]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_dp.c
Merge branches 'acpi_pad', 'acpica', 'apei-bugzilla-43282', 'battery', 'cpuidle-coupl...
[~andy/linux] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "drm_edid.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "drm_dp_helper.h"
40
41 #define DP_RECEIVER_CAP_SIZE    0xf
42 #define DP_LINK_STATUS_SIZE     6
43 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
44
45 #define DP_LINK_CONFIGURATION_SIZE      9
46
47 struct intel_dp {
48         struct intel_encoder base;
49         uint32_t output_reg;
50         uint32_t DP;
51         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
52         bool has_audio;
53         enum hdmi_force_audio force_audio;
54         uint32_t color_range;
55         int dpms_mode;
56         uint8_t link_bw;
57         uint8_t lane_count;
58         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
59         struct i2c_adapter adapter;
60         struct i2c_algo_dp_aux_data algo;
61         bool is_pch_edp;
62         uint8_t train_set[4];
63         int panel_power_up_delay;
64         int panel_power_down_delay;
65         int panel_power_cycle_delay;
66         int backlight_on_delay;
67         int backlight_off_delay;
68         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
69         struct delayed_work panel_vdd_work;
70         bool want_panel_vdd;
71         struct edid *edid; /* cached EDID for eDP */
72         int edid_mode_count;
73 };
74
75 /**
76  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
77  * @intel_dp: DP struct
78  *
79  * If a CPU or PCH DP output is attached to an eDP panel, this function
80  * will return true, and false otherwise.
81  */
82 static bool is_edp(struct intel_dp *intel_dp)
83 {
84         return intel_dp->base.type == INTEL_OUTPUT_EDP;
85 }
86
87 /**
88  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
89  * @intel_dp: DP struct
90  *
91  * Returns true if the given DP struct corresponds to a PCH DP port attached
92  * to an eDP panel, false otherwise.  Helpful for determining whether we
93  * may need FDI resources for a given DP output or not.
94  */
95 static bool is_pch_edp(struct intel_dp *intel_dp)
96 {
97         return intel_dp->is_pch_edp;
98 }
99
100 /**
101  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
102  * @intel_dp: DP struct
103  *
104  * Returns true if the given DP struct corresponds to a CPU eDP port.
105  */
106 static bool is_cpu_edp(struct intel_dp *intel_dp)
107 {
108         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
109 }
110
111 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
112 {
113         return container_of(encoder, struct intel_dp, base.base);
114 }
115
116 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
117 {
118         return container_of(intel_attached_encoder(connector),
119                             struct intel_dp, base);
120 }
121
122 /**
123  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
124  * @encoder: DRM encoder
125  *
126  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
127  * by intel_display.c.
128  */
129 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
130 {
131         struct intel_dp *intel_dp;
132
133         if (!encoder)
134                 return false;
135
136         intel_dp = enc_to_intel_dp(encoder);
137
138         return is_pch_edp(intel_dp);
139 }
140
141 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
142 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
143 static void intel_dp_link_down(struct intel_dp *intel_dp);
144
145 void
146 intel_edp_link_config(struct intel_encoder *intel_encoder,
147                        int *lane_num, int *link_bw)
148 {
149         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
150
151         *lane_num = intel_dp->lane_count;
152         if (intel_dp->link_bw == DP_LINK_BW_1_62)
153                 *link_bw = 162000;
154         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
155                 *link_bw = 270000;
156 }
157
158 static int
159 intel_dp_max_lane_count(struct intel_dp *intel_dp)
160 {
161         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
162         switch (max_lane_count) {
163         case 1: case 2: case 4:
164                 break;
165         default:
166                 max_lane_count = 4;
167         }
168         return max_lane_count;
169 }
170
171 static int
172 intel_dp_max_link_bw(struct intel_dp *intel_dp)
173 {
174         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
175
176         switch (max_link_bw) {
177         case DP_LINK_BW_1_62:
178         case DP_LINK_BW_2_7:
179                 break;
180         default:
181                 max_link_bw = DP_LINK_BW_1_62;
182                 break;
183         }
184         return max_link_bw;
185 }
186
187 static int
188 intel_dp_link_clock(uint8_t link_bw)
189 {
190         if (link_bw == DP_LINK_BW_2_7)
191                 return 270000;
192         else
193                 return 162000;
194 }
195
196 /*
197  * The units on the numbers in the next two are... bizarre.  Examples will
198  * make it clearer; this one parallels an example in the eDP spec.
199  *
200  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
201  *
202  *     270000 * 1 * 8 / 10 == 216000
203  *
204  * The actual data capacity of that configuration is 2.16Gbit/s, so the
205  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
206  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
207  * 119000.  At 18bpp that's 2142000 kilobits per second.
208  *
209  * Thus the strange-looking division by 10 in intel_dp_link_required, to
210  * get the result in decakilobits instead of kilobits.
211  */
212
213 static int
214 intel_dp_link_required(int pixel_clock, int bpp)
215 {
216         return (pixel_clock * bpp + 9) / 10;
217 }
218
219 static int
220 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
221 {
222         return (max_link_clock * max_lanes * 8) / 10;
223 }
224
225 static bool
226 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
227                           struct drm_display_mode *mode,
228                           struct drm_display_mode *adjusted_mode)
229 {
230         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
231         int max_lanes = intel_dp_max_lane_count(intel_dp);
232         int max_rate, mode_rate;
233
234         mode_rate = intel_dp_link_required(mode->clock, 24);
235         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
236
237         if (mode_rate > max_rate) {
238                 mode_rate = intel_dp_link_required(mode->clock, 18);
239                 if (mode_rate > max_rate)
240                         return false;
241
242                 if (adjusted_mode)
243                         adjusted_mode->private_flags
244                                 |= INTEL_MODE_DP_FORCE_6BPC;
245
246                 return true;
247         }
248
249         return true;
250 }
251
252 static int
253 intel_dp_mode_valid(struct drm_connector *connector,
254                     struct drm_display_mode *mode)
255 {
256         struct intel_dp *intel_dp = intel_attached_dp(connector);
257
258         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
259                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
260                         return MODE_PANEL;
261
262                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
263                         return MODE_PANEL;
264         }
265
266         if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
267                 return MODE_CLOCK_HIGH;
268
269         if (mode->clock < 10000)
270                 return MODE_CLOCK_LOW;
271
272         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
273                 return MODE_H_ILLEGAL;
274
275         return MODE_OK;
276 }
277
278 static uint32_t
279 pack_aux(uint8_t *src, int src_bytes)
280 {
281         int     i;
282         uint32_t v = 0;
283
284         if (src_bytes > 4)
285                 src_bytes = 4;
286         for (i = 0; i < src_bytes; i++)
287                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
288         return v;
289 }
290
291 static void
292 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
293 {
294         int i;
295         if (dst_bytes > 4)
296                 dst_bytes = 4;
297         for (i = 0; i < dst_bytes; i++)
298                 dst[i] = src >> ((3-i) * 8);
299 }
300
301 /* hrawclock is 1/4 the FSB frequency */
302 static int
303 intel_hrawclk(struct drm_device *dev)
304 {
305         struct drm_i915_private *dev_priv = dev->dev_private;
306         uint32_t clkcfg;
307
308         clkcfg = I915_READ(CLKCFG);
309         switch (clkcfg & CLKCFG_FSB_MASK) {
310         case CLKCFG_FSB_400:
311                 return 100;
312         case CLKCFG_FSB_533:
313                 return 133;
314         case CLKCFG_FSB_667:
315                 return 166;
316         case CLKCFG_FSB_800:
317                 return 200;
318         case CLKCFG_FSB_1067:
319                 return 266;
320         case CLKCFG_FSB_1333:
321                 return 333;
322         /* these two are just a guess; one of them might be right */
323         case CLKCFG_FSB_1600:
324         case CLKCFG_FSB_1600_ALT:
325                 return 400;
326         default:
327                 return 133;
328         }
329 }
330
331 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
332 {
333         struct drm_device *dev = intel_dp->base.base.dev;
334         struct drm_i915_private *dev_priv = dev->dev_private;
335
336         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
337 }
338
339 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
340 {
341         struct drm_device *dev = intel_dp->base.base.dev;
342         struct drm_i915_private *dev_priv = dev->dev_private;
343
344         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
345 }
346
347 static void
348 intel_dp_check_edp(struct intel_dp *intel_dp)
349 {
350         struct drm_device *dev = intel_dp->base.base.dev;
351         struct drm_i915_private *dev_priv = dev->dev_private;
352
353         if (!is_edp(intel_dp))
354                 return;
355         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
356                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
357                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
358                               I915_READ(PCH_PP_STATUS),
359                               I915_READ(PCH_PP_CONTROL));
360         }
361 }
362
363 static int
364 intel_dp_aux_ch(struct intel_dp *intel_dp,
365                 uint8_t *send, int send_bytes,
366                 uint8_t *recv, int recv_size)
367 {
368         uint32_t output_reg = intel_dp->output_reg;
369         struct drm_device *dev = intel_dp->base.base.dev;
370         struct drm_i915_private *dev_priv = dev->dev_private;
371         uint32_t ch_ctl = output_reg + 0x10;
372         uint32_t ch_data = ch_ctl + 4;
373         int i;
374         int recv_bytes;
375         uint32_t status;
376         uint32_t aux_clock_divider;
377         int try, precharge;
378
379         intel_dp_check_edp(intel_dp);
380         /* The clock divider is based off the hrawclk,
381          * and would like to run at 2MHz. So, take the
382          * hrawclk value and divide by 2 and use that
383          *
384          * Note that PCH attached eDP panels should use a 125MHz input
385          * clock divider.
386          */
387         if (is_cpu_edp(intel_dp)) {
388                 if (IS_GEN6(dev) || IS_GEN7(dev))
389                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
390                 else
391                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
392         } else if (HAS_PCH_SPLIT(dev))
393                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
394         else
395                 aux_clock_divider = intel_hrawclk(dev) / 2;
396
397         if (IS_GEN6(dev))
398                 precharge = 3;
399         else
400                 precharge = 5;
401
402         /* Try to wait for any previous AUX channel activity */
403         for (try = 0; try < 3; try++) {
404                 status = I915_READ(ch_ctl);
405                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
406                         break;
407                 msleep(1);
408         }
409
410         if (try == 3) {
411                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
412                      I915_READ(ch_ctl));
413                 return -EBUSY;
414         }
415
416         /* Must try at least 3 times according to DP spec */
417         for (try = 0; try < 5; try++) {
418                 /* Load the send data into the aux channel data registers */
419                 for (i = 0; i < send_bytes; i += 4)
420                         I915_WRITE(ch_data + i,
421                                    pack_aux(send + i, send_bytes - i));
422
423                 /* Send the command and wait for it to complete */
424                 I915_WRITE(ch_ctl,
425                            DP_AUX_CH_CTL_SEND_BUSY |
426                            DP_AUX_CH_CTL_TIME_OUT_400us |
427                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
428                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
429                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
430                            DP_AUX_CH_CTL_DONE |
431                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
432                            DP_AUX_CH_CTL_RECEIVE_ERROR);
433                 for (;;) {
434                         status = I915_READ(ch_ctl);
435                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
436                                 break;
437                         udelay(100);
438                 }
439
440                 /* Clear done status and any errors */
441                 I915_WRITE(ch_ctl,
442                            status |
443                            DP_AUX_CH_CTL_DONE |
444                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
445                            DP_AUX_CH_CTL_RECEIVE_ERROR);
446
447                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
448                               DP_AUX_CH_CTL_RECEIVE_ERROR))
449                         continue;
450                 if (status & DP_AUX_CH_CTL_DONE)
451                         break;
452         }
453
454         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
455                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
456                 return -EBUSY;
457         }
458
459         /* Check for timeout or receive error.
460          * Timeouts occur when the sink is not connected
461          */
462         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
463                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
464                 return -EIO;
465         }
466
467         /* Timeouts occur when the device isn't connected, so they're
468          * "normal" -- don't fill the kernel log with these */
469         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
470                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
471                 return -ETIMEDOUT;
472         }
473
474         /* Unload any bytes sent back from the other side */
475         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
476                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
477         if (recv_bytes > recv_size)
478                 recv_bytes = recv_size;
479
480         for (i = 0; i < recv_bytes; i += 4)
481                 unpack_aux(I915_READ(ch_data + i),
482                            recv + i, recv_bytes - i);
483
484         return recv_bytes;
485 }
486
487 /* Write data to the aux channel in native mode */
488 static int
489 intel_dp_aux_native_write(struct intel_dp *intel_dp,
490                           uint16_t address, uint8_t *send, int send_bytes)
491 {
492         int ret;
493         uint8_t msg[20];
494         int msg_bytes;
495         uint8_t ack;
496
497         intel_dp_check_edp(intel_dp);
498         if (send_bytes > 16)
499                 return -1;
500         msg[0] = AUX_NATIVE_WRITE << 4;
501         msg[1] = address >> 8;
502         msg[2] = address & 0xff;
503         msg[3] = send_bytes - 1;
504         memcpy(&msg[4], send, send_bytes);
505         msg_bytes = send_bytes + 4;
506         for (;;) {
507                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
508                 if (ret < 0)
509                         return ret;
510                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
511                         break;
512                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
513                         udelay(100);
514                 else
515                         return -EIO;
516         }
517         return send_bytes;
518 }
519
520 /* Write a single byte to the aux channel in native mode */
521 static int
522 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
523                             uint16_t address, uint8_t byte)
524 {
525         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
526 }
527
528 /* read bytes from a native aux channel */
529 static int
530 intel_dp_aux_native_read(struct intel_dp *intel_dp,
531                          uint16_t address, uint8_t *recv, int recv_bytes)
532 {
533         uint8_t msg[4];
534         int msg_bytes;
535         uint8_t reply[20];
536         int reply_bytes;
537         uint8_t ack;
538         int ret;
539
540         intel_dp_check_edp(intel_dp);
541         msg[0] = AUX_NATIVE_READ << 4;
542         msg[1] = address >> 8;
543         msg[2] = address & 0xff;
544         msg[3] = recv_bytes - 1;
545
546         msg_bytes = 4;
547         reply_bytes = recv_bytes + 1;
548
549         for (;;) {
550                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
551                                       reply, reply_bytes);
552                 if (ret == 0)
553                         return -EPROTO;
554                 if (ret < 0)
555                         return ret;
556                 ack = reply[0];
557                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
558                         memcpy(recv, reply + 1, ret - 1);
559                         return ret - 1;
560                 }
561                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
562                         udelay(100);
563                 else
564                         return -EIO;
565         }
566 }
567
568 static int
569 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
570                     uint8_t write_byte, uint8_t *read_byte)
571 {
572         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
573         struct intel_dp *intel_dp = container_of(adapter,
574                                                 struct intel_dp,
575                                                 adapter);
576         uint16_t address = algo_data->address;
577         uint8_t msg[5];
578         uint8_t reply[2];
579         unsigned retry;
580         int msg_bytes;
581         int reply_bytes;
582         int ret;
583
584         intel_dp_check_edp(intel_dp);
585         /* Set up the command byte */
586         if (mode & MODE_I2C_READ)
587                 msg[0] = AUX_I2C_READ << 4;
588         else
589                 msg[0] = AUX_I2C_WRITE << 4;
590
591         if (!(mode & MODE_I2C_STOP))
592                 msg[0] |= AUX_I2C_MOT << 4;
593
594         msg[1] = address >> 8;
595         msg[2] = address;
596
597         switch (mode) {
598         case MODE_I2C_WRITE:
599                 msg[3] = 0;
600                 msg[4] = write_byte;
601                 msg_bytes = 5;
602                 reply_bytes = 1;
603                 break;
604         case MODE_I2C_READ:
605                 msg[3] = 0;
606                 msg_bytes = 4;
607                 reply_bytes = 2;
608                 break;
609         default:
610                 msg_bytes = 3;
611                 reply_bytes = 1;
612                 break;
613         }
614
615         for (retry = 0; retry < 5; retry++) {
616                 ret = intel_dp_aux_ch(intel_dp,
617                                       msg, msg_bytes,
618                                       reply, reply_bytes);
619                 if (ret < 0) {
620                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
621                         return ret;
622                 }
623
624                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
625                 case AUX_NATIVE_REPLY_ACK:
626                         /* I2C-over-AUX Reply field is only valid
627                          * when paired with AUX ACK.
628                          */
629                         break;
630                 case AUX_NATIVE_REPLY_NACK:
631                         DRM_DEBUG_KMS("aux_ch native nack\n");
632                         return -EREMOTEIO;
633                 case AUX_NATIVE_REPLY_DEFER:
634                         udelay(100);
635                         continue;
636                 default:
637                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
638                                   reply[0]);
639                         return -EREMOTEIO;
640                 }
641
642                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
643                 case AUX_I2C_REPLY_ACK:
644                         if (mode == MODE_I2C_READ) {
645                                 *read_byte = reply[1];
646                         }
647                         return reply_bytes - 1;
648                 case AUX_I2C_REPLY_NACK:
649                         DRM_DEBUG_KMS("aux_i2c nack\n");
650                         return -EREMOTEIO;
651                 case AUX_I2C_REPLY_DEFER:
652                         DRM_DEBUG_KMS("aux_i2c defer\n");
653                         udelay(100);
654                         break;
655                 default:
656                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
657                         return -EREMOTEIO;
658                 }
659         }
660
661         DRM_ERROR("too many retries, giving up\n");
662         return -EREMOTEIO;
663 }
664
665 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
666 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
667
668 static int
669 intel_dp_i2c_init(struct intel_dp *intel_dp,
670                   struct intel_connector *intel_connector, const char *name)
671 {
672         int     ret;
673
674         DRM_DEBUG_KMS("i2c_init %s\n", name);
675         intel_dp->algo.running = false;
676         intel_dp->algo.address = 0;
677         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
678
679         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
680         intel_dp->adapter.owner = THIS_MODULE;
681         intel_dp->adapter.class = I2C_CLASS_DDC;
682         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
683         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
684         intel_dp->adapter.algo_data = &intel_dp->algo;
685         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
686
687         ironlake_edp_panel_vdd_on(intel_dp);
688         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
689         ironlake_edp_panel_vdd_off(intel_dp, false);
690         return ret;
691 }
692
693 static bool
694 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
695                     struct drm_display_mode *adjusted_mode)
696 {
697         struct drm_device *dev = encoder->dev;
698         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
699         int lane_count, clock;
700         int max_lane_count = intel_dp_max_lane_count(intel_dp);
701         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
702         int bpp, mode_rate;
703         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
704
705         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
706                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
707                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
708                                         mode, adjusted_mode);
709                 /*
710                  * the mode->clock is used to calculate the Data&Link M/N
711                  * of the pipe. For the eDP the fixed clock should be used.
712                  */
713                 mode->clock = intel_dp->panel_fixed_mode->clock;
714         }
715
716         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
717                 return false;
718
719         DRM_DEBUG_KMS("DP link computation with max lane count %i "
720                       "max bw %02x pixel clock %iKHz\n",
721                       max_lane_count, bws[max_clock], mode->clock);
722
723         if (!intel_dp_adjust_dithering(intel_dp, mode, adjusted_mode))
724                 return false;
725
726         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
727         mode_rate = intel_dp_link_required(mode->clock, bpp);
728
729         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
730                 for (clock = 0; clock <= max_clock; clock++) {
731                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
732
733                         if (mode_rate <= link_avail) {
734                                 intel_dp->link_bw = bws[clock];
735                                 intel_dp->lane_count = lane_count;
736                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
737                                 DRM_DEBUG_KMS("DP link bw %02x lane "
738                                                 "count %d clock %d bpp %d\n",
739                                        intel_dp->link_bw, intel_dp->lane_count,
740                                        adjusted_mode->clock, bpp);
741                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
742                                               mode_rate, link_avail);
743                                 return true;
744                         }
745                 }
746         }
747
748         return false;
749 }
750
751 struct intel_dp_m_n {
752         uint32_t        tu;
753         uint32_t        gmch_m;
754         uint32_t        gmch_n;
755         uint32_t        link_m;
756         uint32_t        link_n;
757 };
758
759 static void
760 intel_reduce_ratio(uint32_t *num, uint32_t *den)
761 {
762         while (*num > 0xffffff || *den > 0xffffff) {
763                 *num >>= 1;
764                 *den >>= 1;
765         }
766 }
767
768 static void
769 intel_dp_compute_m_n(int bpp,
770                      int nlanes,
771                      int pixel_clock,
772                      int link_clock,
773                      struct intel_dp_m_n *m_n)
774 {
775         m_n->tu = 64;
776         m_n->gmch_m = (pixel_clock * bpp) >> 3;
777         m_n->gmch_n = link_clock * nlanes;
778         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
779         m_n->link_m = pixel_clock;
780         m_n->link_n = link_clock;
781         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
782 }
783
784 void
785 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
786                  struct drm_display_mode *adjusted_mode)
787 {
788         struct drm_device *dev = crtc->dev;
789         struct drm_mode_config *mode_config = &dev->mode_config;
790         struct drm_encoder *encoder;
791         struct drm_i915_private *dev_priv = dev->dev_private;
792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
793         int lane_count = 4;
794         struct intel_dp_m_n m_n;
795         int pipe = intel_crtc->pipe;
796
797         /*
798          * Find the lane count in the intel_encoder private
799          */
800         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
801                 struct intel_dp *intel_dp;
802
803                 if (encoder->crtc != crtc)
804                         continue;
805
806                 intel_dp = enc_to_intel_dp(encoder);
807                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
808                     intel_dp->base.type == INTEL_OUTPUT_EDP)
809                 {
810                         lane_count = intel_dp->lane_count;
811                         break;
812                 }
813         }
814
815         /*
816          * Compute the GMCH and Link ratios. The '3' here is
817          * the number of bytes_per_pixel post-LUT, which we always
818          * set up for 8-bits of R/G/B, or 3 bytes total.
819          */
820         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
821                              mode->clock, adjusted_mode->clock, &m_n);
822
823         if (HAS_PCH_SPLIT(dev)) {
824                 I915_WRITE(TRANSDATA_M1(pipe),
825                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
826                            m_n.gmch_m);
827                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
828                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
829                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
830         } else {
831                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
832                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
833                            m_n.gmch_m);
834                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
835                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
836                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
837         }
838 }
839
840 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
841 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
842
843 static void
844 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
845                   struct drm_display_mode *adjusted_mode)
846 {
847         struct drm_device *dev = encoder->dev;
848         struct drm_i915_private *dev_priv = dev->dev_private;
849         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
850         struct drm_crtc *crtc = intel_dp->base.base.crtc;
851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
852
853         /* Turn on the eDP PLL if needed */
854         if (is_edp(intel_dp)) {
855                 if (!is_pch_edp(intel_dp))
856                         ironlake_edp_pll_on(encoder);
857                 else
858                         ironlake_edp_pll_off(encoder);
859         }
860
861         /*
862          * There are four kinds of DP registers:
863          *
864          *      IBX PCH
865          *      SNB CPU
866          *      IVB CPU
867          *      CPT PCH
868          *
869          * IBX PCH and CPU are the same for almost everything,
870          * except that the CPU DP PLL is configured in this
871          * register
872          *
873          * CPT PCH is quite different, having many bits moved
874          * to the TRANS_DP_CTL register instead. That
875          * configuration happens (oddly) in ironlake_pch_enable
876          */
877
878         /* Preserve the BIOS-computed detected bit. This is
879          * supposed to be read-only.
880          */
881         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
882         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
883
884         /* Handle DP bits in common between all three register formats */
885
886         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
887
888         switch (intel_dp->lane_count) {
889         case 1:
890                 intel_dp->DP |= DP_PORT_WIDTH_1;
891                 break;
892         case 2:
893                 intel_dp->DP |= DP_PORT_WIDTH_2;
894                 break;
895         case 4:
896                 intel_dp->DP |= DP_PORT_WIDTH_4;
897                 break;
898         }
899         if (intel_dp->has_audio) {
900                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
901                                  pipe_name(intel_crtc->pipe));
902                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
903                 intel_write_eld(encoder, adjusted_mode);
904         }
905         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
906         intel_dp->link_configuration[0] = intel_dp->link_bw;
907         intel_dp->link_configuration[1] = intel_dp->lane_count;
908         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
909         /*
910          * Check for DPCD version > 1.1 and enhanced framing support
911          */
912         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
913             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
914                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
915         }
916
917         /* Split out the IBX/CPU vs CPT settings */
918
919         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
920                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
921                         intel_dp->DP |= DP_SYNC_HS_HIGH;
922                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
923                         intel_dp->DP |= DP_SYNC_VS_HIGH;
924                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
925
926                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
927                         intel_dp->DP |= DP_ENHANCED_FRAMING;
928
929                 intel_dp->DP |= intel_crtc->pipe << 29;
930
931                 /* don't miss out required setting for eDP */
932                 intel_dp->DP |= DP_PLL_ENABLE;
933                 if (adjusted_mode->clock < 200000)
934                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
935                 else
936                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
937         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
938                 intel_dp->DP |= intel_dp->color_range;
939
940                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
941                         intel_dp->DP |= DP_SYNC_HS_HIGH;
942                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
943                         intel_dp->DP |= DP_SYNC_VS_HIGH;
944                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
945
946                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
947                         intel_dp->DP |= DP_ENHANCED_FRAMING;
948
949                 if (intel_crtc->pipe == 1)
950                         intel_dp->DP |= DP_PIPEB_SELECT;
951
952                 if (is_cpu_edp(intel_dp)) {
953                         /* don't miss out required setting for eDP */
954                         intel_dp->DP |= DP_PLL_ENABLE;
955                         if (adjusted_mode->clock < 200000)
956                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
957                         else
958                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
959                 }
960         } else {
961                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
962         }
963 }
964
965 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
966 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
967
968 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
969 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
970
971 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
972 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
973
974 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
975                                        u32 mask,
976                                        u32 value)
977 {
978         struct drm_device *dev = intel_dp->base.base.dev;
979         struct drm_i915_private *dev_priv = dev->dev_private;
980
981         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
982                       mask, value,
983                       I915_READ(PCH_PP_STATUS),
984                       I915_READ(PCH_PP_CONTROL));
985
986         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
987                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
988                           I915_READ(PCH_PP_STATUS),
989                           I915_READ(PCH_PP_CONTROL));
990         }
991 }
992
993 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
994 {
995         DRM_DEBUG_KMS("Wait for panel power on\n");
996         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
997 }
998
999 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1000 {
1001         DRM_DEBUG_KMS("Wait for panel power off time\n");
1002         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1003 }
1004
1005 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1006 {
1007         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1008         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1009 }
1010
1011
1012 /* Read the current pp_control value, unlocking the register if it
1013  * is locked
1014  */
1015
1016 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1017 {
1018         u32     control = I915_READ(PCH_PP_CONTROL);
1019
1020         control &= ~PANEL_UNLOCK_MASK;
1021         control |= PANEL_UNLOCK_REGS;
1022         return control;
1023 }
1024
1025 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1026 {
1027         struct drm_device *dev = intel_dp->base.base.dev;
1028         struct drm_i915_private *dev_priv = dev->dev_private;
1029         u32 pp;
1030
1031         if (!is_edp(intel_dp))
1032                 return;
1033         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1034
1035         WARN(intel_dp->want_panel_vdd,
1036              "eDP VDD already requested on\n");
1037
1038         intel_dp->want_panel_vdd = true;
1039
1040         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1041                 DRM_DEBUG_KMS("eDP VDD already on\n");
1042                 return;
1043         }
1044
1045         if (!ironlake_edp_have_panel_power(intel_dp))
1046                 ironlake_wait_panel_power_cycle(intel_dp);
1047
1048         pp = ironlake_get_pp_control(dev_priv);
1049         pp |= EDP_FORCE_VDD;
1050         I915_WRITE(PCH_PP_CONTROL, pp);
1051         POSTING_READ(PCH_PP_CONTROL);
1052         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1053                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1054
1055         /*
1056          * If the panel wasn't on, delay before accessing aux channel
1057          */
1058         if (!ironlake_edp_have_panel_power(intel_dp)) {
1059                 DRM_DEBUG_KMS("eDP was not running\n");
1060                 msleep(intel_dp->panel_power_up_delay);
1061         }
1062 }
1063
1064 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1065 {
1066         struct drm_device *dev = intel_dp->base.base.dev;
1067         struct drm_i915_private *dev_priv = dev->dev_private;
1068         u32 pp;
1069
1070         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1071                 pp = ironlake_get_pp_control(dev_priv);
1072                 pp &= ~EDP_FORCE_VDD;
1073                 I915_WRITE(PCH_PP_CONTROL, pp);
1074                 POSTING_READ(PCH_PP_CONTROL);
1075
1076                 /* Make sure sequencer is idle before allowing subsequent activity */
1077                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1078                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1079
1080                 msleep(intel_dp->panel_power_down_delay);
1081         }
1082 }
1083
1084 static void ironlake_panel_vdd_work(struct work_struct *__work)
1085 {
1086         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1087                                                  struct intel_dp, panel_vdd_work);
1088         struct drm_device *dev = intel_dp->base.base.dev;
1089
1090         mutex_lock(&dev->mode_config.mutex);
1091         ironlake_panel_vdd_off_sync(intel_dp);
1092         mutex_unlock(&dev->mode_config.mutex);
1093 }
1094
1095 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1096 {
1097         if (!is_edp(intel_dp))
1098                 return;
1099
1100         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1101         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1102
1103         intel_dp->want_panel_vdd = false;
1104
1105         if (sync) {
1106                 ironlake_panel_vdd_off_sync(intel_dp);
1107         } else {
1108                 /*
1109                  * Queue the timer to fire a long
1110                  * time from now (relative to the power down delay)
1111                  * to keep the panel power up across a sequence of operations
1112                  */
1113                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1114                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1115         }
1116 }
1117
1118 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1119 {
1120         struct drm_device *dev = intel_dp->base.base.dev;
1121         struct drm_i915_private *dev_priv = dev->dev_private;
1122         u32 pp;
1123
1124         if (!is_edp(intel_dp))
1125                 return;
1126
1127         DRM_DEBUG_KMS("Turn eDP power on\n");
1128
1129         if (ironlake_edp_have_panel_power(intel_dp)) {
1130                 DRM_DEBUG_KMS("eDP power already on\n");
1131                 return;
1132         }
1133
1134         ironlake_wait_panel_power_cycle(intel_dp);
1135
1136         pp = ironlake_get_pp_control(dev_priv);
1137         if (IS_GEN5(dev)) {
1138                 /* ILK workaround: disable reset around power sequence */
1139                 pp &= ~PANEL_POWER_RESET;
1140                 I915_WRITE(PCH_PP_CONTROL, pp);
1141                 POSTING_READ(PCH_PP_CONTROL);
1142         }
1143
1144         pp |= POWER_TARGET_ON;
1145         if (!IS_GEN5(dev))
1146                 pp |= PANEL_POWER_RESET;
1147
1148         I915_WRITE(PCH_PP_CONTROL, pp);
1149         POSTING_READ(PCH_PP_CONTROL);
1150
1151         ironlake_wait_panel_on(intel_dp);
1152
1153         if (IS_GEN5(dev)) {
1154                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1155                 I915_WRITE(PCH_PP_CONTROL, pp);
1156                 POSTING_READ(PCH_PP_CONTROL);
1157         }
1158 }
1159
1160 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1161 {
1162         struct drm_device *dev = intel_dp->base.base.dev;
1163         struct drm_i915_private *dev_priv = dev->dev_private;
1164         u32 pp;
1165
1166         if (!is_edp(intel_dp))
1167                 return;
1168
1169         DRM_DEBUG_KMS("Turn eDP power off\n");
1170
1171         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1172
1173         pp = ironlake_get_pp_control(dev_priv);
1174         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1175         I915_WRITE(PCH_PP_CONTROL, pp);
1176         POSTING_READ(PCH_PP_CONTROL);
1177
1178         ironlake_wait_panel_off(intel_dp);
1179 }
1180
1181 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1182 {
1183         struct drm_device *dev = intel_dp->base.base.dev;
1184         struct drm_i915_private *dev_priv = dev->dev_private;
1185         u32 pp;
1186
1187         if (!is_edp(intel_dp))
1188                 return;
1189
1190         DRM_DEBUG_KMS("\n");
1191         /*
1192          * If we enable the backlight right away following a panel power
1193          * on, we may see slight flicker as the panel syncs with the eDP
1194          * link.  So delay a bit to make sure the image is solid before
1195          * allowing it to appear.
1196          */
1197         msleep(intel_dp->backlight_on_delay);
1198         pp = ironlake_get_pp_control(dev_priv);
1199         pp |= EDP_BLC_ENABLE;
1200         I915_WRITE(PCH_PP_CONTROL, pp);
1201         POSTING_READ(PCH_PP_CONTROL);
1202 }
1203
1204 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1205 {
1206         struct drm_device *dev = intel_dp->base.base.dev;
1207         struct drm_i915_private *dev_priv = dev->dev_private;
1208         u32 pp;
1209
1210         if (!is_edp(intel_dp))
1211                 return;
1212
1213         DRM_DEBUG_KMS("\n");
1214         pp = ironlake_get_pp_control(dev_priv);
1215         pp &= ~EDP_BLC_ENABLE;
1216         I915_WRITE(PCH_PP_CONTROL, pp);
1217         POSTING_READ(PCH_PP_CONTROL);
1218         msleep(intel_dp->backlight_off_delay);
1219 }
1220
1221 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1222 {
1223         struct drm_device *dev = encoder->dev;
1224         struct drm_i915_private *dev_priv = dev->dev_private;
1225         u32 dpa_ctl;
1226
1227         DRM_DEBUG_KMS("\n");
1228         dpa_ctl = I915_READ(DP_A);
1229         dpa_ctl |= DP_PLL_ENABLE;
1230         I915_WRITE(DP_A, dpa_ctl);
1231         POSTING_READ(DP_A);
1232         udelay(200);
1233 }
1234
1235 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1236 {
1237         struct drm_device *dev = encoder->dev;
1238         struct drm_i915_private *dev_priv = dev->dev_private;
1239         u32 dpa_ctl;
1240
1241         dpa_ctl = I915_READ(DP_A);
1242         dpa_ctl &= ~DP_PLL_ENABLE;
1243         I915_WRITE(DP_A, dpa_ctl);
1244         POSTING_READ(DP_A);
1245         udelay(200);
1246 }
1247
1248 /* If the sink supports it, try to set the power state appropriately */
1249 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1250 {
1251         int ret, i;
1252
1253         /* Should have a valid DPCD by this point */
1254         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1255                 return;
1256
1257         if (mode != DRM_MODE_DPMS_ON) {
1258                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1259                                                   DP_SET_POWER_D3);
1260                 if (ret != 1)
1261                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1262         } else {
1263                 /*
1264                  * When turning on, we need to retry for 1ms to give the sink
1265                  * time to wake up.
1266                  */
1267                 for (i = 0; i < 3; i++) {
1268                         ret = intel_dp_aux_native_write_1(intel_dp,
1269                                                           DP_SET_POWER,
1270                                                           DP_SET_POWER_D0);
1271                         if (ret == 1)
1272                                 break;
1273                         msleep(1);
1274                 }
1275         }
1276 }
1277
1278 static void intel_dp_prepare(struct drm_encoder *encoder)
1279 {
1280         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1281
1282
1283         /* Make sure the panel is off before trying to change the mode. But also
1284          * ensure that we have vdd while we switch off the panel. */
1285         ironlake_edp_panel_vdd_on(intel_dp);
1286         ironlake_edp_backlight_off(intel_dp);
1287         ironlake_edp_panel_off(intel_dp);
1288
1289         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1290         intel_dp_link_down(intel_dp);
1291         ironlake_edp_panel_vdd_off(intel_dp, false);
1292 }
1293
1294 static void intel_dp_commit(struct drm_encoder *encoder)
1295 {
1296         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1297         struct drm_device *dev = encoder->dev;
1298         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1299
1300         ironlake_edp_panel_vdd_on(intel_dp);
1301         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1302         intel_dp_start_link_train(intel_dp);
1303         ironlake_edp_panel_on(intel_dp);
1304         ironlake_edp_panel_vdd_off(intel_dp, true);
1305         intel_dp_complete_link_train(intel_dp);
1306         ironlake_edp_backlight_on(intel_dp);
1307
1308         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1309
1310         if (HAS_PCH_CPT(dev))
1311                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1312 }
1313
1314 static void
1315 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1316 {
1317         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1318         struct drm_device *dev = encoder->dev;
1319         struct drm_i915_private *dev_priv = dev->dev_private;
1320         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1321
1322         if (mode != DRM_MODE_DPMS_ON) {
1323                 /* Switching the panel off requires vdd. */
1324                 ironlake_edp_panel_vdd_on(intel_dp);
1325                 ironlake_edp_backlight_off(intel_dp);
1326                 ironlake_edp_panel_off(intel_dp);
1327
1328                 intel_dp_sink_dpms(intel_dp, mode);
1329                 intel_dp_link_down(intel_dp);
1330                 ironlake_edp_panel_vdd_off(intel_dp, false);
1331
1332                 if (is_cpu_edp(intel_dp))
1333                         ironlake_edp_pll_off(encoder);
1334         } else {
1335                 if (is_cpu_edp(intel_dp))
1336                         ironlake_edp_pll_on(encoder);
1337
1338                 ironlake_edp_panel_vdd_on(intel_dp);
1339                 intel_dp_sink_dpms(intel_dp, mode);
1340                 if (!(dp_reg & DP_PORT_EN)) {
1341                         intel_dp_start_link_train(intel_dp);
1342                         ironlake_edp_panel_on(intel_dp);
1343                         ironlake_edp_panel_vdd_off(intel_dp, true);
1344                         intel_dp_complete_link_train(intel_dp);
1345                 } else
1346                         ironlake_edp_panel_vdd_off(intel_dp, false);
1347                 ironlake_edp_backlight_on(intel_dp);
1348         }
1349         intel_dp->dpms_mode = mode;
1350 }
1351
1352 /*
1353  * Native read with retry for link status and receiver capability reads for
1354  * cases where the sink may still be asleep.
1355  */
1356 static bool
1357 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1358                                uint8_t *recv, int recv_bytes)
1359 {
1360         int ret, i;
1361
1362         /*
1363          * Sinks are *supposed* to come up within 1ms from an off state,
1364          * but we're also supposed to retry 3 times per the spec.
1365          */
1366         for (i = 0; i < 3; i++) {
1367                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1368                                                recv_bytes);
1369                 if (ret == recv_bytes)
1370                         return true;
1371                 msleep(1);
1372         }
1373
1374         return false;
1375 }
1376
1377 /*
1378  * Fetch AUX CH registers 0x202 - 0x207 which contain
1379  * link status information
1380  */
1381 static bool
1382 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1383 {
1384         return intel_dp_aux_native_read_retry(intel_dp,
1385                                               DP_LANE0_1_STATUS,
1386                                               link_status,
1387                                               DP_LINK_STATUS_SIZE);
1388 }
1389
1390 static uint8_t
1391 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1392                      int r)
1393 {
1394         return link_status[r - DP_LANE0_1_STATUS];
1395 }
1396
1397 static uint8_t
1398 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1399                                  int lane)
1400 {
1401         int         s = ((lane & 1) ?
1402                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1403                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1404         uint8_t l = adjust_request[lane>>1];
1405
1406         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1407 }
1408
1409 static uint8_t
1410 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1411                                       int lane)
1412 {
1413         int         s = ((lane & 1) ?
1414                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1415                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1416         uint8_t l = adjust_request[lane>>1];
1417
1418         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1419 }
1420
1421
1422 #if 0
1423 static char     *voltage_names[] = {
1424         "0.4V", "0.6V", "0.8V", "1.2V"
1425 };
1426 static char     *pre_emph_names[] = {
1427         "0dB", "3.5dB", "6dB", "9.5dB"
1428 };
1429 static char     *link_train_names[] = {
1430         "pattern 1", "pattern 2", "idle", "off"
1431 };
1432 #endif
1433
1434 /*
1435  * These are source-specific values; current Intel hardware supports
1436  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1437  */
1438
1439 static uint8_t
1440 intel_dp_voltage_max(struct intel_dp *intel_dp)
1441 {
1442         struct drm_device *dev = intel_dp->base.base.dev;
1443
1444         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1445                 return DP_TRAIN_VOLTAGE_SWING_800;
1446         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1447                 return DP_TRAIN_VOLTAGE_SWING_1200;
1448         else
1449                 return DP_TRAIN_VOLTAGE_SWING_800;
1450 }
1451
1452 static uint8_t
1453 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1454 {
1455         struct drm_device *dev = intel_dp->base.base.dev;
1456
1457         if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1458                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1459                 case DP_TRAIN_VOLTAGE_SWING_400:
1460                         return DP_TRAIN_PRE_EMPHASIS_6;
1461                 case DP_TRAIN_VOLTAGE_SWING_600:
1462                 case DP_TRAIN_VOLTAGE_SWING_800:
1463                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1464                 default:
1465                         return DP_TRAIN_PRE_EMPHASIS_0;
1466                 }
1467         } else {
1468                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1469                 case DP_TRAIN_VOLTAGE_SWING_400:
1470                         return DP_TRAIN_PRE_EMPHASIS_6;
1471                 case DP_TRAIN_VOLTAGE_SWING_600:
1472                         return DP_TRAIN_PRE_EMPHASIS_6;
1473                 case DP_TRAIN_VOLTAGE_SWING_800:
1474                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1475                 case DP_TRAIN_VOLTAGE_SWING_1200:
1476                 default:
1477                         return DP_TRAIN_PRE_EMPHASIS_0;
1478                 }
1479         }
1480 }
1481
1482 static void
1483 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1484 {
1485         uint8_t v = 0;
1486         uint8_t p = 0;
1487         int lane;
1488         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1489         uint8_t voltage_max;
1490         uint8_t preemph_max;
1491
1492         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1493                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1494                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1495
1496                 if (this_v > v)
1497                         v = this_v;
1498                 if (this_p > p)
1499                         p = this_p;
1500         }
1501
1502         voltage_max = intel_dp_voltage_max(intel_dp);
1503         if (v >= voltage_max)
1504                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1505
1506         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1507         if (p >= preemph_max)
1508                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1509
1510         for (lane = 0; lane < 4; lane++)
1511                 intel_dp->train_set[lane] = v | p;
1512 }
1513
1514 static uint32_t
1515 intel_dp_signal_levels(uint8_t train_set)
1516 {
1517         uint32_t        signal_levels = 0;
1518
1519         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1520         case DP_TRAIN_VOLTAGE_SWING_400:
1521         default:
1522                 signal_levels |= DP_VOLTAGE_0_4;
1523                 break;
1524         case DP_TRAIN_VOLTAGE_SWING_600:
1525                 signal_levels |= DP_VOLTAGE_0_6;
1526                 break;
1527         case DP_TRAIN_VOLTAGE_SWING_800:
1528                 signal_levels |= DP_VOLTAGE_0_8;
1529                 break;
1530         case DP_TRAIN_VOLTAGE_SWING_1200:
1531                 signal_levels |= DP_VOLTAGE_1_2;
1532                 break;
1533         }
1534         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1535         case DP_TRAIN_PRE_EMPHASIS_0:
1536         default:
1537                 signal_levels |= DP_PRE_EMPHASIS_0;
1538                 break;
1539         case DP_TRAIN_PRE_EMPHASIS_3_5:
1540                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1541                 break;
1542         case DP_TRAIN_PRE_EMPHASIS_6:
1543                 signal_levels |= DP_PRE_EMPHASIS_6;
1544                 break;
1545         case DP_TRAIN_PRE_EMPHASIS_9_5:
1546                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1547                 break;
1548         }
1549         return signal_levels;
1550 }
1551
1552 /* Gen6's DP voltage swing and pre-emphasis control */
1553 static uint32_t
1554 intel_gen6_edp_signal_levels(uint8_t train_set)
1555 {
1556         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1557                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1558         switch (signal_levels) {
1559         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1560         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1561                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1562         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1563                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1564         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1565         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1566                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1567         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1568         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1569                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1570         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1571         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1572                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1573         default:
1574                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1575                               "0x%x\n", signal_levels);
1576                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1577         }
1578 }
1579
1580 /* Gen7's DP voltage swing and pre-emphasis control */
1581 static uint32_t
1582 intel_gen7_edp_signal_levels(uint8_t train_set)
1583 {
1584         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1585                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1586         switch (signal_levels) {
1587         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1588                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1589         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1590                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1591         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1592                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1593
1594         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1595                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1596         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1597                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1598
1599         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1600                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1601         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1602                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1603
1604         default:
1605                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1606                               "0x%x\n", signal_levels);
1607                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1608         }
1609 }
1610
1611 static uint8_t
1612 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1613                       int lane)
1614 {
1615         int s = (lane & 1) * 4;
1616         uint8_t l = link_status[lane>>1];
1617
1618         return (l >> s) & 0xf;
1619 }
1620
1621 /* Check for clock recovery is done on all channels */
1622 static bool
1623 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1624 {
1625         int lane;
1626         uint8_t lane_status;
1627
1628         for (lane = 0; lane < lane_count; lane++) {
1629                 lane_status = intel_get_lane_status(link_status, lane);
1630                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1631                         return false;
1632         }
1633         return true;
1634 }
1635
1636 /* Check to see if channel eq is done on all channels */
1637 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1638                          DP_LANE_CHANNEL_EQ_DONE|\
1639                          DP_LANE_SYMBOL_LOCKED)
1640 static bool
1641 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1642 {
1643         uint8_t lane_align;
1644         uint8_t lane_status;
1645         int lane;
1646
1647         lane_align = intel_dp_link_status(link_status,
1648                                           DP_LANE_ALIGN_STATUS_UPDATED);
1649         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1650                 return false;
1651         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1652                 lane_status = intel_get_lane_status(link_status, lane);
1653                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1654                         return false;
1655         }
1656         return true;
1657 }
1658
1659 static bool
1660 intel_dp_set_link_train(struct intel_dp *intel_dp,
1661                         uint32_t dp_reg_value,
1662                         uint8_t dp_train_pat)
1663 {
1664         struct drm_device *dev = intel_dp->base.base.dev;
1665         struct drm_i915_private *dev_priv = dev->dev_private;
1666         int ret;
1667
1668         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1669         POSTING_READ(intel_dp->output_reg);
1670
1671         intel_dp_aux_native_write_1(intel_dp,
1672                                     DP_TRAINING_PATTERN_SET,
1673                                     dp_train_pat);
1674
1675         ret = intel_dp_aux_native_write(intel_dp,
1676                                         DP_TRAINING_LANE0_SET,
1677                                         intel_dp->train_set,
1678                                         intel_dp->lane_count);
1679         if (ret != intel_dp->lane_count)
1680                 return false;
1681
1682         return true;
1683 }
1684
1685 /* Enable corresponding port and start training pattern 1 */
1686 static void
1687 intel_dp_start_link_train(struct intel_dp *intel_dp)
1688 {
1689         struct drm_device *dev = intel_dp->base.base.dev;
1690         struct drm_i915_private *dev_priv = dev->dev_private;
1691         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1692         int i;
1693         uint8_t voltage;
1694         bool clock_recovery = false;
1695         int voltage_tries, loop_tries;
1696         u32 reg;
1697         uint32_t DP = intel_dp->DP;
1698
1699         /*
1700          * On CPT we have to enable the port in training pattern 1, which
1701          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1702          * the port and wait for it to become active.
1703          */
1704         if (!HAS_PCH_CPT(dev)) {
1705                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1706                 POSTING_READ(intel_dp->output_reg);
1707                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1708         }
1709
1710         /* Write the link configuration data */
1711         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1712                                   intel_dp->link_configuration,
1713                                   DP_LINK_CONFIGURATION_SIZE);
1714
1715         DP |= DP_PORT_EN;
1716
1717         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1718                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1719         else
1720                 DP &= ~DP_LINK_TRAIN_MASK;
1721         memset(intel_dp->train_set, 0, 4);
1722         voltage = 0xff;
1723         voltage_tries = 0;
1724         loop_tries = 0;
1725         clock_recovery = false;
1726         for (;;) {
1727                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1728                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1729                 uint32_t    signal_levels;
1730
1731
1732                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1733                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1734                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1735                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1736                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1737                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1738                 } else {
1739                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1740                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1741                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1742                 }
1743
1744                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1745                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1746                 else
1747                         reg = DP | DP_LINK_TRAIN_PAT_1;
1748
1749                 if (!intel_dp_set_link_train(intel_dp, reg,
1750                                              DP_TRAINING_PATTERN_1 |
1751                                              DP_LINK_SCRAMBLING_DISABLE))
1752                         break;
1753                 /* Set training pattern 1 */
1754
1755                 udelay(100);
1756                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1757                         DRM_ERROR("failed to get link status\n");
1758                         break;
1759                 }
1760
1761                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1762                         DRM_DEBUG_KMS("clock recovery OK\n");
1763                         clock_recovery = true;
1764                         break;
1765                 }
1766
1767                 /* Check to see if we've tried the max voltage */
1768                 for (i = 0; i < intel_dp->lane_count; i++)
1769                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1770                                 break;
1771                 if (i == intel_dp->lane_count) {
1772                         ++loop_tries;
1773                         if (loop_tries == 5) {
1774                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1775                                 break;
1776                         }
1777                         memset(intel_dp->train_set, 0, 4);
1778                         voltage_tries = 0;
1779                         continue;
1780                 }
1781
1782                 /* Check to see if we've tried the same voltage 5 times */
1783                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1784                         ++voltage_tries;
1785                         if (voltage_tries == 5) {
1786                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1787                                 break;
1788                         }
1789                 } else
1790                         voltage_tries = 0;
1791                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1792
1793                 /* Compute new intel_dp->train_set as requested by target */
1794                 intel_get_adjust_train(intel_dp, link_status);
1795         }
1796
1797         intel_dp->DP = DP;
1798 }
1799
1800 static void
1801 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1802 {
1803         struct drm_device *dev = intel_dp->base.base.dev;
1804         struct drm_i915_private *dev_priv = dev->dev_private;
1805         bool channel_eq = false;
1806         int tries, cr_tries;
1807         u32 reg;
1808         uint32_t DP = intel_dp->DP;
1809
1810         /* channel equalization */
1811         tries = 0;
1812         cr_tries = 0;
1813         channel_eq = false;
1814         for (;;) {
1815                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1816                 uint32_t    signal_levels;
1817                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1818
1819                 if (cr_tries > 5) {
1820                         DRM_ERROR("failed to train DP, aborting\n");
1821                         intel_dp_link_down(intel_dp);
1822                         break;
1823                 }
1824
1825                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1826                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1827                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1828                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1829                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1830                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1831                 } else {
1832                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1833                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1834                 }
1835
1836                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1837                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1838                 else
1839                         reg = DP | DP_LINK_TRAIN_PAT_2;
1840
1841                 /* channel eq pattern */
1842                 if (!intel_dp_set_link_train(intel_dp, reg,
1843                                              DP_TRAINING_PATTERN_2 |
1844                                              DP_LINK_SCRAMBLING_DISABLE))
1845                         break;
1846
1847                 udelay(400);
1848                 if (!intel_dp_get_link_status(intel_dp, link_status))
1849                         break;
1850
1851                 /* Make sure clock is still ok */
1852                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1853                         intel_dp_start_link_train(intel_dp);
1854                         cr_tries++;
1855                         continue;
1856                 }
1857
1858                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1859                         channel_eq = true;
1860                         break;
1861                 }
1862
1863                 /* Try 5 times, then try clock recovery if that fails */
1864                 if (tries > 5) {
1865                         intel_dp_link_down(intel_dp);
1866                         intel_dp_start_link_train(intel_dp);
1867                         tries = 0;
1868                         cr_tries++;
1869                         continue;
1870                 }
1871
1872                 /* Compute new intel_dp->train_set as requested by target */
1873                 intel_get_adjust_train(intel_dp, link_status);
1874                 ++tries;
1875         }
1876
1877         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1878                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1879         else
1880                 reg = DP | DP_LINK_TRAIN_OFF;
1881
1882         I915_WRITE(intel_dp->output_reg, reg);
1883         POSTING_READ(intel_dp->output_reg);
1884         intel_dp_aux_native_write_1(intel_dp,
1885                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1886 }
1887
1888 static void
1889 intel_dp_link_down(struct intel_dp *intel_dp)
1890 {
1891         struct drm_device *dev = intel_dp->base.base.dev;
1892         struct drm_i915_private *dev_priv = dev->dev_private;
1893         uint32_t DP = intel_dp->DP;
1894
1895         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1896                 return;
1897
1898         DRM_DEBUG_KMS("\n");
1899
1900         if (is_edp(intel_dp)) {
1901                 DP &= ~DP_PLL_ENABLE;
1902                 I915_WRITE(intel_dp->output_reg, DP);
1903                 POSTING_READ(intel_dp->output_reg);
1904                 udelay(100);
1905         }
1906
1907         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1908                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1909                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1910         } else {
1911                 DP &= ~DP_LINK_TRAIN_MASK;
1912                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1913         }
1914         POSTING_READ(intel_dp->output_reg);
1915
1916         msleep(17);
1917
1918         if (is_edp(intel_dp)) {
1919                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1920                         DP |= DP_LINK_TRAIN_OFF_CPT;
1921                 else
1922                         DP |= DP_LINK_TRAIN_OFF;
1923         }
1924
1925         if (!HAS_PCH_CPT(dev) &&
1926             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1927                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1928
1929                 /* Hardware workaround: leaving our transcoder select
1930                  * set to transcoder B while it's off will prevent the
1931                  * corresponding HDMI output on transcoder A.
1932                  *
1933                  * Combine this with another hardware workaround:
1934                  * transcoder select bit can only be cleared while the
1935                  * port is enabled.
1936                  */
1937                 DP &= ~DP_PIPEB_SELECT;
1938                 I915_WRITE(intel_dp->output_reg, DP);
1939
1940                 /* Changes to enable or select take place the vblank
1941                  * after being written.
1942                  */
1943                 if (crtc == NULL) {
1944                         /* We can arrive here never having been attached
1945                          * to a CRTC, for instance, due to inheriting
1946                          * random state from the BIOS.
1947                          *
1948                          * If the pipe is not running, play safe and
1949                          * wait for the clocks to stabilise before
1950                          * continuing.
1951                          */
1952                         POSTING_READ(intel_dp->output_reg);
1953                         msleep(50);
1954                 } else
1955                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1956         }
1957
1958         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1959         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1960         POSTING_READ(intel_dp->output_reg);
1961         msleep(intel_dp->panel_power_down_delay);
1962 }
1963
1964 static bool
1965 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1966 {
1967         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1968                                            sizeof(intel_dp->dpcd)) &&
1969             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1970                 return true;
1971         }
1972
1973         return false;
1974 }
1975
1976 static void
1977 intel_dp_probe_oui(struct intel_dp *intel_dp)
1978 {
1979         u8 buf[3];
1980
1981         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1982                 return;
1983
1984         ironlake_edp_panel_vdd_on(intel_dp);
1985
1986         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1987                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1988                               buf[0], buf[1], buf[2]);
1989
1990         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1991                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1992                               buf[0], buf[1], buf[2]);
1993
1994         ironlake_edp_panel_vdd_off(intel_dp, false);
1995 }
1996
1997 static bool
1998 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1999 {
2000         int ret;
2001
2002         ret = intel_dp_aux_native_read_retry(intel_dp,
2003                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2004                                              sink_irq_vector, 1);
2005         if (!ret)
2006                 return false;
2007
2008         return true;
2009 }
2010
2011 static void
2012 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2013 {
2014         /* NAK by default */
2015         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2016 }
2017
2018 /*
2019  * According to DP spec
2020  * 5.1.2:
2021  *  1. Read DPCD
2022  *  2. Configure link according to Receiver Capabilities
2023  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2024  *  4. Check link status on receipt of hot-plug interrupt
2025  */
2026
2027 static void
2028 intel_dp_check_link_status(struct intel_dp *intel_dp)
2029 {
2030         u8 sink_irq_vector;
2031         u8 link_status[DP_LINK_STATUS_SIZE];
2032
2033         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2034                 return;
2035
2036         if (!intel_dp->base.base.crtc)
2037                 return;
2038
2039         /* Try to read receiver status if the link appears to be up */
2040         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2041                 intel_dp_link_down(intel_dp);
2042                 return;
2043         }
2044
2045         /* Now read the DPCD to see if it's actually running */
2046         if (!intel_dp_get_dpcd(intel_dp)) {
2047                 intel_dp_link_down(intel_dp);
2048                 return;
2049         }
2050
2051         /* Try to read the source of the interrupt */
2052         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2053             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2054                 /* Clear interrupt source */
2055                 intel_dp_aux_native_write_1(intel_dp,
2056                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2057                                             sink_irq_vector);
2058
2059                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2060                         intel_dp_handle_test_request(intel_dp);
2061                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2062                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2063         }
2064
2065         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2066                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2067                               drm_get_encoder_name(&intel_dp->base.base));
2068                 intel_dp_start_link_train(intel_dp);
2069                 intel_dp_complete_link_train(intel_dp);
2070         }
2071 }
2072
2073 static enum drm_connector_status
2074 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2075 {
2076         if (intel_dp_get_dpcd(intel_dp))
2077                 return connector_status_connected;
2078         return connector_status_disconnected;
2079 }
2080
2081 static enum drm_connector_status
2082 ironlake_dp_detect(struct intel_dp *intel_dp)
2083 {
2084         enum drm_connector_status status;
2085
2086         /* Can't disconnect eDP, but you can close the lid... */
2087         if (is_edp(intel_dp)) {
2088                 status = intel_panel_detect(intel_dp->base.base.dev);
2089                 if (status == connector_status_unknown)
2090                         status = connector_status_connected;
2091                 return status;
2092         }
2093
2094         return intel_dp_detect_dpcd(intel_dp);
2095 }
2096
2097 static enum drm_connector_status
2098 g4x_dp_detect(struct intel_dp *intel_dp)
2099 {
2100         struct drm_device *dev = intel_dp->base.base.dev;
2101         struct drm_i915_private *dev_priv = dev->dev_private;
2102         uint32_t temp, bit;
2103
2104         switch (intel_dp->output_reg) {
2105         case DP_B:
2106                 bit = DPB_HOTPLUG_INT_STATUS;
2107                 break;
2108         case DP_C:
2109                 bit = DPC_HOTPLUG_INT_STATUS;
2110                 break;
2111         case DP_D:
2112                 bit = DPD_HOTPLUG_INT_STATUS;
2113                 break;
2114         default:
2115                 return connector_status_unknown;
2116         }
2117
2118         temp = I915_READ(PORT_HOTPLUG_STAT);
2119
2120         if ((temp & bit) == 0)
2121                 return connector_status_disconnected;
2122
2123         return intel_dp_detect_dpcd(intel_dp);
2124 }
2125
2126 static struct edid *
2127 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2128 {
2129         struct intel_dp *intel_dp = intel_attached_dp(connector);
2130         struct edid     *edid;
2131         int size;
2132
2133         if (is_edp(intel_dp)) {
2134                 if (!intel_dp->edid)
2135                         return NULL;
2136
2137                 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2138                 edid = kmalloc(size, GFP_KERNEL);
2139                 if (!edid)
2140                         return NULL;
2141
2142                 memcpy(edid, intel_dp->edid, size);
2143                 return edid;
2144         }
2145
2146         edid = drm_get_edid(connector, adapter);
2147         return edid;
2148 }
2149
2150 static int
2151 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2152 {
2153         struct intel_dp *intel_dp = intel_attached_dp(connector);
2154         int     ret;
2155
2156         if (is_edp(intel_dp)) {
2157                 drm_mode_connector_update_edid_property(connector,
2158                                                         intel_dp->edid);
2159                 ret = drm_add_edid_modes(connector, intel_dp->edid);
2160                 drm_edid_to_eld(connector,
2161                                 intel_dp->edid);
2162                 connector->display_info.raw_edid = NULL;
2163                 return intel_dp->edid_mode_count;
2164         }
2165
2166         ret = intel_ddc_get_modes(connector, adapter);
2167         return ret;
2168 }
2169
2170
2171 /**
2172  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2173  *
2174  * \return true if DP port is connected.
2175  * \return false if DP port is disconnected.
2176  */
2177 static enum drm_connector_status
2178 intel_dp_detect(struct drm_connector *connector, bool force)
2179 {
2180         struct intel_dp *intel_dp = intel_attached_dp(connector);
2181         struct drm_device *dev = intel_dp->base.base.dev;
2182         enum drm_connector_status status;
2183         struct edid *edid = NULL;
2184
2185         intel_dp->has_audio = false;
2186
2187         if (HAS_PCH_SPLIT(dev))
2188                 status = ironlake_dp_detect(intel_dp);
2189         else
2190                 status = g4x_dp_detect(intel_dp);
2191
2192         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2193                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2194                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2195                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2196
2197         if (status != connector_status_connected)
2198                 return status;
2199
2200         intel_dp_probe_oui(intel_dp);
2201
2202         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2203                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2204         } else {
2205                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2206                 if (edid) {
2207                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2208                         connector->display_info.raw_edid = NULL;
2209                         kfree(edid);
2210                 }
2211         }
2212
2213         return connector_status_connected;
2214 }
2215
2216 static int intel_dp_get_modes(struct drm_connector *connector)
2217 {
2218         struct intel_dp *intel_dp = intel_attached_dp(connector);
2219         struct drm_device *dev = intel_dp->base.base.dev;
2220         struct drm_i915_private *dev_priv = dev->dev_private;
2221         int ret;
2222
2223         /* We should parse the EDID data and find out if it has an audio sink
2224          */
2225
2226         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2227         if (ret) {
2228                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2229                         struct drm_display_mode *newmode;
2230                         list_for_each_entry(newmode, &connector->probed_modes,
2231                                             head) {
2232                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2233                                         intel_dp->panel_fixed_mode =
2234                                                 drm_mode_duplicate(dev, newmode);
2235                                         break;
2236                                 }
2237                         }
2238                 }
2239                 return ret;
2240         }
2241
2242         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2243         if (is_edp(intel_dp)) {
2244                 /* initialize panel mode from VBT if available for eDP */
2245                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2246                         intel_dp->panel_fixed_mode =
2247                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2248                         if (intel_dp->panel_fixed_mode) {
2249                                 intel_dp->panel_fixed_mode->type |=
2250                                         DRM_MODE_TYPE_PREFERRED;
2251                         }
2252                 }
2253                 if (intel_dp->panel_fixed_mode) {
2254                         struct drm_display_mode *mode;
2255                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2256                         drm_mode_probed_add(connector, mode);
2257                         return 1;
2258                 }
2259         }
2260         return 0;
2261 }
2262
2263 static bool
2264 intel_dp_detect_audio(struct drm_connector *connector)
2265 {
2266         struct intel_dp *intel_dp = intel_attached_dp(connector);
2267         struct edid *edid;
2268         bool has_audio = false;
2269
2270         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2271         if (edid) {
2272                 has_audio = drm_detect_monitor_audio(edid);
2273
2274                 connector->display_info.raw_edid = NULL;
2275                 kfree(edid);
2276         }
2277
2278         return has_audio;
2279 }
2280
2281 static int
2282 intel_dp_set_property(struct drm_connector *connector,
2283                       struct drm_property *property,
2284                       uint64_t val)
2285 {
2286         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2287         struct intel_dp *intel_dp = intel_attached_dp(connector);
2288         int ret;
2289
2290         ret = drm_connector_property_set_value(connector, property, val);
2291         if (ret)
2292                 return ret;
2293
2294         if (property == dev_priv->force_audio_property) {
2295                 int i = val;
2296                 bool has_audio;
2297
2298                 if (i == intel_dp->force_audio)
2299                         return 0;
2300
2301                 intel_dp->force_audio = i;
2302
2303                 if (i == HDMI_AUDIO_AUTO)
2304                         has_audio = intel_dp_detect_audio(connector);
2305                 else
2306                         has_audio = (i == HDMI_AUDIO_ON);
2307
2308                 if (has_audio == intel_dp->has_audio)
2309                         return 0;
2310
2311                 intel_dp->has_audio = has_audio;
2312                 goto done;
2313         }
2314
2315         if (property == dev_priv->broadcast_rgb_property) {
2316                 if (val == !!intel_dp->color_range)
2317                         return 0;
2318
2319                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2320                 goto done;
2321         }
2322
2323         return -EINVAL;
2324
2325 done:
2326         if (intel_dp->base.base.crtc) {
2327                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2328                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2329                                          crtc->x, crtc->y,
2330                                          crtc->fb);
2331         }
2332
2333         return 0;
2334 }
2335
2336 static void
2337 intel_dp_destroy(struct drm_connector *connector)
2338 {
2339         struct drm_device *dev = connector->dev;
2340
2341         if (intel_dpd_is_edp(dev))
2342                 intel_panel_destroy_backlight(dev);
2343
2344         drm_sysfs_connector_remove(connector);
2345         drm_connector_cleanup(connector);
2346         kfree(connector);
2347 }
2348
2349 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2350 {
2351         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2352
2353         i2c_del_adapter(&intel_dp->adapter);
2354         drm_encoder_cleanup(encoder);
2355         if (is_edp(intel_dp)) {
2356                 kfree(intel_dp->edid);
2357                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2358                 ironlake_panel_vdd_off_sync(intel_dp);
2359         }
2360         kfree(intel_dp);
2361 }
2362
2363 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2364         .dpms = intel_dp_dpms,
2365         .mode_fixup = intel_dp_mode_fixup,
2366         .prepare = intel_dp_prepare,
2367         .mode_set = intel_dp_mode_set,
2368         .commit = intel_dp_commit,
2369 };
2370
2371 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2372         .dpms = drm_helper_connector_dpms,
2373         .detect = intel_dp_detect,
2374         .fill_modes = drm_helper_probe_single_connector_modes,
2375         .set_property = intel_dp_set_property,
2376         .destroy = intel_dp_destroy,
2377 };
2378
2379 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2380         .get_modes = intel_dp_get_modes,
2381         .mode_valid = intel_dp_mode_valid,
2382         .best_encoder = intel_best_encoder,
2383 };
2384
2385 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2386         .destroy = intel_dp_encoder_destroy,
2387 };
2388
2389 static void
2390 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2391 {
2392         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2393
2394         intel_dp_check_link_status(intel_dp);
2395 }
2396
2397 /* Return which DP Port should be selected for Transcoder DP control */
2398 int
2399 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2400 {
2401         struct drm_device *dev = crtc->dev;
2402         struct drm_mode_config *mode_config = &dev->mode_config;
2403         struct drm_encoder *encoder;
2404
2405         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2406                 struct intel_dp *intel_dp;
2407
2408                 if (encoder->crtc != crtc)
2409                         continue;
2410
2411                 intel_dp = enc_to_intel_dp(encoder);
2412                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2413                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2414                         return intel_dp->output_reg;
2415         }
2416
2417         return -1;
2418 }
2419
2420 /* check the VBT to see whether the eDP is on DP-D port */
2421 bool intel_dpd_is_edp(struct drm_device *dev)
2422 {
2423         struct drm_i915_private *dev_priv = dev->dev_private;
2424         struct child_device_config *p_child;
2425         int i;
2426
2427         if (!dev_priv->child_dev_num)
2428                 return false;
2429
2430         for (i = 0; i < dev_priv->child_dev_num; i++) {
2431                 p_child = dev_priv->child_dev + i;
2432
2433                 if (p_child->dvo_port == PORT_IDPD &&
2434                     p_child->device_type == DEVICE_TYPE_eDP)
2435                         return true;
2436         }
2437         return false;
2438 }
2439
2440 static void
2441 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2442 {
2443         intel_attach_force_audio_property(connector);
2444         intel_attach_broadcast_rgb_property(connector);
2445 }
2446
2447 void
2448 intel_dp_init(struct drm_device *dev, int output_reg)
2449 {
2450         struct drm_i915_private *dev_priv = dev->dev_private;
2451         struct drm_connector *connector;
2452         struct intel_dp *intel_dp;
2453         struct intel_encoder *intel_encoder;
2454         struct intel_connector *intel_connector;
2455         const char *name = NULL;
2456         int type;
2457
2458         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2459         if (!intel_dp)
2460                 return;
2461
2462         intel_dp->output_reg = output_reg;
2463         intel_dp->dpms_mode = -1;
2464
2465         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2466         if (!intel_connector) {
2467                 kfree(intel_dp);
2468                 return;
2469         }
2470         intel_encoder = &intel_dp->base;
2471
2472         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2473                 if (intel_dpd_is_edp(dev))
2474                         intel_dp->is_pch_edp = true;
2475
2476         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2477                 type = DRM_MODE_CONNECTOR_eDP;
2478                 intel_encoder->type = INTEL_OUTPUT_EDP;
2479         } else {
2480                 type = DRM_MODE_CONNECTOR_DisplayPort;
2481                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2482         }
2483
2484         connector = &intel_connector->base;
2485         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2486         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2487
2488         connector->polled = DRM_CONNECTOR_POLL_HPD;
2489
2490         if (output_reg == DP_B || output_reg == PCH_DP_B)
2491                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2492         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2493                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2494         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2495                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2496
2497         if (is_edp(intel_dp)) {
2498                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2499                 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2500                                   ironlake_panel_vdd_work);
2501         }
2502
2503         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2504
2505         connector->interlace_allowed = true;
2506         connector->doublescan_allowed = 0;
2507
2508         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2509                          DRM_MODE_ENCODER_TMDS);
2510         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2511
2512         intel_connector_attach_encoder(intel_connector, intel_encoder);
2513         drm_sysfs_connector_add(connector);
2514
2515         /* Set up the DDC bus. */
2516         switch (output_reg) {
2517                 case DP_A:
2518                         name = "DPDDC-A";
2519                         break;
2520                 case DP_B:
2521                 case PCH_DP_B:
2522                         dev_priv->hotplug_supported_mask |=
2523                                 HDMIB_HOTPLUG_INT_STATUS;
2524                         name = "DPDDC-B";
2525                         break;
2526                 case DP_C:
2527                 case PCH_DP_C:
2528                         dev_priv->hotplug_supported_mask |=
2529                                 HDMIC_HOTPLUG_INT_STATUS;
2530                         name = "DPDDC-C";
2531                         break;
2532                 case DP_D:
2533                 case PCH_DP_D:
2534                         dev_priv->hotplug_supported_mask |=
2535                                 HDMID_HOTPLUG_INT_STATUS;
2536                         name = "DPDDC-D";
2537                         break;
2538         }
2539
2540         intel_dp_i2c_init(intel_dp, intel_connector, name);
2541
2542         /* Cache some DPCD data in the eDP case */
2543         if (is_edp(intel_dp)) {
2544                 bool ret;
2545                 struct edp_power_seq    cur, vbt;
2546                 u32 pp_on, pp_off, pp_div;
2547                 struct edid *edid;
2548
2549                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2550                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2551                 pp_div = I915_READ(PCH_PP_DIVISOR);
2552
2553                 if (!pp_on || !pp_off || !pp_div) {
2554                         DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2555                         intel_dp_encoder_destroy(&intel_dp->base.base);
2556                         intel_dp_destroy(&intel_connector->base);
2557                         return;
2558                 }
2559
2560                 /* Pull timing values out of registers */
2561                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2562                         PANEL_POWER_UP_DELAY_SHIFT;
2563
2564                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2565                         PANEL_LIGHT_ON_DELAY_SHIFT;
2566
2567                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2568                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2569
2570                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2571                         PANEL_POWER_DOWN_DELAY_SHIFT;
2572
2573                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2574                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2575
2576                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2577                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2578
2579                 vbt = dev_priv->edp.pps;
2580
2581                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2582                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2583
2584 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2585
2586                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2587                 intel_dp->backlight_on_delay = get_delay(t8);
2588                 intel_dp->backlight_off_delay = get_delay(t9);
2589                 intel_dp->panel_power_down_delay = get_delay(t10);
2590                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2591
2592                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2593                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2594                               intel_dp->panel_power_cycle_delay);
2595
2596                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2597                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2598
2599                 ironlake_edp_panel_vdd_on(intel_dp);
2600                 ret = intel_dp_get_dpcd(intel_dp);
2601                 ironlake_edp_panel_vdd_off(intel_dp, false);
2602
2603                 if (ret) {
2604                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2605                                 dev_priv->no_aux_handshake =
2606                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2607                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2608                 } else {
2609                         /* if this fails, presume the device is a ghost */
2610                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2611                         intel_dp_encoder_destroy(&intel_dp->base.base);
2612                         intel_dp_destroy(&intel_connector->base);
2613                         return;
2614                 }
2615
2616                 ironlake_edp_panel_vdd_on(intel_dp);
2617                 edid = drm_get_edid(connector, &intel_dp->adapter);
2618                 if (edid) {
2619                         drm_mode_connector_update_edid_property(connector,
2620                                                                 edid);
2621                         intel_dp->edid_mode_count =
2622                                 drm_add_edid_modes(connector, edid);
2623                         drm_edid_to_eld(connector, edid);
2624                         intel_dp->edid = edid;
2625                 }
2626                 ironlake_edp_panel_vdd_off(intel_dp, false);
2627         }
2628
2629         intel_encoder->hot_plug = intel_dp_hot_plug;
2630
2631         if (is_edp(intel_dp)) {
2632                 dev_priv->int_edp_connector = connector;
2633                 intel_panel_setup_backlight(dev);
2634         }
2635
2636         intel_dp_add_properties(intel_dp, connector);
2637
2638         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2639          * 0xd.  Failure to do so will result in spurious interrupts being
2640          * generated on the port when a cable is not attached.
2641          */
2642         if (IS_G4X(dev) && !IS_GM45(dev)) {
2643                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2644                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2645         }
2646 }