872          * except that the CPU DP PLL is configured in this
873          * register
874          *
875          * CPT PCH is quite different, having many bits moved
876          * to the TRANS_DP_CTL register instead. That
877          * configuration happens (oddly) in ironlake_pch_enable
878          */
879
880         /* Preserve the BIOS-computed detected bit. This is
881          * supposed to be read-only.
882          */
883         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
884
885         /* Handle DP bits in common between all three register formats */
886         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
887         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
888
889         if (intel_dp->has_audio) {
890                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
891                                  pipe_name(crtc->pipe));
892                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
893                 intel_write_eld(&encoder->base, adjusted_mode);
894         }
895
896         intel_dp_init_link_config(intel_dp);
897
898         /* Split out the IBX/CPU vs CPT settings */
899
900         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
901                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
902                         intel_dp->DP |= DP_SYNC_HS_HIGH;
903                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
904                         intel_dp->DP |= DP_SYNC_VS_HIGH;
905                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
906
907                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
908                         intel_dp->DP |= DP_ENHANCED_FRAMING;
909
910                 intel_dp->DP |= crtc->pipe << 29;
911         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
912                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
913                         intel_dp->DP |= intel_dp->color_range;
914
915                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
916                         intel_dp->DP |= DP_SYNC_HS_HIGH;
917                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
918                         intel_dp->DP |= DP_SYNC_VS_HIGH;
919                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
920
921                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
922                         intel_dp->DP |= DP_ENHANCED_FRAMING;
923
924                 if (crtc->pipe == 1)
925                         intel_dp->DP |= DP_PIPEB_SELECT;
926         } else {
927                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
928         }
929
930         if (port == PORT_A && !IS_VALLEYVIEW(dev))
931                 ironlake_set_pll_cpu_edp(intel_dp);
932 }
933
934 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
935 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
936
937 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
938 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
939
940 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
941 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
942
943 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
944                                        u32 mask,
945                                        u32 value)
946 {
947         struct drm_device *dev = intel_dp_to_dev(intel_dp);
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         u32 pp_stat_reg, pp_ctrl_reg;
950
951         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
952         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
953
954         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
955                         mask, value,
956                         I915_READ(pp_stat_reg),
957                         I915_READ(pp_ctrl_reg));
958
959         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
960                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
961                                 I915_READ(pp_stat_reg),
962                                 I915_READ(pp_ctrl_reg));
963         }
964 }
965
966 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
967 {
968         DRM_DEBUG_KMS("Wait for panel power on\n");
969         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
970 }
971
972 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
973 {
974         DRM_DEBUG_KMS("Wait for panel power off time\n");
975         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
976 }
977
978 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
979 {
980         DRM_DEBUG_KMS("Wait for panel power cycle\n");
981         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
982 }
983
984
985 /* Read the current pp_control value, unlocking the register if it
986  * is locked
987  */
988
989 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
990 {
991         struct drm_device *dev = intel_dp_to_dev(intel_dp);
992         struct drm_i915_private *dev_priv = dev->dev_private;
993         u32 control;
994         u32 pp_ctrl_reg;
995
996         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
997         control = I915_READ(pp_ctrl_reg);
998
999         control &= ~PANEL_UNLOCK_MASK;
1000         control |= PANEL_UNLOCK_REGS;
1001         return control;
1002 }
1003
1004 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1005 {
1006         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1007         struct drm_i915_private *dev_priv = dev->dev_private;
1008         u32 pp;
1009         u32 pp_stat_reg, pp_ctrl_reg;
1010
1011         if (!is_edp(intel_dp))
1012                 return;
1013         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1014
1015         WARN(intel_dp->want_panel_vdd,
1016              "eDP VDD already requested on\n");
1017
1018         intel_dp->want_panel_vdd = true;
1019
1020         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1021                 DRM_DEBUG_KMS("eDP VDD already on\n");
1022                 return;
1023         }
1024
1025         if (!ironlake_edp_have_panel_power(intel_dp))
1026                 ironlake_wait_panel_power_cycle(intel_dp);
1027
1028         pp = ironlake_get_pp_control(intel_dp);
1029         pp |= EDP_FORCE_VDD;
1030
1031         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1032         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1033
1034         I915_WRITE(pp_ctrl_reg, pp);
1035         POSTING_READ(pp_ctrl_reg);
1036         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1037                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1038         /*
1039          * If the panel wasn't on, delay before accessing aux channel
1040          */
1041         if (!ironlake_edp_have_panel_power(intel_dp)) {
1042                 DRM_DEBUG_KMS("eDP was not running\n");
1043                 msleep(intel_dp->panel_power_up_delay);
1044         }
1045 }
1046
1047 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1048 {
1049         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1050         struct drm_i915_private *dev_priv = dev->dev_private;
1051         u32 pp;
1052         u32 pp_stat_reg, pp_ctrl_reg;
1053
1054         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1055
1056         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1057                 pp = ironlake_get_pp_control(intel_dp);
1058                 pp &= ~EDP_FORCE_VDD;
1059
1060                 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1061                 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1062
1063                 I915_WRITE(pp_ctrl_reg, pp);
1064                 POSTING_READ(pp_ctrl_reg);
1065
1066                 /* Make sure sequencer is idle before allowing subsequent activity */
1067                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1068                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1069                 msleep(intel_dp->panel_power_down_delay);
1070         }
1071 }
1072
1073 static void ironlake_panel_vdd_work(struct work_struct *__work)
1074 {
1075         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1076                                                  struct intel_dp, panel_vdd_work);
1077         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1078
1079         mutex_lock(&dev->mode_config.mutex);
1080         ironlake_panel_vdd_off_sync(intel_dp);
1081         mutex_unlock(&dev->mode_config.mutex);
1082 }
1083
1084 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1085 {
1086         if (!is_edp(intel_dp))
1087                 return;
1088
1089         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1090         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1091
1092         intel_dp->want_panel_vdd = false;
1093
1094         if (sync) {
1095                 ironlake_panel_vdd_off_sync(intel_dp);
1096         } else {
1097                 /*
1098                  * Queue the timer to fire a long
1099                  * time from now (relative to the power down delay)
1100                  * to keep the panel power up across a sequence of operations
1101                  */
1102                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1103                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1104         }
1105 }
1106
1107 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1108 {
1109         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1110         struct drm_i915_private *dev_priv = dev->dev_private;
1111         u32 pp;
1112         u32 pp_ctrl_reg;
1113
1114         if (!is_edp(intel_dp))
1115                 return;
1116
1117         DRM_DEBUG_KMS("Turn eDP power on\n");
1118
1119         if (ironlake_edp_have_panel_power(intel_dp)) {
1120                 DRM_DEBUG_KMS("eDP power already on\n");
1121                 return;
1122         }
1123
1124         ironlake_wait_panel_power_cycle(intel_dp);
1125
1126         pp = ironlake_get_pp_control(intel_dp);
1127         if (IS_GEN5(dev)) {
1128                 /* ILK workaround: disable reset around power sequence */
1129                 pp &= ~PANEL_POWER_RESET;
1130                 I915_WRITE(PCH_PP_CONTROL, pp);
1131                 POSTING_READ(PCH_PP_CONTROL);
1132         }
1133
1134         pp |= POWER_TARGET_ON;
1135         if (!IS_GEN5(dev))
1136                 pp |= PANEL_POWER_RESET;
1137
1138         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1139
1140         I915_WRITE(pp_ctrl_reg, pp);
1141         POSTING_READ(pp_ctrl_reg);
1142
1143         ironlake_wait_panel_on(intel_dp);
1144
1145         if (IS_GEN5(dev)) {
1146                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1147                 I915_WRITE(PCH_PP_CONTROL, pp);
1148                 POSTING_READ(PCH_PP_CONTROL);
1149         }
1150 }
1151
1152 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1153 {
1154         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1155         struct drm_i915_private *dev_priv = dev->dev_private;
1156         u32 pp;
1157         u32 pp_ctrl_reg;
1158
1159         if (!is_edp(intel_dp))
1160                 return;
1161
1162         DRM_DEBUG_KMS("Turn eDP power off\n");
1163
1164         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1165
1166         pp = ironlake_get_pp_control(intel_dp);
1167         /* We need to switch off panel power _and_ force vdd, for otherwise some
1168          * panels get very unhappy and cease to work. */
1169         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1170
1171         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1172
1173         I915_WRITE(pp_ctrl_reg, pp);
1174         POSTING_READ(pp_ctrl_reg);
1175
1176         intel_dp->want_panel_vdd = false;
1177
1178         ironlake_wait_panel_off(intel_dp);
1179 }
1180
1181 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1182 {
1183         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1184         struct drm_device *dev = intel_dig_port->base.base.dev;
1185         struct drm_i915_private *dev_priv = dev->dev_private;
1186         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1187         u32 pp;
1188         u32 pp_ctrl_reg;
1189
1190         if (!is_edp(intel_dp))
1191                 return;
1192
1193         DRM_DEBUG_KMS("\n");
1194         /*
1195          * If we enable the backlight right away following a panel power
1196          * on, we may see slight flicker as the panel syncs with the eDP
1197          * link.  So delay a bit to make sure the image is solid before
1198          * allowing it to appear.
1199          */
1200         msleep(intel_dp->backlight_on_delay);
1201         pp = ironlake_get_pp_control(intel_dp);
1202         pp |= EDP_BLC_ENABLE;
1203
1204         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1205
1206         I915_WRITE(pp_ctrl_reg, pp);
1207         POSTING_READ(pp_ctrl_reg);
1208
1209         intel_panel_enable_backlight(dev, pipe);
1210 }
1211
1212 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1213 {
1214         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1215         struct drm_i915_private *dev_priv = dev->dev_private;
1216         u32 pp;
1217         u32 pp_ctrl_reg;
1218
1219         if (!is_edp(intel_dp))
1220                 return;
1221
1222         intel_panel_disable_backlight(dev);
1223
1224         DRM_DEBUG_KMS("\n");
1225         pp = ironlake_get_pp_control(intel_dp);
1226         pp &= ~EDP_BLC_ENABLE;
1227
1228         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1229
1230         I915_WRITE(pp_ctrl_reg, pp);
1231         POSTING_READ(pp_ctrl_reg);
1232         msleep(intel_dp->backlight_off_delay);
1233 }
1234
1235 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1236 {
1237         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1238         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1239         struct drm_device *dev = crtc->dev;
1240         struct drm_i915_private *dev_priv = dev->dev_private;
1241         u32 dpa_ctl;
1242
1243         assert_pipe_disabled(dev_priv,
1244                              to_intel_crtc(crtc)->pipe);
1245
1246         DRM_DEBUG_KMS("\n");
1247         dpa_ctl = I915_READ(DP_A);
1248         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1249         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1250
1251         /* We don't adjust intel_dp->DP while tearing down the link, to
1252          * facilitate link retraining (e.g. after hotplug). Hence clear all
1253          * enable bits here to ensure that we don't enable too much. */
1254         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1255         intel_dp->DP |= DP_PLL_ENABLE;
1256         I915_WRITE(DP_A, intel_dp->DP);
1257         POSTING_READ(DP_A);
1258         udelay(200);
1259 }
1260
1261 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1262 {
1263         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1264         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1265         struct drm_device *dev = crtc->dev;
1266         struct drm_i915_private *dev_priv = dev->dev_private;
1267         u32 dpa_ctl;
1268
1269         assert_pipe_disabled(dev_priv,
1270                              to_intel_crtc(crtc)->pipe);
1271
1272         dpa_ctl = I915_READ(DP_A);
1273         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1274              "dp pll off, should be on\n");
1275         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1276
1277         /* We can't rely on the value tracked for the DP register in
1278          * intel_dp->DP because link_down must not change that (otherwise link
1279          * re-training will fail. */
1280         dpa_ctl &= ~DP_PLL_ENABLE;
1281         I915_WRITE(DP_A, dpa_ctl);
1282         POSTING_READ(DP_A);
1283         udelay(200);
1284 }
1285
1286 /* If the sink supports it, try to set the power state appropriately */
1287 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1288 {
1289         int ret, i;
1290
1291         /* Should have a valid DPCD by this point */
1292         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1293                 return;
1294
1295         if (mode != DRM_MODE_DPMS_ON) {
1296                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1297                                                   DP_SET_POWER_D3);
1298                 if (ret != 1)
1299                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1300         } else {
1301                 /*
1302                  * When turning on, we need to retry for 1ms to give the sink
1303                  * time to wake up.
1304                  */
1305                 for (i = 0; i < 3; i++) {
1306                         ret = intel_dp_aux_native_write_1(intel_dp,
1307                                                           DP_SET_POWER,
1308                                                           DP_SET_POWER_D0);
1309                         if (ret == 1)
1310                                 break;
1311                         msleep(1);
1312                 }
1313         }
1314 }
1315
1316 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1317                                   enum pipe *pipe)
1318 {
1319         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1320         enum port port = dp_to_dig_port(intel_dp)->port;
1321         struct drm_device *dev = encoder->base.dev;
1322         struct drm_i915_private *dev_priv = dev->dev_private;
1323         u32 tmp = I915_READ(intel_dp->output_reg);
1324
1325         if (!(tmp & DP_PORT_EN))
1326                 return false;
1327
1328         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1329                 *pipe = PORT_TO_PIPE_CPT(tmp);
1330         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1331                 *pipe = PORT_TO_PIPE(tmp);
1332         } else {
1333                 u32 trans_sel;
1334                 u32 trans_dp;
1335                 int i;
1336
1337                 switch (intel_dp->output_reg) {
1338                 case PCH_DP_B:
1339                         trans_sel = TRANS_DP_PORT_SEL_B;
1340                         break;
1341                 case PCH_DP_C:
1342                         trans_sel = TRANS_DP_PORT_SEL_C;
1343                         break;
1344                 case PCH_DP_D:
1345                         trans_sel = TRANS_DP_PORT_SEL_D;
1346                         break;
1347                 default:
1348                         return true;
1349                 }
1350
1351                 for_each_pipe(i) {
1352                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1353                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1354                                 *pipe = i;
1355                                 return true;
1356                         }
1357                 }
1358
1359                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1360                               intel_dp->output_reg);
1361         }
1362
1363         return true;
1364 }
1365
1366 static void intel_dp_get_config(struct intel_encoder *encoder,
1367                                 struct intel_crtc_config *pipe_config)
1368 {
1369         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1370         u32 tmp, flags = 0;
1371         struct drm_device *dev = encoder->base.dev;
1372         struct drm_i915_private *dev_priv = dev->dev_private;
1373         enum port port = dp_to_dig_port(intel_dp)->port;
1374         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1375
1376         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1377                 tmp = I915_READ(intel_dp->output_reg);
1378                 if (tmp & DP_SYNC_HS_HIGH)
1379                         flags |= DRM_MODE_FLAG_PHSYNC;
1380                 else
1381                         flags |= DRM_MODE_FLAG_NHSYNC;
1382
1383                 if (tmp & DP_SYNC_VS_HIGH)
1384                         flags |= DRM_MODE_FLAG_PVSYNC;
1385                 else
1386                         flags |= DRM_MODE_FLAG_NVSYNC;
1387         } else {
1388                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1389                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1390                         flags |= DRM_MODE_FLAG_PHSYNC;
1391                 else
1392                         flags |= DRM_MODE_FLAG_NHSYNC;
1393
1394                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1395                         flags |= DRM_MODE_FLAG_PVSYNC;
1396                 else
1397                         flags |= DRM_MODE_FLAG_NVSYNC;
1398         }
1399
1400         pipe_config->adjusted_mode.flags |= flags;
1401
1402         if (dp_to_dig_port(intel_dp)->port == PORT_A) {
1403                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1404                         pipe_config->port_clock = 162000;
1405                 else
1406                         pipe_config->port_clock = 270000;
1407         }
1408 }
1409
1410 static bool is_edp_psr(struct intel_dp *intel_dp)
1411 {
1412         return is_edp(intel_dp) &&
1413                 intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1414 }
1415
1416 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1417 {
1418         struct drm_i915_private *dev_priv = dev->dev_private;
1419
1420         if (!IS_HASWELL(dev))
1421                 return false;
1422
1423         return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
1424 }
1425
1426 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1427                                     struct edp_vsc_psr *vsc_psr)
1428 {
1429         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1430         struct drm_device *dev = dig_port->base.base.dev;
1431         struct drm_i915_private *dev_priv = dev->dev_private;
1432         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1433         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1434         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1435         uint32_t *data = (uint32_t *) vsc_psr;
1436         unsigned int i;
1437
1438         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1439            the video DIP being updated before program video DIP data buffer
1440            registers for DIP being updated. */
1441         I915_WRITE(ctl_reg, 0);
1442         POSTING_READ(ctl_reg);
1443
1444         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1445                 if (i < sizeof(struct edp_vsc_psr))
1446                         I915_WRITE(data_reg + i, *data++);
1447                 else
1448                         I915_WRITE(data_reg + i, 0);
1449         }
1450
1451         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1452         POSTING_READ(ctl_reg);
1453 }
1454
1455 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1456 {
1457         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1458         struct drm_i915_private *dev_priv = dev->dev_private;
1459         struct edp_vsc_psr psr_vsc;
1460
1461         if (intel_dp->psr_setup_done)
1462                 return;
1463
1464         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1465         memset(&psr_vsc, 0, sizeof(psr_vsc));
1466         psr_vsc.sdp_header.HB0 = 0;
1467         psr_vsc.sdp_header.HB1 = 0x7;
1468         psr_vsc.sdp_header.HB2 = 0x2;
1469         psr_vsc.sdp_header.HB3 = 0x8;
1470         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1471
1472         /* Avoid continuous PSR exit by masking memup and hpd */
1473         I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
1474                    EDP_PSR_DEBUG_MASK_HPD);
1475
1476         intel_dp->psr_setup_done = true;
1477 }
1478
1479 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1480 {
1481         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1484         int precharge = 0x3;
1485         int msg_size = 5;       /* Header(4) + Message(1) */
1486
1487         /* Enable PSR in sink */
1488         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1489                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1490                                             DP_PSR_ENABLE &
1491                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1492         else
1493                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1494                                             DP_PSR_ENABLE |
1495                                             DP_PSR_MAIN_LINK_ACTIVE);
1496
1497         /* Setup AUX registers */
1498         I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
1499         I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
1500         I915_WRITE(EDP_PSR_AUX_CTL,
1501                    DP_AUX_CH_CTL_TIME_OUT_400us |
1502                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1503                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1504                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1505 }
1506
1507 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1508 {
1509         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1510         struct drm_i915_private *dev_priv = dev->dev_private;
1511         uint32_t max_sleep_time = 0x1f;
1512         uint32_t idle_frames = 1;
1513         uint32_t val = 0x0;
1514
1515         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1516                 val |= EDP_PSR_LINK_STANDBY;
1517                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1518                 val |= EDP_PSR_TP1_TIME_0us;
1519                 val |= EDP_PSR_SKIP_AUX_EXIT;
1520         } else
1521                 val |= EDP_PSR_LINK_DISABLE;
1522
1523         I915_WRITE(EDP_PSR_CTL, val |
1524                    EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1525                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1526                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1527                    EDP_PSR_ENABLE);
1528 }
1529
1530 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1531 {
1532         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1533         struct drm_device *dev = dig_port->base.base.dev;
1534         struct drm_i915_private *dev_priv = dev->dev_private;
1535         struct drm_crtc *crtc = dig_port->base.base.crtc;
1536         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1537         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1538         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1539
1540         if (!IS_HASWELL(dev)) {
1541                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1542                 dev_priv->no_psr_reason = PSR_NO_SOURCE;
1543                 return false;
1544         }
1545
1546         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1547             (dig_port->port != PORT_A)) {
1548                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1549                 dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
1550                 return false;
1551         }
1552
1553         if (!is_edp_psr(intel_dp)) {
1554                 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1555                 dev_priv->no_psr_reason = PSR_NO_SINK;
1556                 return false;
1557         }
1558
1559         if (!i915_enable_psr) {
1560                 DRM_DEBUG_KMS("PSR disable by flag\n");
1561                 dev_priv->no_psr_reason = PSR_MODULE_PARAM;
1562                 return false;
1563         }
1564
1565         crtc = dig_port->base.base.crtc;
1566         if (crtc == NULL) {
1567                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1568                 dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1569                 return false;
1570         }
1571
1572         intel_crtc = to_intel_crtc(crtc);
1573         if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
1574                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1575                 dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1576                 return false;
1577         }
1578
1579         obj = to_intel_framebuffer(crtc->fb)->obj;
1580         if (obj->tiling_mode != I915_TILING_X ||
1581             obj->fence_reg == I915_FENCE_REG_NONE) {
1582                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1583                 dev_priv->no_psr_reason = PSR_NOT_TILED;
1584                 return false;
1585         }
1586
1587         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1588                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1589                 dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
1590                 return false;
1591         }
1592
1593         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1594             S3D_ENABLE) {
1595                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1596                 dev_priv->no_psr_reason = PSR_S3D_ENABLED;
1597                 return false;
1598         }
1599
1600         if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
1601                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1602                 dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
1603                 return false;
1604         }
1605
1606         return true;
1607 }
1608
1609 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1610 {
1611         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1612
1613         if (!intel_edp_psr_match_conditions(intel_dp) ||
1614             intel_edp_is_psr_enabled(dev))
1615                 return;
1616
1617         /* Setup PSR once */
1618         intel_edp_psr_setup(intel_dp);
1619
1620         /* Enable PSR on the panel */
1621         intel_edp_psr_enable_sink(intel_dp);
1622
1623         /* Enable PSR on the host */
1624         intel_edp_psr_enable_source(intel_dp);
1625 }
1626
1627 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1628 {
1629         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1630
1631         if (intel_edp_psr_match_conditions(intel_dp) &&
1632             !intel_edp_is_psr_enabled(dev))
1633                 intel_edp_psr_do_enable(intel_dp);
1634 }
1635
1636 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1637 {
1638         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1639         struct drm_i915_private *dev_priv = dev->dev_private;
1640
1641         if (!intel_edp_is_psr_enabled(dev))
1642                 return;
1643
1644         I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
1645
1646         /* Wait till PSR is idle */
1647         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
1648                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1649                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1650 }
1651
1652 void intel_edp_psr_update(struct drm_device *dev)
1653 {
1654         struct intel_encoder *encoder;
1655         struct intel_dp *intel_dp = NULL;
1656
1657         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1658                 if (encoder->type == INTEL_OUTPUT_EDP) {
1659                         intel_dp = enc_to_intel_dp(&encoder->base);
1660
1661                         if (!is_edp_psr(intel_dp))
1662                                 return;
1663
1664                         if (!intel_edp_psr_match_conditions(intel_dp))
1665                                 intel_edp_psr_disable(intel_dp);
1666                         else
1667                                 if (!intel_edp_is_psr_enabled(dev))
1668                                         intel_edp_psr_do_enable(intel_dp);
1669                 }
1670 }
1671
1672 static void intel_disable_dp(struct intel_encoder *encoder)
1673 {
1674         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1675         enum port port = dp_to_dig_port(intel_dp)->port;
1676         struct drm_device *dev = encoder->base.dev;
1677
1678         /* Make sure the panel is off before trying to change the mode. But also
1679          * ensure that we have vdd while we switch off the panel. */
1680         ironlake_edp_panel_vdd_on(intel_dp);
1681         ironlake_edp_backlight_off(intel_dp);
1682         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1683         ironlake_edp_panel_off(intel_dp);
1684
1685         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1686         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1687                 intel_dp_link_down(intel_dp);
1688 }
1689
1690 static void intel_post_disable_dp(struct intel_encoder *encoder)
1691 {
1692         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1693         enum port port = dp_to_dig_port(intel_dp)->port;
1694         struct drm_device *dev = encoder->base.dev;
1695
1696         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1697                 intel_dp_link_down(intel_dp);
1698                 if (!IS_VALLEYVIEW(dev))
1699                         ironlake_edp_pll_off(intel_dp);
1700         }
1701 }
1702
1703 static void intel_enable_dp(struct intel_encoder *encoder)
1704 {
1705         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1706         struct drm_device *dev = encoder->base.dev;
1707         struct drm_i915_private *dev_priv = dev->dev_private;
1708         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1709
1710         if (WARN_ON(dp_reg & DP_PORT_EN))
1711                 return;
1712
1713         ironlake_edp_panel_vdd_on(intel_dp);
1714         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1715         intel_dp_start_link_train(intel_dp);
1716         ironlake_edp_panel_on(intel_dp);
1717         ironlake_edp_panel_vdd_off(intel_dp, true);
1718         intel_dp_complete_link_train(intel_dp);
1719         intel_dp_stop_link_train(intel_dp);
1720         ironlake_edp_backlight_on(intel_dp);
1721 }
1722
1723 static void g4x_enable_dp(struct intel_encoder *encoder)
1724 {
1725         intel_enable_dp(encoder);
1726 }
1727
1728 static void vlv_enable_dp(struct intel_encoder *encoder)
1729 {
1730 }
1731
1732 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1733 {
1734         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1735         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1736
1737         if (dport->port == PORT_A)
1738                 ironlake_edp_pll_on(intel_dp);
1739 }
1740
1741 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1742 {
1743         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1744         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1745         struct drm_device *dev = encoder->base.dev;
1746         struct drm_i915_private *dev_priv = dev->dev_private;
1747         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1748         int port = vlv_dport_to_channel(dport);
1749         int pipe = intel_crtc->pipe;
1750         u32 val;
1751
1752         mutex_lock(&dev_priv->dpio_lock);
1753
1754         val = vlv_dpio_read(dev_priv, pipe, DPIO_DATA_LANE_A(port));
1755         val = 0;
1756         if (pipe)
1757                 val |= (1<<21);
1758         else
1759                 val &= ~(1<<21);
1760         val |= 0x001000c4;
1761         vlv_dpio_write(dev_priv, pipe, DPIO_DATA_CHANNEL(port), val);
1762         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
1763         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
1764
1765         mutex_unlock(&dev_priv->dpio_lock);
1766
1767         intel_enable_dp(encoder);
1768
1769         vlv_wait_port_ready(dev_priv, port);
1770 }
1771
1772 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1773 {
1774         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1775         struct drm_device *dev = encoder->base.dev;
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         struct intel_crtc *intel_crtc =
1778                 to_intel_crtc(encoder->base.crtc);
1779         int port = vlv_dport_to_channel(dport);
1780         int pipe = intel_crtc->pipe;
1781
1782         /* Program Tx lane resets to default */
1783         mutex_lock(&dev_priv->dpio_lock);
1784         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port),
1785                          DPIO_PCS_TX_LANE2_RESET |
1786                          DPIO_PCS_TX_LANE1_RESET);
1787         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port),
1788                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1789                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1790                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1791                                  DPIO_PCS_CLK_SOFT_RESET);
1792
1793         /* Fix up inter-pair skew failure */
1794         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER1(port), 0x00750f00);
1795         vlv_dpio_write(dev_priv, pipe, DPIO_TX_CTL(port), 0x00001500);
1796         vlv_dpio_write(dev_priv, pipe, DPIO_TX_LANE(port), 0x40400000);
1797         mutex_unlock(&dev_priv->dpio_lock);
1798 }
1799
1800 /*
1801  * Native read with retry for link status and receiver capability reads for
1802  * cases where the sink may still be asleep.
1803  */
1804 static bool
1805 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1806                                uint8_t *recv, int recv_bytes)
1807 {
1808         int ret, i;
1809
1810         /*
1811          * Sinks are *supposed* to come up within 1ms from an off state,
1812          * but we're also supposed to retry 3 times per the spec.
1813          */
1814         for (i = 0; i < 3; i++) {
1815                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1816                                                recv_bytes);
1817                 if (ret == recv_bytes)
1818                         return true;
1819                 msleep(1);
1820         }
1821
1822         return false;
1823 }
1824
1825 /*
1826  * Fetch AUX CH registers 0x202 - 0x207 which contain
1827  * link status information
1828  */
1829 static bool
1830 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1831 {
1832         return intel_dp_aux_native_read_retry(intel_dp,
1833                                               DP_LANE0_1_STATUS,
1834                                               link_status,
1835                                               DP_LINK_STATUS_SIZE);
1836 }
1837
1838 #if 0
1839 static char     *voltage_names[] = {
1840         "0.4V", "0.6V", "0.8V", "1.2V"
1841 };
1842 static char     *pre_emph_names[] = {
1843         "0dB", "3.5dB", "6dB", "9.5dB"
1844 };
1845 static char     *link_train_names[] = {
1846         "pattern 1", "pattern 2", "idle", "off"
1847 };
1848 #endif
1849
1850 /*
1851  * These are source-specific values; current Intel hardware supports
1852  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1853  */
1854
1855 static uint8_t
1856 intel_dp_voltage_max(struct intel_dp *intel_dp)
1857 {
1858         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1859         enum port port = dp_to_dig_port(intel_dp)->port;
1860
1861         if (IS_VALLEYVIEW(dev))
1862                 return DP_TRAIN_VOLTAGE_SWING_1200;
1863         else if (IS_GEN7(dev) && port == PORT_A)
1864                 return DP_TRAIN_VOLTAGE_SWING_800;
1865         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1866                 return DP_TRAIN_VOLTAGE_SWING_1200;
1867         else
1868                 return DP_TRAIN_VOLTAGE_SWING_800;
1869 }
1870
1871 static uint8_t
1872 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1873 {
1874         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1875         enum port port = dp_to_dig_port(intel_dp)->port;
1876
1877         if (HAS_DDI(dev)) {
1878                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1879                 case DP_TRAIN_VOLTAGE_SWING_400:
1880                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1881                 case DP_TRAIN_VOLTAGE_SWING_600:
1882                         return DP_TRAIN_PRE_EMPHASIS_6;
1883                 case DP_TRAIN_VOLTAGE_SWING_800:
1884                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1885                 case DP_TRAIN_VOLTAGE_SWING_1200:
1886                 default:
1887                         return DP_TRAIN_PRE_EMPHASIS_0;
1888                 }
1889         } else if (IS_VALLEYVIEW(dev)) {
1890                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1891                 case DP_TRAIN_VOLTAGE_SWING_400:
1892                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1893                 case DP_TRAIN_VOLTAGE_SWING_600:
1894                         return DP_TRAIN_PRE_EMPHASIS_6;
1895                 case DP_TRAIN_VOLTAGE_SWING_800:
1896                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1897                 case DP_TRAIN_VOLTAGE_SWING_1200:
1898                 default:
1899                         return DP_TRAIN_PRE_EMPHASIS_0;
1900                 }
1901         } else if (IS_GEN7(dev) && port == PORT_A) {
1902                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1903                 case DP_TRAIN_VOLTAGE_SWING_400:
1904                         return DP_TRAIN_PRE_EMPHASIS_6;
1905                 case DP_TRAIN_VOLTAGE_SWING_600:
1906                 case DP_TRAIN_VOLTAGE_SWING_800:
1907                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1908                 default:
1909                         return DP_TRAIN_PRE_EMPHASIS_0;
1910                 }
1911         } else {
1912                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1913                 case DP_TRAIN_VOLTAGE_SWING_400:
1914                         return DP_TRAIN_PRE_EMPHASIS_6;
1915                 case DP_TRAIN_VOLTAGE_SWING_600:
1916                         return DP_TRAIN_PRE_EMPHASIS_6;
1917                 case DP_TRAIN_VOLTAGE_SWING_800:
1918                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1919                 case DP_TRAIN_VOLTAGE_SWING_1200:
1920                 default:
1921                         return DP_TRAIN_PRE_EMPHASIS_0;
1922                 }
1923         }
1924 }
1925
1926 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1927 {
1928         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1929         struct drm_i915_private *dev_priv = dev->dev_private;
1930         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1931         struct intel_crtc *intel_crtc =
1932                 to_intel_crtc(dport->base.base.crtc);
1933         unsigned long demph_reg_value, preemph_reg_value,
1934                 uniqtranscale_reg_value;
1935         uint8_t train_set = intel_dp->train_set[0];
1936         int port = vlv_dport_to_channel(dport);
1937         int pipe = intel_crtc->pipe;
1938
1939         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1940         case DP_TRAIN_PRE_EMPHASIS_0:
1941                 preemph_reg_value = 0x0004000;
1942                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1943                 case DP_TRAIN_VOLTAGE_SWING_400:
1944                         demph_reg_value = 0x2B405555;
1945                         uniqtranscale_reg_value = 0x552AB83A;
1946                         break;
1947                 case DP_TRAIN_VOLTAGE_SWING_600:
1948                         demph_reg_value = 0x2B404040;
1949                         uniqtranscale_reg_value = 0x5548B83A;
1950                         break;
1951                 case DP_TRAIN_VOLTAGE_SWING_800:
1952                         demph_reg_value = 0x2B245555;
1953                         uniqtranscale_reg_value = 0x5560B83A;
1954                         break;
1955                 case DP_TRAIN_VOLTAGE_SWING_1200:
1956                         demph_reg_value = 0x2B405555;
1957                         uniqtranscale_reg_value = 0x5598DA3A;
1958                         break;
1959                 default:
1960                         return 0;
1961                 }
1962                 break;
1963         case DP_TRAIN_PRE_EMPHASIS_3_5:
1964                 preemph_reg_value = 0x0002000;
1965                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1966                 case DP_TRAIN_VOLTAGE_SWING_400:
1967                         demph_reg_value = 0x2B404040;
1968                         uniqtranscale_reg_value = 0x5552B83A;
1969                         break;
1970                 case DP_TRAIN_VOLTAGE_SWING_600:
1971                         demph_reg_value = 0x2B404848;
1972                         uniqtranscale_reg_value = 0x5580B83A;
1973                         break;
1974                 case DP_TRAIN_VOLTAGE_SWING_800:
1975                         demph_reg_value = 0x2B404040;
1976                         uniqtranscale_reg_value = 0x55ADDA3A;
1977                         break;
1978                 default:
1979                         return 0;
1980                 }
1981                 break;
1982         case DP_TRAIN_PRE_EMPHASIS_6:
1983                 preemph_reg_value = 0x0000000;
1984                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1985                 case DP_TRAIN_VOLTAGE_SWING_400:
1986                         demph_reg_value = 0x2B305555;
1987                         uniqtranscale_reg_value = 0x5570B83A;
1988                         break;
1989                 case DP_TRAIN_VOLTAGE_SWING_600:
1990                         demph_reg_value = 0x2B2B4040;
1991                         uniqtranscale_reg_value = 0x55ADDA3A;
1992                         break;
1993                 default:
1994                         return 0;
1995                 }
1996                 break;
1997         case DP_TRAIN_PRE_EMPHASIS_9_5:
1998                 preemph_reg_value = 0x0006000;
1999                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2000                 case DP_TRAIN_VOLTAGE_SWING_400:
2001                         demph_reg_value = 0x1B405555;
2002                         uniqtranscale_reg_value = 0x55ADDA3A;
2003                         break;
2004                 default:
2005                         return 0;
2006                 }
2007                 break;
2008         default:
2009                 return 0;
2010         }
2011
2012         mutex_lock(&dev_priv->dpio_lock);
2013         vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x00000000);
2014         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL4(port), demph_reg_value);
2015         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL2(port),
2016                          uniqtranscale_reg_value);
2017         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL3(port), 0x0C782040);
2018         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER0(port), 0x00030000);
2019         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
2020         vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x80000000);
2021         mutex_unlock(&dev_priv->dpio_lock);
2022
2023         return 0;
2024 }
2025
2026 static void
2027 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2028 {
2029         uint8_t v = 0;
2030         uint8_t p = 0;
2031         int lane;
2032         uint8_t voltage_max;
2033         uint8_t preemph_max;
2034
2035         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2036                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2037                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2038
2039                 if (this_v > v)
2040                         v = this_v;
2041                 if (this_p > p)
2042                         p = this_p;
2043         }
2044
2045         voltage_max = intel_dp_voltage_max(intel_dp);
2046         if (v >= voltage_max)
2047                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2048
2049         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2050         if (p >= preemph_max)
2051                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2052
2053         for (lane = 0; lane < 4; lane++)
2054                 intel_dp->train_set[lane] = v | p;
2055 }
2056
2057 static uint32_t
2058 intel_gen4_signal_levels(uint8_t train_set)
2059 {
2060         uint32_t        signal_levels = 0;
2061
2062         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2063         case DP_TRAIN_VOLTAGE_SWING_400:
2064         default:
2065                 signal_levels |= DP_VOLTAGE_0_4;
2066                 break;
2067         case DP_TRAIN_VOLTAGE_SWING_600:
2068                 signal_levels |= DP_VOLTAGE_0_6;
2069                 break;
2070         case DP_TRAIN_VOLTAGE_SWING_800:
2071                 signal_levels |= DP_VOLTAGE_0_8;
2072                 break;
2073         case DP_TRAIN_VOLTAGE_SWING_1200:
2074                 signal_levels |= DP_VOLTAGE_1_2;
2075                 break;
2076         }
2077         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2078         case DP_TRAIN_PRE_EMPHASIS_0:
2079         default:
2080                 signal_levels |= DP_PRE_EMPHASIS_0;
2081                 break;
2082         case DP_TRAIN_PRE_EMPHASIS_3_5:
2083                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2084                 break;
2085         case DP_TRAIN_PRE_EMPHASIS_6:
2086                 signal_levels |= DP_PRE_EMPHASIS_6;
2087                 break;
2088         case DP_TRAIN_PRE_EMPHASIS_9_5:
2089                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2090                 break;
2091         }
2092         return signal_levels;
2093 }
2094
2095 /* Gen6's DP voltage swing and pre-emphasis control */
2096 static uint32_t
2097 intel_gen6_edp_signal_levels(uint8_t train_set)
2098 {
2099         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2100                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2101         switch (signal_levels) {
2102         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2103         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2104                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2105         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2106                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2107         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2108         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2109                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2110         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2111         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2112                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2113         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2114         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2115                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2116         default:
2117                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2118                               "0x%x\n", signal_levels);
2119                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2120         }
2121 }
2122
2123 /* Gen7's DP voltage swing and pre-emphasis control */
2124 static uint32_t
2125 intel_gen7_edp_signal_levels(uint8_t train_set)
2126 {
2127         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2128                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2129         switch (signal_levels) {
2130         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2131                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2132         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2133                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2134         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2135                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2136
2137         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2138                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2139         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2140                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2141
2142         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2143                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2144         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2145                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2146
2147         default:
2148                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2149                               "0x%x\n", signal_levels);
2150                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2151         }
2152 }
2153
2154 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2155 static uint32_t
2156 intel_hsw_signal_levels(uint8_t train_set)
2157 {
2158         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2159                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2160         switch (signal_levels) {
2161         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2162                 return DDI_BUF_EMP_400MV_0DB_HSW;
2163         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2164                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2165         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2166                 return DDI_BUF_EMP_400MV_6DB_HSW;
2167         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2168                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2169
2170         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2171                 return DDI_BUF_EMP_600MV_0DB_HSW;
2172         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2173                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2174         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2175                 return DDI_BUF_EMP_600MV_6DB_HSW;
2176
2177         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2178                 return DDI_BUF_EMP_800MV_0DB_HSW;
2179         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2180                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2181         default:
2182                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2183                               "0x%x\n", signal_levels);
2184                 return DDI_BUF_EMP_400MV_0DB_HSW;
2185         }
2186 }
2187
2188 /* Properly updates "DP" with the correct signal levels. */
2189 static void
2190 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2191 {
2192         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2193         enum port port = intel_dig_port->port;
2194         struct drm_device *dev = intel_dig_port->base.base.dev;
2195         uint32_t signal_levels, mask;
2196         uint8_t train_set = intel_dp->train_set[0];
2197
2198         if (HAS_DDI(dev)) {
2199                 signal_levels = intel_hsw_signal_levels(train_set);
2200                 mask = DDI_BUF_EMP_MASK;
2201         } else if (IS_VALLEYVIEW(dev)) {
2202                 signal_levels = intel_vlv_signal_levels(intel_dp);
2203                 mask = 0;
2204         } else if (IS_GEN7(dev) && port == PORT_A) {
2205                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2206                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2207         } else if (IS_GEN6(dev) && port == PORT_A) {
2208                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2209                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2210         } else {
2211                 signal_levels = intel_gen4_signal_levels(train_set);
2212                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2213         }
2214
2215         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2216
2217         *DP = (*DP & ~mask) | signal_levels;
2218 }
2219
2220 static bool
2221 intel_dp_set_link_train(struct intel_dp *intel_dp,
2222                         uint32_t dp_reg_value,
2223                         uint8_t dp_train_pat)
2224 {
2225         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2226         struct drm_device *dev = intel_dig_port->base.base.dev;
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228         enum port port = intel_dig_port->port;
2229         int ret;
2230
2231         if (HAS_DDI(dev)) {
2232                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2233
2234                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2235                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2236                 else
2237                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2238
2239                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2240                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2241                 case DP_TRAINING_PATTERN_DISABLE:
2242                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2243
2244                         break;
2245                 case DP_TRAINING_PATTERN_1:
2246                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2247                         break;
2248                 case DP_TRAINING_PATTERN_2:
2249                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2250                         break;
2251                 case DP_TRAINING_PATTERN_3:
2252                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2253                         break;
2254                 }
2255                 I915_WRITE(DP_TP_CTL(port), temp);
2256
2257         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2258                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
2259
2260                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2261                 case DP_TRAINING_PATTERN_DISABLE:
2262                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
2263                         break;
2264                 case DP_TRAINING_PATTERN_1:
2265                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
2266                         break;
2267                 case DP_TRAINING_PATTERN_2:
2268                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2269                         break;
2270                 case DP_TRAINING_PATTERN_3:
2271                         DRM_ERROR("DP training pattern 3 not supported\n");
2272                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2273                         break;
2274                 }
2275
2276         } else {
2277                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
2278
2279                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2280                 case DP_TRAINING_PATTERN_DISABLE:
2281                         dp_reg_value |= DP_LINK_TRAIN_OFF;
2282                         break;
2283                 case DP_TRAINING_PATTERN_1:
2284                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
2285                         break;
2286                 case DP_TRAINING_PATTERN_2:
2287                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2288                         break;
2289                 case DP_TRAINING_PATTERN_3:
2290                         DRM_ERROR("DP training pattern 3 not supported\n");
2291                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2292                         break;
2293                 }
2294         }
2295
2296         I915_WRITE(intel_dp->output_reg, dp_reg_value);
2297         POSTING_READ(intel_dp->output_reg);
2298
2299         intel_dp_aux_native_write_1(intel_dp,
2300                                     DP_TRAINING_PATTERN_SET,
2301                                     dp_train_pat);
2302
2303         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
2304             DP_TRAINING_PATTERN_DISABLE) {
2305                 ret = intel_dp_aux_native_write(intel_dp,
2306                                                 DP_TRAINING_LANE0_SET,
2307                                                 intel_dp->train_set,
2308                                                 intel_dp->lane_count);
2309                 if (ret != intel_dp->lane_count)
2310                         return false;
2311         }
2312
2313         return true;
2314 }
2315
2316 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2317 {
2318         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2319         struct drm_device *dev = intel_dig_port->base.base.dev;
2320         struct drm_i915_private *dev_priv = dev->dev_private;
2321         enum port port = intel_dig_port->port;
2322         uint32_t val;
2323
2324         if (!HAS_DDI(dev))
2325                 return;
2326
2327         val = I915_READ(DP_TP_CTL(port));
2328         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2329         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2330         I915_WRITE(DP_TP_CTL(port), val);
2331
2332         /*
2333          * On PORT_A we can have only eDP in SST mode. There the only reason
2334          * we need to set idle transmission mode is to work around a HW issue
2335          * where we enable the pipe while not in idle link-training mode.
2336          * In this case there is requirement to wait for a minimum number of
2337          * idle patterns to be sent.
2338          */
2339         if (port == PORT_A)
2340                 return;
2341
2342         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2343                      1))
2344                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2345 }
2346
2347 /* Enable corresponding port and start training pattern 1 */
2348 void
2349 intel_dp_start_link_train(struct intel_dp *intel_dp)
2350 {
2351         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2352         struct drm_device *dev = encoder->dev;
2353         int i;
2354         uint8_t voltage;
2355         int voltage_tries, loop_tries;
2356         uint32_t DP = intel_dp->DP;
2357
2358         if (HAS_DDI(dev))
2359                 intel_ddi_prepare_link_retrain(encoder);
2360
2361         /* Write the link configuration data */
2362         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
2363                                   intel_dp->link_configuration,
2364                                   DP_LINK_CONFIGURATION_SIZE);
2365
2366         DP |= DP_PORT_EN;
2367
2368         memset(intel_dp->train_set, 0, 4);
2369         voltage = 0xff;
2370         voltage_tries = 0;
2371         loop_tries = 0;
2372         for (;;) {
2373                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2374                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2375
2376                 intel_dp_set_signal_levels(intel_dp, &DP);
2377
2378                 /* Set training pattern 1 */
2379                 if (!intel_dp_set_link_train(intel_dp, DP,
2380                                              DP_TRAINING_PATTERN_1 |
2381                                              DP_LINK_SCRAMBLING_DISABLE))
2382                         break;
2383
2384                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2385                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2386                         DRM_ERROR("failed to get link status\n");
2387                         break;
2388                 }
2389
2390                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2391                         DRM_DEBUG_KMS("clock recovery OK\n");
2392                         break;
2393                 }
2394
2395                 /* Check to see if we've tried the max voltage */
2396                 for (i = 0; i < intel_dp->lane_count; i++)
2397                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2398                                 break;
2399                 if (i == intel_dp->lane_count) {
2400                         ++loop_tries;
2401                         if (loop_tries == 5) {
2402                                 DRM_DEBUG_KMS("too many full retries, give up\n");
2403                                 break;
2404                         }
2405                         memset(intel_dp->train_set, 0, 4);
2406                         voltage_tries = 0;
2407                         continue;
2408                 }
2409
2410                 /* Check to see if we've tried the same voltage 5 times */
2411                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2412                         ++voltage_tries;
2413                         if (voltage_tries == 5) {
2414                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
2415                                 break;
2416                         }
2417                 } else
2418                         voltage_tries = 0;
2419                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2420
2421                 /* Compute new intel_dp->train_set as requested by target */
2422                 intel_get_adjust_train(intel_dp, link_status);
2423         }
2424
2425         intel_dp->DP = DP;
2426 }
2427
2428 void
2429 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2430 {
2431         bool channel_eq = false;
2432         int tries, cr_tries;
2433         uint32_t DP = intel_dp->DP;
2434
2435         /* channel equalization */
2436         tries = 0;
2437         cr_tries = 0;
2438         channel_eq = false;
2439         for (;;) {
2440                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2441
2442                 if (cr_tries > 5) {
2443                         DRM_ERROR("failed to train DP, aborting\n");
2444                         intel_dp_link_down(intel_dp);
2445                         break;
2446                 }
2447
2448                 intel_dp_set_signal_levels(intel_dp, &DP);
2449
2450                 /* channel eq pattern */
2451                 if (!intel_dp_set_link_train(intel_dp, DP,
2452                                              DP_TRAINING_PATTERN_2 |
2453                                              DP_LINK_SCRAMBLING_DISABLE))
2454                         break;
2455
2456                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2457                 if (!intel_dp_get_link_status(intel_dp, link_status))
2458                         break;
2459
2460                 /* Make sure clock is still ok */
2461                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2462                         intel_dp_start_link_train(intel_dp);
2463                         cr_tries++;
2464                         continue;
2465                 }
2466
2467                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2468                         channel_eq = true;
2469                         break;
2470                 }
2471
2472                 /* Try 5 times, then try clock recovery if that fails */
2473                 if (tries > 5) {
2474                         intel_dp_link_down(intel_dp);
2475                         intel_dp_start_link_train(intel_dp);
2476                         tries = 0;
2477                         cr_tries++;
2478                         continue;
2479                 }
2480
2481                 /* Compute new intel_dp->train_set as requested by target */
2482                 intel_get_adjust_train(intel_dp, link_status);
2483                 ++tries;
2484         }
2485
2486         intel_dp_set_idle_link_train(intel_dp);
2487
2488         intel_dp->DP = DP;
2489
2490         if (channel_eq)
2491                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2492
2493 }
2494
2495 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2496 {
2497         intel_dp_set_link_train(intel_dp, intel_dp->DP,
2498                                 DP_TRAINING_PATTERN_DISABLE);
2499 }
2500
2501 static void
2502 intel_dp_link_down(struct intel_dp *intel_dp)
2503 {
2504         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2505         enum port port = intel_dig_port->port;
2506         struct drm_device *dev = intel_dig_port->base.base.dev;
2507         struct drm_i915_private *dev_priv = dev->dev_private;
2508         struct intel_crtc *intel_crtc =
2509                 to_intel_crtc(intel_dig_port->base.base.crtc);
2510         uint32_t DP = intel_dp->DP;
2511
2512         /*
2513          * DDI code has a strict mode set sequence and we should try to respect
2514          * it, otherwise we might hang the machine in many different ways. So we
2515          * really should be disabling the port only on a complete crtc_disable
2516          * sequence. This function is just called under two conditions on DDI
2517          * code:
2518          * - Link train failed while doing crtc_enable, and on this case we
2519          *   really should respect the mode set sequence and wait for a
2520          *   crtc_disable.
2521          * - Someone turned the monitor off and intel_dp_check_link_status
2522          *   called us. We don't need to disable the whole port on this case, so
2523          *   when someone turns the monitor on again,
2524          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2525          *   train.
2526          */
2527         if (HAS_DDI(dev))
2528                 return;
2529
2530         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2531                 return;
2532
2533         DRM_DEBUG_KMS("\n");
2534
2535         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2536                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2537                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2538         } else {
2539                 DP &= ~DP_LINK_TRAIN_MASK;
2540                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2541         }
2542         POSTING_READ(intel_dp->output_reg);
2543
2544         /* We don't really know why we're doing this */
2545         intel_wait_for_vblank(dev, intel_crtc->pipe);
2546
2547         if (HAS_PCH_IBX(dev) &&
2548             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2549                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2550
2551                 /* Hardware workaround: leaving our transcoder select
2552                  * set to transcoder B while it's off will prevent the
2553                  * corresponding HDMI output on transcoder A.
2554                  *
2555                  * Combine this with another hardware workaround:
2556                  * transcoder select bit can only be cleared while the
2557                  * port is enabled.
2558                  */
2559                 DP &= ~DP_PIPEB_SELECT;
2560                 I915_WRITE(intel_dp->output_reg, DP);
2561
2562                 /* Changes to enable or select take place the vblank
2563                  * after being written.
2564                  */
2565                 if (WARN_ON(crtc == NULL)) {
2566                         /* We should never try to disable a port without a crtc
2567                          * attached. For paranoia keep the code around for a
2568                          * bit. */
2569                         POSTING_READ(intel_dp->output_reg);
2570                         msleep(50);
2571                 } else
2572                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2573         }
2574
2575         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2576         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2577         POSTING_READ(intel_dp->output_reg);
2578         msleep(intel_dp->panel_power_down_delay);
2579 }
2580
2581 static bool
2582 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2583 {
2584         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2585
2586         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2587                                            sizeof(intel_dp->dpcd)) == 0)
2588                 return false; /* aux transfer failed */
2589
2590         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2591                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2592         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2593
2594         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2595                 return false; /* DPCD not present */
2596
2597         /* Check if the panel supports PSR */
2598         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2599         intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2600                                        intel_dp->psr_dpcd,
2601                                        sizeof(intel_dp->psr_dpcd));
2602         if (is_edp_psr(intel_dp))
2603                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2604         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2605               DP_DWN_STRM_PORT_PRESENT))
2606                 return true; /* native DP sink */
2607
2608         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2609                 return true; /* no per-port downstream info */
2610
2611         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2612                                            intel_dp->downstream_ports,
2613                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2614                 return false; /* downstream port status fetch failed */
2615
2616         return true;
2617 }
2618
2619 static void
2620 intel_dp_probe_oui(struct intel_dp *intel_dp)
2621 {
2622         u8 buf[3];
2623
2624         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2625                 return;
2626
2627         ironlake_edp_panel_vdd_on(intel_dp);
2628
2629         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2630                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2631                               buf[0], buf[1], buf[2]);
2632
2633         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2634                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2635                               buf[0], buf[1], buf[2]);
2636
2637         ironlake_edp_panel_vdd_off(intel_dp, false);
2638 }
2639
2640 static bool
2641 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2642 {
2643         int ret;
2644
2645         ret = intel_dp_aux_native_read_retry(intel_dp,
2646                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2647                                              sink_irq_vector, 1);
2648         if (!ret)
2649                 return false;
2650
2651         return true;
2652 }
2653
2654 static void
2655 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2656 {
2657         /* NAK by default */
2658         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2659 }
2660
2661 /*
2662  * According to DP spec
2663  * 5.1.2:
2664  *  1. Read DPCD
2665  *  2. Configure link according to Receiver Capabilities
2666  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2667  *  4. Check link status on receipt of hot-plug interrupt
2668  */
2669
2670 void
2671 intel_dp_check_link_status(struct intel_dp *intel_dp)
2672 {
2673         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2674         u8 sink_irq_vector;
2675         u8 link_status[DP_LINK_STATUS_SIZE];
2676
2677         if (!intel_encoder->connectors_active)
2678                 return;
2679
2680         if (WARN_ON(!intel_encoder->base.crtc))
2681                 return;
2682
2683         /* Try to read receiver status if the link appears to be up */
2684         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2685                 intel_dp_link_down(intel_dp);
2686                 return;
2687         }
2688
2689         /* Now read the DPCD to see if it's actually running */
2690         if (!intel_dp_get_dpcd(intel_dp)) {
2691                 intel_dp_link_down(intel_dp);
2692                 return;
2693         }
2694
2695         /* Try to read the source of the interrupt */
2696         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2697             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2698                 /* Clear interrupt source */
2699                 intel_dp_aux_native_write_1(intel_dp,
2700                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2701                                             sink_irq_vector);
2702
2703                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2704                         intel_dp_handle_test_request(intel_dp);
2705                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2706                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2707         }
2708
2709         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2710                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2711                               drm_get_encoder_name(&intel_encoder->base));
2712                 intel_dp_start_link_train(intel_dp);
2713                 intel_dp_complete_link_train(intel_dp);
2714                 intel_dp_stop_link_train(intel_dp);
2715         }
2716 }
2717
2718 /* XXX this is probably wrong for multiple downstream ports */
2719 static enum drm_connector_status
2720 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2721 {
2722         uint8_t *dpcd = intel_dp->dpcd;
2723         bool hpd;
2724         uint8_t type;
2725
2726         if (!intel_dp_get_dpcd(intel_dp))
2727                 return connector_status_disconnected;
2728
2729         /* if there's no downstream port, we're done */
2730         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2731                 return connector_status_connected;
2732
2733         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2734         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2735         if (hpd) {
2736                 uint8_t reg;
2737                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2738                                                     &reg, 1))
2739                         return connector_status_unknown;
2740                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2741                                               : connector_status_disconnected;
2742         }
2743
2744         /* If no HPD, poke DDC gently */
2745         if (drm_probe_ddc(&intel_dp->adapter))
2746                 return connector_status_connected;
2747
2748         /* Well we tried, say unknown for unreliable port types */
2749         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2750         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2751                 return connector_status_unknown;
2752
2753         /* Anything else is out of spec, warn and ignore */
2754         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2755         return connector_status_disconnected;
2756 }
2757
2758 static enum drm_connector_status
2759 ironlake_dp_detect(struct intel_dp *intel_dp)
2760 {
2761         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2762         struct drm_i915_private *dev_priv = dev->dev_private;
2763         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2764         enum drm_connector_status status;
2765
2766         /* Can't disconnect eDP, but you can close the lid... */
2767         if (is_edp(intel_dp)) {
2768                 status = intel_panel_detect(dev);
2769                 if (status == connector_status_unknown)
2770                         status = connector_status_connected;
2771                 return status;
2772         }
2773
2774         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2775                 return connector_status_disconnected;
2776
2777         return intel_dp_detect_dpcd(intel_dp);
2778 }
2779
2780 static enum drm_connector_status
2781 g4x_dp_detect(struct intel_dp *intel_dp)
2782 {
2783         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2784         struct drm_i915_private *dev_priv = dev->dev_private;
2785         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2786         uint32_t bit;
2787
2788         /* Can't disconnect eDP, but you can close the lid... */
2789         if (is_edp(intel_dp)) {
2790                 enum drm_connector_status status;
2791
2792                 status = intel_panel_detect(dev);
2793                 if (status == connector_status_unknown)
2794                         status = connector_status_connected;
2795                 return status;
2796         }
2797
2798         switch (intel_dig_port->port) {
2799         case PORT_B:
2800                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2801                 break;
2802         case PORT_C:
2803                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2804                 break;
2805         case PORT_D:
2806                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2807                 break;
2808         default:
2809                 return connector_status_unknown;
2810         }
2811
2812         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2813                 return connector_status_disconnected;
2814
2815         return intel_dp_detect_dpcd(intel_dp);
2816 }
2817
2818 static struct edid *
2819 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2820 {
2821         struct intel_connector *intel_connector = to_intel_connector(connector);
2822
2823         /* use cached edid if we have one */
2824         if (intel_connector->edid) {
2825                 struct edid *edid;
2826                 int size;
2827
2828                 /* invalid edid */
2829                 if (IS_ERR(intel_connector->edid))
2830                         return NULL;
2831
2832                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2833                 edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
2834                 if (!edid)
2835                         return NULL;
2836
2837                 return edid;
2838         }
2839
2840         return drm_get_edid(connector, adapter);
2841 }
2842
2843 static int
2844 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2845 {
2846         struct intel_connector *intel_connector = to_intel_connector(connector);
2847
2848         /* use cached edid if we have one */
2849         if (intel_connector->edid) {
2850                 /* invalid edid */
2851                 if (IS_ERR(intel_connector->edid))
2852                         return 0;
2853
2854                 return intel_connector_update_modes(connector,
2855                                                     intel_connector->edid);
2856         }
2857
2858         return intel_ddc_get_modes(connector, adapter);
2859 }
2860
2861 static enum drm_connector_status
2862 intel_dp_detect(struct drm_connector *connector, bool force)
2863 {
2864         struct intel_dp *intel_dp = intel_attached_dp(connector);
2865         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2866         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2867         struct drm_device *dev = connector->dev;
2868         enum drm_connector_status status;
2869         struct edid *edid = NULL;
2870
2871         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
2872                       connector->base.id, drm_get_connector_name(connector));
2873
2874         intel_dp->has_audio = false;
2875
2876         if (HAS_PCH_SPLIT(dev))
2877                 status = ironlake_dp_detect(intel_dp);
2878         else
2879                 status = g4x_dp_detect(intel_dp);
2880
2881         if (status != connector_status_connected)
2882                 return status;
2883
2884         intel_dp_probe_oui(intel_dp);
2885
2886         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2887                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2888         } else {
2889                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2890                 if (edid) {
2891                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2892                         kfree(edid);
2893                 }
2894         }
2895
2896         if (intel_encoder->type != INTEL_OUTPUT_EDP)
2897                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2898         return connector_status_connected;
2899 }
2900
2901 static int intel_dp_get_modes(struct drm_connector *connector)
2902 {
2903         struct intel_dp *intel_dp = intel_attached_dp(connector);
2904         struct intel_connector *intel_connector = to_intel_connector(connector);
2905         struct drm_device *dev = connector->dev;
2906         int ret;
2907
2908         /* We should parse the EDID data and find out if it has an audio sink
2909          */
2910
2911         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2912         if (ret)
2913                 return ret;
2914
2915         /* if eDP has no EDID, fall back to fixed mode */
2916         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2917                 struct drm_display_mode *mode;
2918                 mode = drm_mode_duplicate(dev,
2919                                           intel_connector->panel.fixed_mode);
2920                 if (mode) {
2921                         drm_mode_probed_add(connector, mode);
2922                         return 1;
2923                 }
2924         }
2925         return 0;
2926 }
2927
2928 static bool
2929 intel_dp_detect_audio(struct drm_connector *connector)
2930 {
2931         struct intel_dp *intel_dp = intel_attached_dp(connector);
2932         struct edid *edid;
2933         bool has_audio = false;
2934
2935         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2936         if (edid) {
2937                 has_audio = drm_detect_monitor_audio(edid);
2938                 kfree(edid);
2939         }
2940
2941         return has_audio;
2942 }
2943
2944 static int
2945 intel_dp_set_property(struct drm_connector *connector,
2946                       struct drm_property *property,
2947                       uint64_t val)
2948 {
2949         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2950         struct intel_connector *intel_connector = to_intel_connector(connector);
2951         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2952         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2953         int ret;
2954
2955         ret = drm_object_property_set_value(&connector->base, property, val);
2956         if (ret)
2957                 return ret;
2958
2959         if (property == dev_priv->force_audio_property) {
2960                 int i = val;
2961                 bool has_audio;
2962
2963                 if (i == intel_dp->force_audio)
2964                         return 0;
2965
2966                 intel_dp->force_audio = i;
2967
2968                 if (i == HDMI_AUDIO_AUTO)
2969                         has_audio = intel_dp_detect_audio(connector);
2970                 else
2971                         has_audio = (i == HDMI_AUDIO_ON);
2972
2973                 if (has_audio == intel_dp->has_audio)
2974                         return 0;
2975
2976                 intel_dp->has_audio = has_audio;
2977                 goto done;
2978         }
2979
2980         if (property == dev_priv->broadcast_rgb_property) {
2981                 bool old_auto = intel_dp->color_range_auto;
2982                 uint32_t old_range = intel_dp->color_range;
2983
2984                 switch (val) {
2985                 case INTEL_BROADCAST_RGB_AUTO:
2986                         intel_dp->color_range_auto = true;
2987                         break;
2988                 case INTEL_BROADCAST_RGB_FULL:
2989                         intel_dp->color_range_auto = false;
2990                         intel_dp->color_range = 0;
2991                         break;
2992                 case INTEL_BROADCAST_RGB_LIMITED:
2993                         intel_dp->color_range_auto = false;
2994                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
2995                         break;
2996                 default:
2997                         return -EINVAL;
2998                 }
2999
3000                 if (old_auto == intel_dp->color_range_auto &&
3001                     old_range == intel_dp->color_range)
3002                         return 0;
3003
3004                 goto done;
3005         }
3006
3007         if (is_edp(intel_dp) &&
3008             property == connector->dev->mode_config.scaling_mode_property) {
3009                 if (val == DRM_MODE_SCALE_NONE) {
3010                         DRM_DEBUG_KMS("no scaling not supported\n");
3011                         return -EINVAL;
3012                 }
3013
3014                 if (intel_connector->panel.fitting_mode == val) {
3015                         /* the eDP scaling property is not changed */
3016                         return 0;
3017                 }
3018                 intel_connector->panel.fitting_mode = val;
3019
3020                 goto done;
3021         }
3022
3023         return -EINVAL;
3024
3025 done:
3026         if (intel_encoder->base.crtc)
3027                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3028
3029         return 0;
3030 }
3031
3032 static void
3033 intel_dp_connector_destroy(struct drm_connector *connector)
3034 {
3035         struct intel_connector *intel_connector = to_intel_connector(connector);
3036
3037         if (!IS_ERR_OR_NULL(intel_connector->edid))
3038                 kfree(intel_connector->edid);
3039
3040         /* Can't call is_edp() since the encoder may have been destroyed
3041          * already. */
3042         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3043                 intel_panel_fini(&intel_connector->panel);
3044
3045         drm_sysfs_connector_remove(connector);
3046         drm_connector_cleanup(connector);
3047         kfree(connector);
3048 }
3049
3050 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3051 {
3052         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3053         struct intel_dp *intel_dp = &intel_dig_port->dp;
3054         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3055
3056         i2c_del_adapter(&intel_dp->adapter);
3057         drm_encoder_cleanup(encoder);
3058         if (is_edp(intel_dp)) {
3059                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3060                 mutex_lock(&dev->mode_config.mutex);
3061                 ironlake_panel_vdd_off_sync(intel_dp);
3062                 mutex_unlock(&dev->mode_config.mutex);
3063         }
3064         kfree(intel_dig_port);
3065 }
3066
3067 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3068         .dpms = intel_connector_dpms,
3069         .detect = intel_dp_detect,
3070         .fill_modes = drm_helper_probe_single_connector_modes,
3071         .set_property = intel_dp_set_property,
3072         .destroy = intel_dp_connector_destroy,
3073 };
3074
3075 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3076         .get_modes = intel_dp_get_modes,
3077         .mode_valid = intel_dp_mode_valid,
3078         .best_encoder = intel_best_encoder,
3079 };
3080
3081 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3082         .destroy = intel_dp_encoder_destroy,
3083 };
3084
3085 static void
3086 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3087 {
3088         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3089
3090         intel_dp_check_link_status(intel_dp);
3091 }
3092
3093 /* Return which DP Port should be selected for Transcoder DP control */
3094 int
3095 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3096 {
3097         struct drm_device *dev = crtc->dev;
3098         struct intel_encoder *intel_encoder;
3099         struct intel_dp *intel_dp;
3100
3101         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3102                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3103
3104                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3105                     intel_encoder->type == INTEL_OUTPUT_EDP)
3106                         return intel_dp->output_reg;
3107         }
3108
3109         return -1;
3110 }
3111
3112 /* check the VBT to see whether the eDP is on DP-D port */
3113 bool intel_dpd_is_edp(struct drm_device *dev)
3114 {
3115         struct drm_i915_private *dev_priv = dev->dev_private;
3116         struct child_device_config *p_child;
3117         int i;
3118
3119         if (!dev_priv->vbt.child_dev_num)
3120                 return false;
3121
3122         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3123                 p_child = dev_priv->vbt.child_dev + i;
3124
3125                 if (p_child->dvo_port == PORT_IDPD &&
3126                     p_child->device_type == DEVICE_TYPE_eDP)
3127                         return true;
3128         }
3129         return false;
3130 }
3131
3132 static void
3133 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3134 {
3135         struct intel_connector *intel_connector = to_intel_connector(connector);
3136
3137         intel_attach_force_audio_property(connector);
3138         intel_attach_broadcast_rgb_property(connector);
3139         intel_dp->color_range_auto = true;
3140
3141         if (is_edp(intel_dp)) {
3142                 drm_mode_create_scaling_mode_property(connector->dev);
3143                 drm_object_attach_property(
3144                         &connector->base,
3145                         connector->dev->mode_config.scaling_mode_property,
3146                         DRM_MODE_SCALE_ASPECT);
3147                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3148         }
3149 }
3150
3151 static void
3152 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3153                                     struct intel_dp *intel_dp,
3154                                     struct edp_power_seq *out)
3155 {
3156         struct drm_i915_private *dev_priv = dev->dev_private;
3157         struct edp_power_seq cur, vbt, spec, final;
3158         u32 pp_on, pp_off, pp_div, pp;
3159         int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3160
3161         if (HAS_PCH_SPLIT(dev)) {
3162                 pp_control_reg = PCH_PP_CONTROL;
3163                 pp_on_reg = PCH_PP_ON_DELAYS;
3164                 pp_off_reg = PCH_PP_OFF_DELAYS;
3165                 pp_div_reg = PCH_PP_DIVISOR;
3166         } else {
3167                 pp_control_reg = PIPEA_PP_CONTROL;
3168                 pp_on_reg = PIPEA_PP_ON_DELAYS;
3169                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3170                 pp_div_reg = PIPEA_PP_DIVISOR;
3171         }
3172
3173         /* Workaround: Need to write PP_CONTROL with the unlock key as
3174          * the very first thing. */
3175         pp = ironlake_get_pp_control(intel_dp);
3176         I915_WRITE(pp_control_reg, pp);
3177
3178         pp_on = I915_READ(pp_on_reg);
3179         pp_off = I915_READ(pp_off_reg);
3180         pp_div = I915_READ(pp_div_reg);
3181
3182         /* Pull timing values out of registers */
3183         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3184                 PANEL_POWER_UP_DELAY_SHIFT;
3185
3186         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3187                 PANEL_LIGHT_ON_DELAY_SHIFT;
3188
3189         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3190                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3191
3192         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3193                 PANEL_POWER_DOWN_DELAY_SHIFT;
3194
3195         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3196                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3197
3198         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3199                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3200
3201         vbt = dev_priv->vbt.edp_pps;
3202
3203         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3204          * our hw here, which are all in 100usec. */
3205         spec.t1_t3 = 210 * 10;
3206         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3207         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3208         spec.t10 = 500 * 10;
3209         /* This one is special and actually in units of 100ms, but zero
3210          * based in the hw (so we need to add 100 ms). But the sw vbt
3211          * table multiplies it with 1000 to make it in units of 100usec,
3212          * too. */
3213         spec.t11_t12 = (510 + 100) * 10;
3214
3215         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3216                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3217
3218         /* Use the max of the register settings and vbt. If both are
3219          * unset, fall back to the spec limits. */
3220 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3221                                        spec.field : \
3222                                        max(cur.field, vbt.field))
3223         assign_final(t1_t3);
3224         assign_final(t8);
3225         assign_final(t9);
3226         assign_final(t10);
3227         assign_final(t11_t12);
3228 #undef assign_final
3229
3230 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3231         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3232         intel_dp->backlight_on_delay = get_delay(t8);
3233         intel_dp->backlight_off_delay = get_delay(t9);
3234         intel_dp->panel_power_down_delay = get_delay(t10);
3235         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3236 #undef get_delay
3237
3238         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3239                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3240                       intel_dp->panel_power_cycle_delay);
3241
3242         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3243                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3244
3245         if (out)
3246                 *out = final;
3247 }
3248
3249 static void
3250 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3251                                               struct intel_dp *intel_dp,
3252                                               struct edp_power_seq *seq)
3253 {
3254         struct drm_i915_private *dev_priv = dev->dev_private;
3255         u32 pp_on, pp_off, pp_div, port_sel = 0;
3256         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3257         int pp_on_reg, pp_off_reg, pp_div_reg;
3258
3259         if (HAS_PCH_SPLIT(dev)) {
3260                 pp_on_reg = PCH_PP_ON_DELAYS;
3261                 pp_off_reg = PCH_PP_OFF_DELAYS;
3262                 pp_div_reg = PCH_PP_DIVISOR;
3263         } else {
3264                 pp_on_reg = PIPEA_PP_ON_DELAYS;
3265                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3266                 pp_div_reg = PIPEA_PP_DIVISOR;
3267         }
3268
3269         /* And finally store the new values in the power sequencer. */
3270         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3271                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3272         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3273                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3274         /* Compute the divisor for the pp clock, simply match the Bspec
3275          * formula. */
3276         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3277         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3278                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3279
3280         /* Haswell doesn't have any port selection bits for the panel
3281          * power sequencer any more. */
3282         if (IS_VALLEYVIEW(dev)) {
3283                 port_sel = I915_READ(pp_on_reg) & 0xc0000000;
3284         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3285                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3286                         port_sel = PANEL_POWER_PORT_DP_A;
3287                 else
3288                         port_sel = PANEL_POWER_PORT_DP_D;
3289         }
3290
3291         pp_on |= port_sel;
3292
3293         I915_WRITE(pp_on_reg, pp_on);
3294         I915_WRITE(pp_off_reg, pp_off);
3295         I915_WRITE(pp_div_reg, pp_div);
3296
3297         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3298                       I915_READ(pp_on_reg),
3299                       I915_READ(pp_off_reg),
3300                       I915_READ(pp_div_reg));
3301 }
3302
3303 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3304                                      struct intel_connector *intel_connector)
3305 {
3306         struct drm_connector *connector = &intel_connector->base;
3307         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3308         struct drm_device *dev = intel_dig_port->base.base.dev;
3309         struct drm_i915_private *dev_priv = dev->dev_private;
3310         struct drm_display_mode *fixed_mode = NULL;
3311         struct edp_power_seq power_seq = { 0 };
3312         bool has_dpcd;
3313         struct drm_display_mode *scan;
3314         struct edid *edid;
3315
3316         if (!is_edp(intel_dp))
3317                 return true;
3318
3319         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3320
3321         /* Cache DPCD and EDID for edp. */
3322         ironlake_edp_panel_vdd_on(intel_dp);
3323         has_dpcd = intel_dp_get_dpcd(intel_dp);
3324         ironlake_edp_panel_vdd_off(intel_dp, false);
3325
3326         if (has_dpcd) {
3327                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3328                         dev_priv->no_aux_handshake =
3329                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3330                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3331         } else {
3332                 /* if this fails, presume the device is a ghost */
3333                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3334                 return false;
3335         }
3336
3337         /* We now know it's not a ghost, init power sequence regs. */
3338         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3339                                                       &power_seq);
3340
3341         ironlake_edp_panel_vdd_on(intel_dp);
3342         edid = drm_get_edid(connector, &intel_dp->adapter);
3343         if (edid) {
3344                 if (drm_add_edid_modes(connector, edid)) {
3345                         drm_mode_connector_update_edid_property(connector,
3346                                                                 edid);
3347                         drm_edid_to_eld(connector, edid);
3348                 } else {
3349                         kfree(edid);
3350                         edid = ERR_PTR(-EINVAL);
3351                 }
3352         } else {
3353                 edid = ERR_PTR(-ENOENT);
3354         }
3355         intel_connector->edid = edid;
3356
3357         /* prefer fixed mode from EDID if available */
3358         list_for_each_entry(scan, &connector->probed_modes, head) {
3359                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3360                         fixed_mode = drm_mode_duplicate(dev, scan);
3361                         break;
3362                 }
3363         }
3364
3365         /* fallback to VBT if available for eDP */
3366         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3367                 fixed_mode = drm_mode_duplicate(dev,
3368                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3369                 if (fixed_mode)
3370                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3371         }
3372
3373         ironlake_edp_panel_vdd_off(intel_dp, false);
3374
3375         intel_panel_init(&intel_connector->panel, fixed_mode);
3376         intel_panel_setup_backlight(connector);
3377
3378         return true;
3379 }
3380
3381 bool
3382 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3383                         struct intel_connector *intel_connector)
3384 {
3385         struct drm_connector *connector = &intel_connector->base;
3386         struct intel_dp *intel_dp = &intel_dig_port->dp;
3387         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3388         struct drm_device *dev = intel_encoder->base.dev;
3389         struct drm_i915_private *dev_priv = dev->dev_private;
3390         enum port port = intel_dig_port->port;
3391         const char *name = NULL;
3392         int type, error;
3393
3394         /* Preserve the current hw state. */
3395         intel_dp->DP = I915_READ(intel_dp->output_reg);
3396         intel_dp->attached_connector = intel_connector;
3397
3398         type = DRM_MODE_CONNECTOR_DisplayPort;
3399         /*
3400          * FIXME : We need to initialize built-in panels before external panels.
3401          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3402          */
3403         switch (port) {
3404         case PORT_A:
3405                 type = DRM_MODE_CONNECTOR_eDP;
3406                 break;
3407         case PORT_C:
3408                 if (IS_VALLEYVIEW(dev))
3409                         type = DRM_MODE_CONNECTOR_eDP;
3410                 break;
3411         case PORT_D:
3412                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3413                         type = DRM_MODE_CONNECTOR_eDP;
3414                 break;
3415         default:        /* silence GCC warning */
3416                 break;
3417         }
3418
3419         /*
3420          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3421          * for DP the encoder type can be set by the caller to
3422          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3423          */
3424         if (type == DRM_MODE_CONNECTOR_eDP)
3425                 intel_encoder->type = INTEL_OUTPUT_EDP;
3426
3427         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3428                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3429                         port_name(port));
3430
3431         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3432         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3433
3434         connector->interlace_allowed = true;
3435         connector->doublescan_allowed = 0;
3436
3437         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3438                           ironlake_panel_vdd_work);
3439
3440         intel_connector_attach_encoder(intel_connector, intel_encoder);
3441         drm_sysfs_connector_add(connector);
3442
3443         if (HAS_DDI(dev))
3444                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3445         else
3446                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3447
3448         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3449         if (HAS_DDI(dev)) {
3450                 switch (intel_dig_port->port) {
3451                 case PORT_A:
3452                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3453                         break;
3454                 case PORT_B:
3455                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3456                         break;
3457                 case PORT_C:
3458                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3459                         break;
3460                 case PORT_D:
3461                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3462                         break;
3463                 default:
3464                         BUG();
3465                 }
3466         }
3467
3468         /* Set up the DDC bus. */
3469         switch (port) {
3470         case PORT_A:
3471                 intel_encoder->hpd_pin = HPD_PORT_A;
3472                 name = "DPDDC-A";
3473                 break;
3474         case PORT_B:
3475                 intel_encoder->hpd_pin = HPD_PORT_B;
3476                 name = "DPDDC-B";
3477                 break;
3478         case PORT_C:
3479                 intel_encoder->hpd_pin = HPD_PORT_C;
3480                 name = "DPDDC-C";
3481                 break;
3482         case PORT_D:
3483                 intel_encoder->hpd_pin = HPD_PORT_D;
3484                 name = "DPDDC-D";
3485                 break;
3486         default:
3487                 BUG();
3488         }
3489
3490         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3491         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3492              error, port_name(port));
3493
3494         intel_dp->psr_setup_done = false;
3495
3496         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3497                 i2c_del_adapter(&intel_dp->adapter);
3498                 if (is_edp(intel_dp)) {
3499                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3500                         mutex_lock(&dev->mode_config.mutex);
3501                         ironlake_panel_vdd_off_sync(intel_dp);
3502                         mutex_unlock(&dev->mode_config.mutex);
3503                 }
3504                 drm_sysfs_connector_remove(connector);
3505                 drm_connector_cleanup(connector);
3506                 return false;
3507         }
3508
3509         intel_dp_add_properties(intel_dp, connector);
3510
3511         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3512          * 0xd.  Failure to do so will result in spurious interrupts being
3513          * generated on the port when a cable is not attached.
3514          */
3515         if (IS_G4X(dev) && !IS_GM45(dev)) {
3516                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3517                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3518         }
3519
3520         return true;
3521 }
3522
3523 void
3524 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3525 {
3526         struct intel_digital_port *intel_dig_port;
3527         struct intel_encoder *intel_encoder;
3528         struct drm_encoder *encoder;
3529         struct intel_connector *intel_connector;
3530
3531         intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
3532         if (!intel_dig_port)
3533                 return;
3534
3535         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
3536         if (!intel_connector) {
3537                 kfree(intel_dig_port);
3538                 return;
3539         }
3540
3541         intel_encoder = &intel_dig_port->base;
3542         encoder = &intel_encoder->base;
3543
3544         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3545                          DRM_MODE_ENCODER_TMDS);
3546
3547         intel_encoder->compute_config = intel_dp_compute_config;
3548         intel_encoder->mode_set = intel_dp_mode_set;
3549         intel_encoder->disable = intel_disable_dp;
3550         intel_encoder->post_disable = intel_post_disable_dp;
3551         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3552         intel_encoder->get_config = intel_dp_get_config;
3553         if (IS_VALLEYVIEW(dev)) {
3554                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3555                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3556                 intel_encoder->enable = vlv_enable_dp;
3557         } else {
3558                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3559                 intel_encoder->enable = g4x_enable_dp;
3560         }
3561
3562         intel_dig_port->port = port;
3563         intel_dig_port->dp.output_reg = output_reg;
3564
3565         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3566         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3567         intel_encoder->cloneable = false;
3568         intel_encoder->hot_plug = intel_dp_hot_plug;
3569
3570         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3571                 drm_encoder_cleanup(encoder);
3572                 kfree(intel_dig_port);
3573                 kfree(intel_connector);
3574         }
3575 }