]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_dp.c
spi: spi-imx: spi_imx_remove: do not disable disabled clocks
[~andy/linux] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95 static int
96 intel_dp_max_link_bw(struct intel_dp *intel_dp)
97 {
98         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100         switch (max_link_bw) {
101         case DP_LINK_BW_1_62:
102         case DP_LINK_BW_2_7:
103                 break;
104         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105                 max_link_bw = DP_LINK_BW_2_7;
106                 break;
107         default:
108                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109                      max_link_bw);
110                 max_link_bw = DP_LINK_BW_1_62;
111                 break;
112         }
113         return max_link_bw;
114 }
115
116 /*
117  * The units on the numbers in the next two are... bizarre.  Examples will
118  * make it clearer; this one parallels an example in the eDP spec.
119  *
120  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121  *
122  *     270000 * 1 * 8 / 10 == 216000
123  *
124  * The actual data capacity of that configuration is 2.16Gbit/s, so the
125  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
126  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127  * 119000.  At 18bpp that's 2142000 kilobits per second.
128  *
129  * Thus the strange-looking division by 10 in intel_dp_link_required, to
130  * get the result in decakilobits instead of kilobits.
131  */
132
133 static int
134 intel_dp_link_required(int pixel_clock, int bpp)
135 {
136         return (pixel_clock * bpp + 9) / 10;
137 }
138
139 static int
140 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141 {
142         return (max_link_clock * max_lanes * 8) / 10;
143 }
144
145 static enum drm_mode_status
146 intel_dp_mode_valid(struct drm_connector *connector,
147                     struct drm_display_mode *mode)
148 {
149         struct intel_dp *intel_dp = intel_attached_dp(connector);
150         struct intel_connector *intel_connector = to_intel_connector(connector);
151         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152         int target_clock = mode->clock;
153         int max_rate, mode_rate, max_lanes, max_link_clock;
154
155         if (is_edp(intel_dp) && fixed_mode) {
156                 if (mode->hdisplay > fixed_mode->hdisplay)
157                         return MODE_PANEL;
158
159                 if (mode->vdisplay > fixed_mode->vdisplay)
160                         return MODE_PANEL;
161
162                 target_clock = fixed_mode->clock;
163         }
164
165         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169         mode_rate = intel_dp_link_required(target_clock, 18);
170
171         if (mode_rate > max_rate)
172                 return MODE_CLOCK_HIGH;
173
174         if (mode->clock < 10000)
175                 return MODE_CLOCK_LOW;
176
177         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178                 return MODE_H_ILLEGAL;
179
180         return MODE_OK;
181 }
182
183 static uint32_t
184 pack_aux(uint8_t *src, int src_bytes)
185 {
186         int     i;
187         uint32_t v = 0;
188
189         if (src_bytes > 4)
190                 src_bytes = 4;
191         for (i = 0; i < src_bytes; i++)
192                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
193         return v;
194 }
195
196 static void
197 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198 {
199         int i;
200         if (dst_bytes > 4)
201                 dst_bytes = 4;
202         for (i = 0; i < dst_bytes; i++)
203                 dst[i] = src >> ((3-i) * 8);
204 }
205
206 /* hrawclock is 1/4 the FSB frequency */
207 static int
208 intel_hrawclk(struct drm_device *dev)
209 {
210         struct drm_i915_private *dev_priv = dev->dev_private;
211         uint32_t clkcfg;
212
213         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214         if (IS_VALLEYVIEW(dev))
215                 return 200;
216
217         clkcfg = I915_READ(CLKCFG);
218         switch (clkcfg & CLKCFG_FSB_MASK) {
219         case CLKCFG_FSB_400:
220                 return 100;
221         case CLKCFG_FSB_533:
222                 return 133;
223         case CLKCFG_FSB_667:
224                 return 166;
225         case CLKCFG_FSB_800:
226                 return 200;
227         case CLKCFG_FSB_1067:
228                 return 266;
229         case CLKCFG_FSB_1333:
230                 return 333;
231         /* these two are just a guess; one of them might be right */
232         case CLKCFG_FSB_1600:
233         case CLKCFG_FSB_1600_ALT:
234                 return 400;
235         default:
236                 return 133;
237         }
238 }
239
240 static void
241 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
242                                     struct intel_dp *intel_dp,
243                                     struct edp_power_seq *out);
244 static void
245 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
246                                               struct intel_dp *intel_dp,
247                                               struct edp_power_seq *out);
248
249 static enum pipe
250 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
251 {
252         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
253         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
254         struct drm_device *dev = intel_dig_port->base.base.dev;
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         enum port port = intel_dig_port->port;
257         enum pipe pipe;
258
259         /* modeset should have pipe */
260         if (crtc)
261                 return to_intel_crtc(crtc)->pipe;
262
263         /* init time, try to find a pipe with this port selected */
264         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
265                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
266                         PANEL_PORT_SELECT_MASK;
267                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
268                         return pipe;
269                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
270                         return pipe;
271         }
272
273         /* shrug */
274         return PIPE_A;
275 }
276
277 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
278 {
279         struct drm_device *dev = intel_dp_to_dev(intel_dp);
280
281         if (HAS_PCH_SPLIT(dev))
282                 return PCH_PP_CONTROL;
283         else
284                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
285 }
286
287 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
288 {
289         struct drm_device *dev = intel_dp_to_dev(intel_dp);
290
291         if (HAS_PCH_SPLIT(dev))
292                 return PCH_PP_STATUS;
293         else
294                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
295 }
296
297 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
298 {
299         struct drm_device *dev = intel_dp_to_dev(intel_dp);
300         struct drm_i915_private *dev_priv = dev->dev_private;
301
302         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
303 }
304
305 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
306 {
307         struct drm_device *dev = intel_dp_to_dev(intel_dp);
308         struct drm_i915_private *dev_priv = dev->dev_private;
309
310         return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
311 }
312
313 static void
314 intel_dp_check_edp(struct intel_dp *intel_dp)
315 {
316         struct drm_device *dev = intel_dp_to_dev(intel_dp);
317         struct drm_i915_private *dev_priv = dev->dev_private;
318
319         if (!is_edp(intel_dp))
320                 return;
321
322         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
323                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
324                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
325                               I915_READ(_pp_stat_reg(intel_dp)),
326                               I915_READ(_pp_ctrl_reg(intel_dp)));
327         }
328 }
329
330 static uint32_t
331 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
332 {
333         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334         struct drm_device *dev = intel_dig_port->base.base.dev;
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
337         uint32_t status;
338         bool done;
339
340 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
341         if (has_aux_irq)
342                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
343                                           msecs_to_jiffies_timeout(10));
344         else
345                 done = wait_for_atomic(C, 10) == 0;
346         if (!done)
347                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
348                           has_aux_irq);
349 #undef C
350
351         return status;
352 }
353
354 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
355                                       int index)
356 {
357         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358         struct drm_device *dev = intel_dig_port->base.base.dev;
359         struct drm_i915_private *dev_priv = dev->dev_private;
360
361         /* The clock divider is based off the hrawclk,
362          * and would like to run at 2MHz. So, take the
363          * hrawclk value and divide by 2 and use that
364          *
365          * Note that PCH attached eDP panels should use a 125MHz input
366          * clock divider.
367          */
368         if (IS_VALLEYVIEW(dev)) {
369                 return index ? 0 : 100;
370         } else if (intel_dig_port->port == PORT_A) {
371                 if (index)
372                         return 0;
373                 if (HAS_DDI(dev))
374                         return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
375                 else if (IS_GEN6(dev) || IS_GEN7(dev))
376                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
377                 else
378                         return 225; /* eDP input clock at 450Mhz */
379         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
380                 /* Workaround for non-ULT HSW */
381                 switch (index) {
382                 case 0: return 63;
383                 case 1: return 72;
384                 default: return 0;
385                 }
386         } else if (HAS_PCH_SPLIT(dev)) {
387                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388         } else {
389                 return index ? 0 :intel_hrawclk(dev) / 2;
390         }
391 }
392
393 static int
394 intel_dp_aux_ch(struct intel_dp *intel_dp,
395                 uint8_t *send, int send_bytes,
396                 uint8_t *recv, int recv_size)
397 {
398         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399         struct drm_device *dev = intel_dig_port->base.base.dev;
400         struct drm_i915_private *dev_priv = dev->dev_private;
401         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
402         uint32_t ch_data = ch_ctl + 4;
403         uint32_t aux_clock_divider;
404         int i, ret, recv_bytes;
405         uint32_t status;
406         int try, precharge, clock = 0;
407         bool has_aux_irq = true;
408         uint32_t timeout;
409
410         /* dp aux is extremely sensitive to irq latency, hence request the
411          * lowest possible wakeup latency and so prevent the cpu from going into
412          * deep sleep states.
413          */
414         pm_qos_update_request(&dev_priv->pm_qos, 0);
415
416         intel_dp_check_edp(intel_dp);
417
418         if (IS_GEN6(dev))
419                 precharge = 3;
420         else
421                 precharge = 5;
422
423         if (IS_BROADWELL(dev) && ch_ctl == DPA_AUX_CH_CTL)
424                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
425         else
426                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
427
428         intel_aux_display_runtime_get(dev_priv);
429
430         /* Try to wait for any previous AUX channel activity */
431         for (try = 0; try < 3; try++) {
432                 status = I915_READ_NOTRACE(ch_ctl);
433                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
434                         break;
435                 msleep(1);
436         }
437
438         if (try == 3) {
439                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
440                      I915_READ(ch_ctl));
441                 ret = -EBUSY;
442                 goto out;
443         }
444
445         /* Only 5 data registers! */
446         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
447                 ret = -E2BIG;
448                 goto out;
449         }
450
451         while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
452                 /* Must try at least 3 times according to DP spec */
453                 for (try = 0; try < 5; try++) {
454                         /* Load the send data into the aux channel data registers */
455                         for (i = 0; i < send_bytes; i += 4)
456                                 I915_WRITE(ch_data + i,
457                                            pack_aux(send + i, send_bytes - i));
458
459                         /* Send the command and wait for it to complete */
460                         I915_WRITE(ch_ctl,
461                                    DP_AUX_CH_CTL_SEND_BUSY |
462                                    (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
463                                    timeout |
464                                    (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
465                                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
466                                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
467                                    DP_AUX_CH_CTL_DONE |
468                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
469                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
470
471                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
472
473                         /* Clear done status and any errors */
474                         I915_WRITE(ch_ctl,
475                                    status |
476                                    DP_AUX_CH_CTL_DONE |
477                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
478                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
479
480                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
481                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
482                                 continue;
483                         if (status & DP_AUX_CH_CTL_DONE)
484                                 break;
485                 }
486                 if (status & DP_AUX_CH_CTL_DONE)
487                         break;
488         }
489
490         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
491                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
492                 ret = -EBUSY;
493                 goto out;
494         }
495
496         /* Check for timeout or receive error.
497          * Timeouts occur when the sink is not connected
498          */
499         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
500                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
501                 ret = -EIO;
502                 goto out;
503         }
504
505         /* Timeouts occur when the device isn't connected, so they're
506          * "normal" -- don't fill the kernel log with these */
507         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
508                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
509                 ret = -ETIMEDOUT;
510                 goto out;
511         }
512
513         /* Unload any bytes sent back from the other side */
514         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
515                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
516         if (recv_bytes > recv_size)
517                 recv_bytes = recv_size;
518
519         for (i = 0; i < recv_bytes; i += 4)
520                 unpack_aux(I915_READ(ch_data + i),
521                            recv + i, recv_bytes - i);
522
523         ret = recv_bytes;
524 out:
525         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
526         intel_aux_display_runtime_put(dev_priv);
527
528         return ret;
529 }
530
531 /* Write data to the aux channel in native mode */
532 static int
533 intel_dp_aux_native_write(struct intel_dp *intel_dp,
534                           uint16_t address, uint8_t *send, int send_bytes)
535 {
536         int ret;
537         uint8_t msg[20];
538         int msg_bytes;
539         uint8_t ack;
540
541         if (WARN_ON(send_bytes > 16))
542                 return -E2BIG;
543
544         intel_dp_check_edp(intel_dp);
545         msg[0] = DP_AUX_NATIVE_WRITE << 4;
546         msg[1] = address >> 8;
547         msg[2] = address & 0xff;
548         msg[3] = send_bytes - 1;
549         memcpy(&msg[4], send, send_bytes);
550         msg_bytes = send_bytes + 4;
551         for (;;) {
552                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
553                 if (ret < 0)
554                         return ret;
555                 ack >>= 4;
556                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
557                         break;
558                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
559                         udelay(100);
560                 else
561                         return -EIO;
562         }
563         return send_bytes;
564 }
565
566 /* Write a single byte to the aux channel in native mode */
567 static int
568 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
569                             uint16_t address, uint8_t byte)
570 {
571         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
572 }
573
574 /* read bytes from a native aux channel */
575 static int
576 intel_dp_aux_native_read(struct intel_dp *intel_dp,
577                          uint16_t address, uint8_t *recv, int recv_bytes)
578 {
579         uint8_t msg[4];
580         int msg_bytes;
581         uint8_t reply[20];
582         int reply_bytes;
583         uint8_t ack;
584         int ret;
585
586         if (WARN_ON(recv_bytes > 19))
587                 return -E2BIG;
588
589         intel_dp_check_edp(intel_dp);
590         msg[0] = DP_AUX_NATIVE_READ << 4;
591         msg[1] = address >> 8;
592         msg[2] = address & 0xff;
593         msg[3] = recv_bytes - 1;
594
595         msg_bytes = 4;
596         reply_bytes = recv_bytes + 1;
597
598         for (;;) {
599                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
600                                       reply, reply_bytes);
601                 if (ret == 0)
602                         return -EPROTO;
603                 if (ret < 0)
604                         return ret;
605                 ack = reply[0] >> 4;
606                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
607                         memcpy(recv, reply + 1, ret - 1);
608                         return ret - 1;
609                 }
610                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
611                         udelay(100);
612                 else
613                         return -EIO;
614         }
615 }
616
617 static int
618 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
619                     uint8_t write_byte, uint8_t *read_byte)
620 {
621         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
622         struct intel_dp *intel_dp = container_of(adapter,
623                                                 struct intel_dp,
624                                                 adapter);
625         uint16_t address = algo_data->address;
626         uint8_t msg[5];
627         uint8_t reply[2];
628         unsigned retry;
629         int msg_bytes;
630         int reply_bytes;
631         int ret;
632
633         ironlake_edp_panel_vdd_on(intel_dp);
634         intel_dp_check_edp(intel_dp);
635         /* Set up the command byte */
636         if (mode & MODE_I2C_READ)
637                 msg[0] = DP_AUX_I2C_READ << 4;
638         else
639                 msg[0] = DP_AUX_I2C_WRITE << 4;
640
641         if (!(mode & MODE_I2C_STOP))
642                 msg[0] |= DP_AUX_I2C_MOT << 4;
643
644         msg[1] = address >> 8;
645         msg[2] = address;
646
647         switch (mode) {
648         case MODE_I2C_WRITE:
649                 msg[3] = 0;
650                 msg[4] = write_byte;
651                 msg_bytes = 5;
652                 reply_bytes = 1;
653                 break;
654         case MODE_I2C_READ:
655                 msg[3] = 0;
656                 msg_bytes = 4;
657                 reply_bytes = 2;
658                 break;
659         default:
660                 msg_bytes = 3;
661                 reply_bytes = 1;
662                 break;
663         }
664
665         /*
666          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
667          * required to retry at least seven times upon receiving AUX_DEFER
668          * before giving up the AUX transaction.
669          */
670         for (retry = 0; retry < 7; retry++) {
671                 ret = intel_dp_aux_ch(intel_dp,
672                                       msg, msg_bytes,
673                                       reply, reply_bytes);
674                 if (ret < 0) {
675                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
676                         goto out;
677                 }
678
679                 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
680                 case DP_AUX_NATIVE_REPLY_ACK:
681                         /* I2C-over-AUX Reply field is only valid
682                          * when paired with AUX ACK.
683                          */
684                         break;
685                 case DP_AUX_NATIVE_REPLY_NACK:
686                         DRM_DEBUG_KMS("aux_ch native nack\n");
687                         ret = -EREMOTEIO;
688                         goto out;
689                 case DP_AUX_NATIVE_REPLY_DEFER:
690                         /*
691                          * For now, just give more slack to branch devices. We
692                          * could check the DPCD for I2C bit rate capabilities,
693                          * and if available, adjust the interval. We could also
694                          * be more careful with DP-to-Legacy adapters where a
695                          * long legacy cable may force very low I2C bit rates.
696                          */
697                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
698                             DP_DWN_STRM_PORT_PRESENT)
699                                 usleep_range(500, 600);
700                         else
701                                 usleep_range(300, 400);
702                         continue;
703                 default:
704                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
705                                   reply[0]);
706                         ret = -EREMOTEIO;
707                         goto out;
708                 }
709
710                 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
711                 case DP_AUX_I2C_REPLY_ACK:
712                         if (mode == MODE_I2C_READ) {
713                                 *read_byte = reply[1];
714                         }
715                         ret = reply_bytes - 1;
716                         goto out;
717                 case DP_AUX_I2C_REPLY_NACK:
718                         DRM_DEBUG_KMS("aux_i2c nack\n");
719                         ret = -EREMOTEIO;
720                         goto out;
721                 case DP_AUX_I2C_REPLY_DEFER:
722                         DRM_DEBUG_KMS("aux_i2c defer\n");
723                         udelay(100);
724                         break;
725                 default:
726                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
727                         ret = -EREMOTEIO;
728                         goto out;
729                 }
730         }
731
732         DRM_ERROR("too many retries, giving up\n");
733         ret = -EREMOTEIO;
734
735 out:
736         ironlake_edp_panel_vdd_off(intel_dp, false);
737         return ret;
738 }
739
740 static int
741 intel_dp_i2c_init(struct intel_dp *intel_dp,
742                   struct intel_connector *intel_connector, const char *name)
743 {
744         int     ret;
745
746         DRM_DEBUG_KMS("i2c_init %s\n", name);
747         intel_dp->algo.running = false;
748         intel_dp->algo.address = 0;
749         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
750
751         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
752         intel_dp->adapter.owner = THIS_MODULE;
753         intel_dp->adapter.class = I2C_CLASS_DDC;
754         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
755         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
756         intel_dp->adapter.algo_data = &intel_dp->algo;
757         intel_dp->adapter.dev.parent = intel_connector->base.kdev;
758
759         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
760         return ret;
761 }
762
763 static void
764 intel_dp_set_clock(struct intel_encoder *encoder,
765                    struct intel_crtc_config *pipe_config, int link_bw)
766 {
767         struct drm_device *dev = encoder->base.dev;
768         const struct dp_link_dpll *divisor = NULL;
769         int i, count = 0;
770
771         if (IS_G4X(dev)) {
772                 divisor = gen4_dpll;
773                 count = ARRAY_SIZE(gen4_dpll);
774         } else if (IS_HASWELL(dev)) {
775                 /* Haswell has special-purpose DP DDI clocks. */
776         } else if (HAS_PCH_SPLIT(dev)) {
777                 divisor = pch_dpll;
778                 count = ARRAY_SIZE(pch_dpll);
779         } else if (IS_VALLEYVIEW(dev)) {
780                 divisor = vlv_dpll;
781                 count = ARRAY_SIZE(vlv_dpll);
782         }
783
784         if (divisor && count) {
785                 for (i = 0; i < count; i++) {
786                         if (link_bw == divisor[i].link_bw) {
787                                 pipe_config->dpll = divisor[i].dpll;
788                                 pipe_config->clock_set = true;
789                                 break;
790                         }
791                 }
792         }
793 }
794
795 bool
796 intel_dp_compute_config(struct intel_encoder *encoder,
797                         struct intel_crtc_config *pipe_config)
798 {
799         struct drm_device *dev = encoder->base.dev;
800         struct drm_i915_private *dev_priv = dev->dev_private;
801         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
802         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
803         enum port port = dp_to_dig_port(intel_dp)->port;
804         struct intel_crtc *intel_crtc = encoder->new_crtc;
805         struct intel_connector *intel_connector = intel_dp->attached_connector;
806         int lane_count, clock;
807         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
808         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
809         int bpp, mode_rate;
810         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
811         int link_avail, link_clock;
812
813         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
814                 pipe_config->has_pch_encoder = true;
815
816         pipe_config->has_dp_encoder = true;
817
818         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
819                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
820                                        adjusted_mode);
821                 if (!HAS_PCH_SPLIT(dev))
822                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
823                                                  intel_connector->panel.fitting_mode);
824                 else
825                         intel_pch_panel_fitting(intel_crtc, pipe_config,
826                                                 intel_connector->panel.fitting_mode);
827         }
828
829         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
830                 return false;
831
832         DRM_DEBUG_KMS("DP link computation with max lane count %i "
833                       "max bw %02x pixel clock %iKHz\n",
834                       max_lane_count, bws[max_clock],
835                       adjusted_mode->crtc_clock);
836
837         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
838          * bpc in between. */
839         bpp = pipe_config->pipe_bpp;
840         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
841             dev_priv->vbt.edp_bpp < bpp) {
842                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
843                               dev_priv->vbt.edp_bpp);
844                 bpp = dev_priv->vbt.edp_bpp;
845         }
846
847         for (; bpp >= 6*3; bpp -= 2*3) {
848                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
849                                                    bpp);
850
851                 for (clock = 0; clock <= max_clock; clock++) {
852                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
853                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
854                                 link_avail = intel_dp_max_data_rate(link_clock,
855                                                                     lane_count);
856
857                                 if (mode_rate <= link_avail) {
858                                         goto found;
859                                 }
860                         }
861                 }
862         }
863
864         return false;
865
866 found:
867         if (intel_dp->color_range_auto) {
868                 /*
869                  * See:
870                  * CEA-861-E - 5.1 Default Encoding Parameters
871                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
872                  */
873                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
874                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
875                 else
876                         intel_dp->color_range = 0;
877         }
878
879         if (intel_dp->color_range)
880                 pipe_config->limited_color_range = true;
881
882         intel_dp->link_bw = bws[clock];
883         intel_dp->lane_count = lane_count;
884         pipe_config->pipe_bpp = bpp;
885         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
886
887         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
888                       intel_dp->link_bw, intel_dp->lane_count,
889                       pipe_config->port_clock, bpp);
890         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
891                       mode_rate, link_avail);
892
893         intel_link_compute_m_n(bpp, lane_count,
894                                adjusted_mode->crtc_clock,
895                                pipe_config->port_clock,
896                                &pipe_config->dp_m_n);
897
898         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
899
900         return true;
901 }
902
903 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
904 {
905         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
906         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
907         struct drm_device *dev = crtc->base.dev;
908         struct drm_i915_private *dev_priv = dev->dev_private;
909         u32 dpa_ctl;
910
911         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
912         dpa_ctl = I915_READ(DP_A);
913         dpa_ctl &= ~DP_PLL_FREQ_MASK;
914
915         if (crtc->config.port_clock == 162000) {
916                 /* For a long time we've carried around a ILK-DevA w/a for the
917                  * 160MHz clock. If we're really unlucky, it's still required.
918                  */
919                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
920                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
921                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
922         } else {
923                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
924                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
925         }
926
927         I915_WRITE(DP_A, dpa_ctl);
928
929         POSTING_READ(DP_A);
930         udelay(500);
931 }
932
933 static void intel_dp_mode_set(struct intel_encoder *encoder)
934 {
935         struct drm_device *dev = encoder->base.dev;
936         struct drm_i915_private *dev_priv = dev->dev_private;
937         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
938         enum port port = dp_to_dig_port(intel_dp)->port;
939         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
940         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
941
942         /*
943          * There are four kinds of DP registers:
944          *
945          *      IBX PCH
946          *      SNB CPU
947          *      IVB CPU
948          *      CPT PCH
949          *
950          * IBX PCH and CPU are the same for almost everything,
951          * except that the CPU DP PLL is configured in this
952          * register
953          *
954          * CPT PCH is quite different, having many bits moved
955          * to the TRANS_DP_CTL register instead. That
956          * configuration happens (oddly) in ironlake_pch_enable
957          */
958
959         /* Preserve the BIOS-computed detected bit. This is
960          * supposed to be read-only.
961          */
962         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
963
964         /* Handle DP bits in common between all three register formats */
965         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
966         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
967
968         if (intel_dp->has_audio) {
969                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
970                                  pipe_name(crtc->pipe));
971                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
972                 intel_write_eld(&encoder->base, adjusted_mode);
973         }
974
975         /* Split out the IBX/CPU vs CPT settings */
976
977         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
978                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
979                         intel_dp->DP |= DP_SYNC_HS_HIGH;
980                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
981                         intel_dp->DP |= DP_SYNC_VS_HIGH;
982                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
983
984                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
985                         intel_dp->DP |= DP_ENHANCED_FRAMING;
986
987                 intel_dp->DP |= crtc->pipe << 29;
988         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
989                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
990                         intel_dp->DP |= intel_dp->color_range;
991
992                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
993                         intel_dp->DP |= DP_SYNC_HS_HIGH;
994                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
995                         intel_dp->DP |= DP_SYNC_VS_HIGH;
996                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
997
998                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
999                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1000
1001                 if (crtc->pipe == 1)
1002                         intel_dp->DP |= DP_PIPEB_SELECT;
1003         } else {
1004                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1005         }
1006
1007         if (port == PORT_A && !IS_VALLEYVIEW(dev))
1008                 ironlake_set_pll_cpu_edp(intel_dp);
1009 }
1010
1011 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1012 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1013
1014 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1015 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1016
1017 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1018 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1019
1020 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1021                                        u32 mask,
1022                                        u32 value)
1023 {
1024         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1025         struct drm_i915_private *dev_priv = dev->dev_private;
1026         u32 pp_stat_reg, pp_ctrl_reg;
1027
1028         pp_stat_reg = _pp_stat_reg(intel_dp);
1029         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1030
1031         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1032                         mask, value,
1033                         I915_READ(pp_stat_reg),
1034                         I915_READ(pp_ctrl_reg));
1035
1036         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1037                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1038                                 I915_READ(pp_stat_reg),
1039                                 I915_READ(pp_ctrl_reg));
1040         }
1041
1042         DRM_DEBUG_KMS("Wait complete\n");
1043 }
1044
1045 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1046 {
1047         DRM_DEBUG_KMS("Wait for panel power on\n");
1048         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1049 }
1050
1051 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1052 {
1053         DRM_DEBUG_KMS("Wait for panel power off time\n");
1054         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1055 }
1056
1057 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1058 {
1059         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1060         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1061 }
1062
1063
1064 /* Read the current pp_control value, unlocking the register if it
1065  * is locked
1066  */
1067
1068 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1069 {
1070         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1071         struct drm_i915_private *dev_priv = dev->dev_private;
1072         u32 control;
1073
1074         control = I915_READ(_pp_ctrl_reg(intel_dp));
1075         control &= ~PANEL_UNLOCK_MASK;
1076         control |= PANEL_UNLOCK_REGS;
1077         return control;
1078 }
1079
1080 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1081 {
1082         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1083         struct drm_i915_private *dev_priv = dev->dev_private;
1084         u32 pp;
1085         u32 pp_stat_reg, pp_ctrl_reg;
1086
1087         if (!is_edp(intel_dp))
1088                 return;
1089
1090         WARN(intel_dp->want_panel_vdd,
1091              "eDP VDD already requested on\n");
1092
1093         intel_dp->want_panel_vdd = true;
1094
1095         if (ironlake_edp_have_panel_vdd(intel_dp))
1096                 return;
1097
1098         intel_runtime_pm_get(dev_priv);
1099
1100         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1101
1102         if (!ironlake_edp_have_panel_power(intel_dp))
1103                 ironlake_wait_panel_power_cycle(intel_dp);
1104
1105         pp = ironlake_get_pp_control(intel_dp);
1106         pp |= EDP_FORCE_VDD;
1107
1108         pp_stat_reg = _pp_stat_reg(intel_dp);
1109         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1110
1111         I915_WRITE(pp_ctrl_reg, pp);
1112         POSTING_READ(pp_ctrl_reg);
1113         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1114                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1115         /*
1116          * If the panel wasn't on, delay before accessing aux channel
1117          */
1118         if (!ironlake_edp_have_panel_power(intel_dp)) {
1119                 DRM_DEBUG_KMS("eDP was not running\n");
1120                 msleep(intel_dp->panel_power_up_delay);
1121         }
1122 }
1123
1124 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1125 {
1126         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1127         struct drm_i915_private *dev_priv = dev->dev_private;
1128         u32 pp;
1129         u32 pp_stat_reg, pp_ctrl_reg;
1130
1131         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1132
1133         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1134                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1135
1136                 pp = ironlake_get_pp_control(intel_dp);
1137                 pp &= ~EDP_FORCE_VDD;
1138
1139                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1140                 pp_stat_reg = _pp_stat_reg(intel_dp);
1141
1142                 I915_WRITE(pp_ctrl_reg, pp);
1143                 POSTING_READ(pp_ctrl_reg);
1144
1145                 /* Make sure sequencer is idle before allowing subsequent activity */
1146                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1147                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1148
1149                 if ((pp & POWER_TARGET_ON) == 0)
1150                         msleep(intel_dp->panel_power_cycle_delay);
1151
1152                 intel_runtime_pm_put(dev_priv);
1153         }
1154 }
1155
1156 static void ironlake_panel_vdd_work(struct work_struct *__work)
1157 {
1158         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1159                                                  struct intel_dp, panel_vdd_work);
1160         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1161
1162         mutex_lock(&dev->mode_config.mutex);
1163         ironlake_panel_vdd_off_sync(intel_dp);
1164         mutex_unlock(&dev->mode_config.mutex);
1165 }
1166
1167 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1168 {
1169         if (!is_edp(intel_dp))
1170                 return;
1171
1172         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1173
1174         intel_dp->want_panel_vdd = false;
1175
1176         if (sync) {
1177                 ironlake_panel_vdd_off_sync(intel_dp);
1178         } else {
1179                 /*
1180                  * Queue the timer to fire a long
1181                  * time from now (relative to the power down delay)
1182                  * to keep the panel power up across a sequence of operations
1183                  */
1184                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1185                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1186         }
1187 }
1188
1189 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1190 {
1191         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1192         struct drm_i915_private *dev_priv = dev->dev_private;
1193         u32 pp;
1194         u32 pp_ctrl_reg;
1195
1196         if (!is_edp(intel_dp))
1197                 return;
1198
1199         DRM_DEBUG_KMS("Turn eDP power on\n");
1200
1201         if (ironlake_edp_have_panel_power(intel_dp)) {
1202                 DRM_DEBUG_KMS("eDP power already on\n");
1203                 return;
1204         }
1205
1206         ironlake_wait_panel_power_cycle(intel_dp);
1207
1208         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1209         pp = ironlake_get_pp_control(intel_dp);
1210         if (IS_GEN5(dev)) {
1211                 /* ILK workaround: disable reset around power sequence */
1212                 pp &= ~PANEL_POWER_RESET;
1213                 I915_WRITE(pp_ctrl_reg, pp);
1214                 POSTING_READ(pp_ctrl_reg);
1215         }
1216
1217         pp |= POWER_TARGET_ON;
1218         if (!IS_GEN5(dev))
1219                 pp |= PANEL_POWER_RESET;
1220
1221         I915_WRITE(pp_ctrl_reg, pp);
1222         POSTING_READ(pp_ctrl_reg);
1223
1224         ironlake_wait_panel_on(intel_dp);
1225
1226         if (IS_GEN5(dev)) {
1227                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1228                 I915_WRITE(pp_ctrl_reg, pp);
1229                 POSTING_READ(pp_ctrl_reg);
1230         }
1231 }
1232
1233 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1234 {
1235         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1236         struct drm_i915_private *dev_priv = dev->dev_private;
1237         u32 pp;
1238         u32 pp_ctrl_reg;
1239
1240         if (!is_edp(intel_dp))
1241                 return;
1242
1243         DRM_DEBUG_KMS("Turn eDP power off\n");
1244
1245         pp = ironlake_get_pp_control(intel_dp);
1246         /* We need to switch off panel power _and_ force vdd, for otherwise some
1247          * panels get very unhappy and cease to work. */
1248         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1249
1250         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1251
1252         I915_WRITE(pp_ctrl_reg, pp);
1253         POSTING_READ(pp_ctrl_reg);
1254
1255         ironlake_wait_panel_off(intel_dp);
1256 }
1257
1258 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1259 {
1260         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1261         struct drm_device *dev = intel_dig_port->base.base.dev;
1262         struct drm_i915_private *dev_priv = dev->dev_private;
1263         u32 pp;
1264         u32 pp_ctrl_reg;
1265
1266         if (!is_edp(intel_dp))
1267                 return;
1268
1269         DRM_DEBUG_KMS("\n");
1270         /*
1271          * If we enable the backlight right away following a panel power
1272          * on, we may see slight flicker as the panel syncs with the eDP
1273          * link.  So delay a bit to make sure the image is solid before
1274          * allowing it to appear.
1275          */
1276         msleep(intel_dp->backlight_on_delay);
1277         pp = ironlake_get_pp_control(intel_dp);
1278         pp |= EDP_BLC_ENABLE;
1279
1280         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1281
1282         I915_WRITE(pp_ctrl_reg, pp);
1283         POSTING_READ(pp_ctrl_reg);
1284
1285         intel_panel_enable_backlight(intel_dp->attached_connector);
1286 }
1287
1288 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1289 {
1290         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1291         struct drm_i915_private *dev_priv = dev->dev_private;
1292         u32 pp;
1293         u32 pp_ctrl_reg;
1294
1295         if (!is_edp(intel_dp))
1296                 return;
1297
1298         intel_panel_disable_backlight(intel_dp->attached_connector);
1299
1300         DRM_DEBUG_KMS("\n");
1301         pp = ironlake_get_pp_control(intel_dp);
1302         pp &= ~EDP_BLC_ENABLE;
1303
1304         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1305
1306         I915_WRITE(pp_ctrl_reg, pp);
1307         POSTING_READ(pp_ctrl_reg);
1308         msleep(intel_dp->backlight_off_delay);
1309 }
1310
1311 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1312 {
1313         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1314         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1315         struct drm_device *dev = crtc->dev;
1316         struct drm_i915_private *dev_priv = dev->dev_private;
1317         u32 dpa_ctl;
1318
1319         assert_pipe_disabled(dev_priv,
1320                              to_intel_crtc(crtc)->pipe);
1321
1322         DRM_DEBUG_KMS("\n");
1323         dpa_ctl = I915_READ(DP_A);
1324         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1325         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1326
1327         /* We don't adjust intel_dp->DP while tearing down the link, to
1328          * facilitate link retraining (e.g. after hotplug). Hence clear all
1329          * enable bits here to ensure that we don't enable too much. */
1330         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1331         intel_dp->DP |= DP_PLL_ENABLE;
1332         I915_WRITE(DP_A, intel_dp->DP);
1333         POSTING_READ(DP_A);
1334         udelay(200);
1335 }
1336
1337 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1338 {
1339         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1340         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1341         struct drm_device *dev = crtc->dev;
1342         struct drm_i915_private *dev_priv = dev->dev_private;
1343         u32 dpa_ctl;
1344
1345         assert_pipe_disabled(dev_priv,
1346                              to_intel_crtc(crtc)->pipe);
1347
1348         dpa_ctl = I915_READ(DP_A);
1349         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1350              "dp pll off, should be on\n");
1351         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1352
1353         /* We can't rely on the value tracked for the DP register in
1354          * intel_dp->DP because link_down must not change that (otherwise link
1355          * re-training will fail. */
1356         dpa_ctl &= ~DP_PLL_ENABLE;
1357         I915_WRITE(DP_A, dpa_ctl);
1358         POSTING_READ(DP_A);
1359         udelay(200);
1360 }
1361
1362 /* If the sink supports it, try to set the power state appropriately */
1363 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1364 {
1365         int ret, i;
1366
1367         /* Should have a valid DPCD by this point */
1368         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1369                 return;
1370
1371         if (mode != DRM_MODE_DPMS_ON) {
1372                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1373                                                   DP_SET_POWER_D3);
1374                 if (ret != 1)
1375                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1376         } else {
1377                 /*
1378                  * When turning on, we need to retry for 1ms to give the sink
1379                  * time to wake up.
1380                  */
1381                 for (i = 0; i < 3; i++) {
1382                         ret = intel_dp_aux_native_write_1(intel_dp,
1383                                                           DP_SET_POWER,
1384                                                           DP_SET_POWER_D0);
1385                         if (ret == 1)
1386                                 break;
1387                         msleep(1);
1388                 }
1389         }
1390 }
1391
1392 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1393                                   enum pipe *pipe)
1394 {
1395         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1396         enum port port = dp_to_dig_port(intel_dp)->port;
1397         struct drm_device *dev = encoder->base.dev;
1398         struct drm_i915_private *dev_priv = dev->dev_private;
1399         u32 tmp = I915_READ(intel_dp->output_reg);
1400
1401         if (!(tmp & DP_PORT_EN))
1402                 return false;
1403
1404         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1405                 *pipe = PORT_TO_PIPE_CPT(tmp);
1406         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1407                 *pipe = PORT_TO_PIPE(tmp);
1408         } else {
1409                 u32 trans_sel;
1410                 u32 trans_dp;
1411                 int i;
1412
1413                 switch (intel_dp->output_reg) {
1414                 case PCH_DP_B:
1415                         trans_sel = TRANS_DP_PORT_SEL_B;
1416                         break;
1417                 case PCH_DP_C:
1418                         trans_sel = TRANS_DP_PORT_SEL_C;
1419                         break;
1420                 case PCH_DP_D:
1421                         trans_sel = TRANS_DP_PORT_SEL_D;
1422                         break;
1423                 default:
1424                         return true;
1425                 }
1426
1427                 for_each_pipe(i) {
1428                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1429                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1430                                 *pipe = i;
1431                                 return true;
1432                         }
1433                 }
1434
1435                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1436                               intel_dp->output_reg);
1437         }
1438
1439         return true;
1440 }
1441
1442 static void intel_dp_get_config(struct intel_encoder *encoder,
1443                                 struct intel_crtc_config *pipe_config)
1444 {
1445         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1446         u32 tmp, flags = 0;
1447         struct drm_device *dev = encoder->base.dev;
1448         struct drm_i915_private *dev_priv = dev->dev_private;
1449         enum port port = dp_to_dig_port(intel_dp)->port;
1450         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1451         int dotclock;
1452
1453         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1454                 tmp = I915_READ(intel_dp->output_reg);
1455                 if (tmp & DP_SYNC_HS_HIGH)
1456                         flags |= DRM_MODE_FLAG_PHSYNC;
1457                 else
1458                         flags |= DRM_MODE_FLAG_NHSYNC;
1459
1460                 if (tmp & DP_SYNC_VS_HIGH)
1461                         flags |= DRM_MODE_FLAG_PVSYNC;
1462                 else
1463                         flags |= DRM_MODE_FLAG_NVSYNC;
1464         } else {
1465                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1466                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1467                         flags |= DRM_MODE_FLAG_PHSYNC;
1468                 else
1469                         flags |= DRM_MODE_FLAG_NHSYNC;
1470
1471                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1472                         flags |= DRM_MODE_FLAG_PVSYNC;
1473                 else
1474                         flags |= DRM_MODE_FLAG_NVSYNC;
1475         }
1476
1477         pipe_config->adjusted_mode.flags |= flags;
1478
1479         pipe_config->has_dp_encoder = true;
1480
1481         intel_dp_get_m_n(crtc, pipe_config);
1482
1483         if (port == PORT_A) {
1484                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1485                         pipe_config->port_clock = 162000;
1486                 else
1487                         pipe_config->port_clock = 270000;
1488         }
1489
1490         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1491                                             &pipe_config->dp_m_n);
1492
1493         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1494                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1495
1496         pipe_config->adjusted_mode.crtc_clock = dotclock;
1497
1498         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1499             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1500                 /*
1501                  * This is a big fat ugly hack.
1502                  *
1503                  * Some machines in UEFI boot mode provide us a VBT that has 18
1504                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1505                  * unknown we fail to light up. Yet the same BIOS boots up with
1506                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1507                  * max, not what it tells us to use.
1508                  *
1509                  * Note: This will still be broken if the eDP panel is not lit
1510                  * up by the BIOS, and thus we can't get the mode at module
1511                  * load.
1512                  */
1513                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1514                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1515                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1516         }
1517 }
1518
1519 static bool is_edp_psr(struct drm_device *dev)
1520 {
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522
1523         return dev_priv->psr.sink_support;
1524 }
1525
1526 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1527 {
1528         struct drm_i915_private *dev_priv = dev->dev_private;
1529
1530         if (!HAS_PSR(dev))
1531                 return false;
1532
1533         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1534 }
1535
1536 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1537                                     struct edp_vsc_psr *vsc_psr)
1538 {
1539         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1540         struct drm_device *dev = dig_port->base.base.dev;
1541         struct drm_i915_private *dev_priv = dev->dev_private;
1542         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1543         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1544         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1545         uint32_t *data = (uint32_t *) vsc_psr;
1546         unsigned int i;
1547
1548         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1549            the video DIP being updated before program video DIP data buffer
1550            registers for DIP being updated. */
1551         I915_WRITE(ctl_reg, 0);
1552         POSTING_READ(ctl_reg);
1553
1554         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1555                 if (i < sizeof(struct edp_vsc_psr))
1556                         I915_WRITE(data_reg + i, *data++);
1557                 else
1558                         I915_WRITE(data_reg + i, 0);
1559         }
1560
1561         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1562         POSTING_READ(ctl_reg);
1563 }
1564
1565 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1566 {
1567         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1568         struct drm_i915_private *dev_priv = dev->dev_private;
1569         struct edp_vsc_psr psr_vsc;
1570
1571         if (intel_dp->psr_setup_done)
1572                 return;
1573
1574         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1575         memset(&psr_vsc, 0, sizeof(psr_vsc));
1576         psr_vsc.sdp_header.HB0 = 0;
1577         psr_vsc.sdp_header.HB1 = 0x7;
1578         psr_vsc.sdp_header.HB2 = 0x2;
1579         psr_vsc.sdp_header.HB3 = 0x8;
1580         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1581
1582         /* Avoid continuous PSR exit by masking memup and hpd */
1583         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1584                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1585
1586         intel_dp->psr_setup_done = true;
1587 }
1588
1589 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1590 {
1591         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1592         struct drm_i915_private *dev_priv = dev->dev_private;
1593         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1594         int precharge = 0x3;
1595         int msg_size = 5;       /* Header(4) + Message(1) */
1596
1597         /* Enable PSR in sink */
1598         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1599                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1600                                             DP_PSR_ENABLE &
1601                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1602         else
1603                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1604                                             DP_PSR_ENABLE |
1605                                             DP_PSR_MAIN_LINK_ACTIVE);
1606
1607         /* Setup AUX registers */
1608         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1609         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1610         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1611                    DP_AUX_CH_CTL_TIME_OUT_400us |
1612                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1613                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1614                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1615 }
1616
1617 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1618 {
1619         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1620         struct drm_i915_private *dev_priv = dev->dev_private;
1621         uint32_t max_sleep_time = 0x1f;
1622         uint32_t idle_frames = 1;
1623         uint32_t val = 0x0;
1624         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1625
1626         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1627                 val |= EDP_PSR_LINK_STANDBY;
1628                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1629                 val |= EDP_PSR_TP1_TIME_0us;
1630                 val |= EDP_PSR_SKIP_AUX_EXIT;
1631         } else
1632                 val |= EDP_PSR_LINK_DISABLE;
1633
1634         I915_WRITE(EDP_PSR_CTL(dev), val |
1635                    IS_BROADWELL(dev) ? 0 : link_entry_time |
1636                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1637                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1638                    EDP_PSR_ENABLE);
1639 }
1640
1641 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1642 {
1643         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1644         struct drm_device *dev = dig_port->base.base.dev;
1645         struct drm_i915_private *dev_priv = dev->dev_private;
1646         struct drm_crtc *crtc = dig_port->base.base.crtc;
1647         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1648         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1649         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1650
1651         dev_priv->psr.source_ok = false;
1652
1653         if (!HAS_PSR(dev)) {
1654                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1655                 return false;
1656         }
1657
1658         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1659             (dig_port->port != PORT_A)) {
1660                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1661                 return false;
1662         }
1663
1664         if (!i915_enable_psr) {
1665                 DRM_DEBUG_KMS("PSR disable by flag\n");
1666                 return false;
1667         }
1668
1669         crtc = dig_port->base.base.crtc;
1670         if (crtc == NULL) {
1671                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1672                 return false;
1673         }
1674
1675         intel_crtc = to_intel_crtc(crtc);
1676         if (!intel_crtc_active(crtc)) {
1677                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1678                 return false;
1679         }
1680
1681         obj = to_intel_framebuffer(crtc->fb)->obj;
1682         if (obj->tiling_mode != I915_TILING_X ||
1683             obj->fence_reg == I915_FENCE_REG_NONE) {
1684                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1685                 return false;
1686         }
1687
1688         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1689                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1690                 return false;
1691         }
1692
1693         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1694             S3D_ENABLE) {
1695                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1696                 return false;
1697         }
1698
1699         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1700                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1701                 return false;
1702         }
1703
1704         dev_priv->psr.source_ok = true;
1705         return true;
1706 }
1707
1708 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1709 {
1710         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1711
1712         if (!intel_edp_psr_match_conditions(intel_dp) ||
1713             intel_edp_is_psr_enabled(dev))
1714                 return;
1715
1716         /* Setup PSR once */
1717         intel_edp_psr_setup(intel_dp);
1718
1719         /* Enable PSR on the panel */
1720         intel_edp_psr_enable_sink(intel_dp);
1721
1722         /* Enable PSR on the host */
1723         intel_edp_psr_enable_source(intel_dp);
1724 }
1725
1726 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1727 {
1728         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1729
1730         if (intel_edp_psr_match_conditions(intel_dp) &&
1731             !intel_edp_is_psr_enabled(dev))
1732                 intel_edp_psr_do_enable(intel_dp);
1733 }
1734
1735 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1736 {
1737         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1738         struct drm_i915_private *dev_priv = dev->dev_private;
1739
1740         if (!intel_edp_is_psr_enabled(dev))
1741                 return;
1742
1743         I915_WRITE(EDP_PSR_CTL(dev),
1744                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1745
1746         /* Wait till PSR is idle */
1747         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1748                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1749                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1750 }
1751
1752 void intel_edp_psr_update(struct drm_device *dev)
1753 {
1754         struct intel_encoder *encoder;
1755         struct intel_dp *intel_dp = NULL;
1756
1757         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1758                 if (encoder->type == INTEL_OUTPUT_EDP) {
1759                         intel_dp = enc_to_intel_dp(&encoder->base);
1760
1761                         if (!is_edp_psr(dev))
1762                                 return;
1763
1764                         if (!intel_edp_psr_match_conditions(intel_dp))
1765                                 intel_edp_psr_disable(intel_dp);
1766                         else
1767                                 if (!intel_edp_is_psr_enabled(dev))
1768                                         intel_edp_psr_do_enable(intel_dp);
1769                 }
1770 }
1771
1772 static void intel_disable_dp(struct intel_encoder *encoder)
1773 {
1774         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1775         enum port port = dp_to_dig_port(intel_dp)->port;
1776         struct drm_device *dev = encoder->base.dev;
1777
1778         /* Make sure the panel is off before trying to change the mode. But also
1779          * ensure that we have vdd while we switch off the panel. */
1780         ironlake_edp_backlight_off(intel_dp);
1781         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1782         ironlake_edp_panel_off(intel_dp);
1783
1784         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1785         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1786                 intel_dp_link_down(intel_dp);
1787 }
1788
1789 static void intel_post_disable_dp(struct intel_encoder *encoder)
1790 {
1791         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1792         enum port port = dp_to_dig_port(intel_dp)->port;
1793         struct drm_device *dev = encoder->base.dev;
1794
1795         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1796                 intel_dp_link_down(intel_dp);
1797                 if (!IS_VALLEYVIEW(dev))
1798                         ironlake_edp_pll_off(intel_dp);
1799         }
1800 }
1801
1802 static void intel_enable_dp(struct intel_encoder *encoder)
1803 {
1804         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1805         struct drm_device *dev = encoder->base.dev;
1806         struct drm_i915_private *dev_priv = dev->dev_private;
1807         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1808
1809         if (WARN_ON(dp_reg & DP_PORT_EN))
1810                 return;
1811
1812         ironlake_edp_panel_vdd_on(intel_dp);
1813         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1814         intel_dp_start_link_train(intel_dp);
1815         ironlake_edp_panel_on(intel_dp);
1816         ironlake_edp_panel_vdd_off(intel_dp, true);
1817         intel_dp_complete_link_train(intel_dp);
1818         intel_dp_stop_link_train(intel_dp);
1819 }
1820
1821 static void g4x_enable_dp(struct intel_encoder *encoder)
1822 {
1823         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1824
1825         intel_enable_dp(encoder);
1826         ironlake_edp_backlight_on(intel_dp);
1827 }
1828
1829 static void vlv_enable_dp(struct intel_encoder *encoder)
1830 {
1831         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1832
1833         ironlake_edp_backlight_on(intel_dp);
1834 }
1835
1836 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1837 {
1838         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1839         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1840
1841         if (dport->port == PORT_A)
1842                 ironlake_edp_pll_on(intel_dp);
1843 }
1844
1845 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1846 {
1847         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1848         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1849         struct drm_device *dev = encoder->base.dev;
1850         struct drm_i915_private *dev_priv = dev->dev_private;
1851         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1852         enum dpio_channel port = vlv_dport_to_channel(dport);
1853         int pipe = intel_crtc->pipe;
1854         struct edp_power_seq power_seq;
1855         u32 val;
1856
1857         mutex_lock(&dev_priv->dpio_lock);
1858
1859         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1860         val = 0;
1861         if (pipe)
1862                 val |= (1<<21);
1863         else
1864                 val &= ~(1<<21);
1865         val |= 0x001000c4;
1866         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1867         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1868         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1869
1870         mutex_unlock(&dev_priv->dpio_lock);
1871
1872         /* init power sequencer on this pipe and port */
1873         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1874         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1875                                                       &power_seq);
1876
1877         intel_enable_dp(encoder);
1878
1879         vlv_wait_port_ready(dev_priv, dport);
1880 }
1881
1882 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1883 {
1884         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1885         struct drm_device *dev = encoder->base.dev;
1886         struct drm_i915_private *dev_priv = dev->dev_private;
1887         struct intel_crtc *intel_crtc =
1888                 to_intel_crtc(encoder->base.crtc);
1889         enum dpio_channel port = vlv_dport_to_channel(dport);
1890         int pipe = intel_crtc->pipe;
1891
1892         /* Program Tx lane resets to default */
1893         mutex_lock(&dev_priv->dpio_lock);
1894         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1895                          DPIO_PCS_TX_LANE2_RESET |
1896                          DPIO_PCS_TX_LANE1_RESET);
1897         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1898                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1899                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1900                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1901                                  DPIO_PCS_CLK_SOFT_RESET);
1902
1903         /* Fix up inter-pair skew failure */
1904         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1905         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1906         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1907         mutex_unlock(&dev_priv->dpio_lock);
1908 }
1909
1910 /*
1911  * Native read with retry for link status and receiver capability reads for
1912  * cases where the sink may still be asleep.
1913  */
1914 static bool
1915 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1916                                uint8_t *recv, int recv_bytes)
1917 {
1918         int ret, i;
1919
1920         /*
1921          * Sinks are *supposed* to come up within 1ms from an off state,
1922          * but we're also supposed to retry 3 times per the spec.
1923          */
1924         for (i = 0; i < 3; i++) {
1925                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1926                                                recv_bytes);
1927                 if (ret == recv_bytes)
1928                         return true;
1929                 msleep(1);
1930         }
1931
1932         return false;
1933 }
1934
1935 /*
1936  * Fetch AUX CH registers 0x202 - 0x207 which contain
1937  * link status information
1938  */
1939 static bool
1940 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1941 {
1942         return intel_dp_aux_native_read_retry(intel_dp,
1943                                               DP_LANE0_1_STATUS,
1944                                               link_status,
1945                                               DP_LINK_STATUS_SIZE);
1946 }
1947
1948 /*
1949  * These are source-specific values; current Intel hardware supports
1950  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1951  */
1952
1953 static uint8_t
1954 intel_dp_voltage_max(struct intel_dp *intel_dp)
1955 {
1956         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1957         enum port port = dp_to_dig_port(intel_dp)->port;
1958
1959         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1960                 return DP_TRAIN_VOLTAGE_SWING_1200;
1961         else if (IS_GEN7(dev) && port == PORT_A)
1962                 return DP_TRAIN_VOLTAGE_SWING_800;
1963         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1964                 return DP_TRAIN_VOLTAGE_SWING_1200;
1965         else
1966                 return DP_TRAIN_VOLTAGE_SWING_800;
1967 }
1968
1969 static uint8_t
1970 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1971 {
1972         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1973         enum port port = dp_to_dig_port(intel_dp)->port;
1974
1975         if (IS_BROADWELL(dev)) {
1976                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1977                 case DP_TRAIN_VOLTAGE_SWING_400:
1978                 case DP_TRAIN_VOLTAGE_SWING_600:
1979                         return DP_TRAIN_PRE_EMPHASIS_6;
1980                 case DP_TRAIN_VOLTAGE_SWING_800:
1981                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1982                 case DP_TRAIN_VOLTAGE_SWING_1200:
1983                 default:
1984                         return DP_TRAIN_PRE_EMPHASIS_0;
1985                 }
1986         } else if (IS_HASWELL(dev)) {
1987                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1988                 case DP_TRAIN_VOLTAGE_SWING_400:
1989                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1990                 case DP_TRAIN_VOLTAGE_SWING_600:
1991                         return DP_TRAIN_PRE_EMPHASIS_6;
1992                 case DP_TRAIN_VOLTAGE_SWING_800:
1993                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1994                 case DP_TRAIN_VOLTAGE_SWING_1200:
1995                 default:
1996                         return DP_TRAIN_PRE_EMPHASIS_0;
1997                 }
1998         } else if (IS_VALLEYVIEW(dev)) {
1999                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2000                 case DP_TRAIN_VOLTAGE_SWING_400:
2001                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2002                 case DP_TRAIN_VOLTAGE_SWING_600:
2003                         return DP_TRAIN_PRE_EMPHASIS_6;
2004                 case DP_TRAIN_VOLTAGE_SWING_800:
2005                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2006                 case DP_TRAIN_VOLTAGE_SWING_1200:
2007                 default:
2008                         return DP_TRAIN_PRE_EMPHASIS_0;
2009                 }
2010         } else if (IS_GEN7(dev) && port == PORT_A) {
2011                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2012                 case DP_TRAIN_VOLTAGE_SWING_400:
2013                         return DP_TRAIN_PRE_EMPHASIS_6;
2014                 case DP_TRAIN_VOLTAGE_SWING_600:
2015                 case DP_TRAIN_VOLTAGE_SWING_800:
2016                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2017                 default:
2018                         return DP_TRAIN_PRE_EMPHASIS_0;
2019                 }
2020         } else {
2021                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2022                 case DP_TRAIN_VOLTAGE_SWING_400:
2023                         return DP_TRAIN_PRE_EMPHASIS_6;
2024                 case DP_TRAIN_VOLTAGE_SWING_600:
2025                         return DP_TRAIN_PRE_EMPHASIS_6;
2026                 case DP_TRAIN_VOLTAGE_SWING_800:
2027                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2028                 case DP_TRAIN_VOLTAGE_SWING_1200:
2029                 default:
2030                         return DP_TRAIN_PRE_EMPHASIS_0;
2031                 }
2032         }
2033 }
2034
2035 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2036 {
2037         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2038         struct drm_i915_private *dev_priv = dev->dev_private;
2039         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2040         struct intel_crtc *intel_crtc =
2041                 to_intel_crtc(dport->base.base.crtc);
2042         unsigned long demph_reg_value, preemph_reg_value,
2043                 uniqtranscale_reg_value;
2044         uint8_t train_set = intel_dp->train_set[0];
2045         enum dpio_channel port = vlv_dport_to_channel(dport);
2046         int pipe = intel_crtc->pipe;
2047
2048         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2049         case DP_TRAIN_PRE_EMPHASIS_0:
2050                 preemph_reg_value = 0x0004000;
2051                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2052                 case DP_TRAIN_VOLTAGE_SWING_400:
2053                         demph_reg_value = 0x2B405555;
2054                         uniqtranscale_reg_value = 0x552AB83A;
2055                         break;
2056                 case DP_TRAIN_VOLTAGE_SWING_600:
2057                         demph_reg_value = 0x2B404040;
2058                         uniqtranscale_reg_value = 0x5548B83A;
2059                         break;
2060                 case DP_TRAIN_VOLTAGE_SWING_800:
2061                         demph_reg_value = 0x2B245555;
2062                         uniqtranscale_reg_value = 0x5560B83A;
2063                         break;
2064                 case DP_TRAIN_VOLTAGE_SWING_1200:
2065                         demph_reg_value = 0x2B405555;
2066                         uniqtranscale_reg_value = 0x5598DA3A;
2067                         break;
2068                 default:
2069                         return 0;
2070                 }
2071                 break;
2072         case DP_TRAIN_PRE_EMPHASIS_3_5:
2073                 preemph_reg_value = 0x0002000;
2074                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2075                 case DP_TRAIN_VOLTAGE_SWING_400:
2076                         demph_reg_value = 0x2B404040;
2077                         uniqtranscale_reg_value = 0x5552B83A;
2078                         break;
2079                 case DP_TRAIN_VOLTAGE_SWING_600:
2080                         demph_reg_value = 0x2B404848;
2081                         uniqtranscale_reg_value = 0x5580B83A;
2082                         break;
2083                 case DP_TRAIN_VOLTAGE_SWING_800:
2084                         demph_reg_value = 0x2B404040;
2085                         uniqtranscale_reg_value = 0x55ADDA3A;
2086                         break;
2087                 default:
2088                         return 0;
2089                 }
2090                 break;
2091         case DP_TRAIN_PRE_EMPHASIS_6:
2092                 preemph_reg_value = 0x0000000;
2093                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2094                 case DP_TRAIN_VOLTAGE_SWING_400:
2095                         demph_reg_value = 0x2B305555;
2096                         uniqtranscale_reg_value = 0x5570B83A;
2097                         break;
2098                 case DP_TRAIN_VOLTAGE_SWING_600:
2099                         demph_reg_value = 0x2B2B4040;
2100                         uniqtranscale_reg_value = 0x55ADDA3A;
2101                         break;
2102                 default:
2103                         return 0;
2104                 }
2105                 break;
2106         case DP_TRAIN_PRE_EMPHASIS_9_5:
2107                 preemph_reg_value = 0x0006000;
2108                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2109                 case DP_TRAIN_VOLTAGE_SWING_400:
2110                         demph_reg_value = 0x1B405555;
2111                         uniqtranscale_reg_value = 0x55ADDA3A;
2112                         break;
2113                 default:
2114                         return 0;
2115                 }
2116                 break;
2117         default:
2118                 return 0;
2119         }
2120
2121         mutex_lock(&dev_priv->dpio_lock);
2122         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2123         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2124         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2125                          uniqtranscale_reg_value);
2126         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2127         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2128         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2129         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2130         mutex_unlock(&dev_priv->dpio_lock);
2131
2132         return 0;
2133 }
2134
2135 static void
2136 intel_get_adjust_train(struct intel_dp *intel_dp,
2137                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2138 {
2139         uint8_t v = 0;
2140         uint8_t p = 0;
2141         int lane;
2142         uint8_t voltage_max;
2143         uint8_t preemph_max;
2144
2145         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2146                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2147                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2148
2149                 if (this_v > v)
2150                         v = this_v;
2151                 if (this_p > p)
2152                         p = this_p;
2153         }
2154
2155         voltage_max = intel_dp_voltage_max(intel_dp);
2156         if (v >= voltage_max)
2157                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2158
2159         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2160         if (p >= preemph_max)
2161                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2162
2163         for (lane = 0; lane < 4; lane++)
2164                 intel_dp->train_set[lane] = v | p;
2165 }
2166
2167 static uint32_t
2168 intel_gen4_signal_levels(uint8_t train_set)
2169 {
2170         uint32_t        signal_levels = 0;
2171
2172         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2173         case DP_TRAIN_VOLTAGE_SWING_400:
2174         default:
2175                 signal_levels |= DP_VOLTAGE_0_4;
2176                 break;
2177         case DP_TRAIN_VOLTAGE_SWING_600:
2178                 signal_levels |= DP_VOLTAGE_0_6;
2179                 break;
2180         case DP_TRAIN_VOLTAGE_SWING_800:
2181                 signal_levels |= DP_VOLTAGE_0_8;
2182                 break;
2183         case DP_TRAIN_VOLTAGE_SWING_1200:
2184                 signal_levels |= DP_VOLTAGE_1_2;
2185                 break;
2186         }
2187         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2188         case DP_TRAIN_PRE_EMPHASIS_0:
2189         default:
2190                 signal_levels |= DP_PRE_EMPHASIS_0;
2191                 break;
2192         case DP_TRAIN_PRE_EMPHASIS_3_5:
2193                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2194                 break;
2195         case DP_TRAIN_PRE_EMPHASIS_6:
2196                 signal_levels |= DP_PRE_EMPHASIS_6;
2197                 break;
2198         case DP_TRAIN_PRE_EMPHASIS_9_5:
2199                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2200                 break;
2201         }
2202         return signal_levels;
2203 }
2204
2205 /* Gen6's DP voltage swing and pre-emphasis control */
2206 static uint32_t
2207 intel_gen6_edp_signal_levels(uint8_t train_set)
2208 {
2209         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2210                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2211         switch (signal_levels) {
2212         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2213         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2214                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2215         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2216                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2217         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2218         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2219                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2220         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2221         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2222                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2223         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2224         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2225                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2226         default:
2227                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2228                               "0x%x\n", signal_levels);
2229                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2230         }
2231 }
2232
2233 /* Gen7's DP voltage swing and pre-emphasis control */
2234 static uint32_t
2235 intel_gen7_edp_signal_levels(uint8_t train_set)
2236 {
2237         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2238                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2239         switch (signal_levels) {
2240         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2241                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2242         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2243                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2244         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2245                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2246
2247         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2248                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2249         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2250                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2251
2252         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2253                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2254         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2255                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2256
2257         default:
2258                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2259                               "0x%x\n", signal_levels);
2260                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2261         }
2262 }
2263
2264 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2265 static uint32_t
2266 intel_hsw_signal_levels(uint8_t train_set)
2267 {
2268         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2269                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2270         switch (signal_levels) {
2271         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2272                 return DDI_BUF_EMP_400MV_0DB_HSW;
2273         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2274                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2275         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2276                 return DDI_BUF_EMP_400MV_6DB_HSW;
2277         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2278                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2279
2280         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2281                 return DDI_BUF_EMP_600MV_0DB_HSW;
2282         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2283                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2284         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2285                 return DDI_BUF_EMP_600MV_6DB_HSW;
2286
2287         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2288                 return DDI_BUF_EMP_800MV_0DB_HSW;
2289         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2290                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2291         default:
2292                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2293                               "0x%x\n", signal_levels);
2294                 return DDI_BUF_EMP_400MV_0DB_HSW;
2295         }
2296 }
2297
2298 static uint32_t
2299 intel_bdw_signal_levels(uint8_t train_set)
2300 {
2301         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2302                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2303         switch (signal_levels) {
2304         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2305                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2306         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2307                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2308         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2309                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2310
2311         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2312                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2313         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2314                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2315         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2316                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2317
2318         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2319                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2320         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2321                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2322
2323         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2324                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2325
2326         default:
2327                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2328                               "0x%x\n", signal_levels);
2329                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2330         }
2331 }
2332
2333 /* Properly updates "DP" with the correct signal levels. */
2334 static void
2335 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2336 {
2337         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2338         enum port port = intel_dig_port->port;
2339         struct drm_device *dev = intel_dig_port->base.base.dev;
2340         uint32_t signal_levels, mask;
2341         uint8_t train_set = intel_dp->train_set[0];
2342
2343         if (IS_BROADWELL(dev)) {
2344                 signal_levels = intel_bdw_signal_levels(train_set);
2345                 mask = DDI_BUF_EMP_MASK;
2346         } else if (IS_HASWELL(dev)) {
2347                 signal_levels = intel_hsw_signal_levels(train_set);
2348                 mask = DDI_BUF_EMP_MASK;
2349         } else if (IS_VALLEYVIEW(dev)) {
2350                 signal_levels = intel_vlv_signal_levels(intel_dp);
2351                 mask = 0;
2352         } else if (IS_GEN7(dev) && port == PORT_A) {
2353                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2354                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2355         } else if (IS_GEN6(dev) && port == PORT_A) {
2356                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2357                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2358         } else {
2359                 signal_levels = intel_gen4_signal_levels(train_set);
2360                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2361         }
2362
2363         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2364
2365         *DP = (*DP & ~mask) | signal_levels;
2366 }
2367
2368 static bool
2369 intel_dp_set_link_train(struct intel_dp *intel_dp,
2370                         uint32_t *DP,
2371                         uint8_t dp_train_pat)
2372 {
2373         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2374         struct drm_device *dev = intel_dig_port->base.base.dev;
2375         struct drm_i915_private *dev_priv = dev->dev_private;
2376         enum port port = intel_dig_port->port;
2377         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2378         int ret, len;
2379
2380         if (HAS_DDI(dev)) {
2381                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2382
2383                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2384                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2385                 else
2386                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2387
2388                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2389                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2390                 case DP_TRAINING_PATTERN_DISABLE:
2391                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2392
2393                         break;
2394                 case DP_TRAINING_PATTERN_1:
2395                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2396                         break;
2397                 case DP_TRAINING_PATTERN_2:
2398                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2399                         break;
2400                 case DP_TRAINING_PATTERN_3:
2401                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2402                         break;
2403                 }
2404                 I915_WRITE(DP_TP_CTL(port), temp);
2405
2406         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2407                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2408
2409                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2410                 case DP_TRAINING_PATTERN_DISABLE:
2411                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2412                         break;
2413                 case DP_TRAINING_PATTERN_1:
2414                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2415                         break;
2416                 case DP_TRAINING_PATTERN_2:
2417                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2418                         break;
2419                 case DP_TRAINING_PATTERN_3:
2420                         DRM_ERROR("DP training pattern 3 not supported\n");
2421                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2422                         break;
2423                 }
2424
2425         } else {
2426                 *DP &= ~DP_LINK_TRAIN_MASK;
2427
2428                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2429                 case DP_TRAINING_PATTERN_DISABLE:
2430                         *DP |= DP_LINK_TRAIN_OFF;
2431                         break;
2432                 case DP_TRAINING_PATTERN_1:
2433                         *DP |= DP_LINK_TRAIN_PAT_1;
2434                         break;
2435                 case DP_TRAINING_PATTERN_2:
2436                         *DP |= DP_LINK_TRAIN_PAT_2;
2437                         break;
2438                 case DP_TRAINING_PATTERN_3:
2439                         DRM_ERROR("DP training pattern 3 not supported\n");
2440                         *DP |= DP_LINK_TRAIN_PAT_2;
2441                         break;
2442                 }
2443         }
2444
2445         I915_WRITE(intel_dp->output_reg, *DP);
2446         POSTING_READ(intel_dp->output_reg);
2447
2448         buf[0] = dp_train_pat;
2449         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2450             DP_TRAINING_PATTERN_DISABLE) {
2451                 /* don't write DP_TRAINING_LANEx_SET on disable */
2452                 len = 1;
2453         } else {
2454                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2455                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2456                 len = intel_dp->lane_count + 1;
2457         }
2458
2459         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2460                                         buf, len);
2461
2462         return ret == len;
2463 }
2464
2465 static bool
2466 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2467                         uint8_t dp_train_pat)
2468 {
2469         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2470         intel_dp_set_signal_levels(intel_dp, DP);
2471         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2472 }
2473
2474 static bool
2475 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2476                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2477 {
2478         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2479         struct drm_device *dev = intel_dig_port->base.base.dev;
2480         struct drm_i915_private *dev_priv = dev->dev_private;
2481         int ret;
2482
2483         intel_get_adjust_train(intel_dp, link_status);
2484         intel_dp_set_signal_levels(intel_dp, DP);
2485
2486         I915_WRITE(intel_dp->output_reg, *DP);
2487         POSTING_READ(intel_dp->output_reg);
2488
2489         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2490                                         intel_dp->train_set,
2491                                         intel_dp->lane_count);
2492
2493         return ret == intel_dp->lane_count;
2494 }
2495
2496 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2497 {
2498         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2499         struct drm_device *dev = intel_dig_port->base.base.dev;
2500         struct drm_i915_private *dev_priv = dev->dev_private;
2501         enum port port = intel_dig_port->port;
2502         uint32_t val;
2503
2504         if (!HAS_DDI(dev))
2505                 return;
2506
2507         val = I915_READ(DP_TP_CTL(port));
2508         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2509         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2510         I915_WRITE(DP_TP_CTL(port), val);
2511
2512         /*
2513          * On PORT_A we can have only eDP in SST mode. There the only reason
2514          * we need to set idle transmission mode is to work around a HW issue
2515          * where we enable the pipe while not in idle link-training mode.
2516          * In this case there is requirement to wait for a minimum number of
2517          * idle patterns to be sent.
2518          */
2519         if (port == PORT_A)
2520                 return;
2521
2522         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2523                      1))
2524                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2525 }
2526
2527 /* Enable corresponding port and start training pattern 1 */
2528 void
2529 intel_dp_start_link_train(struct intel_dp *intel_dp)
2530 {
2531         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2532         struct drm_device *dev = encoder->dev;
2533         int i;
2534         uint8_t voltage;
2535         int voltage_tries, loop_tries;
2536         uint32_t DP = intel_dp->DP;
2537         uint8_t link_config[2];
2538
2539         if (HAS_DDI(dev))
2540                 intel_ddi_prepare_link_retrain(encoder);
2541
2542         /* Write the link configuration data */
2543         link_config[0] = intel_dp->link_bw;
2544         link_config[1] = intel_dp->lane_count;
2545         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2546                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2547         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2548
2549         link_config[0] = 0;
2550         link_config[1] = DP_SET_ANSI_8B10B;
2551         intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2552
2553         DP |= DP_PORT_EN;
2554
2555         /* clock recovery */
2556         if (!intel_dp_reset_link_train(intel_dp, &DP,
2557                                        DP_TRAINING_PATTERN_1 |
2558                                        DP_LINK_SCRAMBLING_DISABLE)) {
2559                 DRM_ERROR("failed to enable link training\n");
2560                 return;
2561         }
2562
2563         voltage = 0xff;
2564         voltage_tries = 0;
2565         loop_tries = 0;
2566         for (;;) {
2567                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2568
2569                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2570                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2571                         DRM_ERROR("failed to get link status\n");
2572                         break;
2573                 }
2574
2575                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2576                         DRM_DEBUG_KMS("clock recovery OK\n");
2577                         break;
2578                 }
2579
2580                 /* Check to see if we've tried the max voltage */
2581                 for (i = 0; i < intel_dp->lane_count; i++)
2582                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2583                                 break;
2584                 if (i == intel_dp->lane_count) {
2585                         ++loop_tries;
2586                         if (loop_tries == 5) {
2587                                 DRM_ERROR("too many full retries, give up\n");
2588                                 break;
2589                         }
2590                         intel_dp_reset_link_train(intel_dp, &DP,
2591                                                   DP_TRAINING_PATTERN_1 |
2592                                                   DP_LINK_SCRAMBLING_DISABLE);
2593                         voltage_tries = 0;
2594                         continue;
2595                 }
2596
2597                 /* Check to see if we've tried the same voltage 5 times */
2598                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2599                         ++voltage_tries;
2600                         if (voltage_tries == 5) {
2601                                 DRM_ERROR("too many voltage retries, give up\n");
2602                                 break;
2603                         }
2604                 } else
2605                         voltage_tries = 0;
2606                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2607
2608                 /* Update training set as requested by target */
2609                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2610                         DRM_ERROR("failed to update link training\n");
2611                         break;
2612                 }
2613         }
2614
2615         intel_dp->DP = DP;
2616 }
2617
2618 void
2619 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2620 {
2621         bool channel_eq = false;
2622         int tries, cr_tries;
2623         uint32_t DP = intel_dp->DP;
2624
2625         /* channel equalization */
2626         if (!intel_dp_set_link_train(intel_dp, &DP,
2627                                      DP_TRAINING_PATTERN_2 |
2628                                      DP_LINK_SCRAMBLING_DISABLE)) {
2629                 DRM_ERROR("failed to start channel equalization\n");
2630                 return;
2631         }
2632
2633         tries = 0;
2634         cr_tries = 0;
2635         channel_eq = false;
2636         for (;;) {
2637                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2638
2639                 if (cr_tries > 5) {
2640                         DRM_ERROR("failed to train DP, aborting\n");
2641                         break;
2642                 }
2643
2644                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2645                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2646                         DRM_ERROR("failed to get link status\n");
2647                         break;
2648                 }
2649
2650                 /* Make sure clock is still ok */
2651                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2652                         intel_dp_start_link_train(intel_dp);
2653                         intel_dp_set_link_train(intel_dp, &DP,
2654                                                 DP_TRAINING_PATTERN_2 |
2655                                                 DP_LINK_SCRAMBLING_DISABLE);
2656                         cr_tries++;
2657                         continue;
2658                 }
2659
2660                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2661                         channel_eq = true;
2662                         break;
2663                 }
2664
2665                 /* Try 5 times, then try clock recovery if that fails */
2666                 if (tries > 5) {
2667                         intel_dp_link_down(intel_dp);
2668                         intel_dp_start_link_train(intel_dp);
2669                         intel_dp_set_link_train(intel_dp, &DP,
2670                                                 DP_TRAINING_PATTERN_2 |
2671                                                 DP_LINK_SCRAMBLING_DISABLE);
2672                         tries = 0;
2673                         cr_tries++;
2674                         continue;
2675                 }
2676
2677                 /* Update training set as requested by target */
2678                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2679                         DRM_ERROR("failed to update link training\n");
2680                         break;
2681                 }
2682                 ++tries;
2683         }
2684
2685         intel_dp_set_idle_link_train(intel_dp);
2686
2687         intel_dp->DP = DP;
2688
2689         if (channel_eq)
2690                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2691
2692 }
2693
2694 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2695 {
2696         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2697                                 DP_TRAINING_PATTERN_DISABLE);
2698 }
2699
2700 static void
2701 intel_dp_link_down(struct intel_dp *intel_dp)
2702 {
2703         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2704         enum port port = intel_dig_port->port;
2705         struct drm_device *dev = intel_dig_port->base.base.dev;
2706         struct drm_i915_private *dev_priv = dev->dev_private;
2707         struct intel_crtc *intel_crtc =
2708                 to_intel_crtc(intel_dig_port->base.base.crtc);
2709         uint32_t DP = intel_dp->DP;
2710
2711         /*
2712          * DDI code has a strict mode set sequence and we should try to respect
2713          * it, otherwise we might hang the machine in many different ways. So we
2714          * really should be disabling the port only on a complete crtc_disable
2715          * sequence. This function is just called under two conditions on DDI
2716          * code:
2717          * - Link train failed while doing crtc_enable, and on this case we
2718          *   really should respect the mode set sequence and wait for a
2719          *   crtc_disable.
2720          * - Someone turned the monitor off and intel_dp_check_link_status
2721          *   called us. We don't need to disable the whole port on this case, so
2722          *   when someone turns the monitor on again,
2723          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2724          *   train.
2725          */
2726         if (HAS_DDI(dev))
2727                 return;
2728
2729         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2730                 return;
2731
2732         DRM_DEBUG_KMS("\n");
2733
2734         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2735                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2736                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2737         } else {
2738                 DP &= ~DP_LINK_TRAIN_MASK;
2739                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2740         }
2741         POSTING_READ(intel_dp->output_reg);
2742
2743         /* We don't really know why we're doing this */
2744         intel_wait_for_vblank(dev, intel_crtc->pipe);
2745
2746         if (HAS_PCH_IBX(dev) &&
2747             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2748                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2749
2750                 /* Hardware workaround: leaving our transcoder select
2751                  * set to transcoder B while it's off will prevent the
2752                  * corresponding HDMI output on transcoder A.
2753                  *
2754                  * Combine this with another hardware workaround:
2755                  * transcoder select bit can only be cleared while the
2756                  * port is enabled.
2757                  */
2758                 DP &= ~DP_PIPEB_SELECT;
2759                 I915_WRITE(intel_dp->output_reg, DP);
2760
2761                 /* Changes to enable or select take place the vblank
2762                  * after being written.
2763                  */
2764                 if (WARN_ON(crtc == NULL)) {
2765                         /* We should never try to disable a port without a crtc
2766                          * attached. For paranoia keep the code around for a
2767                          * bit. */
2768                         POSTING_READ(intel_dp->output_reg);
2769                         msleep(50);
2770                 } else
2771                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2772         }
2773
2774         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2775         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2776         POSTING_READ(intel_dp->output_reg);
2777         msleep(intel_dp->panel_power_down_delay);
2778 }
2779
2780 static bool
2781 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2782 {
2783         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2784         struct drm_device *dev = dig_port->base.base.dev;
2785         struct drm_i915_private *dev_priv = dev->dev_private;
2786
2787         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2788
2789         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2790                                            sizeof(intel_dp->dpcd)) == 0)
2791                 return false; /* aux transfer failed */
2792
2793         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2794                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2795         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2796
2797         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2798                 return false; /* DPCD not present */
2799
2800         /* Check if the panel supports PSR */
2801         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2802         if (is_edp(intel_dp)) {
2803                 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2804                                                intel_dp->psr_dpcd,
2805                                                sizeof(intel_dp->psr_dpcd));
2806                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2807                         dev_priv->psr.sink_support = true;
2808                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2809                 }
2810         }
2811
2812         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2813               DP_DWN_STRM_PORT_PRESENT))
2814                 return true; /* native DP sink */
2815
2816         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2817                 return true; /* no per-port downstream info */
2818
2819         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2820                                            intel_dp->downstream_ports,
2821                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2822                 return false; /* downstream port status fetch failed */
2823
2824         return true;
2825 }
2826
2827 static void
2828 intel_dp_probe_oui(struct intel_dp *intel_dp)
2829 {
2830         u8 buf[3];
2831
2832         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2833                 return;
2834
2835         ironlake_edp_panel_vdd_on(intel_dp);
2836
2837         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2838                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2839                               buf[0], buf[1], buf[2]);
2840
2841         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2842                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2843                               buf[0], buf[1], buf[2]);
2844
2845         ironlake_edp_panel_vdd_off(intel_dp, false);
2846 }
2847
2848 static bool
2849 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2850 {
2851         int ret;
2852
2853         ret = intel_dp_aux_native_read_retry(intel_dp,
2854                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2855                                              sink_irq_vector, 1);
2856         if (!ret)
2857                 return false;
2858
2859         return true;
2860 }
2861
2862 static void
2863 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2864 {
2865         /* NAK by default */
2866         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2867 }
2868
2869 /*
2870  * According to DP spec
2871  * 5.1.2:
2872  *  1. Read DPCD
2873  *  2. Configure link according to Receiver Capabilities
2874  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2875  *  4. Check link status on receipt of hot-plug interrupt
2876  */
2877
2878 void
2879 intel_dp_check_link_status(struct intel_dp *intel_dp)
2880 {
2881         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2882         u8 sink_irq_vector;
2883         u8 link_status[DP_LINK_STATUS_SIZE];
2884
2885         if (!intel_encoder->connectors_active)
2886                 return;
2887
2888         if (WARN_ON(!intel_encoder->base.crtc))
2889                 return;
2890
2891         /* Try to read receiver status if the link appears to be up */
2892         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2893                 return;
2894         }
2895
2896         /* Now read the DPCD to see if it's actually running */
2897         if (!intel_dp_get_dpcd(intel_dp)) {
2898                 return;
2899         }
2900
2901         /* Try to read the source of the interrupt */
2902         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2903             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2904                 /* Clear interrupt source */
2905                 intel_dp_aux_native_write_1(intel_dp,
2906                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2907                                             sink_irq_vector);
2908
2909                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2910                         intel_dp_handle_test_request(intel_dp);
2911                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2912                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2913         }
2914
2915         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2916                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2917                               drm_get_encoder_name(&intel_encoder->base));
2918                 intel_dp_start_link_train(intel_dp);
2919                 intel_dp_complete_link_train(intel_dp);
2920                 intel_dp_stop_link_train(intel_dp);
2921         }
2922 }
2923
2924 /* XXX this is probably wrong for multiple downstream ports */
2925 static enum drm_connector_status
2926 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2927 {
2928         uint8_t *dpcd = intel_dp->dpcd;
2929         uint8_t type;
2930
2931         if (!intel_dp_get_dpcd(intel_dp))
2932                 return connector_status_disconnected;
2933
2934         /* if there's no downstream port, we're done */
2935         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2936                 return connector_status_connected;
2937
2938         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2939         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2940             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2941                 uint8_t reg;
2942                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2943                                                     &reg, 1))
2944                         return connector_status_unknown;
2945                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2946                                               : connector_status_disconnected;
2947         }
2948
2949         /* If no HPD, poke DDC gently */
2950         if (drm_probe_ddc(&intel_dp->adapter))
2951                 return connector_status_connected;
2952
2953         /* Well we tried, say unknown for unreliable port types */
2954         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2955                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2956                 if (type == DP_DS_PORT_TYPE_VGA ||
2957                     type == DP_DS_PORT_TYPE_NON_EDID)
2958                         return connector_status_unknown;
2959         } else {
2960                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2961                         DP_DWN_STRM_PORT_TYPE_MASK;
2962                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2963                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
2964                         return connector_status_unknown;
2965         }
2966
2967         /* Anything else is out of spec, warn and ignore */
2968         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2969         return connector_status_disconnected;
2970 }
2971
2972 static enum drm_connector_status
2973 ironlake_dp_detect(struct intel_dp *intel_dp)
2974 {
2975         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2976         struct drm_i915_private *dev_priv = dev->dev_private;
2977         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2978         enum drm_connector_status status;
2979
2980         /* Can't disconnect eDP, but you can close the lid... */
2981         if (is_edp(intel_dp)) {
2982                 status = intel_panel_detect(dev);
2983                 if (status == connector_status_unknown)
2984                         status = connector_status_connected;
2985                 return status;
2986         }
2987
2988         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2989                 return connector_status_disconnected;
2990
2991         return intel_dp_detect_dpcd(intel_dp);
2992 }
2993
2994 static enum drm_connector_status
2995 g4x_dp_detect(struct intel_dp *intel_dp)
2996 {
2997         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2998         struct drm_i915_private *dev_priv = dev->dev_private;
2999         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3000         uint32_t bit;
3001
3002         /* Can't disconnect eDP, but you can close the lid... */
3003         if (is_edp(intel_dp)) {
3004                 enum drm_connector_status status;
3005
3006                 status = intel_panel_detect(dev);
3007                 if (status == connector_status_unknown)
3008                         status = connector_status_connected;
3009                 return status;
3010         }
3011
3012         if (IS_VALLEYVIEW(dev)) {
3013                 switch (intel_dig_port->port) {
3014                 case PORT_B:
3015                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3016                         break;
3017                 case PORT_C:
3018                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3019                         break;
3020                 case PORT_D:
3021                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3022                         break;
3023                 default:
3024                         return connector_status_unknown;
3025                 }
3026         } else {
3027                 switch (intel_dig_port->port) {
3028                 case PORT_B:
3029                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3030                         break;
3031                 case PORT_C:
3032                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3033                         break;
3034                 case PORT_D:
3035                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3036                         break;
3037                 default:
3038                         return connector_status_unknown;
3039                 }
3040         }
3041
3042         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3043                 return connector_status_disconnected;
3044
3045         return intel_dp_detect_dpcd(intel_dp);
3046 }
3047
3048 static struct edid *
3049 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3050 {
3051         struct intel_connector *intel_connector = to_intel_connector(connector);
3052
3053         /* use cached edid if we have one */
3054         if (intel_connector->edid) {
3055                 /* invalid edid */
3056                 if (IS_ERR(intel_connector->edid))
3057                         return NULL;
3058
3059                 return drm_edid_duplicate(intel_connector->edid);
3060         }
3061
3062         return drm_get_edid(connector, adapter);
3063 }
3064
3065 static int
3066 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3067 {
3068         struct intel_connector *intel_connector = to_intel_connector(connector);
3069
3070         /* use cached edid if we have one */
3071         if (intel_connector->edid) {
3072                 /* invalid edid */
3073                 if (IS_ERR(intel_connector->edid))
3074                         return 0;
3075
3076                 return intel_connector_update_modes(connector,
3077                                                     intel_connector->edid);
3078         }
3079
3080         return intel_ddc_get_modes(connector, adapter);
3081 }
3082
3083 static enum drm_connector_status
3084 intel_dp_detect(struct drm_connector *connector, bool force)
3085 {
3086         struct intel_dp *intel_dp = intel_attached_dp(connector);
3087         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3088         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3089         struct drm_device *dev = connector->dev;
3090         struct drm_i915_private *dev_priv = dev->dev_private;
3091         enum drm_connector_status status;
3092         struct edid *edid = NULL;
3093
3094         intel_runtime_pm_get(dev_priv);
3095
3096         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3097                       connector->base.id, drm_get_connector_name(connector));
3098
3099         intel_dp->has_audio = false;
3100
3101         if (HAS_PCH_SPLIT(dev))
3102                 status = ironlake_dp_detect(intel_dp);
3103         else
3104                 status = g4x_dp_detect(intel_dp);
3105
3106         if (status != connector_status_connected)
3107                 goto out;
3108
3109         intel_dp_probe_oui(intel_dp);
3110
3111         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3112                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3113         } else {
3114                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3115                 if (edid) {
3116                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3117                         kfree(edid);
3118                 }
3119         }
3120
3121         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3122                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3123         status = connector_status_connected;
3124
3125 out:
3126         intel_runtime_pm_put(dev_priv);
3127         return status;
3128 }
3129
3130 static int intel_dp_get_modes(struct drm_connector *connector)
3131 {
3132         struct intel_dp *intel_dp = intel_attached_dp(connector);
3133         struct intel_connector *intel_connector = to_intel_connector(connector);
3134         struct drm_device *dev = connector->dev;
3135         int ret;
3136
3137         /* We should parse the EDID data and find out if it has an audio sink
3138          */
3139
3140         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3141         if (ret)
3142                 return ret;
3143
3144         /* if eDP has no EDID, fall back to fixed mode */
3145         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3146                 struct drm_display_mode *mode;
3147                 mode = drm_mode_duplicate(dev,
3148                                           intel_connector->panel.fixed_mode);
3149                 if (mode) {
3150                         drm_mode_probed_add(connector, mode);
3151                         return 1;
3152                 }
3153         }
3154         return 0;
3155 }
3156
3157 static bool
3158 intel_dp_detect_audio(struct drm_connector *connector)
3159 {
3160         struct intel_dp *intel_dp = intel_attached_dp(connector);
3161         struct edid *edid;
3162         bool has_audio = false;
3163
3164         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3165         if (edid) {
3166                 has_audio = drm_detect_monitor_audio(edid);
3167                 kfree(edid);
3168         }
3169
3170         return has_audio;
3171 }
3172
3173 static int
3174 intel_dp_set_property(struct drm_connector *connector,
3175                       struct drm_property *property,
3176                       uint64_t val)
3177 {
3178         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3179         struct intel_connector *intel_connector = to_intel_connector(connector);
3180         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3181         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3182         int ret;
3183
3184         ret = drm_object_property_set_value(&connector->base, property, val);
3185         if (ret)
3186                 return ret;
3187
3188         if (property == dev_priv->force_audio_property) {
3189                 int i = val;
3190                 bool has_audio;
3191
3192                 if (i == intel_dp->force_audio)
3193                         return 0;
3194
3195                 intel_dp->force_audio = i;
3196
3197                 if (i == HDMI_AUDIO_AUTO)
3198                         has_audio = intel_dp_detect_audio(connector);
3199                 else
3200                         has_audio = (i == HDMI_AUDIO_ON);
3201
3202                 if (has_audio == intel_dp->has_audio)
3203                         return 0;
3204
3205                 intel_dp->has_audio = has_audio;
3206                 goto done;
3207         }
3208
3209         if (property == dev_priv->broadcast_rgb_property) {
3210                 bool old_auto = intel_dp->color_range_auto;
3211                 uint32_t old_range = intel_dp->color_range;
3212
3213                 switch (val) {
3214                 case INTEL_BROADCAST_RGB_AUTO:
3215                         intel_dp->color_range_auto = true;
3216                         break;
3217                 case INTEL_BROADCAST_RGB_FULL:
3218                         intel_dp->color_range_auto = false;
3219                         intel_dp->color_range = 0;
3220                         break;
3221                 case INTEL_BROADCAST_RGB_LIMITED:
3222                         intel_dp->color_range_auto = false;
3223                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3224                         break;
3225                 default:
3226                         return -EINVAL;
3227                 }
3228
3229                 if (old_auto == intel_dp->color_range_auto &&
3230                     old_range == intel_dp->color_range)
3231                         return 0;
3232
3233                 goto done;
3234         }
3235
3236         if (is_edp(intel_dp) &&
3237             property == connector->dev->mode_config.scaling_mode_property) {
3238                 if (val == DRM_MODE_SCALE_NONE) {
3239                         DRM_DEBUG_KMS("no scaling not supported\n");
3240                         return -EINVAL;
3241                 }
3242
3243                 if (intel_connector->panel.fitting_mode == val) {
3244                         /* the eDP scaling property is not changed */
3245                         return 0;
3246                 }
3247                 intel_connector->panel.fitting_mode = val;
3248
3249                 goto done;
3250         }
3251
3252         return -EINVAL;
3253
3254 done:
3255         if (intel_encoder->base.crtc)
3256                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3257
3258         return 0;
3259 }
3260
3261 static void
3262 intel_dp_connector_destroy(struct drm_connector *connector)
3263 {
3264         struct intel_connector *intel_connector = to_intel_connector(connector);
3265
3266         if (!IS_ERR_OR_NULL(intel_connector->edid))
3267                 kfree(intel_connector->edid);
3268
3269         /* Can't call is_edp() since the encoder may have been destroyed
3270          * already. */
3271         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3272                 intel_panel_fini(&intel_connector->panel);
3273
3274         drm_connector_cleanup(connector);
3275         kfree(connector);
3276 }
3277
3278 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3279 {
3280         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3281         struct intel_dp *intel_dp = &intel_dig_port->dp;
3282         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3283
3284         i2c_del_adapter(&intel_dp->adapter);
3285         drm_encoder_cleanup(encoder);
3286         if (is_edp(intel_dp)) {
3287                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3288                 mutex_lock(&dev->mode_config.mutex);
3289                 ironlake_panel_vdd_off_sync(intel_dp);
3290                 mutex_unlock(&dev->mode_config.mutex);
3291         }
3292         kfree(intel_dig_port);
3293 }
3294
3295 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3296         .dpms = intel_connector_dpms,
3297         .detect = intel_dp_detect,
3298         .fill_modes = drm_helper_probe_single_connector_modes,
3299         .set_property = intel_dp_set_property,
3300         .destroy = intel_dp_connector_destroy,
3301 };
3302
3303 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3304         .get_modes = intel_dp_get_modes,
3305         .mode_valid = intel_dp_mode_valid,
3306         .best_encoder = intel_best_encoder,
3307 };
3308
3309 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3310         .destroy = intel_dp_encoder_destroy,
3311 };
3312
3313 static void
3314 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3315 {
3316         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3317
3318         intel_dp_check_link_status(intel_dp);
3319 }
3320
3321 /* Return which DP Port should be selected for Transcoder DP control */
3322 int
3323 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3324 {
3325         struct drm_device *dev = crtc->dev;
3326         struct intel_encoder *intel_encoder;
3327         struct intel_dp *intel_dp;
3328
3329         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3330                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3331
3332                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3333                     intel_encoder->type == INTEL_OUTPUT_EDP)
3334                         return intel_dp->output_reg;
3335         }
3336
3337         return -1;
3338 }
3339
3340 /* check the VBT to see whether the eDP is on DP-D port */
3341 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3342 {
3343         struct drm_i915_private *dev_priv = dev->dev_private;
3344         union child_device_config *p_child;
3345         int i;
3346         static const short port_mapping[] = {
3347                 [PORT_B] = PORT_IDPB,
3348                 [PORT_C] = PORT_IDPC,
3349                 [PORT_D] = PORT_IDPD,
3350         };
3351
3352         if (port == PORT_A)
3353                 return true;
3354
3355         if (!dev_priv->vbt.child_dev_num)
3356                 return false;
3357
3358         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3359                 p_child = dev_priv->vbt.child_dev + i;
3360
3361                 if (p_child->common.dvo_port == port_mapping[port] &&
3362                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3363                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3364                         return true;
3365         }
3366         return false;
3367 }
3368
3369 static void
3370 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3371 {
3372         struct intel_connector *intel_connector = to_intel_connector(connector);
3373
3374         intel_attach_force_audio_property(connector);
3375         intel_attach_broadcast_rgb_property(connector);
3376         intel_dp->color_range_auto = true;
3377
3378         if (is_edp(intel_dp)) {
3379                 drm_mode_create_scaling_mode_property(connector->dev);
3380                 drm_object_attach_property(
3381                         &connector->base,
3382                         connector->dev->mode_config.scaling_mode_property,
3383                         DRM_MODE_SCALE_ASPECT);
3384                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3385         }
3386 }
3387
3388 static void
3389 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3390                                     struct intel_dp *intel_dp,
3391                                     struct edp_power_seq *out)
3392 {
3393         struct drm_i915_private *dev_priv = dev->dev_private;
3394         struct edp_power_seq cur, vbt, spec, final;
3395         u32 pp_on, pp_off, pp_div, pp;
3396         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3397
3398         if (HAS_PCH_SPLIT(dev)) {
3399                 pp_ctrl_reg = PCH_PP_CONTROL;
3400                 pp_on_reg = PCH_PP_ON_DELAYS;
3401                 pp_off_reg = PCH_PP_OFF_DELAYS;
3402                 pp_div_reg = PCH_PP_DIVISOR;
3403         } else {
3404                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3405
3406                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3407                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3408                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3409                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3410         }
3411
3412         /* Workaround: Need to write PP_CONTROL with the unlock key as
3413          * the very first thing. */
3414         pp = ironlake_get_pp_control(intel_dp);
3415         I915_WRITE(pp_ctrl_reg, pp);
3416
3417         pp_on = I915_READ(pp_on_reg);
3418         pp_off = I915_READ(pp_off_reg);
3419         pp_div = I915_READ(pp_div_reg);
3420
3421         /* Pull timing values out of registers */
3422         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3423                 PANEL_POWER_UP_DELAY_SHIFT;
3424
3425         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3426                 PANEL_LIGHT_ON_DELAY_SHIFT;
3427
3428         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3429                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3430
3431         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3432                 PANEL_POWER_DOWN_DELAY_SHIFT;
3433
3434         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3435                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3436
3437         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3438                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3439
3440         vbt = dev_priv->vbt.edp_pps;
3441
3442         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3443          * our hw here, which are all in 100usec. */
3444         spec.t1_t3 = 210 * 10;
3445         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3446         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3447         spec.t10 = 500 * 10;
3448         /* This one is special and actually in units of 100ms, but zero
3449          * based in the hw (so we need to add 100 ms). But the sw vbt
3450          * table multiplies it with 1000 to make it in units of 100usec,
3451          * too. */
3452         spec.t11_t12 = (510 + 100) * 10;
3453
3454         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3455                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3456
3457         /* Use the max of the register settings and vbt. If both are
3458          * unset, fall back to the spec limits. */
3459 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3460                                        spec.field : \
3461                                        max(cur.field, vbt.field))
3462         assign_final(t1_t3);
3463         assign_final(t8);
3464         assign_final(t9);
3465         assign_final(t10);
3466         assign_final(t11_t12);
3467 #undef assign_final
3468
3469 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3470         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3471         intel_dp->backlight_on_delay = get_delay(t8);
3472         intel_dp->backlight_off_delay = get_delay(t9);
3473         intel_dp->panel_power_down_delay = get_delay(t10);
3474         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3475 #undef get_delay
3476
3477         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3478                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3479                       intel_dp->panel_power_cycle_delay);
3480
3481         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3482                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3483
3484         if (out)
3485                 *out = final;
3486 }
3487
3488 static void
3489 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3490                                               struct intel_dp *intel_dp,
3491                                               struct edp_power_seq *seq)
3492 {
3493         struct drm_i915_private *dev_priv = dev->dev_private;
3494         u32 pp_on, pp_off, pp_div, port_sel = 0;
3495         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3496         int pp_on_reg, pp_off_reg, pp_div_reg;
3497
3498         if (HAS_PCH_SPLIT(dev)) {
3499                 pp_on_reg = PCH_PP_ON_DELAYS;
3500                 pp_off_reg = PCH_PP_OFF_DELAYS;
3501                 pp_div_reg = PCH_PP_DIVISOR;
3502         } else {
3503                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3504
3505                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3506                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3507                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3508         }
3509
3510         /* And finally store the new values in the power sequencer. */
3511         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3512                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3513         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3514                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3515         /* Compute the divisor for the pp clock, simply match the Bspec
3516          * formula. */
3517         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3518         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3519                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3520
3521         /* Haswell doesn't have any port selection bits for the panel
3522          * power sequencer any more. */
3523         if (IS_VALLEYVIEW(dev)) {
3524                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3525                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3526                 else
3527                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3528         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3529                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3530                         port_sel = PANEL_PORT_SELECT_DPA;
3531                 else
3532                         port_sel = PANEL_PORT_SELECT_DPD;
3533         }
3534
3535         pp_on |= port_sel;
3536
3537         I915_WRITE(pp_on_reg, pp_on);
3538         I915_WRITE(pp_off_reg, pp_off);
3539         I915_WRITE(pp_div_reg, pp_div);
3540
3541         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3542                       I915_READ(pp_on_reg),
3543                       I915_READ(pp_off_reg),
3544                       I915_READ(pp_div_reg));
3545 }
3546
3547 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3548                                      struct intel_connector *intel_connector)
3549 {
3550         struct drm_connector *connector = &intel_connector->base;
3551         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3552         struct drm_device *dev = intel_dig_port->base.base.dev;
3553         struct drm_i915_private *dev_priv = dev->dev_private;
3554         struct drm_display_mode *fixed_mode = NULL;
3555         struct edp_power_seq power_seq = { 0 };
3556         bool has_dpcd;
3557         struct drm_display_mode *scan;
3558         struct edid *edid;
3559
3560         if (!is_edp(intel_dp))
3561                 return true;
3562
3563         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3564
3565         /* Cache DPCD and EDID for edp. */
3566         ironlake_edp_panel_vdd_on(intel_dp);
3567         has_dpcd = intel_dp_get_dpcd(intel_dp);
3568         ironlake_edp_panel_vdd_off(intel_dp, false);
3569
3570         if (has_dpcd) {
3571                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3572                         dev_priv->no_aux_handshake =
3573                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3574                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3575         } else {
3576                 /* if this fails, presume the device is a ghost */
3577                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3578                 return false;
3579         }
3580
3581         /* We now know it's not a ghost, init power sequence regs. */
3582         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3583                                                       &power_seq);
3584
3585         edid = drm_get_edid(connector, &intel_dp->adapter);
3586         if (edid) {
3587                 if (drm_add_edid_modes(connector, edid)) {
3588                         drm_mode_connector_update_edid_property(connector,
3589                                                                 edid);
3590                         drm_edid_to_eld(connector, edid);
3591                 } else {
3592                         kfree(edid);
3593                         edid = ERR_PTR(-EINVAL);
3594                 }
3595         } else {
3596                 edid = ERR_PTR(-ENOENT);
3597         }
3598         intel_connector->edid = edid;
3599
3600         /* prefer fixed mode from EDID if available */
3601         list_for_each_entry(scan, &connector->probed_modes, head) {
3602                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3603                         fixed_mode = drm_mode_duplicate(dev, scan);
3604                         break;
3605                 }
3606         }
3607
3608         /* fallback to VBT if available for eDP */
3609         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3610                 fixed_mode = drm_mode_duplicate(dev,
3611                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3612                 if (fixed_mode)
3613                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3614         }
3615
3616         intel_panel_init(&intel_connector->panel, fixed_mode);
3617         intel_panel_setup_backlight(connector);
3618
3619         return true;
3620 }
3621
3622 bool
3623 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3624                         struct intel_connector *intel_connector)
3625 {
3626         struct drm_connector *connector = &intel_connector->base;
3627         struct intel_dp *intel_dp = &intel_dig_port->dp;
3628         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3629         struct drm_device *dev = intel_encoder->base.dev;
3630         struct drm_i915_private *dev_priv = dev->dev_private;
3631         enum port port = intel_dig_port->port;
3632         const char *name = NULL;
3633         int type, error;
3634
3635         /* Preserve the current hw state. */
3636         intel_dp->DP = I915_READ(intel_dp->output_reg);
3637         intel_dp->attached_connector = intel_connector;
3638
3639         if (intel_dp_is_edp(dev, port))
3640                 type = DRM_MODE_CONNECTOR_eDP;
3641         else
3642                 type = DRM_MODE_CONNECTOR_DisplayPort;
3643
3644         /*
3645          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3646          * for DP the encoder type can be set by the caller to
3647          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3648          */
3649         if (type == DRM_MODE_CONNECTOR_eDP)
3650                 intel_encoder->type = INTEL_OUTPUT_EDP;
3651
3652         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3653                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3654                         port_name(port));
3655
3656         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3657         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3658
3659         connector->interlace_allowed = true;
3660         connector->doublescan_allowed = 0;
3661
3662         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3663                           ironlake_panel_vdd_work);
3664
3665         intel_connector_attach_encoder(intel_connector, intel_encoder);
3666         drm_sysfs_connector_add(connector);
3667
3668         if (HAS_DDI(dev))
3669                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3670         else
3671                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3672
3673         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3674         if (HAS_DDI(dev)) {
3675                 switch (intel_dig_port->port) {
3676                 case PORT_A:
3677                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3678                         break;
3679                 case PORT_B:
3680                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3681                         break;
3682                 case PORT_C:
3683                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3684                         break;
3685                 case PORT_D:
3686                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3687                         break;
3688                 default:
3689                         BUG();
3690                 }
3691         }
3692
3693         /* Set up the DDC bus. */
3694         switch (port) {
3695         case PORT_A:
3696                 intel_encoder->hpd_pin = HPD_PORT_A;
3697                 name = "DPDDC-A";
3698                 break;
3699         case PORT_B:
3700                 intel_encoder->hpd_pin = HPD_PORT_B;
3701                 name = "DPDDC-B";
3702                 break;
3703         case PORT_C:
3704                 intel_encoder->hpd_pin = HPD_PORT_C;
3705                 name = "DPDDC-C";
3706                 break;
3707         case PORT_D:
3708                 intel_encoder->hpd_pin = HPD_PORT_D;
3709                 name = "DPDDC-D";
3710                 break;
3711         default:
3712                 BUG();
3713         }
3714
3715         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3716         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3717              error, port_name(port));
3718
3719         intel_dp->psr_setup_done = false;
3720
3721         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3722                 i2c_del_adapter(&intel_dp->adapter);
3723                 if (is_edp(intel_dp)) {
3724                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3725                         mutex_lock(&dev->mode_config.mutex);
3726                         ironlake_panel_vdd_off_sync(intel_dp);
3727                         mutex_unlock(&dev->mode_config.mutex);
3728                 }
3729                 drm_sysfs_connector_remove(connector);
3730                 drm_connector_cleanup(connector);
3731                 return false;
3732         }
3733
3734         intel_dp_add_properties(intel_dp, connector);
3735
3736         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3737          * 0xd.  Failure to do so will result in spurious interrupts being
3738          * generated on the port when a cable is not attached.
3739          */
3740         if (IS_G4X(dev) && !IS_GM45(dev)) {
3741                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3742                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3743         }
3744
3745         return true;
3746 }
3747
3748 void
3749 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3750 {
3751         struct intel_digital_port *intel_dig_port;
3752         struct intel_encoder *intel_encoder;
3753         struct drm_encoder *encoder;
3754         struct intel_connector *intel_connector;
3755
3756         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3757         if (!intel_dig_port)
3758                 return;
3759
3760         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3761         if (!intel_connector) {
3762                 kfree(intel_dig_port);
3763                 return;
3764         }
3765
3766         intel_encoder = &intel_dig_port->base;
3767         encoder = &intel_encoder->base;
3768
3769         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3770                          DRM_MODE_ENCODER_TMDS);
3771
3772         intel_encoder->compute_config = intel_dp_compute_config;
3773         intel_encoder->mode_set = intel_dp_mode_set;
3774         intel_encoder->disable = intel_disable_dp;
3775         intel_encoder->post_disable = intel_post_disable_dp;
3776         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3777         intel_encoder->get_config = intel_dp_get_config;
3778         if (IS_VALLEYVIEW(dev)) {
3779                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3780                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3781                 intel_encoder->enable = vlv_enable_dp;
3782         } else {
3783                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3784                 intel_encoder->enable = g4x_enable_dp;
3785         }
3786
3787         intel_dig_port->port = port;
3788         intel_dig_port->dp.output_reg = output_reg;
3789
3790         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3791         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3792         intel_encoder->cloneable = false;
3793         intel_encoder->hot_plug = intel_dp_hot_plug;
3794
3795         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3796                 drm_encoder_cleanup(encoder);
3797                 kfree(intel_dig_port);
3798                 kfree(intel_connector);
3799         }
3800 }