]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_dp.c
Merge branch 'drm-intel-fixes' of git://people.freedesktop.org/~danvet/drm-intel...
[~andy/linux] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "drm_dp_helper.h"
39
40 #define DP_RECEIVER_CAP_SIZE    0xf
41 #define DP_LINK_STATUS_SIZE     6
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE      9
45
46 struct intel_dp {
47         struct intel_encoder base;
48         uint32_t output_reg;
49         uint32_t DP;
50         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
51         bool has_audio;
52         enum hdmi_force_audio force_audio;
53         uint32_t color_range;
54         int dpms_mode;
55         uint8_t link_bw;
56         uint8_t lane_count;
57         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58         struct i2c_adapter adapter;
59         struct i2c_algo_dp_aux_data algo;
60         bool is_pch_edp;
61         uint8_t train_set[4];
62         int panel_power_up_delay;
63         int panel_power_down_delay;
64         int panel_power_cycle_delay;
65         int backlight_on_delay;
66         int backlight_off_delay;
67         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68         struct delayed_work panel_vdd_work;
69         bool want_panel_vdd;
70 };
71
72 /**
73  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74  * @intel_dp: DP struct
75  *
76  * If a CPU or PCH DP output is attached to an eDP panel, this function
77  * will return true, and false otherwise.
78  */
79 static bool is_edp(struct intel_dp *intel_dp)
80 {
81         return intel_dp->base.type == INTEL_OUTPUT_EDP;
82 }
83
84 /**
85  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86  * @intel_dp: DP struct
87  *
88  * Returns true if the given DP struct corresponds to a PCH DP port attached
89  * to an eDP panel, false otherwise.  Helpful for determining whether we
90  * may need FDI resources for a given DP output or not.
91  */
92 static bool is_pch_edp(struct intel_dp *intel_dp)
93 {
94         return intel_dp->is_pch_edp;
95 }
96
97 /**
98  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99  * @intel_dp: DP struct
100  *
101  * Returns true if the given DP struct corresponds to a CPU eDP port.
102  */
103 static bool is_cpu_edp(struct intel_dp *intel_dp)
104 {
105         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106 }
107
108 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109 {
110         return container_of(encoder, struct intel_dp, base.base);
111 }
112
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115         return container_of(intel_attached_encoder(connector),
116                             struct intel_dp, base);
117 }
118
119 /**
120  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121  * @encoder: DRM encoder
122  *
123  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
124  * by intel_display.c.
125  */
126 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127 {
128         struct intel_dp *intel_dp;
129
130         if (!encoder)
131                 return false;
132
133         intel_dp = enc_to_intel_dp(encoder);
134
135         return is_pch_edp(intel_dp);
136 }
137
138 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_link_down(struct intel_dp *intel_dp);
141
142 void
143 intel_edp_link_config(struct intel_encoder *intel_encoder,
144                        int *lane_num, int *link_bw)
145 {
146         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
147
148         *lane_num = intel_dp->lane_count;
149         if (intel_dp->link_bw == DP_LINK_BW_1_62)
150                 *link_bw = 162000;
151         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152                 *link_bw = 270000;
153 }
154
155 static int
156 intel_dp_max_lane_count(struct intel_dp *intel_dp)
157 {
158         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159         switch (max_lane_count) {
160         case 1: case 2: case 4:
161                 break;
162         default:
163                 max_lane_count = 4;
164         }
165         return max_lane_count;
166 }
167
168 static int
169 intel_dp_max_link_bw(struct intel_dp *intel_dp)
170 {
171         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
172
173         switch (max_link_bw) {
174         case DP_LINK_BW_1_62:
175         case DP_LINK_BW_2_7:
176                 break;
177         default:
178                 max_link_bw = DP_LINK_BW_1_62;
179                 break;
180         }
181         return max_link_bw;
182 }
183
184 static int
185 intel_dp_link_clock(uint8_t link_bw)
186 {
187         if (link_bw == DP_LINK_BW_2_7)
188                 return 270000;
189         else
190                 return 162000;
191 }
192
193 /*
194  * The units on the numbers in the next two are... bizarre.  Examples will
195  * make it clearer; this one parallels an example in the eDP spec.
196  *
197  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198  *
199  *     270000 * 1 * 8 / 10 == 216000
200  *
201  * The actual data capacity of that configuration is 2.16Gbit/s, so the
202  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
203  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204  * 119000.  At 18bpp that's 2142000 kilobits per second.
205  *
206  * Thus the strange-looking division by 10 in intel_dp_link_required, to
207  * get the result in decakilobits instead of kilobits.
208  */
209
210 static int
211 intel_dp_link_required(int pixel_clock, int bpp)
212 {
213         return (pixel_clock * bpp + 9) / 10;
214 }
215
216 static int
217 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
218 {
219         return (max_link_clock * max_lanes * 8) / 10;
220 }
221
222 static bool
223 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
224                           struct drm_display_mode *mode,
225                           struct drm_display_mode *adjusted_mode)
226 {
227         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
228         int max_lanes = intel_dp_max_lane_count(intel_dp);
229         int max_rate, mode_rate;
230
231         mode_rate = intel_dp_link_required(mode->clock, 24);
232         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
233
234         if (mode_rate > max_rate) {
235                 mode_rate = intel_dp_link_required(mode->clock, 18);
236                 if (mode_rate > max_rate)
237                         return false;
238
239                 if (adjusted_mode)
240                         adjusted_mode->private_flags
241                                 |= INTEL_MODE_DP_FORCE_6BPC;
242
243                 return true;
244         }
245
246         return true;
247 }
248
249 static int
250 intel_dp_mode_valid(struct drm_connector *connector,
251                     struct drm_display_mode *mode)
252 {
253         struct intel_dp *intel_dp = intel_attached_dp(connector);
254
255         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
256                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
257                         return MODE_PANEL;
258
259                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
260                         return MODE_PANEL;
261         }
262
263         if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
264                 return MODE_CLOCK_HIGH;
265
266         if (mode->clock < 10000)
267                 return MODE_CLOCK_LOW;
268
269         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
270                 return MODE_H_ILLEGAL;
271
272         return MODE_OK;
273 }
274
275 static uint32_t
276 pack_aux(uint8_t *src, int src_bytes)
277 {
278         int     i;
279         uint32_t v = 0;
280
281         if (src_bytes > 4)
282                 src_bytes = 4;
283         for (i = 0; i < src_bytes; i++)
284                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
285         return v;
286 }
287
288 static void
289 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
290 {
291         int i;
292         if (dst_bytes > 4)
293                 dst_bytes = 4;
294         for (i = 0; i < dst_bytes; i++)
295                 dst[i] = src >> ((3-i) * 8);
296 }
297
298 /* hrawclock is 1/4 the FSB frequency */
299 static int
300 intel_hrawclk(struct drm_device *dev)
301 {
302         struct drm_i915_private *dev_priv = dev->dev_private;
303         uint32_t clkcfg;
304
305         clkcfg = I915_READ(CLKCFG);
306         switch (clkcfg & CLKCFG_FSB_MASK) {
307         case CLKCFG_FSB_400:
308                 return 100;
309         case CLKCFG_FSB_533:
310                 return 133;
311         case CLKCFG_FSB_667:
312                 return 166;
313         case CLKCFG_FSB_800:
314                 return 200;
315         case CLKCFG_FSB_1067:
316                 return 266;
317         case CLKCFG_FSB_1333:
318                 return 333;
319         /* these two are just a guess; one of them might be right */
320         case CLKCFG_FSB_1600:
321         case CLKCFG_FSB_1600_ALT:
322                 return 400;
323         default:
324                 return 133;
325         }
326 }
327
328 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
329 {
330         struct drm_device *dev = intel_dp->base.base.dev;
331         struct drm_i915_private *dev_priv = dev->dev_private;
332
333         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
334 }
335
336 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
337 {
338         struct drm_device *dev = intel_dp->base.base.dev;
339         struct drm_i915_private *dev_priv = dev->dev_private;
340
341         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
342 }
343
344 static void
345 intel_dp_check_edp(struct intel_dp *intel_dp)
346 {
347         struct drm_device *dev = intel_dp->base.base.dev;
348         struct drm_i915_private *dev_priv = dev->dev_private;
349
350         if (!is_edp(intel_dp))
351                 return;
352         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
353                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
354                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
355                               I915_READ(PCH_PP_STATUS),
356                               I915_READ(PCH_PP_CONTROL));
357         }
358 }
359
360 static int
361 intel_dp_aux_ch(struct intel_dp *intel_dp,
362                 uint8_t *send, int send_bytes,
363                 uint8_t *recv, int recv_size)
364 {
365         uint32_t output_reg = intel_dp->output_reg;
366         struct drm_device *dev = intel_dp->base.base.dev;
367         struct drm_i915_private *dev_priv = dev->dev_private;
368         uint32_t ch_ctl = output_reg + 0x10;
369         uint32_t ch_data = ch_ctl + 4;
370         int i;
371         int recv_bytes;
372         uint32_t status;
373         uint32_t aux_clock_divider;
374         int try, precharge = 5;
375
376         intel_dp_check_edp(intel_dp);
377         /* The clock divider is based off the hrawclk,
378          * and would like to run at 2MHz. So, take the
379          * hrawclk value and divide by 2 and use that
380          *
381          * Note that PCH attached eDP panels should use a 125MHz input
382          * clock divider.
383          */
384         if (is_cpu_edp(intel_dp)) {
385                 if (IS_GEN6(dev) || IS_GEN7(dev))
386                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
387                 else
388                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
389         } else if (HAS_PCH_SPLIT(dev))
390                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
391         else
392                 aux_clock_divider = intel_hrawclk(dev) / 2;
393
394         /* Try to wait for any previous AUX channel activity */
395         for (try = 0; try < 3; try++) {
396                 status = I915_READ(ch_ctl);
397                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
398                         break;
399                 msleep(1);
400         }
401
402         if (try == 3) {
403                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
404                      I915_READ(ch_ctl));
405                 return -EBUSY;
406         }
407
408         /* Must try at least 3 times according to DP spec */
409         for (try = 0; try < 5; try++) {
410                 /* Load the send data into the aux channel data registers */
411                 for (i = 0; i < send_bytes; i += 4)
412                         I915_WRITE(ch_data + i,
413                                    pack_aux(send + i, send_bytes - i));
414
415                 /* Send the command and wait for it to complete */
416                 I915_WRITE(ch_ctl,
417                            DP_AUX_CH_CTL_SEND_BUSY |
418                            DP_AUX_CH_CTL_TIME_OUT_400us |
419                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
420                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
421                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
422                            DP_AUX_CH_CTL_DONE |
423                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
424                            DP_AUX_CH_CTL_RECEIVE_ERROR);
425                 for (;;) {
426                         status = I915_READ(ch_ctl);
427                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
428                                 break;
429                         udelay(100);
430                 }
431
432                 /* Clear done status and any errors */
433                 I915_WRITE(ch_ctl,
434                            status |
435                            DP_AUX_CH_CTL_DONE |
436                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
437                            DP_AUX_CH_CTL_RECEIVE_ERROR);
438
439                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
440                               DP_AUX_CH_CTL_RECEIVE_ERROR))
441                         continue;
442                 if (status & DP_AUX_CH_CTL_DONE)
443                         break;
444         }
445
446         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
447                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
448                 return -EBUSY;
449         }
450
451         /* Check for timeout or receive error.
452          * Timeouts occur when the sink is not connected
453          */
454         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
455                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
456                 return -EIO;
457         }
458
459         /* Timeouts occur when the device isn't connected, so they're
460          * "normal" -- don't fill the kernel log with these */
461         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
462                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
463                 return -ETIMEDOUT;
464         }
465
466         /* Unload any bytes sent back from the other side */
467         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
468                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
469         if (recv_bytes > recv_size)
470                 recv_bytes = recv_size;
471
472         for (i = 0; i < recv_bytes; i += 4)
473                 unpack_aux(I915_READ(ch_data + i),
474                            recv + i, recv_bytes - i);
475
476         return recv_bytes;
477 }
478
479 /* Write data to the aux channel in native mode */
480 static int
481 intel_dp_aux_native_write(struct intel_dp *intel_dp,
482                           uint16_t address, uint8_t *send, int send_bytes)
483 {
484         int ret;
485         uint8_t msg[20];
486         int msg_bytes;
487         uint8_t ack;
488
489         intel_dp_check_edp(intel_dp);
490         if (send_bytes > 16)
491                 return -1;
492         msg[0] = AUX_NATIVE_WRITE << 4;
493         msg[1] = address >> 8;
494         msg[2] = address & 0xff;
495         msg[3] = send_bytes - 1;
496         memcpy(&msg[4], send, send_bytes);
497         msg_bytes = send_bytes + 4;
498         for (;;) {
499                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
500                 if (ret < 0)
501                         return ret;
502                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
503                         break;
504                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
505                         udelay(100);
506                 else
507                         return -EIO;
508         }
509         return send_bytes;
510 }
511
512 /* Write a single byte to the aux channel in native mode */
513 static int
514 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
515                             uint16_t address, uint8_t byte)
516 {
517         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
518 }
519
520 /* read bytes from a native aux channel */
521 static int
522 intel_dp_aux_native_read(struct intel_dp *intel_dp,
523                          uint16_t address, uint8_t *recv, int recv_bytes)
524 {
525         uint8_t msg[4];
526         int msg_bytes;
527         uint8_t reply[20];
528         int reply_bytes;
529         uint8_t ack;
530         int ret;
531
532         intel_dp_check_edp(intel_dp);
533         msg[0] = AUX_NATIVE_READ << 4;
534         msg[1] = address >> 8;
535         msg[2] = address & 0xff;
536         msg[3] = recv_bytes - 1;
537
538         msg_bytes = 4;
539         reply_bytes = recv_bytes + 1;
540
541         for (;;) {
542                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
543                                       reply, reply_bytes);
544                 if (ret == 0)
545                         return -EPROTO;
546                 if (ret < 0)
547                         return ret;
548                 ack = reply[0];
549                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
550                         memcpy(recv, reply + 1, ret - 1);
551                         return ret - 1;
552                 }
553                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
554                         udelay(100);
555                 else
556                         return -EIO;
557         }
558 }
559
560 static int
561 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
562                     uint8_t write_byte, uint8_t *read_byte)
563 {
564         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
565         struct intel_dp *intel_dp = container_of(adapter,
566                                                 struct intel_dp,
567                                                 adapter);
568         uint16_t address = algo_data->address;
569         uint8_t msg[5];
570         uint8_t reply[2];
571         unsigned retry;
572         int msg_bytes;
573         int reply_bytes;
574         int ret;
575
576         intel_dp_check_edp(intel_dp);
577         /* Set up the command byte */
578         if (mode & MODE_I2C_READ)
579                 msg[0] = AUX_I2C_READ << 4;
580         else
581                 msg[0] = AUX_I2C_WRITE << 4;
582
583         if (!(mode & MODE_I2C_STOP))
584                 msg[0] |= AUX_I2C_MOT << 4;
585
586         msg[1] = address >> 8;
587         msg[2] = address;
588
589         switch (mode) {
590         case MODE_I2C_WRITE:
591                 msg[3] = 0;
592                 msg[4] = write_byte;
593                 msg_bytes = 5;
594                 reply_bytes = 1;
595                 break;
596         case MODE_I2C_READ:
597                 msg[3] = 0;
598                 msg_bytes = 4;
599                 reply_bytes = 2;
600                 break;
601         default:
602                 msg_bytes = 3;
603                 reply_bytes = 1;
604                 break;
605         }
606
607         for (retry = 0; retry < 5; retry++) {
608                 ret = intel_dp_aux_ch(intel_dp,
609                                       msg, msg_bytes,
610                                       reply, reply_bytes);
611                 if (ret < 0) {
612                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
613                         return ret;
614                 }
615
616                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
617                 case AUX_NATIVE_REPLY_ACK:
618                         /* I2C-over-AUX Reply field is only valid
619                          * when paired with AUX ACK.
620                          */
621                         break;
622                 case AUX_NATIVE_REPLY_NACK:
623                         DRM_DEBUG_KMS("aux_ch native nack\n");
624                         return -EREMOTEIO;
625                 case AUX_NATIVE_REPLY_DEFER:
626                         udelay(100);
627                         continue;
628                 default:
629                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
630                                   reply[0]);
631                         return -EREMOTEIO;
632                 }
633
634                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
635                 case AUX_I2C_REPLY_ACK:
636                         if (mode == MODE_I2C_READ) {
637                                 *read_byte = reply[1];
638                         }
639                         return reply_bytes - 1;
640                 case AUX_I2C_REPLY_NACK:
641                         DRM_DEBUG_KMS("aux_i2c nack\n");
642                         return -EREMOTEIO;
643                 case AUX_I2C_REPLY_DEFER:
644                         DRM_DEBUG_KMS("aux_i2c defer\n");
645                         udelay(100);
646                         break;
647                 default:
648                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
649                         return -EREMOTEIO;
650                 }
651         }
652
653         DRM_ERROR("too many retries, giving up\n");
654         return -EREMOTEIO;
655 }
656
657 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
658 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
659
660 static int
661 intel_dp_i2c_init(struct intel_dp *intel_dp,
662                   struct intel_connector *intel_connector, const char *name)
663 {
664         int     ret;
665
666         DRM_DEBUG_KMS("i2c_init %s\n", name);
667         intel_dp->algo.running = false;
668         intel_dp->algo.address = 0;
669         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
670
671         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
672         intel_dp->adapter.owner = THIS_MODULE;
673         intel_dp->adapter.class = I2C_CLASS_DDC;
674         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
675         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
676         intel_dp->adapter.algo_data = &intel_dp->algo;
677         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
678
679         ironlake_edp_panel_vdd_on(intel_dp);
680         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
681         ironlake_edp_panel_vdd_off(intel_dp, false);
682         return ret;
683 }
684
685 static bool
686 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
687                     struct drm_display_mode *adjusted_mode)
688 {
689         struct drm_device *dev = encoder->dev;
690         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
691         int lane_count, clock;
692         int max_lane_count = intel_dp_max_lane_count(intel_dp);
693         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
694         int bpp, mode_rate;
695         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
696
697         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
698                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
699                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
700                                         mode, adjusted_mode);
701                 /*
702                  * the mode->clock is used to calculate the Data&Link M/N
703                  * of the pipe. For the eDP the fixed clock should be used.
704                  */
705                 mode->clock = intel_dp->panel_fixed_mode->clock;
706         }
707
708         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
709                 return false;
710
711         DRM_DEBUG_KMS("DP link computation with max lane count %i "
712                       "max bw %02x pixel clock %iKHz\n",
713                       max_lane_count, bws[max_clock], mode->clock);
714
715         if (!intel_dp_adjust_dithering(intel_dp, mode, adjusted_mode))
716                 return false;
717
718         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
719         mode_rate = intel_dp_link_required(mode->clock, bpp);
720
721         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
722                 for (clock = 0; clock <= max_clock; clock++) {
723                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
724
725                         if (mode_rate <= link_avail) {
726                                 intel_dp->link_bw = bws[clock];
727                                 intel_dp->lane_count = lane_count;
728                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
729                                 DRM_DEBUG_KMS("DP link bw %02x lane "
730                                                 "count %d clock %d bpp %d\n",
731                                        intel_dp->link_bw, intel_dp->lane_count,
732                                        adjusted_mode->clock, bpp);
733                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
734                                               mode_rate, link_avail);
735                                 return true;
736                         }
737                 }
738         }
739
740         return false;
741 }
742
743 struct intel_dp_m_n {
744         uint32_t        tu;
745         uint32_t        gmch_m;
746         uint32_t        gmch_n;
747         uint32_t        link_m;
748         uint32_t        link_n;
749 };
750
751 static void
752 intel_reduce_ratio(uint32_t *num, uint32_t *den)
753 {
754         while (*num > 0xffffff || *den > 0xffffff) {
755                 *num >>= 1;
756                 *den >>= 1;
757         }
758 }
759
760 static void
761 intel_dp_compute_m_n(int bpp,
762                      int nlanes,
763                      int pixel_clock,
764                      int link_clock,
765                      struct intel_dp_m_n *m_n)
766 {
767         m_n->tu = 64;
768         m_n->gmch_m = (pixel_clock * bpp) >> 3;
769         m_n->gmch_n = link_clock * nlanes;
770         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
771         m_n->link_m = pixel_clock;
772         m_n->link_n = link_clock;
773         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
774 }
775
776 void
777 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
778                  struct drm_display_mode *adjusted_mode)
779 {
780         struct drm_device *dev = crtc->dev;
781         struct drm_mode_config *mode_config = &dev->mode_config;
782         struct drm_encoder *encoder;
783         struct drm_i915_private *dev_priv = dev->dev_private;
784         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
785         int lane_count = 4;
786         struct intel_dp_m_n m_n;
787         int pipe = intel_crtc->pipe;
788
789         /*
790          * Find the lane count in the intel_encoder private
791          */
792         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
793                 struct intel_dp *intel_dp;
794
795                 if (encoder->crtc != crtc)
796                         continue;
797
798                 intel_dp = enc_to_intel_dp(encoder);
799                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
800                     intel_dp->base.type == INTEL_OUTPUT_EDP)
801                 {
802                         lane_count = intel_dp->lane_count;
803                         break;
804                 }
805         }
806
807         /*
808          * Compute the GMCH and Link ratios. The '3' here is
809          * the number of bytes_per_pixel post-LUT, which we always
810          * set up for 8-bits of R/G/B, or 3 bytes total.
811          */
812         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
813                              mode->clock, adjusted_mode->clock, &m_n);
814
815         if (HAS_PCH_SPLIT(dev)) {
816                 I915_WRITE(TRANSDATA_M1(pipe),
817                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
818                            m_n.gmch_m);
819                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
820                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
821                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
822         } else {
823                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
824                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
825                            m_n.gmch_m);
826                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
827                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
828                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
829         }
830 }
831
832 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
833 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
834
835 static void
836 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
837                   struct drm_display_mode *adjusted_mode)
838 {
839         struct drm_device *dev = encoder->dev;
840         struct drm_i915_private *dev_priv = dev->dev_private;
841         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
842         struct drm_crtc *crtc = intel_dp->base.base.crtc;
843         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
844
845         /* Turn on the eDP PLL if needed */
846         if (is_edp(intel_dp)) {
847                 if (!is_pch_edp(intel_dp))
848                         ironlake_edp_pll_on(encoder);
849                 else
850                         ironlake_edp_pll_off(encoder);
851         }
852
853         /*
854          * There are four kinds of DP registers:
855          *
856          *      IBX PCH
857          *      SNB CPU
858          *      IVB CPU
859          *      CPT PCH
860          *
861          * IBX PCH and CPU are the same for almost everything,
862          * except that the CPU DP PLL is configured in this
863          * register
864          *
865          * CPT PCH is quite different, having many bits moved
866          * to the TRANS_DP_CTL register instead. That
867          * configuration happens (oddly) in ironlake_pch_enable
868          */
869
870         /* Preserve the BIOS-computed detected bit. This is
871          * supposed to be read-only.
872          */
873         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
874         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
875
876         /* Handle DP bits in common between all three register formats */
877
878         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
879
880         switch (intel_dp->lane_count) {
881         case 1:
882                 intel_dp->DP |= DP_PORT_WIDTH_1;
883                 break;
884         case 2:
885                 intel_dp->DP |= DP_PORT_WIDTH_2;
886                 break;
887         case 4:
888                 intel_dp->DP |= DP_PORT_WIDTH_4;
889                 break;
890         }
891         if (intel_dp->has_audio) {
892                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
893                                  pipe_name(intel_crtc->pipe));
894                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
895                 intel_write_eld(encoder, adjusted_mode);
896         }
897         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
898         intel_dp->link_configuration[0] = intel_dp->link_bw;
899         intel_dp->link_configuration[1] = intel_dp->lane_count;
900         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
901         /*
902          * Check for DPCD version > 1.1 and enhanced framing support
903          */
904         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
905             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
906                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
907         }
908
909         /* Split out the IBX/CPU vs CPT settings */
910
911         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
912                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
913                         intel_dp->DP |= DP_SYNC_HS_HIGH;
914                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
915                         intel_dp->DP |= DP_SYNC_VS_HIGH;
916                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
917
918                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
919                         intel_dp->DP |= DP_ENHANCED_FRAMING;
920
921                 intel_dp->DP |= intel_crtc->pipe << 29;
922
923                 /* don't miss out required setting for eDP */
924                 intel_dp->DP |= DP_PLL_ENABLE;
925                 if (adjusted_mode->clock < 200000)
926                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
927                 else
928                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
929         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
930                 intel_dp->DP |= intel_dp->color_range;
931
932                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
933                         intel_dp->DP |= DP_SYNC_HS_HIGH;
934                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
935                         intel_dp->DP |= DP_SYNC_VS_HIGH;
936                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
937
938                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
939                         intel_dp->DP |= DP_ENHANCED_FRAMING;
940
941                 if (intel_crtc->pipe == 1)
942                         intel_dp->DP |= DP_PIPEB_SELECT;
943
944                 if (is_cpu_edp(intel_dp)) {
945                         /* don't miss out required setting for eDP */
946                         intel_dp->DP |= DP_PLL_ENABLE;
947                         if (adjusted_mode->clock < 200000)
948                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
949                         else
950                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
951                 }
952         } else {
953                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
954         }
955 }
956
957 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
958 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
959
960 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
961 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
962
963 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
964 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
965
966 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
967                                        u32 mask,
968                                        u32 value)
969 {
970         struct drm_device *dev = intel_dp->base.base.dev;
971         struct drm_i915_private *dev_priv = dev->dev_private;
972
973         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
974                       mask, value,
975                       I915_READ(PCH_PP_STATUS),
976                       I915_READ(PCH_PP_CONTROL));
977
978         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
979                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
980                           I915_READ(PCH_PP_STATUS),
981                           I915_READ(PCH_PP_CONTROL));
982         }
983 }
984
985 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
986 {
987         DRM_DEBUG_KMS("Wait for panel power on\n");
988         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
989 }
990
991 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
992 {
993         DRM_DEBUG_KMS("Wait for panel power off time\n");
994         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
995 }
996
997 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
998 {
999         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1000         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1001 }
1002
1003
1004 /* Read the current pp_control value, unlocking the register if it
1005  * is locked
1006  */
1007
1008 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1009 {
1010         u32     control = I915_READ(PCH_PP_CONTROL);
1011
1012         control &= ~PANEL_UNLOCK_MASK;
1013         control |= PANEL_UNLOCK_REGS;
1014         return control;
1015 }
1016
1017 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1018 {
1019         struct drm_device *dev = intel_dp->base.base.dev;
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         u32 pp;
1022
1023         if (!is_edp(intel_dp))
1024                 return;
1025         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1026
1027         WARN(intel_dp->want_panel_vdd,
1028              "eDP VDD already requested on\n");
1029
1030         intel_dp->want_panel_vdd = true;
1031
1032         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1033                 DRM_DEBUG_KMS("eDP VDD already on\n");
1034                 return;
1035         }
1036
1037         if (!ironlake_edp_have_panel_power(intel_dp))
1038                 ironlake_wait_panel_power_cycle(intel_dp);
1039
1040         pp = ironlake_get_pp_control(dev_priv);
1041         pp |= EDP_FORCE_VDD;
1042         I915_WRITE(PCH_PP_CONTROL, pp);
1043         POSTING_READ(PCH_PP_CONTROL);
1044         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1045                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1046
1047         /*
1048          * If the panel wasn't on, delay before accessing aux channel
1049          */
1050         if (!ironlake_edp_have_panel_power(intel_dp)) {
1051                 DRM_DEBUG_KMS("eDP was not running\n");
1052                 msleep(intel_dp->panel_power_up_delay);
1053         }
1054 }
1055
1056 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1057 {
1058         struct drm_device *dev = intel_dp->base.base.dev;
1059         struct drm_i915_private *dev_priv = dev->dev_private;
1060         u32 pp;
1061
1062         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1063                 pp = ironlake_get_pp_control(dev_priv);
1064                 pp &= ~EDP_FORCE_VDD;
1065                 I915_WRITE(PCH_PP_CONTROL, pp);
1066                 POSTING_READ(PCH_PP_CONTROL);
1067
1068                 /* Make sure sequencer is idle before allowing subsequent activity */
1069                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1070                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1071
1072                 msleep(intel_dp->panel_power_down_delay);
1073         }
1074 }
1075
1076 static void ironlake_panel_vdd_work(struct work_struct *__work)
1077 {
1078         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1079                                                  struct intel_dp, panel_vdd_work);
1080         struct drm_device *dev = intel_dp->base.base.dev;
1081
1082         mutex_lock(&dev->mode_config.mutex);
1083         ironlake_panel_vdd_off_sync(intel_dp);
1084         mutex_unlock(&dev->mode_config.mutex);
1085 }
1086
1087 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1088 {
1089         if (!is_edp(intel_dp))
1090                 return;
1091
1092         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1093         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1094
1095         intel_dp->want_panel_vdd = false;
1096
1097         if (sync) {
1098                 ironlake_panel_vdd_off_sync(intel_dp);
1099         } else {
1100                 /*
1101                  * Queue the timer to fire a long
1102                  * time from now (relative to the power down delay)
1103                  * to keep the panel power up across a sequence of operations
1104                  */
1105                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1106                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1107         }
1108 }
1109
1110 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1111 {
1112         struct drm_device *dev = intel_dp->base.base.dev;
1113         struct drm_i915_private *dev_priv = dev->dev_private;
1114         u32 pp;
1115
1116         if (!is_edp(intel_dp))
1117                 return;
1118
1119         DRM_DEBUG_KMS("Turn eDP power on\n");
1120
1121         if (ironlake_edp_have_panel_power(intel_dp)) {
1122                 DRM_DEBUG_KMS("eDP power already on\n");
1123                 return;
1124         }
1125
1126         ironlake_wait_panel_power_cycle(intel_dp);
1127
1128         pp = ironlake_get_pp_control(dev_priv);
1129         if (IS_GEN5(dev)) {
1130                 /* ILK workaround: disable reset around power sequence */
1131                 pp &= ~PANEL_POWER_RESET;
1132                 I915_WRITE(PCH_PP_CONTROL, pp);
1133                 POSTING_READ(PCH_PP_CONTROL);
1134         }
1135
1136         pp |= POWER_TARGET_ON;
1137         if (!IS_GEN5(dev))
1138                 pp |= PANEL_POWER_RESET;
1139
1140         I915_WRITE(PCH_PP_CONTROL, pp);
1141         POSTING_READ(PCH_PP_CONTROL);
1142
1143         ironlake_wait_panel_on(intel_dp);
1144
1145         if (IS_GEN5(dev)) {
1146                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1147                 I915_WRITE(PCH_PP_CONTROL, pp);
1148                 POSTING_READ(PCH_PP_CONTROL);
1149         }
1150 }
1151
1152 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1153 {
1154         struct drm_device *dev = intel_dp->base.base.dev;
1155         struct drm_i915_private *dev_priv = dev->dev_private;
1156         u32 pp;
1157
1158         if (!is_edp(intel_dp))
1159                 return;
1160
1161         DRM_DEBUG_KMS("Turn eDP power off\n");
1162
1163         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1164
1165         pp = ironlake_get_pp_control(dev_priv);
1166         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1167         I915_WRITE(PCH_PP_CONTROL, pp);
1168         POSTING_READ(PCH_PP_CONTROL);
1169
1170         ironlake_wait_panel_off(intel_dp);
1171 }
1172
1173 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1174 {
1175         struct drm_device *dev = intel_dp->base.base.dev;
1176         struct drm_i915_private *dev_priv = dev->dev_private;
1177         u32 pp;
1178
1179         if (!is_edp(intel_dp))
1180                 return;
1181
1182         DRM_DEBUG_KMS("\n");
1183         /*
1184          * If we enable the backlight right away following a panel power
1185          * on, we may see slight flicker as the panel syncs with the eDP
1186          * link.  So delay a bit to make sure the image is solid before
1187          * allowing it to appear.
1188          */
1189         msleep(intel_dp->backlight_on_delay);
1190         pp = ironlake_get_pp_control(dev_priv);
1191         pp |= EDP_BLC_ENABLE;
1192         I915_WRITE(PCH_PP_CONTROL, pp);
1193         POSTING_READ(PCH_PP_CONTROL);
1194 }
1195
1196 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1197 {
1198         struct drm_device *dev = intel_dp->base.base.dev;
1199         struct drm_i915_private *dev_priv = dev->dev_private;
1200         u32 pp;
1201
1202         if (!is_edp(intel_dp))
1203                 return;
1204
1205         DRM_DEBUG_KMS("\n");
1206         pp = ironlake_get_pp_control(dev_priv);
1207         pp &= ~EDP_BLC_ENABLE;
1208         I915_WRITE(PCH_PP_CONTROL, pp);
1209         POSTING_READ(PCH_PP_CONTROL);
1210         msleep(intel_dp->backlight_off_delay);
1211 }
1212
1213 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1214 {
1215         struct drm_device *dev = encoder->dev;
1216         struct drm_i915_private *dev_priv = dev->dev_private;
1217         u32 dpa_ctl;
1218
1219         DRM_DEBUG_KMS("\n");
1220         dpa_ctl = I915_READ(DP_A);
1221         dpa_ctl |= DP_PLL_ENABLE;
1222         I915_WRITE(DP_A, dpa_ctl);
1223         POSTING_READ(DP_A);
1224         udelay(200);
1225 }
1226
1227 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1228 {
1229         struct drm_device *dev = encoder->dev;
1230         struct drm_i915_private *dev_priv = dev->dev_private;
1231         u32 dpa_ctl;
1232
1233         dpa_ctl = I915_READ(DP_A);
1234         dpa_ctl &= ~DP_PLL_ENABLE;
1235         I915_WRITE(DP_A, dpa_ctl);
1236         POSTING_READ(DP_A);
1237         udelay(200);
1238 }
1239
1240 /* If the sink supports it, try to set the power state appropriately */
1241 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1242 {
1243         int ret, i;
1244
1245         /* Should have a valid DPCD by this point */
1246         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1247                 return;
1248
1249         if (mode != DRM_MODE_DPMS_ON) {
1250                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1251                                                   DP_SET_POWER_D3);
1252                 if (ret != 1)
1253                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1254         } else {
1255                 /*
1256                  * When turning on, we need to retry for 1ms to give the sink
1257                  * time to wake up.
1258                  */
1259                 for (i = 0; i < 3; i++) {
1260                         ret = intel_dp_aux_native_write_1(intel_dp,
1261                                                           DP_SET_POWER,
1262                                                           DP_SET_POWER_D0);
1263                         if (ret == 1)
1264                                 break;
1265                         msleep(1);
1266                 }
1267         }
1268 }
1269
1270 static void intel_dp_prepare(struct drm_encoder *encoder)
1271 {
1272         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1273
1274
1275         /* Make sure the panel is off before trying to change the mode. But also
1276          * ensure that we have vdd while we switch off the panel. */
1277         ironlake_edp_panel_vdd_on(intel_dp);
1278         ironlake_edp_backlight_off(intel_dp);
1279         ironlake_edp_panel_off(intel_dp);
1280
1281         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1282         intel_dp_link_down(intel_dp);
1283         ironlake_edp_panel_vdd_off(intel_dp, false);
1284 }
1285
1286 static void intel_dp_commit(struct drm_encoder *encoder)
1287 {
1288         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1289         struct drm_device *dev = encoder->dev;
1290         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1291
1292         ironlake_edp_panel_vdd_on(intel_dp);
1293         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1294         intel_dp_start_link_train(intel_dp);
1295         ironlake_edp_panel_on(intel_dp);
1296         ironlake_edp_panel_vdd_off(intel_dp, true);
1297         intel_dp_complete_link_train(intel_dp);
1298         ironlake_edp_backlight_on(intel_dp);
1299
1300         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1301
1302         if (HAS_PCH_CPT(dev))
1303                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1304 }
1305
1306 static void
1307 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1308 {
1309         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1310         struct drm_device *dev = encoder->dev;
1311         struct drm_i915_private *dev_priv = dev->dev_private;
1312         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1313
1314         if (mode != DRM_MODE_DPMS_ON) {
1315                 /* Switching the panel off requires vdd. */
1316                 ironlake_edp_panel_vdd_on(intel_dp);
1317                 ironlake_edp_backlight_off(intel_dp);
1318                 ironlake_edp_panel_off(intel_dp);
1319
1320                 intel_dp_sink_dpms(intel_dp, mode);
1321                 intel_dp_link_down(intel_dp);
1322                 ironlake_edp_panel_vdd_off(intel_dp, false);
1323
1324                 if (is_cpu_edp(intel_dp))
1325                         ironlake_edp_pll_off(encoder);
1326         } else {
1327                 if (is_cpu_edp(intel_dp))
1328                         ironlake_edp_pll_on(encoder);
1329
1330                 ironlake_edp_panel_vdd_on(intel_dp);
1331                 intel_dp_sink_dpms(intel_dp, mode);
1332                 if (!(dp_reg & DP_PORT_EN)) {
1333                         intel_dp_start_link_train(intel_dp);
1334                         ironlake_edp_panel_on(intel_dp);
1335                         ironlake_edp_panel_vdd_off(intel_dp, true);
1336                         intel_dp_complete_link_train(intel_dp);
1337                 } else
1338                         ironlake_edp_panel_vdd_off(intel_dp, false);
1339                 ironlake_edp_backlight_on(intel_dp);
1340         }
1341         intel_dp->dpms_mode = mode;
1342 }
1343
1344 /*
1345  * Native read with retry for link status and receiver capability reads for
1346  * cases where the sink may still be asleep.
1347  */
1348 static bool
1349 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1350                                uint8_t *recv, int recv_bytes)
1351 {
1352         int ret, i;
1353
1354         /*
1355          * Sinks are *supposed* to come up within 1ms from an off state,
1356          * but we're also supposed to retry 3 times per the spec.
1357          */
1358         for (i = 0; i < 3; i++) {
1359                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1360                                                recv_bytes);
1361                 if (ret == recv_bytes)
1362                         return true;
1363                 msleep(1);
1364         }
1365
1366         return false;
1367 }
1368
1369 /*
1370  * Fetch AUX CH registers 0x202 - 0x207 which contain
1371  * link status information
1372  */
1373 static bool
1374 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1375 {
1376         return intel_dp_aux_native_read_retry(intel_dp,
1377                                               DP_LANE0_1_STATUS,
1378                                               link_status,
1379                                               DP_LINK_STATUS_SIZE);
1380 }
1381
1382 static uint8_t
1383 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1384                      int r)
1385 {
1386         return link_status[r - DP_LANE0_1_STATUS];
1387 }
1388
1389 static uint8_t
1390 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1391                                  int lane)
1392 {
1393         int         s = ((lane & 1) ?
1394                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1395                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1396         uint8_t l = adjust_request[lane>>1];
1397
1398         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1399 }
1400
1401 static uint8_t
1402 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1403                                       int lane)
1404 {
1405         int         s = ((lane & 1) ?
1406                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1407                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1408         uint8_t l = adjust_request[lane>>1];
1409
1410         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1411 }
1412
1413
1414 #if 0
1415 static char     *voltage_names[] = {
1416         "0.4V", "0.6V", "0.8V", "1.2V"
1417 };
1418 static char     *pre_emph_names[] = {
1419         "0dB", "3.5dB", "6dB", "9.5dB"
1420 };
1421 static char     *link_train_names[] = {
1422         "pattern 1", "pattern 2", "idle", "off"
1423 };
1424 #endif
1425
1426 /*
1427  * These are source-specific values; current Intel hardware supports
1428  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1429  */
1430
1431 static uint8_t
1432 intel_dp_voltage_max(struct intel_dp *intel_dp)
1433 {
1434         struct drm_device *dev = intel_dp->base.base.dev;
1435
1436         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1437                 return DP_TRAIN_VOLTAGE_SWING_800;
1438         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1439                 return DP_TRAIN_VOLTAGE_SWING_1200;
1440         else
1441                 return DP_TRAIN_VOLTAGE_SWING_800;
1442 }
1443
1444 static uint8_t
1445 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1446 {
1447         struct drm_device *dev = intel_dp->base.base.dev;
1448
1449         if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1450                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1451                 case DP_TRAIN_VOLTAGE_SWING_400:
1452                         return DP_TRAIN_PRE_EMPHASIS_6;
1453                 case DP_TRAIN_VOLTAGE_SWING_600:
1454                 case DP_TRAIN_VOLTAGE_SWING_800:
1455                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1456                 default:
1457                         return DP_TRAIN_PRE_EMPHASIS_0;
1458                 }
1459         } else {
1460                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1461                 case DP_TRAIN_VOLTAGE_SWING_400:
1462                         return DP_TRAIN_PRE_EMPHASIS_6;
1463                 case DP_TRAIN_VOLTAGE_SWING_600:
1464                         return DP_TRAIN_PRE_EMPHASIS_6;
1465                 case DP_TRAIN_VOLTAGE_SWING_800:
1466                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1467                 case DP_TRAIN_VOLTAGE_SWING_1200:
1468                 default:
1469                         return DP_TRAIN_PRE_EMPHASIS_0;
1470                 }
1471         }
1472 }
1473
1474 static void
1475 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1476 {
1477         uint8_t v = 0;
1478         uint8_t p = 0;
1479         int lane;
1480         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1481         uint8_t voltage_max;
1482         uint8_t preemph_max;
1483
1484         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1485                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1486                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1487
1488                 if (this_v > v)
1489                         v = this_v;
1490                 if (this_p > p)
1491                         p = this_p;
1492         }
1493
1494         voltage_max = intel_dp_voltage_max(intel_dp);
1495         if (v >= voltage_max)
1496                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1497
1498         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1499         if (p >= preemph_max)
1500                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1501
1502         for (lane = 0; lane < 4; lane++)
1503                 intel_dp->train_set[lane] = v | p;
1504 }
1505
1506 static uint32_t
1507 intel_dp_signal_levels(uint8_t train_set)
1508 {
1509         uint32_t        signal_levels = 0;
1510
1511         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1512         case DP_TRAIN_VOLTAGE_SWING_400:
1513         default:
1514                 signal_levels |= DP_VOLTAGE_0_4;
1515                 break;
1516         case DP_TRAIN_VOLTAGE_SWING_600:
1517                 signal_levels |= DP_VOLTAGE_0_6;
1518                 break;
1519         case DP_TRAIN_VOLTAGE_SWING_800:
1520                 signal_levels |= DP_VOLTAGE_0_8;
1521                 break;
1522         case DP_TRAIN_VOLTAGE_SWING_1200:
1523                 signal_levels |= DP_VOLTAGE_1_2;
1524                 break;
1525         }
1526         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1527         case DP_TRAIN_PRE_EMPHASIS_0:
1528         default:
1529                 signal_levels |= DP_PRE_EMPHASIS_0;
1530                 break;
1531         case DP_TRAIN_PRE_EMPHASIS_3_5:
1532                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1533                 break;
1534         case DP_TRAIN_PRE_EMPHASIS_6:
1535                 signal_levels |= DP_PRE_EMPHASIS_6;
1536                 break;
1537         case DP_TRAIN_PRE_EMPHASIS_9_5:
1538                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1539                 break;
1540         }
1541         return signal_levels;
1542 }
1543
1544 /* Gen6's DP voltage swing and pre-emphasis control */
1545 static uint32_t
1546 intel_gen6_edp_signal_levels(uint8_t train_set)
1547 {
1548         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1549                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1550         switch (signal_levels) {
1551         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1552         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1553                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1554         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1555                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1556         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1557         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1558                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1559         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1560         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1561                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1562         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1563         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1564                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1565         default:
1566                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1567                               "0x%x\n", signal_levels);
1568                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1569         }
1570 }
1571
1572 /* Gen7's DP voltage swing and pre-emphasis control */
1573 static uint32_t
1574 intel_gen7_edp_signal_levels(uint8_t train_set)
1575 {
1576         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1577                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1578         switch (signal_levels) {
1579         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1580                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1581         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1582                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1583         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1584                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1585
1586         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1587                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1588         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1589                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1590
1591         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1592                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1593         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1594                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1595
1596         default:
1597                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1598                               "0x%x\n", signal_levels);
1599                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1600         }
1601 }
1602
1603 static uint8_t
1604 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1605                       int lane)
1606 {
1607         int s = (lane & 1) * 4;
1608         uint8_t l = link_status[lane>>1];
1609
1610         return (l >> s) & 0xf;
1611 }
1612
1613 /* Check for clock recovery is done on all channels */
1614 static bool
1615 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1616 {
1617         int lane;
1618         uint8_t lane_status;
1619
1620         for (lane = 0; lane < lane_count; lane++) {
1621                 lane_status = intel_get_lane_status(link_status, lane);
1622                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1623                         return false;
1624         }
1625         return true;
1626 }
1627
1628 /* Check to see if channel eq is done on all channels */
1629 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1630                          DP_LANE_CHANNEL_EQ_DONE|\
1631                          DP_LANE_SYMBOL_LOCKED)
1632 static bool
1633 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1634 {
1635         uint8_t lane_align;
1636         uint8_t lane_status;
1637         int lane;
1638
1639         lane_align = intel_dp_link_status(link_status,
1640                                           DP_LANE_ALIGN_STATUS_UPDATED);
1641         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1642                 return false;
1643         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1644                 lane_status = intel_get_lane_status(link_status, lane);
1645                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1646                         return false;
1647         }
1648         return true;
1649 }
1650
1651 static bool
1652 intel_dp_set_link_train(struct intel_dp *intel_dp,
1653                         uint32_t dp_reg_value,
1654                         uint8_t dp_train_pat)
1655 {
1656         struct drm_device *dev = intel_dp->base.base.dev;
1657         struct drm_i915_private *dev_priv = dev->dev_private;
1658         int ret;
1659
1660         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1661         POSTING_READ(intel_dp->output_reg);
1662
1663         intel_dp_aux_native_write_1(intel_dp,
1664                                     DP_TRAINING_PATTERN_SET,
1665                                     dp_train_pat);
1666
1667         ret = intel_dp_aux_native_write(intel_dp,
1668                                         DP_TRAINING_LANE0_SET,
1669                                         intel_dp->train_set,
1670                                         intel_dp->lane_count);
1671         if (ret != intel_dp->lane_count)
1672                 return false;
1673
1674         return true;
1675 }
1676
1677 /* Enable corresponding port and start training pattern 1 */
1678 static void
1679 intel_dp_start_link_train(struct intel_dp *intel_dp)
1680 {
1681         struct drm_device *dev = intel_dp->base.base.dev;
1682         struct drm_i915_private *dev_priv = dev->dev_private;
1683         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1684         int i;
1685         uint8_t voltage;
1686         bool clock_recovery = false;
1687         int voltage_tries, loop_tries;
1688         u32 reg;
1689         uint32_t DP = intel_dp->DP;
1690
1691         /*
1692          * On CPT we have to enable the port in training pattern 1, which
1693          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1694          * the port and wait for it to become active.
1695          */
1696         if (!HAS_PCH_CPT(dev)) {
1697                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1698                 POSTING_READ(intel_dp->output_reg);
1699                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1700         }
1701
1702         /* Write the link configuration data */
1703         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1704                                   intel_dp->link_configuration,
1705                                   DP_LINK_CONFIGURATION_SIZE);
1706
1707         DP |= DP_PORT_EN;
1708
1709         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1710                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1711         else
1712                 DP &= ~DP_LINK_TRAIN_MASK;
1713         memset(intel_dp->train_set, 0, 4);
1714         voltage = 0xff;
1715         voltage_tries = 0;
1716         loop_tries = 0;
1717         clock_recovery = false;
1718         for (;;) {
1719                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1720                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1721                 uint32_t    signal_levels;
1722
1723
1724                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1725                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1726                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1727                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1728                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1729                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1730                 } else {
1731                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1732                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1733                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1734                 }
1735
1736                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1737                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1738                 else
1739                         reg = DP | DP_LINK_TRAIN_PAT_1;
1740
1741                 if (!intel_dp_set_link_train(intel_dp, reg,
1742                                              DP_TRAINING_PATTERN_1 |
1743                                              DP_LINK_SCRAMBLING_DISABLE))
1744                         break;
1745                 /* Set training pattern 1 */
1746
1747                 udelay(100);
1748                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1749                         DRM_ERROR("failed to get link status\n");
1750                         break;
1751                 }
1752
1753                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1754                         DRM_DEBUG_KMS("clock recovery OK\n");
1755                         clock_recovery = true;
1756                         break;
1757                 }
1758
1759                 /* Check to see if we've tried the max voltage */
1760                 for (i = 0; i < intel_dp->lane_count; i++)
1761                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1762                                 break;
1763                 if (i == intel_dp->lane_count) {
1764                         ++loop_tries;
1765                         if (loop_tries == 5) {
1766                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1767                                 break;
1768                         }
1769                         memset(intel_dp->train_set, 0, 4);
1770                         voltage_tries = 0;
1771                         continue;
1772                 }
1773
1774                 /* Check to see if we've tried the same voltage 5 times */
1775                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1776                         ++voltage_tries;
1777                         if (voltage_tries == 5) {
1778                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1779                                 break;
1780                         }
1781                 } else
1782                         voltage_tries = 0;
1783                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1784
1785                 /* Compute new intel_dp->train_set as requested by target */
1786                 intel_get_adjust_train(intel_dp, link_status);
1787         }
1788
1789         intel_dp->DP = DP;
1790 }
1791
1792 static void
1793 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1794 {
1795         struct drm_device *dev = intel_dp->base.base.dev;
1796         struct drm_i915_private *dev_priv = dev->dev_private;
1797         bool channel_eq = false;
1798         int tries, cr_tries;
1799         u32 reg;
1800         uint32_t DP = intel_dp->DP;
1801
1802         /* channel equalization */
1803         tries = 0;
1804         cr_tries = 0;
1805         channel_eq = false;
1806         for (;;) {
1807                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1808                 uint32_t    signal_levels;
1809                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1810
1811                 if (cr_tries > 5) {
1812                         DRM_ERROR("failed to train DP, aborting\n");
1813                         intel_dp_link_down(intel_dp);
1814                         break;
1815                 }
1816
1817                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1818                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1819                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1820                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1821                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1822                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1823                 } else {
1824                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1825                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1826                 }
1827
1828                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1829                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1830                 else
1831                         reg = DP | DP_LINK_TRAIN_PAT_2;
1832
1833                 /* channel eq pattern */
1834                 if (!intel_dp_set_link_train(intel_dp, reg,
1835                                              DP_TRAINING_PATTERN_2 |
1836                                              DP_LINK_SCRAMBLING_DISABLE))
1837                         break;
1838
1839                 udelay(400);
1840                 if (!intel_dp_get_link_status(intel_dp, link_status))
1841                         break;
1842
1843                 /* Make sure clock is still ok */
1844                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1845                         intel_dp_start_link_train(intel_dp);
1846                         cr_tries++;
1847                         continue;
1848                 }
1849
1850                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1851                         channel_eq = true;
1852                         break;
1853                 }
1854
1855                 /* Try 5 times, then try clock recovery if that fails */
1856                 if (tries > 5) {
1857                         intel_dp_link_down(intel_dp);
1858                         intel_dp_start_link_train(intel_dp);
1859                         tries = 0;
1860                         cr_tries++;
1861                         continue;
1862                 }
1863
1864                 /* Compute new intel_dp->train_set as requested by target */
1865                 intel_get_adjust_train(intel_dp, link_status);
1866                 ++tries;
1867         }
1868
1869         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1870                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1871         else
1872                 reg = DP | DP_LINK_TRAIN_OFF;
1873
1874         I915_WRITE(intel_dp->output_reg, reg);
1875         POSTING_READ(intel_dp->output_reg);
1876         intel_dp_aux_native_write_1(intel_dp,
1877                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1878 }
1879
1880 static void
1881 intel_dp_link_down(struct intel_dp *intel_dp)
1882 {
1883         struct drm_device *dev = intel_dp->base.base.dev;
1884         struct drm_i915_private *dev_priv = dev->dev_private;
1885         uint32_t DP = intel_dp->DP;
1886
1887         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1888                 return;
1889
1890         DRM_DEBUG_KMS("\n");
1891
1892         if (is_edp(intel_dp)) {
1893                 DP &= ~DP_PLL_ENABLE;
1894                 I915_WRITE(intel_dp->output_reg, DP);
1895                 POSTING_READ(intel_dp->output_reg);
1896                 udelay(100);
1897         }
1898
1899         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1900                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1901                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1902         } else {
1903                 DP &= ~DP_LINK_TRAIN_MASK;
1904                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1905         }
1906         POSTING_READ(intel_dp->output_reg);
1907
1908         msleep(17);
1909
1910         if (is_edp(intel_dp)) {
1911                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1912                         DP |= DP_LINK_TRAIN_OFF_CPT;
1913                 else
1914                         DP |= DP_LINK_TRAIN_OFF;
1915         }
1916
1917         if (!HAS_PCH_CPT(dev) &&
1918             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1919                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1920
1921                 /* Hardware workaround: leaving our transcoder select
1922                  * set to transcoder B while it's off will prevent the
1923                  * corresponding HDMI output on transcoder A.
1924                  *
1925                  * Combine this with another hardware workaround:
1926                  * transcoder select bit can only be cleared while the
1927                  * port is enabled.
1928                  */
1929                 DP &= ~DP_PIPEB_SELECT;
1930                 I915_WRITE(intel_dp->output_reg, DP);
1931
1932                 /* Changes to enable or select take place the vblank
1933                  * after being written.
1934                  */
1935                 if (crtc == NULL) {
1936                         /* We can arrive here never having been attached
1937                          * to a CRTC, for instance, due to inheriting
1938                          * random state from the BIOS.
1939                          *
1940                          * If the pipe is not running, play safe and
1941                          * wait for the clocks to stabilise before
1942                          * continuing.
1943                          */
1944                         POSTING_READ(intel_dp->output_reg);
1945                         msleep(50);
1946                 } else
1947                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1948         }
1949
1950         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1951         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1952         POSTING_READ(intel_dp->output_reg);
1953         msleep(intel_dp->panel_power_down_delay);
1954 }
1955
1956 static bool
1957 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1958 {
1959         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1960                                            sizeof(intel_dp->dpcd)) &&
1961             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1962                 return true;
1963         }
1964
1965         return false;
1966 }
1967
1968 static void
1969 intel_dp_probe_oui(struct intel_dp *intel_dp)
1970 {
1971         u8 buf[3];
1972
1973         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1974                 return;
1975
1976         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1977                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1978                               buf[0], buf[1], buf[2]);
1979
1980         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1981                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1982                               buf[0], buf[1], buf[2]);
1983 }
1984
1985 static bool
1986 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1987 {
1988         int ret;
1989
1990         ret = intel_dp_aux_native_read_retry(intel_dp,
1991                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
1992                                              sink_irq_vector, 1);
1993         if (!ret)
1994                 return false;
1995
1996         return true;
1997 }
1998
1999 static void
2000 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2001 {
2002         /* NAK by default */
2003         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2004 }
2005
2006 /*
2007  * According to DP spec
2008  * 5.1.2:
2009  *  1. Read DPCD
2010  *  2. Configure link according to Receiver Capabilities
2011  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2012  *  4. Check link status on receipt of hot-plug interrupt
2013  */
2014
2015 static void
2016 intel_dp_check_link_status(struct intel_dp *intel_dp)
2017 {
2018         u8 sink_irq_vector;
2019         u8 link_status[DP_LINK_STATUS_SIZE];
2020
2021         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2022                 return;
2023
2024         if (!intel_dp->base.base.crtc)
2025                 return;
2026
2027         /* Try to read receiver status if the link appears to be up */
2028         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2029                 intel_dp_link_down(intel_dp);
2030                 return;
2031         }
2032
2033         /* Now read the DPCD to see if it's actually running */
2034         if (!intel_dp_get_dpcd(intel_dp)) {
2035                 intel_dp_link_down(intel_dp);
2036                 return;
2037         }
2038
2039         /* Try to read the source of the interrupt */
2040         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2041             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2042                 /* Clear interrupt source */
2043                 intel_dp_aux_native_write_1(intel_dp,
2044                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2045                                             sink_irq_vector);
2046
2047                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2048                         intel_dp_handle_test_request(intel_dp);
2049                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2050                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2051         }
2052
2053         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2054                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2055                               drm_get_encoder_name(&intel_dp->base.base));
2056                 intel_dp_start_link_train(intel_dp);
2057                 intel_dp_complete_link_train(intel_dp);
2058         }
2059 }
2060
2061 static enum drm_connector_status
2062 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2063 {
2064         if (intel_dp_get_dpcd(intel_dp))
2065                 return connector_status_connected;
2066         return connector_status_disconnected;
2067 }
2068
2069 static enum drm_connector_status
2070 ironlake_dp_detect(struct intel_dp *intel_dp)
2071 {
2072         enum drm_connector_status status;
2073
2074         /* Can't disconnect eDP, but you can close the lid... */
2075         if (is_edp(intel_dp)) {
2076                 status = intel_panel_detect(intel_dp->base.base.dev);
2077                 if (status == connector_status_unknown)
2078                         status = connector_status_connected;
2079                 return status;
2080         }
2081
2082         return intel_dp_detect_dpcd(intel_dp);
2083 }
2084
2085 static enum drm_connector_status
2086 g4x_dp_detect(struct intel_dp *intel_dp)
2087 {
2088         struct drm_device *dev = intel_dp->base.base.dev;
2089         struct drm_i915_private *dev_priv = dev->dev_private;
2090         uint32_t temp, bit;
2091
2092         switch (intel_dp->output_reg) {
2093         case DP_B:
2094                 bit = DPB_HOTPLUG_INT_STATUS;
2095                 break;
2096         case DP_C:
2097                 bit = DPC_HOTPLUG_INT_STATUS;
2098                 break;
2099         case DP_D:
2100                 bit = DPD_HOTPLUG_INT_STATUS;
2101                 break;
2102         default:
2103                 return connector_status_unknown;
2104         }
2105
2106         temp = I915_READ(PORT_HOTPLUG_STAT);
2107
2108         if ((temp & bit) == 0)
2109                 return connector_status_disconnected;
2110
2111         return intel_dp_detect_dpcd(intel_dp);
2112 }
2113
2114 static struct edid *
2115 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2116 {
2117         struct intel_dp *intel_dp = intel_attached_dp(connector);
2118         struct edid     *edid;
2119
2120         ironlake_edp_panel_vdd_on(intel_dp);
2121         edid = drm_get_edid(connector, adapter);
2122         ironlake_edp_panel_vdd_off(intel_dp, false);
2123         return edid;
2124 }
2125
2126 static int
2127 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2128 {
2129         struct intel_dp *intel_dp = intel_attached_dp(connector);
2130         int     ret;
2131
2132         ironlake_edp_panel_vdd_on(intel_dp);
2133         ret = intel_ddc_get_modes(connector, adapter);
2134         ironlake_edp_panel_vdd_off(intel_dp, false);
2135         return ret;
2136 }
2137
2138
2139 /**
2140  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2141  *
2142  * \return true if DP port is connected.
2143  * \return false if DP port is disconnected.
2144  */
2145 static enum drm_connector_status
2146 intel_dp_detect(struct drm_connector *connector, bool force)
2147 {
2148         struct intel_dp *intel_dp = intel_attached_dp(connector);
2149         struct drm_device *dev = intel_dp->base.base.dev;
2150         enum drm_connector_status status;
2151         struct edid *edid = NULL;
2152
2153         intel_dp->has_audio = false;
2154
2155         if (HAS_PCH_SPLIT(dev))
2156                 status = ironlake_dp_detect(intel_dp);
2157         else
2158                 status = g4x_dp_detect(intel_dp);
2159
2160         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2161                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2162                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2163                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2164
2165         if (status != connector_status_connected)
2166                 return status;
2167
2168         intel_dp_probe_oui(intel_dp);
2169
2170         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2171                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2172         } else {
2173                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2174                 if (edid) {
2175                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2176                         connector->display_info.raw_edid = NULL;
2177                         kfree(edid);
2178                 }
2179         }
2180
2181         return connector_status_connected;
2182 }
2183
2184 static int intel_dp_get_modes(struct drm_connector *connector)
2185 {
2186         struct intel_dp *intel_dp = intel_attached_dp(connector);
2187         struct drm_device *dev = intel_dp->base.base.dev;
2188         struct drm_i915_private *dev_priv = dev->dev_private;
2189         int ret;
2190
2191         /* We should parse the EDID data and find out if it has an audio sink
2192          */
2193
2194         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2195         if (ret) {
2196                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2197                         struct drm_display_mode *newmode;
2198                         list_for_each_entry(newmode, &connector->probed_modes,
2199                                             head) {
2200                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2201                                         intel_dp->panel_fixed_mode =
2202                                                 drm_mode_duplicate(dev, newmode);
2203                                         break;
2204                                 }
2205                         }
2206                 }
2207                 return ret;
2208         }
2209
2210         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2211         if (is_edp(intel_dp)) {
2212                 /* initialize panel mode from VBT if available for eDP */
2213                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2214                         intel_dp->panel_fixed_mode =
2215                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2216                         if (intel_dp->panel_fixed_mode) {
2217                                 intel_dp->panel_fixed_mode->type |=
2218                                         DRM_MODE_TYPE_PREFERRED;
2219                         }
2220                 }
2221                 if (intel_dp->panel_fixed_mode) {
2222                         struct drm_display_mode *mode;
2223                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2224                         drm_mode_probed_add(connector, mode);
2225                         return 1;
2226                 }
2227         }
2228         return 0;
2229 }
2230
2231 static bool
2232 intel_dp_detect_audio(struct drm_connector *connector)
2233 {
2234         struct intel_dp *intel_dp = intel_attached_dp(connector);
2235         struct edid *edid;
2236         bool has_audio = false;
2237
2238         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2239         if (edid) {
2240                 has_audio = drm_detect_monitor_audio(edid);
2241
2242                 connector->display_info.raw_edid = NULL;
2243                 kfree(edid);
2244         }
2245
2246         return has_audio;
2247 }
2248
2249 static int
2250 intel_dp_set_property(struct drm_connector *connector,
2251                       struct drm_property *property,
2252                       uint64_t val)
2253 {
2254         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2255         struct intel_dp *intel_dp = intel_attached_dp(connector);
2256         int ret;
2257
2258         ret = drm_connector_property_set_value(connector, property, val);
2259         if (ret)
2260                 return ret;
2261
2262         if (property == dev_priv->force_audio_property) {
2263                 int i = val;
2264                 bool has_audio;
2265
2266                 if (i == intel_dp->force_audio)
2267                         return 0;
2268
2269                 intel_dp->force_audio = i;
2270
2271                 if (i == HDMI_AUDIO_AUTO)
2272                         has_audio = intel_dp_detect_audio(connector);
2273                 else
2274                         has_audio = (i == HDMI_AUDIO_ON);
2275
2276                 if (has_audio == intel_dp->has_audio)
2277                         return 0;
2278
2279                 intel_dp->has_audio = has_audio;
2280                 goto done;
2281         }
2282
2283         if (property == dev_priv->broadcast_rgb_property) {
2284                 if (val == !!intel_dp->color_range)
2285                         return 0;
2286
2287                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2288                 goto done;
2289         }
2290
2291         return -EINVAL;
2292
2293 done:
2294         if (intel_dp->base.base.crtc) {
2295                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2296                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2297                                          crtc->x, crtc->y,
2298                                          crtc->fb);
2299         }
2300
2301         return 0;
2302 }
2303
2304 static void
2305 intel_dp_destroy(struct drm_connector *connector)
2306 {
2307         struct drm_device *dev = connector->dev;
2308
2309         if (intel_dpd_is_edp(dev))
2310                 intel_panel_destroy_backlight(dev);
2311
2312         drm_sysfs_connector_remove(connector);
2313         drm_connector_cleanup(connector);
2314         kfree(connector);
2315 }
2316
2317 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2318 {
2319         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2320
2321         i2c_del_adapter(&intel_dp->adapter);
2322         drm_encoder_cleanup(encoder);
2323         if (is_edp(intel_dp)) {
2324                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2325                 ironlake_panel_vdd_off_sync(intel_dp);
2326         }
2327         kfree(intel_dp);
2328 }
2329
2330 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2331         .dpms = intel_dp_dpms,
2332         .mode_fixup = intel_dp_mode_fixup,
2333         .prepare = intel_dp_prepare,
2334         .mode_set = intel_dp_mode_set,
2335         .commit = intel_dp_commit,
2336 };
2337
2338 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2339         .dpms = drm_helper_connector_dpms,
2340         .detect = intel_dp_detect,
2341         .fill_modes = drm_helper_probe_single_connector_modes,
2342         .set_property = intel_dp_set_property,
2343         .destroy = intel_dp_destroy,
2344 };
2345
2346 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2347         .get_modes = intel_dp_get_modes,
2348         .mode_valid = intel_dp_mode_valid,
2349         .best_encoder = intel_best_encoder,
2350 };
2351
2352 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2353         .destroy = intel_dp_encoder_destroy,
2354 };
2355
2356 static void
2357 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2358 {
2359         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2360
2361         intel_dp_check_link_status(intel_dp);
2362 }
2363
2364 /* Return which DP Port should be selected for Transcoder DP control */
2365 int
2366 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2367 {
2368         struct drm_device *dev = crtc->dev;
2369         struct drm_mode_config *mode_config = &dev->mode_config;
2370         struct drm_encoder *encoder;
2371
2372         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2373                 struct intel_dp *intel_dp;
2374
2375                 if (encoder->crtc != crtc)
2376                         continue;
2377
2378                 intel_dp = enc_to_intel_dp(encoder);
2379                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2380                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2381                         return intel_dp->output_reg;
2382         }
2383
2384         return -1;
2385 }
2386
2387 /* check the VBT to see whether the eDP is on DP-D port */
2388 bool intel_dpd_is_edp(struct drm_device *dev)
2389 {
2390         struct drm_i915_private *dev_priv = dev->dev_private;
2391         struct child_device_config *p_child;
2392         int i;
2393
2394         if (!dev_priv->child_dev_num)
2395                 return false;
2396
2397         for (i = 0; i < dev_priv->child_dev_num; i++) {
2398                 p_child = dev_priv->child_dev + i;
2399
2400                 if (p_child->dvo_port == PORT_IDPD &&
2401                     p_child->device_type == DEVICE_TYPE_eDP)
2402                         return true;
2403         }
2404         return false;
2405 }
2406
2407 static void
2408 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2409 {
2410         intel_attach_force_audio_property(connector);
2411         intel_attach_broadcast_rgb_property(connector);
2412 }
2413
2414 void
2415 intel_dp_init(struct drm_device *dev, int output_reg)
2416 {
2417         struct drm_i915_private *dev_priv = dev->dev_private;
2418         struct drm_connector *connector;
2419         struct intel_dp *intel_dp;
2420         struct intel_encoder *intel_encoder;
2421         struct intel_connector *intel_connector;
2422         const char *name = NULL;
2423         int type;
2424
2425         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2426         if (!intel_dp)
2427                 return;
2428
2429         intel_dp->output_reg = output_reg;
2430         intel_dp->dpms_mode = -1;
2431
2432         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2433         if (!intel_connector) {
2434                 kfree(intel_dp);
2435                 return;
2436         }
2437         intel_encoder = &intel_dp->base;
2438
2439         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2440                 if (intel_dpd_is_edp(dev))
2441                         intel_dp->is_pch_edp = true;
2442
2443         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2444                 type = DRM_MODE_CONNECTOR_eDP;
2445                 intel_encoder->type = INTEL_OUTPUT_EDP;
2446         } else {
2447                 type = DRM_MODE_CONNECTOR_DisplayPort;
2448                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2449         }
2450
2451         connector = &intel_connector->base;
2452         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2453         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2454
2455         connector->polled = DRM_CONNECTOR_POLL_HPD;
2456
2457         if (output_reg == DP_B || output_reg == PCH_DP_B)
2458                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2459         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2460                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2461         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2462                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2463
2464         if (is_edp(intel_dp)) {
2465                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2466                 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2467                                   ironlake_panel_vdd_work);
2468         }
2469
2470         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2471
2472         connector->interlace_allowed = true;
2473         connector->doublescan_allowed = 0;
2474
2475         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2476                          DRM_MODE_ENCODER_TMDS);
2477         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2478
2479         intel_connector_attach_encoder(intel_connector, intel_encoder);
2480         drm_sysfs_connector_add(connector);
2481
2482         /* Set up the DDC bus. */
2483         switch (output_reg) {
2484                 case DP_A:
2485                         name = "DPDDC-A";
2486                         break;
2487                 case DP_B:
2488                 case PCH_DP_B:
2489                         dev_priv->hotplug_supported_mask |=
2490                                 HDMIB_HOTPLUG_INT_STATUS;
2491                         name = "DPDDC-B";
2492                         break;
2493                 case DP_C:
2494                 case PCH_DP_C:
2495                         dev_priv->hotplug_supported_mask |=
2496                                 HDMIC_HOTPLUG_INT_STATUS;
2497                         name = "DPDDC-C";
2498                         break;
2499                 case DP_D:
2500                 case PCH_DP_D:
2501                         dev_priv->hotplug_supported_mask |=
2502                                 HDMID_HOTPLUG_INT_STATUS;
2503                         name = "DPDDC-D";
2504                         break;
2505         }
2506
2507         /* Cache some DPCD data in the eDP case */
2508         if (is_edp(intel_dp)) {
2509                 bool ret;
2510                 struct edp_power_seq    cur, vbt;
2511                 u32 pp_on, pp_off, pp_div;
2512
2513                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2514                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2515                 pp_div = I915_READ(PCH_PP_DIVISOR);
2516
2517                 if (!pp_on || !pp_off || !pp_div) {
2518                         DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2519                         intel_dp_encoder_destroy(&intel_dp->base.base);
2520                         intel_dp_destroy(&intel_connector->base);
2521                         return;
2522                 }
2523
2524                 /* Pull timing values out of registers */
2525                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2526                         PANEL_POWER_UP_DELAY_SHIFT;
2527
2528                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2529                         PANEL_LIGHT_ON_DELAY_SHIFT;
2530
2531                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2532                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2533
2534                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2535                         PANEL_POWER_DOWN_DELAY_SHIFT;
2536
2537                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2538                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2539
2540                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2541                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2542
2543                 vbt = dev_priv->edp.pps;
2544
2545                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2546                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2547
2548 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2549
2550                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2551                 intel_dp->backlight_on_delay = get_delay(t8);
2552                 intel_dp->backlight_off_delay = get_delay(t9);
2553                 intel_dp->panel_power_down_delay = get_delay(t10);
2554                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2555
2556                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2557                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2558                               intel_dp->panel_power_cycle_delay);
2559
2560                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2561                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2562
2563                 ironlake_edp_panel_vdd_on(intel_dp);
2564                 ret = intel_dp_get_dpcd(intel_dp);
2565                 ironlake_edp_panel_vdd_off(intel_dp, false);
2566
2567                 if (ret) {
2568                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2569                                 dev_priv->no_aux_handshake =
2570                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2571                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2572                 } else {
2573                         /* if this fails, presume the device is a ghost */
2574                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2575                         intel_dp_encoder_destroy(&intel_dp->base.base);
2576                         intel_dp_destroy(&intel_connector->base);
2577                         return;
2578                 }
2579         }
2580
2581         intel_dp_i2c_init(intel_dp, intel_connector, name);
2582
2583         intel_encoder->hot_plug = intel_dp_hot_plug;
2584
2585         if (is_edp(intel_dp)) {
2586                 dev_priv->int_edp_connector = connector;
2587                 intel_panel_setup_backlight(dev);
2588         }
2589
2590         intel_dp_add_properties(intel_dp, connector);
2591
2592         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2593          * 0xd.  Failure to do so will result in spurious interrupts being
2594          * generated on the port when a cable is not attached.
2595          */
2596         if (IS_G4X(dev) && !IS_GM45(dev)) {
2597                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2598                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2599         }
2600 }