]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Acquire dpio_lock for VLV sideband programming in DP/HDMI
[~andy/linux] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 /**
42  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43  * @intel_dp: DP struct
44  *
45  * If a CPU or PCH DP output is attached to an eDP panel, this function
46  * will return true, and false otherwise.
47  */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
56 {
57         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
58
59         return intel_dig_port->base.base.dev;
60 }
61
62 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
63 {
64         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
65 }
66
67 static void intel_dp_link_down(struct intel_dp *intel_dp);
68
69 static int
70 intel_dp_max_link_bw(struct intel_dp *intel_dp)
71 {
72         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
73
74         switch (max_link_bw) {
75         case DP_LINK_BW_1_62:
76         case DP_LINK_BW_2_7:
77                 break;
78         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
79                 max_link_bw = DP_LINK_BW_2_7;
80                 break;
81         default:
82                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
83                      max_link_bw);
84                 max_link_bw = DP_LINK_BW_1_62;
85                 break;
86         }
87         return max_link_bw;
88 }
89
90 /*
91  * The units on the numbers in the next two are... bizarre.  Examples will
92  * make it clearer; this one parallels an example in the eDP spec.
93  *
94  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
95  *
96  *     270000 * 1 * 8 / 10 == 216000
97  *
98  * The actual data capacity of that configuration is 2.16Gbit/s, so the
99  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
100  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
101  * 119000.  At 18bpp that's 2142000 kilobits per second.
102  *
103  * Thus the strange-looking division by 10 in intel_dp_link_required, to
104  * get the result in decakilobits instead of kilobits.
105  */
106
107 static int
108 intel_dp_link_required(int pixel_clock, int bpp)
109 {
110         return (pixel_clock * bpp + 9) / 10;
111 }
112
113 static int
114 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
115 {
116         return (max_link_clock * max_lanes * 8) / 10;
117 }
118
119 static int
120 intel_dp_mode_valid(struct drm_connector *connector,
121                     struct drm_display_mode *mode)
122 {
123         struct intel_dp *intel_dp = intel_attached_dp(connector);
124         struct intel_connector *intel_connector = to_intel_connector(connector);
125         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
126         int target_clock = mode->clock;
127         int max_rate, mode_rate, max_lanes, max_link_clock;
128
129         if (is_edp(intel_dp) && fixed_mode) {
130                 if (mode->hdisplay > fixed_mode->hdisplay)
131                         return MODE_PANEL;
132
133                 if (mode->vdisplay > fixed_mode->vdisplay)
134                         return MODE_PANEL;
135
136                 target_clock = fixed_mode->clock;
137         }
138
139         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
140         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
141
142         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
143         mode_rate = intel_dp_link_required(target_clock, 18);
144
145         if (mode_rate > max_rate)
146                 return MODE_CLOCK_HIGH;
147
148         if (mode->clock < 10000)
149                 return MODE_CLOCK_LOW;
150
151         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
152                 return MODE_H_ILLEGAL;
153
154         return MODE_OK;
155 }
156
157 static uint32_t
158 pack_aux(uint8_t *src, int src_bytes)
159 {
160         int     i;
161         uint32_t v = 0;
162
163         if (src_bytes > 4)
164                 src_bytes = 4;
165         for (i = 0; i < src_bytes; i++)
166                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
167         return v;
168 }
169
170 static void
171 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
172 {
173         int i;
174         if (dst_bytes > 4)
175                 dst_bytes = 4;
176         for (i = 0; i < dst_bytes; i++)
177                 dst[i] = src >> ((3-i) * 8);
178 }
179
180 /* hrawclock is 1/4 the FSB frequency */
181 static int
182 intel_hrawclk(struct drm_device *dev)
183 {
184         struct drm_i915_private *dev_priv = dev->dev_private;
185         uint32_t clkcfg;
186
187         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188         if (IS_VALLEYVIEW(dev))
189                 return 200;
190
191         clkcfg = I915_READ(CLKCFG);
192         switch (clkcfg & CLKCFG_FSB_MASK) {
193         case CLKCFG_FSB_400:
194                 return 100;
195         case CLKCFG_FSB_533:
196                 return 133;
197         case CLKCFG_FSB_667:
198                 return 166;
199         case CLKCFG_FSB_800:
200                 return 200;
201         case CLKCFG_FSB_1067:
202                 return 266;
203         case CLKCFG_FSB_1333:
204                 return 333;
205         /* these two are just a guess; one of them might be right */
206         case CLKCFG_FSB_1600:
207         case CLKCFG_FSB_1600_ALT:
208                 return 400;
209         default:
210                 return 133;
211         }
212 }
213
214 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
215 {
216         struct drm_device *dev = intel_dp_to_dev(intel_dp);
217         struct drm_i915_private *dev_priv = dev->dev_private;
218         u32 pp_stat_reg;
219
220         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
221         return (I915_READ(pp_stat_reg) & PP_ON) != 0;
222 }
223
224 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
225 {
226         struct drm_device *dev = intel_dp_to_dev(intel_dp);
227         struct drm_i915_private *dev_priv = dev->dev_private;
228         u32 pp_ctrl_reg;
229
230         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
231         return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
232 }
233
234 static void
235 intel_dp_check_edp(struct intel_dp *intel_dp)
236 {
237         struct drm_device *dev = intel_dp_to_dev(intel_dp);
238         struct drm_i915_private *dev_priv = dev->dev_private;
239         u32 pp_stat_reg, pp_ctrl_reg;
240
241         if (!is_edp(intel_dp))
242                 return;
243
244         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
245         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
246
247         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
248                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
249                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
250                                 I915_READ(pp_stat_reg),
251                                 I915_READ(pp_ctrl_reg));
252         }
253 }
254
255 static uint32_t
256 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
257 {
258         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
259         struct drm_device *dev = intel_dig_port->base.base.dev;
260         struct drm_i915_private *dev_priv = dev->dev_private;
261         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
262         uint32_t status;
263         bool done;
264
265 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
266         if (has_aux_irq)
267                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
268                                           msecs_to_jiffies_timeout(10));
269         else
270                 done = wait_for_atomic(C, 10) == 0;
271         if (!done)
272                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
273                           has_aux_irq);
274 #undef C
275
276         return status;
277 }
278
279 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
280                                       int index)
281 {
282         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
283         struct drm_device *dev = intel_dig_port->base.base.dev;
284         struct drm_i915_private *dev_priv = dev->dev_private;
285
286         /* The clock divider is based off the hrawclk,
287          * and would like to run at 2MHz. So, take the
288          * hrawclk value and divide by 2 and use that
289          *
290          * Note that PCH attached eDP panels should use a 125MHz input
291          * clock divider.
292          */
293         if (IS_VALLEYVIEW(dev)) {
294                 return index ? 0 : 100;
295         } else if (intel_dig_port->port == PORT_A) {
296                 if (index)
297                         return 0;
298                 if (HAS_DDI(dev))
299                         return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
300                 else if (IS_GEN6(dev) || IS_GEN7(dev))
301                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
302                 else
303                         return 225; /* eDP input clock at 450Mhz */
304         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
305                 /* Workaround for non-ULT HSW */
306                 switch (index) {
307                 case 0: return 63;
308                 case 1: return 72;
309                 default: return 0;
310                 }
311         } else if (HAS_PCH_SPLIT(dev)) {
312                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
313         } else {
314                 return index ? 0 :intel_hrawclk(dev) / 2;
315         }
316 }
317
318 static int
319 intel_dp_aux_ch(struct intel_dp *intel_dp,
320                 uint8_t *send, int send_bytes,
321                 uint8_t *recv, int recv_size)
322 {
323         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
324         struct drm_device *dev = intel_dig_port->base.base.dev;
325         struct drm_i915_private *dev_priv = dev->dev_private;
326         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
327         uint32_t ch_data = ch_ctl + 4;
328         uint32_t aux_clock_divider;
329         int i, ret, recv_bytes;
330         uint32_t status;
331         int try, precharge, clock = 0;
332         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
333
334         /* dp aux is extremely sensitive to irq latency, hence request the
335          * lowest possible wakeup latency and so prevent the cpu from going into
336          * deep sleep states.
337          */
338         pm_qos_update_request(&dev_priv->pm_qos, 0);
339
340         intel_dp_check_edp(intel_dp);
341
342         if (IS_GEN6(dev))
343                 precharge = 3;
344         else
345                 precharge = 5;
346
347         /* Try to wait for any previous AUX channel activity */
348         for (try = 0; try < 3; try++) {
349                 status = I915_READ_NOTRACE(ch_ctl);
350                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
351                         break;
352                 msleep(1);
353         }
354
355         if (try == 3) {
356                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
357                      I915_READ(ch_ctl));
358                 ret = -EBUSY;
359                 goto out;
360         }
361
362         while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
363                 /* Must try at least 3 times according to DP spec */
364                 for (try = 0; try < 5; try++) {
365                         /* Load the send data into the aux channel data registers */
366                         for (i = 0; i < send_bytes; i += 4)
367                                 I915_WRITE(ch_data + i,
368                                            pack_aux(send + i, send_bytes - i));
369
370                         /* Send the command and wait for it to complete */
371                         I915_WRITE(ch_ctl,
372                                    DP_AUX_CH_CTL_SEND_BUSY |
373                                    (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
374                                    DP_AUX_CH_CTL_TIME_OUT_400us |
375                                    (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
376                                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
377                                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
378                                    DP_AUX_CH_CTL_DONE |
379                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
380                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
381
382                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
383
384                         /* Clear done status and any errors */
385                         I915_WRITE(ch_ctl,
386                                    status |
387                                    DP_AUX_CH_CTL_DONE |
388                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
389                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
390
391                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
392                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
393                                 continue;
394                         if (status & DP_AUX_CH_CTL_DONE)
395                                 break;
396                 }
397                 if (status & DP_AUX_CH_CTL_DONE)
398                         break;
399         }
400
401         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
402                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
403                 ret = -EBUSY;
404                 goto out;
405         }
406
407         /* Check for timeout or receive error.
408          * Timeouts occur when the sink is not connected
409          */
410         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
411                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
412                 ret = -EIO;
413                 goto out;
414         }
415
416         /* Timeouts occur when the device isn't connected, so they're
417          * "normal" -- don't fill the kernel log with these */
418         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
419                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
420                 ret = -ETIMEDOUT;
421                 goto out;
422         }
423
424         /* Unload any bytes sent back from the other side */
425         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
426                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
427         if (recv_bytes > recv_size)
428                 recv_bytes = recv_size;
429
430         for (i = 0; i < recv_bytes; i += 4)
431                 unpack_aux(I915_READ(ch_data + i),
432                            recv + i, recv_bytes - i);
433
434         ret = recv_bytes;
435 out:
436         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
437
438         return ret;
439 }
440
441 /* Write data to the aux channel in native mode */
442 static int
443 intel_dp_aux_native_write(struct intel_dp *intel_dp,
444                           uint16_t address, uint8_t *send, int send_bytes)
445 {
446         int ret;
447         uint8_t msg[20];
448         int msg_bytes;
449         uint8_t ack;
450
451         intel_dp_check_edp(intel_dp);
452         if (send_bytes > 16)
453                 return -1;
454         msg[0] = AUX_NATIVE_WRITE << 4;
455         msg[1] = address >> 8;
456         msg[2] = address & 0xff;
457         msg[3] = send_bytes - 1;
458         memcpy(&msg[4], send, send_bytes);
459         msg_bytes = send_bytes + 4;
460         for (;;) {
461                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
462                 if (ret < 0)
463                         return ret;
464                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
465                         break;
466                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
467                         udelay(100);
468                 else
469                         return -EIO;
470         }
471         return send_bytes;
472 }
473
474 /* Write a single byte to the aux channel in native mode */
475 static int
476 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
477                             uint16_t address, uint8_t byte)
478 {
479         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
480 }
481
482 /* read bytes from a native aux channel */
483 static int
484 intel_dp_aux_native_read(struct intel_dp *intel_dp,
485                          uint16_t address, uint8_t *recv, int recv_bytes)
486 {
487         uint8_t msg[4];
488         int msg_bytes;
489         uint8_t reply[20];
490         int reply_bytes;
491         uint8_t ack;
492         int ret;
493
494         intel_dp_check_edp(intel_dp);
495         msg[0] = AUX_NATIVE_READ << 4;
496         msg[1] = address >> 8;
497         msg[2] = address & 0xff;
498         msg[3] = recv_bytes - 1;
499
500         msg_bytes = 4;
501         reply_bytes = recv_bytes + 1;
502
503         for (;;) {
504                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
505                                       reply, reply_bytes);
506                 if (ret == 0)
507                         return -EPROTO;
508                 if (ret < 0)
509                         return ret;
510                 ack = reply[0];
511                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
512                         memcpy(recv, reply + 1, ret - 1);
513                         return ret - 1;
514                 }
515                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
516                         udelay(100);
517                 else
518                         return -EIO;
519         }
520 }
521
522 static int
523 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
524                     uint8_t write_byte, uint8_t *read_byte)
525 {
526         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
527         struct intel_dp *intel_dp = container_of(adapter,
528                                                 struct intel_dp,
529                                                 adapter);
530         uint16_t address = algo_data->address;
531         uint8_t msg[5];
532         uint8_t reply[2];
533         unsigned retry;
534         int msg_bytes;
535         int reply_bytes;
536         int ret;
537
538         intel_dp_check_edp(intel_dp);
539         /* Set up the command byte */
540         if (mode & MODE_I2C_READ)
541                 msg[0] = AUX_I2C_READ << 4;
542         else
543                 msg[0] = AUX_I2C_WRITE << 4;
544
545         if (!(mode & MODE_I2C_STOP))
546                 msg[0] |= AUX_I2C_MOT << 4;
547
548         msg[1] = address >> 8;
549         msg[2] = address;
550
551         switch (mode) {
552         case MODE_I2C_WRITE:
553                 msg[3] = 0;
554                 msg[4] = write_byte;
555                 msg_bytes = 5;
556                 reply_bytes = 1;
557                 break;
558         case MODE_I2C_READ:
559                 msg[3] = 0;
560                 msg_bytes = 4;
561                 reply_bytes = 2;
562                 break;
563         default:
564                 msg_bytes = 3;
565                 reply_bytes = 1;
566                 break;
567         }
568
569         for (retry = 0; retry < 5; retry++) {
570                 ret = intel_dp_aux_ch(intel_dp,
571                                       msg, msg_bytes,
572                                       reply, reply_bytes);
573                 if (ret < 0) {
574                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
575                         return ret;
576                 }
577
578                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
579                 case AUX_NATIVE_REPLY_ACK:
580                         /* I2C-over-AUX Reply field is only valid
581                          * when paired with AUX ACK.
582                          */
583                         break;
584                 case AUX_NATIVE_REPLY_NACK:
585                         DRM_DEBUG_KMS("aux_ch native nack\n");
586                         return -EREMOTEIO;
587                 case AUX_NATIVE_REPLY_DEFER:
588                         udelay(100);
589                         continue;
590                 default:
591                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
592                                   reply[0]);
593                         return -EREMOTEIO;
594                 }
595
596                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
597                 case AUX_I2C_REPLY_ACK:
598                         if (mode == MODE_I2C_READ) {
599                                 *read_byte = reply[1];
600                         }
601                         return reply_bytes - 1;
602                 case AUX_I2C_REPLY_NACK:
603                         DRM_DEBUG_KMS("aux_i2c nack\n");
604                         return -EREMOTEIO;
605                 case AUX_I2C_REPLY_DEFER:
606                         DRM_DEBUG_KMS("aux_i2c defer\n");
607                         udelay(100);
608                         break;
609                 default:
610                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
611                         return -EREMOTEIO;
612                 }
613         }
614
615         DRM_ERROR("too many retries, giving up\n");
616         return -EREMOTEIO;
617 }
618
619 static int
620 intel_dp_i2c_init(struct intel_dp *intel_dp,
621                   struct intel_connector *intel_connector, const char *name)
622 {
623         int     ret;
624
625         DRM_DEBUG_KMS("i2c_init %s\n", name);
626         intel_dp->algo.running = false;
627         intel_dp->algo.address = 0;
628         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
629
630         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
631         intel_dp->adapter.owner = THIS_MODULE;
632         intel_dp->adapter.class = I2C_CLASS_DDC;
633         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
634         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
635         intel_dp->adapter.algo_data = &intel_dp->algo;
636         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
637
638         ironlake_edp_panel_vdd_on(intel_dp);
639         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
640         ironlake_edp_panel_vdd_off(intel_dp, false);
641         return ret;
642 }
643
644 static void
645 intel_dp_set_clock(struct intel_encoder *encoder,
646                    struct intel_crtc_config *pipe_config, int link_bw)
647 {
648         struct drm_device *dev = encoder->base.dev;
649
650         if (IS_G4X(dev)) {
651                 if (link_bw == DP_LINK_BW_1_62) {
652                         pipe_config->dpll.p1 = 2;
653                         pipe_config->dpll.p2 = 10;
654                         pipe_config->dpll.n = 2;
655                         pipe_config->dpll.m1 = 23;
656                         pipe_config->dpll.m2 = 8;
657                 } else {
658                         pipe_config->dpll.p1 = 1;
659                         pipe_config->dpll.p2 = 10;
660                         pipe_config->dpll.n = 1;
661                         pipe_config->dpll.m1 = 14;
662                         pipe_config->dpll.m2 = 2;
663                 }
664                 pipe_config->clock_set = true;
665         } else if (IS_HASWELL(dev)) {
666                 /* Haswell has special-purpose DP DDI clocks. */
667         } else if (HAS_PCH_SPLIT(dev)) {
668                 if (link_bw == DP_LINK_BW_1_62) {
669                         pipe_config->dpll.n = 1;
670                         pipe_config->dpll.p1 = 2;
671                         pipe_config->dpll.p2 = 10;
672                         pipe_config->dpll.m1 = 12;
673                         pipe_config->dpll.m2 = 9;
674                 } else {
675                         pipe_config->dpll.n = 2;
676                         pipe_config->dpll.p1 = 1;
677                         pipe_config->dpll.p2 = 10;
678                         pipe_config->dpll.m1 = 14;
679                         pipe_config->dpll.m2 = 8;
680                 }
681                 pipe_config->clock_set = true;
682         } else if (IS_VALLEYVIEW(dev)) {
683                 /* FIXME: Need to figure out optimized DP clocks for vlv. */
684         }
685 }
686
687 bool
688 intel_dp_compute_config(struct intel_encoder *encoder,
689                         struct intel_crtc_config *pipe_config)
690 {
691         struct drm_device *dev = encoder->base.dev;
692         struct drm_i915_private *dev_priv = dev->dev_private;
693         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
694         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
695         enum port port = dp_to_dig_port(intel_dp)->port;
696         struct intel_crtc *intel_crtc = encoder->new_crtc;
697         struct intel_connector *intel_connector = intel_dp->attached_connector;
698         int lane_count, clock;
699         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
700         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
701         int bpp, mode_rate;
702         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
703         int link_avail, link_clock;
704
705         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
706                 pipe_config->has_pch_encoder = true;
707
708         pipe_config->has_dp_encoder = true;
709
710         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
711                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
712                                        adjusted_mode);
713                 if (!HAS_PCH_SPLIT(dev))
714                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
715                                                  intel_connector->panel.fitting_mode);
716                 else
717                         intel_pch_panel_fitting(intel_crtc, pipe_config,
718                                                 intel_connector->panel.fitting_mode);
719         }
720
721         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
722                 return false;
723
724         DRM_DEBUG_KMS("DP link computation with max lane count %i "
725                       "max bw %02x pixel clock %iKHz\n",
726                       max_lane_count, bws[max_clock], adjusted_mode->clock);
727
728         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
729          * bpc in between. */
730         bpp = pipe_config->pipe_bpp;
731         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
732                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
733                               dev_priv->vbt.edp_bpp);
734                 bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
735         }
736
737         for (; bpp >= 6*3; bpp -= 2*3) {
738                 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
739
740                 for (clock = 0; clock <= max_clock; clock++) {
741                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
742                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
743                                 link_avail = intel_dp_max_data_rate(link_clock,
744                                                                     lane_count);
745
746                                 if (mode_rate <= link_avail) {
747                                         goto found;
748                                 }
749                         }
750                 }
751         }
752
753         return false;
754
755 found:
756         if (intel_dp->color_range_auto) {
757                 /*
758                  * See:
759                  * CEA-861-E - 5.1 Default Encoding Parameters
760                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
761                  */
762                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
763                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
764                 else
765                         intel_dp->color_range = 0;
766         }
767
768         if (intel_dp->color_range)
769                 pipe_config->limited_color_range = true;
770
771         intel_dp->link_bw = bws[clock];
772         intel_dp->lane_count = lane_count;
773         pipe_config->pipe_bpp = bpp;
774         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
775
776         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
777                       intel_dp->link_bw, intel_dp->lane_count,
778                       pipe_config->port_clock, bpp);
779         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
780                       mode_rate, link_avail);
781
782         intel_link_compute_m_n(bpp, lane_count,
783                                adjusted_mode->clock, pipe_config->port_clock,
784                                &pipe_config->dp_m_n);
785
786         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
787
788         return true;
789 }
790
791 void intel_dp_init_link_config(struct intel_dp *intel_dp)
792 {
793         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
794         intel_dp->link_configuration[0] = intel_dp->link_bw;
795         intel_dp->link_configuration[1] = intel_dp->lane_count;
796         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
797         /*
798          * Check for DPCD version > 1.1 and enhanced framing support
799          */
800         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
801             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
802                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
803         }
804 }
805
806 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
807 {
808         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
809         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
810         struct drm_device *dev = crtc->base.dev;
811         struct drm_i915_private *dev_priv = dev->dev_private;
812         u32 dpa_ctl;
813
814         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
815         dpa_ctl = I915_READ(DP_A);
816         dpa_ctl &= ~DP_PLL_FREQ_MASK;
817
818         if (crtc->config.port_clock == 162000) {
819                 /* For a long time we've carried around a ILK-DevA w/a for the
820                  * 160MHz clock. If we're really unlucky, it's still required.
821                  */
822                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
823                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
824                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
825         } else {
826                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
827                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
828         }
829
830         I915_WRITE(DP_A, dpa_ctl);
831
832         POSTING_READ(DP_A);
833         udelay(500);
834 }
835
836 static void intel_dp_mode_set(struct intel_encoder *encoder)
837 {
838         struct drm_device *dev = encoder->base.dev;
839         struct drm_i915_private *dev_priv = dev->dev_private;
840         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
841         enum port port = dp_to_dig_port(intel_dp)->port;
842         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
843         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
844
845         /*
846          * There are four kinds of DP registers:
847          *
848          *      IBX PCH
849          *      SNB CPU
850          *      IVB CPU
851          *      CPT PCH
852          *
853          * IBX PCH and CPU are the same for almost everything,
854          * except that the CPU DP PLL is configured in this
855          * register
856          *
857          * CPT PCH is quite different, having many bits moved
858          * to the TRANS_DP_CTL register instead. That
859          * configuration happens (oddly) in ironlake_pch_enable
860          */
861
862         /* Preserve the BIOS-computed detected bit. This is
863          * supposed to be read-only.
864          */
865         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
866
867         /* Handle DP bits in common between all three register formats */
868         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
869         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
870
871         if (intel_dp->has_audio) {
872                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
873                                  pipe_name(crtc->pipe));
874                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
875                 intel_write_eld(&encoder->base, adjusted_mode);
876         }
877
878         intel_dp_init_link_config(intel_dp);
879
880         /* Split out the IBX/CPU vs CPT settings */
881
882         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
883                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
884                         intel_dp->DP |= DP_SYNC_HS_HIGH;
885                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
886                         intel_dp->DP |= DP_SYNC_VS_HIGH;
887                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
888
889                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
890                         intel_dp->DP |= DP_ENHANCED_FRAMING;
891
892                 intel_dp->DP |= crtc->pipe << 29;
893         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
894                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
895                         intel_dp->DP |= intel_dp->color_range;
896
897                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
898                         intel_dp->DP |= DP_SYNC_HS_HIGH;
899                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
900                         intel_dp->DP |= DP_SYNC_VS_HIGH;
901                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
902
903                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
904                         intel_dp->DP |= DP_ENHANCED_FRAMING;
905
906                 if (crtc->pipe == 1)
907                         intel_dp->DP |= DP_PIPEB_SELECT;
908         } else {
909                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
910         }
911
912         if (port == PORT_A && !IS_VALLEYVIEW(dev))
913                 ironlake_set_pll_cpu_edp(intel_dp);
914 }
915
916 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
917 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
918
919 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
920 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
921
922 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
923 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
924
925 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
926                                        u32 mask,
927                                        u32 value)
928 {
929         struct drm_device *dev = intel_dp_to_dev(intel_dp);
930         struct drm_i915_private *dev_priv = dev->dev_private;
931         u32 pp_stat_reg, pp_ctrl_reg;
932
933         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
934         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
935
936         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
937                         mask, value,
938                         I915_READ(pp_stat_reg),
939                         I915_READ(pp_ctrl_reg));
940
941         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
942                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
943                                 I915_READ(pp_stat_reg),
944                                 I915_READ(pp_ctrl_reg));
945         }
946 }
947
948 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
949 {
950         DRM_DEBUG_KMS("Wait for panel power on\n");
951         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
952 }
953
954 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
955 {
956         DRM_DEBUG_KMS("Wait for panel power off time\n");
957         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
958 }
959
960 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
961 {
962         DRM_DEBUG_KMS("Wait for panel power cycle\n");
963         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
964 }
965
966
967 /* Read the current pp_control value, unlocking the register if it
968  * is locked
969  */
970
971 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
972 {
973         struct drm_device *dev = intel_dp_to_dev(intel_dp);
974         struct drm_i915_private *dev_priv = dev->dev_private;
975         u32 control;
976         u32 pp_ctrl_reg;
977
978         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
979         control = I915_READ(pp_ctrl_reg);
980
981         control &= ~PANEL_UNLOCK_MASK;
982         control |= PANEL_UNLOCK_REGS;
983         return control;
984 }
985
986 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
987 {
988         struct drm_device *dev = intel_dp_to_dev(intel_dp);
989         struct drm_i915_private *dev_priv = dev->dev_private;
990         u32 pp;
991         u32 pp_stat_reg, pp_ctrl_reg;
992
993         if (!is_edp(intel_dp))
994                 return;
995         DRM_DEBUG_KMS("Turn eDP VDD on\n");
996
997         WARN(intel_dp->want_panel_vdd,
998              "eDP VDD already requested on\n");
999
1000         intel_dp->want_panel_vdd = true;
1001
1002         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1003                 DRM_DEBUG_KMS("eDP VDD already on\n");
1004                 return;
1005         }
1006
1007         if (!ironlake_edp_have_panel_power(intel_dp))
1008                 ironlake_wait_panel_power_cycle(intel_dp);
1009
1010         pp = ironlake_get_pp_control(intel_dp);
1011         pp |= EDP_FORCE_VDD;
1012
1013         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1014         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1015
1016         I915_WRITE(pp_ctrl_reg, pp);
1017         POSTING_READ(pp_ctrl_reg);
1018         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1019                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1020         /*
1021          * If the panel wasn't on, delay before accessing aux channel
1022          */
1023         if (!ironlake_edp_have_panel_power(intel_dp)) {
1024                 DRM_DEBUG_KMS("eDP was not running\n");
1025                 msleep(intel_dp->panel_power_up_delay);
1026         }
1027 }
1028
1029 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1030 {
1031         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1032         struct drm_i915_private *dev_priv = dev->dev_private;
1033         u32 pp;
1034         u32 pp_stat_reg, pp_ctrl_reg;
1035
1036         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1037
1038         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1039                 pp = ironlake_get_pp_control(intel_dp);
1040                 pp &= ~EDP_FORCE_VDD;
1041
1042                 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1043                 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1044
1045                 I915_WRITE(pp_ctrl_reg, pp);
1046                 POSTING_READ(pp_ctrl_reg);
1047
1048                 /* Make sure sequencer is idle before allowing subsequent activity */
1049                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1050                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1051                 msleep(intel_dp->panel_power_down_delay);
1052         }
1053 }
1054
1055 static void ironlake_panel_vdd_work(struct work_struct *__work)
1056 {
1057         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1058                                                  struct intel_dp, panel_vdd_work);
1059         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1060
1061         mutex_lock(&dev->mode_config.mutex);
1062         ironlake_panel_vdd_off_sync(intel_dp);
1063         mutex_unlock(&dev->mode_config.mutex);
1064 }
1065
1066 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1067 {
1068         if (!is_edp(intel_dp))
1069                 return;
1070
1071         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1072         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1073
1074         intel_dp->want_panel_vdd = false;
1075
1076         if (sync) {
1077                 ironlake_panel_vdd_off_sync(intel_dp);
1078         } else {
1079                 /*
1080                  * Queue the timer to fire a long
1081                  * time from now (relative to the power down delay)
1082                  * to keep the panel power up across a sequence of operations
1083                  */
1084                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1085                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1086         }
1087 }
1088
1089 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1090 {
1091         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1092         struct drm_i915_private *dev_priv = dev->dev_private;
1093         u32 pp;
1094         u32 pp_ctrl_reg;
1095
1096         if (!is_edp(intel_dp))
1097                 return;
1098
1099         DRM_DEBUG_KMS("Turn eDP power on\n");
1100
1101         if (ironlake_edp_have_panel_power(intel_dp)) {
1102                 DRM_DEBUG_KMS("eDP power already on\n");
1103                 return;
1104         }
1105
1106         ironlake_wait_panel_power_cycle(intel_dp);
1107
1108         pp = ironlake_get_pp_control(intel_dp);
1109         if (IS_GEN5(dev)) {
1110                 /* ILK workaround: disable reset around power sequence */
1111                 pp &= ~PANEL_POWER_RESET;
1112                 I915_WRITE(PCH_PP_CONTROL, pp);
1113                 POSTING_READ(PCH_PP_CONTROL);
1114         }
1115
1116         pp |= POWER_TARGET_ON;
1117         if (!IS_GEN5(dev))
1118                 pp |= PANEL_POWER_RESET;
1119
1120         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1121
1122         I915_WRITE(pp_ctrl_reg, pp);
1123         POSTING_READ(pp_ctrl_reg);
1124
1125         ironlake_wait_panel_on(intel_dp);
1126
1127         if (IS_GEN5(dev)) {
1128                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1129                 I915_WRITE(PCH_PP_CONTROL, pp);
1130                 POSTING_READ(PCH_PP_CONTROL);
1131         }
1132 }
1133
1134 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1135 {
1136         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1137         struct drm_i915_private *dev_priv = dev->dev_private;
1138         u32 pp;
1139         u32 pp_ctrl_reg;
1140
1141         if (!is_edp(intel_dp))
1142                 return;
1143
1144         DRM_DEBUG_KMS("Turn eDP power off\n");
1145
1146         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1147
1148         pp = ironlake_get_pp_control(intel_dp);
1149         /* We need to switch off panel power _and_ force vdd, for otherwise some
1150          * panels get very unhappy and cease to work. */
1151         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1152
1153         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1154
1155         I915_WRITE(pp_ctrl_reg, pp);
1156         POSTING_READ(pp_ctrl_reg);
1157
1158         intel_dp->want_panel_vdd = false;
1159
1160         ironlake_wait_panel_off(intel_dp);
1161 }
1162
1163 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1164 {
1165         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1166         struct drm_device *dev = intel_dig_port->base.base.dev;
1167         struct drm_i915_private *dev_priv = dev->dev_private;
1168         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1169         u32 pp;
1170         u32 pp_ctrl_reg;
1171
1172         if (!is_edp(intel_dp))
1173                 return;
1174
1175         DRM_DEBUG_KMS("\n");
1176         /*
1177          * If we enable the backlight right away following a panel power
1178          * on, we may see slight flicker as the panel syncs with the eDP
1179          * link.  So delay a bit to make sure the image is solid before
1180          * allowing it to appear.
1181          */
1182         msleep(intel_dp->backlight_on_delay);
1183         pp = ironlake_get_pp_control(intel_dp);
1184         pp |= EDP_BLC_ENABLE;
1185
1186         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1187
1188         I915_WRITE(pp_ctrl_reg, pp);
1189         POSTING_READ(pp_ctrl_reg);
1190
1191         intel_panel_enable_backlight(dev, pipe);
1192 }
1193
1194 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1195 {
1196         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1197         struct drm_i915_private *dev_priv = dev->dev_private;
1198         u32 pp;
1199         u32 pp_ctrl_reg;
1200
1201         if (!is_edp(intel_dp))
1202                 return;
1203
1204         intel_panel_disable_backlight(dev);
1205
1206         DRM_DEBUG_KMS("\n");
1207         pp = ironlake_get_pp_control(intel_dp);
1208         pp &= ~EDP_BLC_ENABLE;
1209
1210         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1211
1212         I915_WRITE(pp_ctrl_reg, pp);
1213         POSTING_READ(pp_ctrl_reg);
1214         msleep(intel_dp->backlight_off_delay);
1215 }
1216
1217 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1218 {
1219         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1220         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1221         struct drm_device *dev = crtc->dev;
1222         struct drm_i915_private *dev_priv = dev->dev_private;
1223         u32 dpa_ctl;
1224
1225         assert_pipe_disabled(dev_priv,
1226                              to_intel_crtc(crtc)->pipe);
1227
1228         DRM_DEBUG_KMS("\n");
1229         dpa_ctl = I915_READ(DP_A);
1230         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1231         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1232
1233         /* We don't adjust intel_dp->DP while tearing down the link, to
1234          * facilitate link retraining (e.g. after hotplug). Hence clear all
1235          * enable bits here to ensure that we don't enable too much. */
1236         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1237         intel_dp->DP |= DP_PLL_ENABLE;
1238         I915_WRITE(DP_A, intel_dp->DP);
1239         POSTING_READ(DP_A);
1240         udelay(200);
1241 }
1242
1243 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1244 {
1245         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1246         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1247         struct drm_device *dev = crtc->dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         u32 dpa_ctl;
1250
1251         assert_pipe_disabled(dev_priv,
1252                              to_intel_crtc(crtc)->pipe);
1253
1254         dpa_ctl = I915_READ(DP_A);
1255         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1256              "dp pll off, should be on\n");
1257         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1258
1259         /* We can't rely on the value tracked for the DP register in
1260          * intel_dp->DP because link_down must not change that (otherwise link
1261          * re-training will fail. */
1262         dpa_ctl &= ~DP_PLL_ENABLE;
1263         I915_WRITE(DP_A, dpa_ctl);
1264         POSTING_READ(DP_A);
1265         udelay(200);
1266 }
1267
1268 /* If the sink supports it, try to set the power state appropriately */
1269 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1270 {
1271         int ret, i;
1272
1273         /* Should have a valid DPCD by this point */
1274         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1275                 return;
1276
1277         if (mode != DRM_MODE_DPMS_ON) {
1278                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1279                                                   DP_SET_POWER_D3);
1280                 if (ret != 1)
1281                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1282         } else {
1283                 /*
1284                  * When turning on, we need to retry for 1ms to give the sink
1285                  * time to wake up.
1286                  */
1287                 for (i = 0; i < 3; i++) {
1288                         ret = intel_dp_aux_native_write_1(intel_dp,
1289                                                           DP_SET_POWER,
1290                                                           DP_SET_POWER_D0);
1291                         if (ret == 1)
1292                                 break;
1293                         msleep(1);
1294                 }
1295         }
1296 }
1297
1298 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1299                                   enum pipe *pipe)
1300 {
1301         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1302         enum port port = dp_to_dig_port(intel_dp)->port;
1303         struct drm_device *dev = encoder->base.dev;
1304         struct drm_i915_private *dev_priv = dev->dev_private;
1305         u32 tmp = I915_READ(intel_dp->output_reg);
1306
1307         if (!(tmp & DP_PORT_EN))
1308                 return false;
1309
1310         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1311                 *pipe = PORT_TO_PIPE_CPT(tmp);
1312         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1313                 *pipe = PORT_TO_PIPE(tmp);
1314         } else {
1315                 u32 trans_sel;
1316                 u32 trans_dp;
1317                 int i;
1318
1319                 switch (intel_dp->output_reg) {
1320                 case PCH_DP_B:
1321                         trans_sel = TRANS_DP_PORT_SEL_B;
1322                         break;
1323                 case PCH_DP_C:
1324                         trans_sel = TRANS_DP_PORT_SEL_C;
1325                         break;
1326                 case PCH_DP_D:
1327                         trans_sel = TRANS_DP_PORT_SEL_D;
1328                         break;
1329                 default:
1330                         return true;
1331                 }
1332
1333                 for_each_pipe(i) {
1334                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1335                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1336                                 *pipe = i;
1337                                 return true;
1338                         }
1339                 }
1340
1341                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1342                               intel_dp->output_reg);
1343         }
1344
1345         return true;
1346 }
1347
1348 static void intel_dp_get_config(struct intel_encoder *encoder,
1349                                 struct intel_crtc_config *pipe_config)
1350 {
1351         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1352         u32 tmp, flags = 0;
1353         struct drm_device *dev = encoder->base.dev;
1354         struct drm_i915_private *dev_priv = dev->dev_private;
1355         enum port port = dp_to_dig_port(intel_dp)->port;
1356         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1357
1358         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1359                 tmp = I915_READ(intel_dp->output_reg);
1360                 if (tmp & DP_SYNC_HS_HIGH)
1361                         flags |= DRM_MODE_FLAG_PHSYNC;
1362                 else
1363                         flags |= DRM_MODE_FLAG_NHSYNC;
1364
1365                 if (tmp & DP_SYNC_VS_HIGH)
1366                         flags |= DRM_MODE_FLAG_PVSYNC;
1367                 else
1368                         flags |= DRM_MODE_FLAG_NVSYNC;
1369         } else {
1370                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1371                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1372                         flags |= DRM_MODE_FLAG_PHSYNC;
1373                 else
1374                         flags |= DRM_MODE_FLAG_NHSYNC;
1375
1376                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1377                         flags |= DRM_MODE_FLAG_PVSYNC;
1378                 else
1379                         flags |= DRM_MODE_FLAG_NVSYNC;
1380         }
1381
1382         pipe_config->adjusted_mode.flags |= flags;
1383
1384         if (dp_to_dig_port(intel_dp)->port == PORT_A) {
1385                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1386                         pipe_config->port_clock = 162000;
1387                 else
1388                         pipe_config->port_clock = 270000;
1389         }
1390 }
1391
1392 static bool is_edp_psr(struct intel_dp *intel_dp)
1393 {
1394         return is_edp(intel_dp) &&
1395                 intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1396 }
1397
1398 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1399 {
1400         struct drm_i915_private *dev_priv = dev->dev_private;
1401
1402         if (!IS_HASWELL(dev))
1403                 return false;
1404
1405         return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
1406 }
1407
1408 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1409                                     struct edp_vsc_psr *vsc_psr)
1410 {
1411         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1412         struct drm_device *dev = dig_port->base.base.dev;
1413         struct drm_i915_private *dev_priv = dev->dev_private;
1414         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1415         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1416         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1417         uint32_t *data = (uint32_t *) vsc_psr;
1418         unsigned int i;
1419
1420         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1421            the video DIP being updated before program video DIP data buffer
1422            registers for DIP being updated. */
1423         I915_WRITE(ctl_reg, 0);
1424         POSTING_READ(ctl_reg);
1425
1426         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1427                 if (i < sizeof(struct edp_vsc_psr))
1428                         I915_WRITE(data_reg + i, *data++);
1429                 else
1430                         I915_WRITE(data_reg + i, 0);
1431         }
1432
1433         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1434         POSTING_READ(ctl_reg);
1435 }
1436
1437 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1438 {
1439         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1440         struct drm_i915_private *dev_priv = dev->dev_private;
1441         struct edp_vsc_psr psr_vsc;
1442
1443         if (intel_dp->psr_setup_done)
1444                 return;
1445
1446         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1447         memset(&psr_vsc, 0, sizeof(psr_vsc));
1448         psr_vsc.sdp_header.HB0 = 0;
1449         psr_vsc.sdp_header.HB1 = 0x7;
1450         psr_vsc.sdp_header.HB2 = 0x2;
1451         psr_vsc.sdp_header.HB3 = 0x8;
1452         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1453
1454         /* Avoid continuous PSR exit by masking memup and hpd */
1455         I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
1456                    EDP_PSR_DEBUG_MASK_HPD);
1457
1458         intel_dp->psr_setup_done = true;
1459 }
1460
1461 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1462 {
1463         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1464         struct drm_i915_private *dev_priv = dev->dev_private;
1465         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1466         int precharge = 0x3;
1467         int msg_size = 5;       /* Header(4) + Message(1) */
1468
1469         /* Enable PSR in sink */
1470         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1471                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1472                                             DP_PSR_ENABLE &
1473                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1474         else
1475                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1476                                             DP_PSR_ENABLE |
1477                                             DP_PSR_MAIN_LINK_ACTIVE);
1478
1479         /* Setup AUX registers */
1480         I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
1481         I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
1482         I915_WRITE(EDP_PSR_AUX_CTL,
1483                    DP_AUX_CH_CTL_TIME_OUT_400us |
1484                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1485                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1486                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1487 }
1488
1489 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1490 {
1491         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1492         struct drm_i915_private *dev_priv = dev->dev_private;
1493         uint32_t max_sleep_time = 0x1f;
1494         uint32_t idle_frames = 1;
1495         uint32_t val = 0x0;
1496
1497         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1498                 val |= EDP_PSR_LINK_STANDBY;
1499                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1500                 val |= EDP_PSR_TP1_TIME_0us;
1501                 val |= EDP_PSR_SKIP_AUX_EXIT;
1502         } else
1503                 val |= EDP_PSR_LINK_DISABLE;
1504
1505         I915_WRITE(EDP_PSR_CTL, val |
1506                    EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1507                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1508                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1509                    EDP_PSR_ENABLE);
1510 }
1511
1512 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1513 {
1514         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1515         struct drm_device *dev = dig_port->base.base.dev;
1516         struct drm_i915_private *dev_priv = dev->dev_private;
1517         struct drm_crtc *crtc = dig_port->base.base.crtc;
1518         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1519         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1520         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1521
1522         if (!IS_HASWELL(dev)) {
1523                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1524                 dev_priv->no_psr_reason = PSR_NO_SOURCE;
1525                 return false;
1526         }
1527
1528         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1529             (dig_port->port != PORT_A)) {
1530                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1531                 dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
1532                 return false;
1533         }
1534
1535         if (!is_edp_psr(intel_dp)) {
1536                 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1537                 dev_priv->no_psr_reason = PSR_NO_SINK;
1538                 return false;
1539         }
1540
1541         if (!i915_enable_psr) {
1542                 DRM_DEBUG_KMS("PSR disable by flag\n");
1543                 dev_priv->no_psr_reason = PSR_MODULE_PARAM;
1544                 return false;
1545         }
1546
1547         crtc = dig_port->base.base.crtc;
1548         if (crtc == NULL) {
1549                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1550                 dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1551                 return false;
1552         }
1553
1554         intel_crtc = to_intel_crtc(crtc);
1555         if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
1556                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1557                 dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1558                 return false;
1559         }
1560
1561         obj = to_intel_framebuffer(crtc->fb)->obj;
1562         if (obj->tiling_mode != I915_TILING_X ||
1563             obj->fence_reg == I915_FENCE_REG_NONE) {
1564                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1565                 dev_priv->no_psr_reason = PSR_NOT_TILED;
1566                 return false;
1567         }
1568
1569         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1570                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1571                 dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
1572                 return false;
1573         }
1574
1575         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1576             S3D_ENABLE) {
1577                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1578                 dev_priv->no_psr_reason = PSR_S3D_ENABLED;
1579                 return false;
1580         }
1581
1582         if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
1583                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1584                 dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
1585                 return false;
1586         }
1587
1588         return true;
1589 }
1590
1591 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1592 {
1593         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1594
1595         if (!intel_edp_psr_match_conditions(intel_dp) ||
1596             intel_edp_is_psr_enabled(dev))
1597                 return;
1598
1599         /* Setup PSR once */
1600         intel_edp_psr_setup(intel_dp);
1601
1602         /* Enable PSR on the panel */
1603         intel_edp_psr_enable_sink(intel_dp);
1604
1605         /* Enable PSR on the host */
1606         intel_edp_psr_enable_source(intel_dp);
1607 }
1608
1609 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1610 {
1611         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1612
1613         if (intel_edp_psr_match_conditions(intel_dp) &&
1614             !intel_edp_is_psr_enabled(dev))
1615                 intel_edp_psr_do_enable(intel_dp);
1616 }
1617
1618 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1619 {
1620         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622
1623         if (!intel_edp_is_psr_enabled(dev))
1624                 return;
1625
1626         I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
1627
1628         /* Wait till PSR is idle */
1629         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
1630                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1631                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1632 }
1633
1634 void intel_edp_psr_update(struct drm_device *dev)
1635 {
1636         struct intel_encoder *encoder;
1637         struct intel_dp *intel_dp = NULL;
1638
1639         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1640                 if (encoder->type == INTEL_OUTPUT_EDP) {
1641                         intel_dp = enc_to_intel_dp(&encoder->base);
1642
1643                         if (!is_edp_psr(intel_dp))
1644                                 return;
1645
1646                         if (!intel_edp_psr_match_conditions(intel_dp))
1647                                 intel_edp_psr_disable(intel_dp);
1648                         else
1649                                 if (!intel_edp_is_psr_enabled(dev))
1650                                         intel_edp_psr_do_enable(intel_dp);
1651                 }
1652 }
1653
1654 static void intel_disable_dp(struct intel_encoder *encoder)
1655 {
1656         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1657         enum port port = dp_to_dig_port(intel_dp)->port;
1658         struct drm_device *dev = encoder->base.dev;
1659
1660         /* Make sure the panel is off before trying to change the mode. But also
1661          * ensure that we have vdd while we switch off the panel. */
1662         ironlake_edp_panel_vdd_on(intel_dp);
1663         ironlake_edp_backlight_off(intel_dp);
1664         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1665         ironlake_edp_panel_off(intel_dp);
1666
1667         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1668         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1669                 intel_dp_link_down(intel_dp);
1670 }
1671
1672 static void intel_post_disable_dp(struct intel_encoder *encoder)
1673 {
1674         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1675         enum port port = dp_to_dig_port(intel_dp)->port;
1676         struct drm_device *dev = encoder->base.dev;
1677
1678         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1679                 intel_dp_link_down(intel_dp);
1680                 if (!IS_VALLEYVIEW(dev))
1681                         ironlake_edp_pll_off(intel_dp);
1682         }
1683 }
1684
1685 static void intel_enable_dp(struct intel_encoder *encoder)
1686 {
1687         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1688         struct drm_device *dev = encoder->base.dev;
1689         struct drm_i915_private *dev_priv = dev->dev_private;
1690         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1691
1692         if (WARN_ON(dp_reg & DP_PORT_EN))
1693                 return;
1694
1695         ironlake_edp_panel_vdd_on(intel_dp);
1696         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1697         intel_dp_start_link_train(intel_dp);
1698         ironlake_edp_panel_on(intel_dp);
1699         ironlake_edp_panel_vdd_off(intel_dp, true);
1700         intel_dp_complete_link_train(intel_dp);
1701         intel_dp_stop_link_train(intel_dp);
1702         ironlake_edp_backlight_on(intel_dp);
1703
1704         if (IS_VALLEYVIEW(dev)) {
1705                 struct intel_digital_port *dport =
1706                         enc_to_dig_port(&encoder->base);
1707                 int channel = vlv_dport_to_channel(dport);
1708
1709                 vlv_wait_port_ready(dev_priv, channel);
1710         }
1711 }
1712
1713 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1714 {
1715         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1716         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1717         struct drm_device *dev = encoder->base.dev;
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719
1720         if (dport->port == PORT_A && !IS_VALLEYVIEW(dev))
1721                 ironlake_edp_pll_on(intel_dp);
1722
1723         if (IS_VALLEYVIEW(dev)) {
1724                 struct intel_crtc *intel_crtc =
1725                         to_intel_crtc(encoder->base.crtc);
1726                 int port = vlv_dport_to_channel(dport);
1727                 int pipe = intel_crtc->pipe;
1728                 u32 val;
1729
1730                 mutex_lock(&dev_priv->dpio_lock);
1731                 val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
1732                 val = 0;
1733                 if (pipe)
1734                         val |= (1<<21);
1735                 else
1736                         val &= ~(1<<21);
1737                 val |= 0x001000c4;
1738                 vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
1739
1740                 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port),
1741                                  0x00760018);
1742                 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port),
1743                                  0x00400888);
1744                 mutex_unlock(&dev_priv->dpio_lock);
1745         }
1746 }
1747
1748 static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
1749 {
1750         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1751         struct drm_device *dev = encoder->base.dev;
1752         struct drm_i915_private *dev_priv = dev->dev_private;
1753         int port = vlv_dport_to_channel(dport);
1754
1755         if (!IS_VALLEYVIEW(dev))
1756                 return;
1757
1758         /* Program Tx lane resets to default */
1759         mutex_lock(&dev_priv->dpio_lock);
1760         vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
1761                          DPIO_PCS_TX_LANE2_RESET |
1762                          DPIO_PCS_TX_LANE1_RESET);
1763         vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
1764                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1765                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1766                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1767                                  DPIO_PCS_CLK_SOFT_RESET);
1768
1769         /* Fix up inter-pair skew failure */
1770         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
1771         vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
1772         vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
1773         mutex_unlock(&dev_priv->dpio_lock);
1774 }
1775
1776 /*
1777  * Native read with retry for link status and receiver capability reads for
1778  * cases where the sink may still be asleep.
1779  */
1780 static bool
1781 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1782                                uint8_t *recv, int recv_bytes)
1783 {
1784         int ret, i;
1785
1786         /*
1787          * Sinks are *supposed* to come up within 1ms from an off state,
1788          * but we're also supposed to retry 3 times per the spec.
1789          */
1790         for (i = 0; i < 3; i++) {
1791                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1792                                                recv_bytes);
1793                 if (ret == recv_bytes)
1794                         return true;
1795                 msleep(1);
1796         }
1797
1798         return false;
1799 }
1800
1801 /*
1802  * Fetch AUX CH registers 0x202 - 0x207 which contain
1803  * link status information
1804  */
1805 static bool
1806 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1807 {
1808         return intel_dp_aux_native_read_retry(intel_dp,
1809                                               DP_LANE0_1_STATUS,
1810                                               link_status,
1811                                               DP_LINK_STATUS_SIZE);
1812 }
1813
1814 #if 0
1815 static char     *voltage_names[] = {
1816         "0.4V", "0.6V", "0.8V", "1.2V"
1817 };
1818 static char     *pre_emph_names[] = {
1819         "0dB", "3.5dB", "6dB", "9.5dB"
1820 };
1821 static char     *link_train_names[] = {
1822         "pattern 1", "pattern 2", "idle", "off"
1823 };
1824 #endif
1825
1826 /*
1827  * These are source-specific values; current Intel hardware supports
1828  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1829  */
1830
1831 static uint8_t
1832 intel_dp_voltage_max(struct intel_dp *intel_dp)
1833 {
1834         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1835         enum port port = dp_to_dig_port(intel_dp)->port;
1836
1837         if (IS_VALLEYVIEW(dev))
1838                 return DP_TRAIN_VOLTAGE_SWING_1200;
1839         else if (IS_GEN7(dev) && port == PORT_A)
1840                 return DP_TRAIN_VOLTAGE_SWING_800;
1841         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1842                 return DP_TRAIN_VOLTAGE_SWING_1200;
1843         else
1844                 return DP_TRAIN_VOLTAGE_SWING_800;
1845 }
1846
1847 static uint8_t
1848 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1849 {
1850         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1851         enum port port = dp_to_dig_port(intel_dp)->port;
1852
1853         if (HAS_DDI(dev)) {
1854                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1855                 case DP_TRAIN_VOLTAGE_SWING_400:
1856                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1857                 case DP_TRAIN_VOLTAGE_SWING_600:
1858                         return DP_TRAIN_PRE_EMPHASIS_6;
1859                 case DP_TRAIN_VOLTAGE_SWING_800:
1860                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1861                 case DP_TRAIN_VOLTAGE_SWING_1200:
1862                 default:
1863                         return DP_TRAIN_PRE_EMPHASIS_0;
1864                 }
1865         } else if (IS_VALLEYVIEW(dev)) {
1866                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1867                 case DP_TRAIN_VOLTAGE_SWING_400:
1868                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1869                 case DP_TRAIN_VOLTAGE_SWING_600:
1870                         return DP_TRAIN_PRE_EMPHASIS_6;
1871                 case DP_TRAIN_VOLTAGE_SWING_800:
1872                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1873                 case DP_TRAIN_VOLTAGE_SWING_1200:
1874                 default:
1875                         return DP_TRAIN_PRE_EMPHASIS_0;
1876                 }
1877         } else if (IS_GEN7(dev) && port == PORT_A) {
1878                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1879                 case DP_TRAIN_VOLTAGE_SWING_400:
1880                         return DP_TRAIN_PRE_EMPHASIS_6;
1881                 case DP_TRAIN_VOLTAGE_SWING_600:
1882                 case DP_TRAIN_VOLTAGE_SWING_800:
1883                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1884                 default:
1885                         return DP_TRAIN_PRE_EMPHASIS_0;
1886                 }
1887         } else {
1888                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1889                 case DP_TRAIN_VOLTAGE_SWING_400:
1890                         return DP_TRAIN_PRE_EMPHASIS_6;
1891                 case DP_TRAIN_VOLTAGE_SWING_600:
1892                         return DP_TRAIN_PRE_EMPHASIS_6;
1893                 case DP_TRAIN_VOLTAGE_SWING_800:
1894                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1895                 case DP_TRAIN_VOLTAGE_SWING_1200:
1896                 default:
1897                         return DP_TRAIN_PRE_EMPHASIS_0;
1898                 }
1899         }
1900 }
1901
1902 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1903 {
1904         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1905         struct drm_i915_private *dev_priv = dev->dev_private;
1906         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1907         unsigned long demph_reg_value, preemph_reg_value,
1908                 uniqtranscale_reg_value;
1909         uint8_t train_set = intel_dp->train_set[0];
1910         int port = vlv_dport_to_channel(dport);
1911
1912         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1913         case DP_TRAIN_PRE_EMPHASIS_0:
1914                 preemph_reg_value = 0x0004000;
1915                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1916                 case DP_TRAIN_VOLTAGE_SWING_400:
1917                         demph_reg_value = 0x2B405555;
1918                         uniqtranscale_reg_value = 0x552AB83A;
1919                         break;
1920                 case DP_TRAIN_VOLTAGE_SWING_600:
1921                         demph_reg_value = 0x2B404040;
1922                         uniqtranscale_reg_value = 0x5548B83A;
1923                         break;
1924                 case DP_TRAIN_VOLTAGE_SWING_800:
1925                         demph_reg_value = 0x2B245555;
1926                         uniqtranscale_reg_value = 0x5560B83A;
1927                         break;
1928                 case DP_TRAIN_VOLTAGE_SWING_1200:
1929                         demph_reg_value = 0x2B405555;
1930                         uniqtranscale_reg_value = 0x5598DA3A;
1931                         break;
1932                 default:
1933                         return 0;
1934                 }
1935                 break;
1936         case DP_TRAIN_PRE_EMPHASIS_3_5:
1937                 preemph_reg_value = 0x0002000;
1938                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1939                 case DP_TRAIN_VOLTAGE_SWING_400:
1940                         demph_reg_value = 0x2B404040;
1941                         uniqtranscale_reg_value = 0x5552B83A;
1942                         break;
1943                 case DP_TRAIN_VOLTAGE_SWING_600:
1944                         demph_reg_value = 0x2B404848;
1945                         uniqtranscale_reg_value = 0x5580B83A;
1946                         break;
1947                 case DP_TRAIN_VOLTAGE_SWING_800:
1948                         demph_reg_value = 0x2B404040;
1949                         uniqtranscale_reg_value = 0x55ADDA3A;
1950                         break;
1951                 default:
1952                         return 0;
1953                 }
1954                 break;
1955         case DP_TRAIN_PRE_EMPHASIS_6:
1956                 preemph_reg_value = 0x0000000;
1957                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1958                 case DP_TRAIN_VOLTAGE_SWING_400:
1959                         demph_reg_value = 0x2B305555;
1960                         uniqtranscale_reg_value = 0x5570B83A;
1961                         break;
1962                 case DP_TRAIN_VOLTAGE_SWING_600:
1963                         demph_reg_value = 0x2B2B4040;
1964                         uniqtranscale_reg_value = 0x55ADDA3A;
1965                         break;
1966                 default:
1967                         return 0;
1968                 }
1969                 break;
1970         case DP_TRAIN_PRE_EMPHASIS_9_5:
1971                 preemph_reg_value = 0x0006000;
1972                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1973                 case DP_TRAIN_VOLTAGE_SWING_400:
1974                         demph_reg_value = 0x1B405555;
1975                         uniqtranscale_reg_value = 0x55ADDA3A;
1976                         break;
1977                 default:
1978                         return 0;
1979                 }
1980                 break;
1981         default:
1982                 return 0;
1983         }
1984
1985         mutex_lock(&dev_priv->dpio_lock);
1986         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
1987         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
1988         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
1989                          uniqtranscale_reg_value);
1990         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
1991         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
1992         vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
1993         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
1994         mutex_unlock(&dev_priv->dpio_lock);
1995
1996         return 0;
1997 }
1998
1999 static void
2000 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2001 {
2002         uint8_t v = 0;
2003         uint8_t p = 0;
2004         int lane;
2005         uint8_t voltage_max;
2006         uint8_t preemph_max;
2007
2008         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2009                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2010                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2011
2012                 if (this_v > v)
2013                         v = this_v;
2014                 if (this_p > p)
2015                         p = this_p;
2016         }
2017
2018         voltage_max = intel_dp_voltage_max(intel_dp);
2019         if (v >= voltage_max)
2020                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2021
2022         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2023         if (p >= preemph_max)
2024                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2025
2026         for (lane = 0; lane < 4; lane++)
2027                 intel_dp->train_set[lane] = v | p;
2028 }
2029
2030 static uint32_t
2031 intel_gen4_signal_levels(uint8_t train_set)
2032 {
2033         uint32_t        signal_levels = 0;
2034
2035         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2036         case DP_TRAIN_VOLTAGE_SWING_400:
2037         default:
2038                 signal_levels |= DP_VOLTAGE_0_4;
2039                 break;
2040         case DP_TRAIN_VOLTAGE_SWING_600:
2041                 signal_levels |= DP_VOLTAGE_0_6;
2042                 break;
2043         case DP_TRAIN_VOLTAGE_SWING_800:
2044                 signal_levels |= DP_VOLTAGE_0_8;
2045                 break;
2046         case DP_TRAIN_VOLTAGE_SWING_1200:
2047                 signal_levels |= DP_VOLTAGE_1_2;
2048                 break;
2049         }
2050         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2051         case DP_TRAIN_PRE_EMPHASIS_0:
2052         default:
2053                 signal_levels |= DP_PRE_EMPHASIS_0;
2054                 break;
2055         case DP_TRAIN_PRE_EMPHASIS_3_5:
2056                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2057                 break;
2058         case DP_TRAIN_PRE_EMPHASIS_6:
2059                 signal_levels |= DP_PRE_EMPHASIS_6;
2060                 break;
2061         case DP_TRAIN_PRE_EMPHASIS_9_5:
2062                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2063                 break;
2064         }
2065         return signal_levels;
2066 }
2067
2068 /* Gen6's DP voltage swing and pre-emphasis control */
2069 static uint32_t
2070 intel_gen6_edp_signal_levels(uint8_t train_set)
2071 {
2072         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2073                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2074         switch (signal_levels) {
2075         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2076         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2077                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2078         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2079                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2080         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2081         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2082                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2083         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2084         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2085                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2086         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2087         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2088                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2089         default:
2090                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2091                               "0x%x\n", signal_levels);
2092                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2093         }
2094 }
2095
2096 /* Gen7's DP voltage swing and pre-emphasis control */
2097 static uint32_t
2098 intel_gen7_edp_signal_levels(uint8_t train_set)
2099 {
2100         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2101                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2102         switch (signal_levels) {
2103         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2104                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2105         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2106                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2107         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2108                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2109
2110         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2111                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2112         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2113                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2114
2115         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2116                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2117         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2118                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2119
2120         default:
2121                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2122                               "0x%x\n", signal_levels);
2123                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2124         }
2125 }
2126
2127 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2128 static uint32_t
2129 intel_hsw_signal_levels(uint8_t train_set)
2130 {
2131         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2132                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2133         switch (signal_levels) {
2134         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2135                 return DDI_BUF_EMP_400MV_0DB_HSW;
2136         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2137                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2138         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2139                 return DDI_BUF_EMP_400MV_6DB_HSW;
2140         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2141                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2142
2143         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2144                 return DDI_BUF_EMP_600MV_0DB_HSW;
2145         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2146                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2147         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2148                 return DDI_BUF_EMP_600MV_6DB_HSW;
2149
2150         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2151                 return DDI_BUF_EMP_800MV_0DB_HSW;
2152         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2153                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2154         default:
2155                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2156                               "0x%x\n", signal_levels);
2157                 return DDI_BUF_EMP_400MV_0DB_HSW;
2158         }
2159 }
2160
2161 /* Properly updates "DP" with the correct signal levels. */
2162 static void
2163 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2164 {
2165         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2166         enum port port = intel_dig_port->port;
2167         struct drm_device *dev = intel_dig_port->base.base.dev;
2168         uint32_t signal_levels, mask;
2169         uint8_t train_set = intel_dp->train_set[0];
2170
2171         if (HAS_DDI(dev)) {
2172                 signal_levels = intel_hsw_signal_levels(train_set);
2173                 mask = DDI_BUF_EMP_MASK;
2174         } else if (IS_VALLEYVIEW(dev)) {
2175                 signal_levels = intel_vlv_signal_levels(intel_dp);
2176                 mask = 0;
2177         } else if (IS_GEN7(dev) && port == PORT_A) {
2178                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2179                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2180         } else if (IS_GEN6(dev) && port == PORT_A) {
2181                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2182                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2183         } else {
2184                 signal_levels = intel_gen4_signal_levels(train_set);
2185                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2186         }
2187
2188         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2189
2190         *DP = (*DP & ~mask) | signal_levels;
2191 }
2192
2193 static bool
2194 intel_dp_set_link_train(struct intel_dp *intel_dp,
2195                         uint32_t dp_reg_value,
2196                         uint8_t dp_train_pat)
2197 {
2198         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2199         struct drm_device *dev = intel_dig_port->base.base.dev;
2200         struct drm_i915_private *dev_priv = dev->dev_private;
2201         enum port port = intel_dig_port->port;
2202         int ret;
2203
2204         if (HAS_DDI(dev)) {
2205                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2206
2207                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2208                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2209                 else
2210                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2211
2212                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2213                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2214                 case DP_TRAINING_PATTERN_DISABLE:
2215                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2216
2217                         break;
2218                 case DP_TRAINING_PATTERN_1:
2219                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2220                         break;
2221                 case DP_TRAINING_PATTERN_2:
2222                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2223                         break;
2224                 case DP_TRAINING_PATTERN_3:
2225                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2226                         break;
2227                 }
2228                 I915_WRITE(DP_TP_CTL(port), temp);
2229
2230         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2231                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
2232
2233                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2234                 case DP_TRAINING_PATTERN_DISABLE:
2235                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
2236                         break;
2237                 case DP_TRAINING_PATTERN_1:
2238                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
2239                         break;
2240                 case DP_TRAINING_PATTERN_2:
2241                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2242                         break;
2243                 case DP_TRAINING_PATTERN_3:
2244                         DRM_ERROR("DP training pattern 3 not supported\n");
2245                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2246                         break;
2247                 }
2248
2249         } else {
2250                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
2251
2252                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2253                 case DP_TRAINING_PATTERN_DISABLE:
2254                         dp_reg_value |= DP_LINK_TRAIN_OFF;
2255                         break;
2256                 case DP_TRAINING_PATTERN_1:
2257                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
2258                         break;
2259                 case DP_TRAINING_PATTERN_2:
2260                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2261                         break;
2262                 case DP_TRAINING_PATTERN_3:
2263                         DRM_ERROR("DP training pattern 3 not supported\n");
2264                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2265                         break;
2266                 }
2267         }
2268
2269         I915_WRITE(intel_dp->output_reg, dp_reg_value);
2270         POSTING_READ(intel_dp->output_reg);
2271
2272         intel_dp_aux_native_write_1(intel_dp,
2273                                     DP_TRAINING_PATTERN_SET,
2274                                     dp_train_pat);
2275
2276         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
2277             DP_TRAINING_PATTERN_DISABLE) {
2278                 ret = intel_dp_aux_native_write(intel_dp,
2279                                                 DP_TRAINING_LANE0_SET,
2280                                                 intel_dp->train_set,
2281                                                 intel_dp->lane_count);
2282                 if (ret != intel_dp->lane_count)
2283                         return false;
2284         }
2285
2286         return true;
2287 }
2288
2289 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2290 {
2291         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2292         struct drm_device *dev = intel_dig_port->base.base.dev;
2293         struct drm_i915_private *dev_priv = dev->dev_private;
2294         enum port port = intel_dig_port->port;
2295         uint32_t val;
2296
2297         if (!HAS_DDI(dev))
2298                 return;
2299
2300         val = I915_READ(DP_TP_CTL(port));
2301         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2302         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2303         I915_WRITE(DP_TP_CTL(port), val);
2304
2305         /*
2306          * On PORT_A we can have only eDP in SST mode. There the only reason
2307          * we need to set idle transmission mode is to work around a HW issue
2308          * where we enable the pipe while not in idle link-training mode.
2309          * In this case there is requirement to wait for a minimum number of
2310          * idle patterns to be sent.
2311          */
2312         if (port == PORT_A)
2313                 return;
2314
2315         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2316                      1))
2317                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2318 }
2319
2320 /* Enable corresponding port and start training pattern 1 */
2321 void
2322 intel_dp_start_link_train(struct intel_dp *intel_dp)
2323 {
2324         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2325         struct drm_device *dev = encoder->dev;
2326         int i;
2327         uint8_t voltage;
2328         bool clock_recovery = false;
2329         int voltage_tries, loop_tries;
2330         uint32_t DP = intel_dp->DP;
2331
2332         if (HAS_DDI(dev))
2333                 intel_ddi_prepare_link_retrain(encoder);
2334
2335         /* Write the link configuration data */
2336         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
2337                                   intel_dp->link_configuration,
2338                                   DP_LINK_CONFIGURATION_SIZE);
2339
2340         DP |= DP_PORT_EN;
2341
2342         memset(intel_dp->train_set, 0, 4);
2343         voltage = 0xff;
2344         voltage_tries = 0;
2345         loop_tries = 0;
2346         clock_recovery = false;
2347         for (;;) {
2348                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2349                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2350
2351                 intel_dp_set_signal_levels(intel_dp, &DP);
2352
2353                 /* Set training pattern 1 */
2354                 if (!intel_dp_set_link_train(intel_dp, DP,
2355                                              DP_TRAINING_PATTERN_1 |
2356                                              DP_LINK_SCRAMBLING_DISABLE))
2357                         break;
2358
2359                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2360                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2361                         DRM_ERROR("failed to get link status\n");
2362                         break;
2363                 }
2364
2365                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2366                         DRM_DEBUG_KMS("clock recovery OK\n");
2367                         clock_recovery = true;
2368                         break;
2369                 }
2370
2371                 /* Check to see if we've tried the max voltage */
2372                 for (i = 0; i < intel_dp->lane_count; i++)
2373                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2374                                 break;
2375                 if (i == intel_dp->lane_count) {
2376                         ++loop_tries;
2377                         if (loop_tries == 5) {
2378                                 DRM_DEBUG_KMS("too many full retries, give up\n");
2379                                 break;
2380                         }
2381                         memset(intel_dp->train_set, 0, 4);
2382                         voltage_tries = 0;
2383                         continue;
2384                 }
2385
2386                 /* Check to see if we've tried the same voltage 5 times */
2387                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2388                         ++voltage_tries;
2389                         if (voltage_tries == 5) {
2390                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
2391                                 break;
2392                         }
2393                 } else
2394                         voltage_tries = 0;
2395                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2396
2397                 /* Compute new intel_dp->train_set as requested by target */
2398                 intel_get_adjust_train(intel_dp, link_status);
2399         }
2400
2401         intel_dp->DP = DP;
2402 }
2403
2404 void
2405 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2406 {
2407         bool channel_eq = false;
2408         int tries, cr_tries;
2409         uint32_t DP = intel_dp->DP;
2410
2411         /* channel equalization */
2412         tries = 0;
2413         cr_tries = 0;
2414         channel_eq = false;
2415         for (;;) {
2416                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2417
2418                 if (cr_tries > 5) {
2419                         DRM_ERROR("failed to train DP, aborting\n");
2420                         intel_dp_link_down(intel_dp);
2421                         break;
2422                 }
2423
2424                 intel_dp_set_signal_levels(intel_dp, &DP);
2425
2426                 /* channel eq pattern */
2427                 if (!intel_dp_set_link_train(intel_dp, DP,
2428                                              DP_TRAINING_PATTERN_2 |
2429                                              DP_LINK_SCRAMBLING_DISABLE))
2430                         break;
2431
2432                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2433                 if (!intel_dp_get_link_status(intel_dp, link_status))
2434                         break;
2435
2436                 /* Make sure clock is still ok */
2437                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2438                         intel_dp_start_link_train(intel_dp);
2439                         cr_tries++;
2440                         continue;
2441                 }
2442
2443                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2444                         channel_eq = true;
2445                         break;
2446                 }
2447
2448                 /* Try 5 times, then try clock recovery if that fails */
2449                 if (tries > 5) {
2450                         intel_dp_link_down(intel_dp);
2451                         intel_dp_start_link_train(intel_dp);
2452                         tries = 0;
2453                         cr_tries++;
2454                         continue;
2455                 }
2456
2457                 /* Compute new intel_dp->train_set as requested by target */
2458                 intel_get_adjust_train(intel_dp, link_status);
2459                 ++tries;
2460         }
2461
2462         intel_dp_set_idle_link_train(intel_dp);
2463
2464         intel_dp->DP = DP;
2465
2466         if (channel_eq)
2467                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2468
2469 }
2470
2471 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2472 {
2473         intel_dp_set_link_train(intel_dp, intel_dp->DP,
2474                                 DP_TRAINING_PATTERN_DISABLE);
2475 }
2476
2477 static void
2478 intel_dp_link_down(struct intel_dp *intel_dp)
2479 {
2480         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2481         enum port port = intel_dig_port->port;
2482         struct drm_device *dev = intel_dig_port->base.base.dev;
2483         struct drm_i915_private *dev_priv = dev->dev_private;
2484         struct intel_crtc *intel_crtc =
2485                 to_intel_crtc(intel_dig_port->base.base.crtc);
2486         uint32_t DP = intel_dp->DP;
2487
2488         /*
2489          * DDI code has a strict mode set sequence and we should try to respect
2490          * it, otherwise we might hang the machine in many different ways. So we
2491          * really should be disabling the port only on a complete crtc_disable
2492          * sequence. This function is just called under two conditions on DDI
2493          * code:
2494          * - Link train failed while doing crtc_enable, and on this case we
2495          *   really should respect the mode set sequence and wait for a
2496          *   crtc_disable.
2497          * - Someone turned the monitor off and intel_dp_check_link_status
2498          *   called us. We don't need to disable the whole port on this case, so
2499          *   when someone turns the monitor on again,
2500          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2501          *   train.
2502          */
2503         if (HAS_DDI(dev))
2504                 return;
2505
2506         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2507                 return;
2508
2509         DRM_DEBUG_KMS("\n");
2510
2511         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2512                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2513                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2514         } else {
2515                 DP &= ~DP_LINK_TRAIN_MASK;
2516                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2517         }
2518         POSTING_READ(intel_dp->output_reg);
2519
2520         /* We don't really know why we're doing this */
2521         intel_wait_for_vblank(dev, intel_crtc->pipe);
2522
2523         if (HAS_PCH_IBX(dev) &&
2524             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2525                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2526
2527                 /* Hardware workaround: leaving our transcoder select
2528                  * set to transcoder B while it's off will prevent the
2529                  * corresponding HDMI output on transcoder A.
2530                  *
2531                  * Combine this with another hardware workaround:
2532                  * transcoder select bit can only be cleared while the
2533                  * port is enabled.
2534                  */
2535                 DP &= ~DP_PIPEB_SELECT;
2536                 I915_WRITE(intel_dp->output_reg, DP);
2537
2538                 /* Changes to enable or select take place the vblank
2539                  * after being written.
2540                  */
2541                 if (WARN_ON(crtc == NULL)) {
2542                         /* We should never try to disable a port without a crtc
2543                          * attached. For paranoia keep the code around for a
2544                          * bit. */
2545                         POSTING_READ(intel_dp->output_reg);
2546                         msleep(50);
2547                 } else
2548                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2549         }
2550
2551         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2552         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2553         POSTING_READ(intel_dp->output_reg);
2554         msleep(intel_dp->panel_power_down_delay);
2555 }
2556
2557 static bool
2558 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2559 {
2560         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2561
2562         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2563                                            sizeof(intel_dp->dpcd)) == 0)
2564                 return false; /* aux transfer failed */
2565
2566         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2567                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2568         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2569
2570         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2571                 return false; /* DPCD not present */
2572
2573         /* Check if the panel supports PSR */
2574         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2575         intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2576                                        intel_dp->psr_dpcd,
2577                                        sizeof(intel_dp->psr_dpcd));
2578         if (is_edp_psr(intel_dp))
2579                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2580         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2581               DP_DWN_STRM_PORT_PRESENT))
2582                 return true; /* native DP sink */
2583
2584         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2585                 return true; /* no per-port downstream info */
2586
2587         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2588                                            intel_dp->downstream_ports,
2589                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2590                 return false; /* downstream port status fetch failed */
2591
2592         return true;
2593 }
2594
2595 static void
2596 intel_dp_probe_oui(struct intel_dp *intel_dp)
2597 {
2598         u8 buf[3];
2599
2600         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2601                 return;
2602
2603         ironlake_edp_panel_vdd_on(intel_dp);
2604
2605         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2606                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2607                               buf[0], buf[1], buf[2]);
2608
2609         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2610                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2611                               buf[0], buf[1], buf[2]);
2612
2613         ironlake_edp_panel_vdd_off(intel_dp, false);
2614 }
2615
2616 static bool
2617 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2618 {
2619         int ret;
2620
2621         ret = intel_dp_aux_native_read_retry(intel_dp,
2622                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2623                                              sink_irq_vector, 1);
2624         if (!ret)
2625                 return false;
2626
2627         return true;
2628 }
2629
2630 static void
2631 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2632 {
2633         /* NAK by default */
2634         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2635 }
2636
2637 /*
2638  * According to DP spec
2639  * 5.1.2:
2640  *  1. Read DPCD
2641  *  2. Configure link according to Receiver Capabilities
2642  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2643  *  4. Check link status on receipt of hot-plug interrupt
2644  */
2645
2646 void
2647 intel_dp_check_link_status(struct intel_dp *intel_dp)
2648 {
2649         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2650         u8 sink_irq_vector;
2651         u8 link_status[DP_LINK_STATUS_SIZE];
2652
2653         if (!intel_encoder->connectors_active)
2654                 return;
2655
2656         if (WARN_ON(!intel_encoder->base.crtc))
2657                 return;
2658
2659         /* Try to read receiver status if the link appears to be up */
2660         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2661                 intel_dp_link_down(intel_dp);
2662                 return;
2663         }
2664
2665         /* Now read the DPCD to see if it's actually running */
2666         if (!intel_dp_get_dpcd(intel_dp)) {
2667                 intel_dp_link_down(intel_dp);
2668                 return;
2669         }
2670
2671         /* Try to read the source of the interrupt */
2672         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2673             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2674                 /* Clear interrupt source */
2675                 intel_dp_aux_native_write_1(intel_dp,
2676                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2677                                             sink_irq_vector);
2678
2679                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2680                         intel_dp_handle_test_request(intel_dp);
2681                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2682                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2683         }
2684
2685         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2686                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2687                               drm_get_encoder_name(&intel_encoder->base));
2688                 intel_dp_start_link_train(intel_dp);
2689                 intel_dp_complete_link_train(intel_dp);
2690                 intel_dp_stop_link_train(intel_dp);
2691         }
2692 }
2693
2694 /* XXX this is probably wrong for multiple downstream ports */
2695 static enum drm_connector_status
2696 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2697 {
2698         uint8_t *dpcd = intel_dp->dpcd;
2699         bool hpd;
2700         uint8_t type;
2701
2702         if (!intel_dp_get_dpcd(intel_dp))
2703                 return connector_status_disconnected;
2704
2705         /* if there's no downstream port, we're done */
2706         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2707                 return connector_status_connected;
2708
2709         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2710         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2711         if (hpd) {
2712                 uint8_t reg;
2713                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2714                                                     &reg, 1))
2715                         return connector_status_unknown;
2716                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2717                                               : connector_status_disconnected;
2718         }
2719
2720         /* If no HPD, poke DDC gently */
2721         if (drm_probe_ddc(&intel_dp->adapter))
2722                 return connector_status_connected;
2723
2724         /* Well we tried, say unknown for unreliable port types */
2725         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2726         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2727                 return connector_status_unknown;
2728
2729         /* Anything else is out of spec, warn and ignore */
2730         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2731         return connector_status_disconnected;
2732 }
2733
2734 static enum drm_connector_status
2735 ironlake_dp_detect(struct intel_dp *intel_dp)
2736 {
2737         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2738         struct drm_i915_private *dev_priv = dev->dev_private;
2739         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2740         enum drm_connector_status status;
2741
2742         /* Can't disconnect eDP, but you can close the lid... */
2743         if (is_edp(intel_dp)) {
2744                 status = intel_panel_detect(dev);
2745                 if (status == connector_status_unknown)
2746                         status = connector_status_connected;
2747                 return status;
2748         }
2749
2750         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2751                 return connector_status_disconnected;
2752
2753         return intel_dp_detect_dpcd(intel_dp);
2754 }
2755
2756 static enum drm_connector_status
2757 g4x_dp_detect(struct intel_dp *intel_dp)
2758 {
2759         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2760         struct drm_i915_private *dev_priv = dev->dev_private;
2761         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2762         uint32_t bit;
2763
2764         /* Can't disconnect eDP, but you can close the lid... */
2765         if (is_edp(intel_dp)) {
2766                 enum drm_connector_status status;
2767
2768                 status = intel_panel_detect(dev);
2769                 if (status == connector_status_unknown)
2770                         status = connector_status_connected;
2771                 return status;
2772         }
2773
2774         switch (intel_dig_port->port) {
2775         case PORT_B:
2776                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2777                 break;
2778         case PORT_C:
2779                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2780                 break;
2781         case PORT_D:
2782                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2783                 break;
2784         default:
2785                 return connector_status_unknown;
2786         }
2787
2788         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2789                 return connector_status_disconnected;
2790
2791         return intel_dp_detect_dpcd(intel_dp);
2792 }
2793
2794 static struct edid *
2795 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2796 {
2797         struct intel_connector *intel_connector = to_intel_connector(connector);
2798
2799         /* use cached edid if we have one */
2800         if (intel_connector->edid) {
2801                 struct edid *edid;
2802                 int size;
2803
2804                 /* invalid edid */
2805                 if (IS_ERR(intel_connector->edid))
2806                         return NULL;
2807
2808                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2809                 edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
2810                 if (!edid)
2811                         return NULL;
2812
2813                 return edid;
2814         }
2815
2816         return drm_get_edid(connector, adapter);
2817 }
2818
2819 static int
2820 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2821 {
2822         struct intel_connector *intel_connector = to_intel_connector(connector);
2823
2824         /* use cached edid if we have one */
2825         if (intel_connector->edid) {
2826                 /* invalid edid */
2827                 if (IS_ERR(intel_connector->edid))
2828                         return 0;
2829
2830                 return intel_connector_update_modes(connector,
2831                                                     intel_connector->edid);
2832         }
2833
2834         return intel_ddc_get_modes(connector, adapter);
2835 }
2836
2837 static enum drm_connector_status
2838 intel_dp_detect(struct drm_connector *connector, bool force)
2839 {
2840         struct intel_dp *intel_dp = intel_attached_dp(connector);
2841         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2842         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2843         struct drm_device *dev = connector->dev;
2844         enum drm_connector_status status;
2845         struct edid *edid = NULL;
2846
2847         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
2848                       connector->base.id, drm_get_connector_name(connector));
2849
2850         intel_dp->has_audio = false;
2851
2852         if (HAS_PCH_SPLIT(dev))
2853                 status = ironlake_dp_detect(intel_dp);
2854         else
2855                 status = g4x_dp_detect(intel_dp);
2856
2857         if (status != connector_status_connected)
2858                 return status;
2859
2860         intel_dp_probe_oui(intel_dp);
2861
2862         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2863                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2864         } else {
2865                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2866                 if (edid) {
2867                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2868                         kfree(edid);
2869                 }
2870         }
2871
2872         if (intel_encoder->type != INTEL_OUTPUT_EDP)
2873                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2874         return connector_status_connected;
2875 }
2876
2877 static int intel_dp_get_modes(struct drm_connector *connector)
2878 {
2879         struct intel_dp *intel_dp = intel_attached_dp(connector);
2880         struct intel_connector *intel_connector = to_intel_connector(connector);
2881         struct drm_device *dev = connector->dev;
2882         int ret;
2883
2884         /* We should parse the EDID data and find out if it has an audio sink
2885          */
2886
2887         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2888         if (ret)
2889                 return ret;
2890
2891         /* if eDP has no EDID, fall back to fixed mode */
2892         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2893                 struct drm_display_mode *mode;
2894                 mode = drm_mode_duplicate(dev,
2895                                           intel_connector->panel.fixed_mode);
2896                 if (mode) {
2897                         drm_mode_probed_add(connector, mode);
2898                         return 1;
2899                 }
2900         }
2901         return 0;
2902 }
2903
2904 static bool
2905 intel_dp_detect_audio(struct drm_connector *connector)
2906 {
2907         struct intel_dp *intel_dp = intel_attached_dp(connector);
2908         struct edid *edid;
2909         bool has_audio = false;
2910
2911         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2912         if (edid) {
2913                 has_audio = drm_detect_monitor_audio(edid);
2914                 kfree(edid);
2915         }
2916
2917         return has_audio;
2918 }
2919
2920 static int
2921 intel_dp_set_property(struct drm_connector *connector,
2922                       struct drm_property *property,
2923                       uint64_t val)
2924 {
2925         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2926         struct intel_connector *intel_connector = to_intel_connector(connector);
2927         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2928         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2929         int ret;
2930
2931         ret = drm_object_property_set_value(&connector->base, property, val);
2932         if (ret)
2933                 return ret;
2934
2935         if (property == dev_priv->force_audio_property) {
2936                 int i = val;
2937                 bool has_audio;
2938
2939                 if (i == intel_dp->force_audio)
2940                         return 0;
2941
2942                 intel_dp->force_audio = i;
2943
2944                 if (i == HDMI_AUDIO_AUTO)
2945                         has_audio = intel_dp_detect_audio(connector);
2946                 else
2947                         has_audio = (i == HDMI_AUDIO_ON);
2948
2949                 if (has_audio == intel_dp->has_audio)
2950                         return 0;
2951
2952                 intel_dp->has_audio = has_audio;
2953                 goto done;
2954         }
2955
2956         if (property == dev_priv->broadcast_rgb_property) {
2957                 bool old_auto = intel_dp->color_range_auto;
2958                 uint32_t old_range = intel_dp->color_range;
2959
2960                 switch (val) {
2961                 case INTEL_BROADCAST_RGB_AUTO:
2962                         intel_dp->color_range_auto = true;
2963                         break;
2964                 case INTEL_BROADCAST_RGB_FULL:
2965                         intel_dp->color_range_auto = false;
2966                         intel_dp->color_range = 0;
2967                         break;
2968                 case INTEL_BROADCAST_RGB_LIMITED:
2969                         intel_dp->color_range_auto = false;
2970                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
2971                         break;
2972                 default:
2973                         return -EINVAL;
2974                 }
2975
2976                 if (old_auto == intel_dp->color_range_auto &&
2977                     old_range == intel_dp->color_range)
2978                         return 0;
2979
2980                 goto done;
2981         }
2982
2983         if (is_edp(intel_dp) &&
2984             property == connector->dev->mode_config.scaling_mode_property) {
2985                 if (val == DRM_MODE_SCALE_NONE) {
2986                         DRM_DEBUG_KMS("no scaling not supported\n");
2987                         return -EINVAL;
2988                 }
2989
2990                 if (intel_connector->panel.fitting_mode == val) {
2991                         /* the eDP scaling property is not changed */
2992                         return 0;
2993                 }
2994                 intel_connector->panel.fitting_mode = val;
2995
2996                 goto done;
2997         }
2998
2999         return -EINVAL;
3000
3001 done:
3002         if (intel_encoder->base.crtc)
3003                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3004
3005         return 0;
3006 }
3007
3008 static void
3009 intel_dp_connector_destroy(struct drm_connector *connector)
3010 {
3011         struct intel_connector *intel_connector = to_intel_connector(connector);
3012
3013         if (!IS_ERR_OR_NULL(intel_connector->edid))
3014                 kfree(intel_connector->edid);
3015
3016         /* Can't call is_edp() since the encoder may have been destroyed
3017          * already. */
3018         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3019                 intel_panel_fini(&intel_connector->panel);
3020
3021         drm_sysfs_connector_remove(connector);
3022         drm_connector_cleanup(connector);
3023         kfree(connector);
3024 }
3025
3026 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3027 {
3028         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3029         struct intel_dp *intel_dp = &intel_dig_port->dp;
3030         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3031
3032         i2c_del_adapter(&intel_dp->adapter);
3033         drm_encoder_cleanup(encoder);
3034         if (is_edp(intel_dp)) {
3035                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3036                 mutex_lock(&dev->mode_config.mutex);
3037                 ironlake_panel_vdd_off_sync(intel_dp);
3038                 mutex_unlock(&dev->mode_config.mutex);
3039         }
3040         kfree(intel_dig_port);
3041 }
3042
3043 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3044         .dpms = intel_connector_dpms,
3045         .detect = intel_dp_detect,
3046         .fill_modes = drm_helper_probe_single_connector_modes,
3047         .set_property = intel_dp_set_property,
3048         .destroy = intel_dp_connector_destroy,
3049 };
3050
3051 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3052         .get_modes = intel_dp_get_modes,
3053         .mode_valid = intel_dp_mode_valid,
3054         .best_encoder = intel_best_encoder,
3055 };
3056
3057 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3058         .destroy = intel_dp_encoder_destroy,
3059 };
3060
3061 static void
3062 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3063 {
3064         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3065
3066         intel_dp_check_link_status(intel_dp);
3067 }
3068
3069 /* Return which DP Port should be selected for Transcoder DP control */
3070 int
3071 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3072 {
3073         struct drm_device *dev = crtc->dev;
3074         struct intel_encoder *intel_encoder;
3075         struct intel_dp *intel_dp;
3076
3077         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3078                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3079
3080                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3081                     intel_encoder->type == INTEL_OUTPUT_EDP)
3082                         return intel_dp->output_reg;
3083         }
3084
3085         return -1;
3086 }
3087
3088 /* check the VBT to see whether the eDP is on DP-D port */
3089 bool intel_dpd_is_edp(struct drm_device *dev)
3090 {
3091         struct drm_i915_private *dev_priv = dev->dev_private;
3092         struct child_device_config *p_child;
3093         int i;
3094
3095         if (!dev_priv->vbt.child_dev_num)
3096                 return false;
3097
3098         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3099                 p_child = dev_priv->vbt.child_dev + i;
3100
3101                 if (p_child->dvo_port == PORT_IDPD &&
3102                     p_child->device_type == DEVICE_TYPE_eDP)
3103                         return true;
3104         }
3105         return false;
3106 }
3107
3108 static void
3109 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3110 {
3111         struct intel_connector *intel_connector = to_intel_connector(connector);
3112
3113         intel_attach_force_audio_property(connector);
3114         intel_attach_broadcast_rgb_property(connector);
3115         intel_dp->color_range_auto = true;
3116
3117         if (is_edp(intel_dp)) {
3118                 drm_mode_create_scaling_mode_property(connector->dev);
3119                 drm_object_attach_property(
3120                         &connector->base,
3121                         connector->dev->mode_config.scaling_mode_property,
3122                         DRM_MODE_SCALE_ASPECT);
3123                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3124         }
3125 }
3126
3127 static void
3128 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3129                                     struct intel_dp *intel_dp,
3130                                     struct edp_power_seq *out)
3131 {
3132         struct drm_i915_private *dev_priv = dev->dev_private;
3133         struct edp_power_seq cur, vbt, spec, final;
3134         u32 pp_on, pp_off, pp_div, pp;
3135         int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3136
3137         if (HAS_PCH_SPLIT(dev)) {
3138                 pp_control_reg = PCH_PP_CONTROL;
3139                 pp_on_reg = PCH_PP_ON_DELAYS;
3140                 pp_off_reg = PCH_PP_OFF_DELAYS;
3141                 pp_div_reg = PCH_PP_DIVISOR;
3142         } else {
3143                 pp_control_reg = PIPEA_PP_CONTROL;
3144                 pp_on_reg = PIPEA_PP_ON_DELAYS;
3145                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3146                 pp_div_reg = PIPEA_PP_DIVISOR;
3147         }
3148
3149         /* Workaround: Need to write PP_CONTROL with the unlock key as
3150          * the very first thing. */
3151         pp = ironlake_get_pp_control(intel_dp);
3152         I915_WRITE(pp_control_reg, pp);
3153
3154         pp_on = I915_READ(pp_on_reg);
3155         pp_off = I915_READ(pp_off_reg);
3156         pp_div = I915_READ(pp_div_reg);
3157
3158         /* Pull timing values out of registers */
3159         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3160                 PANEL_POWER_UP_DELAY_SHIFT;
3161
3162         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3163                 PANEL_LIGHT_ON_DELAY_SHIFT;
3164
3165         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3166                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3167
3168         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3169                 PANEL_POWER_DOWN_DELAY_SHIFT;
3170
3171         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3172                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3173
3174         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3175                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3176
3177         vbt = dev_priv->vbt.edp_pps;
3178
3179         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3180          * our hw here, which are all in 100usec. */
3181         spec.t1_t3 = 210 * 10;
3182         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3183         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3184         spec.t10 = 500 * 10;
3185         /* This one is special and actually in units of 100ms, but zero
3186          * based in the hw (so we need to add 100 ms). But the sw vbt
3187          * table multiplies it with 1000 to make it in units of 100usec,
3188          * too. */
3189         spec.t11_t12 = (510 + 100) * 10;
3190
3191         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3192                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3193
3194         /* Use the max of the register settings and vbt. If both are
3195          * unset, fall back to the spec limits. */
3196 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3197                                        spec.field : \
3198                                        max(cur.field, vbt.field))
3199         assign_final(t1_t3);
3200         assign_final(t8);
3201         assign_final(t9);
3202         assign_final(t10);
3203         assign_final(t11_t12);
3204 #undef assign_final
3205
3206 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3207         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3208         intel_dp->backlight_on_delay = get_delay(t8);
3209         intel_dp->backlight_off_delay = get_delay(t9);
3210         intel_dp->panel_power_down_delay = get_delay(t10);
3211         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3212 #undef get_delay
3213
3214         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3215                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3216                       intel_dp->panel_power_cycle_delay);
3217
3218         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3219                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3220
3221         if (out)
3222                 *out = final;
3223 }
3224
3225 static void
3226 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3227                                               struct intel_dp *intel_dp,
3228                                               struct edp_power_seq *seq)
3229 {
3230         struct drm_i915_private *dev_priv = dev->dev_private;
3231         u32 pp_on, pp_off, pp_div, port_sel = 0;
3232         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3233         int pp_on_reg, pp_off_reg, pp_div_reg;
3234
3235         if (HAS_PCH_SPLIT(dev)) {
3236                 pp_on_reg = PCH_PP_ON_DELAYS;
3237                 pp_off_reg = PCH_PP_OFF_DELAYS;
3238                 pp_div_reg = PCH_PP_DIVISOR;
3239         } else {
3240                 pp_on_reg = PIPEA_PP_ON_DELAYS;
3241                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3242                 pp_div_reg = PIPEA_PP_DIVISOR;
3243         }
3244
3245         /* And finally store the new values in the power sequencer. */
3246         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3247                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3248         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3249                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3250         /* Compute the divisor for the pp clock, simply match the Bspec
3251          * formula. */
3252         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3253         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3254                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3255
3256         /* Haswell doesn't have any port selection bits for the panel
3257          * power sequencer any more. */
3258         if (IS_VALLEYVIEW(dev)) {
3259                 port_sel = I915_READ(pp_on_reg) & 0xc0000000;
3260         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3261                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3262                         port_sel = PANEL_POWER_PORT_DP_A;
3263                 else
3264                         port_sel = PANEL_POWER_PORT_DP_D;
3265         }
3266
3267         pp_on |= port_sel;
3268
3269         I915_WRITE(pp_on_reg, pp_on);
3270         I915_WRITE(pp_off_reg, pp_off);
3271         I915_WRITE(pp_div_reg, pp_div);
3272
3273         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3274                       I915_READ(pp_on_reg),
3275                       I915_READ(pp_off_reg),
3276                       I915_READ(pp_div_reg));
3277 }
3278
3279 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3280                                      struct intel_connector *intel_connector)
3281 {
3282         struct drm_connector *connector = &intel_connector->base;
3283         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3284         struct drm_device *dev = intel_dig_port->base.base.dev;
3285         struct drm_i915_private *dev_priv = dev->dev_private;
3286         struct drm_display_mode *fixed_mode = NULL;
3287         struct edp_power_seq power_seq = { 0 };
3288         bool has_dpcd;
3289         struct drm_display_mode *scan;
3290         struct edid *edid;
3291
3292         if (!is_edp(intel_dp))
3293                 return true;
3294
3295         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3296
3297         /* Cache DPCD and EDID for edp. */
3298         ironlake_edp_panel_vdd_on(intel_dp);
3299         has_dpcd = intel_dp_get_dpcd(intel_dp);
3300         ironlake_edp_panel_vdd_off(intel_dp, false);
3301
3302         if (has_dpcd) {
3303                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3304                         dev_priv->no_aux_handshake =
3305                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3306                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3307         } else {
3308                 /* if this fails, presume the device is a ghost */
3309                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3310                 return false;
3311         }
3312
3313         /* We now know it's not a ghost, init power sequence regs. */
3314         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3315                                                       &power_seq);
3316
3317         ironlake_edp_panel_vdd_on(intel_dp);
3318         edid = drm_get_edid(connector, &intel_dp->adapter);
3319         if (edid) {
3320                 if (drm_add_edid_modes(connector, edid)) {
3321                         drm_mode_connector_update_edid_property(connector,
3322                                                                 edid);
3323                         drm_edid_to_eld(connector, edid);
3324                 } else {
3325                         kfree(edid);
3326                         edid = ERR_PTR(-EINVAL);
3327                 }
3328         } else {
3329                 edid = ERR_PTR(-ENOENT);
3330         }
3331         intel_connector->edid = edid;
3332
3333         /* prefer fixed mode from EDID if available */
3334         list_for_each_entry(scan, &connector->probed_modes, head) {
3335                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3336                         fixed_mode = drm_mode_duplicate(dev, scan);
3337                         break;
3338                 }
3339         }
3340
3341         /* fallback to VBT if available for eDP */
3342         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3343                 fixed_mode = drm_mode_duplicate(dev,
3344                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3345                 if (fixed_mode)
3346                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3347         }
3348
3349         ironlake_edp_panel_vdd_off(intel_dp, false);
3350
3351         intel_panel_init(&intel_connector->panel, fixed_mode);
3352         intel_panel_setup_backlight(connector);
3353
3354         return true;
3355 }
3356
3357 bool
3358 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3359                         struct intel_connector *intel_connector)
3360 {
3361         struct drm_connector *connector = &intel_connector->base;
3362         struct intel_dp *intel_dp = &intel_dig_port->dp;
3363         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3364         struct drm_device *dev = intel_encoder->base.dev;
3365         struct drm_i915_private *dev_priv = dev->dev_private;
3366         enum port port = intel_dig_port->port;
3367         const char *name = NULL;
3368         int type, error;
3369
3370         /* Preserve the current hw state. */
3371         intel_dp->DP = I915_READ(intel_dp->output_reg);
3372         intel_dp->attached_connector = intel_connector;
3373
3374         type = DRM_MODE_CONNECTOR_DisplayPort;
3375         /*
3376          * FIXME : We need to initialize built-in panels before external panels.
3377          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3378          */
3379         switch (port) {
3380         case PORT_A:
3381                 type = DRM_MODE_CONNECTOR_eDP;
3382                 break;
3383         case PORT_C:
3384                 if (IS_VALLEYVIEW(dev))
3385                         type = DRM_MODE_CONNECTOR_eDP;
3386                 break;
3387         case PORT_D:
3388                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3389                         type = DRM_MODE_CONNECTOR_eDP;
3390                 break;
3391         default:        /* silence GCC warning */
3392                 break;
3393         }
3394
3395         /*
3396          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3397          * for DP the encoder type can be set by the caller to
3398          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3399          */
3400         if (type == DRM_MODE_CONNECTOR_eDP)
3401                 intel_encoder->type = INTEL_OUTPUT_EDP;
3402
3403         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3404                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3405                         port_name(port));
3406
3407         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3408         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3409
3410         connector->interlace_allowed = true;
3411         connector->doublescan_allowed = 0;
3412
3413         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3414                           ironlake_panel_vdd_work);
3415
3416         intel_connector_attach_encoder(intel_connector, intel_encoder);
3417         drm_sysfs_connector_add(connector);
3418
3419         if (HAS_DDI(dev))
3420                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3421         else
3422                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3423
3424         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3425         if (HAS_DDI(dev)) {
3426                 switch (intel_dig_port->port) {
3427                 case PORT_A:
3428                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3429                         break;
3430                 case PORT_B:
3431                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3432                         break;
3433                 case PORT_C:
3434                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3435                         break;
3436                 case PORT_D:
3437                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3438                         break;
3439                 default:
3440                         BUG();
3441                 }
3442         }
3443
3444         /* Set up the DDC bus. */
3445         switch (port) {
3446         case PORT_A:
3447                 intel_encoder->hpd_pin = HPD_PORT_A;
3448                 name = "DPDDC-A";
3449                 break;
3450         case PORT_B:
3451                 intel_encoder->hpd_pin = HPD_PORT_B;
3452                 name = "DPDDC-B";
3453                 break;
3454         case PORT_C:
3455                 intel_encoder->hpd_pin = HPD_PORT_C;
3456                 name = "DPDDC-C";
3457                 break;
3458         case PORT_D:
3459                 intel_encoder->hpd_pin = HPD_PORT_D;
3460                 name = "DPDDC-D";
3461                 break;
3462         default:
3463                 BUG();
3464         }
3465
3466         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3467         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3468              error, port_name(port));
3469
3470         intel_dp->psr_setup_done = false;
3471
3472         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3473                 i2c_del_adapter(&intel_dp->adapter);
3474                 if (is_edp(intel_dp)) {
3475                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3476                         mutex_lock(&dev->mode_config.mutex);
3477                         ironlake_panel_vdd_off_sync(intel_dp);
3478                         mutex_unlock(&dev->mode_config.mutex);
3479                 }
3480                 drm_sysfs_connector_remove(connector);
3481                 drm_connector_cleanup(connector);
3482                 return false;
3483         }
3484
3485         intel_dp_add_properties(intel_dp, connector);
3486
3487         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3488          * 0xd.  Failure to do so will result in spurious interrupts being
3489          * generated on the port when a cable is not attached.
3490          */
3491         if (IS_G4X(dev) && !IS_GM45(dev)) {
3492                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3493                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3494         }
3495
3496         return true;
3497 }
3498
3499 void
3500 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3501 {
3502         struct intel_digital_port *intel_dig_port;
3503         struct intel_encoder *intel_encoder;
3504         struct drm_encoder *encoder;
3505         struct intel_connector *intel_connector;
3506
3507         intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
3508         if (!intel_dig_port)
3509                 return;
3510
3511         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
3512         if (!intel_connector) {
3513                 kfree(intel_dig_port);
3514                 return;
3515         }
3516
3517         intel_encoder = &intel_dig_port->base;
3518         encoder = &intel_encoder->base;
3519
3520         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3521                          DRM_MODE_ENCODER_TMDS);
3522
3523         intel_encoder->compute_config = intel_dp_compute_config;
3524         intel_encoder->mode_set = intel_dp_mode_set;
3525         intel_encoder->enable = intel_enable_dp;
3526         intel_encoder->pre_enable = intel_pre_enable_dp;
3527         intel_encoder->disable = intel_disable_dp;
3528         intel_encoder->post_disable = intel_post_disable_dp;
3529         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3530         intel_encoder->get_config = intel_dp_get_config;
3531         if (IS_VALLEYVIEW(dev))
3532                 intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
3533
3534         intel_dig_port->port = port;
3535         intel_dig_port->dp.output_reg = output_reg;
3536
3537         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3538         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3539         intel_encoder->cloneable = false;
3540         intel_encoder->hot_plug = intel_dp_hot_plug;
3541
3542         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3543                 drm_encoder_cleanup(encoder);
3544                 kfree(intel_dig_port);
3545                 kfree(intel_connector);
3546         }
3547 }