]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: don't call intel_disable_pch_pll on Haswell/LPT
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941                                              enum pipe pipe)
942 {
943         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946         return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 frame, frame_reg = PIPEFRAME(pipe);
953
954         frame = I915_READ(frame_reg);
955
956         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957                 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961  * intel_wait_for_vblank - wait for vblank on a given pipe
962  * @dev: drm device
963  * @pipe: pipe to wait for
964  *
965  * Wait for vblank to occur on a given pipe.  Needed for various bits of
966  * mode setting code.
967  */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         int pipestat_reg = PIPESTAT(pipe);
972
973         if (INTEL_INFO(dev)->gen >= 5) {
974                 ironlake_wait_for_vblank(dev, pipe);
975                 return;
976         }
977
978         /* Clear existing vblank status. Note this will clear any other
979          * sticky status fields as well.
980          *
981          * This races with i915_driver_irq_handler() with the result
982          * that either function could miss a vblank event.  Here it is not
983          * fatal, as we will either wait upon the next vblank interrupt or
984          * timeout.  Generally speaking intel_wait_for_vblank() is only
985          * called during modeset at which time the GPU should be idle and
986          * should *not* be performing page flips and thus not waiting on
987          * vblanks...
988          * Currently, the result of us stealing a vblank from the irq
989          * handler is that a single frame will be skipped during swapbuffers.
990          */
991         I915_WRITE(pipestat_reg,
992                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994         /* Wait for vblank interrupt bit to set */
995         if (wait_for(I915_READ(pipestat_reg) &
996                      PIPE_VBLANK_INTERRUPT_STATUS,
997                      50))
998                 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002  * intel_wait_for_pipe_off - wait for pipe to turn off
1003  * @dev: drm device
1004  * @pipe: pipe to wait for
1005  *
1006  * After disabling a pipe, we can't wait for vblank in the usual way,
1007  * spinning on the vblank interrupt status bit, since we won't actually
1008  * see an interrupt when the pipe is disabled.
1009  *
1010  * On Gen4 and above:
1011  *   wait for the pipe register state bit to turn off
1012  *
1013  * Otherwise:
1014  *   wait for the display line value to settle (it usually
1015  *   ends up stopping at the start of the next frame).
1016  *
1017  */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022                                                                       pipe);
1023
1024         if (INTEL_INFO(dev)->gen >= 4) {
1025                 int reg = PIPECONF(cpu_transcoder);
1026
1027                 /* Wait for the Pipe State to go off */
1028                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029                              100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         } else {
1032                 u32 last_line, line_mask;
1033                 int reg = PIPEDSL(pipe);
1034                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036                 if (IS_GEN2(dev))
1037                         line_mask = DSL_LINEMASK_GEN2;
1038                 else
1039                         line_mask = DSL_LINEMASK_GEN3;
1040
1041                 /* Wait for the display line to settle */
1042                 do {
1043                         last_line = I915_READ(reg) & line_mask;
1044                         mdelay(5);
1045                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046                          time_after(timeout, jiffies));
1047                 if (time_after(jiffies, timeout))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054         return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059                        enum pipe pipe, bool state)
1060 {
1061         int reg;
1062         u32 val;
1063         bool cur_state;
1064
1065         reg = DPLL(pipe);
1066         val = I915_READ(reg);
1067         cur_state = !!(val & DPLL_VCO_ENABLE);
1068         WARN(cur_state != state,
1069              "PLL state assertion failure (expected %s, current %s)\n",
1070              state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077                            struct intel_pch_pll *pll,
1078                            struct intel_crtc *crtc,
1079                            bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         if (HAS_PCH_LPT(dev_priv->dev)) {
1085                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086                 return;
1087         }
1088
1089         if (WARN (!pll,
1090                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091                 return;
1092
1093         val = I915_READ(pll->pll_reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097              pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099         /* Make sure the selected PLL is correctly attached to the transcoder */
1100         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101                 u32 pch_dpll;
1102
1103                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1107                           cur_state, crtc->pipe, pch_dpll)) {
1108                         cur_state = !!(val >> (4*crtc->pipe + 3));
1109                         WARN(cur_state != state,
1110                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1111                              pll->pll_reg == _PCH_DPLL_B,
1112                              state_string(state),
1113                              crtc->pipe,
1114                              val);
1115                 }
1116         }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122                           enum pipe pipe, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (IS_HASWELL(dev_priv->dev)) {
1131                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133                 val = I915_READ(reg);
1134                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135         } else {
1136                 reg = FDI_TX_CTL(pipe);
1137                 val = I915_READ(reg);
1138                 cur_state = !!(val & FDI_TX_ENABLE);
1139         }
1140         WARN(cur_state != state,
1141              "FDI TX state assertion failure (expected %s, current %s)\n",
1142              state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148                           enum pipe pipe, bool state)
1149 {
1150         int reg;
1151         u32 val;
1152         bool cur_state;
1153
1154         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156                         return;
1157         } else {
1158                 reg = FDI_RX_CTL(pipe);
1159                 val = I915_READ(reg);
1160                 cur_state = !!(val & FDI_RX_ENABLE);
1161         }
1162         WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (dev_priv->info->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (IS_HASWELL(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189                                       enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196                 return;
1197         }
1198         reg = FDI_RX_CTL(pipe);
1199         val = I915_READ(reg);
1200         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                                   enum pipe pipe)
1205 {
1206         int pp_reg, lvds_reg;
1207         u32 val;
1208         enum pipe panel_pipe = PIPE_A;
1209         bool locked = true;
1210
1211         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212                 pp_reg = PCH_PP_CONTROL;
1213                 lvds_reg = PCH_LVDS;
1214         } else {
1215                 pp_reg = PP_CONTROL;
1216                 lvds_reg = LVDS;
1217         }
1218
1219         val = I915_READ(pp_reg);
1220         if (!(val & PANEL_POWER_ON) ||
1221             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222                 locked = false;
1223
1224         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225                 panel_pipe = PIPE_B;
1226
1227         WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233                  enum pipe pipe, bool state)
1234 {
1235         int reg;
1236         u32 val;
1237         bool cur_state;
1238         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239                                                                       pipe);
1240
1241         /* if we need the pipe A quirk it must be always on */
1242         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243                 state = true;
1244
1245         reg = PIPECONF(cpu_transcoder);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & PIPECONF_ENABLE);
1248         WARN(cur_state != state,
1249              "pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254                          enum plane plane, bool state)
1255 {
1256         int reg;
1257         u32 val;
1258         bool cur_state;
1259
1260         reg = DSPCNTR(plane);
1261         val = I915_READ(reg);
1262         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263         WARN(cur_state != state,
1264              "plane %c assertion failure (expected %s, current %s)\n",
1265              plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe)
1273 {
1274         int reg, i;
1275         u32 val;
1276         int cur_pipe;
1277
1278         /* Planes are fixed to pipes on ILK+ */
1279         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280                 reg = DSPCNTR(pipe);
1281                 val = I915_READ(reg);
1282                 WARN((val & DISPLAY_PLANE_ENABLE),
1283                      "plane %c assertion failure, should be disabled but not\n",
1284                      plane_name(pipe));
1285                 return;
1286         }
1287
1288         /* Need to check both planes against the pipe */
1289         for (i = 0; i < 2; i++) {
1290                 reg = DSPCNTR(i);
1291                 val = I915_READ(reg);
1292                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293                         DISPPLANE_SEL_PIPE_SHIFT;
1294                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296                      plane_name(i), pipe_name(pipe));
1297         }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302         u32 val;
1303         bool enabled;
1304
1305         if (HAS_PCH_LPT(dev_priv->dev)) {
1306                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307                 return;
1308         }
1309
1310         val = I915_READ(PCH_DREF_CONTROL);
1311         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312                             DREF_SUPERSPREAD_SOURCE_MASK));
1313         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317                                        enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321         bool enabled;
1322
1323         reg = TRANSCONF(pipe);
1324         val = I915_READ(reg);
1325         enabled = !!(val & TRANS_ENABLE);
1326         WARN(enabled,
1327              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328              pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332                             enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334         if ((val & DP_PORT_EN) == 0)
1335                 return false;
1336
1337         if (HAS_PCH_CPT(dev_priv->dev)) {
1338                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341                         return false;
1342         } else {
1343                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344                         return false;
1345         }
1346         return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350                               enum pipe pipe, u32 val)
1351 {
1352         if ((val & PORT_ENABLE) == 0)
1353                 return false;
1354
1355         if (HAS_PCH_CPT(dev_priv->dev)) {
1356                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357                         return false;
1358         } else {
1359                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360                         return false;
1361         }
1362         return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366                               enum pipe pipe, u32 val)
1367 {
1368         if ((val & LVDS_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & ADPA_DAC_ENABLE) == 0)
1385                 return false;
1386         if (HAS_PCH_CPT(dev_priv->dev)) {
1387                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388                         return false;
1389         } else {
1390                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391                         return false;
1392         }
1393         return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397                                    enum pipe pipe, int reg, u32 port_sel)
1398 {
1399         u32 val = I915_READ(reg);
1400         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402              reg, pipe_name(pipe));
1403
1404         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405              && (val & DP_PIPEB_SELECT),
1406              "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410                                      enum pipe pipe, int reg)
1411 {
1412         u32 val = I915_READ(reg);
1413         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415              reg, pipe_name(pipe));
1416
1417         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418              && (val & SDVO_PIPE_B_SELECT),
1419              "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423                                       enum pipe pipe)
1424 {
1425         int reg;
1426         u32 val;
1427
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432         reg = PCH_ADPA;
1433         val = I915_READ(reg);
1434         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435              "PCH VGA enabled on transcoder %c, should be disabled\n",
1436              pipe_name(pipe));
1437
1438         reg = PCH_LVDS;
1439         val = I915_READ(reg);
1440         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442              pipe_name(pipe));
1443
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450  * intel_enable_pll - enable a PLL
1451  * @dev_priv: i915 private structure
1452  * @pipe: pipe PLL to enable
1453  *
1454  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1455  * make sure the PLL reg is writable first though, since the panel write
1456  * protect mechanism may be enabled.
1457  *
1458  * Note!  This is for pre-ILK only.
1459  *
1460  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461  */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464         int reg;
1465         u32 val;
1466
1467         /* No really, not for ILK+ */
1468         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472                 assert_panel_unlocked(dev_priv, pipe);
1473
1474         reg = DPLL(pipe);
1475         val = I915_READ(reg);
1476         val |= DPLL_VCO_ENABLE;
1477
1478         /* We do this three times for luck */
1479         I915_WRITE(reg, val);
1480         POSTING_READ(reg);
1481         udelay(150); /* wait for warmup */
1482         I915_WRITE(reg, val);
1483         POSTING_READ(reg);
1484         udelay(150); /* wait for warmup */
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487         udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491  * intel_disable_pll - disable a PLL
1492  * @dev_priv: i915 private structure
1493  * @pipe: pipe PLL to disable
1494  *
1495  * Disable the PLL for @pipe, making sure the pipe is off first.
1496  *
1497  * Note!  This is for pre-ILK only.
1498  */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501         int reg;
1502         u32 val;
1503
1504         /* Don't disable pipe A or pipe A PLLs if needed */
1505         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506                 return;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         reg = DPLL(pipe);
1512         val = I915_READ(reg);
1513         val &= ~DPLL_VCO_ENABLE;
1514         I915_WRITE(reg, val);
1515         POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522         unsigned long flags;
1523
1524         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528                 goto out_unlock;
1529         }
1530
1531         I915_WRITE(SBI_ADDR,
1532                         (reg << 16));
1533         I915_WRITE(SBI_DATA,
1534                         value);
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRWR);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545 out_unlock:
1546         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552         unsigned long flags;
1553         u32 value = 0;
1554
1555         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557                                 100)) {
1558                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559                 goto out_unlock;
1560         }
1561
1562         I915_WRITE(SBI_ADDR,
1563                         (reg << 16));
1564         I915_WRITE(SBI_CTL_STAT,
1565                         SBI_BUSY |
1566                         SBI_CTL_OP_CRRD);
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571                 goto out_unlock;
1572         }
1573
1574         value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578         return value;
1579 }
1580
1581 /**
1582  * ironlake_enable_pch_pll - enable PCH PLL
1583  * @dev_priv: i915 private structure
1584  * @pipe: pipe PLL to enable
1585  *
1586  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587  * drives the transcoder clock.
1588  */
1589 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592         struct intel_pch_pll *pll;
1593         int reg;
1594         u32 val;
1595
1596         /* PCH PLLs only available on ILK, SNB and IVB */
1597         BUG_ON(dev_priv->info->gen < 5);
1598         pll = intel_crtc->pch_pll;
1599         if (pll == NULL)
1600                 return;
1601
1602         if (WARN_ON(pll->refcount == 0))
1603                 return;
1604
1605         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606                       pll->pll_reg, pll->active, pll->on,
1607                       intel_crtc->base.base.id);
1608
1609         /* PCH refclock must be enabled first */
1610         assert_pch_refclk_enabled(dev_priv);
1611
1612         if (pll->active++ && pll->on) {
1613                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614                 return;
1615         }
1616
1617         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619         reg = pll->pll_reg;
1620         val = I915_READ(reg);
1621         val |= DPLL_VCO_ENABLE;
1622         I915_WRITE(reg, val);
1623         POSTING_READ(reg);
1624         udelay(200);
1625
1626         pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633         int reg;
1634         u32 val;
1635
1636         /* PCH only available on ILK+ */
1637         BUG_ON(dev_priv->info->gen < 5);
1638         if (pll == NULL)
1639                return;
1640
1641         if (WARN_ON(pll->refcount == 0))
1642                 return;
1643
1644         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645                       pll->pll_reg, pll->active, pll->on,
1646                       intel_crtc->base.base.id);
1647
1648         if (WARN_ON(pll->active == 0)) {
1649                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650                 return;
1651         }
1652
1653         if (--pll->active) {
1654                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655                 return;
1656         }
1657
1658         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660         /* Make sure transcoder isn't still depending on us */
1661         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663         reg = pll->pll_reg;
1664         val = I915_READ(reg);
1665         val &= ~DPLL_VCO_ENABLE;
1666         I915_WRITE(reg, val);
1667         POSTING_READ(reg);
1668         udelay(200);
1669
1670         pll->on = false;
1671 }
1672
1673 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1674                                            enum pipe pipe)
1675 {
1676         int reg;
1677         u32 val, pipeconf_val;
1678         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680         /* PCH only available on ILK+ */
1681         BUG_ON(dev_priv->info->gen < 5);
1682
1683         /* Make sure PCH DPLL is enabled */
1684         assert_pch_pll_enabled(dev_priv,
1685                                to_intel_crtc(crtc)->pch_pll,
1686                                to_intel_crtc(crtc));
1687
1688         /* FDI must be feeding us bits for PCH ports */
1689         assert_fdi_tx_enabled(dev_priv, pipe);
1690         assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692         reg = TRANSCONF(pipe);
1693         val = I915_READ(reg);
1694         pipeconf_val = I915_READ(PIPECONF(pipe));
1695
1696         if (HAS_PCH_IBX(dev_priv->dev)) {
1697                 /*
1698                  * make the BPC in transcoder be consistent with
1699                  * that in pipeconf reg.
1700                  */
1701                 val &= ~PIPE_BPC_MASK;
1702                 val |= pipeconf_val & PIPE_BPC_MASK;
1703         }
1704
1705         val &= ~TRANS_INTERLACE_MASK;
1706         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1707                 if (HAS_PCH_IBX(dev_priv->dev) &&
1708                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1709                         val |= TRANS_LEGACY_INTERLACED_ILK;
1710                 else
1711                         val |= TRANS_INTERLACED;
1712         else
1713                 val |= TRANS_PROGRESSIVE;
1714
1715         I915_WRITE(reg, val | TRANS_ENABLE);
1716         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1717                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1718 }
1719
1720 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1721                                       enum transcoder cpu_transcoder)
1722 {
1723         u32 val, pipeconf_val;
1724
1725         /* PCH only available on ILK+ */
1726         BUG_ON(dev_priv->info->gen < 5);
1727
1728         /* FDI must be feeding us bits for PCH ports */
1729         assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1730         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1731
1732         /* Workaround: set timing override bit. */
1733         val = I915_READ(_TRANSA_CHICKEN2);
1734         val |= TRANS_AUTOTRAIN_GEN_STALL_DIS;
1735         I915_WRITE(_TRANSA_CHICKEN2, val);
1736
1737         val = TRANS_ENABLE;
1738         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1739
1740         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1741             PIPECONF_INTERLACED_ILK)
1742                 val |= TRANS_INTERLACED;
1743         else
1744                 val |= TRANS_PROGRESSIVE;
1745
1746         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1747         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1748                 DRM_ERROR("Failed to enable PCH transcoder\n");
1749 }
1750
1751 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1752                                             enum pipe pipe)
1753 {
1754         int reg;
1755         u32 val;
1756
1757         /* FDI relies on the transcoder */
1758         assert_fdi_tx_disabled(dev_priv, pipe);
1759         assert_fdi_rx_disabled(dev_priv, pipe);
1760
1761         /* Ports must be off as well */
1762         assert_pch_ports_disabled(dev_priv, pipe);
1763
1764         reg = TRANSCONF(pipe);
1765         val = I915_READ(reg);
1766         val &= ~TRANS_ENABLE;
1767         I915_WRITE(reg, val);
1768         /* wait for PCH transcoder off, transcoder state */
1769         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1770                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1771 }
1772
1773 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1774                                        enum transcoder cpu_transcoder)
1775 {
1776         u32 val;
1777
1778         /* FDI relies on the transcoder */
1779         assert_fdi_tx_disabled(dev_priv, cpu_transcoder);
1780         assert_fdi_rx_disabled(dev_priv, TRANSCODER_A);
1781
1782         val = I915_READ(_TRANSACONF);
1783         val &= ~TRANS_ENABLE;
1784         I915_WRITE(_TRANSACONF, val);
1785         /* wait for PCH transcoder off, transcoder state */
1786         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1787                 DRM_ERROR("Failed to disable PCH transcoder\n");
1788
1789         /* Workaround: clear timing override bit. */
1790         val = I915_READ(_TRANSA_CHICKEN2);
1791         val &= ~TRANS_AUTOTRAIN_GEN_STALL_DIS;
1792         I915_WRITE(_TRANSA_CHICKEN2, val);
1793 }
1794
1795 /**
1796  * intel_enable_pipe - enable a pipe, asserting requirements
1797  * @dev_priv: i915 private structure
1798  * @pipe: pipe to enable
1799  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1800  *
1801  * Enable @pipe, making sure that various hardware specific requirements
1802  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1803  *
1804  * @pipe should be %PIPE_A or %PIPE_B.
1805  *
1806  * Will wait until the pipe is actually running (i.e. first vblank) before
1807  * returning.
1808  */
1809 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1810                               bool pch_port)
1811 {
1812         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1813                                                                       pipe);
1814         int reg;
1815         u32 val;
1816
1817         /*
1818          * A pipe without a PLL won't actually be able to drive bits from
1819          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1820          * need the check.
1821          */
1822         if (!HAS_PCH_SPLIT(dev_priv->dev))
1823                 assert_pll_enabled(dev_priv, pipe);
1824         else {
1825                 if (pch_port) {
1826                         /* if driving the PCH, we need FDI enabled */
1827                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1828                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1829                 }
1830                 /* FIXME: assert CPU port conditions for SNB+ */
1831         }
1832
1833         reg = PIPECONF(cpu_transcoder);
1834         val = I915_READ(reg);
1835         if (val & PIPECONF_ENABLE)
1836                 return;
1837
1838         I915_WRITE(reg, val | PIPECONF_ENABLE);
1839         intel_wait_for_vblank(dev_priv->dev, pipe);
1840 }
1841
1842 /**
1843  * intel_disable_pipe - disable a pipe, asserting requirements
1844  * @dev_priv: i915 private structure
1845  * @pipe: pipe to disable
1846  *
1847  * Disable @pipe, making sure that various hardware specific requirements
1848  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1849  *
1850  * @pipe should be %PIPE_A or %PIPE_B.
1851  *
1852  * Will wait until the pipe has shut down before returning.
1853  */
1854 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1855                                enum pipe pipe)
1856 {
1857         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1858                                                                       pipe);
1859         int reg;
1860         u32 val;
1861
1862         /*
1863          * Make sure planes won't keep trying to pump pixels to us,
1864          * or we might hang the display.
1865          */
1866         assert_planes_disabled(dev_priv, pipe);
1867
1868         /* Don't disable pipe A or pipe A PLLs if needed */
1869         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1870                 return;
1871
1872         reg = PIPECONF(cpu_transcoder);
1873         val = I915_READ(reg);
1874         if ((val & PIPECONF_ENABLE) == 0)
1875                 return;
1876
1877         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1878         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1879 }
1880
1881 /*
1882  * Plane regs are double buffered, going from enabled->disabled needs a
1883  * trigger in order to latch.  The display address reg provides this.
1884  */
1885 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1886                                       enum plane plane)
1887 {
1888         if (dev_priv->info->gen >= 4)
1889                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1890         else
1891                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1892 }
1893
1894 /**
1895  * intel_enable_plane - enable a display plane on a given pipe
1896  * @dev_priv: i915 private structure
1897  * @plane: plane to enable
1898  * @pipe: pipe being fed
1899  *
1900  * Enable @plane on @pipe, making sure that @pipe is running first.
1901  */
1902 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1903                                enum plane plane, enum pipe pipe)
1904 {
1905         int reg;
1906         u32 val;
1907
1908         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1909         assert_pipe_enabled(dev_priv, pipe);
1910
1911         reg = DSPCNTR(plane);
1912         val = I915_READ(reg);
1913         if (val & DISPLAY_PLANE_ENABLE)
1914                 return;
1915
1916         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1917         intel_flush_display_plane(dev_priv, plane);
1918         intel_wait_for_vblank(dev_priv->dev, pipe);
1919 }
1920
1921 /**
1922  * intel_disable_plane - disable a display plane
1923  * @dev_priv: i915 private structure
1924  * @plane: plane to disable
1925  * @pipe: pipe consuming the data
1926  *
1927  * Disable @plane; should be an independent operation.
1928  */
1929 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1930                                 enum plane plane, enum pipe pipe)
1931 {
1932         int reg;
1933         u32 val;
1934
1935         reg = DSPCNTR(plane);
1936         val = I915_READ(reg);
1937         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1938                 return;
1939
1940         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1941         intel_flush_display_plane(dev_priv, plane);
1942         intel_wait_for_vblank(dev_priv->dev, pipe);
1943 }
1944
1945 int
1946 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1947                            struct drm_i915_gem_object *obj,
1948                            struct intel_ring_buffer *pipelined)
1949 {
1950         struct drm_i915_private *dev_priv = dev->dev_private;
1951         u32 alignment;
1952         int ret;
1953
1954         switch (obj->tiling_mode) {
1955         case I915_TILING_NONE:
1956                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1957                         alignment = 128 * 1024;
1958                 else if (INTEL_INFO(dev)->gen >= 4)
1959                         alignment = 4 * 1024;
1960                 else
1961                         alignment = 64 * 1024;
1962                 break;
1963         case I915_TILING_X:
1964                 /* pin() will align the object as required by fence */
1965                 alignment = 0;
1966                 break;
1967         case I915_TILING_Y:
1968                 /* FIXME: Is this true? */
1969                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1970                 return -EINVAL;
1971         default:
1972                 BUG();
1973         }
1974
1975         dev_priv->mm.interruptible = false;
1976         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1977         if (ret)
1978                 goto err_interruptible;
1979
1980         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1981          * fence, whereas 965+ only requires a fence if using
1982          * framebuffer compression.  For simplicity, we always install
1983          * a fence as the cost is not that onerous.
1984          */
1985         ret = i915_gem_object_get_fence(obj);
1986         if (ret)
1987                 goto err_unpin;
1988
1989         i915_gem_object_pin_fence(obj);
1990
1991         dev_priv->mm.interruptible = true;
1992         return 0;
1993
1994 err_unpin:
1995         i915_gem_object_unpin(obj);
1996 err_interruptible:
1997         dev_priv->mm.interruptible = true;
1998         return ret;
1999 }
2000
2001 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2002 {
2003         i915_gem_object_unpin_fence(obj);
2004         i915_gem_object_unpin(obj);
2005 }
2006
2007 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2008  * is assumed to be a power-of-two. */
2009 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2010                                                unsigned int bpp,
2011                                                unsigned int pitch)
2012 {
2013         int tile_rows, tiles;
2014
2015         tile_rows = *y / 8;
2016         *y %= 8;
2017         tiles = *x / (512/bpp);
2018         *x %= 512/bpp;
2019
2020         return tile_rows * pitch * 8 + tiles * 4096;
2021 }
2022
2023 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2024                              int x, int y)
2025 {
2026         struct drm_device *dev = crtc->dev;
2027         struct drm_i915_private *dev_priv = dev->dev_private;
2028         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2029         struct intel_framebuffer *intel_fb;
2030         struct drm_i915_gem_object *obj;
2031         int plane = intel_crtc->plane;
2032         unsigned long linear_offset;
2033         u32 dspcntr;
2034         u32 reg;
2035
2036         switch (plane) {
2037         case 0:
2038         case 1:
2039                 break;
2040         default:
2041                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2042                 return -EINVAL;
2043         }
2044
2045         intel_fb = to_intel_framebuffer(fb);
2046         obj = intel_fb->obj;
2047
2048         reg = DSPCNTR(plane);
2049         dspcntr = I915_READ(reg);
2050         /* Mask out pixel format bits in case we change it */
2051         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2052         switch (fb->pixel_format) {
2053         case DRM_FORMAT_C8:
2054                 dspcntr |= DISPPLANE_8BPP;
2055                 break;
2056         case DRM_FORMAT_XRGB1555:
2057         case DRM_FORMAT_ARGB1555:
2058                 dspcntr |= DISPPLANE_BGRX555;
2059                 break;
2060         case DRM_FORMAT_RGB565:
2061                 dspcntr |= DISPPLANE_BGRX565;
2062                 break;
2063         case DRM_FORMAT_XRGB8888:
2064         case DRM_FORMAT_ARGB8888:
2065                 dspcntr |= DISPPLANE_BGRX888;
2066                 break;
2067         case DRM_FORMAT_XBGR8888:
2068         case DRM_FORMAT_ABGR8888:
2069                 dspcntr |= DISPPLANE_RGBX888;
2070                 break;
2071         case DRM_FORMAT_XRGB2101010:
2072         case DRM_FORMAT_ARGB2101010:
2073                 dspcntr |= DISPPLANE_BGRX101010;
2074                 break;
2075         case DRM_FORMAT_XBGR2101010:
2076         case DRM_FORMAT_ABGR2101010:
2077                 dspcntr |= DISPPLANE_RGBX101010;
2078                 break;
2079         default:
2080                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2081                 return -EINVAL;
2082         }
2083
2084         if (INTEL_INFO(dev)->gen >= 4) {
2085                 if (obj->tiling_mode != I915_TILING_NONE)
2086                         dspcntr |= DISPPLANE_TILED;
2087                 else
2088                         dspcntr &= ~DISPPLANE_TILED;
2089         }
2090
2091         I915_WRITE(reg, dspcntr);
2092
2093         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2094
2095         if (INTEL_INFO(dev)->gen >= 4) {
2096                 intel_crtc->dspaddr_offset =
2097                         intel_gen4_compute_offset_xtiled(&x, &y,
2098                                                          fb->bits_per_pixel / 8,
2099                                                          fb->pitches[0]);
2100                 linear_offset -= intel_crtc->dspaddr_offset;
2101         } else {
2102                 intel_crtc->dspaddr_offset = linear_offset;
2103         }
2104
2105         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2106                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2107         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2108         if (INTEL_INFO(dev)->gen >= 4) {
2109                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2110                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2111                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2112                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2113         } else
2114                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2115         POSTING_READ(reg);
2116
2117         return 0;
2118 }
2119
2120 static int ironlake_update_plane(struct drm_crtc *crtc,
2121                                  struct drm_framebuffer *fb, int x, int y)
2122 {
2123         struct drm_device *dev = crtc->dev;
2124         struct drm_i915_private *dev_priv = dev->dev_private;
2125         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2126         struct intel_framebuffer *intel_fb;
2127         struct drm_i915_gem_object *obj;
2128         int plane = intel_crtc->plane;
2129         unsigned long linear_offset;
2130         u32 dspcntr;
2131         u32 reg;
2132
2133         switch (plane) {
2134         case 0:
2135         case 1:
2136         case 2:
2137                 break;
2138         default:
2139                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2140                 return -EINVAL;
2141         }
2142
2143         intel_fb = to_intel_framebuffer(fb);
2144         obj = intel_fb->obj;
2145
2146         reg = DSPCNTR(plane);
2147         dspcntr = I915_READ(reg);
2148         /* Mask out pixel format bits in case we change it */
2149         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2150         switch (fb->pixel_format) {
2151         case DRM_FORMAT_C8:
2152                 dspcntr |= DISPPLANE_8BPP;
2153                 break;
2154         case DRM_FORMAT_RGB565:
2155                 dspcntr |= DISPPLANE_BGRX565;
2156                 break;
2157         case DRM_FORMAT_XRGB8888:
2158         case DRM_FORMAT_ARGB8888:
2159                 dspcntr |= DISPPLANE_BGRX888;
2160                 break;
2161         case DRM_FORMAT_XBGR8888:
2162         case DRM_FORMAT_ABGR8888:
2163                 dspcntr |= DISPPLANE_RGBX888;
2164                 break;
2165         case DRM_FORMAT_XRGB2101010:
2166         case DRM_FORMAT_ARGB2101010:
2167                 dspcntr |= DISPPLANE_BGRX101010;
2168                 break;
2169         case DRM_FORMAT_XBGR2101010:
2170         case DRM_FORMAT_ABGR2101010:
2171                 dspcntr |= DISPPLANE_RGBX101010;
2172                 break;
2173         default:
2174                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2175                 return -EINVAL;
2176         }
2177
2178         if (obj->tiling_mode != I915_TILING_NONE)
2179                 dspcntr |= DISPPLANE_TILED;
2180         else
2181                 dspcntr &= ~DISPPLANE_TILED;
2182
2183         /* must disable */
2184         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2185
2186         I915_WRITE(reg, dspcntr);
2187
2188         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2189         intel_crtc->dspaddr_offset =
2190                 intel_gen4_compute_offset_xtiled(&x, &y,
2191                                                  fb->bits_per_pixel / 8,
2192                                                  fb->pitches[0]);
2193         linear_offset -= intel_crtc->dspaddr_offset;
2194
2195         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2196                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2197         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2198         I915_MODIFY_DISPBASE(DSPSURF(plane),
2199                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2200         if (IS_HASWELL(dev)) {
2201                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2202         } else {
2203                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2204                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2205         }
2206         POSTING_READ(reg);
2207
2208         return 0;
2209 }
2210
2211 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2212 static int
2213 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2214                            int x, int y, enum mode_set_atomic state)
2215 {
2216         struct drm_device *dev = crtc->dev;
2217         struct drm_i915_private *dev_priv = dev->dev_private;
2218
2219         if (dev_priv->display.disable_fbc)
2220                 dev_priv->display.disable_fbc(dev);
2221         intel_increase_pllclock(crtc);
2222
2223         return dev_priv->display.update_plane(crtc, fb, x, y);
2224 }
2225
2226 static int
2227 intel_finish_fb(struct drm_framebuffer *old_fb)
2228 {
2229         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2230         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2231         bool was_interruptible = dev_priv->mm.interruptible;
2232         int ret;
2233
2234         wait_event(dev_priv->pending_flip_queue,
2235                    atomic_read(&dev_priv->mm.wedged) ||
2236                    atomic_read(&obj->pending_flip) == 0);
2237
2238         /* Big Hammer, we also need to ensure that any pending
2239          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2240          * current scanout is retired before unpinning the old
2241          * framebuffer.
2242          *
2243          * This should only fail upon a hung GPU, in which case we
2244          * can safely continue.
2245          */
2246         dev_priv->mm.interruptible = false;
2247         ret = i915_gem_object_finish_gpu(obj);
2248         dev_priv->mm.interruptible = was_interruptible;
2249
2250         return ret;
2251 }
2252
2253 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2254 {
2255         struct drm_device *dev = crtc->dev;
2256         struct drm_i915_master_private *master_priv;
2257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2258
2259         if (!dev->primary->master)
2260                 return;
2261
2262         master_priv = dev->primary->master->driver_priv;
2263         if (!master_priv->sarea_priv)
2264                 return;
2265
2266         switch (intel_crtc->pipe) {
2267         case 0:
2268                 master_priv->sarea_priv->pipeA_x = x;
2269                 master_priv->sarea_priv->pipeA_y = y;
2270                 break;
2271         case 1:
2272                 master_priv->sarea_priv->pipeB_x = x;
2273                 master_priv->sarea_priv->pipeB_y = y;
2274                 break;
2275         default:
2276                 break;
2277         }
2278 }
2279
2280 static int
2281 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2282                     struct drm_framebuffer *fb)
2283 {
2284         struct drm_device *dev = crtc->dev;
2285         struct drm_i915_private *dev_priv = dev->dev_private;
2286         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2287         struct drm_framebuffer *old_fb;
2288         int ret;
2289
2290         /* no fb bound */
2291         if (!fb) {
2292                 DRM_ERROR("No FB bound\n");
2293                 return 0;
2294         }
2295
2296         if(intel_crtc->plane > dev_priv->num_pipe) {
2297                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2298                                 intel_crtc->plane,
2299                                 dev_priv->num_pipe);
2300                 return -EINVAL;
2301         }
2302
2303         mutex_lock(&dev->struct_mutex);
2304         ret = intel_pin_and_fence_fb_obj(dev,
2305                                          to_intel_framebuffer(fb)->obj,
2306                                          NULL);
2307         if (ret != 0) {
2308                 mutex_unlock(&dev->struct_mutex);
2309                 DRM_ERROR("pin & fence failed\n");
2310                 return ret;
2311         }
2312
2313         if (crtc->fb)
2314                 intel_finish_fb(crtc->fb);
2315
2316         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2317         if (ret) {
2318                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2319                 mutex_unlock(&dev->struct_mutex);
2320                 DRM_ERROR("failed to update base address\n");
2321                 return ret;
2322         }
2323
2324         old_fb = crtc->fb;
2325         crtc->fb = fb;
2326         crtc->x = x;
2327         crtc->y = y;
2328
2329         if (old_fb) {
2330                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2331                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2332         }
2333
2334         intel_update_fbc(dev);
2335         mutex_unlock(&dev->struct_mutex);
2336
2337         intel_crtc_update_sarea_pos(crtc, x, y);
2338
2339         return 0;
2340 }
2341
2342 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2343 {
2344         struct drm_device *dev = crtc->dev;
2345         struct drm_i915_private *dev_priv = dev->dev_private;
2346         u32 dpa_ctl;
2347
2348         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2349         dpa_ctl = I915_READ(DP_A);
2350         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2351
2352         if (clock < 200000) {
2353                 u32 temp;
2354                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2355                 /* workaround for 160Mhz:
2356                    1) program 0x4600c bits 15:0 = 0x8124
2357                    2) program 0x46010 bit 0 = 1
2358                    3) program 0x46034 bit 24 = 1
2359                    4) program 0x64000 bit 14 = 1
2360                    */
2361                 temp = I915_READ(0x4600c);
2362                 temp &= 0xffff0000;
2363                 I915_WRITE(0x4600c, temp | 0x8124);
2364
2365                 temp = I915_READ(0x46010);
2366                 I915_WRITE(0x46010, temp | 1);
2367
2368                 temp = I915_READ(0x46034);
2369                 I915_WRITE(0x46034, temp | (1 << 24));
2370         } else {
2371                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2372         }
2373         I915_WRITE(DP_A, dpa_ctl);
2374
2375         POSTING_READ(DP_A);
2376         udelay(500);
2377 }
2378
2379 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2380 {
2381         struct drm_device *dev = crtc->dev;
2382         struct drm_i915_private *dev_priv = dev->dev_private;
2383         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2384         int pipe = intel_crtc->pipe;
2385         u32 reg, temp;
2386
2387         /* enable normal train */
2388         reg = FDI_TX_CTL(pipe);
2389         temp = I915_READ(reg);
2390         if (IS_IVYBRIDGE(dev)) {
2391                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2392                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2393         } else {
2394                 temp &= ~FDI_LINK_TRAIN_NONE;
2395                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2396         }
2397         I915_WRITE(reg, temp);
2398
2399         reg = FDI_RX_CTL(pipe);
2400         temp = I915_READ(reg);
2401         if (HAS_PCH_CPT(dev)) {
2402                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2403                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2404         } else {
2405                 temp &= ~FDI_LINK_TRAIN_NONE;
2406                 temp |= FDI_LINK_TRAIN_NONE;
2407         }
2408         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2409
2410         /* wait one idle pattern time */
2411         POSTING_READ(reg);
2412         udelay(1000);
2413
2414         /* IVB wants error correction enabled */
2415         if (IS_IVYBRIDGE(dev))
2416                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2417                            FDI_FE_ERRC_ENABLE);
2418 }
2419
2420 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2421 {
2422         struct drm_i915_private *dev_priv = dev->dev_private;
2423         u32 flags = I915_READ(SOUTH_CHICKEN1);
2424
2425         flags |= FDI_PHASE_SYNC_OVR(pipe);
2426         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2427         flags |= FDI_PHASE_SYNC_EN(pipe);
2428         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2429         POSTING_READ(SOUTH_CHICKEN1);
2430 }
2431
2432 static void ivb_modeset_global_resources(struct drm_device *dev)
2433 {
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         struct intel_crtc *pipe_B_crtc =
2436                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2437         struct intel_crtc *pipe_C_crtc =
2438                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2439         uint32_t temp;
2440
2441         /* When everything is off disable fdi C so that we could enable fdi B
2442          * with all lanes. XXX: This misses the case where a pipe is not using
2443          * any pch resources and so doesn't need any fdi lanes. */
2444         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2445                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2446                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2447
2448                 temp = I915_READ(SOUTH_CHICKEN1);
2449                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2450                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2451                 I915_WRITE(SOUTH_CHICKEN1, temp);
2452         }
2453 }
2454
2455 /* The FDI link training functions for ILK/Ibexpeak. */
2456 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2457 {
2458         struct drm_device *dev = crtc->dev;
2459         struct drm_i915_private *dev_priv = dev->dev_private;
2460         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2461         int pipe = intel_crtc->pipe;
2462         int plane = intel_crtc->plane;
2463         u32 reg, temp, tries;
2464
2465         /* FDI needs bits from pipe & plane first */
2466         assert_pipe_enabled(dev_priv, pipe);
2467         assert_plane_enabled(dev_priv, plane);
2468
2469         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2470            for train result */
2471         reg = FDI_RX_IMR(pipe);
2472         temp = I915_READ(reg);
2473         temp &= ~FDI_RX_SYMBOL_LOCK;
2474         temp &= ~FDI_RX_BIT_LOCK;
2475         I915_WRITE(reg, temp);
2476         I915_READ(reg);
2477         udelay(150);
2478
2479         /* enable CPU FDI TX and PCH FDI RX */
2480         reg = FDI_TX_CTL(pipe);
2481         temp = I915_READ(reg);
2482         temp &= ~(7 << 19);
2483         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2484         temp &= ~FDI_LINK_TRAIN_NONE;
2485         temp |= FDI_LINK_TRAIN_PATTERN_1;
2486         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2487
2488         reg = FDI_RX_CTL(pipe);
2489         temp = I915_READ(reg);
2490         temp &= ~FDI_LINK_TRAIN_NONE;
2491         temp |= FDI_LINK_TRAIN_PATTERN_1;
2492         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2493
2494         POSTING_READ(reg);
2495         udelay(150);
2496
2497         /* Ironlake workaround, enable clock pointer after FDI enable*/
2498         if (HAS_PCH_IBX(dev)) {
2499                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2500                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2501                            FDI_RX_PHASE_SYNC_POINTER_EN);
2502         }
2503
2504         reg = FDI_RX_IIR(pipe);
2505         for (tries = 0; tries < 5; tries++) {
2506                 temp = I915_READ(reg);
2507                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2508
2509                 if ((temp & FDI_RX_BIT_LOCK)) {
2510                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2511                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2512                         break;
2513                 }
2514         }
2515         if (tries == 5)
2516                 DRM_ERROR("FDI train 1 fail!\n");
2517
2518         /* Train 2 */
2519         reg = FDI_TX_CTL(pipe);
2520         temp = I915_READ(reg);
2521         temp &= ~FDI_LINK_TRAIN_NONE;
2522         temp |= FDI_LINK_TRAIN_PATTERN_2;
2523         I915_WRITE(reg, temp);
2524
2525         reg = FDI_RX_CTL(pipe);
2526         temp = I915_READ(reg);
2527         temp &= ~FDI_LINK_TRAIN_NONE;
2528         temp |= FDI_LINK_TRAIN_PATTERN_2;
2529         I915_WRITE(reg, temp);
2530
2531         POSTING_READ(reg);
2532         udelay(150);
2533
2534         reg = FDI_RX_IIR(pipe);
2535         for (tries = 0; tries < 5; tries++) {
2536                 temp = I915_READ(reg);
2537                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2538
2539                 if (temp & FDI_RX_SYMBOL_LOCK) {
2540                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2541                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2542                         break;
2543                 }
2544         }
2545         if (tries == 5)
2546                 DRM_ERROR("FDI train 2 fail!\n");
2547
2548         DRM_DEBUG_KMS("FDI train done\n");
2549
2550 }
2551
2552 static const int snb_b_fdi_train_param[] = {
2553         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2554         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2555         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2556         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2557 };
2558
2559 /* The FDI link training functions for SNB/Cougarpoint. */
2560 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2561 {
2562         struct drm_device *dev = crtc->dev;
2563         struct drm_i915_private *dev_priv = dev->dev_private;
2564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2565         int pipe = intel_crtc->pipe;
2566         u32 reg, temp, i, retry;
2567
2568         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2569            for train result */
2570         reg = FDI_RX_IMR(pipe);
2571         temp = I915_READ(reg);
2572         temp &= ~FDI_RX_SYMBOL_LOCK;
2573         temp &= ~FDI_RX_BIT_LOCK;
2574         I915_WRITE(reg, temp);
2575
2576         POSTING_READ(reg);
2577         udelay(150);
2578
2579         /* enable CPU FDI TX and PCH FDI RX */
2580         reg = FDI_TX_CTL(pipe);
2581         temp = I915_READ(reg);
2582         temp &= ~(7 << 19);
2583         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2584         temp &= ~FDI_LINK_TRAIN_NONE;
2585         temp |= FDI_LINK_TRAIN_PATTERN_1;
2586         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2587         /* SNB-B */
2588         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2589         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2590
2591         I915_WRITE(FDI_RX_MISC(pipe),
2592                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2593
2594         reg = FDI_RX_CTL(pipe);
2595         temp = I915_READ(reg);
2596         if (HAS_PCH_CPT(dev)) {
2597                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2598                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2599         } else {
2600                 temp &= ~FDI_LINK_TRAIN_NONE;
2601                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2602         }
2603         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2604
2605         POSTING_READ(reg);
2606         udelay(150);
2607
2608         if (HAS_PCH_CPT(dev))
2609                 cpt_phase_pointer_enable(dev, pipe);
2610
2611         for (i = 0; i < 4; i++) {
2612                 reg = FDI_TX_CTL(pipe);
2613                 temp = I915_READ(reg);
2614                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2615                 temp |= snb_b_fdi_train_param[i];
2616                 I915_WRITE(reg, temp);
2617
2618                 POSTING_READ(reg);
2619                 udelay(500);
2620
2621                 for (retry = 0; retry < 5; retry++) {
2622                         reg = FDI_RX_IIR(pipe);
2623                         temp = I915_READ(reg);
2624                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2625                         if (temp & FDI_RX_BIT_LOCK) {
2626                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2627                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2628                                 break;
2629                         }
2630                         udelay(50);
2631                 }
2632                 if (retry < 5)
2633                         break;
2634         }
2635         if (i == 4)
2636                 DRM_ERROR("FDI train 1 fail!\n");
2637
2638         /* Train 2 */
2639         reg = FDI_TX_CTL(pipe);
2640         temp = I915_READ(reg);
2641         temp &= ~FDI_LINK_TRAIN_NONE;
2642         temp |= FDI_LINK_TRAIN_PATTERN_2;
2643         if (IS_GEN6(dev)) {
2644                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645                 /* SNB-B */
2646                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2647         }
2648         I915_WRITE(reg, temp);
2649
2650         reg = FDI_RX_CTL(pipe);
2651         temp = I915_READ(reg);
2652         if (HAS_PCH_CPT(dev)) {
2653                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2654                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2655         } else {
2656                 temp &= ~FDI_LINK_TRAIN_NONE;
2657                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2658         }
2659         I915_WRITE(reg, temp);
2660
2661         POSTING_READ(reg);
2662         udelay(150);
2663
2664         for (i = 0; i < 4; i++) {
2665                 reg = FDI_TX_CTL(pipe);
2666                 temp = I915_READ(reg);
2667                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2668                 temp |= snb_b_fdi_train_param[i];
2669                 I915_WRITE(reg, temp);
2670
2671                 POSTING_READ(reg);
2672                 udelay(500);
2673
2674                 for (retry = 0; retry < 5; retry++) {
2675                         reg = FDI_RX_IIR(pipe);
2676                         temp = I915_READ(reg);
2677                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2678                         if (temp & FDI_RX_SYMBOL_LOCK) {
2679                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2680                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2681                                 break;
2682                         }
2683                         udelay(50);
2684                 }
2685                 if (retry < 5)
2686                         break;
2687         }
2688         if (i == 4)
2689                 DRM_ERROR("FDI train 2 fail!\n");
2690
2691         DRM_DEBUG_KMS("FDI train done.\n");
2692 }
2693
2694 /* Manual link training for Ivy Bridge A0 parts */
2695 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2696 {
2697         struct drm_device *dev = crtc->dev;
2698         struct drm_i915_private *dev_priv = dev->dev_private;
2699         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2700         int pipe = intel_crtc->pipe;
2701         u32 reg, temp, i;
2702
2703         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2704            for train result */
2705         reg = FDI_RX_IMR(pipe);
2706         temp = I915_READ(reg);
2707         temp &= ~FDI_RX_SYMBOL_LOCK;
2708         temp &= ~FDI_RX_BIT_LOCK;
2709         I915_WRITE(reg, temp);
2710
2711         POSTING_READ(reg);
2712         udelay(150);
2713
2714         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2715                       I915_READ(FDI_RX_IIR(pipe)));
2716
2717         /* enable CPU FDI TX and PCH FDI RX */
2718         reg = FDI_TX_CTL(pipe);
2719         temp = I915_READ(reg);
2720         temp &= ~(7 << 19);
2721         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2722         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2723         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2724         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2725         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2726         temp |= FDI_COMPOSITE_SYNC;
2727         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2728
2729         I915_WRITE(FDI_RX_MISC(pipe),
2730                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2731
2732         reg = FDI_RX_CTL(pipe);
2733         temp = I915_READ(reg);
2734         temp &= ~FDI_LINK_TRAIN_AUTO;
2735         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2736         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2737         temp |= FDI_COMPOSITE_SYNC;
2738         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2739
2740         POSTING_READ(reg);
2741         udelay(150);
2742
2743         if (HAS_PCH_CPT(dev))
2744                 cpt_phase_pointer_enable(dev, pipe);
2745
2746         for (i = 0; i < 4; i++) {
2747                 reg = FDI_TX_CTL(pipe);
2748                 temp = I915_READ(reg);
2749                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2750                 temp |= snb_b_fdi_train_param[i];
2751                 I915_WRITE(reg, temp);
2752
2753                 POSTING_READ(reg);
2754                 udelay(500);
2755
2756                 reg = FDI_RX_IIR(pipe);
2757                 temp = I915_READ(reg);
2758                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2759
2760                 if (temp & FDI_RX_BIT_LOCK ||
2761                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2762                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2763                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2764                         break;
2765                 }
2766         }
2767         if (i == 4)
2768                 DRM_ERROR("FDI train 1 fail!\n");
2769
2770         /* Train 2 */
2771         reg = FDI_TX_CTL(pipe);
2772         temp = I915_READ(reg);
2773         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2774         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2775         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2776         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2777         I915_WRITE(reg, temp);
2778
2779         reg = FDI_RX_CTL(pipe);
2780         temp = I915_READ(reg);
2781         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2782         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2783         I915_WRITE(reg, temp);
2784
2785         POSTING_READ(reg);
2786         udelay(150);
2787
2788         for (i = 0; i < 4; i++) {
2789                 reg = FDI_TX_CTL(pipe);
2790                 temp = I915_READ(reg);
2791                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2792                 temp |= snb_b_fdi_train_param[i];
2793                 I915_WRITE(reg, temp);
2794
2795                 POSTING_READ(reg);
2796                 udelay(500);
2797
2798                 reg = FDI_RX_IIR(pipe);
2799                 temp = I915_READ(reg);
2800                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2801
2802                 if (temp & FDI_RX_SYMBOL_LOCK) {
2803                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2804                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2805                         break;
2806                 }
2807         }
2808         if (i == 4)
2809                 DRM_ERROR("FDI train 2 fail!\n");
2810
2811         DRM_DEBUG_KMS("FDI train done.\n");
2812 }
2813
2814 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2815 {
2816         struct drm_device *dev = intel_crtc->base.dev;
2817         struct drm_i915_private *dev_priv = dev->dev_private;
2818         int pipe = intel_crtc->pipe;
2819         u32 reg, temp;
2820
2821
2822         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2823         reg = FDI_RX_CTL(pipe);
2824         temp = I915_READ(reg);
2825         temp &= ~((0x7 << 19) | (0x7 << 16));
2826         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2827         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2828         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2829
2830         POSTING_READ(reg);
2831         udelay(200);
2832
2833         /* Switch from Rawclk to PCDclk */
2834         temp = I915_READ(reg);
2835         I915_WRITE(reg, temp | FDI_PCDCLK);
2836
2837         POSTING_READ(reg);
2838         udelay(200);
2839
2840         /* On Haswell, the PLL configuration for ports and pipes is handled
2841          * separately, as part of DDI setup */
2842         if (!IS_HASWELL(dev)) {
2843                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2844                 reg = FDI_TX_CTL(pipe);
2845                 temp = I915_READ(reg);
2846                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2847                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2848
2849                         POSTING_READ(reg);
2850                         udelay(100);
2851                 }
2852         }
2853 }
2854
2855 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2856 {
2857         struct drm_device *dev = intel_crtc->base.dev;
2858         struct drm_i915_private *dev_priv = dev->dev_private;
2859         int pipe = intel_crtc->pipe;
2860         u32 reg, temp;
2861
2862         /* Switch from PCDclk to Rawclk */
2863         reg = FDI_RX_CTL(pipe);
2864         temp = I915_READ(reg);
2865         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2866
2867         /* Disable CPU FDI TX PLL */
2868         reg = FDI_TX_CTL(pipe);
2869         temp = I915_READ(reg);
2870         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2871
2872         POSTING_READ(reg);
2873         udelay(100);
2874
2875         reg = FDI_RX_CTL(pipe);
2876         temp = I915_READ(reg);
2877         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2878
2879         /* Wait for the clocks to turn off. */
2880         POSTING_READ(reg);
2881         udelay(100);
2882 }
2883
2884 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2885 {
2886         struct drm_i915_private *dev_priv = dev->dev_private;
2887         u32 flags = I915_READ(SOUTH_CHICKEN1);
2888
2889         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2890         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2891         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2892         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2893         POSTING_READ(SOUTH_CHICKEN1);
2894 }
2895 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2896 {
2897         struct drm_device *dev = crtc->dev;
2898         struct drm_i915_private *dev_priv = dev->dev_private;
2899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2900         int pipe = intel_crtc->pipe;
2901         u32 reg, temp;
2902
2903         /* disable CPU FDI tx and PCH FDI rx */
2904         reg = FDI_TX_CTL(pipe);
2905         temp = I915_READ(reg);
2906         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2907         POSTING_READ(reg);
2908
2909         reg = FDI_RX_CTL(pipe);
2910         temp = I915_READ(reg);
2911         temp &= ~(0x7 << 16);
2912         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2913         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2914
2915         POSTING_READ(reg);
2916         udelay(100);
2917
2918         /* Ironlake workaround, disable clock pointer after downing FDI */
2919         if (HAS_PCH_IBX(dev)) {
2920                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2921                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2922                            I915_READ(FDI_RX_CHICKEN(pipe) &
2923                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2924         } else if (HAS_PCH_CPT(dev)) {
2925                 cpt_phase_pointer_disable(dev, pipe);
2926         }
2927
2928         /* still set train pattern 1 */
2929         reg = FDI_TX_CTL(pipe);
2930         temp = I915_READ(reg);
2931         temp &= ~FDI_LINK_TRAIN_NONE;
2932         temp |= FDI_LINK_TRAIN_PATTERN_1;
2933         I915_WRITE(reg, temp);
2934
2935         reg = FDI_RX_CTL(pipe);
2936         temp = I915_READ(reg);
2937         if (HAS_PCH_CPT(dev)) {
2938                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2939                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2940         } else {
2941                 temp &= ~FDI_LINK_TRAIN_NONE;
2942                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2943         }
2944         /* BPC in FDI rx is consistent with that in PIPECONF */
2945         temp &= ~(0x07 << 16);
2946         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2947         I915_WRITE(reg, temp);
2948
2949         POSTING_READ(reg);
2950         udelay(100);
2951 }
2952
2953 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2954 {
2955         struct drm_device *dev = crtc->dev;
2956         struct drm_i915_private *dev_priv = dev->dev_private;
2957         unsigned long flags;
2958         bool pending;
2959
2960         if (atomic_read(&dev_priv->mm.wedged))
2961                 return false;
2962
2963         spin_lock_irqsave(&dev->event_lock, flags);
2964         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2965         spin_unlock_irqrestore(&dev->event_lock, flags);
2966
2967         return pending;
2968 }
2969
2970 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2971 {
2972         struct drm_device *dev = crtc->dev;
2973         struct drm_i915_private *dev_priv = dev->dev_private;
2974
2975         if (crtc->fb == NULL)
2976                 return;
2977
2978         wait_event(dev_priv->pending_flip_queue,
2979                    !intel_crtc_has_pending_flip(crtc));
2980
2981         mutex_lock(&dev->struct_mutex);
2982         intel_finish_fb(crtc->fb);
2983         mutex_unlock(&dev->struct_mutex);
2984 }
2985
2986 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2987 {
2988         struct drm_device *dev = crtc->dev;
2989         struct intel_encoder *intel_encoder;
2990
2991         /*
2992          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2993          * must be driven by its own crtc; no sharing is possible.
2994          */
2995         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2996                 switch (intel_encoder->type) {
2997                 case INTEL_OUTPUT_EDP:
2998                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2999                                 return false;
3000                         continue;
3001                 }
3002         }
3003
3004         return true;
3005 }
3006
3007 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3008 {
3009         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3010 }
3011
3012 /* Program iCLKIP clock to the desired frequency */
3013 static void lpt_program_iclkip(struct drm_crtc *crtc)
3014 {
3015         struct drm_device *dev = crtc->dev;
3016         struct drm_i915_private *dev_priv = dev->dev_private;
3017         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3018         u32 temp;
3019
3020         /* It is necessary to ungate the pixclk gate prior to programming
3021          * the divisors, and gate it back when it is done.
3022          */
3023         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3024
3025         /* Disable SSCCTL */
3026         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3027                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3028                                         SBI_SSCCTL_DISABLE);
3029
3030         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3031         if (crtc->mode.clock == 20000) {
3032                 auxdiv = 1;
3033                 divsel = 0x41;
3034                 phaseinc = 0x20;
3035         } else {
3036                 /* The iCLK virtual clock root frequency is in MHz,
3037                  * but the crtc->mode.clock in in KHz. To get the divisors,
3038                  * it is necessary to divide one by another, so we
3039                  * convert the virtual clock precision to KHz here for higher
3040                  * precision.
3041                  */
3042                 u32 iclk_virtual_root_freq = 172800 * 1000;
3043                 u32 iclk_pi_range = 64;
3044                 u32 desired_divisor, msb_divisor_value, pi_value;
3045
3046                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3047                 msb_divisor_value = desired_divisor / iclk_pi_range;
3048                 pi_value = desired_divisor % iclk_pi_range;
3049
3050                 auxdiv = 0;
3051                 divsel = msb_divisor_value - 2;
3052                 phaseinc = pi_value;
3053         }
3054
3055         /* This should not happen with any sane values */
3056         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3057                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3058         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3059                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3060
3061         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3062                         crtc->mode.clock,
3063                         auxdiv,
3064                         divsel,
3065                         phasedir,
3066                         phaseinc);
3067
3068         /* Program SSCDIVINTPHASE6 */
3069         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3070         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3071         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3072         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3073         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3074         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3075         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3076
3077         intel_sbi_write(dev_priv,
3078                         SBI_SSCDIVINTPHASE6,
3079                         temp);
3080
3081         /* Program SSCAUXDIV */
3082         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3083         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3084         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3085         intel_sbi_write(dev_priv,
3086                         SBI_SSCAUXDIV6,
3087                         temp);
3088
3089
3090         /* Enable modulator and associated divider */
3091         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3092         temp &= ~SBI_SSCCTL_DISABLE;
3093         intel_sbi_write(dev_priv,
3094                         SBI_SSCCTL6,
3095                         temp);
3096
3097         /* Wait for initialization time */
3098         udelay(24);
3099
3100         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3101 }
3102
3103 /*
3104  * Enable PCH resources required for PCH ports:
3105  *   - PCH PLLs
3106  *   - FDI training & RX/TX
3107  *   - update transcoder timings
3108  *   - DP transcoding bits
3109  *   - transcoder
3110  */
3111 static void ironlake_pch_enable(struct drm_crtc *crtc)
3112 {
3113         struct drm_device *dev = crtc->dev;
3114         struct drm_i915_private *dev_priv = dev->dev_private;
3115         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3116         int pipe = intel_crtc->pipe;
3117         u32 reg, temp;
3118
3119         assert_transcoder_disabled(dev_priv, pipe);
3120
3121         /* Write the TU size bits before fdi link training, so that error
3122          * detection works. */
3123         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3124                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3125
3126         /* For PCH output, training FDI link */
3127         dev_priv->display.fdi_link_train(crtc);
3128
3129         /* XXX: pch pll's can be enabled any time before we enable the PCH
3130          * transcoder, and we actually should do this to not upset any PCH
3131          * transcoder that already use the clock when we share it.
3132          *
3133          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3134          * unconditionally resets the pll - we need that to have the right LVDS
3135          * enable sequence. */
3136         ironlake_enable_pch_pll(intel_crtc);
3137
3138         if (HAS_PCH_CPT(dev)) {
3139                 u32 sel;
3140
3141                 temp = I915_READ(PCH_DPLL_SEL);
3142                 switch (pipe) {
3143                 default:
3144                 case 0:
3145                         temp |= TRANSA_DPLL_ENABLE;
3146                         sel = TRANSA_DPLLB_SEL;
3147                         break;
3148                 case 1:
3149                         temp |= TRANSB_DPLL_ENABLE;
3150                         sel = TRANSB_DPLLB_SEL;
3151                         break;
3152                 case 2:
3153                         temp |= TRANSC_DPLL_ENABLE;
3154                         sel = TRANSC_DPLLB_SEL;
3155                         break;
3156                 }
3157                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3158                         temp |= sel;
3159                 else
3160                         temp &= ~sel;
3161                 I915_WRITE(PCH_DPLL_SEL, temp);
3162         }
3163
3164         /* set transcoder timing, panel must allow it */
3165         assert_panel_unlocked(dev_priv, pipe);
3166         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3167         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3168         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3169
3170         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3171         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3172         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3173         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3174
3175         intel_fdi_normal_train(crtc);
3176
3177         /* For PCH DP, enable TRANS_DP_CTL */
3178         if (HAS_PCH_CPT(dev) &&
3179             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3180              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3181                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3182                 reg = TRANS_DP_CTL(pipe);
3183                 temp = I915_READ(reg);
3184                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3185                           TRANS_DP_SYNC_MASK |
3186                           TRANS_DP_BPC_MASK);
3187                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3188                          TRANS_DP_ENH_FRAMING);
3189                 temp |= bpc << 9; /* same format but at 11:9 */
3190
3191                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3192                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3193                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3194                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3195
3196                 switch (intel_trans_dp_port_sel(crtc)) {
3197                 case PCH_DP_B:
3198                         temp |= TRANS_DP_PORT_SEL_B;
3199                         break;
3200                 case PCH_DP_C:
3201                         temp |= TRANS_DP_PORT_SEL_C;
3202                         break;
3203                 case PCH_DP_D:
3204                         temp |= TRANS_DP_PORT_SEL_D;
3205                         break;
3206                 default:
3207                         BUG();
3208                 }
3209
3210                 I915_WRITE(reg, temp);
3211         }
3212
3213         ironlake_enable_pch_transcoder(dev_priv, pipe);
3214 }
3215
3216 static void lpt_pch_enable(struct drm_crtc *crtc)
3217 {
3218         struct drm_device *dev = crtc->dev;
3219         struct drm_i915_private *dev_priv = dev->dev_private;
3220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3221         int pipe = intel_crtc->pipe;
3222         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3223
3224         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3225
3226         /* Write the TU size bits before fdi link training, so that error
3227          * detection works. */
3228         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3229                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3230
3231         /* For PCH output, training FDI link */
3232         dev_priv->display.fdi_link_train(crtc);
3233
3234         lpt_program_iclkip(crtc);
3235
3236         /* Set transcoder timing. */
3237         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3238         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3239         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3240
3241         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3242         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3243         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3244         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3245
3246         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3247 }
3248
3249 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3250 {
3251         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3252
3253         if (pll == NULL)
3254                 return;
3255
3256         if (pll->refcount == 0) {
3257                 WARN(1, "bad PCH PLL refcount\n");
3258                 return;
3259         }
3260
3261         --pll->refcount;
3262         intel_crtc->pch_pll = NULL;
3263 }
3264
3265 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3266 {
3267         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3268         struct intel_pch_pll *pll;
3269         int i;
3270
3271         pll = intel_crtc->pch_pll;
3272         if (pll) {
3273                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3274                               intel_crtc->base.base.id, pll->pll_reg);
3275                 goto prepare;
3276         }
3277
3278         if (HAS_PCH_IBX(dev_priv->dev)) {
3279                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3280                 i = intel_crtc->pipe;
3281                 pll = &dev_priv->pch_plls[i];
3282
3283                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3284                               intel_crtc->base.base.id, pll->pll_reg);
3285
3286                 goto found;
3287         }
3288
3289         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3290                 pll = &dev_priv->pch_plls[i];
3291
3292                 /* Only want to check enabled timings first */
3293                 if (pll->refcount == 0)
3294                         continue;
3295
3296                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3297                     fp == I915_READ(pll->fp0_reg)) {
3298                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3299                                       intel_crtc->base.base.id,
3300                                       pll->pll_reg, pll->refcount, pll->active);
3301
3302                         goto found;
3303                 }
3304         }
3305
3306         /* Ok no matching timings, maybe there's a free one? */
3307         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3308                 pll = &dev_priv->pch_plls[i];
3309                 if (pll->refcount == 0) {
3310                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3311                                       intel_crtc->base.base.id, pll->pll_reg);
3312                         goto found;
3313                 }
3314         }
3315
3316         return NULL;
3317
3318 found:
3319         intel_crtc->pch_pll = pll;
3320         pll->refcount++;
3321         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3322 prepare: /* separate function? */
3323         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3324
3325         /* Wait for the clocks to stabilize before rewriting the regs */
3326         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3327         POSTING_READ(pll->pll_reg);
3328         udelay(150);
3329
3330         I915_WRITE(pll->fp0_reg, fp);
3331         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3332         pll->on = false;
3333         return pll;
3334 }
3335
3336 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3337 {
3338         struct drm_i915_private *dev_priv = dev->dev_private;
3339         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3340         u32 temp;
3341
3342         temp = I915_READ(dslreg);
3343         udelay(500);
3344         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3345                 /* Without this, mode sets may fail silently on FDI */
3346                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3347                 udelay(250);
3348                 I915_WRITE(tc2reg, 0);
3349                 if (wait_for(I915_READ(dslreg) != temp, 5))
3350                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3351         }
3352 }
3353
3354 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3355 {
3356         struct drm_device *dev = crtc->dev;
3357         struct drm_i915_private *dev_priv = dev->dev_private;
3358         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3359         struct intel_encoder *encoder;
3360         int pipe = intel_crtc->pipe;
3361         int plane = intel_crtc->plane;
3362         u32 temp;
3363         bool is_pch_port;
3364
3365         WARN_ON(!crtc->enabled);
3366
3367         if (intel_crtc->active)
3368                 return;
3369
3370         intel_crtc->active = true;
3371         intel_update_watermarks(dev);
3372
3373         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3374                 temp = I915_READ(PCH_LVDS);
3375                 if ((temp & LVDS_PORT_EN) == 0)
3376                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3377         }
3378
3379         is_pch_port = ironlake_crtc_driving_pch(crtc);
3380
3381         if (is_pch_port) {
3382                 /* Note: FDI PLL enabling _must_ be done before we enable the
3383                  * cpu pipes, hence this is separate from all the other fdi/pch
3384                  * enabling. */
3385                 ironlake_fdi_pll_enable(intel_crtc);
3386         } else {
3387                 assert_fdi_tx_disabled(dev_priv, pipe);
3388                 assert_fdi_rx_disabled(dev_priv, pipe);
3389         }
3390
3391         for_each_encoder_on_crtc(dev, crtc, encoder)
3392                 if (encoder->pre_enable)
3393                         encoder->pre_enable(encoder);
3394
3395         /* Enable panel fitting for LVDS */
3396         if (dev_priv->pch_pf_size &&
3397             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3398                 /* Force use of hard-coded filter coefficients
3399                  * as some pre-programmed values are broken,
3400                  * e.g. x201.
3401                  */
3402                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3403                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3404                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3405         }
3406
3407         /*
3408          * On ILK+ LUT must be loaded before the pipe is running but with
3409          * clocks enabled
3410          */
3411         intel_crtc_load_lut(crtc);
3412
3413         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3414         intel_enable_plane(dev_priv, plane, pipe);
3415
3416         if (is_pch_port)
3417                 ironlake_pch_enable(crtc);
3418
3419         mutex_lock(&dev->struct_mutex);
3420         intel_update_fbc(dev);
3421         mutex_unlock(&dev->struct_mutex);
3422
3423         intel_crtc_update_cursor(crtc, true);
3424
3425         for_each_encoder_on_crtc(dev, crtc, encoder)
3426                 encoder->enable(encoder);
3427
3428         if (HAS_PCH_CPT(dev))
3429                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3430
3431         /*
3432          * There seems to be a race in PCH platform hw (at least on some
3433          * outputs) where an enabled pipe still completes any pageflip right
3434          * away (as if the pipe is off) instead of waiting for vblank. As soon
3435          * as the first vblank happend, everything works as expected. Hence just
3436          * wait for one vblank before returning to avoid strange things
3437          * happening.
3438          */
3439         intel_wait_for_vblank(dev, intel_crtc->pipe);
3440 }
3441
3442 static void haswell_crtc_enable(struct drm_crtc *crtc)
3443 {
3444         struct drm_device *dev = crtc->dev;
3445         struct drm_i915_private *dev_priv = dev->dev_private;
3446         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3447         struct intel_encoder *encoder;
3448         int pipe = intel_crtc->pipe;
3449         int plane = intel_crtc->plane;
3450         bool is_pch_port;
3451
3452         WARN_ON(!crtc->enabled);
3453
3454         if (intel_crtc->active)
3455                 return;
3456
3457         intel_crtc->active = true;
3458         intel_update_watermarks(dev);
3459
3460         is_pch_port = haswell_crtc_driving_pch(crtc);
3461
3462         if (is_pch_port)
3463                 ironlake_fdi_pll_enable(intel_crtc);
3464
3465         for_each_encoder_on_crtc(dev, crtc, encoder)
3466                 if (encoder->pre_enable)
3467                         encoder->pre_enable(encoder);
3468
3469         intel_ddi_enable_pipe_clock(intel_crtc);
3470
3471         /* Enable panel fitting for eDP */
3472         if (dev_priv->pch_pf_size && HAS_eDP) {
3473                 /* Force use of hard-coded filter coefficients
3474                  * as some pre-programmed values are broken,
3475                  * e.g. x201.
3476                  */
3477                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3478                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3479                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3480         }
3481
3482         /*
3483          * On ILK+ LUT must be loaded before the pipe is running but with
3484          * clocks enabled
3485          */
3486         intel_crtc_load_lut(crtc);
3487
3488         intel_ddi_set_pipe_settings(crtc);
3489         intel_ddi_enable_pipe_func(crtc);
3490
3491         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3492         intel_enable_plane(dev_priv, plane, pipe);
3493
3494         if (is_pch_port)
3495                 lpt_pch_enable(crtc);
3496
3497         mutex_lock(&dev->struct_mutex);
3498         intel_update_fbc(dev);
3499         mutex_unlock(&dev->struct_mutex);
3500
3501         intel_crtc_update_cursor(crtc, true);
3502
3503         for_each_encoder_on_crtc(dev, crtc, encoder)
3504                 encoder->enable(encoder);
3505
3506         /*
3507          * There seems to be a race in PCH platform hw (at least on some
3508          * outputs) where an enabled pipe still completes any pageflip right
3509          * away (as if the pipe is off) instead of waiting for vblank. As soon
3510          * as the first vblank happend, everything works as expected. Hence just
3511          * wait for one vblank before returning to avoid strange things
3512          * happening.
3513          */
3514         intel_wait_for_vblank(dev, intel_crtc->pipe);
3515 }
3516
3517 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3518 {
3519         struct drm_device *dev = crtc->dev;
3520         struct drm_i915_private *dev_priv = dev->dev_private;
3521         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3522         struct intel_encoder *encoder;
3523         int pipe = intel_crtc->pipe;
3524         int plane = intel_crtc->plane;
3525         u32 reg, temp;
3526
3527
3528         if (!intel_crtc->active)
3529                 return;
3530
3531         for_each_encoder_on_crtc(dev, crtc, encoder)
3532                 encoder->disable(encoder);
3533
3534         intel_crtc_wait_for_pending_flips(crtc);
3535         drm_vblank_off(dev, pipe);
3536         intel_crtc_update_cursor(crtc, false);
3537
3538         intel_disable_plane(dev_priv, plane, pipe);
3539
3540         if (dev_priv->cfb_plane == plane)
3541                 intel_disable_fbc(dev);
3542
3543         intel_disable_pipe(dev_priv, pipe);
3544
3545         /* Disable PF */
3546         I915_WRITE(PF_CTL(pipe), 0);
3547         I915_WRITE(PF_WIN_SZ(pipe), 0);
3548
3549         for_each_encoder_on_crtc(dev, crtc, encoder)
3550                 if (encoder->post_disable)
3551                         encoder->post_disable(encoder);
3552
3553         ironlake_fdi_disable(crtc);
3554
3555         ironlake_disable_pch_transcoder(dev_priv, pipe);
3556
3557         if (HAS_PCH_CPT(dev)) {
3558                 /* disable TRANS_DP_CTL */
3559                 reg = TRANS_DP_CTL(pipe);
3560                 temp = I915_READ(reg);
3561                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3562                 temp |= TRANS_DP_PORT_SEL_NONE;
3563                 I915_WRITE(reg, temp);
3564
3565                 /* disable DPLL_SEL */
3566                 temp = I915_READ(PCH_DPLL_SEL);
3567                 switch (pipe) {
3568                 case 0:
3569                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3570                         break;
3571                 case 1:
3572                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3573                         break;
3574                 case 2:
3575                         /* C shares PLL A or B */
3576                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3577                         break;
3578                 default:
3579                         BUG(); /* wtf */
3580                 }
3581                 I915_WRITE(PCH_DPLL_SEL, temp);
3582         }
3583
3584         /* disable PCH DPLL */
3585         intel_disable_pch_pll(intel_crtc);
3586
3587         ironlake_fdi_pll_disable(intel_crtc);
3588
3589         intel_crtc->active = false;
3590         intel_update_watermarks(dev);
3591
3592         mutex_lock(&dev->struct_mutex);
3593         intel_update_fbc(dev);
3594         mutex_unlock(&dev->struct_mutex);
3595 }
3596
3597 static void haswell_crtc_disable(struct drm_crtc *crtc)
3598 {
3599         struct drm_device *dev = crtc->dev;
3600         struct drm_i915_private *dev_priv = dev->dev_private;
3601         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3602         struct intel_encoder *encoder;
3603         int pipe = intel_crtc->pipe;
3604         int plane = intel_crtc->plane;
3605         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3606         bool is_pch_port;
3607
3608         if (!intel_crtc->active)
3609                 return;
3610
3611         is_pch_port = haswell_crtc_driving_pch(crtc);
3612
3613         for_each_encoder_on_crtc(dev, crtc, encoder)
3614                 encoder->disable(encoder);
3615
3616         intel_crtc_wait_for_pending_flips(crtc);
3617         drm_vblank_off(dev, pipe);
3618         intel_crtc_update_cursor(crtc, false);
3619
3620         intel_disable_plane(dev_priv, plane, pipe);
3621
3622         if (dev_priv->cfb_plane == plane)
3623                 intel_disable_fbc(dev);
3624
3625         intel_disable_pipe(dev_priv, pipe);
3626
3627         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3628
3629         /* Disable PF */
3630         I915_WRITE(PF_CTL(pipe), 0);
3631         I915_WRITE(PF_WIN_SZ(pipe), 0);
3632
3633         intel_ddi_disable_pipe_clock(intel_crtc);
3634
3635         for_each_encoder_on_crtc(dev, crtc, encoder)
3636                 if (encoder->post_disable)
3637                         encoder->post_disable(encoder);
3638
3639         if (is_pch_port) {
3640                 ironlake_fdi_disable(crtc);
3641                 lpt_disable_pch_transcoder(dev_priv, cpu_transcoder);
3642                 ironlake_fdi_pll_disable(intel_crtc);
3643         }
3644
3645         intel_crtc->active = false;
3646         intel_update_watermarks(dev);
3647
3648         mutex_lock(&dev->struct_mutex);
3649         intel_update_fbc(dev);
3650         mutex_unlock(&dev->struct_mutex);
3651 }
3652
3653 static void ironlake_crtc_off(struct drm_crtc *crtc)
3654 {
3655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3656         intel_put_pch_pll(intel_crtc);
3657 }
3658
3659 static void haswell_crtc_off(struct drm_crtc *crtc)
3660 {
3661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3662
3663         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3664          * start using it. */
3665         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3666
3667         intel_ddi_put_crtc_pll(crtc);
3668 }
3669
3670 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3671 {
3672         if (!enable && intel_crtc->overlay) {
3673                 struct drm_device *dev = intel_crtc->base.dev;
3674                 struct drm_i915_private *dev_priv = dev->dev_private;
3675
3676                 mutex_lock(&dev->struct_mutex);
3677                 dev_priv->mm.interruptible = false;
3678                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3679                 dev_priv->mm.interruptible = true;
3680                 mutex_unlock(&dev->struct_mutex);
3681         }
3682
3683         /* Let userspace switch the overlay on again. In most cases userspace
3684          * has to recompute where to put it anyway.
3685          */
3686 }
3687
3688 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3689 {
3690         struct drm_device *dev = crtc->dev;
3691         struct drm_i915_private *dev_priv = dev->dev_private;
3692         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3693         struct intel_encoder *encoder;
3694         int pipe = intel_crtc->pipe;
3695         int plane = intel_crtc->plane;
3696
3697         WARN_ON(!crtc->enabled);
3698
3699         if (intel_crtc->active)
3700                 return;
3701
3702         intel_crtc->active = true;
3703         intel_update_watermarks(dev);
3704
3705         intel_enable_pll(dev_priv, pipe);
3706         intel_enable_pipe(dev_priv, pipe, false);
3707         intel_enable_plane(dev_priv, plane, pipe);
3708
3709         intel_crtc_load_lut(crtc);
3710         intel_update_fbc(dev);
3711
3712         /* Give the overlay scaler a chance to enable if it's on this pipe */
3713         intel_crtc_dpms_overlay(intel_crtc, true);
3714         intel_crtc_update_cursor(crtc, true);
3715
3716         for_each_encoder_on_crtc(dev, crtc, encoder)
3717                 encoder->enable(encoder);
3718 }
3719
3720 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3721 {
3722         struct drm_device *dev = crtc->dev;
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3725         struct intel_encoder *encoder;
3726         int pipe = intel_crtc->pipe;
3727         int plane = intel_crtc->plane;
3728
3729
3730         if (!intel_crtc->active)
3731                 return;
3732
3733         for_each_encoder_on_crtc(dev, crtc, encoder)
3734                 encoder->disable(encoder);
3735
3736         /* Give the overlay scaler a chance to disable if it's on this pipe */
3737         intel_crtc_wait_for_pending_flips(crtc);
3738         drm_vblank_off(dev, pipe);
3739         intel_crtc_dpms_overlay(intel_crtc, false);
3740         intel_crtc_update_cursor(crtc, false);
3741
3742         if (dev_priv->cfb_plane == plane)
3743                 intel_disable_fbc(dev);
3744
3745         intel_disable_plane(dev_priv, plane, pipe);
3746         intel_disable_pipe(dev_priv, pipe);
3747         intel_disable_pll(dev_priv, pipe);
3748
3749         intel_crtc->active = false;
3750         intel_update_fbc(dev);
3751         intel_update_watermarks(dev);
3752 }
3753
3754 static void i9xx_crtc_off(struct drm_crtc *crtc)
3755 {
3756 }
3757
3758 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3759                                     bool enabled)
3760 {
3761         struct drm_device *dev = crtc->dev;
3762         struct drm_i915_master_private *master_priv;
3763         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3764         int pipe = intel_crtc->pipe;
3765
3766         if (!dev->primary->master)
3767                 return;
3768
3769         master_priv = dev->primary->master->driver_priv;
3770         if (!master_priv->sarea_priv)
3771                 return;
3772
3773         switch (pipe) {
3774         case 0:
3775                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3776                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3777                 break;
3778         case 1:
3779                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3780                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3781                 break;
3782         default:
3783                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3784                 break;
3785         }
3786 }
3787
3788 /**
3789  * Sets the power management mode of the pipe and plane.
3790  */
3791 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3792 {
3793         struct drm_device *dev = crtc->dev;
3794         struct drm_i915_private *dev_priv = dev->dev_private;
3795         struct intel_encoder *intel_encoder;
3796         bool enable = false;
3797
3798         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3799                 enable |= intel_encoder->connectors_active;
3800
3801         if (enable)
3802                 dev_priv->display.crtc_enable(crtc);
3803         else
3804                 dev_priv->display.crtc_disable(crtc);
3805
3806         intel_crtc_update_sarea(crtc, enable);
3807 }
3808
3809 static void intel_crtc_noop(struct drm_crtc *crtc)
3810 {
3811 }
3812
3813 static void intel_crtc_disable(struct drm_crtc *crtc)
3814 {
3815         struct drm_device *dev = crtc->dev;
3816         struct drm_connector *connector;
3817         struct drm_i915_private *dev_priv = dev->dev_private;
3818
3819         /* crtc should still be enabled when we disable it. */
3820         WARN_ON(!crtc->enabled);
3821
3822         dev_priv->display.crtc_disable(crtc);
3823         intel_crtc_update_sarea(crtc, false);
3824         dev_priv->display.off(crtc);
3825
3826         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3827         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3828
3829         if (crtc->fb) {
3830                 mutex_lock(&dev->struct_mutex);
3831                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3832                 mutex_unlock(&dev->struct_mutex);
3833                 crtc->fb = NULL;
3834         }
3835
3836         /* Update computed state. */
3837         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3838                 if (!connector->encoder || !connector->encoder->crtc)
3839                         continue;
3840
3841                 if (connector->encoder->crtc != crtc)
3842                         continue;
3843
3844                 connector->dpms = DRM_MODE_DPMS_OFF;
3845                 to_intel_encoder(connector->encoder)->connectors_active = false;
3846         }
3847 }
3848
3849 void intel_modeset_disable(struct drm_device *dev)
3850 {
3851         struct drm_crtc *crtc;
3852
3853         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3854                 if (crtc->enabled)
3855                         intel_crtc_disable(crtc);
3856         }
3857 }
3858
3859 void intel_encoder_noop(struct drm_encoder *encoder)
3860 {
3861 }
3862
3863 void intel_encoder_destroy(struct drm_encoder *encoder)
3864 {
3865         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3866
3867         drm_encoder_cleanup(encoder);
3868         kfree(intel_encoder);
3869 }
3870
3871 /* Simple dpms helper for encodres with just one connector, no cloning and only
3872  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3873  * state of the entire output pipe. */
3874 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3875 {
3876         if (mode == DRM_MODE_DPMS_ON) {
3877                 encoder->connectors_active = true;
3878
3879                 intel_crtc_update_dpms(encoder->base.crtc);
3880         } else {
3881                 encoder->connectors_active = false;
3882
3883                 intel_crtc_update_dpms(encoder->base.crtc);
3884         }
3885 }
3886
3887 /* Cross check the actual hw state with our own modeset state tracking (and it's
3888  * internal consistency). */
3889 static void intel_connector_check_state(struct intel_connector *connector)
3890 {
3891         if (connector->get_hw_state(connector)) {
3892                 struct intel_encoder *encoder = connector->encoder;
3893                 struct drm_crtc *crtc;
3894                 bool encoder_enabled;
3895                 enum pipe pipe;
3896
3897                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3898                               connector->base.base.id,
3899                               drm_get_connector_name(&connector->base));
3900
3901                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3902                      "wrong connector dpms state\n");
3903                 WARN(connector->base.encoder != &encoder->base,
3904                      "active connector not linked to encoder\n");
3905                 WARN(!encoder->connectors_active,
3906                      "encoder->connectors_active not set\n");
3907
3908                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3909                 WARN(!encoder_enabled, "encoder not enabled\n");
3910                 if (WARN_ON(!encoder->base.crtc))
3911                         return;
3912
3913                 crtc = encoder->base.crtc;
3914
3915                 WARN(!crtc->enabled, "crtc not enabled\n");
3916                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3917                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3918                      "encoder active on the wrong pipe\n");
3919         }
3920 }
3921
3922 /* Even simpler default implementation, if there's really no special case to
3923  * consider. */
3924 void intel_connector_dpms(struct drm_connector *connector, int mode)
3925 {
3926         struct intel_encoder *encoder = intel_attached_encoder(connector);
3927
3928         /* All the simple cases only support two dpms states. */
3929         if (mode != DRM_MODE_DPMS_ON)
3930                 mode = DRM_MODE_DPMS_OFF;
3931
3932         if (mode == connector->dpms)
3933                 return;
3934
3935         connector->dpms = mode;
3936
3937         /* Only need to change hw state when actually enabled */
3938         if (encoder->base.crtc)
3939                 intel_encoder_dpms(encoder, mode);
3940         else
3941                 WARN_ON(encoder->connectors_active != false);
3942
3943         intel_modeset_check_state(connector->dev);
3944 }
3945
3946 /* Simple connector->get_hw_state implementation for encoders that support only
3947  * one connector and no cloning and hence the encoder state determines the state
3948  * of the connector. */
3949 bool intel_connector_get_hw_state(struct intel_connector *connector)
3950 {
3951         enum pipe pipe = 0;
3952         struct intel_encoder *encoder = connector->encoder;
3953
3954         return encoder->get_hw_state(encoder, &pipe);
3955 }
3956
3957 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3958                                   const struct drm_display_mode *mode,
3959                                   struct drm_display_mode *adjusted_mode)
3960 {
3961         struct drm_device *dev = crtc->dev;
3962
3963         if (HAS_PCH_SPLIT(dev)) {
3964                 /* FDI link clock is fixed at 2.7G */
3965                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3966                         return false;
3967         }
3968
3969         /* All interlaced capable intel hw wants timings in frames. Note though
3970          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3971          * timings, so we need to be careful not to clobber these.*/
3972         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3973                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3974
3975         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3976          * with a hsync front porch of 0.
3977          */
3978         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3979                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3980                 return false;
3981
3982         return true;
3983 }
3984
3985 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3986 {
3987         return 400000; /* FIXME */
3988 }
3989
3990 static int i945_get_display_clock_speed(struct drm_device *dev)
3991 {
3992         return 400000;
3993 }
3994
3995 static int i915_get_display_clock_speed(struct drm_device *dev)
3996 {
3997         return 333000;
3998 }
3999
4000 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4001 {
4002         return 200000;
4003 }
4004
4005 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4006 {
4007         u16 gcfgc = 0;
4008
4009         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4010
4011         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4012                 return 133000;
4013         else {
4014                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4015                 case GC_DISPLAY_CLOCK_333_MHZ:
4016                         return 333000;
4017                 default:
4018                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4019                         return 190000;
4020                 }
4021         }
4022 }
4023
4024 static int i865_get_display_clock_speed(struct drm_device *dev)
4025 {
4026         return 266000;
4027 }
4028
4029 static int i855_get_display_clock_speed(struct drm_device *dev)
4030 {
4031         u16 hpllcc = 0;
4032         /* Assume that the hardware is in the high speed state.  This
4033          * should be the default.
4034          */
4035         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4036         case GC_CLOCK_133_200:
4037         case GC_CLOCK_100_200:
4038                 return 200000;
4039         case GC_CLOCK_166_250:
4040                 return 250000;
4041         case GC_CLOCK_100_133:
4042                 return 133000;
4043         }
4044
4045         /* Shouldn't happen */
4046         return 0;
4047 }
4048
4049 static int i830_get_display_clock_speed(struct drm_device *dev)
4050 {
4051         return 133000;
4052 }
4053
4054 struct fdi_m_n {
4055         u32        tu;
4056         u32        gmch_m;
4057         u32        gmch_n;
4058         u32        link_m;
4059         u32        link_n;
4060 };
4061
4062 static void
4063 fdi_reduce_ratio(u32 *num, u32 *den)
4064 {
4065         while (*num > 0xffffff || *den > 0xffffff) {
4066                 *num >>= 1;
4067                 *den >>= 1;
4068         }
4069 }
4070
4071 static void
4072 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4073                      int link_clock, struct fdi_m_n *m_n)
4074 {
4075         m_n->tu = 64; /* default size */
4076
4077         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4078         m_n->gmch_m = bits_per_pixel * pixel_clock;
4079         m_n->gmch_n = link_clock * nlanes * 8;
4080         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4081
4082         m_n->link_m = pixel_clock;
4083         m_n->link_n = link_clock;
4084         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4085 }
4086
4087 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4088 {
4089         if (i915_panel_use_ssc >= 0)
4090                 return i915_panel_use_ssc != 0;
4091         return dev_priv->lvds_use_ssc
4092                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4093 }
4094
4095 /**
4096  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4097  * @crtc: CRTC structure
4098  * @mode: requested mode
4099  *
4100  * A pipe may be connected to one or more outputs.  Based on the depth of the
4101  * attached framebuffer, choose a good color depth to use on the pipe.
4102  *
4103  * If possible, match the pipe depth to the fb depth.  In some cases, this
4104  * isn't ideal, because the connected output supports a lesser or restricted
4105  * set of depths.  Resolve that here:
4106  *    LVDS typically supports only 6bpc, so clamp down in that case
4107  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4108  *    Displays may support a restricted set as well, check EDID and clamp as
4109  *      appropriate.
4110  *    DP may want to dither down to 6bpc to fit larger modes
4111  *
4112  * RETURNS:
4113  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4114  * true if they don't match).
4115  */
4116 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4117                                          struct drm_framebuffer *fb,
4118                                          unsigned int *pipe_bpp,
4119                                          struct drm_display_mode *mode)
4120 {
4121         struct drm_device *dev = crtc->dev;
4122         struct drm_i915_private *dev_priv = dev->dev_private;
4123         struct drm_connector *connector;
4124         struct intel_encoder *intel_encoder;
4125         unsigned int display_bpc = UINT_MAX, bpc;
4126
4127         /* Walk the encoders & connectors on this crtc, get min bpc */
4128         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4129
4130                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4131                         unsigned int lvds_bpc;
4132
4133                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4134                             LVDS_A3_POWER_UP)
4135                                 lvds_bpc = 8;
4136                         else
4137                                 lvds_bpc = 6;
4138
4139                         if (lvds_bpc < display_bpc) {
4140                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4141                                 display_bpc = lvds_bpc;
4142                         }
4143                         continue;
4144                 }
4145
4146                 /* Not one of the known troublemakers, check the EDID */
4147                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4148                                     head) {
4149                         if (connector->encoder != &intel_encoder->base)
4150                                 continue;
4151
4152                         /* Don't use an invalid EDID bpc value */
4153                         if (connector->display_info.bpc &&
4154                             connector->display_info.bpc < display_bpc) {
4155                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4156                                 display_bpc = connector->display_info.bpc;
4157                         }
4158                 }
4159
4160                 /*
4161                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4162                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4163                  */
4164                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4165                         if (display_bpc > 8 && display_bpc < 12) {
4166                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4167                                 display_bpc = 12;
4168                         } else {
4169                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4170                                 display_bpc = 8;
4171                         }
4172                 }
4173         }
4174
4175         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4176                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4177                 display_bpc = 6;
4178         }
4179
4180         /*
4181          * We could just drive the pipe at the highest bpc all the time and
4182          * enable dithering as needed, but that costs bandwidth.  So choose
4183          * the minimum value that expresses the full color range of the fb but
4184          * also stays within the max display bpc discovered above.
4185          */
4186
4187         switch (fb->depth) {
4188         case 8:
4189                 bpc = 8; /* since we go through a colormap */
4190                 break;
4191         case 15:
4192         case 16:
4193                 bpc = 6; /* min is 18bpp */
4194                 break;
4195         case 24:
4196                 bpc = 8;
4197                 break;
4198         case 30:
4199                 bpc = 10;
4200                 break;
4201         case 48:
4202                 bpc = 12;
4203                 break;
4204         default:
4205                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4206                 bpc = min((unsigned int)8, display_bpc);
4207                 break;
4208         }
4209
4210         display_bpc = min(display_bpc, bpc);
4211
4212         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4213                       bpc, display_bpc);
4214
4215         *pipe_bpp = display_bpc * 3;
4216
4217         return display_bpc != bpc;
4218 }
4219
4220 static int vlv_get_refclk(struct drm_crtc *crtc)
4221 {
4222         struct drm_device *dev = crtc->dev;
4223         struct drm_i915_private *dev_priv = dev->dev_private;
4224         int refclk = 27000; /* for DP & HDMI */
4225
4226         return 100000; /* only one validated so far */
4227
4228         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4229                 refclk = 96000;
4230         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4231                 if (intel_panel_use_ssc(dev_priv))
4232                         refclk = 100000;
4233                 else
4234                         refclk = 96000;
4235         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4236                 refclk = 100000;
4237         }
4238
4239         return refclk;
4240 }
4241
4242 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4243 {
4244         struct drm_device *dev = crtc->dev;
4245         struct drm_i915_private *dev_priv = dev->dev_private;
4246         int refclk;
4247
4248         if (IS_VALLEYVIEW(dev)) {
4249                 refclk = vlv_get_refclk(crtc);
4250         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4251             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4252                 refclk = dev_priv->lvds_ssc_freq * 1000;
4253                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4254                               refclk / 1000);
4255         } else if (!IS_GEN2(dev)) {
4256                 refclk = 96000;
4257         } else {
4258                 refclk = 48000;
4259         }
4260
4261         return refclk;
4262 }
4263
4264 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4265                                       intel_clock_t *clock)
4266 {
4267         /* SDVO TV has fixed PLL values depend on its clock range,
4268            this mirrors vbios setting. */
4269         if (adjusted_mode->clock >= 100000
4270             && adjusted_mode->clock < 140500) {
4271                 clock->p1 = 2;
4272                 clock->p2 = 10;
4273                 clock->n = 3;
4274                 clock->m1 = 16;
4275                 clock->m2 = 8;
4276         } else if (adjusted_mode->clock >= 140500
4277                    && adjusted_mode->clock <= 200000) {
4278                 clock->p1 = 1;
4279                 clock->p2 = 10;
4280                 clock->n = 6;
4281                 clock->m1 = 12;
4282                 clock->m2 = 8;
4283         }
4284 }
4285
4286 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4287                                      intel_clock_t *clock,
4288                                      intel_clock_t *reduced_clock)
4289 {
4290         struct drm_device *dev = crtc->dev;
4291         struct drm_i915_private *dev_priv = dev->dev_private;
4292         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4293         int pipe = intel_crtc->pipe;
4294         u32 fp, fp2 = 0;
4295
4296         if (IS_PINEVIEW(dev)) {
4297                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4298                 if (reduced_clock)
4299                         fp2 = (1 << reduced_clock->n) << 16 |
4300                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4301         } else {
4302                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4303                 if (reduced_clock)
4304                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4305                                 reduced_clock->m2;
4306         }
4307
4308         I915_WRITE(FP0(pipe), fp);
4309
4310         intel_crtc->lowfreq_avail = false;
4311         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4312             reduced_clock && i915_powersave) {
4313                 I915_WRITE(FP1(pipe), fp2);
4314                 intel_crtc->lowfreq_avail = true;
4315         } else {
4316                 I915_WRITE(FP1(pipe), fp);
4317         }
4318 }
4319
4320 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4321                               struct drm_display_mode *adjusted_mode)
4322 {
4323         struct drm_device *dev = crtc->dev;
4324         struct drm_i915_private *dev_priv = dev->dev_private;
4325         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4326         int pipe = intel_crtc->pipe;
4327         u32 temp;
4328
4329         temp = I915_READ(LVDS);
4330         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4331         if (pipe == 1) {
4332                 temp |= LVDS_PIPEB_SELECT;
4333         } else {
4334                 temp &= ~LVDS_PIPEB_SELECT;
4335         }
4336         /* set the corresponsding LVDS_BORDER bit */
4337         temp |= dev_priv->lvds_border_bits;
4338         /* Set the B0-B3 data pairs corresponding to whether we're going to
4339          * set the DPLLs for dual-channel mode or not.
4340          */
4341         if (clock->p2 == 7)
4342                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4343         else
4344                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4345
4346         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4347          * appropriately here, but we need to look more thoroughly into how
4348          * panels behave in the two modes.
4349          */
4350         /* set the dithering flag on LVDS as needed */
4351         if (INTEL_INFO(dev)->gen >= 4) {
4352                 if (dev_priv->lvds_dither)
4353                         temp |= LVDS_ENABLE_DITHER;
4354                 else
4355                         temp &= ~LVDS_ENABLE_DITHER;
4356         }
4357         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4358         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4359                 temp |= LVDS_HSYNC_POLARITY;
4360         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4361                 temp |= LVDS_VSYNC_POLARITY;
4362         I915_WRITE(LVDS, temp);
4363 }
4364
4365 static void vlv_update_pll(struct drm_crtc *crtc,
4366                            struct drm_display_mode *mode,
4367                            struct drm_display_mode *adjusted_mode,
4368                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4369                            int num_connectors)
4370 {
4371         struct drm_device *dev = crtc->dev;
4372         struct drm_i915_private *dev_priv = dev->dev_private;
4373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4374         int pipe = intel_crtc->pipe;
4375         u32 dpll, mdiv, pdiv;
4376         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4377         bool is_sdvo;
4378         u32 temp;
4379
4380         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4381                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4382
4383         dpll = DPLL_VGA_MODE_DIS;
4384         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4385         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4386         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4387
4388         I915_WRITE(DPLL(pipe), dpll);
4389         POSTING_READ(DPLL(pipe));
4390
4391         bestn = clock->n;
4392         bestm1 = clock->m1;
4393         bestm2 = clock->m2;
4394         bestp1 = clock->p1;
4395         bestp2 = clock->p2;
4396
4397         /*
4398          * In Valleyview PLL and program lane counter registers are exposed
4399          * through DPIO interface
4400          */
4401         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4402         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4403         mdiv |= ((bestn << DPIO_N_SHIFT));
4404         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4405         mdiv |= (1 << DPIO_K_SHIFT);
4406         mdiv |= DPIO_ENABLE_CALIBRATION;
4407         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4408
4409         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4410
4411         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4412                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4413                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4414                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4415         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4416
4417         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4418
4419         dpll |= DPLL_VCO_ENABLE;
4420         I915_WRITE(DPLL(pipe), dpll);
4421         POSTING_READ(DPLL(pipe));
4422         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4423                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4424
4425         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4426
4427         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4428                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4429
4430         I915_WRITE(DPLL(pipe), dpll);
4431
4432         /* Wait for the clocks to stabilize. */
4433         POSTING_READ(DPLL(pipe));
4434         udelay(150);
4435
4436         temp = 0;
4437         if (is_sdvo) {
4438                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4439                 if (temp > 1)
4440                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4441                 else
4442                         temp = 0;
4443         }
4444         I915_WRITE(DPLL_MD(pipe), temp);
4445         POSTING_READ(DPLL_MD(pipe));
4446
4447         /* Now program lane control registers */
4448         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4449                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4450         {
4451                 temp = 0x1000C4;
4452                 if(pipe == 1)
4453                         temp |= (1 << 21);
4454                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4455         }
4456         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4457         {
4458                 temp = 0x1000C4;
4459                 if(pipe == 1)
4460                         temp |= (1 << 21);
4461                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4462         }
4463 }
4464
4465 static void i9xx_update_pll(struct drm_crtc *crtc,
4466                             struct drm_display_mode *mode,
4467                             struct drm_display_mode *adjusted_mode,
4468                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4469                             int num_connectors)
4470 {
4471         struct drm_device *dev = crtc->dev;
4472         struct drm_i915_private *dev_priv = dev->dev_private;
4473         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4474         int pipe = intel_crtc->pipe;
4475         u32 dpll;
4476         bool is_sdvo;
4477
4478         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4479
4480         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4481                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4482
4483         dpll = DPLL_VGA_MODE_DIS;
4484
4485         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4486                 dpll |= DPLLB_MODE_LVDS;
4487         else
4488                 dpll |= DPLLB_MODE_DAC_SERIAL;
4489         if (is_sdvo) {
4490                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4491                 if (pixel_multiplier > 1) {
4492                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4493                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4494                 }
4495                 dpll |= DPLL_DVO_HIGH_SPEED;
4496         }
4497         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4498                 dpll |= DPLL_DVO_HIGH_SPEED;
4499
4500         /* compute bitmask from p1 value */
4501         if (IS_PINEVIEW(dev))
4502                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4503         else {
4504                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4505                 if (IS_G4X(dev) && reduced_clock)
4506                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4507         }
4508         switch (clock->p2) {
4509         case 5:
4510                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4511                 break;
4512         case 7:
4513                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4514                 break;
4515         case 10:
4516                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4517                 break;
4518         case 14:
4519                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4520                 break;
4521         }
4522         if (INTEL_INFO(dev)->gen >= 4)
4523                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4524
4525         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4526                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4527         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4528                 /* XXX: just matching BIOS for now */
4529                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4530                 dpll |= 3;
4531         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4532                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4533                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4534         else
4535                 dpll |= PLL_REF_INPUT_DREFCLK;
4536
4537         dpll |= DPLL_VCO_ENABLE;
4538         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4539         POSTING_READ(DPLL(pipe));
4540         udelay(150);
4541
4542         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4543          * This is an exception to the general rule that mode_set doesn't turn
4544          * things on.
4545          */
4546         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4547                 intel_update_lvds(crtc, clock, adjusted_mode);
4548
4549         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4550                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4551
4552         I915_WRITE(DPLL(pipe), dpll);
4553
4554         /* Wait for the clocks to stabilize. */
4555         POSTING_READ(DPLL(pipe));
4556         udelay(150);
4557
4558         if (INTEL_INFO(dev)->gen >= 4) {
4559                 u32 temp = 0;
4560                 if (is_sdvo) {
4561                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4562                         if (temp > 1)
4563                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4564                         else
4565                                 temp = 0;
4566                 }
4567                 I915_WRITE(DPLL_MD(pipe), temp);
4568         } else {
4569                 /* The pixel multiplier can only be updated once the
4570                  * DPLL is enabled and the clocks are stable.
4571                  *
4572                  * So write it again.
4573                  */
4574                 I915_WRITE(DPLL(pipe), dpll);
4575         }
4576 }
4577
4578 static void i8xx_update_pll(struct drm_crtc *crtc,
4579                             struct drm_display_mode *adjusted_mode,
4580                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4581                             int num_connectors)
4582 {
4583         struct drm_device *dev = crtc->dev;
4584         struct drm_i915_private *dev_priv = dev->dev_private;
4585         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4586         int pipe = intel_crtc->pipe;
4587         u32 dpll;
4588
4589         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4590
4591         dpll = DPLL_VGA_MODE_DIS;
4592
4593         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4594                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4595         } else {
4596                 if (clock->p1 == 2)
4597                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4598                 else
4599                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4600                 if (clock->p2 == 4)
4601                         dpll |= PLL_P2_DIVIDE_BY_4;
4602         }
4603
4604         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4605                 /* XXX: just matching BIOS for now */
4606                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4607                 dpll |= 3;
4608         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4609                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4610                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4611         else
4612                 dpll |= PLL_REF_INPUT_DREFCLK;
4613
4614         dpll |= DPLL_VCO_ENABLE;
4615         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4616         POSTING_READ(DPLL(pipe));
4617         udelay(150);
4618
4619         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4620          * This is an exception to the general rule that mode_set doesn't turn
4621          * things on.
4622          */
4623         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4624                 intel_update_lvds(crtc, clock, adjusted_mode);
4625
4626         I915_WRITE(DPLL(pipe), dpll);
4627
4628         /* Wait for the clocks to stabilize. */
4629         POSTING_READ(DPLL(pipe));
4630         udelay(150);
4631
4632         /* The pixel multiplier can only be updated once the
4633          * DPLL is enabled and the clocks are stable.
4634          *
4635          * So write it again.
4636          */
4637         I915_WRITE(DPLL(pipe), dpll);
4638 }
4639
4640 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4641                                    struct drm_display_mode *mode,
4642                                    struct drm_display_mode *adjusted_mode)
4643 {
4644         struct drm_device *dev = intel_crtc->base.dev;
4645         struct drm_i915_private *dev_priv = dev->dev_private;
4646         enum pipe pipe = intel_crtc->pipe;
4647         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4648         uint32_t vsyncshift;
4649
4650         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4651                 /* the chip adds 2 halflines automatically */
4652                 adjusted_mode->crtc_vtotal -= 1;
4653                 adjusted_mode->crtc_vblank_end -= 1;
4654                 vsyncshift = adjusted_mode->crtc_hsync_start
4655                              - adjusted_mode->crtc_htotal / 2;
4656         } else {
4657                 vsyncshift = 0;
4658         }
4659
4660         if (INTEL_INFO(dev)->gen > 3)
4661                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4662
4663         I915_WRITE(HTOTAL(cpu_transcoder),
4664                    (adjusted_mode->crtc_hdisplay - 1) |
4665                    ((adjusted_mode->crtc_htotal - 1) << 16));
4666         I915_WRITE(HBLANK(cpu_transcoder),
4667                    (adjusted_mode->crtc_hblank_start - 1) |
4668                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4669         I915_WRITE(HSYNC(cpu_transcoder),
4670                    (adjusted_mode->crtc_hsync_start - 1) |
4671                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4672
4673         I915_WRITE(VTOTAL(cpu_transcoder),
4674                    (adjusted_mode->crtc_vdisplay - 1) |
4675                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4676         I915_WRITE(VBLANK(cpu_transcoder),
4677                    (adjusted_mode->crtc_vblank_start - 1) |
4678                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4679         I915_WRITE(VSYNC(cpu_transcoder),
4680                    (adjusted_mode->crtc_vsync_start - 1) |
4681                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4682
4683         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4684          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4685          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4686          * bits. */
4687         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4688             (pipe == PIPE_B || pipe == PIPE_C))
4689                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4690
4691         /* pipesrc controls the size that is scaled from, which should
4692          * always be the user's requested size.
4693          */
4694         I915_WRITE(PIPESRC(pipe),
4695                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4696 }
4697
4698 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4699                               struct drm_display_mode *mode,
4700                               struct drm_display_mode *adjusted_mode,
4701                               int x, int y,
4702                               struct drm_framebuffer *fb)
4703 {
4704         struct drm_device *dev = crtc->dev;
4705         struct drm_i915_private *dev_priv = dev->dev_private;
4706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4707         int pipe = intel_crtc->pipe;
4708         int plane = intel_crtc->plane;
4709         int refclk, num_connectors = 0;
4710         intel_clock_t clock, reduced_clock;
4711         u32 dspcntr, pipeconf;
4712         bool ok, has_reduced_clock = false, is_sdvo = false;
4713         bool is_lvds = false, is_tv = false, is_dp = false;
4714         struct intel_encoder *encoder;
4715         const intel_limit_t *limit;
4716         int ret;
4717
4718         for_each_encoder_on_crtc(dev, crtc, encoder) {
4719                 switch (encoder->type) {
4720                 case INTEL_OUTPUT_LVDS:
4721                         is_lvds = true;
4722                         break;
4723                 case INTEL_OUTPUT_SDVO:
4724                 case INTEL_OUTPUT_HDMI:
4725                         is_sdvo = true;
4726                         if (encoder->needs_tv_clock)
4727                                 is_tv = true;
4728                         break;
4729                 case INTEL_OUTPUT_TVOUT:
4730                         is_tv = true;
4731                         break;
4732                 case INTEL_OUTPUT_DISPLAYPORT:
4733                         is_dp = true;
4734                         break;
4735                 }
4736
4737                 num_connectors++;
4738         }
4739
4740         refclk = i9xx_get_refclk(crtc, num_connectors);
4741
4742         /*
4743          * Returns a set of divisors for the desired target clock with the given
4744          * refclk, or FALSE.  The returned values represent the clock equation:
4745          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4746          */
4747         limit = intel_limit(crtc, refclk);
4748         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4749                              &clock);
4750         if (!ok) {
4751                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4752                 return -EINVAL;
4753         }
4754
4755         /* Ensure that the cursor is valid for the new mode before changing... */
4756         intel_crtc_update_cursor(crtc, true);
4757
4758         if (is_lvds && dev_priv->lvds_downclock_avail) {
4759                 /*
4760                  * Ensure we match the reduced clock's P to the target clock.
4761                  * If the clocks don't match, we can't switch the display clock
4762                  * by using the FP0/FP1. In such case we will disable the LVDS
4763                  * downclock feature.
4764                 */
4765                 has_reduced_clock = limit->find_pll(limit, crtc,
4766                                                     dev_priv->lvds_downclock,
4767                                                     refclk,
4768                                                     &clock,
4769                                                     &reduced_clock);
4770         }
4771
4772         if (is_sdvo && is_tv)
4773                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4774
4775         if (IS_GEN2(dev))
4776                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4777                                 has_reduced_clock ? &reduced_clock : NULL,
4778                                 num_connectors);
4779         else if (IS_VALLEYVIEW(dev))
4780                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4781                                 has_reduced_clock ? &reduced_clock : NULL,
4782                                 num_connectors);
4783         else
4784                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4785                                 has_reduced_clock ? &reduced_clock : NULL,
4786                                 num_connectors);
4787
4788         /* setup pipeconf */
4789         pipeconf = I915_READ(PIPECONF(pipe));
4790
4791         /* Set up the display plane register */
4792         dspcntr = DISPPLANE_GAMMA_ENABLE;
4793
4794         if (pipe == 0)
4795                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4796         else
4797                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4798
4799         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4800                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4801                  * core speed.
4802                  *
4803                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4804                  * pipe == 0 check?
4805                  */
4806                 if (mode->clock >
4807                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4808                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4809                 else
4810                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4811         }
4812
4813         /* default to 8bpc */
4814         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4815         if (is_dp) {
4816                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4817                         pipeconf |= PIPECONF_BPP_6 |
4818                                     PIPECONF_DITHER_EN |
4819                                     PIPECONF_DITHER_TYPE_SP;
4820                 }
4821         }
4822
4823         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4824                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4825                         pipeconf |= PIPECONF_BPP_6 |
4826                                         PIPECONF_ENABLE |
4827                                         I965_PIPECONF_ACTIVE;
4828                 }
4829         }
4830
4831         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4832         drm_mode_debug_printmodeline(mode);
4833
4834         if (HAS_PIPE_CXSR(dev)) {
4835                 if (intel_crtc->lowfreq_avail) {
4836                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4837                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4838                 } else {
4839                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4840                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4841                 }
4842         }
4843
4844         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4845         if (!IS_GEN2(dev) &&
4846             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4847                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4848         else
4849                 pipeconf |= PIPECONF_PROGRESSIVE;
4850
4851         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4852
4853         /* pipesrc and dspsize control the size that is scaled from,
4854          * which should always be the user's requested size.
4855          */
4856         I915_WRITE(DSPSIZE(plane),
4857                    ((mode->vdisplay - 1) << 16) |
4858                    (mode->hdisplay - 1));
4859         I915_WRITE(DSPPOS(plane), 0);
4860
4861         I915_WRITE(PIPECONF(pipe), pipeconf);
4862         POSTING_READ(PIPECONF(pipe));
4863         intel_enable_pipe(dev_priv, pipe, false);
4864
4865         intel_wait_for_vblank(dev, pipe);
4866
4867         I915_WRITE(DSPCNTR(plane), dspcntr);
4868         POSTING_READ(DSPCNTR(plane));
4869
4870         ret = intel_pipe_set_base(crtc, x, y, fb);
4871
4872         intel_update_watermarks(dev);
4873
4874         return ret;
4875 }
4876
4877 /*
4878  * Initialize reference clocks when the driver loads
4879  */
4880 void ironlake_init_pch_refclk(struct drm_device *dev)
4881 {
4882         struct drm_i915_private *dev_priv = dev->dev_private;
4883         struct drm_mode_config *mode_config = &dev->mode_config;
4884         struct intel_encoder *encoder;
4885         u32 temp;
4886         bool has_lvds = false;
4887         bool has_cpu_edp = false;
4888         bool has_pch_edp = false;
4889         bool has_panel = false;
4890         bool has_ck505 = false;
4891         bool can_ssc = false;
4892
4893         /* We need to take the global config into account */
4894         list_for_each_entry(encoder, &mode_config->encoder_list,
4895                             base.head) {
4896                 switch (encoder->type) {
4897                 case INTEL_OUTPUT_LVDS:
4898                         has_panel = true;
4899                         has_lvds = true;
4900                         break;
4901                 case INTEL_OUTPUT_EDP:
4902                         has_panel = true;
4903                         if (intel_encoder_is_pch_edp(&encoder->base))
4904                                 has_pch_edp = true;
4905                         else
4906                                 has_cpu_edp = true;
4907                         break;
4908                 }
4909         }
4910
4911         if (HAS_PCH_IBX(dev)) {
4912                 has_ck505 = dev_priv->display_clock_mode;
4913                 can_ssc = has_ck505;
4914         } else {
4915                 has_ck505 = false;
4916                 can_ssc = true;
4917         }
4918
4919         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4920                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4921                       has_ck505);
4922
4923         /* Ironlake: try to setup display ref clock before DPLL
4924          * enabling. This is only under driver's control after
4925          * PCH B stepping, previous chipset stepping should be
4926          * ignoring this setting.
4927          */
4928         temp = I915_READ(PCH_DREF_CONTROL);
4929         /* Always enable nonspread source */
4930         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4931
4932         if (has_ck505)
4933                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4934         else
4935                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4936
4937         if (has_panel) {
4938                 temp &= ~DREF_SSC_SOURCE_MASK;
4939                 temp |= DREF_SSC_SOURCE_ENABLE;
4940
4941                 /* SSC must be turned on before enabling the CPU output  */
4942                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4943                         DRM_DEBUG_KMS("Using SSC on panel\n");
4944                         temp |= DREF_SSC1_ENABLE;
4945                 } else
4946                         temp &= ~DREF_SSC1_ENABLE;
4947
4948                 /* Get SSC going before enabling the outputs */
4949                 I915_WRITE(PCH_DREF_CONTROL, temp);
4950                 POSTING_READ(PCH_DREF_CONTROL);
4951                 udelay(200);
4952
4953                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4954
4955                 /* Enable CPU source on CPU attached eDP */
4956                 if (has_cpu_edp) {
4957                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4958                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4959                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4960                         }
4961                         else
4962                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4963                 } else
4964                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4965
4966                 I915_WRITE(PCH_DREF_CONTROL, temp);
4967                 POSTING_READ(PCH_DREF_CONTROL);
4968                 udelay(200);
4969         } else {
4970                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4971
4972                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4973
4974                 /* Turn off CPU output */
4975                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4976
4977                 I915_WRITE(PCH_DREF_CONTROL, temp);
4978                 POSTING_READ(PCH_DREF_CONTROL);
4979                 udelay(200);
4980
4981                 /* Turn off the SSC source */
4982                 temp &= ~DREF_SSC_SOURCE_MASK;
4983                 temp |= DREF_SSC_SOURCE_DISABLE;
4984
4985                 /* Turn off SSC1 */
4986                 temp &= ~ DREF_SSC1_ENABLE;
4987
4988                 I915_WRITE(PCH_DREF_CONTROL, temp);
4989                 POSTING_READ(PCH_DREF_CONTROL);
4990                 udelay(200);
4991         }
4992 }
4993
4994 static int ironlake_get_refclk(struct drm_crtc *crtc)
4995 {
4996         struct drm_device *dev = crtc->dev;
4997         struct drm_i915_private *dev_priv = dev->dev_private;
4998         struct intel_encoder *encoder;
4999         struct intel_encoder *edp_encoder = NULL;
5000         int num_connectors = 0;
5001         bool is_lvds = false;
5002
5003         for_each_encoder_on_crtc(dev, crtc, encoder) {
5004                 switch (encoder->type) {
5005                 case INTEL_OUTPUT_LVDS:
5006                         is_lvds = true;
5007                         break;
5008                 case INTEL_OUTPUT_EDP:
5009                         edp_encoder = encoder;
5010                         break;
5011                 }
5012                 num_connectors++;
5013         }
5014
5015         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5016                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5017                               dev_priv->lvds_ssc_freq);
5018                 return dev_priv->lvds_ssc_freq * 1000;
5019         }
5020
5021         return 120000;
5022 }
5023
5024 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5025                                   struct drm_display_mode *adjusted_mode,
5026                                   bool dither)
5027 {
5028         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5030         int pipe = intel_crtc->pipe;
5031         uint32_t val;
5032
5033         val = I915_READ(PIPECONF(pipe));
5034
5035         val &= ~PIPE_BPC_MASK;
5036         switch (intel_crtc->bpp) {
5037         case 18:
5038                 val |= PIPE_6BPC;
5039                 break;
5040         case 24:
5041                 val |= PIPE_8BPC;
5042                 break;
5043         case 30:
5044                 val |= PIPE_10BPC;
5045                 break;
5046         case 36:
5047                 val |= PIPE_12BPC;
5048                 break;
5049         default:
5050                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5051                 BUG();
5052         }
5053
5054         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5055         if (dither)
5056                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5057
5058         val &= ~PIPECONF_INTERLACE_MASK;
5059         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5060                 val |= PIPECONF_INTERLACED_ILK;
5061         else
5062                 val |= PIPECONF_PROGRESSIVE;
5063
5064         I915_WRITE(PIPECONF(pipe), val);
5065         POSTING_READ(PIPECONF(pipe));
5066 }
5067
5068 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5069                                  struct drm_display_mode *adjusted_mode,
5070                                  bool dither)
5071 {
5072         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5074         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5075         uint32_t val;
5076
5077         val = I915_READ(PIPECONF(cpu_transcoder));
5078
5079         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5080         if (dither)
5081                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5082
5083         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5084         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5085                 val |= PIPECONF_INTERLACED_ILK;
5086         else
5087                 val |= PIPECONF_PROGRESSIVE;
5088
5089         I915_WRITE(PIPECONF(cpu_transcoder), val);
5090         POSTING_READ(PIPECONF(cpu_transcoder));
5091 }
5092
5093 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5094                                     struct drm_display_mode *adjusted_mode,
5095                                     intel_clock_t *clock,
5096                                     bool *has_reduced_clock,
5097                                     intel_clock_t *reduced_clock)
5098 {
5099         struct drm_device *dev = crtc->dev;
5100         struct drm_i915_private *dev_priv = dev->dev_private;
5101         struct intel_encoder *intel_encoder;
5102         int refclk;
5103         const intel_limit_t *limit;
5104         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5105
5106         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5107                 switch (intel_encoder->type) {
5108                 case INTEL_OUTPUT_LVDS:
5109                         is_lvds = true;
5110                         break;
5111                 case INTEL_OUTPUT_SDVO:
5112                 case INTEL_OUTPUT_HDMI:
5113                         is_sdvo = true;
5114                         if (intel_encoder->needs_tv_clock)
5115                                 is_tv = true;
5116                         break;
5117                 case INTEL_OUTPUT_TVOUT:
5118                         is_tv = true;
5119                         break;
5120                 }
5121         }
5122
5123         refclk = ironlake_get_refclk(crtc);
5124
5125         /*
5126          * Returns a set of divisors for the desired target clock with the given
5127          * refclk, or FALSE.  The returned values represent the clock equation:
5128          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5129          */
5130         limit = intel_limit(crtc, refclk);
5131         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5132                               clock);
5133         if (!ret)
5134                 return false;
5135
5136         if (is_lvds && dev_priv->lvds_downclock_avail) {
5137                 /*
5138                  * Ensure we match the reduced clock's P to the target clock.
5139                  * If the clocks don't match, we can't switch the display clock
5140                  * by using the FP0/FP1. In such case we will disable the LVDS
5141                  * downclock feature.
5142                 */
5143                 *has_reduced_clock = limit->find_pll(limit, crtc,
5144                                                      dev_priv->lvds_downclock,
5145                                                      refclk,
5146                                                      clock,
5147                                                      reduced_clock);
5148         }
5149
5150         if (is_sdvo && is_tv)
5151                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5152
5153         return true;
5154 }
5155
5156 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5157 {
5158         struct drm_i915_private *dev_priv = dev->dev_private;
5159         uint32_t temp;
5160
5161         temp = I915_READ(SOUTH_CHICKEN1);
5162         if (temp & FDI_BC_BIFURCATION_SELECT)
5163                 return;
5164
5165         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5166         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5167
5168         temp |= FDI_BC_BIFURCATION_SELECT;
5169         DRM_DEBUG_KMS("enabling fdi C rx\n");
5170         I915_WRITE(SOUTH_CHICKEN1, temp);
5171         POSTING_READ(SOUTH_CHICKEN1);
5172 }
5173
5174 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5175 {
5176         struct drm_device *dev = intel_crtc->base.dev;
5177         struct drm_i915_private *dev_priv = dev->dev_private;
5178         struct intel_crtc *pipe_B_crtc =
5179                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5180
5181         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5182                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5183         if (intel_crtc->fdi_lanes > 4) {
5184                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5185                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5186                 /* Clamp lanes to avoid programming the hw with bogus values. */
5187                 intel_crtc->fdi_lanes = 4;
5188
5189                 return false;
5190         }
5191
5192         if (dev_priv->num_pipe == 2)
5193                 return true;
5194
5195         switch (intel_crtc->pipe) {
5196         case PIPE_A:
5197                 return true;
5198         case PIPE_B:
5199                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5200                     intel_crtc->fdi_lanes > 2) {
5201                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5202                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5203                         /* Clamp lanes to avoid programming the hw with bogus values. */
5204                         intel_crtc->fdi_lanes = 2;
5205
5206                         return false;
5207                 }
5208
5209                 if (intel_crtc->fdi_lanes > 2)
5210                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5211                 else
5212                         cpt_enable_fdi_bc_bifurcation(dev);
5213
5214                 return true;
5215         case PIPE_C:
5216                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5217                         if (intel_crtc->fdi_lanes > 2) {
5218                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5219                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5220                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5221                                 intel_crtc->fdi_lanes = 2;
5222
5223                                 return false;
5224                         }
5225                 } else {
5226                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5227                         return false;
5228                 }
5229
5230                 cpt_enable_fdi_bc_bifurcation(dev);
5231
5232                 return true;
5233         default:
5234                 BUG();
5235         }
5236 }
5237
5238 static void ironlake_set_m_n(struct drm_crtc *crtc,
5239                              struct drm_display_mode *mode,
5240                              struct drm_display_mode *adjusted_mode)
5241 {
5242         struct drm_device *dev = crtc->dev;
5243         struct drm_i915_private *dev_priv = dev->dev_private;
5244         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5245         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5246         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5247         struct fdi_m_n m_n = {0};
5248         int target_clock, pixel_multiplier, lane, link_bw;
5249         bool is_dp = false, is_cpu_edp = false;
5250
5251         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5252                 switch (intel_encoder->type) {
5253                 case INTEL_OUTPUT_DISPLAYPORT:
5254                         is_dp = true;
5255                         break;
5256                 case INTEL_OUTPUT_EDP:
5257                         is_dp = true;
5258                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5259                                 is_cpu_edp = true;
5260                         edp_encoder = intel_encoder;
5261                         break;
5262                 }
5263         }
5264
5265         /* FDI link */
5266         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5267         lane = 0;
5268         /* CPU eDP doesn't require FDI link, so just set DP M/N
5269            according to current link config */
5270         if (is_cpu_edp) {
5271                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5272         } else {
5273                 /* FDI is a binary signal running at ~2.7GHz, encoding
5274                  * each output octet as 10 bits. The actual frequency
5275                  * is stored as a divider into a 100MHz clock, and the
5276                  * mode pixel clock is stored in units of 1KHz.
5277                  * Hence the bw of each lane in terms of the mode signal
5278                  * is:
5279                  */
5280                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5281         }
5282
5283         /* [e]DP over FDI requires target mode clock instead of link clock. */
5284         if (edp_encoder)
5285                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5286         else if (is_dp)
5287                 target_clock = mode->clock;
5288         else
5289                 target_clock = adjusted_mode->clock;
5290
5291         if (!lane) {
5292                 /*
5293                  * Account for spread spectrum to avoid
5294                  * oversubscribing the link. Max center spread
5295                  * is 2.5%; use 5% for safety's sake.
5296                  */
5297                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5298                 lane = bps / (link_bw * 8) + 1;
5299         }
5300
5301         intel_crtc->fdi_lanes = lane;
5302
5303         if (pixel_multiplier > 1)
5304                 link_bw *= pixel_multiplier;
5305         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5306                              &m_n);
5307
5308         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5309         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5310         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5311         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5312 }
5313
5314 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5315                                       struct drm_display_mode *adjusted_mode,
5316                                       intel_clock_t *clock, u32 fp)
5317 {
5318         struct drm_crtc *crtc = &intel_crtc->base;
5319         struct drm_device *dev = crtc->dev;
5320         struct drm_i915_private *dev_priv = dev->dev_private;
5321         struct intel_encoder *intel_encoder;
5322         uint32_t dpll;
5323         int factor, pixel_multiplier, num_connectors = 0;
5324         bool is_lvds = false, is_sdvo = false, is_tv = false;
5325         bool is_dp = false, is_cpu_edp = false;
5326
5327         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5328                 switch (intel_encoder->type) {
5329                 case INTEL_OUTPUT_LVDS:
5330                         is_lvds = true;
5331                         break;
5332                 case INTEL_OUTPUT_SDVO:
5333                 case INTEL_OUTPUT_HDMI:
5334                         is_sdvo = true;
5335                         if (intel_encoder->needs_tv_clock)
5336                                 is_tv = true;
5337                         break;
5338                 case INTEL_OUTPUT_TVOUT:
5339                         is_tv = true;
5340                         break;
5341                 case INTEL_OUTPUT_DISPLAYPORT:
5342                         is_dp = true;
5343                         break;
5344                 case INTEL_OUTPUT_EDP:
5345                         is_dp = true;
5346                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5347                                 is_cpu_edp = true;
5348                         break;
5349                 }
5350
5351                 num_connectors++;
5352         }
5353
5354         /* Enable autotuning of the PLL clock (if permissible) */
5355         factor = 21;
5356         if (is_lvds) {
5357                 if ((intel_panel_use_ssc(dev_priv) &&
5358                      dev_priv->lvds_ssc_freq == 100) ||
5359                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5360                         factor = 25;
5361         } else if (is_sdvo && is_tv)
5362                 factor = 20;
5363
5364         if (clock->m < factor * clock->n)
5365                 fp |= FP_CB_TUNE;
5366
5367         dpll = 0;
5368
5369         if (is_lvds)
5370                 dpll |= DPLLB_MODE_LVDS;
5371         else
5372                 dpll |= DPLLB_MODE_DAC_SERIAL;
5373         if (is_sdvo) {
5374                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5375                 if (pixel_multiplier > 1) {
5376                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5377                 }
5378                 dpll |= DPLL_DVO_HIGH_SPEED;
5379         }
5380         if (is_dp && !is_cpu_edp)
5381                 dpll |= DPLL_DVO_HIGH_SPEED;
5382
5383         /* compute bitmask from p1 value */
5384         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5385         /* also FPA1 */
5386         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5387
5388         switch (clock->p2) {
5389         case 5:
5390                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5391                 break;
5392         case 7:
5393                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5394                 break;
5395         case 10:
5396                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5397                 break;
5398         case 14:
5399                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5400                 break;
5401         }
5402
5403         if (is_sdvo && is_tv)
5404                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5405         else if (is_tv)
5406                 /* XXX: just matching BIOS for now */
5407                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5408                 dpll |= 3;
5409         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5410                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5411         else
5412                 dpll |= PLL_REF_INPUT_DREFCLK;
5413
5414         return dpll;
5415 }
5416
5417 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5418                                   struct drm_display_mode *mode,
5419                                   struct drm_display_mode *adjusted_mode,
5420                                   int x, int y,
5421                                   struct drm_framebuffer *fb)
5422 {
5423         struct drm_device *dev = crtc->dev;
5424         struct drm_i915_private *dev_priv = dev->dev_private;
5425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5426         int pipe = intel_crtc->pipe;
5427         int plane = intel_crtc->plane;
5428         int num_connectors = 0;
5429         intel_clock_t clock, reduced_clock;
5430         u32 dpll, fp = 0, fp2 = 0;
5431         bool ok, has_reduced_clock = false;
5432         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5433         struct intel_encoder *encoder;
5434         u32 temp;
5435         int ret;
5436         bool dither, fdi_config_ok;
5437
5438         for_each_encoder_on_crtc(dev, crtc, encoder) {
5439                 switch (encoder->type) {
5440                 case INTEL_OUTPUT_LVDS:
5441                         is_lvds = true;
5442                         break;
5443                 case INTEL_OUTPUT_DISPLAYPORT:
5444                         is_dp = true;
5445                         break;
5446                 case INTEL_OUTPUT_EDP:
5447                         is_dp = true;
5448                         if (!intel_encoder_is_pch_edp(&encoder->base))
5449                                 is_cpu_edp = true;
5450                         break;
5451                 }
5452
5453                 num_connectors++;
5454         }
5455
5456         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5457              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5458
5459         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5460                                      &has_reduced_clock, &reduced_clock);
5461         if (!ok) {
5462                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5463                 return -EINVAL;
5464         }
5465
5466         /* Ensure that the cursor is valid for the new mode before changing... */
5467         intel_crtc_update_cursor(crtc, true);
5468
5469         /* determine panel color depth */
5470         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5471                                               adjusted_mode);
5472         if (is_lvds && dev_priv->lvds_dither)
5473                 dither = true;
5474
5475         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5476         if (has_reduced_clock)
5477                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5478                         reduced_clock.m2;
5479
5480         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5481
5482         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5483         drm_mode_debug_printmodeline(mode);
5484
5485         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5486         if (!is_cpu_edp) {
5487                 struct intel_pch_pll *pll;
5488
5489                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5490                 if (pll == NULL) {
5491                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5492                                          pipe);
5493                         return -EINVAL;
5494                 }
5495         } else
5496                 intel_put_pch_pll(intel_crtc);
5497
5498         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5499          * This is an exception to the general rule that mode_set doesn't turn
5500          * things on.
5501          */
5502         if (is_lvds) {
5503                 temp = I915_READ(PCH_LVDS);
5504                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5505                 if (HAS_PCH_CPT(dev)) {
5506                         temp &= ~PORT_TRANS_SEL_MASK;
5507                         temp |= PORT_TRANS_SEL_CPT(pipe);
5508                 } else {
5509                         if (pipe == 1)
5510                                 temp |= LVDS_PIPEB_SELECT;
5511                         else
5512                                 temp &= ~LVDS_PIPEB_SELECT;
5513                 }
5514
5515                 /* set the corresponsding LVDS_BORDER bit */
5516                 temp |= dev_priv->lvds_border_bits;
5517                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5518                  * set the DPLLs for dual-channel mode or not.
5519                  */
5520                 if (clock.p2 == 7)
5521                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5522                 else
5523                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5524
5525                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5526                  * appropriately here, but we need to look more thoroughly into how
5527                  * panels behave in the two modes.
5528                  */
5529                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5530                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5531                         temp |= LVDS_HSYNC_POLARITY;
5532                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5533                         temp |= LVDS_VSYNC_POLARITY;
5534                 I915_WRITE(PCH_LVDS, temp);
5535         }
5536
5537         if (is_dp && !is_cpu_edp) {
5538                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5539         } else {
5540                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5541                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5542                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5543                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5544                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5545         }
5546
5547         if (intel_crtc->pch_pll) {
5548                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5549
5550                 /* Wait for the clocks to stabilize. */
5551                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5552                 udelay(150);
5553
5554                 /* The pixel multiplier can only be updated once the
5555                  * DPLL is enabled and the clocks are stable.
5556                  *
5557                  * So write it again.
5558                  */
5559                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5560         }
5561
5562         intel_crtc->lowfreq_avail = false;
5563         if (intel_crtc->pch_pll) {
5564                 if (is_lvds && has_reduced_clock && i915_powersave) {
5565                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5566                         intel_crtc->lowfreq_avail = true;
5567                 } else {
5568                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5569                 }
5570         }
5571
5572         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5573
5574         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5575          * ironlake_check_fdi_lanes. */
5576         ironlake_set_m_n(crtc, mode, adjusted_mode);
5577
5578         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5579
5580         if (is_cpu_edp)
5581                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5582
5583         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5584
5585         intel_wait_for_vblank(dev, pipe);
5586
5587         /* Set up the display plane register */
5588         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5589         POSTING_READ(DSPCNTR(plane));
5590
5591         ret = intel_pipe_set_base(crtc, x, y, fb);
5592
5593         intel_update_watermarks(dev);
5594
5595         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5596
5597         return fdi_config_ok ? ret : -EINVAL;
5598 }
5599
5600 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5601                                  struct drm_display_mode *mode,
5602                                  struct drm_display_mode *adjusted_mode,
5603                                  int x, int y,
5604                                  struct drm_framebuffer *fb)
5605 {
5606         struct drm_device *dev = crtc->dev;
5607         struct drm_i915_private *dev_priv = dev->dev_private;
5608         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5609         int pipe = intel_crtc->pipe;
5610         int plane = intel_crtc->plane;
5611         int num_connectors = 0;
5612         intel_clock_t clock, reduced_clock;
5613         u32 dpll = 0, fp = 0, fp2 = 0;
5614         bool ok, has_reduced_clock = false;
5615         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5616         struct intel_encoder *encoder;
5617         u32 temp;
5618         int ret;
5619         bool dither;
5620
5621         for_each_encoder_on_crtc(dev, crtc, encoder) {
5622                 switch (encoder->type) {
5623                 case INTEL_OUTPUT_LVDS:
5624                         is_lvds = true;
5625                         break;
5626                 case INTEL_OUTPUT_DISPLAYPORT:
5627                         is_dp = true;
5628                         break;
5629                 case INTEL_OUTPUT_EDP:
5630                         is_dp = true;
5631                         if (!intel_encoder_is_pch_edp(&encoder->base))
5632                                 is_cpu_edp = true;
5633                         break;
5634                 }
5635
5636                 num_connectors++;
5637         }
5638
5639         if (is_cpu_edp)
5640                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5641         else
5642                 intel_crtc->cpu_transcoder = pipe;
5643
5644         /* We are not sure yet this won't happen. */
5645         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5646              INTEL_PCH_TYPE(dev));
5647
5648         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5649              num_connectors, pipe_name(pipe));
5650
5651         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5652                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5653
5654         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5655
5656         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5657                 return -EINVAL;
5658
5659         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5660                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5661                                              &has_reduced_clock,
5662                                              &reduced_clock);
5663                 if (!ok) {
5664                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5665                         return -EINVAL;
5666                 }
5667         }
5668
5669         /* Ensure that the cursor is valid for the new mode before changing... */
5670         intel_crtc_update_cursor(crtc, true);
5671
5672         /* determine panel color depth */
5673         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5674                                               adjusted_mode);
5675         if (is_lvds && dev_priv->lvds_dither)
5676                 dither = true;
5677
5678         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5679         drm_mode_debug_printmodeline(mode);
5680
5681         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5682                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5683                 if (has_reduced_clock)
5684                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5685                               reduced_clock.m2;
5686
5687                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5688                                              fp);
5689
5690                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5691                  * own on pre-Haswell/LPT generation */
5692                 if (!is_cpu_edp) {
5693                         struct intel_pch_pll *pll;
5694
5695                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5696                         if (pll == NULL) {
5697                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5698                                                  pipe);
5699                                 return -EINVAL;
5700                         }
5701                 } else
5702                         intel_put_pch_pll(intel_crtc);
5703
5704                 /* The LVDS pin pair needs to be on before the DPLLs are
5705                  * enabled.  This is an exception to the general rule that
5706                  * mode_set doesn't turn things on.
5707                  */
5708                 if (is_lvds) {
5709                         temp = I915_READ(PCH_LVDS);
5710                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5711                         if (HAS_PCH_CPT(dev)) {
5712                                 temp &= ~PORT_TRANS_SEL_MASK;
5713                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5714                         } else {
5715                                 if (pipe == 1)
5716                                         temp |= LVDS_PIPEB_SELECT;
5717                                 else
5718                                         temp &= ~LVDS_PIPEB_SELECT;
5719                         }
5720
5721                         /* set the corresponsding LVDS_BORDER bit */
5722                         temp |= dev_priv->lvds_border_bits;
5723                         /* Set the B0-B3 data pairs corresponding to whether
5724                          * we're going to set the DPLLs for dual-channel mode or
5725                          * not.
5726                          */
5727                         if (clock.p2 == 7)
5728                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5729                         else
5730                                 temp &= ~(LVDS_B0B3_POWER_UP |
5731                                           LVDS_CLKB_POWER_UP);
5732
5733                         /* It would be nice to set 24 vs 18-bit mode
5734                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5735                          * look more thoroughly into how panels behave in the
5736                          * two modes.
5737                          */
5738                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5739                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5740                                 temp |= LVDS_HSYNC_POLARITY;
5741                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5742                                 temp |= LVDS_VSYNC_POLARITY;
5743                         I915_WRITE(PCH_LVDS, temp);
5744                 }
5745         }
5746
5747         if (is_dp && !is_cpu_edp) {
5748                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5749         } else {
5750                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5751                         /* For non-DP output, clear any trans DP clock recovery
5752                          * setting.*/
5753                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5754                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5755                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5756                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5757                 }
5758         }
5759
5760         intel_crtc->lowfreq_avail = false;
5761         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5762                 if (intel_crtc->pch_pll) {
5763                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5764
5765                         /* Wait for the clocks to stabilize. */
5766                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5767                         udelay(150);
5768
5769                         /* The pixel multiplier can only be updated once the
5770                          * DPLL is enabled and the clocks are stable.
5771                          *
5772                          * So write it again.
5773                          */
5774                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5775                 }
5776
5777                 if (intel_crtc->pch_pll) {
5778                         if (is_lvds && has_reduced_clock && i915_powersave) {
5779                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5780                                 intel_crtc->lowfreq_avail = true;
5781                         } else {
5782                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5783                         }
5784                 }
5785         }
5786
5787         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5788
5789         if (!is_dp || is_cpu_edp)
5790                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5791
5792         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5793                 if (is_cpu_edp)
5794                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5795
5796         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5797
5798         /* Set up the display plane register */
5799         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5800         POSTING_READ(DSPCNTR(plane));
5801
5802         ret = intel_pipe_set_base(crtc, x, y, fb);
5803
5804         intel_update_watermarks(dev);
5805
5806         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5807
5808         return ret;
5809 }
5810
5811 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5812                                struct drm_display_mode *mode,
5813                                struct drm_display_mode *adjusted_mode,
5814                                int x, int y,
5815                                struct drm_framebuffer *fb)
5816 {
5817         struct drm_device *dev = crtc->dev;
5818         struct drm_i915_private *dev_priv = dev->dev_private;
5819         struct drm_encoder_helper_funcs *encoder_funcs;
5820         struct intel_encoder *encoder;
5821         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5822         int pipe = intel_crtc->pipe;
5823         int ret;
5824
5825         drm_vblank_pre_modeset(dev, pipe);
5826
5827         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5828                                               x, y, fb);
5829         drm_vblank_post_modeset(dev, pipe);
5830
5831         if (ret != 0)
5832                 return ret;
5833
5834         for_each_encoder_on_crtc(dev, crtc, encoder) {
5835                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5836                         encoder->base.base.id,
5837                         drm_get_encoder_name(&encoder->base),
5838                         mode->base.id, mode->name);
5839                 encoder_funcs = encoder->base.helper_private;
5840                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5841         }
5842
5843         return 0;
5844 }
5845
5846 static bool intel_eld_uptodate(struct drm_connector *connector,
5847                                int reg_eldv, uint32_t bits_eldv,
5848                                int reg_elda, uint32_t bits_elda,
5849                                int reg_edid)
5850 {
5851         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5852         uint8_t *eld = connector->eld;
5853         uint32_t i;
5854
5855         i = I915_READ(reg_eldv);
5856         i &= bits_eldv;
5857
5858         if (!eld[0])
5859                 return !i;
5860
5861         if (!i)
5862                 return false;
5863
5864         i = I915_READ(reg_elda);
5865         i &= ~bits_elda;
5866         I915_WRITE(reg_elda, i);
5867
5868         for (i = 0; i < eld[2]; i++)
5869                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5870                         return false;
5871
5872         return true;
5873 }
5874
5875 static void g4x_write_eld(struct drm_connector *connector,
5876                           struct drm_crtc *crtc)
5877 {
5878         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5879         uint8_t *eld = connector->eld;
5880         uint32_t eldv;
5881         uint32_t len;
5882         uint32_t i;
5883
5884         i = I915_READ(G4X_AUD_VID_DID);
5885
5886         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5887                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5888         else
5889                 eldv = G4X_ELDV_DEVCTG;
5890
5891         if (intel_eld_uptodate(connector,
5892                                G4X_AUD_CNTL_ST, eldv,
5893                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5894                                G4X_HDMIW_HDMIEDID))
5895                 return;
5896
5897         i = I915_READ(G4X_AUD_CNTL_ST);
5898         i &= ~(eldv | G4X_ELD_ADDR);
5899         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5900         I915_WRITE(G4X_AUD_CNTL_ST, i);
5901
5902         if (!eld[0])
5903                 return;
5904
5905         len = min_t(uint8_t, eld[2], len);
5906         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5907         for (i = 0; i < len; i++)
5908                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5909
5910         i = I915_READ(G4X_AUD_CNTL_ST);
5911         i |= eldv;
5912         I915_WRITE(G4X_AUD_CNTL_ST, i);
5913 }
5914
5915 static void haswell_write_eld(struct drm_connector *connector,
5916                                      struct drm_crtc *crtc)
5917 {
5918         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5919         uint8_t *eld = connector->eld;
5920         struct drm_device *dev = crtc->dev;
5921         uint32_t eldv;
5922         uint32_t i;
5923         int len;
5924         int pipe = to_intel_crtc(crtc)->pipe;
5925         int tmp;
5926
5927         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5928         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5929         int aud_config = HSW_AUD_CFG(pipe);
5930         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5931
5932
5933         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5934
5935         /* Audio output enable */
5936         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5937         tmp = I915_READ(aud_cntrl_st2);
5938         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5939         I915_WRITE(aud_cntrl_st2, tmp);
5940
5941         /* Wait for 1 vertical blank */
5942         intel_wait_for_vblank(dev, pipe);
5943
5944         /* Set ELD valid state */
5945         tmp = I915_READ(aud_cntrl_st2);
5946         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5947         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5948         I915_WRITE(aud_cntrl_st2, tmp);
5949         tmp = I915_READ(aud_cntrl_st2);
5950         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5951
5952         /* Enable HDMI mode */
5953         tmp = I915_READ(aud_config);
5954         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5955         /* clear N_programing_enable and N_value_index */
5956         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5957         I915_WRITE(aud_config, tmp);
5958
5959         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5960
5961         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5962
5963         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5964                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5965                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5966                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5967         } else
5968                 I915_WRITE(aud_config, 0);
5969
5970         if (intel_eld_uptodate(connector,
5971                                aud_cntrl_st2, eldv,
5972                                aud_cntl_st, IBX_ELD_ADDRESS,
5973                                hdmiw_hdmiedid))
5974                 return;
5975
5976         i = I915_READ(aud_cntrl_st2);
5977         i &= ~eldv;
5978         I915_WRITE(aud_cntrl_st2, i);
5979
5980         if (!eld[0])
5981                 return;
5982
5983         i = I915_READ(aud_cntl_st);
5984         i &= ~IBX_ELD_ADDRESS;
5985         I915_WRITE(aud_cntl_st, i);
5986         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5987         DRM_DEBUG_DRIVER("port num:%d\n", i);
5988
5989         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5990         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5991         for (i = 0; i < len; i++)
5992                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5993
5994         i = I915_READ(aud_cntrl_st2);
5995         i |= eldv;
5996         I915_WRITE(aud_cntrl_st2, i);
5997
5998 }
5999
6000 static void ironlake_write_eld(struct drm_connector *connector,
6001                                      struct drm_crtc *crtc)
6002 {
6003         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6004         uint8_t *eld = connector->eld;
6005         uint32_t eldv;
6006         uint32_t i;
6007         int len;
6008         int hdmiw_hdmiedid;
6009         int aud_config;
6010         int aud_cntl_st;
6011         int aud_cntrl_st2;
6012         int pipe = to_intel_crtc(crtc)->pipe;
6013
6014         if (HAS_PCH_IBX(connector->dev)) {
6015                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6016                 aud_config = IBX_AUD_CFG(pipe);
6017                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6018                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6019         } else {
6020                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6021                 aud_config = CPT_AUD_CFG(pipe);
6022                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6023                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6024         }
6025
6026         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6027
6028         i = I915_READ(aud_cntl_st);
6029         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6030         if (!i) {
6031                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6032                 /* operate blindly on all ports */
6033                 eldv = IBX_ELD_VALIDB;
6034                 eldv |= IBX_ELD_VALIDB << 4;
6035                 eldv |= IBX_ELD_VALIDB << 8;
6036         } else {
6037                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6038                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6039         }
6040
6041         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6042                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6043                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6044                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6045         } else
6046                 I915_WRITE(aud_config, 0);
6047
6048         if (intel_eld_uptodate(connector,
6049                                aud_cntrl_st2, eldv,
6050                                aud_cntl_st, IBX_ELD_ADDRESS,
6051                                hdmiw_hdmiedid))
6052                 return;
6053
6054         i = I915_READ(aud_cntrl_st2);
6055         i &= ~eldv;
6056         I915_WRITE(aud_cntrl_st2, i);
6057
6058         if (!eld[0])
6059                 return;
6060
6061         i = I915_READ(aud_cntl_st);
6062         i &= ~IBX_ELD_ADDRESS;
6063         I915_WRITE(aud_cntl_st, i);
6064
6065         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6066         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6067         for (i = 0; i < len; i++)
6068                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6069
6070         i = I915_READ(aud_cntrl_st2);
6071         i |= eldv;
6072         I915_WRITE(aud_cntrl_st2, i);
6073 }
6074
6075 void intel_write_eld(struct drm_encoder *encoder,
6076                      struct drm_display_mode *mode)
6077 {
6078         struct drm_crtc *crtc = encoder->crtc;
6079         struct drm_connector *connector;
6080         struct drm_device *dev = encoder->dev;
6081         struct drm_i915_private *dev_priv = dev->dev_private;
6082
6083         connector = drm_select_eld(encoder, mode);
6084         if (!connector)
6085                 return;
6086
6087         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6088                          connector->base.id,
6089                          drm_get_connector_name(connector),
6090                          connector->encoder->base.id,
6091                          drm_get_encoder_name(connector->encoder));
6092
6093         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6094
6095         if (dev_priv->display.write_eld)
6096                 dev_priv->display.write_eld(connector, crtc);
6097 }
6098
6099 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6100 void intel_crtc_load_lut(struct drm_crtc *crtc)
6101 {
6102         struct drm_device *dev = crtc->dev;
6103         struct drm_i915_private *dev_priv = dev->dev_private;
6104         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6105         int palreg = PALETTE(intel_crtc->pipe);
6106         int i;
6107
6108         /* The clocks have to be on to load the palette. */
6109         if (!crtc->enabled || !intel_crtc->active)
6110                 return;
6111
6112         /* use legacy palette for Ironlake */
6113         if (HAS_PCH_SPLIT(dev))
6114                 palreg = LGC_PALETTE(intel_crtc->pipe);
6115
6116         for (i = 0; i < 256; i++) {
6117                 I915_WRITE(palreg + 4 * i,
6118                            (intel_crtc->lut_r[i] << 16) |
6119                            (intel_crtc->lut_g[i] << 8) |
6120                            intel_crtc->lut_b[i]);
6121         }
6122 }
6123
6124 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6125 {
6126         struct drm_device *dev = crtc->dev;
6127         struct drm_i915_private *dev_priv = dev->dev_private;
6128         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6129         bool visible = base != 0;
6130         u32 cntl;
6131
6132         if (intel_crtc->cursor_visible == visible)
6133                 return;
6134
6135         cntl = I915_READ(_CURACNTR);
6136         if (visible) {
6137                 /* On these chipsets we can only modify the base whilst
6138                  * the cursor is disabled.
6139                  */
6140                 I915_WRITE(_CURABASE, base);
6141
6142                 cntl &= ~(CURSOR_FORMAT_MASK);
6143                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6144                 cntl |= CURSOR_ENABLE |
6145                         CURSOR_GAMMA_ENABLE |
6146                         CURSOR_FORMAT_ARGB;
6147         } else
6148                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6149         I915_WRITE(_CURACNTR, cntl);
6150
6151         intel_crtc->cursor_visible = visible;
6152 }
6153
6154 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6155 {
6156         struct drm_device *dev = crtc->dev;
6157         struct drm_i915_private *dev_priv = dev->dev_private;
6158         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6159         int pipe = intel_crtc->pipe;
6160         bool visible = base != 0;
6161
6162         if (intel_crtc->cursor_visible != visible) {
6163                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6164                 if (base) {
6165                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6166                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6167                         cntl |= pipe << 28; /* Connect to correct pipe */
6168                 } else {
6169                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6170                         cntl |= CURSOR_MODE_DISABLE;
6171                 }
6172                 I915_WRITE(CURCNTR(pipe), cntl);
6173
6174                 intel_crtc->cursor_visible = visible;
6175         }
6176         /* and commit changes on next vblank */
6177         I915_WRITE(CURBASE(pipe), base);
6178 }
6179
6180 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6181 {
6182         struct drm_device *dev = crtc->dev;
6183         struct drm_i915_private *dev_priv = dev->dev_private;
6184         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6185         int pipe = intel_crtc->pipe;
6186         bool visible = base != 0;
6187
6188         if (intel_crtc->cursor_visible != visible) {
6189                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6190                 if (base) {
6191                         cntl &= ~CURSOR_MODE;
6192                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6193                 } else {
6194                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6195                         cntl |= CURSOR_MODE_DISABLE;
6196                 }
6197                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6198
6199                 intel_crtc->cursor_visible = visible;
6200         }
6201         /* and commit changes on next vblank */
6202         I915_WRITE(CURBASE_IVB(pipe), base);
6203 }
6204
6205 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6206 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6207                                      bool on)
6208 {
6209         struct drm_device *dev = crtc->dev;
6210         struct drm_i915_private *dev_priv = dev->dev_private;
6211         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6212         int pipe = intel_crtc->pipe;
6213         int x = intel_crtc->cursor_x;
6214         int y = intel_crtc->cursor_y;
6215         u32 base, pos;
6216         bool visible;
6217
6218         pos = 0;
6219
6220         if (on && crtc->enabled && crtc->fb) {
6221                 base = intel_crtc->cursor_addr;
6222                 if (x > (int) crtc->fb->width)
6223                         base = 0;
6224
6225                 if (y > (int) crtc->fb->height)
6226                         base = 0;
6227         } else
6228                 base = 0;
6229
6230         if (x < 0) {
6231                 if (x + intel_crtc->cursor_width < 0)
6232                         base = 0;
6233
6234                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6235                 x = -x;
6236         }
6237         pos |= x << CURSOR_X_SHIFT;
6238
6239         if (y < 0) {
6240                 if (y + intel_crtc->cursor_height < 0)
6241                         base = 0;
6242
6243                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6244                 y = -y;
6245         }
6246         pos |= y << CURSOR_Y_SHIFT;
6247
6248         visible = base != 0;
6249         if (!visible && !intel_crtc->cursor_visible)
6250                 return;
6251
6252         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6253                 I915_WRITE(CURPOS_IVB(pipe), pos);
6254                 ivb_update_cursor(crtc, base);
6255         } else {
6256                 I915_WRITE(CURPOS(pipe), pos);
6257                 if (IS_845G(dev) || IS_I865G(dev))
6258                         i845_update_cursor(crtc, base);
6259                 else
6260                         i9xx_update_cursor(crtc, base);
6261         }
6262 }
6263
6264 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6265                                  struct drm_file *file,
6266                                  uint32_t handle,
6267                                  uint32_t width, uint32_t height)
6268 {
6269         struct drm_device *dev = crtc->dev;
6270         struct drm_i915_private *dev_priv = dev->dev_private;
6271         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6272         struct drm_i915_gem_object *obj;
6273         uint32_t addr;
6274         int ret;
6275
6276         /* if we want to turn off the cursor ignore width and height */
6277         if (!handle) {
6278                 DRM_DEBUG_KMS("cursor off\n");
6279                 addr = 0;
6280                 obj = NULL;
6281                 mutex_lock(&dev->struct_mutex);
6282                 goto finish;
6283         }
6284
6285         /* Currently we only support 64x64 cursors */
6286         if (width != 64 || height != 64) {
6287                 DRM_ERROR("we currently only support 64x64 cursors\n");
6288                 return -EINVAL;
6289         }
6290
6291         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6292         if (&obj->base == NULL)
6293                 return -ENOENT;
6294
6295         if (obj->base.size < width * height * 4) {
6296                 DRM_ERROR("buffer is to small\n");
6297                 ret = -ENOMEM;
6298                 goto fail;
6299         }
6300
6301         /* we only need to pin inside GTT if cursor is non-phy */
6302         mutex_lock(&dev->struct_mutex);
6303         if (!dev_priv->info->cursor_needs_physical) {
6304                 if (obj->tiling_mode) {
6305                         DRM_ERROR("cursor cannot be tiled\n");
6306                         ret = -EINVAL;
6307                         goto fail_locked;
6308                 }
6309
6310                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6311                 if (ret) {
6312                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6313                         goto fail_locked;
6314                 }
6315
6316                 ret = i915_gem_object_put_fence(obj);
6317                 if (ret) {
6318                         DRM_ERROR("failed to release fence for cursor");
6319                         goto fail_unpin;
6320                 }
6321
6322                 addr = obj->gtt_offset;
6323         } else {
6324                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6325                 ret = i915_gem_attach_phys_object(dev, obj,
6326                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6327                                                   align);
6328                 if (ret) {
6329                         DRM_ERROR("failed to attach phys object\n");
6330                         goto fail_locked;
6331                 }
6332                 addr = obj->phys_obj->handle->busaddr;
6333         }
6334
6335         if (IS_GEN2(dev))
6336                 I915_WRITE(CURSIZE, (height << 12) | width);
6337
6338  finish:
6339         if (intel_crtc->cursor_bo) {
6340                 if (dev_priv->info->cursor_needs_physical) {
6341                         if (intel_crtc->cursor_bo != obj)
6342                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6343                 } else
6344                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6345                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6346         }
6347
6348         mutex_unlock(&dev->struct_mutex);
6349
6350         intel_crtc->cursor_addr = addr;
6351         intel_crtc->cursor_bo = obj;
6352         intel_crtc->cursor_width = width;
6353         intel_crtc->cursor_height = height;
6354
6355         intel_crtc_update_cursor(crtc, true);
6356
6357         return 0;
6358 fail_unpin:
6359         i915_gem_object_unpin(obj);
6360 fail_locked:
6361         mutex_unlock(&dev->struct_mutex);
6362 fail:
6363         drm_gem_object_unreference_unlocked(&obj->base);
6364         return ret;
6365 }
6366
6367 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6368 {
6369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6370
6371         intel_crtc->cursor_x = x;
6372         intel_crtc->cursor_y = y;
6373
6374         intel_crtc_update_cursor(crtc, true);
6375
6376         return 0;
6377 }
6378
6379 /** Sets the color ramps on behalf of RandR */
6380 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6381                                  u16 blue, int regno)
6382 {
6383         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6384
6385         intel_crtc->lut_r[regno] = red >> 8;
6386         intel_crtc->lut_g[regno] = green >> 8;
6387         intel_crtc->lut_b[regno] = blue >> 8;
6388 }
6389
6390 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6391                              u16 *blue, int regno)
6392 {
6393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6394
6395         *red = intel_crtc->lut_r[regno] << 8;
6396         *green = intel_crtc->lut_g[regno] << 8;
6397         *blue = intel_crtc->lut_b[regno] << 8;
6398 }
6399
6400 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6401                                  u16 *blue, uint32_t start, uint32_t size)
6402 {
6403         int end = (start + size > 256) ? 256 : start + size, i;
6404         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6405
6406         for (i = start; i < end; i++) {
6407                 intel_crtc->lut_r[i] = red[i] >> 8;
6408                 intel_crtc->lut_g[i] = green[i] >> 8;
6409                 intel_crtc->lut_b[i] = blue[i] >> 8;
6410         }
6411
6412         intel_crtc_load_lut(crtc);
6413 }
6414
6415 /**
6416  * Get a pipe with a simple mode set on it for doing load-based monitor
6417  * detection.
6418  *
6419  * It will be up to the load-detect code to adjust the pipe as appropriate for
6420  * its requirements.  The pipe will be connected to no other encoders.
6421  *
6422  * Currently this code will only succeed if there is a pipe with no encoders
6423  * configured for it.  In the future, it could choose to temporarily disable
6424  * some outputs to free up a pipe for its use.
6425  *
6426  * \return crtc, or NULL if no pipes are available.
6427  */
6428
6429 /* VESA 640x480x72Hz mode to set on the pipe */
6430 static struct drm_display_mode load_detect_mode = {
6431         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6432                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6433 };
6434
6435 static struct drm_framebuffer *
6436 intel_framebuffer_create(struct drm_device *dev,
6437                          struct drm_mode_fb_cmd2 *mode_cmd,
6438                          struct drm_i915_gem_object *obj)
6439 {
6440         struct intel_framebuffer *intel_fb;
6441         int ret;
6442
6443         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6444         if (!intel_fb) {
6445                 drm_gem_object_unreference_unlocked(&obj->base);
6446                 return ERR_PTR(-ENOMEM);
6447         }
6448
6449         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6450         if (ret) {
6451                 drm_gem_object_unreference_unlocked(&obj->base);
6452                 kfree(intel_fb);
6453                 return ERR_PTR(ret);
6454         }
6455
6456         return &intel_fb->base;
6457 }
6458
6459 static u32
6460 intel_framebuffer_pitch_for_width(int width, int bpp)
6461 {
6462         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6463         return ALIGN(pitch, 64);
6464 }
6465
6466 static u32
6467 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6468 {
6469         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6470         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6471 }
6472
6473 static struct drm_framebuffer *
6474 intel_framebuffer_create_for_mode(struct drm_device *dev,
6475                                   struct drm_display_mode *mode,
6476                                   int depth, int bpp)
6477 {
6478         struct drm_i915_gem_object *obj;
6479         struct drm_mode_fb_cmd2 mode_cmd;
6480
6481         obj = i915_gem_alloc_object(dev,
6482                                     intel_framebuffer_size_for_mode(mode, bpp));
6483         if (obj == NULL)
6484                 return ERR_PTR(-ENOMEM);
6485
6486         mode_cmd.width = mode->hdisplay;
6487         mode_cmd.height = mode->vdisplay;
6488         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6489                                                                 bpp);
6490         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6491
6492         return intel_framebuffer_create(dev, &mode_cmd, obj);
6493 }
6494
6495 static struct drm_framebuffer *
6496 mode_fits_in_fbdev(struct drm_device *dev,
6497                    struct drm_display_mode *mode)
6498 {
6499         struct drm_i915_private *dev_priv = dev->dev_private;
6500         struct drm_i915_gem_object *obj;
6501         struct drm_framebuffer *fb;
6502
6503         if (dev_priv->fbdev == NULL)
6504                 return NULL;
6505
6506         obj = dev_priv->fbdev->ifb.obj;
6507         if (obj == NULL)
6508                 return NULL;
6509
6510         fb = &dev_priv->fbdev->ifb.base;
6511         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6512                                                                fb->bits_per_pixel))
6513                 return NULL;
6514
6515         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6516                 return NULL;
6517
6518         return fb;
6519 }
6520
6521 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6522                                 struct drm_display_mode *mode,
6523                                 struct intel_load_detect_pipe *old)
6524 {
6525         struct intel_crtc *intel_crtc;
6526         struct intel_encoder *intel_encoder =
6527                 intel_attached_encoder(connector);
6528         struct drm_crtc *possible_crtc;
6529         struct drm_encoder *encoder = &intel_encoder->base;
6530         struct drm_crtc *crtc = NULL;
6531         struct drm_device *dev = encoder->dev;
6532         struct drm_framebuffer *fb;
6533         int i = -1;
6534
6535         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6536                       connector->base.id, drm_get_connector_name(connector),
6537                       encoder->base.id, drm_get_encoder_name(encoder));
6538
6539         /*
6540          * Algorithm gets a little messy:
6541          *
6542          *   - if the connector already has an assigned crtc, use it (but make
6543          *     sure it's on first)
6544          *
6545          *   - try to find the first unused crtc that can drive this connector,
6546          *     and use that if we find one
6547          */
6548
6549         /* See if we already have a CRTC for this connector */
6550         if (encoder->crtc) {
6551                 crtc = encoder->crtc;
6552
6553                 old->dpms_mode = connector->dpms;
6554                 old->load_detect_temp = false;
6555
6556                 /* Make sure the crtc and connector are running */
6557                 if (connector->dpms != DRM_MODE_DPMS_ON)
6558                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6559
6560                 return true;
6561         }
6562
6563         /* Find an unused one (if possible) */
6564         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6565                 i++;
6566                 if (!(encoder->possible_crtcs & (1 << i)))
6567                         continue;
6568                 if (!possible_crtc->enabled) {
6569                         crtc = possible_crtc;
6570                         break;
6571                 }
6572         }
6573
6574         /*
6575          * If we didn't find an unused CRTC, don't use any.
6576          */
6577         if (!crtc) {
6578                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6579                 return false;
6580         }
6581
6582         intel_encoder->new_crtc = to_intel_crtc(crtc);
6583         to_intel_connector(connector)->new_encoder = intel_encoder;
6584
6585         intel_crtc = to_intel_crtc(crtc);
6586         old->dpms_mode = connector->dpms;
6587         old->load_detect_temp = true;
6588         old->release_fb = NULL;
6589
6590         if (!mode)
6591                 mode = &load_detect_mode;
6592
6593         /* We need a framebuffer large enough to accommodate all accesses
6594          * that the plane may generate whilst we perform load detection.
6595          * We can not rely on the fbcon either being present (we get called
6596          * during its initialisation to detect all boot displays, or it may
6597          * not even exist) or that it is large enough to satisfy the
6598          * requested mode.
6599          */
6600         fb = mode_fits_in_fbdev(dev, mode);
6601         if (fb == NULL) {
6602                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6603                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6604                 old->release_fb = fb;
6605         } else
6606                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6607         if (IS_ERR(fb)) {
6608                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6609                 goto fail;
6610         }
6611
6612         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6613                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6614                 if (old->release_fb)
6615                         old->release_fb->funcs->destroy(old->release_fb);
6616                 goto fail;
6617         }
6618
6619         /* let the connector get through one full cycle before testing */
6620         intel_wait_for_vblank(dev, intel_crtc->pipe);
6621
6622         return true;
6623 fail:
6624         connector->encoder = NULL;
6625         encoder->crtc = NULL;
6626         return false;
6627 }
6628
6629 void intel_release_load_detect_pipe(struct drm_connector *connector,
6630                                     struct intel_load_detect_pipe *old)
6631 {
6632         struct intel_encoder *intel_encoder =
6633                 intel_attached_encoder(connector);
6634         struct drm_encoder *encoder = &intel_encoder->base;
6635
6636         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6637                       connector->base.id, drm_get_connector_name(connector),
6638                       encoder->base.id, drm_get_encoder_name(encoder));
6639
6640         if (old->load_detect_temp) {
6641                 struct drm_crtc *crtc = encoder->crtc;
6642
6643                 to_intel_connector(connector)->new_encoder = NULL;
6644                 intel_encoder->new_crtc = NULL;
6645                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6646
6647                 if (old->release_fb)
6648                         old->release_fb->funcs->destroy(old->release_fb);
6649
6650                 return;
6651         }
6652
6653         /* Switch crtc and encoder back off if necessary */
6654         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6655                 connector->funcs->dpms(connector, old->dpms_mode);
6656 }
6657
6658 /* Returns the clock of the currently programmed mode of the given pipe. */
6659 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6660 {
6661         struct drm_i915_private *dev_priv = dev->dev_private;
6662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6663         int pipe = intel_crtc->pipe;
6664         u32 dpll = I915_READ(DPLL(pipe));
6665         u32 fp;
6666         intel_clock_t clock;
6667
6668         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6669                 fp = I915_READ(FP0(pipe));
6670         else
6671                 fp = I915_READ(FP1(pipe));
6672
6673         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6674         if (IS_PINEVIEW(dev)) {
6675                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6676                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6677         } else {
6678                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6679                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6680         }
6681
6682         if (!IS_GEN2(dev)) {
6683                 if (IS_PINEVIEW(dev))
6684                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6685                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6686                 else
6687                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6688                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6689
6690                 switch (dpll & DPLL_MODE_MASK) {
6691                 case DPLLB_MODE_DAC_SERIAL:
6692                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6693                                 5 : 10;
6694                         break;
6695                 case DPLLB_MODE_LVDS:
6696                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6697                                 7 : 14;
6698                         break;
6699                 default:
6700                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6701                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6702                         return 0;
6703                 }
6704
6705                 /* XXX: Handle the 100Mhz refclk */
6706                 intel_clock(dev, 96000, &clock);
6707         } else {
6708                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6709
6710                 if (is_lvds) {
6711                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6712                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6713                         clock.p2 = 14;
6714
6715                         if ((dpll & PLL_REF_INPUT_MASK) ==
6716                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6717                                 /* XXX: might not be 66MHz */
6718                                 intel_clock(dev, 66000, &clock);
6719                         } else
6720                                 intel_clock(dev, 48000, &clock);
6721                 } else {
6722                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6723                                 clock.p1 = 2;
6724                         else {
6725                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6726                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6727                         }
6728                         if (dpll & PLL_P2_DIVIDE_BY_4)
6729                                 clock.p2 = 4;
6730                         else
6731                                 clock.p2 = 2;
6732
6733                         intel_clock(dev, 48000, &clock);
6734                 }
6735         }
6736
6737         /* XXX: It would be nice to validate the clocks, but we can't reuse
6738          * i830PllIsValid() because it relies on the xf86_config connector
6739          * configuration being accurate, which it isn't necessarily.
6740          */
6741
6742         return clock.dot;
6743 }
6744
6745 /** Returns the currently programmed mode of the given pipe. */
6746 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6747                                              struct drm_crtc *crtc)
6748 {
6749         struct drm_i915_private *dev_priv = dev->dev_private;
6750         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6751         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6752         struct drm_display_mode *mode;
6753         int htot = I915_READ(HTOTAL(cpu_transcoder));
6754         int hsync = I915_READ(HSYNC(cpu_transcoder));
6755         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6756         int vsync = I915_READ(VSYNC(cpu_transcoder));
6757
6758         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6759         if (!mode)
6760                 return NULL;
6761
6762         mode->clock = intel_crtc_clock_get(dev, crtc);
6763         mode->hdisplay = (htot & 0xffff) + 1;
6764         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6765         mode->hsync_start = (hsync & 0xffff) + 1;
6766         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6767         mode->vdisplay = (vtot & 0xffff) + 1;
6768         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6769         mode->vsync_start = (vsync & 0xffff) + 1;
6770         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6771
6772         drm_mode_set_name(mode);
6773
6774         return mode;
6775 }
6776
6777 static void intel_increase_pllclock(struct drm_crtc *crtc)
6778 {
6779         struct drm_device *dev = crtc->dev;
6780         drm_i915_private_t *dev_priv = dev->dev_private;
6781         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6782         int pipe = intel_crtc->pipe;
6783         int dpll_reg = DPLL(pipe);
6784         int dpll;
6785
6786         if (HAS_PCH_SPLIT(dev))
6787                 return;
6788
6789         if (!dev_priv->lvds_downclock_avail)
6790                 return;
6791
6792         dpll = I915_READ(dpll_reg);
6793         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6794                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6795
6796                 assert_panel_unlocked(dev_priv, pipe);
6797
6798                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6799                 I915_WRITE(dpll_reg, dpll);
6800                 intel_wait_for_vblank(dev, pipe);
6801
6802                 dpll = I915_READ(dpll_reg);
6803                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6804                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6805         }
6806 }
6807
6808 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6809 {
6810         struct drm_device *dev = crtc->dev;
6811         drm_i915_private_t *dev_priv = dev->dev_private;
6812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6813
6814         if (HAS_PCH_SPLIT(dev))
6815                 return;
6816
6817         if (!dev_priv->lvds_downclock_avail)
6818                 return;
6819
6820         /*
6821          * Since this is called by a timer, we should never get here in
6822          * the manual case.
6823          */
6824         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6825                 int pipe = intel_crtc->pipe;
6826                 int dpll_reg = DPLL(pipe);
6827                 int dpll;
6828
6829                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6830
6831                 assert_panel_unlocked(dev_priv, pipe);
6832
6833                 dpll = I915_READ(dpll_reg);
6834                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6835                 I915_WRITE(dpll_reg, dpll);
6836                 intel_wait_for_vblank(dev, pipe);
6837                 dpll = I915_READ(dpll_reg);
6838                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6839                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6840         }
6841
6842 }
6843
6844 void intel_mark_busy(struct drm_device *dev)
6845 {
6846         i915_update_gfx_val(dev->dev_private);
6847 }
6848
6849 void intel_mark_idle(struct drm_device *dev)
6850 {
6851 }
6852
6853 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6854 {
6855         struct drm_device *dev = obj->base.dev;
6856         struct drm_crtc *crtc;
6857
6858         if (!i915_powersave)
6859                 return;
6860
6861         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6862                 if (!crtc->fb)
6863                         continue;
6864
6865                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6866                         intel_increase_pllclock(crtc);
6867         }
6868 }
6869
6870 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6871 {
6872         struct drm_device *dev = obj->base.dev;
6873         struct drm_crtc *crtc;
6874
6875         if (!i915_powersave)
6876                 return;
6877
6878         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6879                 if (!crtc->fb)
6880                         continue;
6881
6882                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6883                         intel_decrease_pllclock(crtc);
6884         }
6885 }
6886
6887 static void intel_crtc_destroy(struct drm_crtc *crtc)
6888 {
6889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6890         struct drm_device *dev = crtc->dev;
6891         struct intel_unpin_work *work;
6892         unsigned long flags;
6893
6894         spin_lock_irqsave(&dev->event_lock, flags);
6895         work = intel_crtc->unpin_work;
6896         intel_crtc->unpin_work = NULL;
6897         spin_unlock_irqrestore(&dev->event_lock, flags);
6898
6899         if (work) {
6900                 cancel_work_sync(&work->work);
6901                 kfree(work);
6902         }
6903
6904         drm_crtc_cleanup(crtc);
6905
6906         kfree(intel_crtc);
6907 }
6908
6909 static void intel_unpin_work_fn(struct work_struct *__work)
6910 {
6911         struct intel_unpin_work *work =
6912                 container_of(__work, struct intel_unpin_work, work);
6913
6914         mutex_lock(&work->dev->struct_mutex);
6915         intel_unpin_fb_obj(work->old_fb_obj);
6916         drm_gem_object_unreference(&work->pending_flip_obj->base);
6917         drm_gem_object_unreference(&work->old_fb_obj->base);
6918
6919         intel_update_fbc(work->dev);
6920         mutex_unlock(&work->dev->struct_mutex);
6921         kfree(work);
6922 }
6923
6924 static void do_intel_finish_page_flip(struct drm_device *dev,
6925                                       struct drm_crtc *crtc)
6926 {
6927         drm_i915_private_t *dev_priv = dev->dev_private;
6928         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6929         struct intel_unpin_work *work;
6930         struct drm_i915_gem_object *obj;
6931         struct drm_pending_vblank_event *e;
6932         struct timeval tvbl;
6933         unsigned long flags;
6934
6935         /* Ignore early vblank irqs */
6936         if (intel_crtc == NULL)
6937                 return;
6938
6939         spin_lock_irqsave(&dev->event_lock, flags);
6940         work = intel_crtc->unpin_work;
6941         if (work == NULL || !work->pending) {
6942                 spin_unlock_irqrestore(&dev->event_lock, flags);
6943                 return;
6944         }
6945
6946         intel_crtc->unpin_work = NULL;
6947
6948         if (work->event) {
6949                 e = work->event;
6950                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6951
6952                 e->event.tv_sec = tvbl.tv_sec;
6953                 e->event.tv_usec = tvbl.tv_usec;
6954
6955                 list_add_tail(&e->base.link,
6956                               &e->base.file_priv->event_list);
6957                 wake_up_interruptible(&e->base.file_priv->event_wait);
6958         }
6959
6960         drm_vblank_put(dev, intel_crtc->pipe);
6961
6962         spin_unlock_irqrestore(&dev->event_lock, flags);
6963
6964         obj = work->old_fb_obj;
6965
6966         atomic_clear_mask(1 << intel_crtc->plane,
6967                           &obj->pending_flip.counter);
6968
6969         wake_up(&dev_priv->pending_flip_queue);
6970         schedule_work(&work->work);
6971
6972         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6973 }
6974
6975 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6976 {
6977         drm_i915_private_t *dev_priv = dev->dev_private;
6978         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6979
6980         do_intel_finish_page_flip(dev, crtc);
6981 }
6982
6983 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6984 {
6985         drm_i915_private_t *dev_priv = dev->dev_private;
6986         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6987
6988         do_intel_finish_page_flip(dev, crtc);
6989 }
6990
6991 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6992 {
6993         drm_i915_private_t *dev_priv = dev->dev_private;
6994         struct intel_crtc *intel_crtc =
6995                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6996         unsigned long flags;
6997
6998         spin_lock_irqsave(&dev->event_lock, flags);
6999         if (intel_crtc->unpin_work) {
7000                 if ((++intel_crtc->unpin_work->pending) > 1)
7001                         DRM_ERROR("Prepared flip multiple times\n");
7002         } else {
7003                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7004         }
7005         spin_unlock_irqrestore(&dev->event_lock, flags);
7006 }
7007
7008 static int intel_gen2_queue_flip(struct drm_device *dev,
7009                                  struct drm_crtc *crtc,
7010                                  struct drm_framebuffer *fb,
7011                                  struct drm_i915_gem_object *obj)
7012 {
7013         struct drm_i915_private *dev_priv = dev->dev_private;
7014         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7015         u32 flip_mask;
7016         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7017         int ret;
7018
7019         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7020         if (ret)
7021                 goto err;
7022
7023         ret = intel_ring_begin(ring, 6);
7024         if (ret)
7025                 goto err_unpin;
7026
7027         /* Can't queue multiple flips, so wait for the previous
7028          * one to finish before executing the next.
7029          */
7030         if (intel_crtc->plane)
7031                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7032         else
7033                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7034         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7035         intel_ring_emit(ring, MI_NOOP);
7036         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7037                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7038         intel_ring_emit(ring, fb->pitches[0]);
7039         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7040         intel_ring_emit(ring, 0); /* aux display base address, unused */
7041         intel_ring_advance(ring);
7042         return 0;
7043
7044 err_unpin:
7045         intel_unpin_fb_obj(obj);
7046 err:
7047         return ret;
7048 }
7049
7050 static int intel_gen3_queue_flip(struct drm_device *dev,
7051                                  struct drm_crtc *crtc,
7052                                  struct drm_framebuffer *fb,
7053                                  struct drm_i915_gem_object *obj)
7054 {
7055         struct drm_i915_private *dev_priv = dev->dev_private;
7056         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7057         u32 flip_mask;
7058         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7059         int ret;
7060
7061         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7062         if (ret)
7063                 goto err;
7064
7065         ret = intel_ring_begin(ring, 6);
7066         if (ret)
7067                 goto err_unpin;
7068
7069         if (intel_crtc->plane)
7070                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7071         else
7072                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7073         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7074         intel_ring_emit(ring, MI_NOOP);
7075         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7076                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7077         intel_ring_emit(ring, fb->pitches[0]);
7078         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7079         intel_ring_emit(ring, MI_NOOP);
7080
7081         intel_ring_advance(ring);
7082         return 0;
7083
7084 err_unpin:
7085         intel_unpin_fb_obj(obj);
7086 err:
7087         return ret;
7088 }
7089
7090 static int intel_gen4_queue_flip(struct drm_device *dev,
7091                                  struct drm_crtc *crtc,
7092                                  struct drm_framebuffer *fb,
7093                                  struct drm_i915_gem_object *obj)
7094 {
7095         struct drm_i915_private *dev_priv = dev->dev_private;
7096         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7097         uint32_t pf, pipesrc;
7098         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7099         int ret;
7100
7101         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7102         if (ret)
7103                 goto err;
7104
7105         ret = intel_ring_begin(ring, 4);
7106         if (ret)
7107                 goto err_unpin;
7108
7109         /* i965+ uses the linear or tiled offsets from the
7110          * Display Registers (which do not change across a page-flip)
7111          * so we need only reprogram the base address.
7112          */
7113         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7114                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7115         intel_ring_emit(ring, fb->pitches[0]);
7116         intel_ring_emit(ring,
7117                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7118                         obj->tiling_mode);
7119
7120         /* XXX Enabling the panel-fitter across page-flip is so far
7121          * untested on non-native modes, so ignore it for now.
7122          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7123          */
7124         pf = 0;
7125         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7126         intel_ring_emit(ring, pf | pipesrc);
7127         intel_ring_advance(ring);
7128         return 0;
7129
7130 err_unpin:
7131         intel_unpin_fb_obj(obj);
7132 err:
7133         return ret;
7134 }
7135
7136 static int intel_gen6_queue_flip(struct drm_device *dev,
7137                                  struct drm_crtc *crtc,
7138                                  struct drm_framebuffer *fb,
7139                                  struct drm_i915_gem_object *obj)
7140 {
7141         struct drm_i915_private *dev_priv = dev->dev_private;
7142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7143         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7144         uint32_t pf, pipesrc;
7145         int ret;
7146
7147         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7148         if (ret)
7149                 goto err;
7150
7151         ret = intel_ring_begin(ring, 4);
7152         if (ret)
7153                 goto err_unpin;
7154
7155         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7156                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7157         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7158         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7159
7160         /* Contrary to the suggestions in the documentation,
7161          * "Enable Panel Fitter" does not seem to be required when page
7162          * flipping with a non-native mode, and worse causes a normal
7163          * modeset to fail.
7164          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7165          */
7166         pf = 0;
7167         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7168         intel_ring_emit(ring, pf | pipesrc);
7169         intel_ring_advance(ring);
7170         return 0;
7171
7172 err_unpin:
7173         intel_unpin_fb_obj(obj);
7174 err:
7175         return ret;
7176 }
7177
7178 /*
7179  * On gen7 we currently use the blit ring because (in early silicon at least)
7180  * the render ring doesn't give us interrpts for page flip completion, which
7181  * means clients will hang after the first flip is queued.  Fortunately the
7182  * blit ring generates interrupts properly, so use it instead.
7183  */
7184 static int intel_gen7_queue_flip(struct drm_device *dev,
7185                                  struct drm_crtc *crtc,
7186                                  struct drm_framebuffer *fb,
7187                                  struct drm_i915_gem_object *obj)
7188 {
7189         struct drm_i915_private *dev_priv = dev->dev_private;
7190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7191         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7192         uint32_t plane_bit = 0;
7193         int ret;
7194
7195         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7196         if (ret)
7197                 goto err;
7198
7199         switch(intel_crtc->plane) {
7200         case PLANE_A:
7201                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7202                 break;
7203         case PLANE_B:
7204                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7205                 break;
7206         case PLANE_C:
7207                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7208                 break;
7209         default:
7210                 WARN_ONCE(1, "unknown plane in flip command\n");
7211                 ret = -ENODEV;
7212                 goto err_unpin;
7213         }
7214
7215         ret = intel_ring_begin(ring, 4);
7216         if (ret)
7217                 goto err_unpin;
7218
7219         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7220         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7221         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7222         intel_ring_emit(ring, (MI_NOOP));
7223         intel_ring_advance(ring);
7224         return 0;
7225
7226 err_unpin:
7227         intel_unpin_fb_obj(obj);
7228 err:
7229         return ret;
7230 }
7231
7232 static int intel_default_queue_flip(struct drm_device *dev,
7233                                     struct drm_crtc *crtc,
7234                                     struct drm_framebuffer *fb,
7235                                     struct drm_i915_gem_object *obj)
7236 {
7237         return -ENODEV;
7238 }
7239
7240 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7241                                 struct drm_framebuffer *fb,
7242                                 struct drm_pending_vblank_event *event)
7243 {
7244         struct drm_device *dev = crtc->dev;
7245         struct drm_i915_private *dev_priv = dev->dev_private;
7246         struct intel_framebuffer *intel_fb;
7247         struct drm_i915_gem_object *obj;
7248         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7249         struct intel_unpin_work *work;
7250         unsigned long flags;
7251         int ret;
7252
7253         /* Can't change pixel format via MI display flips. */
7254         if (fb->pixel_format != crtc->fb->pixel_format)
7255                 return -EINVAL;
7256
7257         /*
7258          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7259          * Note that pitch changes could also affect these register.
7260          */
7261         if (INTEL_INFO(dev)->gen > 3 &&
7262             (fb->offsets[0] != crtc->fb->offsets[0] ||
7263              fb->pitches[0] != crtc->fb->pitches[0]))
7264                 return -EINVAL;
7265
7266         work = kzalloc(sizeof *work, GFP_KERNEL);
7267         if (work == NULL)
7268                 return -ENOMEM;
7269
7270         work->event = event;
7271         work->dev = crtc->dev;
7272         intel_fb = to_intel_framebuffer(crtc->fb);
7273         work->old_fb_obj = intel_fb->obj;
7274         INIT_WORK(&work->work, intel_unpin_work_fn);
7275
7276         ret = drm_vblank_get(dev, intel_crtc->pipe);
7277         if (ret)
7278                 goto free_work;
7279
7280         /* We borrow the event spin lock for protecting unpin_work */
7281         spin_lock_irqsave(&dev->event_lock, flags);
7282         if (intel_crtc->unpin_work) {
7283                 spin_unlock_irqrestore(&dev->event_lock, flags);
7284                 kfree(work);
7285                 drm_vblank_put(dev, intel_crtc->pipe);
7286
7287                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7288                 return -EBUSY;
7289         }
7290         intel_crtc->unpin_work = work;
7291         spin_unlock_irqrestore(&dev->event_lock, flags);
7292
7293         intel_fb = to_intel_framebuffer(fb);
7294         obj = intel_fb->obj;
7295
7296         ret = i915_mutex_lock_interruptible(dev);
7297         if (ret)
7298                 goto cleanup;
7299
7300         /* Reference the objects for the scheduled work. */
7301         drm_gem_object_reference(&work->old_fb_obj->base);
7302         drm_gem_object_reference(&obj->base);
7303
7304         crtc->fb = fb;
7305
7306         work->pending_flip_obj = obj;
7307
7308         work->enable_stall_check = true;
7309
7310         /* Block clients from rendering to the new back buffer until
7311          * the flip occurs and the object is no longer visible.
7312          */
7313         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7314
7315         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7316         if (ret)
7317                 goto cleanup_pending;
7318
7319         intel_disable_fbc(dev);
7320         intel_mark_fb_busy(obj);
7321         mutex_unlock(&dev->struct_mutex);
7322
7323         trace_i915_flip_request(intel_crtc->plane, obj);
7324
7325         return 0;
7326
7327 cleanup_pending:
7328         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7329         drm_gem_object_unreference(&work->old_fb_obj->base);
7330         drm_gem_object_unreference(&obj->base);
7331         mutex_unlock(&dev->struct_mutex);
7332
7333 cleanup:
7334         spin_lock_irqsave(&dev->event_lock, flags);
7335         intel_crtc->unpin_work = NULL;
7336         spin_unlock_irqrestore(&dev->event_lock, flags);
7337
7338         drm_vblank_put(dev, intel_crtc->pipe);
7339 free_work:
7340         kfree(work);
7341
7342         return ret;
7343 }
7344
7345 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7346         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7347         .load_lut = intel_crtc_load_lut,
7348         .disable = intel_crtc_noop,
7349 };
7350
7351 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7352 {
7353         struct intel_encoder *other_encoder;
7354         struct drm_crtc *crtc = &encoder->new_crtc->base;
7355
7356         if (WARN_ON(!crtc))
7357                 return false;
7358
7359         list_for_each_entry(other_encoder,
7360                             &crtc->dev->mode_config.encoder_list,
7361                             base.head) {
7362
7363                 if (&other_encoder->new_crtc->base != crtc ||
7364                     encoder == other_encoder)
7365                         continue;
7366                 else
7367                         return true;
7368         }
7369
7370         return false;
7371 }
7372
7373 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7374                                   struct drm_crtc *crtc)
7375 {
7376         struct drm_device *dev;
7377         struct drm_crtc *tmp;
7378         int crtc_mask = 1;
7379
7380         WARN(!crtc, "checking null crtc?\n");
7381
7382         dev = crtc->dev;
7383
7384         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7385                 if (tmp == crtc)
7386                         break;
7387                 crtc_mask <<= 1;
7388         }
7389
7390         if (encoder->possible_crtcs & crtc_mask)
7391                 return true;
7392         return false;
7393 }
7394
7395 /**
7396  * intel_modeset_update_staged_output_state
7397  *
7398  * Updates the staged output configuration state, e.g. after we've read out the
7399  * current hw state.
7400  */
7401 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7402 {
7403         struct intel_encoder *encoder;
7404         struct intel_connector *connector;
7405
7406         list_for_each_entry(connector, &dev->mode_config.connector_list,
7407                             base.head) {
7408                 connector->new_encoder =
7409                         to_intel_encoder(connector->base.encoder);
7410         }
7411
7412         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7413                             base.head) {
7414                 encoder->new_crtc =
7415                         to_intel_crtc(encoder->base.crtc);
7416         }
7417 }
7418
7419 /**
7420  * intel_modeset_commit_output_state
7421  *
7422  * This function copies the stage display pipe configuration to the real one.
7423  */
7424 static void intel_modeset_commit_output_state(struct drm_device *dev)
7425 {
7426         struct intel_encoder *encoder;
7427         struct intel_connector *connector;
7428
7429         list_for_each_entry(connector, &dev->mode_config.connector_list,
7430                             base.head) {
7431                 connector->base.encoder = &connector->new_encoder->base;
7432         }
7433
7434         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7435                             base.head) {
7436                 encoder->base.crtc = &encoder->new_crtc->base;
7437         }
7438 }
7439
7440 static struct drm_display_mode *
7441 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7442                             struct drm_display_mode *mode)
7443 {
7444         struct drm_device *dev = crtc->dev;
7445         struct drm_display_mode *adjusted_mode;
7446         struct drm_encoder_helper_funcs *encoder_funcs;
7447         struct intel_encoder *encoder;
7448
7449         adjusted_mode = drm_mode_duplicate(dev, mode);
7450         if (!adjusted_mode)
7451                 return ERR_PTR(-ENOMEM);
7452
7453         /* Pass our mode to the connectors and the CRTC to give them a chance to
7454          * adjust it according to limitations or connector properties, and also
7455          * a chance to reject the mode entirely.
7456          */
7457         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7458                             base.head) {
7459
7460                 if (&encoder->new_crtc->base != crtc)
7461                         continue;
7462                 encoder_funcs = encoder->base.helper_private;
7463                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7464                                                 adjusted_mode))) {
7465                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7466                         goto fail;
7467                 }
7468         }
7469
7470         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7471                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7472                 goto fail;
7473         }
7474         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7475
7476         return adjusted_mode;
7477 fail:
7478         drm_mode_destroy(dev, adjusted_mode);
7479         return ERR_PTR(-EINVAL);
7480 }
7481
7482 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7483  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7484 static void
7485 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7486                              unsigned *prepare_pipes, unsigned *disable_pipes)
7487 {
7488         struct intel_crtc *intel_crtc;
7489         struct drm_device *dev = crtc->dev;
7490         struct intel_encoder *encoder;
7491         struct intel_connector *connector;
7492         struct drm_crtc *tmp_crtc;
7493
7494         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7495
7496         /* Check which crtcs have changed outputs connected to them, these need
7497          * to be part of the prepare_pipes mask. We don't (yet) support global
7498          * modeset across multiple crtcs, so modeset_pipes will only have one
7499          * bit set at most. */
7500         list_for_each_entry(connector, &dev->mode_config.connector_list,
7501                             base.head) {
7502                 if (connector->base.encoder == &connector->new_encoder->base)
7503                         continue;
7504
7505                 if (connector->base.encoder) {
7506                         tmp_crtc = connector->base.encoder->crtc;
7507
7508                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7509                 }
7510
7511                 if (connector->new_encoder)
7512                         *prepare_pipes |=
7513                                 1 << connector->new_encoder->new_crtc->pipe;
7514         }
7515
7516         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7517                             base.head) {
7518                 if (encoder->base.crtc == &encoder->new_crtc->base)
7519                         continue;
7520
7521                 if (encoder->base.crtc) {
7522                         tmp_crtc = encoder->base.crtc;
7523
7524                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7525                 }
7526
7527                 if (encoder->new_crtc)
7528                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7529         }
7530
7531         /* Check for any pipes that will be fully disabled ... */
7532         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7533                             base.head) {
7534                 bool used = false;
7535
7536                 /* Don't try to disable disabled crtcs. */
7537                 if (!intel_crtc->base.enabled)
7538                         continue;
7539
7540                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7541                                     base.head) {
7542                         if (encoder->new_crtc == intel_crtc)
7543                                 used = true;
7544                 }
7545
7546                 if (!used)
7547                         *disable_pipes |= 1 << intel_crtc->pipe;
7548         }
7549
7550
7551         /* set_mode is also used to update properties on life display pipes. */
7552         intel_crtc = to_intel_crtc(crtc);
7553         if (crtc->enabled)
7554                 *prepare_pipes |= 1 << intel_crtc->pipe;
7555
7556         /* We only support modeset on one single crtc, hence we need to do that
7557          * only for the passed in crtc iff we change anything else than just
7558          * disable crtcs.
7559          *
7560          * This is actually not true, to be fully compatible with the old crtc
7561          * helper we automatically disable _any_ output (i.e. doesn't need to be
7562          * connected to the crtc we're modesetting on) if it's disconnected.
7563          * Which is a rather nutty api (since changed the output configuration
7564          * without userspace's explicit request can lead to confusion), but
7565          * alas. Hence we currently need to modeset on all pipes we prepare. */
7566         if (*prepare_pipes)
7567                 *modeset_pipes = *prepare_pipes;
7568
7569         /* ... and mask these out. */
7570         *modeset_pipes &= ~(*disable_pipes);
7571         *prepare_pipes &= ~(*disable_pipes);
7572 }
7573
7574 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7575 {
7576         struct drm_encoder *encoder;
7577         struct drm_device *dev = crtc->dev;
7578
7579         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7580                 if (encoder->crtc == crtc)
7581                         return true;
7582
7583         return false;
7584 }
7585
7586 static void
7587 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7588 {
7589         struct intel_encoder *intel_encoder;
7590         struct intel_crtc *intel_crtc;
7591         struct drm_connector *connector;
7592
7593         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7594                             base.head) {
7595                 if (!intel_encoder->base.crtc)
7596                         continue;
7597
7598                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7599
7600                 if (prepare_pipes & (1 << intel_crtc->pipe))
7601                         intel_encoder->connectors_active = false;
7602         }
7603
7604         intel_modeset_commit_output_state(dev);
7605
7606         /* Update computed state. */
7607         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7608                             base.head) {
7609                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7610         }
7611
7612         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7613                 if (!connector->encoder || !connector->encoder->crtc)
7614                         continue;
7615
7616                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7617
7618                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7619                         struct drm_property *dpms_property =
7620                                 dev->mode_config.dpms_property;
7621
7622                         connector->dpms = DRM_MODE_DPMS_ON;
7623                         drm_connector_property_set_value(connector,
7624                                                          dpms_property,
7625                                                          DRM_MODE_DPMS_ON);
7626
7627                         intel_encoder = to_intel_encoder(connector->encoder);
7628                         intel_encoder->connectors_active = true;
7629                 }
7630         }
7631
7632 }
7633
7634 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7635         list_for_each_entry((intel_crtc), \
7636                             &(dev)->mode_config.crtc_list, \
7637                             base.head) \
7638                 if (mask & (1 <<(intel_crtc)->pipe)) \
7639
7640 void
7641 intel_modeset_check_state(struct drm_device *dev)
7642 {
7643         struct intel_crtc *crtc;
7644         struct intel_encoder *encoder;
7645         struct intel_connector *connector;
7646
7647         list_for_each_entry(connector, &dev->mode_config.connector_list,
7648                             base.head) {
7649                 /* This also checks the encoder/connector hw state with the
7650                  * ->get_hw_state callbacks. */
7651                 intel_connector_check_state(connector);
7652
7653                 WARN(&connector->new_encoder->base != connector->base.encoder,
7654                      "connector's staged encoder doesn't match current encoder\n");
7655         }
7656
7657         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7658                             base.head) {
7659                 bool enabled = false;
7660                 bool active = false;
7661                 enum pipe pipe, tracked_pipe;
7662
7663                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7664                               encoder->base.base.id,
7665                               drm_get_encoder_name(&encoder->base));
7666
7667                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7668                      "encoder's stage crtc doesn't match current crtc\n");
7669                 WARN(encoder->connectors_active && !encoder->base.crtc,
7670                      "encoder's active_connectors set, but no crtc\n");
7671
7672                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7673                                     base.head) {
7674                         if (connector->base.encoder != &encoder->base)
7675                                 continue;
7676                         enabled = true;
7677                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7678                                 active = true;
7679                 }
7680                 WARN(!!encoder->base.crtc != enabled,
7681                      "encoder's enabled state mismatch "
7682                      "(expected %i, found %i)\n",
7683                      !!encoder->base.crtc, enabled);
7684                 WARN(active && !encoder->base.crtc,
7685                      "active encoder with no crtc\n");
7686
7687                 WARN(encoder->connectors_active != active,
7688                      "encoder's computed active state doesn't match tracked active state "
7689                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7690
7691                 active = encoder->get_hw_state(encoder, &pipe);
7692                 WARN(active != encoder->connectors_active,
7693                      "encoder's hw state doesn't match sw tracking "
7694                      "(expected %i, found %i)\n",
7695                      encoder->connectors_active, active);
7696
7697                 if (!encoder->base.crtc)
7698                         continue;
7699
7700                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7701                 WARN(active && pipe != tracked_pipe,
7702                      "active encoder's pipe doesn't match"
7703                      "(expected %i, found %i)\n",
7704                      tracked_pipe, pipe);
7705
7706         }
7707
7708         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7709                             base.head) {
7710                 bool enabled = false;
7711                 bool active = false;
7712
7713                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7714                               crtc->base.base.id);
7715
7716                 WARN(crtc->active && !crtc->base.enabled,
7717                      "active crtc, but not enabled in sw tracking\n");
7718
7719                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7720                                     base.head) {
7721                         if (encoder->base.crtc != &crtc->base)
7722                                 continue;
7723                         enabled = true;
7724                         if (encoder->connectors_active)
7725                                 active = true;
7726                 }
7727                 WARN(active != crtc->active,
7728                      "crtc's computed active state doesn't match tracked active state "
7729                      "(expected %i, found %i)\n", active, crtc->active);
7730                 WARN(enabled != crtc->base.enabled,
7731                      "crtc's computed enabled state doesn't match tracked enabled state "
7732                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7733
7734                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7735         }
7736 }
7737
7738 bool intel_set_mode(struct drm_crtc *crtc,
7739                     struct drm_display_mode *mode,
7740                     int x, int y, struct drm_framebuffer *fb)
7741 {
7742         struct drm_device *dev = crtc->dev;
7743         drm_i915_private_t *dev_priv = dev->dev_private;
7744         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7745         struct intel_crtc *intel_crtc;
7746         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7747         bool ret = true;
7748
7749         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7750                                      &prepare_pipes, &disable_pipes);
7751
7752         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7753                       modeset_pipes, prepare_pipes, disable_pipes);
7754
7755         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7756                 intel_crtc_disable(&intel_crtc->base);
7757
7758         saved_hwmode = crtc->hwmode;
7759         saved_mode = crtc->mode;
7760
7761         /* Hack: Because we don't (yet) support global modeset on multiple
7762          * crtcs, we don't keep track of the new mode for more than one crtc.
7763          * Hence simply check whether any bit is set in modeset_pipes in all the
7764          * pieces of code that are not yet converted to deal with mutliple crtcs
7765          * changing their mode at the same time. */
7766         adjusted_mode = NULL;
7767         if (modeset_pipes) {
7768                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7769                 if (IS_ERR(adjusted_mode)) {
7770                         return false;
7771                 }
7772         }
7773
7774         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7775                 if (intel_crtc->base.enabled)
7776                         dev_priv->display.crtc_disable(&intel_crtc->base);
7777         }
7778
7779         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7780          * to set it here already despite that we pass it down the callchain.
7781          */
7782         if (modeset_pipes)
7783                 crtc->mode = *mode;
7784
7785         /* Only after disabling all output pipelines that will be changed can we
7786          * update the the output configuration. */
7787         intel_modeset_update_state(dev, prepare_pipes);
7788
7789         if (dev_priv->display.modeset_global_resources)
7790                 dev_priv->display.modeset_global_resources(dev);
7791
7792         /* Set up the DPLL and any encoders state that needs to adjust or depend
7793          * on the DPLL.
7794          */
7795         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7796                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7797                                            mode, adjusted_mode,
7798                                            x, y, fb);
7799                 if (!ret)
7800                     goto done;
7801         }
7802
7803         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7804         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7805                 dev_priv->display.crtc_enable(&intel_crtc->base);
7806
7807         if (modeset_pipes) {
7808                 /* Store real post-adjustment hardware mode. */
7809                 crtc->hwmode = *adjusted_mode;
7810
7811                 /* Calculate and store various constants which
7812                  * are later needed by vblank and swap-completion
7813                  * timestamping. They are derived from true hwmode.
7814                  */
7815                 drm_calc_timestamping_constants(crtc);
7816         }
7817
7818         /* FIXME: add subpixel order */
7819 done:
7820         drm_mode_destroy(dev, adjusted_mode);
7821         if (!ret && crtc->enabled) {
7822                 crtc->hwmode = saved_hwmode;
7823                 crtc->mode = saved_mode;
7824         } else {
7825                 intel_modeset_check_state(dev);
7826         }
7827
7828         return ret;
7829 }
7830
7831 #undef for_each_intel_crtc_masked
7832
7833 static void intel_set_config_free(struct intel_set_config *config)
7834 {
7835         if (!config)
7836                 return;
7837
7838         kfree(config->save_connector_encoders);
7839         kfree(config->save_encoder_crtcs);
7840         kfree(config);
7841 }
7842
7843 static int intel_set_config_save_state(struct drm_device *dev,
7844                                        struct intel_set_config *config)
7845 {
7846         struct drm_encoder *encoder;
7847         struct drm_connector *connector;
7848         int count;
7849
7850         config->save_encoder_crtcs =
7851                 kcalloc(dev->mode_config.num_encoder,
7852                         sizeof(struct drm_crtc *), GFP_KERNEL);
7853         if (!config->save_encoder_crtcs)
7854                 return -ENOMEM;
7855
7856         config->save_connector_encoders =
7857                 kcalloc(dev->mode_config.num_connector,
7858                         sizeof(struct drm_encoder *), GFP_KERNEL);
7859         if (!config->save_connector_encoders)
7860                 return -ENOMEM;
7861
7862         /* Copy data. Note that driver private data is not affected.
7863          * Should anything bad happen only the expected state is
7864          * restored, not the drivers personal bookkeeping.
7865          */
7866         count = 0;
7867         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7868                 config->save_encoder_crtcs[count++] = encoder->crtc;
7869         }
7870
7871         count = 0;
7872         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7873                 config->save_connector_encoders[count++] = connector->encoder;
7874         }
7875
7876         return 0;
7877 }
7878
7879 static void intel_set_config_restore_state(struct drm_device *dev,
7880                                            struct intel_set_config *config)
7881 {
7882         struct intel_encoder *encoder;
7883         struct intel_connector *connector;
7884         int count;
7885
7886         count = 0;
7887         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7888                 encoder->new_crtc =
7889                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7890         }
7891
7892         count = 0;
7893         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7894                 connector->new_encoder =
7895                         to_intel_encoder(config->save_connector_encoders[count++]);
7896         }
7897 }
7898
7899 static void
7900 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7901                                       struct intel_set_config *config)
7902 {
7903
7904         /* We should be able to check here if the fb has the same properties
7905          * and then just flip_or_move it */
7906         if (set->crtc->fb != set->fb) {
7907                 /* If we have no fb then treat it as a full mode set */
7908                 if (set->crtc->fb == NULL) {
7909                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7910                         config->mode_changed = true;
7911                 } else if (set->fb == NULL) {
7912                         config->mode_changed = true;
7913                 } else if (set->fb->depth != set->crtc->fb->depth) {
7914                         config->mode_changed = true;
7915                 } else if (set->fb->bits_per_pixel !=
7916                            set->crtc->fb->bits_per_pixel) {
7917                         config->mode_changed = true;
7918                 } else
7919                         config->fb_changed = true;
7920         }
7921
7922         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7923                 config->fb_changed = true;
7924
7925         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7926                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7927                 drm_mode_debug_printmodeline(&set->crtc->mode);
7928                 drm_mode_debug_printmodeline(set->mode);
7929                 config->mode_changed = true;
7930         }
7931 }
7932
7933 static int
7934 intel_modeset_stage_output_state(struct drm_device *dev,
7935                                  struct drm_mode_set *set,
7936                                  struct intel_set_config *config)
7937 {
7938         struct drm_crtc *new_crtc;
7939         struct intel_connector *connector;
7940         struct intel_encoder *encoder;
7941         int count, ro;
7942
7943         /* The upper layers ensure that we either disabl a crtc or have a list
7944          * of connectors. For paranoia, double-check this. */
7945         WARN_ON(!set->fb && (set->num_connectors != 0));
7946         WARN_ON(set->fb && (set->num_connectors == 0));
7947
7948         count = 0;
7949         list_for_each_entry(connector, &dev->mode_config.connector_list,
7950                             base.head) {
7951                 /* Otherwise traverse passed in connector list and get encoders
7952                  * for them. */
7953                 for (ro = 0; ro < set->num_connectors; ro++) {
7954                         if (set->connectors[ro] == &connector->base) {
7955                                 connector->new_encoder = connector->encoder;
7956                                 break;
7957                         }
7958                 }
7959
7960                 /* If we disable the crtc, disable all its connectors. Also, if
7961                  * the connector is on the changing crtc but not on the new
7962                  * connector list, disable it. */
7963                 if ((!set->fb || ro == set->num_connectors) &&
7964                     connector->base.encoder &&
7965                     connector->base.encoder->crtc == set->crtc) {
7966                         connector->new_encoder = NULL;
7967
7968                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7969                                 connector->base.base.id,
7970                                 drm_get_connector_name(&connector->base));
7971                 }
7972
7973
7974                 if (&connector->new_encoder->base != connector->base.encoder) {
7975                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7976                         config->mode_changed = true;
7977                 }
7978
7979                 /* Disable all disconnected encoders. */
7980                 if (connector->base.status == connector_status_disconnected)
7981                         connector->new_encoder = NULL;
7982         }
7983         /* connector->new_encoder is now updated for all connectors. */
7984
7985         /* Update crtc of enabled connectors. */
7986         count = 0;
7987         list_for_each_entry(connector, &dev->mode_config.connector_list,
7988                             base.head) {
7989                 if (!connector->new_encoder)
7990                         continue;
7991
7992                 new_crtc = connector->new_encoder->base.crtc;
7993
7994                 for (ro = 0; ro < set->num_connectors; ro++) {
7995                         if (set->connectors[ro] == &connector->base)
7996                                 new_crtc = set->crtc;
7997                 }
7998
7999                 /* Make sure the new CRTC will work with the encoder */
8000                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8001                                            new_crtc)) {
8002                         return -EINVAL;
8003                 }
8004                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8005
8006                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8007                         connector->base.base.id,
8008                         drm_get_connector_name(&connector->base),
8009                         new_crtc->base.id);
8010         }
8011
8012         /* Check for any encoders that needs to be disabled. */
8013         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8014                             base.head) {
8015                 list_for_each_entry(connector,
8016                                     &dev->mode_config.connector_list,
8017                                     base.head) {
8018                         if (connector->new_encoder == encoder) {
8019                                 WARN_ON(!connector->new_encoder->new_crtc);
8020
8021                                 goto next_encoder;
8022                         }
8023                 }
8024                 encoder->new_crtc = NULL;
8025 next_encoder:
8026                 /* Only now check for crtc changes so we don't miss encoders
8027                  * that will be disabled. */
8028                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8029                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8030                         config->mode_changed = true;
8031                 }
8032         }
8033         /* Now we've also updated encoder->new_crtc for all encoders. */
8034
8035         return 0;
8036 }
8037
8038 static int intel_crtc_set_config(struct drm_mode_set *set)
8039 {
8040         struct drm_device *dev;
8041         struct drm_mode_set save_set;
8042         struct intel_set_config *config;
8043         int ret;
8044
8045         BUG_ON(!set);
8046         BUG_ON(!set->crtc);
8047         BUG_ON(!set->crtc->helper_private);
8048
8049         if (!set->mode)
8050                 set->fb = NULL;
8051
8052         /* The fb helper likes to play gross jokes with ->mode_set_config.
8053          * Unfortunately the crtc helper doesn't do much at all for this case,
8054          * so we have to cope with this madness until the fb helper is fixed up. */
8055         if (set->fb && set->num_connectors == 0)
8056                 return 0;
8057
8058         if (set->fb) {
8059                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8060                                 set->crtc->base.id, set->fb->base.id,
8061                                 (int)set->num_connectors, set->x, set->y);
8062         } else {
8063                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8064         }
8065
8066         dev = set->crtc->dev;
8067
8068         ret = -ENOMEM;
8069         config = kzalloc(sizeof(*config), GFP_KERNEL);
8070         if (!config)
8071                 goto out_config;
8072
8073         ret = intel_set_config_save_state(dev, config);
8074         if (ret)
8075                 goto out_config;
8076
8077         save_set.crtc = set->crtc;
8078         save_set.mode = &set->crtc->mode;
8079         save_set.x = set->crtc->x;
8080         save_set.y = set->crtc->y;
8081         save_set.fb = set->crtc->fb;
8082
8083         /* Compute whether we need a full modeset, only an fb base update or no
8084          * change at all. In the future we might also check whether only the
8085          * mode changed, e.g. for LVDS where we only change the panel fitter in
8086          * such cases. */
8087         intel_set_config_compute_mode_changes(set, config);
8088
8089         ret = intel_modeset_stage_output_state(dev, set, config);
8090         if (ret)
8091                 goto fail;
8092
8093         if (config->mode_changed) {
8094                 if (set->mode) {
8095                         DRM_DEBUG_KMS("attempting to set mode from"
8096                                         " userspace\n");
8097                         drm_mode_debug_printmodeline(set->mode);
8098                 }
8099
8100                 if (!intel_set_mode(set->crtc, set->mode,
8101                                     set->x, set->y, set->fb)) {
8102                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8103                                   set->crtc->base.id);
8104                         ret = -EINVAL;
8105                         goto fail;
8106                 }
8107         } else if (config->fb_changed) {
8108                 ret = intel_pipe_set_base(set->crtc,
8109                                           set->x, set->y, set->fb);
8110         }
8111
8112         intel_set_config_free(config);
8113
8114         return 0;
8115
8116 fail:
8117         intel_set_config_restore_state(dev, config);
8118
8119         /* Try to restore the config */
8120         if (config->mode_changed &&
8121             !intel_set_mode(save_set.crtc, save_set.mode,
8122                             save_set.x, save_set.y, save_set.fb))
8123                 DRM_ERROR("failed to restore config after modeset failure\n");
8124
8125 out_config:
8126         intel_set_config_free(config);
8127         return ret;
8128 }
8129
8130 static const struct drm_crtc_funcs intel_crtc_funcs = {
8131         .cursor_set = intel_crtc_cursor_set,
8132         .cursor_move = intel_crtc_cursor_move,
8133         .gamma_set = intel_crtc_gamma_set,
8134         .set_config = intel_crtc_set_config,
8135         .destroy = intel_crtc_destroy,
8136         .page_flip = intel_crtc_page_flip,
8137 };
8138
8139 static void intel_cpu_pll_init(struct drm_device *dev)
8140 {
8141         if (IS_HASWELL(dev))
8142                 intel_ddi_pll_init(dev);
8143 }
8144
8145 static void intel_pch_pll_init(struct drm_device *dev)
8146 {
8147         drm_i915_private_t *dev_priv = dev->dev_private;
8148         int i;
8149
8150         if (dev_priv->num_pch_pll == 0) {
8151                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8152                 return;
8153         }
8154
8155         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8156                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8157                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8158                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8159         }
8160 }
8161
8162 static void intel_crtc_init(struct drm_device *dev, int pipe)
8163 {
8164         drm_i915_private_t *dev_priv = dev->dev_private;
8165         struct intel_crtc *intel_crtc;
8166         int i;
8167
8168         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8169         if (intel_crtc == NULL)
8170                 return;
8171
8172         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8173
8174         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8175         for (i = 0; i < 256; i++) {
8176                 intel_crtc->lut_r[i] = i;
8177                 intel_crtc->lut_g[i] = i;
8178                 intel_crtc->lut_b[i] = i;
8179         }
8180
8181         /* Swap pipes & planes for FBC on pre-965 */
8182         intel_crtc->pipe = pipe;
8183         intel_crtc->plane = pipe;
8184         intel_crtc->cpu_transcoder = pipe;
8185         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8186                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8187                 intel_crtc->plane = !pipe;
8188         }
8189
8190         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8191                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8192         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8193         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8194
8195         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8196
8197         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8198 }
8199
8200 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8201                                 struct drm_file *file)
8202 {
8203         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8204         struct drm_mode_object *drmmode_obj;
8205         struct intel_crtc *crtc;
8206
8207         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8208                 return -ENODEV;
8209
8210         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8211                         DRM_MODE_OBJECT_CRTC);
8212
8213         if (!drmmode_obj) {
8214                 DRM_ERROR("no such CRTC id\n");
8215                 return -EINVAL;
8216         }
8217
8218         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8219         pipe_from_crtc_id->pipe = crtc->pipe;
8220
8221         return 0;
8222 }
8223
8224 static int intel_encoder_clones(struct intel_encoder *encoder)
8225 {
8226         struct drm_device *dev = encoder->base.dev;
8227         struct intel_encoder *source_encoder;
8228         int index_mask = 0;
8229         int entry = 0;
8230
8231         list_for_each_entry(source_encoder,
8232                             &dev->mode_config.encoder_list, base.head) {
8233
8234                 if (encoder == source_encoder)
8235                         index_mask |= (1 << entry);
8236
8237                 /* Intel hw has only one MUX where enocoders could be cloned. */
8238                 if (encoder->cloneable && source_encoder->cloneable)
8239                         index_mask |= (1 << entry);
8240
8241                 entry++;
8242         }
8243
8244         return index_mask;
8245 }
8246
8247 static bool has_edp_a(struct drm_device *dev)
8248 {
8249         struct drm_i915_private *dev_priv = dev->dev_private;
8250
8251         if (!IS_MOBILE(dev))
8252                 return false;
8253
8254         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8255                 return false;
8256
8257         if (IS_GEN5(dev) &&
8258             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8259                 return false;
8260
8261         return true;
8262 }
8263
8264 static void intel_setup_outputs(struct drm_device *dev)
8265 {
8266         struct drm_i915_private *dev_priv = dev->dev_private;
8267         struct intel_encoder *encoder;
8268         bool dpd_is_edp = false;
8269         bool has_lvds;
8270
8271         has_lvds = intel_lvds_init(dev);
8272         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8273                 /* disable the panel fitter on everything but LVDS */
8274                 I915_WRITE(PFIT_CONTROL, 0);
8275         }
8276
8277         if (HAS_PCH_SPLIT(dev)) {
8278                 dpd_is_edp = intel_dpd_is_edp(dev);
8279
8280                 if (has_edp_a(dev))
8281                         intel_dp_init(dev, DP_A, PORT_A);
8282
8283                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8284                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8285         }
8286
8287         intel_crt_init(dev);
8288
8289         if (IS_HASWELL(dev)) {
8290                 int found;
8291
8292                 /* Haswell uses DDI functions to detect digital outputs */
8293                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8294                 /* DDI A only supports eDP */
8295                 if (found)
8296                         intel_ddi_init(dev, PORT_A);
8297
8298                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8299                  * register */
8300                 found = I915_READ(SFUSE_STRAP);
8301
8302                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8303                         intel_ddi_init(dev, PORT_B);
8304                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8305                         intel_ddi_init(dev, PORT_C);
8306                 if (found & SFUSE_STRAP_DDID_DETECTED)
8307                         intel_ddi_init(dev, PORT_D);
8308         } else if (HAS_PCH_SPLIT(dev)) {
8309                 int found;
8310
8311                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8312                         /* PCH SDVOB multiplex with HDMIB */
8313                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8314                         if (!found)
8315                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8316                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8317                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8318                 }
8319
8320                 if (I915_READ(HDMIC) & PORT_DETECTED)
8321                         intel_hdmi_init(dev, HDMIC, PORT_C);
8322
8323                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8324                         intel_hdmi_init(dev, HDMID, PORT_D);
8325
8326                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8327                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8328
8329                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8330                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8331         } else if (IS_VALLEYVIEW(dev)) {
8332                 int found;
8333
8334                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8335                 if (I915_READ(DP_C) & DP_DETECTED)
8336                         intel_dp_init(dev, DP_C, PORT_C);
8337
8338                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8339                         /* SDVOB multiplex with HDMIB */
8340                         found = intel_sdvo_init(dev, SDVOB, true);
8341                         if (!found)
8342                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8343                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8344                                 intel_dp_init(dev, DP_B, PORT_B);
8345                 }
8346
8347                 if (I915_READ(SDVOC) & PORT_DETECTED)
8348                         intel_hdmi_init(dev, SDVOC, PORT_C);
8349
8350         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8351                 bool found = false;
8352
8353                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8354                         DRM_DEBUG_KMS("probing SDVOB\n");
8355                         found = intel_sdvo_init(dev, SDVOB, true);
8356                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8357                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8358                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8359                         }
8360
8361                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8362                                 DRM_DEBUG_KMS("probing DP_B\n");
8363                                 intel_dp_init(dev, DP_B, PORT_B);
8364                         }
8365                 }
8366
8367                 /* Before G4X SDVOC doesn't have its own detect register */
8368
8369                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8370                         DRM_DEBUG_KMS("probing SDVOC\n");
8371                         found = intel_sdvo_init(dev, SDVOC, false);
8372                 }
8373
8374                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8375
8376                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8377                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8378                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8379                         }
8380                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8381                                 DRM_DEBUG_KMS("probing DP_C\n");
8382                                 intel_dp_init(dev, DP_C, PORT_C);
8383                         }
8384                 }
8385
8386                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8387                     (I915_READ(DP_D) & DP_DETECTED)) {
8388                         DRM_DEBUG_KMS("probing DP_D\n");
8389                         intel_dp_init(dev, DP_D, PORT_D);
8390                 }
8391         } else if (IS_GEN2(dev))
8392                 intel_dvo_init(dev);
8393
8394         if (SUPPORTS_TV(dev))
8395                 intel_tv_init(dev);
8396
8397         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8398                 encoder->base.possible_crtcs = encoder->crtc_mask;
8399                 encoder->base.possible_clones =
8400                         intel_encoder_clones(encoder);
8401         }
8402
8403         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8404                 ironlake_init_pch_refclk(dev);
8405 }
8406
8407 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8408 {
8409         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8410
8411         drm_framebuffer_cleanup(fb);
8412         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8413
8414         kfree(intel_fb);
8415 }
8416
8417 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8418                                                 struct drm_file *file,
8419                                                 unsigned int *handle)
8420 {
8421         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8422         struct drm_i915_gem_object *obj = intel_fb->obj;
8423
8424         return drm_gem_handle_create(file, &obj->base, handle);
8425 }
8426
8427 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8428         .destroy = intel_user_framebuffer_destroy,
8429         .create_handle = intel_user_framebuffer_create_handle,
8430 };
8431
8432 int intel_framebuffer_init(struct drm_device *dev,
8433                            struct intel_framebuffer *intel_fb,
8434                            struct drm_mode_fb_cmd2 *mode_cmd,
8435                            struct drm_i915_gem_object *obj)
8436 {
8437         int ret;
8438
8439         if (obj->tiling_mode == I915_TILING_Y)
8440                 return -EINVAL;
8441
8442         if (mode_cmd->pitches[0] & 63)
8443                 return -EINVAL;
8444
8445         /* FIXME <= Gen4 stride limits are bit unclear */
8446         if (mode_cmd->pitches[0] > 32768)
8447                 return -EINVAL;
8448
8449         if (obj->tiling_mode != I915_TILING_NONE &&
8450             mode_cmd->pitches[0] != obj->stride)
8451                 return -EINVAL;
8452
8453         /* Reject formats not supported by any plane early. */
8454         switch (mode_cmd->pixel_format) {
8455         case DRM_FORMAT_C8:
8456         case DRM_FORMAT_RGB565:
8457         case DRM_FORMAT_XRGB8888:
8458         case DRM_FORMAT_ARGB8888:
8459                 break;
8460         case DRM_FORMAT_XRGB1555:
8461         case DRM_FORMAT_ARGB1555:
8462                 if (INTEL_INFO(dev)->gen > 3)
8463                         return -EINVAL;
8464                 break;
8465         case DRM_FORMAT_XBGR8888:
8466         case DRM_FORMAT_ABGR8888:
8467         case DRM_FORMAT_XRGB2101010:
8468         case DRM_FORMAT_ARGB2101010:
8469         case DRM_FORMAT_XBGR2101010:
8470         case DRM_FORMAT_ABGR2101010:
8471                 if (INTEL_INFO(dev)->gen < 4)
8472                         return -EINVAL;
8473                 break;
8474         case DRM_FORMAT_YUYV:
8475         case DRM_FORMAT_UYVY:
8476         case DRM_FORMAT_YVYU:
8477         case DRM_FORMAT_VYUY:
8478                 if (INTEL_INFO(dev)->gen < 6)
8479                         return -EINVAL;
8480                 break;
8481         default:
8482                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8483                 return -EINVAL;
8484         }
8485
8486         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8487         if (mode_cmd->offsets[0] != 0)
8488                 return -EINVAL;
8489
8490         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8491         if (ret) {
8492                 DRM_ERROR("framebuffer init failed %d\n", ret);
8493                 return ret;
8494         }
8495
8496         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8497         intel_fb->obj = obj;
8498         return 0;
8499 }
8500
8501 static struct drm_framebuffer *
8502 intel_user_framebuffer_create(struct drm_device *dev,
8503                               struct drm_file *filp,
8504                               struct drm_mode_fb_cmd2 *mode_cmd)
8505 {
8506         struct drm_i915_gem_object *obj;
8507
8508         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8509                                                 mode_cmd->handles[0]));
8510         if (&obj->base == NULL)
8511                 return ERR_PTR(-ENOENT);
8512
8513         return intel_framebuffer_create(dev, mode_cmd, obj);
8514 }
8515
8516 static const struct drm_mode_config_funcs intel_mode_funcs = {
8517         .fb_create = intel_user_framebuffer_create,
8518         .output_poll_changed = intel_fb_output_poll_changed,
8519 };
8520
8521 /* Set up chip specific display functions */
8522 static void intel_init_display(struct drm_device *dev)
8523 {
8524         struct drm_i915_private *dev_priv = dev->dev_private;
8525
8526         /* We always want a DPMS function */
8527         if (IS_HASWELL(dev)) {
8528                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8529                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8530                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8531                 dev_priv->display.off = haswell_crtc_off;
8532                 dev_priv->display.update_plane = ironlake_update_plane;
8533         } else if (HAS_PCH_SPLIT(dev)) {
8534                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8535                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8536                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8537                 dev_priv->display.off = ironlake_crtc_off;
8538                 dev_priv->display.update_plane = ironlake_update_plane;
8539         } else {
8540                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8541                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8542                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8543                 dev_priv->display.off = i9xx_crtc_off;
8544                 dev_priv->display.update_plane = i9xx_update_plane;
8545         }
8546
8547         /* Returns the core display clock speed */
8548         if (IS_VALLEYVIEW(dev))
8549                 dev_priv->display.get_display_clock_speed =
8550                         valleyview_get_display_clock_speed;
8551         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8552                 dev_priv->display.get_display_clock_speed =
8553                         i945_get_display_clock_speed;
8554         else if (IS_I915G(dev))
8555                 dev_priv->display.get_display_clock_speed =
8556                         i915_get_display_clock_speed;
8557         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8558                 dev_priv->display.get_display_clock_speed =
8559                         i9xx_misc_get_display_clock_speed;
8560         else if (IS_I915GM(dev))
8561                 dev_priv->display.get_display_clock_speed =
8562                         i915gm_get_display_clock_speed;
8563         else if (IS_I865G(dev))
8564                 dev_priv->display.get_display_clock_speed =
8565                         i865_get_display_clock_speed;
8566         else if (IS_I85X(dev))
8567                 dev_priv->display.get_display_clock_speed =
8568                         i855_get_display_clock_speed;
8569         else /* 852, 830 */
8570                 dev_priv->display.get_display_clock_speed =
8571                         i830_get_display_clock_speed;
8572
8573         if (HAS_PCH_SPLIT(dev)) {
8574                 if (IS_GEN5(dev)) {
8575                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8576                         dev_priv->display.write_eld = ironlake_write_eld;
8577                 } else if (IS_GEN6(dev)) {
8578                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8579                         dev_priv->display.write_eld = ironlake_write_eld;
8580                 } else if (IS_IVYBRIDGE(dev)) {
8581                         /* FIXME: detect B0+ stepping and use auto training */
8582                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8583                         dev_priv->display.write_eld = ironlake_write_eld;
8584                         dev_priv->display.modeset_global_resources =
8585                                 ivb_modeset_global_resources;
8586                 } else if (IS_HASWELL(dev)) {
8587                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8588                         dev_priv->display.write_eld = haswell_write_eld;
8589                 } else
8590                         dev_priv->display.update_wm = NULL;
8591         } else if (IS_G4X(dev)) {
8592                 dev_priv->display.write_eld = g4x_write_eld;
8593         }
8594
8595         /* Default just returns -ENODEV to indicate unsupported */
8596         dev_priv->display.queue_flip = intel_default_queue_flip;
8597
8598         switch (INTEL_INFO(dev)->gen) {
8599         case 2:
8600                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8601                 break;
8602
8603         case 3:
8604                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8605                 break;
8606
8607         case 4:
8608         case 5:
8609                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8610                 break;
8611
8612         case 6:
8613                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8614                 break;
8615         case 7:
8616                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8617                 break;
8618         }
8619 }
8620
8621 /*
8622  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8623  * resume, or other times.  This quirk makes sure that's the case for
8624  * affected systems.
8625  */
8626 static void quirk_pipea_force(struct drm_device *dev)
8627 {
8628         struct drm_i915_private *dev_priv = dev->dev_private;
8629
8630         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8631         DRM_INFO("applying pipe a force quirk\n");
8632 }
8633
8634 /*
8635  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8636  */
8637 static void quirk_ssc_force_disable(struct drm_device *dev)
8638 {
8639         struct drm_i915_private *dev_priv = dev->dev_private;
8640         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8641         DRM_INFO("applying lvds SSC disable quirk\n");
8642 }
8643
8644 /*
8645  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8646  * brightness value
8647  */
8648 static void quirk_invert_brightness(struct drm_device *dev)
8649 {
8650         struct drm_i915_private *dev_priv = dev->dev_private;
8651         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8652         DRM_INFO("applying inverted panel brightness quirk\n");
8653 }
8654
8655 struct intel_quirk {
8656         int device;
8657         int subsystem_vendor;
8658         int subsystem_device;
8659         void (*hook)(struct drm_device *dev);
8660 };
8661
8662 static struct intel_quirk intel_quirks[] = {
8663         /* HP Mini needs pipe A force quirk (LP: #322104) */
8664         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8665
8666         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8667         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8668
8669         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8670         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8671
8672         /* 830/845 need to leave pipe A & dpll A up */
8673         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8674         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8675
8676         /* Lenovo U160 cannot use SSC on LVDS */
8677         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8678
8679         /* Sony Vaio Y cannot use SSC on LVDS */
8680         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8681
8682         /* Acer Aspire 5734Z must invert backlight brightness */
8683         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8684 };
8685
8686 static void intel_init_quirks(struct drm_device *dev)
8687 {
8688         struct pci_dev *d = dev->pdev;
8689         int i;
8690
8691         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8692                 struct intel_quirk *q = &intel_quirks[i];
8693
8694                 if (d->device == q->device &&
8695                     (d->subsystem_vendor == q->subsystem_vendor ||
8696                      q->subsystem_vendor == PCI_ANY_ID) &&
8697                     (d->subsystem_device == q->subsystem_device ||
8698                      q->subsystem_device == PCI_ANY_ID))
8699                         q->hook(dev);
8700         }
8701 }
8702
8703 /* Disable the VGA plane that we never use */
8704 static void i915_disable_vga(struct drm_device *dev)
8705 {
8706         struct drm_i915_private *dev_priv = dev->dev_private;
8707         u8 sr1;
8708         u32 vga_reg;
8709
8710         if (HAS_PCH_SPLIT(dev))
8711                 vga_reg = CPU_VGACNTRL;
8712         else
8713                 vga_reg = VGACNTRL;
8714
8715         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8716         outb(SR01, VGA_SR_INDEX);
8717         sr1 = inb(VGA_SR_DATA);
8718         outb(sr1 | 1<<5, VGA_SR_DATA);
8719         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8720         udelay(300);
8721
8722         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8723         POSTING_READ(vga_reg);
8724 }
8725
8726 void intel_modeset_init_hw(struct drm_device *dev)
8727 {
8728         /* We attempt to init the necessary power wells early in the initialization
8729          * time, so the subsystems that expect power to be enabled can work.
8730          */
8731         intel_init_power_wells(dev);
8732
8733         intel_prepare_ddi(dev);
8734
8735         intel_init_clock_gating(dev);
8736
8737         mutex_lock(&dev->struct_mutex);
8738         intel_enable_gt_powersave(dev);
8739         mutex_unlock(&dev->struct_mutex);
8740 }
8741
8742 void intel_modeset_init(struct drm_device *dev)
8743 {
8744         struct drm_i915_private *dev_priv = dev->dev_private;
8745         int i, ret;
8746
8747         drm_mode_config_init(dev);
8748
8749         dev->mode_config.min_width = 0;
8750         dev->mode_config.min_height = 0;
8751
8752         dev->mode_config.preferred_depth = 24;
8753         dev->mode_config.prefer_shadow = 1;
8754
8755         dev->mode_config.funcs = &intel_mode_funcs;
8756
8757         intel_init_quirks(dev);
8758
8759         intel_init_pm(dev);
8760
8761         intel_init_display(dev);
8762
8763         if (IS_GEN2(dev)) {
8764                 dev->mode_config.max_width = 2048;
8765                 dev->mode_config.max_height = 2048;
8766         } else if (IS_GEN3(dev)) {
8767                 dev->mode_config.max_width = 4096;
8768                 dev->mode_config.max_height = 4096;
8769         } else {
8770                 dev->mode_config.max_width = 8192;
8771                 dev->mode_config.max_height = 8192;
8772         }
8773         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8774
8775         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8776                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8777
8778         for (i = 0; i < dev_priv->num_pipe; i++) {
8779                 intel_crtc_init(dev, i);
8780                 ret = intel_plane_init(dev, i);
8781                 if (ret)
8782                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8783         }
8784
8785         intel_cpu_pll_init(dev);
8786         intel_pch_pll_init(dev);
8787
8788         /* Just disable it once at startup */
8789         i915_disable_vga(dev);
8790         intel_setup_outputs(dev);
8791 }
8792
8793 static void
8794 intel_connector_break_all_links(struct intel_connector *connector)
8795 {
8796         connector->base.dpms = DRM_MODE_DPMS_OFF;
8797         connector->base.encoder = NULL;
8798         connector->encoder->connectors_active = false;
8799         connector->encoder->base.crtc = NULL;
8800 }
8801
8802 static void intel_enable_pipe_a(struct drm_device *dev)
8803 {
8804         struct intel_connector *connector;
8805         struct drm_connector *crt = NULL;
8806         struct intel_load_detect_pipe load_detect_temp;
8807
8808         /* We can't just switch on the pipe A, we need to set things up with a
8809          * proper mode and output configuration. As a gross hack, enable pipe A
8810          * by enabling the load detect pipe once. */
8811         list_for_each_entry(connector,
8812                             &dev->mode_config.connector_list,
8813                             base.head) {
8814                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8815                         crt = &connector->base;
8816                         break;
8817                 }
8818         }
8819
8820         if (!crt)
8821                 return;
8822
8823         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8824                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8825
8826
8827 }
8828
8829 static bool
8830 intel_check_plane_mapping(struct intel_crtc *crtc)
8831 {
8832         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8833         u32 reg, val;
8834
8835         if (dev_priv->num_pipe == 1)
8836                 return true;
8837
8838         reg = DSPCNTR(!crtc->plane);
8839         val = I915_READ(reg);
8840
8841         if ((val & DISPLAY_PLANE_ENABLE) &&
8842             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8843                 return false;
8844
8845         return true;
8846 }
8847
8848 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8849 {
8850         struct drm_device *dev = crtc->base.dev;
8851         struct drm_i915_private *dev_priv = dev->dev_private;
8852         u32 reg;
8853
8854         /* Clear any frame start delays used for debugging left by the BIOS */
8855         reg = PIPECONF(crtc->cpu_transcoder);
8856         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8857
8858         /* We need to sanitize the plane -> pipe mapping first because this will
8859          * disable the crtc (and hence change the state) if it is wrong. Note
8860          * that gen4+ has a fixed plane -> pipe mapping.  */
8861         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8862                 struct intel_connector *connector;
8863                 bool plane;
8864
8865                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8866                               crtc->base.base.id);
8867
8868                 /* Pipe has the wrong plane attached and the plane is active.
8869                  * Temporarily change the plane mapping and disable everything
8870                  * ...  */
8871                 plane = crtc->plane;
8872                 crtc->plane = !plane;
8873                 dev_priv->display.crtc_disable(&crtc->base);
8874                 crtc->plane = plane;
8875
8876                 /* ... and break all links. */
8877                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8878                                     base.head) {
8879                         if (connector->encoder->base.crtc != &crtc->base)
8880                                 continue;
8881
8882                         intel_connector_break_all_links(connector);
8883                 }
8884
8885                 WARN_ON(crtc->active);
8886                 crtc->base.enabled = false;
8887         }
8888
8889         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8890             crtc->pipe == PIPE_A && !crtc->active) {
8891                 /* BIOS forgot to enable pipe A, this mostly happens after
8892                  * resume. Force-enable the pipe to fix this, the update_dpms
8893                  * call below we restore the pipe to the right state, but leave
8894                  * the required bits on. */
8895                 intel_enable_pipe_a(dev);
8896         }
8897
8898         /* Adjust the state of the output pipe according to whether we
8899          * have active connectors/encoders. */
8900         intel_crtc_update_dpms(&crtc->base);
8901
8902         if (crtc->active != crtc->base.enabled) {
8903                 struct intel_encoder *encoder;
8904
8905                 /* This can happen either due to bugs in the get_hw_state
8906                  * functions or because the pipe is force-enabled due to the
8907                  * pipe A quirk. */
8908                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8909                               crtc->base.base.id,
8910                               crtc->base.enabled ? "enabled" : "disabled",
8911                               crtc->active ? "enabled" : "disabled");
8912
8913                 crtc->base.enabled = crtc->active;
8914
8915                 /* Because we only establish the connector -> encoder ->
8916                  * crtc links if something is active, this means the
8917                  * crtc is now deactivated. Break the links. connector
8918                  * -> encoder links are only establish when things are
8919                  *  actually up, hence no need to break them. */
8920                 WARN_ON(crtc->active);
8921
8922                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8923                         WARN_ON(encoder->connectors_active);
8924                         encoder->base.crtc = NULL;
8925                 }
8926         }
8927 }
8928
8929 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8930 {
8931         struct intel_connector *connector;
8932         struct drm_device *dev = encoder->base.dev;
8933
8934         /* We need to check both for a crtc link (meaning that the
8935          * encoder is active and trying to read from a pipe) and the
8936          * pipe itself being active. */
8937         bool has_active_crtc = encoder->base.crtc &&
8938                 to_intel_crtc(encoder->base.crtc)->active;
8939
8940         if (encoder->connectors_active && !has_active_crtc) {
8941                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8942                               encoder->base.base.id,
8943                               drm_get_encoder_name(&encoder->base));
8944
8945                 /* Connector is active, but has no active pipe. This is
8946                  * fallout from our resume register restoring. Disable
8947                  * the encoder manually again. */
8948                 if (encoder->base.crtc) {
8949                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8950                                       encoder->base.base.id,
8951                                       drm_get_encoder_name(&encoder->base));
8952                         encoder->disable(encoder);
8953                 }
8954
8955                 /* Inconsistent output/port/pipe state happens presumably due to
8956                  * a bug in one of the get_hw_state functions. Or someplace else
8957                  * in our code, like the register restore mess on resume. Clamp
8958                  * things to off as a safer default. */
8959                 list_for_each_entry(connector,
8960                                     &dev->mode_config.connector_list,
8961                                     base.head) {
8962                         if (connector->encoder != encoder)
8963                                 continue;
8964
8965                         intel_connector_break_all_links(connector);
8966                 }
8967         }
8968         /* Enabled encoders without active connectors will be fixed in
8969          * the crtc fixup. */
8970 }
8971
8972 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8973  * and i915 state tracking structures. */
8974 void intel_modeset_setup_hw_state(struct drm_device *dev)
8975 {
8976         struct drm_i915_private *dev_priv = dev->dev_private;
8977         enum pipe pipe;
8978         u32 tmp;
8979         struct intel_crtc *crtc;
8980         struct intel_encoder *encoder;
8981         struct intel_connector *connector;
8982
8983         if (IS_HASWELL(dev)) {
8984                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8985
8986                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8987                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8988                         case TRANS_DDI_EDP_INPUT_A_ON:
8989                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8990                                 pipe = PIPE_A;
8991                                 break;
8992                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8993                                 pipe = PIPE_B;
8994                                 break;
8995                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8996                                 pipe = PIPE_C;
8997                                 break;
8998                         }
8999
9000                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9001                         crtc->cpu_transcoder = TRANSCODER_EDP;
9002
9003                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9004                                       pipe_name(pipe));
9005                 }
9006         }
9007
9008         for_each_pipe(pipe) {
9009                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9010
9011                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9012                 if (tmp & PIPECONF_ENABLE)
9013                         crtc->active = true;
9014                 else
9015                         crtc->active = false;
9016
9017                 crtc->base.enabled = crtc->active;
9018
9019                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9020                               crtc->base.base.id,
9021                               crtc->active ? "enabled" : "disabled");
9022         }
9023
9024         if (IS_HASWELL(dev))
9025                 intel_ddi_setup_hw_pll_state(dev);
9026
9027         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9028                             base.head) {
9029                 pipe = 0;
9030
9031                 if (encoder->get_hw_state(encoder, &pipe)) {
9032                         encoder->base.crtc =
9033                                 dev_priv->pipe_to_crtc_mapping[pipe];
9034                 } else {
9035                         encoder->base.crtc = NULL;
9036                 }
9037
9038                 encoder->connectors_active = false;
9039                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9040                               encoder->base.base.id,
9041                               drm_get_encoder_name(&encoder->base),
9042                               encoder->base.crtc ? "enabled" : "disabled",
9043                               pipe);
9044         }
9045
9046         list_for_each_entry(connector, &dev->mode_config.connector_list,
9047                             base.head) {
9048                 if (connector->get_hw_state(connector)) {
9049                         connector->base.dpms = DRM_MODE_DPMS_ON;
9050                         connector->encoder->connectors_active = true;
9051                         connector->base.encoder = &connector->encoder->base;
9052                 } else {
9053                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9054                         connector->base.encoder = NULL;
9055                 }
9056                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9057                               connector->base.base.id,
9058                               drm_get_connector_name(&connector->base),
9059                               connector->base.encoder ? "enabled" : "disabled");
9060         }
9061
9062         /* HW state is read out, now we need to sanitize this mess. */
9063         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9064                             base.head) {
9065                 intel_sanitize_encoder(encoder);
9066         }
9067
9068         for_each_pipe(pipe) {
9069                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9070                 intel_sanitize_crtc(crtc);
9071         }
9072
9073         intel_modeset_update_staged_output_state(dev);
9074
9075         intel_modeset_check_state(dev);
9076
9077         drm_mode_config_reset(dev);
9078 }
9079
9080 void intel_modeset_gem_init(struct drm_device *dev)
9081 {
9082         intel_modeset_init_hw(dev);
9083
9084         intel_setup_overlay(dev);
9085
9086         intel_modeset_setup_hw_state(dev);
9087 }
9088
9089 void intel_modeset_cleanup(struct drm_device *dev)
9090 {
9091         struct drm_i915_private *dev_priv = dev->dev_private;
9092         struct drm_crtc *crtc;
9093         struct intel_crtc *intel_crtc;
9094
9095         drm_kms_helper_poll_fini(dev);
9096         mutex_lock(&dev->struct_mutex);
9097
9098         intel_unregister_dsm_handler();
9099
9100
9101         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9102                 /* Skip inactive CRTCs */
9103                 if (!crtc->fb)
9104                         continue;
9105
9106                 intel_crtc = to_intel_crtc(crtc);
9107                 intel_increase_pllclock(crtc);
9108         }
9109
9110         intel_disable_fbc(dev);
9111
9112         intel_disable_gt_powersave(dev);
9113
9114         ironlake_teardown_rc6(dev);
9115
9116         if (IS_VALLEYVIEW(dev))
9117                 vlv_init_dpio(dev);
9118
9119         mutex_unlock(&dev->struct_mutex);
9120
9121         /* Disable the irq before mode object teardown, for the irq might
9122          * enqueue unpin/hotplug work. */
9123         drm_irq_uninstall(dev);
9124         cancel_work_sync(&dev_priv->hotplug_work);
9125         cancel_work_sync(&dev_priv->rps.work);
9126
9127         /* flush any delayed tasks or pending work */
9128         flush_scheduled_work();
9129
9130         drm_mode_config_cleanup(dev);
9131 }
9132
9133 /*
9134  * Return which encoder is currently attached for connector.
9135  */
9136 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9137 {
9138         return &intel_attached_encoder(connector)->base;
9139 }
9140
9141 void intel_connector_attach_encoder(struct intel_connector *connector,
9142                                     struct intel_encoder *encoder)
9143 {
9144         connector->encoder = encoder;
9145         drm_mode_connector_attach_encoder(&connector->base,
9146                                           &encoder->base);
9147 }
9148
9149 /*
9150  * set vga decode state - true == enable VGA decode
9151  */
9152 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9153 {
9154         struct drm_i915_private *dev_priv = dev->dev_private;
9155         u16 gmch_ctrl;
9156
9157         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9158         if (state)
9159                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9160         else
9161                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9162         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9163         return 0;
9164 }
9165
9166 #ifdef CONFIG_DEBUG_FS
9167 #include <linux/seq_file.h>
9168
9169 struct intel_display_error_state {
9170         struct intel_cursor_error_state {
9171                 u32 control;
9172                 u32 position;
9173                 u32 base;
9174                 u32 size;
9175         } cursor[I915_MAX_PIPES];
9176
9177         struct intel_pipe_error_state {
9178                 u32 conf;
9179                 u32 source;
9180
9181                 u32 htotal;
9182                 u32 hblank;
9183                 u32 hsync;
9184                 u32 vtotal;
9185                 u32 vblank;
9186                 u32 vsync;
9187         } pipe[I915_MAX_PIPES];
9188
9189         struct intel_plane_error_state {
9190                 u32 control;
9191                 u32 stride;
9192                 u32 size;
9193                 u32 pos;
9194                 u32 addr;
9195                 u32 surface;
9196                 u32 tile_offset;
9197         } plane[I915_MAX_PIPES];
9198 };
9199
9200 struct intel_display_error_state *
9201 intel_display_capture_error_state(struct drm_device *dev)
9202 {
9203         drm_i915_private_t *dev_priv = dev->dev_private;
9204         struct intel_display_error_state *error;
9205         enum transcoder cpu_transcoder;
9206         int i;
9207
9208         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9209         if (error == NULL)
9210                 return NULL;
9211
9212         for_each_pipe(i) {
9213                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9214
9215                 error->cursor[i].control = I915_READ(CURCNTR(i));
9216                 error->cursor[i].position = I915_READ(CURPOS(i));
9217                 error->cursor[i].base = I915_READ(CURBASE(i));
9218
9219                 error->plane[i].control = I915_READ(DSPCNTR(i));
9220                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9221                 error->plane[i].size = I915_READ(DSPSIZE(i));
9222                 error->plane[i].pos = I915_READ(DSPPOS(i));
9223                 error->plane[i].addr = I915_READ(DSPADDR(i));
9224                 if (INTEL_INFO(dev)->gen >= 4) {
9225                         error->plane[i].surface = I915_READ(DSPSURF(i));
9226                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9227                 }
9228
9229                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9230                 error->pipe[i].source = I915_READ(PIPESRC(i));
9231                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9232                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9233                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9234                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9235                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9236                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9237         }
9238
9239         return error;
9240 }
9241
9242 void
9243 intel_display_print_error_state(struct seq_file *m,
9244                                 struct drm_device *dev,
9245                                 struct intel_display_error_state *error)
9246 {
9247         drm_i915_private_t *dev_priv = dev->dev_private;
9248         int i;
9249
9250         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9251         for_each_pipe(i) {
9252                 seq_printf(m, "Pipe [%d]:\n", i);
9253                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9254                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9255                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9256                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9257                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9258                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9259                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9260                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9261
9262                 seq_printf(m, "Plane [%d]:\n", i);
9263                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9264                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9265                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9266                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9267                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9268                 if (INTEL_INFO(dev)->gen >= 4) {
9269                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9270                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9271                 }
9272
9273                 seq_printf(m, "Cursor [%d]:\n", i);
9274                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9275                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9276                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9277         }
9278 }
9279 #endif