]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Fix primary plane offset on HSW
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941                                              enum pipe pipe)
942 {
943         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946         return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 frame, frame_reg = PIPEFRAME(pipe);
953
954         frame = I915_READ(frame_reg);
955
956         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957                 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961  * intel_wait_for_vblank - wait for vblank on a given pipe
962  * @dev: drm device
963  * @pipe: pipe to wait for
964  *
965  * Wait for vblank to occur on a given pipe.  Needed for various bits of
966  * mode setting code.
967  */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         int pipestat_reg = PIPESTAT(pipe);
972
973         if (INTEL_INFO(dev)->gen >= 5) {
974                 ironlake_wait_for_vblank(dev, pipe);
975                 return;
976         }
977
978         /* Clear existing vblank status. Note this will clear any other
979          * sticky status fields as well.
980          *
981          * This races with i915_driver_irq_handler() with the result
982          * that either function could miss a vblank event.  Here it is not
983          * fatal, as we will either wait upon the next vblank interrupt or
984          * timeout.  Generally speaking intel_wait_for_vblank() is only
985          * called during modeset at which time the GPU should be idle and
986          * should *not* be performing page flips and thus not waiting on
987          * vblanks...
988          * Currently, the result of us stealing a vblank from the irq
989          * handler is that a single frame will be skipped during swapbuffers.
990          */
991         I915_WRITE(pipestat_reg,
992                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994         /* Wait for vblank interrupt bit to set */
995         if (wait_for(I915_READ(pipestat_reg) &
996                      PIPE_VBLANK_INTERRUPT_STATUS,
997                      50))
998                 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002  * intel_wait_for_pipe_off - wait for pipe to turn off
1003  * @dev: drm device
1004  * @pipe: pipe to wait for
1005  *
1006  * After disabling a pipe, we can't wait for vblank in the usual way,
1007  * spinning on the vblank interrupt status bit, since we won't actually
1008  * see an interrupt when the pipe is disabled.
1009  *
1010  * On Gen4 and above:
1011  *   wait for the pipe register state bit to turn off
1012  *
1013  * Otherwise:
1014  *   wait for the display line value to settle (it usually
1015  *   ends up stopping at the start of the next frame).
1016  *
1017  */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022                                                                       pipe);
1023
1024         if (INTEL_INFO(dev)->gen >= 4) {
1025                 int reg = PIPECONF(cpu_transcoder);
1026
1027                 /* Wait for the Pipe State to go off */
1028                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029                              100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         } else {
1032                 u32 last_line, line_mask;
1033                 int reg = PIPEDSL(pipe);
1034                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036                 if (IS_GEN2(dev))
1037                         line_mask = DSL_LINEMASK_GEN2;
1038                 else
1039                         line_mask = DSL_LINEMASK_GEN3;
1040
1041                 /* Wait for the display line to settle */
1042                 do {
1043                         last_line = I915_READ(reg) & line_mask;
1044                         mdelay(5);
1045                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046                          time_after(timeout, jiffies));
1047                 if (time_after(jiffies, timeout))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054         return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059                        enum pipe pipe, bool state)
1060 {
1061         int reg;
1062         u32 val;
1063         bool cur_state;
1064
1065         reg = DPLL(pipe);
1066         val = I915_READ(reg);
1067         cur_state = !!(val & DPLL_VCO_ENABLE);
1068         WARN(cur_state != state,
1069              "PLL state assertion failure (expected %s, current %s)\n",
1070              state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077                            struct intel_pch_pll *pll,
1078                            struct intel_crtc *crtc,
1079                            bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         if (HAS_PCH_LPT(dev_priv->dev)) {
1085                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086                 return;
1087         }
1088
1089         if (WARN (!pll,
1090                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091                 return;
1092
1093         val = I915_READ(pll->pll_reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097              pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099         /* Make sure the selected PLL is correctly attached to the transcoder */
1100         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101                 u32 pch_dpll;
1102
1103                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1107                           cur_state, crtc->pipe, pch_dpll)) {
1108                         cur_state = !!(val >> (4*crtc->pipe + 3));
1109                         WARN(cur_state != state,
1110                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1111                              pll->pll_reg == _PCH_DPLL_B,
1112                              state_string(state),
1113                              crtc->pipe,
1114                              val);
1115                 }
1116         }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122                           enum pipe pipe, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (IS_HASWELL(dev_priv->dev)) {
1131                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133                 val = I915_READ(reg);
1134                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135         } else {
1136                 reg = FDI_TX_CTL(pipe);
1137                 val = I915_READ(reg);
1138                 cur_state = !!(val & FDI_TX_ENABLE);
1139         }
1140         WARN(cur_state != state,
1141              "FDI TX state assertion failure (expected %s, current %s)\n",
1142              state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148                           enum pipe pipe, bool state)
1149 {
1150         int reg;
1151         u32 val;
1152         bool cur_state;
1153
1154         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156                         return;
1157         } else {
1158                 reg = FDI_RX_CTL(pipe);
1159                 val = I915_READ(reg);
1160                 cur_state = !!(val & FDI_RX_ENABLE);
1161         }
1162         WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (dev_priv->info->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (IS_HASWELL(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189                                       enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196                 return;
1197         }
1198         reg = FDI_RX_CTL(pipe);
1199         val = I915_READ(reg);
1200         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                                   enum pipe pipe)
1205 {
1206         int pp_reg, lvds_reg;
1207         u32 val;
1208         enum pipe panel_pipe = PIPE_A;
1209         bool locked = true;
1210
1211         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212                 pp_reg = PCH_PP_CONTROL;
1213                 lvds_reg = PCH_LVDS;
1214         } else {
1215                 pp_reg = PP_CONTROL;
1216                 lvds_reg = LVDS;
1217         }
1218
1219         val = I915_READ(pp_reg);
1220         if (!(val & PANEL_POWER_ON) ||
1221             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222                 locked = false;
1223
1224         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225                 panel_pipe = PIPE_B;
1226
1227         WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233                  enum pipe pipe, bool state)
1234 {
1235         int reg;
1236         u32 val;
1237         bool cur_state;
1238         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239                                                                       pipe);
1240
1241         /* if we need the pipe A quirk it must be always on */
1242         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243                 state = true;
1244
1245         reg = PIPECONF(cpu_transcoder);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & PIPECONF_ENABLE);
1248         WARN(cur_state != state,
1249              "pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254                          enum plane plane, bool state)
1255 {
1256         int reg;
1257         u32 val;
1258         bool cur_state;
1259
1260         reg = DSPCNTR(plane);
1261         val = I915_READ(reg);
1262         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263         WARN(cur_state != state,
1264              "plane %c assertion failure (expected %s, current %s)\n",
1265              plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe)
1273 {
1274         int reg, i;
1275         u32 val;
1276         int cur_pipe;
1277
1278         /* Planes are fixed to pipes on ILK+ */
1279         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280                 reg = DSPCNTR(pipe);
1281                 val = I915_READ(reg);
1282                 WARN((val & DISPLAY_PLANE_ENABLE),
1283                      "plane %c assertion failure, should be disabled but not\n",
1284                      plane_name(pipe));
1285                 return;
1286         }
1287
1288         /* Need to check both planes against the pipe */
1289         for (i = 0; i < 2; i++) {
1290                 reg = DSPCNTR(i);
1291                 val = I915_READ(reg);
1292                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293                         DISPPLANE_SEL_PIPE_SHIFT;
1294                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296                      plane_name(i), pipe_name(pipe));
1297         }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302         u32 val;
1303         bool enabled;
1304
1305         if (HAS_PCH_LPT(dev_priv->dev)) {
1306                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307                 return;
1308         }
1309
1310         val = I915_READ(PCH_DREF_CONTROL);
1311         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312                             DREF_SUPERSPREAD_SOURCE_MASK));
1313         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317                                        enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321         bool enabled;
1322
1323         reg = TRANSCONF(pipe);
1324         val = I915_READ(reg);
1325         enabled = !!(val & TRANS_ENABLE);
1326         WARN(enabled,
1327              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328              pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332                             enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334         if ((val & DP_PORT_EN) == 0)
1335                 return false;
1336
1337         if (HAS_PCH_CPT(dev_priv->dev)) {
1338                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341                         return false;
1342         } else {
1343                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344                         return false;
1345         }
1346         return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350                               enum pipe pipe, u32 val)
1351 {
1352         if ((val & PORT_ENABLE) == 0)
1353                 return false;
1354
1355         if (HAS_PCH_CPT(dev_priv->dev)) {
1356                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357                         return false;
1358         } else {
1359                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360                         return false;
1361         }
1362         return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366                               enum pipe pipe, u32 val)
1367 {
1368         if ((val & LVDS_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & ADPA_DAC_ENABLE) == 0)
1385                 return false;
1386         if (HAS_PCH_CPT(dev_priv->dev)) {
1387                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388                         return false;
1389         } else {
1390                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391                         return false;
1392         }
1393         return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397                                    enum pipe pipe, int reg, u32 port_sel)
1398 {
1399         u32 val = I915_READ(reg);
1400         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402              reg, pipe_name(pipe));
1403
1404         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405              && (val & DP_PIPEB_SELECT),
1406              "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410                                      enum pipe pipe, int reg)
1411 {
1412         u32 val = I915_READ(reg);
1413         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415              reg, pipe_name(pipe));
1416
1417         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418              && (val & SDVO_PIPE_B_SELECT),
1419              "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423                                       enum pipe pipe)
1424 {
1425         int reg;
1426         u32 val;
1427
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432         reg = PCH_ADPA;
1433         val = I915_READ(reg);
1434         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435              "PCH VGA enabled on transcoder %c, should be disabled\n",
1436              pipe_name(pipe));
1437
1438         reg = PCH_LVDS;
1439         val = I915_READ(reg);
1440         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442              pipe_name(pipe));
1443
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450  * intel_enable_pll - enable a PLL
1451  * @dev_priv: i915 private structure
1452  * @pipe: pipe PLL to enable
1453  *
1454  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1455  * make sure the PLL reg is writable first though, since the panel write
1456  * protect mechanism may be enabled.
1457  *
1458  * Note!  This is for pre-ILK only.
1459  *
1460  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461  */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464         int reg;
1465         u32 val;
1466
1467         /* No really, not for ILK+ */
1468         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472                 assert_panel_unlocked(dev_priv, pipe);
1473
1474         reg = DPLL(pipe);
1475         val = I915_READ(reg);
1476         val |= DPLL_VCO_ENABLE;
1477
1478         /* We do this three times for luck */
1479         I915_WRITE(reg, val);
1480         POSTING_READ(reg);
1481         udelay(150); /* wait for warmup */
1482         I915_WRITE(reg, val);
1483         POSTING_READ(reg);
1484         udelay(150); /* wait for warmup */
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487         udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491  * intel_disable_pll - disable a PLL
1492  * @dev_priv: i915 private structure
1493  * @pipe: pipe PLL to disable
1494  *
1495  * Disable the PLL for @pipe, making sure the pipe is off first.
1496  *
1497  * Note!  This is for pre-ILK only.
1498  */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501         int reg;
1502         u32 val;
1503
1504         /* Don't disable pipe A or pipe A PLLs if needed */
1505         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506                 return;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         reg = DPLL(pipe);
1512         val = I915_READ(reg);
1513         val &= ~DPLL_VCO_ENABLE;
1514         I915_WRITE(reg, val);
1515         POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522         unsigned long flags;
1523
1524         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528                 goto out_unlock;
1529         }
1530
1531         I915_WRITE(SBI_ADDR,
1532                         (reg << 16));
1533         I915_WRITE(SBI_DATA,
1534                         value);
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRWR);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545 out_unlock:
1546         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552         unsigned long flags;
1553         u32 value = 0;
1554
1555         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557                                 100)) {
1558                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559                 goto out_unlock;
1560         }
1561
1562         I915_WRITE(SBI_ADDR,
1563                         (reg << 16));
1564         I915_WRITE(SBI_CTL_STAT,
1565                         SBI_BUSY |
1566                         SBI_CTL_OP_CRRD);
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571                 goto out_unlock;
1572         }
1573
1574         value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578         return value;
1579 }
1580
1581 /**
1582  * intel_enable_pch_pll - enable PCH PLL
1583  * @dev_priv: i915 private structure
1584  * @pipe: pipe PLL to enable
1585  *
1586  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587  * drives the transcoder clock.
1588  */
1589 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592         struct intel_pch_pll *pll;
1593         int reg;
1594         u32 val;
1595
1596         /* PCH PLLs only available on ILK, SNB and IVB */
1597         BUG_ON(dev_priv->info->gen < 5);
1598         pll = intel_crtc->pch_pll;
1599         if (pll == NULL)
1600                 return;
1601
1602         if (WARN_ON(pll->refcount == 0))
1603                 return;
1604
1605         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606                       pll->pll_reg, pll->active, pll->on,
1607                       intel_crtc->base.base.id);
1608
1609         /* PCH refclock must be enabled first */
1610         assert_pch_refclk_enabled(dev_priv);
1611
1612         if (pll->active++ && pll->on) {
1613                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614                 return;
1615         }
1616
1617         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619         reg = pll->pll_reg;
1620         val = I915_READ(reg);
1621         val |= DPLL_VCO_ENABLE;
1622         I915_WRITE(reg, val);
1623         POSTING_READ(reg);
1624         udelay(200);
1625
1626         pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633         int reg;
1634         u32 val;
1635
1636         /* PCH only available on ILK+ */
1637         BUG_ON(dev_priv->info->gen < 5);
1638         if (pll == NULL)
1639                return;
1640
1641         if (WARN_ON(pll->refcount == 0))
1642                 return;
1643
1644         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645                       pll->pll_reg, pll->active, pll->on,
1646                       intel_crtc->base.base.id);
1647
1648         if (WARN_ON(pll->active == 0)) {
1649                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650                 return;
1651         }
1652
1653         if (--pll->active) {
1654                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655                 return;
1656         }
1657
1658         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660         /* Make sure transcoder isn't still depending on us */
1661         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663         reg = pll->pll_reg;
1664         val = I915_READ(reg);
1665         val &= ~DPLL_VCO_ENABLE;
1666         I915_WRITE(reg, val);
1667         POSTING_READ(reg);
1668         udelay(200);
1669
1670         pll->on = false;
1671 }
1672
1673 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1674                                     enum pipe pipe)
1675 {
1676         int reg;
1677         u32 val, pipeconf_val;
1678         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680         /* PCH only available on ILK+ */
1681         BUG_ON(dev_priv->info->gen < 5);
1682
1683         /* Make sure PCH DPLL is enabled */
1684         assert_pch_pll_enabled(dev_priv,
1685                                to_intel_crtc(crtc)->pch_pll,
1686                                to_intel_crtc(crtc));
1687
1688         /* FDI must be feeding us bits for PCH ports */
1689         assert_fdi_tx_enabled(dev_priv, pipe);
1690         assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694                 return;
1695         }
1696         reg = TRANSCONF(pipe);
1697         val = I915_READ(reg);
1698         pipeconf_val = I915_READ(PIPECONF(pipe));
1699
1700         if (HAS_PCH_IBX(dev_priv->dev)) {
1701                 /*
1702                  * make the BPC in transcoder be consistent with
1703                  * that in pipeconf reg.
1704                  */
1705                 val &= ~PIPE_BPC_MASK;
1706                 val |= pipeconf_val & PIPE_BPC_MASK;
1707         }
1708
1709         val &= ~TRANS_INTERLACE_MASK;
1710         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1711                 if (HAS_PCH_IBX(dev_priv->dev) &&
1712                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713                         val |= TRANS_LEGACY_INTERLACED_ILK;
1714                 else
1715                         val |= TRANS_INTERLACED;
1716         else
1717                 val |= TRANS_PROGRESSIVE;
1718
1719         I915_WRITE(reg, val | TRANS_ENABLE);
1720         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722 }
1723
1724 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1725                                      enum pipe pipe)
1726 {
1727         int reg;
1728         u32 val;
1729
1730         /* FDI relies on the transcoder */
1731         assert_fdi_tx_disabled(dev_priv, pipe);
1732         assert_fdi_rx_disabled(dev_priv, pipe);
1733
1734         /* Ports must be off as well */
1735         assert_pch_ports_disabled(dev_priv, pipe);
1736
1737         reg = TRANSCONF(pipe);
1738         val = I915_READ(reg);
1739         val &= ~TRANS_ENABLE;
1740         I915_WRITE(reg, val);
1741         /* wait for PCH transcoder off, transcoder state */
1742         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1743                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1744 }
1745
1746 /**
1747  * intel_enable_pipe - enable a pipe, asserting requirements
1748  * @dev_priv: i915 private structure
1749  * @pipe: pipe to enable
1750  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1751  *
1752  * Enable @pipe, making sure that various hardware specific requirements
1753  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754  *
1755  * @pipe should be %PIPE_A or %PIPE_B.
1756  *
1757  * Will wait until the pipe is actually running (i.e. first vblank) before
1758  * returning.
1759  */
1760 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761                               bool pch_port)
1762 {
1763         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764                                                                       pipe);
1765         int reg;
1766         u32 val;
1767
1768         /*
1769          * A pipe without a PLL won't actually be able to drive bits from
1770          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1771          * need the check.
1772          */
1773         if (!HAS_PCH_SPLIT(dev_priv->dev))
1774                 assert_pll_enabled(dev_priv, pipe);
1775         else {
1776                 if (pch_port) {
1777                         /* if driving the PCH, we need FDI enabled */
1778                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780                 }
1781                 /* FIXME: assert CPU port conditions for SNB+ */
1782         }
1783
1784         reg = PIPECONF(cpu_transcoder);
1785         val = I915_READ(reg);
1786         if (val & PIPECONF_ENABLE)
1787                 return;
1788
1789         I915_WRITE(reg, val | PIPECONF_ENABLE);
1790         intel_wait_for_vblank(dev_priv->dev, pipe);
1791 }
1792
1793 /**
1794  * intel_disable_pipe - disable a pipe, asserting requirements
1795  * @dev_priv: i915 private structure
1796  * @pipe: pipe to disable
1797  *
1798  * Disable @pipe, making sure that various hardware specific requirements
1799  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800  *
1801  * @pipe should be %PIPE_A or %PIPE_B.
1802  *
1803  * Will wait until the pipe has shut down before returning.
1804  */
1805 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806                                enum pipe pipe)
1807 {
1808         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809                                                                       pipe);
1810         int reg;
1811         u32 val;
1812
1813         /*
1814          * Make sure planes won't keep trying to pump pixels to us,
1815          * or we might hang the display.
1816          */
1817         assert_planes_disabled(dev_priv, pipe);
1818
1819         /* Don't disable pipe A or pipe A PLLs if needed */
1820         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821                 return;
1822
1823         reg = PIPECONF(cpu_transcoder);
1824         val = I915_READ(reg);
1825         if ((val & PIPECONF_ENABLE) == 0)
1826                 return;
1827
1828         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1829         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830 }
1831
1832 /*
1833  * Plane regs are double buffered, going from enabled->disabled needs a
1834  * trigger in order to latch.  The display address reg provides this.
1835  */
1836 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1837                                       enum plane plane)
1838 {
1839         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1840         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841 }
1842
1843 /**
1844  * intel_enable_plane - enable a display plane on a given pipe
1845  * @dev_priv: i915 private structure
1846  * @plane: plane to enable
1847  * @pipe: pipe being fed
1848  *
1849  * Enable @plane on @pipe, making sure that @pipe is running first.
1850  */
1851 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1852                                enum plane plane, enum pipe pipe)
1853 {
1854         int reg;
1855         u32 val;
1856
1857         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1858         assert_pipe_enabled(dev_priv, pipe);
1859
1860         reg = DSPCNTR(plane);
1861         val = I915_READ(reg);
1862         if (val & DISPLAY_PLANE_ENABLE)
1863                 return;
1864
1865         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1866         intel_flush_display_plane(dev_priv, plane);
1867         intel_wait_for_vblank(dev_priv->dev, pipe);
1868 }
1869
1870 /**
1871  * intel_disable_plane - disable a display plane
1872  * @dev_priv: i915 private structure
1873  * @plane: plane to disable
1874  * @pipe: pipe consuming the data
1875  *
1876  * Disable @plane; should be an independent operation.
1877  */
1878 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1879                                 enum plane plane, enum pipe pipe)
1880 {
1881         int reg;
1882         u32 val;
1883
1884         reg = DSPCNTR(plane);
1885         val = I915_READ(reg);
1886         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1887                 return;
1888
1889         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1890         intel_flush_display_plane(dev_priv, plane);
1891         intel_wait_for_vblank(dev_priv->dev, pipe);
1892 }
1893
1894 int
1895 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1896                            struct drm_i915_gem_object *obj,
1897                            struct intel_ring_buffer *pipelined)
1898 {
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         u32 alignment;
1901         int ret;
1902
1903         switch (obj->tiling_mode) {
1904         case I915_TILING_NONE:
1905                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1906                         alignment = 128 * 1024;
1907                 else if (INTEL_INFO(dev)->gen >= 4)
1908                         alignment = 4 * 1024;
1909                 else
1910                         alignment = 64 * 1024;
1911                 break;
1912         case I915_TILING_X:
1913                 /* pin() will align the object as required by fence */
1914                 alignment = 0;
1915                 break;
1916         case I915_TILING_Y:
1917                 /* FIXME: Is this true? */
1918                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1919                 return -EINVAL;
1920         default:
1921                 BUG();
1922         }
1923
1924         dev_priv->mm.interruptible = false;
1925         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1926         if (ret)
1927                 goto err_interruptible;
1928
1929         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1930          * fence, whereas 965+ only requires a fence if using
1931          * framebuffer compression.  For simplicity, we always install
1932          * a fence as the cost is not that onerous.
1933          */
1934         ret = i915_gem_object_get_fence(obj);
1935         if (ret)
1936                 goto err_unpin;
1937
1938         i915_gem_object_pin_fence(obj);
1939
1940         dev_priv->mm.interruptible = true;
1941         return 0;
1942
1943 err_unpin:
1944         i915_gem_object_unpin(obj);
1945 err_interruptible:
1946         dev_priv->mm.interruptible = true;
1947         return ret;
1948 }
1949
1950 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1951 {
1952         i915_gem_object_unpin_fence(obj);
1953         i915_gem_object_unpin(obj);
1954 }
1955
1956 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1957  * is assumed to be a power-of-two. */
1958 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1959                                                         unsigned int bpp,
1960                                                         unsigned int pitch)
1961 {
1962         int tile_rows, tiles;
1963
1964         tile_rows = *y / 8;
1965         *y %= 8;
1966         tiles = *x / (512/bpp);
1967         *x %= 512/bpp;
1968
1969         return tile_rows * pitch * 8 + tiles * 4096;
1970 }
1971
1972 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1973                              int x, int y)
1974 {
1975         struct drm_device *dev = crtc->dev;
1976         struct drm_i915_private *dev_priv = dev->dev_private;
1977         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1978         struct intel_framebuffer *intel_fb;
1979         struct drm_i915_gem_object *obj;
1980         int plane = intel_crtc->plane;
1981         unsigned long linear_offset;
1982         u32 dspcntr;
1983         u32 reg;
1984
1985         switch (plane) {
1986         case 0:
1987         case 1:
1988                 break;
1989         default:
1990                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1991                 return -EINVAL;
1992         }
1993
1994         intel_fb = to_intel_framebuffer(fb);
1995         obj = intel_fb->obj;
1996
1997         reg = DSPCNTR(plane);
1998         dspcntr = I915_READ(reg);
1999         /* Mask out pixel format bits in case we change it */
2000         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2001         switch (fb->bits_per_pixel) {
2002         case 8:
2003                 dspcntr |= DISPPLANE_8BPP;
2004                 break;
2005         case 16:
2006                 if (fb->depth == 15)
2007                         dspcntr |= DISPPLANE_15_16BPP;
2008                 else
2009                         dspcntr |= DISPPLANE_16BPP;
2010                 break;
2011         case 24:
2012         case 32:
2013                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2014                 break;
2015         default:
2016                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2017                 return -EINVAL;
2018         }
2019         if (INTEL_INFO(dev)->gen >= 4) {
2020                 if (obj->tiling_mode != I915_TILING_NONE)
2021                         dspcntr |= DISPPLANE_TILED;
2022                 else
2023                         dspcntr &= ~DISPPLANE_TILED;
2024         }
2025
2026         I915_WRITE(reg, dspcntr);
2027
2028         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2029
2030         if (INTEL_INFO(dev)->gen >= 4) {
2031                 intel_crtc->dspaddr_offset =
2032                         gen4_compute_dspaddr_offset_xtiled(&x, &y,
2033                                                            fb->bits_per_pixel / 8,
2034                                                            fb->pitches[0]);
2035                 linear_offset -= intel_crtc->dspaddr_offset;
2036         } else {
2037                 intel_crtc->dspaddr_offset = linear_offset;
2038         }
2039
2040         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2041                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2042         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2043         if (INTEL_INFO(dev)->gen >= 4) {
2044                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2045                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2046                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2047                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2048         } else
2049                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2050         POSTING_READ(reg);
2051
2052         return 0;
2053 }
2054
2055 static int ironlake_update_plane(struct drm_crtc *crtc,
2056                                  struct drm_framebuffer *fb, int x, int y)
2057 {
2058         struct drm_device *dev = crtc->dev;
2059         struct drm_i915_private *dev_priv = dev->dev_private;
2060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2061         struct intel_framebuffer *intel_fb;
2062         struct drm_i915_gem_object *obj;
2063         int plane = intel_crtc->plane;
2064         unsigned long linear_offset;
2065         u32 dspcntr;
2066         u32 reg;
2067
2068         switch (plane) {
2069         case 0:
2070         case 1:
2071         case 2:
2072                 break;
2073         default:
2074                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2075                 return -EINVAL;
2076         }
2077
2078         intel_fb = to_intel_framebuffer(fb);
2079         obj = intel_fb->obj;
2080
2081         reg = DSPCNTR(plane);
2082         dspcntr = I915_READ(reg);
2083         /* Mask out pixel format bits in case we change it */
2084         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2085         switch (fb->bits_per_pixel) {
2086         case 8:
2087                 dspcntr |= DISPPLANE_8BPP;
2088                 break;
2089         case 16:
2090                 if (fb->depth != 16)
2091                         return -EINVAL;
2092
2093                 dspcntr |= DISPPLANE_16BPP;
2094                 break;
2095         case 24:
2096         case 32:
2097                 if (fb->depth == 24)
2098                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2099                 else if (fb->depth == 30)
2100                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2101                 else
2102                         return -EINVAL;
2103                 break;
2104         default:
2105                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2106                 return -EINVAL;
2107         }
2108
2109         if (obj->tiling_mode != I915_TILING_NONE)
2110                 dspcntr |= DISPPLANE_TILED;
2111         else
2112                 dspcntr &= ~DISPPLANE_TILED;
2113
2114         /* must disable */
2115         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2116
2117         I915_WRITE(reg, dspcntr);
2118
2119         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2120         intel_crtc->dspaddr_offset =
2121                 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2122                                                    fb->bits_per_pixel / 8,
2123                                                    fb->pitches[0]);
2124         linear_offset -= intel_crtc->dspaddr_offset;
2125
2126         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2127                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2128         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2129         I915_MODIFY_DISPBASE(DSPSURF(plane),
2130                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2131         if (IS_HASWELL(dev)) {
2132                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2133         } else {
2134                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2135                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2136         }
2137         POSTING_READ(reg);
2138
2139         return 0;
2140 }
2141
2142 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2143 static int
2144 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2145                            int x, int y, enum mode_set_atomic state)
2146 {
2147         struct drm_device *dev = crtc->dev;
2148         struct drm_i915_private *dev_priv = dev->dev_private;
2149
2150         if (dev_priv->display.disable_fbc)
2151                 dev_priv->display.disable_fbc(dev);
2152         intel_increase_pllclock(crtc);
2153
2154         return dev_priv->display.update_plane(crtc, fb, x, y);
2155 }
2156
2157 static int
2158 intel_finish_fb(struct drm_framebuffer *old_fb)
2159 {
2160         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2161         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2162         bool was_interruptible = dev_priv->mm.interruptible;
2163         int ret;
2164
2165         wait_event(dev_priv->pending_flip_queue,
2166                    atomic_read(&dev_priv->mm.wedged) ||
2167                    atomic_read(&obj->pending_flip) == 0);
2168
2169         /* Big Hammer, we also need to ensure that any pending
2170          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2171          * current scanout is retired before unpinning the old
2172          * framebuffer.
2173          *
2174          * This should only fail upon a hung GPU, in which case we
2175          * can safely continue.
2176          */
2177         dev_priv->mm.interruptible = false;
2178         ret = i915_gem_object_finish_gpu(obj);
2179         dev_priv->mm.interruptible = was_interruptible;
2180
2181         return ret;
2182 }
2183
2184 static int
2185 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2186                     struct drm_framebuffer *fb)
2187 {
2188         struct drm_device *dev = crtc->dev;
2189         struct drm_i915_private *dev_priv = dev->dev_private;
2190         struct drm_i915_master_private *master_priv;
2191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2192         struct drm_framebuffer *old_fb;
2193         int ret;
2194
2195         /* no fb bound */
2196         if (!fb) {
2197                 DRM_ERROR("No FB bound\n");
2198                 return 0;
2199         }
2200
2201         if(intel_crtc->plane > dev_priv->num_pipe) {
2202                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2203                                 intel_crtc->plane,
2204                                 dev_priv->num_pipe);
2205                 return -EINVAL;
2206         }
2207
2208         mutex_lock(&dev->struct_mutex);
2209         ret = intel_pin_and_fence_fb_obj(dev,
2210                                          to_intel_framebuffer(fb)->obj,
2211                                          NULL);
2212         if (ret != 0) {
2213                 mutex_unlock(&dev->struct_mutex);
2214                 DRM_ERROR("pin & fence failed\n");
2215                 return ret;
2216         }
2217
2218         if (crtc->fb)
2219                 intel_finish_fb(crtc->fb);
2220
2221         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2222         if (ret) {
2223                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2224                 mutex_unlock(&dev->struct_mutex);
2225                 DRM_ERROR("failed to update base address\n");
2226                 return ret;
2227         }
2228
2229         old_fb = crtc->fb;
2230         crtc->fb = fb;
2231         crtc->x = x;
2232         crtc->y = y;
2233
2234         if (old_fb) {
2235                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2236                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2237         }
2238
2239         intel_update_fbc(dev);
2240         mutex_unlock(&dev->struct_mutex);
2241
2242         if (!dev->primary->master)
2243                 return 0;
2244
2245         master_priv = dev->primary->master->driver_priv;
2246         if (!master_priv->sarea_priv)
2247                 return 0;
2248
2249         if (intel_crtc->pipe) {
2250                 master_priv->sarea_priv->pipeB_x = x;
2251                 master_priv->sarea_priv->pipeB_y = y;
2252         } else {
2253                 master_priv->sarea_priv->pipeA_x = x;
2254                 master_priv->sarea_priv->pipeA_y = y;
2255         }
2256
2257         return 0;
2258 }
2259
2260 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2261 {
2262         struct drm_device *dev = crtc->dev;
2263         struct drm_i915_private *dev_priv = dev->dev_private;
2264         u32 dpa_ctl;
2265
2266         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2267         dpa_ctl = I915_READ(DP_A);
2268         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2269
2270         if (clock < 200000) {
2271                 u32 temp;
2272                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2273                 /* workaround for 160Mhz:
2274                    1) program 0x4600c bits 15:0 = 0x8124
2275                    2) program 0x46010 bit 0 = 1
2276                    3) program 0x46034 bit 24 = 1
2277                    4) program 0x64000 bit 14 = 1
2278                    */
2279                 temp = I915_READ(0x4600c);
2280                 temp &= 0xffff0000;
2281                 I915_WRITE(0x4600c, temp | 0x8124);
2282
2283                 temp = I915_READ(0x46010);
2284                 I915_WRITE(0x46010, temp | 1);
2285
2286                 temp = I915_READ(0x46034);
2287                 I915_WRITE(0x46034, temp | (1 << 24));
2288         } else {
2289                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2290         }
2291         I915_WRITE(DP_A, dpa_ctl);
2292
2293         POSTING_READ(DP_A);
2294         udelay(500);
2295 }
2296
2297 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2298 {
2299         struct drm_device *dev = crtc->dev;
2300         struct drm_i915_private *dev_priv = dev->dev_private;
2301         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2302         int pipe = intel_crtc->pipe;
2303         u32 reg, temp;
2304
2305         /* enable normal train */
2306         reg = FDI_TX_CTL(pipe);
2307         temp = I915_READ(reg);
2308         if (IS_IVYBRIDGE(dev)) {
2309                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2310                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2311         } else {
2312                 temp &= ~FDI_LINK_TRAIN_NONE;
2313                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2314         }
2315         I915_WRITE(reg, temp);
2316
2317         reg = FDI_RX_CTL(pipe);
2318         temp = I915_READ(reg);
2319         if (HAS_PCH_CPT(dev)) {
2320                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2321                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2322         } else {
2323                 temp &= ~FDI_LINK_TRAIN_NONE;
2324                 temp |= FDI_LINK_TRAIN_NONE;
2325         }
2326         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2327
2328         /* wait one idle pattern time */
2329         POSTING_READ(reg);
2330         udelay(1000);
2331
2332         /* IVB wants error correction enabled */
2333         if (IS_IVYBRIDGE(dev))
2334                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2335                            FDI_FE_ERRC_ENABLE);
2336 }
2337
2338 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2339 {
2340         struct drm_i915_private *dev_priv = dev->dev_private;
2341         u32 flags = I915_READ(SOUTH_CHICKEN1);
2342
2343         flags |= FDI_PHASE_SYNC_OVR(pipe);
2344         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2345         flags |= FDI_PHASE_SYNC_EN(pipe);
2346         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2347         POSTING_READ(SOUTH_CHICKEN1);
2348 }
2349
2350 static void ivb_modeset_global_resources(struct drm_device *dev)
2351 {
2352         struct drm_i915_private *dev_priv = dev->dev_private;
2353         struct intel_crtc *pipe_B_crtc =
2354                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2355         struct intel_crtc *pipe_C_crtc =
2356                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2357         uint32_t temp;
2358
2359         /* When everything is off disable fdi C so that we could enable fdi B
2360          * with all lanes. XXX: This misses the case where a pipe is not using
2361          * any pch resources and so doesn't need any fdi lanes. */
2362         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2363                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2364                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2365
2366                 temp = I915_READ(SOUTH_CHICKEN1);
2367                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2368                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2369                 I915_WRITE(SOUTH_CHICKEN1, temp);
2370         }
2371 }
2372
2373 /* The FDI link training functions for ILK/Ibexpeak. */
2374 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2375 {
2376         struct drm_device *dev = crtc->dev;
2377         struct drm_i915_private *dev_priv = dev->dev_private;
2378         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2379         int pipe = intel_crtc->pipe;
2380         int plane = intel_crtc->plane;
2381         u32 reg, temp, tries;
2382
2383         /* FDI needs bits from pipe & plane first */
2384         assert_pipe_enabled(dev_priv, pipe);
2385         assert_plane_enabled(dev_priv, plane);
2386
2387         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2388            for train result */
2389         reg = FDI_RX_IMR(pipe);
2390         temp = I915_READ(reg);
2391         temp &= ~FDI_RX_SYMBOL_LOCK;
2392         temp &= ~FDI_RX_BIT_LOCK;
2393         I915_WRITE(reg, temp);
2394         I915_READ(reg);
2395         udelay(150);
2396
2397         /* enable CPU FDI TX and PCH FDI RX */
2398         reg = FDI_TX_CTL(pipe);
2399         temp = I915_READ(reg);
2400         temp &= ~(7 << 19);
2401         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2402         temp &= ~FDI_LINK_TRAIN_NONE;
2403         temp |= FDI_LINK_TRAIN_PATTERN_1;
2404         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2405
2406         reg = FDI_RX_CTL(pipe);
2407         temp = I915_READ(reg);
2408         temp &= ~FDI_LINK_TRAIN_NONE;
2409         temp |= FDI_LINK_TRAIN_PATTERN_1;
2410         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2411
2412         POSTING_READ(reg);
2413         udelay(150);
2414
2415         /* Ironlake workaround, enable clock pointer after FDI enable*/
2416         if (HAS_PCH_IBX(dev)) {
2417                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2418                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2419                            FDI_RX_PHASE_SYNC_POINTER_EN);
2420         }
2421
2422         reg = FDI_RX_IIR(pipe);
2423         for (tries = 0; tries < 5; tries++) {
2424                 temp = I915_READ(reg);
2425                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2426
2427                 if ((temp & FDI_RX_BIT_LOCK)) {
2428                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2429                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2430                         break;
2431                 }
2432         }
2433         if (tries == 5)
2434                 DRM_ERROR("FDI train 1 fail!\n");
2435
2436         /* Train 2 */
2437         reg = FDI_TX_CTL(pipe);
2438         temp = I915_READ(reg);
2439         temp &= ~FDI_LINK_TRAIN_NONE;
2440         temp |= FDI_LINK_TRAIN_PATTERN_2;
2441         I915_WRITE(reg, temp);
2442
2443         reg = FDI_RX_CTL(pipe);
2444         temp = I915_READ(reg);
2445         temp &= ~FDI_LINK_TRAIN_NONE;
2446         temp |= FDI_LINK_TRAIN_PATTERN_2;
2447         I915_WRITE(reg, temp);
2448
2449         POSTING_READ(reg);
2450         udelay(150);
2451
2452         reg = FDI_RX_IIR(pipe);
2453         for (tries = 0; tries < 5; tries++) {
2454                 temp = I915_READ(reg);
2455                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2456
2457                 if (temp & FDI_RX_SYMBOL_LOCK) {
2458                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2459                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2460                         break;
2461                 }
2462         }
2463         if (tries == 5)
2464                 DRM_ERROR("FDI train 2 fail!\n");
2465
2466         DRM_DEBUG_KMS("FDI train done\n");
2467
2468 }
2469
2470 static const int snb_b_fdi_train_param[] = {
2471         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2472         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2473         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2474         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2475 };
2476
2477 /* The FDI link training functions for SNB/Cougarpoint. */
2478 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2479 {
2480         struct drm_device *dev = crtc->dev;
2481         struct drm_i915_private *dev_priv = dev->dev_private;
2482         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2483         int pipe = intel_crtc->pipe;
2484         u32 reg, temp, i, retry;
2485
2486         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2487            for train result */
2488         reg = FDI_RX_IMR(pipe);
2489         temp = I915_READ(reg);
2490         temp &= ~FDI_RX_SYMBOL_LOCK;
2491         temp &= ~FDI_RX_BIT_LOCK;
2492         I915_WRITE(reg, temp);
2493
2494         POSTING_READ(reg);
2495         udelay(150);
2496
2497         /* enable CPU FDI TX and PCH FDI RX */
2498         reg = FDI_TX_CTL(pipe);
2499         temp = I915_READ(reg);
2500         temp &= ~(7 << 19);
2501         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2502         temp &= ~FDI_LINK_TRAIN_NONE;
2503         temp |= FDI_LINK_TRAIN_PATTERN_1;
2504         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2505         /* SNB-B */
2506         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2507         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2508
2509         I915_WRITE(FDI_RX_MISC(pipe),
2510                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2511
2512         reg = FDI_RX_CTL(pipe);
2513         temp = I915_READ(reg);
2514         if (HAS_PCH_CPT(dev)) {
2515                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2516                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2517         } else {
2518                 temp &= ~FDI_LINK_TRAIN_NONE;
2519                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2520         }
2521         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2522
2523         POSTING_READ(reg);
2524         udelay(150);
2525
2526         if (HAS_PCH_CPT(dev))
2527                 cpt_phase_pointer_enable(dev, pipe);
2528
2529         for (i = 0; i < 4; i++) {
2530                 reg = FDI_TX_CTL(pipe);
2531                 temp = I915_READ(reg);
2532                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2533                 temp |= snb_b_fdi_train_param[i];
2534                 I915_WRITE(reg, temp);
2535
2536                 POSTING_READ(reg);
2537                 udelay(500);
2538
2539                 for (retry = 0; retry < 5; retry++) {
2540                         reg = FDI_RX_IIR(pipe);
2541                         temp = I915_READ(reg);
2542                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2543                         if (temp & FDI_RX_BIT_LOCK) {
2544                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2545                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2546                                 break;
2547                         }
2548                         udelay(50);
2549                 }
2550                 if (retry < 5)
2551                         break;
2552         }
2553         if (i == 4)
2554                 DRM_ERROR("FDI train 1 fail!\n");
2555
2556         /* Train 2 */
2557         reg = FDI_TX_CTL(pipe);
2558         temp = I915_READ(reg);
2559         temp &= ~FDI_LINK_TRAIN_NONE;
2560         temp |= FDI_LINK_TRAIN_PATTERN_2;
2561         if (IS_GEN6(dev)) {
2562                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2563                 /* SNB-B */
2564                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2565         }
2566         I915_WRITE(reg, temp);
2567
2568         reg = FDI_RX_CTL(pipe);
2569         temp = I915_READ(reg);
2570         if (HAS_PCH_CPT(dev)) {
2571                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2572                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2573         } else {
2574                 temp &= ~FDI_LINK_TRAIN_NONE;
2575                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2576         }
2577         I915_WRITE(reg, temp);
2578
2579         POSTING_READ(reg);
2580         udelay(150);
2581
2582         for (i = 0; i < 4; i++) {
2583                 reg = FDI_TX_CTL(pipe);
2584                 temp = I915_READ(reg);
2585                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2586                 temp |= snb_b_fdi_train_param[i];
2587                 I915_WRITE(reg, temp);
2588
2589                 POSTING_READ(reg);
2590                 udelay(500);
2591
2592                 for (retry = 0; retry < 5; retry++) {
2593                         reg = FDI_RX_IIR(pipe);
2594                         temp = I915_READ(reg);
2595                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2596                         if (temp & FDI_RX_SYMBOL_LOCK) {
2597                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2598                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2599                                 break;
2600                         }
2601                         udelay(50);
2602                 }
2603                 if (retry < 5)
2604                         break;
2605         }
2606         if (i == 4)
2607                 DRM_ERROR("FDI train 2 fail!\n");
2608
2609         DRM_DEBUG_KMS("FDI train done.\n");
2610 }
2611
2612 /* Manual link training for Ivy Bridge A0 parts */
2613 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2614 {
2615         struct drm_device *dev = crtc->dev;
2616         struct drm_i915_private *dev_priv = dev->dev_private;
2617         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2618         int pipe = intel_crtc->pipe;
2619         u32 reg, temp, i;
2620
2621         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2622            for train result */
2623         reg = FDI_RX_IMR(pipe);
2624         temp = I915_READ(reg);
2625         temp &= ~FDI_RX_SYMBOL_LOCK;
2626         temp &= ~FDI_RX_BIT_LOCK;
2627         I915_WRITE(reg, temp);
2628
2629         POSTING_READ(reg);
2630         udelay(150);
2631
2632         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2633                       I915_READ(FDI_RX_IIR(pipe)));
2634
2635         /* enable CPU FDI TX and PCH FDI RX */
2636         reg = FDI_TX_CTL(pipe);
2637         temp = I915_READ(reg);
2638         temp &= ~(7 << 19);
2639         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2640         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2641         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2642         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2643         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2644         temp |= FDI_COMPOSITE_SYNC;
2645         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2646
2647         I915_WRITE(FDI_RX_MISC(pipe),
2648                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2649
2650         reg = FDI_RX_CTL(pipe);
2651         temp = I915_READ(reg);
2652         temp &= ~FDI_LINK_TRAIN_AUTO;
2653         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2654         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2655         temp |= FDI_COMPOSITE_SYNC;
2656         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2657
2658         POSTING_READ(reg);
2659         udelay(150);
2660
2661         if (HAS_PCH_CPT(dev))
2662                 cpt_phase_pointer_enable(dev, pipe);
2663
2664         for (i = 0; i < 4; i++) {
2665                 reg = FDI_TX_CTL(pipe);
2666                 temp = I915_READ(reg);
2667                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2668                 temp |= snb_b_fdi_train_param[i];
2669                 I915_WRITE(reg, temp);
2670
2671                 POSTING_READ(reg);
2672                 udelay(500);
2673
2674                 reg = FDI_RX_IIR(pipe);
2675                 temp = I915_READ(reg);
2676                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2677
2678                 if (temp & FDI_RX_BIT_LOCK ||
2679                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2680                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2681                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2682                         break;
2683                 }
2684         }
2685         if (i == 4)
2686                 DRM_ERROR("FDI train 1 fail!\n");
2687
2688         /* Train 2 */
2689         reg = FDI_TX_CTL(pipe);
2690         temp = I915_READ(reg);
2691         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2692         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2693         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2694         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2695         I915_WRITE(reg, temp);
2696
2697         reg = FDI_RX_CTL(pipe);
2698         temp = I915_READ(reg);
2699         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2700         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2701         I915_WRITE(reg, temp);
2702
2703         POSTING_READ(reg);
2704         udelay(150);
2705
2706         for (i = 0; i < 4; i++) {
2707                 reg = FDI_TX_CTL(pipe);
2708                 temp = I915_READ(reg);
2709                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2710                 temp |= snb_b_fdi_train_param[i];
2711                 I915_WRITE(reg, temp);
2712
2713                 POSTING_READ(reg);
2714                 udelay(500);
2715
2716                 reg = FDI_RX_IIR(pipe);
2717                 temp = I915_READ(reg);
2718                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2719
2720                 if (temp & FDI_RX_SYMBOL_LOCK) {
2721                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2722                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2723                         break;
2724                 }
2725         }
2726         if (i == 4)
2727                 DRM_ERROR("FDI train 2 fail!\n");
2728
2729         DRM_DEBUG_KMS("FDI train done.\n");
2730 }
2731
2732 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2733 {
2734         struct drm_device *dev = intel_crtc->base.dev;
2735         struct drm_i915_private *dev_priv = dev->dev_private;
2736         int pipe = intel_crtc->pipe;
2737         u32 reg, temp;
2738
2739
2740         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2741         reg = FDI_RX_CTL(pipe);
2742         temp = I915_READ(reg);
2743         temp &= ~((0x7 << 19) | (0x7 << 16));
2744         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2745         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2746         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2747
2748         POSTING_READ(reg);
2749         udelay(200);
2750
2751         /* Switch from Rawclk to PCDclk */
2752         temp = I915_READ(reg);
2753         I915_WRITE(reg, temp | FDI_PCDCLK);
2754
2755         POSTING_READ(reg);
2756         udelay(200);
2757
2758         /* On Haswell, the PLL configuration for ports and pipes is handled
2759          * separately, as part of DDI setup */
2760         if (!IS_HASWELL(dev)) {
2761                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2762                 reg = FDI_TX_CTL(pipe);
2763                 temp = I915_READ(reg);
2764                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2765                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2766
2767                         POSTING_READ(reg);
2768                         udelay(100);
2769                 }
2770         }
2771 }
2772
2773 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2774 {
2775         struct drm_device *dev = intel_crtc->base.dev;
2776         struct drm_i915_private *dev_priv = dev->dev_private;
2777         int pipe = intel_crtc->pipe;
2778         u32 reg, temp;
2779
2780         /* Switch from PCDclk to Rawclk */
2781         reg = FDI_RX_CTL(pipe);
2782         temp = I915_READ(reg);
2783         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2784
2785         /* Disable CPU FDI TX PLL */
2786         reg = FDI_TX_CTL(pipe);
2787         temp = I915_READ(reg);
2788         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2789
2790         POSTING_READ(reg);
2791         udelay(100);
2792
2793         reg = FDI_RX_CTL(pipe);
2794         temp = I915_READ(reg);
2795         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2796
2797         /* Wait for the clocks to turn off. */
2798         POSTING_READ(reg);
2799         udelay(100);
2800 }
2801
2802 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2803 {
2804         struct drm_i915_private *dev_priv = dev->dev_private;
2805         u32 flags = I915_READ(SOUTH_CHICKEN1);
2806
2807         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2808         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2809         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2810         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2811         POSTING_READ(SOUTH_CHICKEN1);
2812 }
2813 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2814 {
2815         struct drm_device *dev = crtc->dev;
2816         struct drm_i915_private *dev_priv = dev->dev_private;
2817         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2818         int pipe = intel_crtc->pipe;
2819         u32 reg, temp;
2820
2821         /* disable CPU FDI tx and PCH FDI rx */
2822         reg = FDI_TX_CTL(pipe);
2823         temp = I915_READ(reg);
2824         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2825         POSTING_READ(reg);
2826
2827         reg = FDI_RX_CTL(pipe);
2828         temp = I915_READ(reg);
2829         temp &= ~(0x7 << 16);
2830         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2831         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2832
2833         POSTING_READ(reg);
2834         udelay(100);
2835
2836         /* Ironlake workaround, disable clock pointer after downing FDI */
2837         if (HAS_PCH_IBX(dev)) {
2838                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2839                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2840                            I915_READ(FDI_RX_CHICKEN(pipe) &
2841                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2842         } else if (HAS_PCH_CPT(dev)) {
2843                 cpt_phase_pointer_disable(dev, pipe);
2844         }
2845
2846         /* still set train pattern 1 */
2847         reg = FDI_TX_CTL(pipe);
2848         temp = I915_READ(reg);
2849         temp &= ~FDI_LINK_TRAIN_NONE;
2850         temp |= FDI_LINK_TRAIN_PATTERN_1;
2851         I915_WRITE(reg, temp);
2852
2853         reg = FDI_RX_CTL(pipe);
2854         temp = I915_READ(reg);
2855         if (HAS_PCH_CPT(dev)) {
2856                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2857                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2858         } else {
2859                 temp &= ~FDI_LINK_TRAIN_NONE;
2860                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2861         }
2862         /* BPC in FDI rx is consistent with that in PIPECONF */
2863         temp &= ~(0x07 << 16);
2864         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2865         I915_WRITE(reg, temp);
2866
2867         POSTING_READ(reg);
2868         udelay(100);
2869 }
2870
2871 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2872 {
2873         struct drm_device *dev = crtc->dev;
2874         struct drm_i915_private *dev_priv = dev->dev_private;
2875         unsigned long flags;
2876         bool pending;
2877
2878         if (atomic_read(&dev_priv->mm.wedged))
2879                 return false;
2880
2881         spin_lock_irqsave(&dev->event_lock, flags);
2882         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2883         spin_unlock_irqrestore(&dev->event_lock, flags);
2884
2885         return pending;
2886 }
2887
2888 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2889 {
2890         struct drm_device *dev = crtc->dev;
2891         struct drm_i915_private *dev_priv = dev->dev_private;
2892
2893         if (crtc->fb == NULL)
2894                 return;
2895
2896         wait_event(dev_priv->pending_flip_queue,
2897                    !intel_crtc_has_pending_flip(crtc));
2898
2899         mutex_lock(&dev->struct_mutex);
2900         intel_finish_fb(crtc->fb);
2901         mutex_unlock(&dev->struct_mutex);
2902 }
2903
2904 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2905 {
2906         struct drm_device *dev = crtc->dev;
2907         struct intel_encoder *intel_encoder;
2908
2909         /*
2910          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2911          * must be driven by its own crtc; no sharing is possible.
2912          */
2913         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2914                 switch (intel_encoder->type) {
2915                 case INTEL_OUTPUT_EDP:
2916                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2917                                 return false;
2918                         continue;
2919                 }
2920         }
2921
2922         return true;
2923 }
2924
2925 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2926 {
2927         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2928 }
2929
2930 /* Program iCLKIP clock to the desired frequency */
2931 static void lpt_program_iclkip(struct drm_crtc *crtc)
2932 {
2933         struct drm_device *dev = crtc->dev;
2934         struct drm_i915_private *dev_priv = dev->dev_private;
2935         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2936         u32 temp;
2937
2938         /* It is necessary to ungate the pixclk gate prior to programming
2939          * the divisors, and gate it back when it is done.
2940          */
2941         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2942
2943         /* Disable SSCCTL */
2944         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2945                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2946                                         SBI_SSCCTL_DISABLE);
2947
2948         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2949         if (crtc->mode.clock == 20000) {
2950                 auxdiv = 1;
2951                 divsel = 0x41;
2952                 phaseinc = 0x20;
2953         } else {
2954                 /* The iCLK virtual clock root frequency is in MHz,
2955                  * but the crtc->mode.clock in in KHz. To get the divisors,
2956                  * it is necessary to divide one by another, so we
2957                  * convert the virtual clock precision to KHz here for higher
2958                  * precision.
2959                  */
2960                 u32 iclk_virtual_root_freq = 172800 * 1000;
2961                 u32 iclk_pi_range = 64;
2962                 u32 desired_divisor, msb_divisor_value, pi_value;
2963
2964                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2965                 msb_divisor_value = desired_divisor / iclk_pi_range;
2966                 pi_value = desired_divisor % iclk_pi_range;
2967
2968                 auxdiv = 0;
2969                 divsel = msb_divisor_value - 2;
2970                 phaseinc = pi_value;
2971         }
2972
2973         /* This should not happen with any sane values */
2974         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2975                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2976         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2977                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2978
2979         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2980                         crtc->mode.clock,
2981                         auxdiv,
2982                         divsel,
2983                         phasedir,
2984                         phaseinc);
2985
2986         /* Program SSCDIVINTPHASE6 */
2987         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2988         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2989         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2990         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2991         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2992         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2993         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2994
2995         intel_sbi_write(dev_priv,
2996                         SBI_SSCDIVINTPHASE6,
2997                         temp);
2998
2999         /* Program SSCAUXDIV */
3000         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3001         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3002         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3003         intel_sbi_write(dev_priv,
3004                         SBI_SSCAUXDIV6,
3005                         temp);
3006
3007
3008         /* Enable modulator and associated divider */
3009         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3010         temp &= ~SBI_SSCCTL_DISABLE;
3011         intel_sbi_write(dev_priv,
3012                         SBI_SSCCTL6,
3013                         temp);
3014
3015         /* Wait for initialization time */
3016         udelay(24);
3017
3018         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3019 }
3020
3021 /*
3022  * Enable PCH resources required for PCH ports:
3023  *   - PCH PLLs
3024  *   - FDI training & RX/TX
3025  *   - update transcoder timings
3026  *   - DP transcoding bits
3027  *   - transcoder
3028  */
3029 static void ironlake_pch_enable(struct drm_crtc *crtc)
3030 {
3031         struct drm_device *dev = crtc->dev;
3032         struct drm_i915_private *dev_priv = dev->dev_private;
3033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3034         int pipe = intel_crtc->pipe;
3035         u32 reg, temp;
3036
3037         assert_transcoder_disabled(dev_priv, pipe);
3038
3039         /* Write the TU size bits before fdi link training, so that error
3040          * detection works. */
3041         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3042                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3043
3044         /* For PCH output, training FDI link */
3045         dev_priv->display.fdi_link_train(crtc);
3046
3047         /* XXX: pch pll's can be enabled any time before we enable the PCH
3048          * transcoder, and we actually should do this to not upset any PCH
3049          * transcoder that already use the clock when we share it.
3050          *
3051          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3052          * unconditionally resets the pll - we need that to have the right LVDS
3053          * enable sequence. */
3054         intel_enable_pch_pll(intel_crtc);
3055
3056         if (HAS_PCH_LPT(dev)) {
3057                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3058                 lpt_program_iclkip(crtc);
3059         } else if (HAS_PCH_CPT(dev)) {
3060                 u32 sel;
3061
3062                 temp = I915_READ(PCH_DPLL_SEL);
3063                 switch (pipe) {
3064                 default:
3065                 case 0:
3066                         temp |= TRANSA_DPLL_ENABLE;
3067                         sel = TRANSA_DPLLB_SEL;
3068                         break;
3069                 case 1:
3070                         temp |= TRANSB_DPLL_ENABLE;
3071                         sel = TRANSB_DPLLB_SEL;
3072                         break;
3073                 case 2:
3074                         temp |= TRANSC_DPLL_ENABLE;
3075                         sel = TRANSC_DPLLB_SEL;
3076                         break;
3077                 }
3078                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3079                         temp |= sel;
3080                 else
3081                         temp &= ~sel;
3082                 I915_WRITE(PCH_DPLL_SEL, temp);
3083         }
3084
3085         /* set transcoder timing, panel must allow it */
3086         assert_panel_unlocked(dev_priv, pipe);
3087         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3088         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3089         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3090
3091         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3092         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3093         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3094         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3095
3096         if (!IS_HASWELL(dev))
3097                 intel_fdi_normal_train(crtc);
3098
3099         /* For PCH DP, enable TRANS_DP_CTL */
3100         if (HAS_PCH_CPT(dev) &&
3101             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3102              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3103                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3104                 reg = TRANS_DP_CTL(pipe);
3105                 temp = I915_READ(reg);
3106                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3107                           TRANS_DP_SYNC_MASK |
3108                           TRANS_DP_BPC_MASK);
3109                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3110                          TRANS_DP_ENH_FRAMING);
3111                 temp |= bpc << 9; /* same format but at 11:9 */
3112
3113                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3114                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3115                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3116                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3117
3118                 switch (intel_trans_dp_port_sel(crtc)) {
3119                 case PCH_DP_B:
3120                         temp |= TRANS_DP_PORT_SEL_B;
3121                         break;
3122                 case PCH_DP_C:
3123                         temp |= TRANS_DP_PORT_SEL_C;
3124                         break;
3125                 case PCH_DP_D:
3126                         temp |= TRANS_DP_PORT_SEL_D;
3127                         break;
3128                 default:
3129                         BUG();
3130                 }
3131
3132                 I915_WRITE(reg, temp);
3133         }
3134
3135         intel_enable_transcoder(dev_priv, pipe);
3136 }
3137
3138 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3139 {
3140         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3141
3142         if (pll == NULL)
3143                 return;
3144
3145         if (pll->refcount == 0) {
3146                 WARN(1, "bad PCH PLL refcount\n");
3147                 return;
3148         }
3149
3150         --pll->refcount;
3151         intel_crtc->pch_pll = NULL;
3152 }
3153
3154 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3155 {
3156         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3157         struct intel_pch_pll *pll;
3158         int i;
3159
3160         pll = intel_crtc->pch_pll;
3161         if (pll) {
3162                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3163                               intel_crtc->base.base.id, pll->pll_reg);
3164                 goto prepare;
3165         }
3166
3167         if (HAS_PCH_IBX(dev_priv->dev)) {
3168                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3169                 i = intel_crtc->pipe;
3170                 pll = &dev_priv->pch_plls[i];
3171
3172                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3173                               intel_crtc->base.base.id, pll->pll_reg);
3174
3175                 goto found;
3176         }
3177
3178         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3179                 pll = &dev_priv->pch_plls[i];
3180
3181                 /* Only want to check enabled timings first */
3182                 if (pll->refcount == 0)
3183                         continue;
3184
3185                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3186                     fp == I915_READ(pll->fp0_reg)) {
3187                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3188                                       intel_crtc->base.base.id,
3189                                       pll->pll_reg, pll->refcount, pll->active);
3190
3191                         goto found;
3192                 }
3193         }
3194
3195         /* Ok no matching timings, maybe there's a free one? */
3196         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3197                 pll = &dev_priv->pch_plls[i];
3198                 if (pll->refcount == 0) {
3199                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3200                                       intel_crtc->base.base.id, pll->pll_reg);
3201                         goto found;
3202                 }
3203         }
3204
3205         return NULL;
3206
3207 found:
3208         intel_crtc->pch_pll = pll;
3209         pll->refcount++;
3210         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3211 prepare: /* separate function? */
3212         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3213
3214         /* Wait for the clocks to stabilize before rewriting the regs */
3215         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3216         POSTING_READ(pll->pll_reg);
3217         udelay(150);
3218
3219         I915_WRITE(pll->fp0_reg, fp);
3220         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3221         pll->on = false;
3222         return pll;
3223 }
3224
3225 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3226 {
3227         struct drm_i915_private *dev_priv = dev->dev_private;
3228         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3229         u32 temp;
3230
3231         temp = I915_READ(dslreg);
3232         udelay(500);
3233         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3234                 /* Without this, mode sets may fail silently on FDI */
3235                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3236                 udelay(250);
3237                 I915_WRITE(tc2reg, 0);
3238                 if (wait_for(I915_READ(dslreg) != temp, 5))
3239                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3240         }
3241 }
3242
3243 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3244 {
3245         struct drm_device *dev = crtc->dev;
3246         struct drm_i915_private *dev_priv = dev->dev_private;
3247         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3248         struct intel_encoder *encoder;
3249         int pipe = intel_crtc->pipe;
3250         int plane = intel_crtc->plane;
3251         u32 temp;
3252         bool is_pch_port;
3253
3254         WARN_ON(!crtc->enabled);
3255
3256         if (intel_crtc->active)
3257                 return;
3258
3259         intel_crtc->active = true;
3260         intel_update_watermarks(dev);
3261
3262         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3263                 temp = I915_READ(PCH_LVDS);
3264                 if ((temp & LVDS_PORT_EN) == 0)
3265                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3266         }
3267
3268         is_pch_port = ironlake_crtc_driving_pch(crtc);
3269
3270         if (is_pch_port) {
3271                 /* Note: FDI PLL enabling _must_ be done before we enable the
3272                  * cpu pipes, hence this is separate from all the other fdi/pch
3273                  * enabling. */
3274                 ironlake_fdi_pll_enable(intel_crtc);
3275         } else {
3276                 assert_fdi_tx_disabled(dev_priv, pipe);
3277                 assert_fdi_rx_disabled(dev_priv, pipe);
3278         }
3279
3280         for_each_encoder_on_crtc(dev, crtc, encoder)
3281                 if (encoder->pre_enable)
3282                         encoder->pre_enable(encoder);
3283
3284         /* Enable panel fitting for LVDS */
3285         if (dev_priv->pch_pf_size &&
3286             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3287                 /* Force use of hard-coded filter coefficients
3288                  * as some pre-programmed values are broken,
3289                  * e.g. x201.
3290                  */
3291                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3292                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3293                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3294         }
3295
3296         /*
3297          * On ILK+ LUT must be loaded before the pipe is running but with
3298          * clocks enabled
3299          */
3300         intel_crtc_load_lut(crtc);
3301
3302         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3303         intel_enable_plane(dev_priv, plane, pipe);
3304
3305         if (is_pch_port)
3306                 ironlake_pch_enable(crtc);
3307
3308         mutex_lock(&dev->struct_mutex);
3309         intel_update_fbc(dev);
3310         mutex_unlock(&dev->struct_mutex);
3311
3312         intel_crtc_update_cursor(crtc, true);
3313
3314         for_each_encoder_on_crtc(dev, crtc, encoder)
3315                 encoder->enable(encoder);
3316
3317         if (HAS_PCH_CPT(dev))
3318                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3319
3320         /*
3321          * There seems to be a race in PCH platform hw (at least on some
3322          * outputs) where an enabled pipe still completes any pageflip right
3323          * away (as if the pipe is off) instead of waiting for vblank. As soon
3324          * as the first vblank happend, everything works as expected. Hence just
3325          * wait for one vblank before returning to avoid strange things
3326          * happening.
3327          */
3328         intel_wait_for_vblank(dev, intel_crtc->pipe);
3329 }
3330
3331 static void haswell_crtc_enable(struct drm_crtc *crtc)
3332 {
3333         struct drm_device *dev = crtc->dev;
3334         struct drm_i915_private *dev_priv = dev->dev_private;
3335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3336         struct intel_encoder *encoder;
3337         int pipe = intel_crtc->pipe;
3338         int plane = intel_crtc->plane;
3339         bool is_pch_port;
3340
3341         WARN_ON(!crtc->enabled);
3342
3343         if (intel_crtc->active)
3344                 return;
3345
3346         intel_crtc->active = true;
3347         intel_update_watermarks(dev);
3348
3349         is_pch_port = haswell_crtc_driving_pch(crtc);
3350
3351         if (is_pch_port)
3352                 ironlake_fdi_pll_enable(intel_crtc);
3353
3354         for_each_encoder_on_crtc(dev, crtc, encoder)
3355                 if (encoder->pre_enable)
3356                         encoder->pre_enable(encoder);
3357
3358         intel_ddi_enable_pipe_clock(intel_crtc);
3359
3360         /* Enable panel fitting for eDP */
3361         if (dev_priv->pch_pf_size && HAS_eDP) {
3362                 /* Force use of hard-coded filter coefficients
3363                  * as some pre-programmed values are broken,
3364                  * e.g. x201.
3365                  */
3366                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3367                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3368                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3369         }
3370
3371         /*
3372          * On ILK+ LUT must be loaded before the pipe is running but with
3373          * clocks enabled
3374          */
3375         intel_crtc_load_lut(crtc);
3376
3377         intel_ddi_set_pipe_settings(crtc);
3378         intel_ddi_enable_pipe_func(crtc);
3379
3380         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3381         intel_enable_plane(dev_priv, plane, pipe);
3382
3383         if (is_pch_port)
3384                 ironlake_pch_enable(crtc);
3385
3386         mutex_lock(&dev->struct_mutex);
3387         intel_update_fbc(dev);
3388         mutex_unlock(&dev->struct_mutex);
3389
3390         intel_crtc_update_cursor(crtc, true);
3391
3392         for_each_encoder_on_crtc(dev, crtc, encoder)
3393                 encoder->enable(encoder);
3394
3395         /*
3396          * There seems to be a race in PCH platform hw (at least on some
3397          * outputs) where an enabled pipe still completes any pageflip right
3398          * away (as if the pipe is off) instead of waiting for vblank. As soon
3399          * as the first vblank happend, everything works as expected. Hence just
3400          * wait for one vblank before returning to avoid strange things
3401          * happening.
3402          */
3403         intel_wait_for_vblank(dev, intel_crtc->pipe);
3404 }
3405
3406 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3407 {
3408         struct drm_device *dev = crtc->dev;
3409         struct drm_i915_private *dev_priv = dev->dev_private;
3410         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3411         struct intel_encoder *encoder;
3412         int pipe = intel_crtc->pipe;
3413         int plane = intel_crtc->plane;
3414         u32 reg, temp;
3415
3416
3417         if (!intel_crtc->active)
3418                 return;
3419
3420         for_each_encoder_on_crtc(dev, crtc, encoder)
3421                 encoder->disable(encoder);
3422
3423         intel_crtc_wait_for_pending_flips(crtc);
3424         drm_vblank_off(dev, pipe);
3425         intel_crtc_update_cursor(crtc, false);
3426
3427         intel_disable_plane(dev_priv, plane, pipe);
3428
3429         if (dev_priv->cfb_plane == plane)
3430                 intel_disable_fbc(dev);
3431
3432         intel_disable_pipe(dev_priv, pipe);
3433
3434         /* Disable PF */
3435         I915_WRITE(PF_CTL(pipe), 0);
3436         I915_WRITE(PF_WIN_SZ(pipe), 0);
3437
3438         for_each_encoder_on_crtc(dev, crtc, encoder)
3439                 if (encoder->post_disable)
3440                         encoder->post_disable(encoder);
3441
3442         ironlake_fdi_disable(crtc);
3443
3444         intel_disable_transcoder(dev_priv, pipe);
3445
3446         if (HAS_PCH_CPT(dev)) {
3447                 /* disable TRANS_DP_CTL */
3448                 reg = TRANS_DP_CTL(pipe);
3449                 temp = I915_READ(reg);
3450                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3451                 temp |= TRANS_DP_PORT_SEL_NONE;
3452                 I915_WRITE(reg, temp);
3453
3454                 /* disable DPLL_SEL */
3455                 temp = I915_READ(PCH_DPLL_SEL);
3456                 switch (pipe) {
3457                 case 0:
3458                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3459                         break;
3460                 case 1:
3461                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3462                         break;
3463                 case 2:
3464                         /* C shares PLL A or B */
3465                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3466                         break;
3467                 default:
3468                         BUG(); /* wtf */
3469                 }
3470                 I915_WRITE(PCH_DPLL_SEL, temp);
3471         }
3472
3473         /* disable PCH DPLL */
3474         intel_disable_pch_pll(intel_crtc);
3475
3476         ironlake_fdi_pll_disable(intel_crtc);
3477
3478         intel_crtc->active = false;
3479         intel_update_watermarks(dev);
3480
3481         mutex_lock(&dev->struct_mutex);
3482         intel_update_fbc(dev);
3483         mutex_unlock(&dev->struct_mutex);
3484 }
3485
3486 static void haswell_crtc_disable(struct drm_crtc *crtc)
3487 {
3488         struct drm_device *dev = crtc->dev;
3489         struct drm_i915_private *dev_priv = dev->dev_private;
3490         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3491         struct intel_encoder *encoder;
3492         int pipe = intel_crtc->pipe;
3493         int plane = intel_crtc->plane;
3494         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3495         bool is_pch_port;
3496
3497         if (!intel_crtc->active)
3498                 return;
3499
3500         is_pch_port = haswell_crtc_driving_pch(crtc);
3501
3502         for_each_encoder_on_crtc(dev, crtc, encoder)
3503                 encoder->disable(encoder);
3504
3505         intel_crtc_wait_for_pending_flips(crtc);
3506         drm_vblank_off(dev, pipe);
3507         intel_crtc_update_cursor(crtc, false);
3508
3509         intel_disable_plane(dev_priv, plane, pipe);
3510
3511         if (dev_priv->cfb_plane == plane)
3512                 intel_disable_fbc(dev);
3513
3514         intel_disable_pipe(dev_priv, pipe);
3515
3516         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3517
3518         /* Disable PF */
3519         I915_WRITE(PF_CTL(pipe), 0);
3520         I915_WRITE(PF_WIN_SZ(pipe), 0);
3521
3522         intel_ddi_disable_pipe_clock(intel_crtc);
3523
3524         for_each_encoder_on_crtc(dev, crtc, encoder)
3525                 if (encoder->post_disable)
3526                         encoder->post_disable(encoder);
3527
3528         if (is_pch_port) {
3529                 ironlake_fdi_disable(crtc);
3530                 intel_disable_transcoder(dev_priv, pipe);
3531                 intel_disable_pch_pll(intel_crtc);
3532                 ironlake_fdi_pll_disable(intel_crtc);
3533         }
3534
3535         intel_crtc->active = false;
3536         intel_update_watermarks(dev);
3537
3538         mutex_lock(&dev->struct_mutex);
3539         intel_update_fbc(dev);
3540         mutex_unlock(&dev->struct_mutex);
3541 }
3542
3543 static void ironlake_crtc_off(struct drm_crtc *crtc)
3544 {
3545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3546         intel_put_pch_pll(intel_crtc);
3547 }
3548
3549 static void haswell_crtc_off(struct drm_crtc *crtc)
3550 {
3551         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3552
3553         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3554          * start using it. */
3555         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3556
3557         intel_ddi_put_crtc_pll(crtc);
3558 }
3559
3560 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3561 {
3562         if (!enable && intel_crtc->overlay) {
3563                 struct drm_device *dev = intel_crtc->base.dev;
3564                 struct drm_i915_private *dev_priv = dev->dev_private;
3565
3566                 mutex_lock(&dev->struct_mutex);
3567                 dev_priv->mm.interruptible = false;
3568                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3569                 dev_priv->mm.interruptible = true;
3570                 mutex_unlock(&dev->struct_mutex);
3571         }
3572
3573         /* Let userspace switch the overlay on again. In most cases userspace
3574          * has to recompute where to put it anyway.
3575          */
3576 }
3577
3578 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3579 {
3580         struct drm_device *dev = crtc->dev;
3581         struct drm_i915_private *dev_priv = dev->dev_private;
3582         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3583         struct intel_encoder *encoder;
3584         int pipe = intel_crtc->pipe;
3585         int plane = intel_crtc->plane;
3586
3587         WARN_ON(!crtc->enabled);
3588
3589         if (intel_crtc->active)
3590                 return;
3591
3592         intel_crtc->active = true;
3593         intel_update_watermarks(dev);
3594
3595         intel_enable_pll(dev_priv, pipe);
3596         intel_enable_pipe(dev_priv, pipe, false);
3597         intel_enable_plane(dev_priv, plane, pipe);
3598
3599         intel_crtc_load_lut(crtc);
3600         intel_update_fbc(dev);
3601
3602         /* Give the overlay scaler a chance to enable if it's on this pipe */
3603         intel_crtc_dpms_overlay(intel_crtc, true);
3604         intel_crtc_update_cursor(crtc, true);
3605
3606         for_each_encoder_on_crtc(dev, crtc, encoder)
3607                 encoder->enable(encoder);
3608 }
3609
3610 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3611 {
3612         struct drm_device *dev = crtc->dev;
3613         struct drm_i915_private *dev_priv = dev->dev_private;
3614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3615         struct intel_encoder *encoder;
3616         int pipe = intel_crtc->pipe;
3617         int plane = intel_crtc->plane;
3618
3619
3620         if (!intel_crtc->active)
3621                 return;
3622
3623         for_each_encoder_on_crtc(dev, crtc, encoder)
3624                 encoder->disable(encoder);
3625
3626         /* Give the overlay scaler a chance to disable if it's on this pipe */
3627         intel_crtc_wait_for_pending_flips(crtc);
3628         drm_vblank_off(dev, pipe);
3629         intel_crtc_dpms_overlay(intel_crtc, false);
3630         intel_crtc_update_cursor(crtc, false);
3631
3632         if (dev_priv->cfb_plane == plane)
3633                 intel_disable_fbc(dev);
3634
3635         intel_disable_plane(dev_priv, plane, pipe);
3636         intel_disable_pipe(dev_priv, pipe);
3637         intel_disable_pll(dev_priv, pipe);
3638
3639         intel_crtc->active = false;
3640         intel_update_fbc(dev);
3641         intel_update_watermarks(dev);
3642 }
3643
3644 static void i9xx_crtc_off(struct drm_crtc *crtc)
3645 {
3646 }
3647
3648 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3649                                     bool enabled)
3650 {
3651         struct drm_device *dev = crtc->dev;
3652         struct drm_i915_master_private *master_priv;
3653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3654         int pipe = intel_crtc->pipe;
3655
3656         if (!dev->primary->master)
3657                 return;
3658
3659         master_priv = dev->primary->master->driver_priv;
3660         if (!master_priv->sarea_priv)
3661                 return;
3662
3663         switch (pipe) {
3664         case 0:
3665                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3666                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3667                 break;
3668         case 1:
3669                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3670                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3671                 break;
3672         default:
3673                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3674                 break;
3675         }
3676 }
3677
3678 /**
3679  * Sets the power management mode of the pipe and plane.
3680  */
3681 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3682 {
3683         struct drm_device *dev = crtc->dev;
3684         struct drm_i915_private *dev_priv = dev->dev_private;
3685         struct intel_encoder *intel_encoder;
3686         bool enable = false;
3687
3688         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3689                 enable |= intel_encoder->connectors_active;
3690
3691         if (enable)
3692                 dev_priv->display.crtc_enable(crtc);
3693         else
3694                 dev_priv->display.crtc_disable(crtc);
3695
3696         intel_crtc_update_sarea(crtc, enable);
3697 }
3698
3699 static void intel_crtc_noop(struct drm_crtc *crtc)
3700 {
3701 }
3702
3703 static void intel_crtc_disable(struct drm_crtc *crtc)
3704 {
3705         struct drm_device *dev = crtc->dev;
3706         struct drm_connector *connector;
3707         struct drm_i915_private *dev_priv = dev->dev_private;
3708
3709         /* crtc should still be enabled when we disable it. */
3710         WARN_ON(!crtc->enabled);
3711
3712         dev_priv->display.crtc_disable(crtc);
3713         intel_crtc_update_sarea(crtc, false);
3714         dev_priv->display.off(crtc);
3715
3716         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3717         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3718
3719         if (crtc->fb) {
3720                 mutex_lock(&dev->struct_mutex);
3721                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3722                 mutex_unlock(&dev->struct_mutex);
3723                 crtc->fb = NULL;
3724         }
3725
3726         /* Update computed state. */
3727         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3728                 if (!connector->encoder || !connector->encoder->crtc)
3729                         continue;
3730
3731                 if (connector->encoder->crtc != crtc)
3732                         continue;
3733
3734                 connector->dpms = DRM_MODE_DPMS_OFF;
3735                 to_intel_encoder(connector->encoder)->connectors_active = false;
3736         }
3737 }
3738
3739 void intel_modeset_disable(struct drm_device *dev)
3740 {
3741         struct drm_crtc *crtc;
3742
3743         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3744                 if (crtc->enabled)
3745                         intel_crtc_disable(crtc);
3746         }
3747 }
3748
3749 void intel_encoder_noop(struct drm_encoder *encoder)
3750 {
3751 }
3752
3753 void intel_encoder_destroy(struct drm_encoder *encoder)
3754 {
3755         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3756
3757         drm_encoder_cleanup(encoder);
3758         kfree(intel_encoder);
3759 }
3760
3761 /* Simple dpms helper for encodres with just one connector, no cloning and only
3762  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3763  * state of the entire output pipe. */
3764 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3765 {
3766         if (mode == DRM_MODE_DPMS_ON) {
3767                 encoder->connectors_active = true;
3768
3769                 intel_crtc_update_dpms(encoder->base.crtc);
3770         } else {
3771                 encoder->connectors_active = false;
3772
3773                 intel_crtc_update_dpms(encoder->base.crtc);
3774         }
3775 }
3776
3777 /* Cross check the actual hw state with our own modeset state tracking (and it's
3778  * internal consistency). */
3779 static void intel_connector_check_state(struct intel_connector *connector)
3780 {
3781         if (connector->get_hw_state(connector)) {
3782                 struct intel_encoder *encoder = connector->encoder;
3783                 struct drm_crtc *crtc;
3784                 bool encoder_enabled;
3785                 enum pipe pipe;
3786
3787                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3788                               connector->base.base.id,
3789                               drm_get_connector_name(&connector->base));
3790
3791                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3792                      "wrong connector dpms state\n");
3793                 WARN(connector->base.encoder != &encoder->base,
3794                      "active connector not linked to encoder\n");
3795                 WARN(!encoder->connectors_active,
3796                      "encoder->connectors_active not set\n");
3797
3798                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3799                 WARN(!encoder_enabled, "encoder not enabled\n");
3800                 if (WARN_ON(!encoder->base.crtc))
3801                         return;
3802
3803                 crtc = encoder->base.crtc;
3804
3805                 WARN(!crtc->enabled, "crtc not enabled\n");
3806                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3807                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3808                      "encoder active on the wrong pipe\n");
3809         }
3810 }
3811
3812 /* Even simpler default implementation, if there's really no special case to
3813  * consider. */
3814 void intel_connector_dpms(struct drm_connector *connector, int mode)
3815 {
3816         struct intel_encoder *encoder = intel_attached_encoder(connector);
3817
3818         /* All the simple cases only support two dpms states. */
3819         if (mode != DRM_MODE_DPMS_ON)
3820                 mode = DRM_MODE_DPMS_OFF;
3821
3822         if (mode == connector->dpms)
3823                 return;
3824
3825         connector->dpms = mode;
3826
3827         /* Only need to change hw state when actually enabled */
3828         if (encoder->base.crtc)
3829                 intel_encoder_dpms(encoder, mode);
3830         else
3831                 WARN_ON(encoder->connectors_active != false);
3832
3833         intel_modeset_check_state(connector->dev);
3834 }
3835
3836 /* Simple connector->get_hw_state implementation for encoders that support only
3837  * one connector and no cloning and hence the encoder state determines the state
3838  * of the connector. */
3839 bool intel_connector_get_hw_state(struct intel_connector *connector)
3840 {
3841         enum pipe pipe = 0;
3842         struct intel_encoder *encoder = connector->encoder;
3843
3844         return encoder->get_hw_state(encoder, &pipe);
3845 }
3846
3847 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3848                                   const struct drm_display_mode *mode,
3849                                   struct drm_display_mode *adjusted_mode)
3850 {
3851         struct drm_device *dev = crtc->dev;
3852
3853         if (HAS_PCH_SPLIT(dev)) {
3854                 /* FDI link clock is fixed at 2.7G */
3855                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3856                         return false;
3857         }
3858
3859         /* All interlaced capable intel hw wants timings in frames. Note though
3860          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3861          * timings, so we need to be careful not to clobber these.*/
3862         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3863                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3864
3865         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3866          * with a hsync front porch of 0.
3867          */
3868         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3869                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3870                 return false;
3871
3872         return true;
3873 }
3874
3875 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3876 {
3877         return 400000; /* FIXME */
3878 }
3879
3880 static int i945_get_display_clock_speed(struct drm_device *dev)
3881 {
3882         return 400000;
3883 }
3884
3885 static int i915_get_display_clock_speed(struct drm_device *dev)
3886 {
3887         return 333000;
3888 }
3889
3890 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3891 {
3892         return 200000;
3893 }
3894
3895 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3896 {
3897         u16 gcfgc = 0;
3898
3899         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3900
3901         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3902                 return 133000;
3903         else {
3904                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3905                 case GC_DISPLAY_CLOCK_333_MHZ:
3906                         return 333000;
3907                 default:
3908                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3909                         return 190000;
3910                 }
3911         }
3912 }
3913
3914 static int i865_get_display_clock_speed(struct drm_device *dev)
3915 {
3916         return 266000;
3917 }
3918
3919 static int i855_get_display_clock_speed(struct drm_device *dev)
3920 {
3921         u16 hpllcc = 0;
3922         /* Assume that the hardware is in the high speed state.  This
3923          * should be the default.
3924          */
3925         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3926         case GC_CLOCK_133_200:
3927         case GC_CLOCK_100_200:
3928                 return 200000;
3929         case GC_CLOCK_166_250:
3930                 return 250000;
3931         case GC_CLOCK_100_133:
3932                 return 133000;
3933         }
3934
3935         /* Shouldn't happen */
3936         return 0;
3937 }
3938
3939 static int i830_get_display_clock_speed(struct drm_device *dev)
3940 {
3941         return 133000;
3942 }
3943
3944 struct fdi_m_n {
3945         u32        tu;
3946         u32        gmch_m;
3947         u32        gmch_n;
3948         u32        link_m;
3949         u32        link_n;
3950 };
3951
3952 static void
3953 fdi_reduce_ratio(u32 *num, u32 *den)
3954 {
3955         while (*num > 0xffffff || *den > 0xffffff) {
3956                 *num >>= 1;
3957                 *den >>= 1;
3958         }
3959 }
3960
3961 static void
3962 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3963                      int link_clock, struct fdi_m_n *m_n)
3964 {
3965         m_n->tu = 64; /* default size */
3966
3967         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3968         m_n->gmch_m = bits_per_pixel * pixel_clock;
3969         m_n->gmch_n = link_clock * nlanes * 8;
3970         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3971
3972         m_n->link_m = pixel_clock;
3973         m_n->link_n = link_clock;
3974         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3975 }
3976
3977 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3978 {
3979         if (i915_panel_use_ssc >= 0)
3980                 return i915_panel_use_ssc != 0;
3981         return dev_priv->lvds_use_ssc
3982                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3983 }
3984
3985 /**
3986  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3987  * @crtc: CRTC structure
3988  * @mode: requested mode
3989  *
3990  * A pipe may be connected to one or more outputs.  Based on the depth of the
3991  * attached framebuffer, choose a good color depth to use on the pipe.
3992  *
3993  * If possible, match the pipe depth to the fb depth.  In some cases, this
3994  * isn't ideal, because the connected output supports a lesser or restricted
3995  * set of depths.  Resolve that here:
3996  *    LVDS typically supports only 6bpc, so clamp down in that case
3997  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3998  *    Displays may support a restricted set as well, check EDID and clamp as
3999  *      appropriate.
4000  *    DP may want to dither down to 6bpc to fit larger modes
4001  *
4002  * RETURNS:
4003  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4004  * true if they don't match).
4005  */
4006 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4007                                          struct drm_framebuffer *fb,
4008                                          unsigned int *pipe_bpp,
4009                                          struct drm_display_mode *mode)
4010 {
4011         struct drm_device *dev = crtc->dev;
4012         struct drm_i915_private *dev_priv = dev->dev_private;
4013         struct drm_connector *connector;
4014         struct intel_encoder *intel_encoder;
4015         unsigned int display_bpc = UINT_MAX, bpc;
4016
4017         /* Walk the encoders & connectors on this crtc, get min bpc */
4018         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4019
4020                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4021                         unsigned int lvds_bpc;
4022
4023                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4024                             LVDS_A3_POWER_UP)
4025                                 lvds_bpc = 8;
4026                         else
4027                                 lvds_bpc = 6;
4028
4029                         if (lvds_bpc < display_bpc) {
4030                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4031                                 display_bpc = lvds_bpc;
4032                         }
4033                         continue;
4034                 }
4035
4036                 /* Not one of the known troublemakers, check the EDID */
4037                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4038                                     head) {
4039                         if (connector->encoder != &intel_encoder->base)
4040                                 continue;
4041
4042                         /* Don't use an invalid EDID bpc value */
4043                         if (connector->display_info.bpc &&
4044                             connector->display_info.bpc < display_bpc) {
4045                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4046                                 display_bpc = connector->display_info.bpc;
4047                         }
4048                 }
4049
4050                 /*
4051                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4052                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4053                  */
4054                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4055                         if (display_bpc > 8 && display_bpc < 12) {
4056                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4057                                 display_bpc = 12;
4058                         } else {
4059                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4060                                 display_bpc = 8;
4061                         }
4062                 }
4063         }
4064
4065         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4066                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4067                 display_bpc = 6;
4068         }
4069
4070         /*
4071          * We could just drive the pipe at the highest bpc all the time and
4072          * enable dithering as needed, but that costs bandwidth.  So choose
4073          * the minimum value that expresses the full color range of the fb but
4074          * also stays within the max display bpc discovered above.
4075          */
4076
4077         switch (fb->depth) {
4078         case 8:
4079                 bpc = 8; /* since we go through a colormap */
4080                 break;
4081         case 15:
4082         case 16:
4083                 bpc = 6; /* min is 18bpp */
4084                 break;
4085         case 24:
4086                 bpc = 8;
4087                 break;
4088         case 30:
4089                 bpc = 10;
4090                 break;
4091         case 48:
4092                 bpc = 12;
4093                 break;
4094         default:
4095                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4096                 bpc = min((unsigned int)8, display_bpc);
4097                 break;
4098         }
4099
4100         display_bpc = min(display_bpc, bpc);
4101
4102         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4103                       bpc, display_bpc);
4104
4105         *pipe_bpp = display_bpc * 3;
4106
4107         return display_bpc != bpc;
4108 }
4109
4110 static int vlv_get_refclk(struct drm_crtc *crtc)
4111 {
4112         struct drm_device *dev = crtc->dev;
4113         struct drm_i915_private *dev_priv = dev->dev_private;
4114         int refclk = 27000; /* for DP & HDMI */
4115
4116         return 100000; /* only one validated so far */
4117
4118         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4119                 refclk = 96000;
4120         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4121                 if (intel_panel_use_ssc(dev_priv))
4122                         refclk = 100000;
4123                 else
4124                         refclk = 96000;
4125         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4126                 refclk = 100000;
4127         }
4128
4129         return refclk;
4130 }
4131
4132 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4133 {
4134         struct drm_device *dev = crtc->dev;
4135         struct drm_i915_private *dev_priv = dev->dev_private;
4136         int refclk;
4137
4138         if (IS_VALLEYVIEW(dev)) {
4139                 refclk = vlv_get_refclk(crtc);
4140         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4141             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4142                 refclk = dev_priv->lvds_ssc_freq * 1000;
4143                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4144                               refclk / 1000);
4145         } else if (!IS_GEN2(dev)) {
4146                 refclk = 96000;
4147         } else {
4148                 refclk = 48000;
4149         }
4150
4151         return refclk;
4152 }
4153
4154 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4155                                       intel_clock_t *clock)
4156 {
4157         /* SDVO TV has fixed PLL values depend on its clock range,
4158            this mirrors vbios setting. */
4159         if (adjusted_mode->clock >= 100000
4160             && adjusted_mode->clock < 140500) {
4161                 clock->p1 = 2;
4162                 clock->p2 = 10;
4163                 clock->n = 3;
4164                 clock->m1 = 16;
4165                 clock->m2 = 8;
4166         } else if (adjusted_mode->clock >= 140500
4167                    && adjusted_mode->clock <= 200000) {
4168                 clock->p1 = 1;
4169                 clock->p2 = 10;
4170                 clock->n = 6;
4171                 clock->m1 = 12;
4172                 clock->m2 = 8;
4173         }
4174 }
4175
4176 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4177                                      intel_clock_t *clock,
4178                                      intel_clock_t *reduced_clock)
4179 {
4180         struct drm_device *dev = crtc->dev;
4181         struct drm_i915_private *dev_priv = dev->dev_private;
4182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4183         int pipe = intel_crtc->pipe;
4184         u32 fp, fp2 = 0;
4185
4186         if (IS_PINEVIEW(dev)) {
4187                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4188                 if (reduced_clock)
4189                         fp2 = (1 << reduced_clock->n) << 16 |
4190                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4191         } else {
4192                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4193                 if (reduced_clock)
4194                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4195                                 reduced_clock->m2;
4196         }
4197
4198         I915_WRITE(FP0(pipe), fp);
4199
4200         intel_crtc->lowfreq_avail = false;
4201         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4202             reduced_clock && i915_powersave) {
4203                 I915_WRITE(FP1(pipe), fp2);
4204                 intel_crtc->lowfreq_avail = true;
4205         } else {
4206                 I915_WRITE(FP1(pipe), fp);
4207         }
4208 }
4209
4210 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4211                               struct drm_display_mode *adjusted_mode)
4212 {
4213         struct drm_device *dev = crtc->dev;
4214         struct drm_i915_private *dev_priv = dev->dev_private;
4215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4216         int pipe = intel_crtc->pipe;
4217         u32 temp;
4218
4219         temp = I915_READ(LVDS);
4220         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4221         if (pipe == 1) {
4222                 temp |= LVDS_PIPEB_SELECT;
4223         } else {
4224                 temp &= ~LVDS_PIPEB_SELECT;
4225         }
4226         /* set the corresponsding LVDS_BORDER bit */
4227         temp |= dev_priv->lvds_border_bits;
4228         /* Set the B0-B3 data pairs corresponding to whether we're going to
4229          * set the DPLLs for dual-channel mode or not.
4230          */
4231         if (clock->p2 == 7)
4232                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4233         else
4234                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4235
4236         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4237          * appropriately here, but we need to look more thoroughly into how
4238          * panels behave in the two modes.
4239          */
4240         /* set the dithering flag on LVDS as needed */
4241         if (INTEL_INFO(dev)->gen >= 4) {
4242                 if (dev_priv->lvds_dither)
4243                         temp |= LVDS_ENABLE_DITHER;
4244                 else
4245                         temp &= ~LVDS_ENABLE_DITHER;
4246         }
4247         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4248         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4249                 temp |= LVDS_HSYNC_POLARITY;
4250         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4251                 temp |= LVDS_VSYNC_POLARITY;
4252         I915_WRITE(LVDS, temp);
4253 }
4254
4255 static void vlv_update_pll(struct drm_crtc *crtc,
4256                            struct drm_display_mode *mode,
4257                            struct drm_display_mode *adjusted_mode,
4258                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4259                            int num_connectors)
4260 {
4261         struct drm_device *dev = crtc->dev;
4262         struct drm_i915_private *dev_priv = dev->dev_private;
4263         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4264         int pipe = intel_crtc->pipe;
4265         u32 dpll, mdiv, pdiv;
4266         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4267         bool is_sdvo;
4268         u32 temp;
4269
4270         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4271                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4272
4273         dpll = DPLL_VGA_MODE_DIS;
4274         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4275         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4276         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4277
4278         I915_WRITE(DPLL(pipe), dpll);
4279         POSTING_READ(DPLL(pipe));
4280
4281         bestn = clock->n;
4282         bestm1 = clock->m1;
4283         bestm2 = clock->m2;
4284         bestp1 = clock->p1;
4285         bestp2 = clock->p2;
4286
4287         /*
4288          * In Valleyview PLL and program lane counter registers are exposed
4289          * through DPIO interface
4290          */
4291         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4292         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4293         mdiv |= ((bestn << DPIO_N_SHIFT));
4294         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4295         mdiv |= (1 << DPIO_K_SHIFT);
4296         mdiv |= DPIO_ENABLE_CALIBRATION;
4297         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4298
4299         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4300
4301         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4302                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4303                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4304                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4305         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4306
4307         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4308
4309         dpll |= DPLL_VCO_ENABLE;
4310         I915_WRITE(DPLL(pipe), dpll);
4311         POSTING_READ(DPLL(pipe));
4312         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4313                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4314
4315         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4316
4317         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4318                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4319
4320         I915_WRITE(DPLL(pipe), dpll);
4321
4322         /* Wait for the clocks to stabilize. */
4323         POSTING_READ(DPLL(pipe));
4324         udelay(150);
4325
4326         temp = 0;
4327         if (is_sdvo) {
4328                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4329                 if (temp > 1)
4330                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4331                 else
4332                         temp = 0;
4333         }
4334         I915_WRITE(DPLL_MD(pipe), temp);
4335         POSTING_READ(DPLL_MD(pipe));
4336
4337         /* Now program lane control registers */
4338         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4339                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4340         {
4341                 temp = 0x1000C4;
4342                 if(pipe == 1)
4343                         temp |= (1 << 21);
4344                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4345         }
4346         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4347         {
4348                 temp = 0x1000C4;
4349                 if(pipe == 1)
4350                         temp |= (1 << 21);
4351                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4352         }
4353 }
4354
4355 static void i9xx_update_pll(struct drm_crtc *crtc,
4356                             struct drm_display_mode *mode,
4357                             struct drm_display_mode *adjusted_mode,
4358                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4359                             int num_connectors)
4360 {
4361         struct drm_device *dev = crtc->dev;
4362         struct drm_i915_private *dev_priv = dev->dev_private;
4363         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4364         int pipe = intel_crtc->pipe;
4365         u32 dpll;
4366         bool is_sdvo;
4367
4368         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4369
4370         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4371                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4372
4373         dpll = DPLL_VGA_MODE_DIS;
4374
4375         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4376                 dpll |= DPLLB_MODE_LVDS;
4377         else
4378                 dpll |= DPLLB_MODE_DAC_SERIAL;
4379         if (is_sdvo) {
4380                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4381                 if (pixel_multiplier > 1) {
4382                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4383                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4384                 }
4385                 dpll |= DPLL_DVO_HIGH_SPEED;
4386         }
4387         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4388                 dpll |= DPLL_DVO_HIGH_SPEED;
4389
4390         /* compute bitmask from p1 value */
4391         if (IS_PINEVIEW(dev))
4392                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4393         else {
4394                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4395                 if (IS_G4X(dev) && reduced_clock)
4396                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4397         }
4398         switch (clock->p2) {
4399         case 5:
4400                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4401                 break;
4402         case 7:
4403                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4404                 break;
4405         case 10:
4406                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4407                 break;
4408         case 14:
4409                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4410                 break;
4411         }
4412         if (INTEL_INFO(dev)->gen >= 4)
4413                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4414
4415         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4416                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4417         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4418                 /* XXX: just matching BIOS for now */
4419                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4420                 dpll |= 3;
4421         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4422                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4423                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4424         else
4425                 dpll |= PLL_REF_INPUT_DREFCLK;
4426
4427         dpll |= DPLL_VCO_ENABLE;
4428         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4429         POSTING_READ(DPLL(pipe));
4430         udelay(150);
4431
4432         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4433          * This is an exception to the general rule that mode_set doesn't turn
4434          * things on.
4435          */
4436         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4437                 intel_update_lvds(crtc, clock, adjusted_mode);
4438
4439         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4440                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4441
4442         I915_WRITE(DPLL(pipe), dpll);
4443
4444         /* Wait for the clocks to stabilize. */
4445         POSTING_READ(DPLL(pipe));
4446         udelay(150);
4447
4448         if (INTEL_INFO(dev)->gen >= 4) {
4449                 u32 temp = 0;
4450                 if (is_sdvo) {
4451                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4452                         if (temp > 1)
4453                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4454                         else
4455                                 temp = 0;
4456                 }
4457                 I915_WRITE(DPLL_MD(pipe), temp);
4458         } else {
4459                 /* The pixel multiplier can only be updated once the
4460                  * DPLL is enabled and the clocks are stable.
4461                  *
4462                  * So write it again.
4463                  */
4464                 I915_WRITE(DPLL(pipe), dpll);
4465         }
4466 }
4467
4468 static void i8xx_update_pll(struct drm_crtc *crtc,
4469                             struct drm_display_mode *adjusted_mode,
4470                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4471                             int num_connectors)
4472 {
4473         struct drm_device *dev = crtc->dev;
4474         struct drm_i915_private *dev_priv = dev->dev_private;
4475         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4476         int pipe = intel_crtc->pipe;
4477         u32 dpll;
4478
4479         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4480
4481         dpll = DPLL_VGA_MODE_DIS;
4482
4483         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4484                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4485         } else {
4486                 if (clock->p1 == 2)
4487                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4488                 else
4489                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4490                 if (clock->p2 == 4)
4491                         dpll |= PLL_P2_DIVIDE_BY_4;
4492         }
4493
4494         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4495                 /* XXX: just matching BIOS for now */
4496                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4497                 dpll |= 3;
4498         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4499                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4500                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4501         else
4502                 dpll |= PLL_REF_INPUT_DREFCLK;
4503
4504         dpll |= DPLL_VCO_ENABLE;
4505         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4506         POSTING_READ(DPLL(pipe));
4507         udelay(150);
4508
4509         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4510          * This is an exception to the general rule that mode_set doesn't turn
4511          * things on.
4512          */
4513         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4514                 intel_update_lvds(crtc, clock, adjusted_mode);
4515
4516         I915_WRITE(DPLL(pipe), dpll);
4517
4518         /* Wait for the clocks to stabilize. */
4519         POSTING_READ(DPLL(pipe));
4520         udelay(150);
4521
4522         /* The pixel multiplier can only be updated once the
4523          * DPLL is enabled and the clocks are stable.
4524          *
4525          * So write it again.
4526          */
4527         I915_WRITE(DPLL(pipe), dpll);
4528 }
4529
4530 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4531                                    struct drm_display_mode *mode,
4532                                    struct drm_display_mode *adjusted_mode)
4533 {
4534         struct drm_device *dev = intel_crtc->base.dev;
4535         struct drm_i915_private *dev_priv = dev->dev_private;
4536         enum pipe pipe = intel_crtc->pipe;
4537         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4538         uint32_t vsyncshift;
4539
4540         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4541                 /* the chip adds 2 halflines automatically */
4542                 adjusted_mode->crtc_vtotal -= 1;
4543                 adjusted_mode->crtc_vblank_end -= 1;
4544                 vsyncshift = adjusted_mode->crtc_hsync_start
4545                              - adjusted_mode->crtc_htotal / 2;
4546         } else {
4547                 vsyncshift = 0;
4548         }
4549
4550         if (INTEL_INFO(dev)->gen > 3)
4551                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4552
4553         I915_WRITE(HTOTAL(cpu_transcoder),
4554                    (adjusted_mode->crtc_hdisplay - 1) |
4555                    ((adjusted_mode->crtc_htotal - 1) << 16));
4556         I915_WRITE(HBLANK(cpu_transcoder),
4557                    (adjusted_mode->crtc_hblank_start - 1) |
4558                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4559         I915_WRITE(HSYNC(cpu_transcoder),
4560                    (adjusted_mode->crtc_hsync_start - 1) |
4561                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4562
4563         I915_WRITE(VTOTAL(cpu_transcoder),
4564                    (adjusted_mode->crtc_vdisplay - 1) |
4565                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4566         I915_WRITE(VBLANK(cpu_transcoder),
4567                    (adjusted_mode->crtc_vblank_start - 1) |
4568                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4569         I915_WRITE(VSYNC(cpu_transcoder),
4570                    (adjusted_mode->crtc_vsync_start - 1) |
4571                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4572
4573         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4574          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4575          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4576          * bits. */
4577         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4578             (pipe == PIPE_B || pipe == PIPE_C))
4579                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4580
4581         /* pipesrc controls the size that is scaled from, which should
4582          * always be the user's requested size.
4583          */
4584         I915_WRITE(PIPESRC(pipe),
4585                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4586 }
4587
4588 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4589                               struct drm_display_mode *mode,
4590                               struct drm_display_mode *adjusted_mode,
4591                               int x, int y,
4592                               struct drm_framebuffer *fb)
4593 {
4594         struct drm_device *dev = crtc->dev;
4595         struct drm_i915_private *dev_priv = dev->dev_private;
4596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4597         int pipe = intel_crtc->pipe;
4598         int plane = intel_crtc->plane;
4599         int refclk, num_connectors = 0;
4600         intel_clock_t clock, reduced_clock;
4601         u32 dspcntr, pipeconf;
4602         bool ok, has_reduced_clock = false, is_sdvo = false;
4603         bool is_lvds = false, is_tv = false, is_dp = false;
4604         struct intel_encoder *encoder;
4605         const intel_limit_t *limit;
4606         int ret;
4607
4608         for_each_encoder_on_crtc(dev, crtc, encoder) {
4609                 switch (encoder->type) {
4610                 case INTEL_OUTPUT_LVDS:
4611                         is_lvds = true;
4612                         break;
4613                 case INTEL_OUTPUT_SDVO:
4614                 case INTEL_OUTPUT_HDMI:
4615                         is_sdvo = true;
4616                         if (encoder->needs_tv_clock)
4617                                 is_tv = true;
4618                         break;
4619                 case INTEL_OUTPUT_TVOUT:
4620                         is_tv = true;
4621                         break;
4622                 case INTEL_OUTPUT_DISPLAYPORT:
4623                         is_dp = true;
4624                         break;
4625                 }
4626
4627                 num_connectors++;
4628         }
4629
4630         refclk = i9xx_get_refclk(crtc, num_connectors);
4631
4632         /*
4633          * Returns a set of divisors for the desired target clock with the given
4634          * refclk, or FALSE.  The returned values represent the clock equation:
4635          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4636          */
4637         limit = intel_limit(crtc, refclk);
4638         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4639                              &clock);
4640         if (!ok) {
4641                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4642                 return -EINVAL;
4643         }
4644
4645         /* Ensure that the cursor is valid for the new mode before changing... */
4646         intel_crtc_update_cursor(crtc, true);
4647
4648         if (is_lvds && dev_priv->lvds_downclock_avail) {
4649                 /*
4650                  * Ensure we match the reduced clock's P to the target clock.
4651                  * If the clocks don't match, we can't switch the display clock
4652                  * by using the FP0/FP1. In such case we will disable the LVDS
4653                  * downclock feature.
4654                 */
4655                 has_reduced_clock = limit->find_pll(limit, crtc,
4656                                                     dev_priv->lvds_downclock,
4657                                                     refclk,
4658                                                     &clock,
4659                                                     &reduced_clock);
4660         }
4661
4662         if (is_sdvo && is_tv)
4663                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4664
4665         if (IS_GEN2(dev))
4666                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4667                                 has_reduced_clock ? &reduced_clock : NULL,
4668                                 num_connectors);
4669         else if (IS_VALLEYVIEW(dev))
4670                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4671                                 has_reduced_clock ? &reduced_clock : NULL,
4672                                 num_connectors);
4673         else
4674                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4675                                 has_reduced_clock ? &reduced_clock : NULL,
4676                                 num_connectors);
4677
4678         /* setup pipeconf */
4679         pipeconf = I915_READ(PIPECONF(pipe));
4680
4681         /* Set up the display plane register */
4682         dspcntr = DISPPLANE_GAMMA_ENABLE;
4683
4684         if (pipe == 0)
4685                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4686         else
4687                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4688
4689         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4690                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4691                  * core speed.
4692                  *
4693                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4694                  * pipe == 0 check?
4695                  */
4696                 if (mode->clock >
4697                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4698                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4699                 else
4700                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4701         }
4702
4703         /* default to 8bpc */
4704         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4705         if (is_dp) {
4706                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4707                         pipeconf |= PIPECONF_BPP_6 |
4708                                     PIPECONF_DITHER_EN |
4709                                     PIPECONF_DITHER_TYPE_SP;
4710                 }
4711         }
4712
4713         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4714                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4715                         pipeconf |= PIPECONF_BPP_6 |
4716                                         PIPECONF_ENABLE |
4717                                         I965_PIPECONF_ACTIVE;
4718                 }
4719         }
4720
4721         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4722         drm_mode_debug_printmodeline(mode);
4723
4724         if (HAS_PIPE_CXSR(dev)) {
4725                 if (intel_crtc->lowfreq_avail) {
4726                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4727                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4728                 } else {
4729                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4730                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4731                 }
4732         }
4733
4734         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4735         if (!IS_GEN2(dev) &&
4736             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4737                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4738         else
4739                 pipeconf |= PIPECONF_PROGRESSIVE;
4740
4741         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4742
4743         /* pipesrc and dspsize control the size that is scaled from,
4744          * which should always be the user's requested size.
4745          */
4746         I915_WRITE(DSPSIZE(plane),
4747                    ((mode->vdisplay - 1) << 16) |
4748                    (mode->hdisplay - 1));
4749         I915_WRITE(DSPPOS(plane), 0);
4750
4751         I915_WRITE(PIPECONF(pipe), pipeconf);
4752         POSTING_READ(PIPECONF(pipe));
4753         intel_enable_pipe(dev_priv, pipe, false);
4754
4755         intel_wait_for_vblank(dev, pipe);
4756
4757         I915_WRITE(DSPCNTR(plane), dspcntr);
4758         POSTING_READ(DSPCNTR(plane));
4759
4760         ret = intel_pipe_set_base(crtc, x, y, fb);
4761
4762         intel_update_watermarks(dev);
4763
4764         return ret;
4765 }
4766
4767 /*
4768  * Initialize reference clocks when the driver loads
4769  */
4770 void ironlake_init_pch_refclk(struct drm_device *dev)
4771 {
4772         struct drm_i915_private *dev_priv = dev->dev_private;
4773         struct drm_mode_config *mode_config = &dev->mode_config;
4774         struct intel_encoder *encoder;
4775         u32 temp;
4776         bool has_lvds = false;
4777         bool has_cpu_edp = false;
4778         bool has_pch_edp = false;
4779         bool has_panel = false;
4780         bool has_ck505 = false;
4781         bool can_ssc = false;
4782
4783         /* We need to take the global config into account */
4784         list_for_each_entry(encoder, &mode_config->encoder_list,
4785                             base.head) {
4786                 switch (encoder->type) {
4787                 case INTEL_OUTPUT_LVDS:
4788                         has_panel = true;
4789                         has_lvds = true;
4790                         break;
4791                 case INTEL_OUTPUT_EDP:
4792                         has_panel = true;
4793                         if (intel_encoder_is_pch_edp(&encoder->base))
4794                                 has_pch_edp = true;
4795                         else
4796                                 has_cpu_edp = true;
4797                         break;
4798                 }
4799         }
4800
4801         if (HAS_PCH_IBX(dev)) {
4802                 has_ck505 = dev_priv->display_clock_mode;
4803                 can_ssc = has_ck505;
4804         } else {
4805                 has_ck505 = false;
4806                 can_ssc = true;
4807         }
4808
4809         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4810                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4811                       has_ck505);
4812
4813         /* Ironlake: try to setup display ref clock before DPLL
4814          * enabling. This is only under driver's control after
4815          * PCH B stepping, previous chipset stepping should be
4816          * ignoring this setting.
4817          */
4818         temp = I915_READ(PCH_DREF_CONTROL);
4819         /* Always enable nonspread source */
4820         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4821
4822         if (has_ck505)
4823                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4824         else
4825                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4826
4827         if (has_panel) {
4828                 temp &= ~DREF_SSC_SOURCE_MASK;
4829                 temp |= DREF_SSC_SOURCE_ENABLE;
4830
4831                 /* SSC must be turned on before enabling the CPU output  */
4832                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4833                         DRM_DEBUG_KMS("Using SSC on panel\n");
4834                         temp |= DREF_SSC1_ENABLE;
4835                 } else
4836                         temp &= ~DREF_SSC1_ENABLE;
4837
4838                 /* Get SSC going before enabling the outputs */
4839                 I915_WRITE(PCH_DREF_CONTROL, temp);
4840                 POSTING_READ(PCH_DREF_CONTROL);
4841                 udelay(200);
4842
4843                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4844
4845                 /* Enable CPU source on CPU attached eDP */
4846                 if (has_cpu_edp) {
4847                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4848                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4849                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4850                         }
4851                         else
4852                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4853                 } else
4854                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4855
4856                 I915_WRITE(PCH_DREF_CONTROL, temp);
4857                 POSTING_READ(PCH_DREF_CONTROL);
4858                 udelay(200);
4859         } else {
4860                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4861
4862                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4863
4864                 /* Turn off CPU output */
4865                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4866
4867                 I915_WRITE(PCH_DREF_CONTROL, temp);
4868                 POSTING_READ(PCH_DREF_CONTROL);
4869                 udelay(200);
4870
4871                 /* Turn off the SSC source */
4872                 temp &= ~DREF_SSC_SOURCE_MASK;
4873                 temp |= DREF_SSC_SOURCE_DISABLE;
4874
4875                 /* Turn off SSC1 */
4876                 temp &= ~ DREF_SSC1_ENABLE;
4877
4878                 I915_WRITE(PCH_DREF_CONTROL, temp);
4879                 POSTING_READ(PCH_DREF_CONTROL);
4880                 udelay(200);
4881         }
4882 }
4883
4884 static int ironlake_get_refclk(struct drm_crtc *crtc)
4885 {
4886         struct drm_device *dev = crtc->dev;
4887         struct drm_i915_private *dev_priv = dev->dev_private;
4888         struct intel_encoder *encoder;
4889         struct intel_encoder *edp_encoder = NULL;
4890         int num_connectors = 0;
4891         bool is_lvds = false;
4892
4893         for_each_encoder_on_crtc(dev, crtc, encoder) {
4894                 switch (encoder->type) {
4895                 case INTEL_OUTPUT_LVDS:
4896                         is_lvds = true;
4897                         break;
4898                 case INTEL_OUTPUT_EDP:
4899                         edp_encoder = encoder;
4900                         break;
4901                 }
4902                 num_connectors++;
4903         }
4904
4905         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4906                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4907                               dev_priv->lvds_ssc_freq);
4908                 return dev_priv->lvds_ssc_freq * 1000;
4909         }
4910
4911         return 120000;
4912 }
4913
4914 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4915                                   struct drm_display_mode *adjusted_mode,
4916                                   bool dither)
4917 {
4918         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4919         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4920         int pipe = intel_crtc->pipe;
4921         uint32_t val;
4922
4923         val = I915_READ(PIPECONF(pipe));
4924
4925         val &= ~PIPE_BPC_MASK;
4926         switch (intel_crtc->bpp) {
4927         case 18:
4928                 val |= PIPE_6BPC;
4929                 break;
4930         case 24:
4931                 val |= PIPE_8BPC;
4932                 break;
4933         case 30:
4934                 val |= PIPE_10BPC;
4935                 break;
4936         case 36:
4937                 val |= PIPE_12BPC;
4938                 break;
4939         default:
4940                 /* Case prevented by intel_choose_pipe_bpp_dither. */
4941                 BUG();
4942         }
4943
4944         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4945         if (dither)
4946                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4947
4948         val &= ~PIPECONF_INTERLACE_MASK;
4949         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4950                 val |= PIPECONF_INTERLACED_ILK;
4951         else
4952                 val |= PIPECONF_PROGRESSIVE;
4953
4954         I915_WRITE(PIPECONF(pipe), val);
4955         POSTING_READ(PIPECONF(pipe));
4956 }
4957
4958 static void haswell_set_pipeconf(struct drm_crtc *crtc,
4959                                  struct drm_display_mode *adjusted_mode,
4960                                  bool dither)
4961 {
4962         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4964         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4965         uint32_t val;
4966
4967         val = I915_READ(PIPECONF(cpu_transcoder));
4968
4969         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4970         if (dither)
4971                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4972
4973         val &= ~PIPECONF_INTERLACE_MASK_HSW;
4974         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4975                 val |= PIPECONF_INTERLACED_ILK;
4976         else
4977                 val |= PIPECONF_PROGRESSIVE;
4978
4979         I915_WRITE(PIPECONF(cpu_transcoder), val);
4980         POSTING_READ(PIPECONF(cpu_transcoder));
4981 }
4982
4983 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4984                                     struct drm_display_mode *adjusted_mode,
4985                                     intel_clock_t *clock,
4986                                     bool *has_reduced_clock,
4987                                     intel_clock_t *reduced_clock)
4988 {
4989         struct drm_device *dev = crtc->dev;
4990         struct drm_i915_private *dev_priv = dev->dev_private;
4991         struct intel_encoder *intel_encoder;
4992         int refclk;
4993         const intel_limit_t *limit;
4994         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4995
4996         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4997                 switch (intel_encoder->type) {
4998                 case INTEL_OUTPUT_LVDS:
4999                         is_lvds = true;
5000                         break;
5001                 case INTEL_OUTPUT_SDVO:
5002                 case INTEL_OUTPUT_HDMI:
5003                         is_sdvo = true;
5004                         if (intel_encoder->needs_tv_clock)
5005                                 is_tv = true;
5006                         break;
5007                 case INTEL_OUTPUT_TVOUT:
5008                         is_tv = true;
5009                         break;
5010                 }
5011         }
5012
5013         refclk = ironlake_get_refclk(crtc);
5014
5015         /*
5016          * Returns a set of divisors for the desired target clock with the given
5017          * refclk, or FALSE.  The returned values represent the clock equation:
5018          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5019          */
5020         limit = intel_limit(crtc, refclk);
5021         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5022                               clock);
5023         if (!ret)
5024                 return false;
5025
5026         if (is_lvds && dev_priv->lvds_downclock_avail) {
5027                 /*
5028                  * Ensure we match the reduced clock's P to the target clock.
5029                  * If the clocks don't match, we can't switch the display clock
5030                  * by using the FP0/FP1. In such case we will disable the LVDS
5031                  * downclock feature.
5032                 */
5033                 *has_reduced_clock = limit->find_pll(limit, crtc,
5034                                                      dev_priv->lvds_downclock,
5035                                                      refclk,
5036                                                      clock,
5037                                                      reduced_clock);
5038         }
5039
5040         if (is_sdvo && is_tv)
5041                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5042
5043         return true;
5044 }
5045
5046 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5047 {
5048         struct drm_i915_private *dev_priv = dev->dev_private;
5049         uint32_t temp;
5050
5051         temp = I915_READ(SOUTH_CHICKEN1);
5052         if (temp & FDI_BC_BIFURCATION_SELECT)
5053                 return;
5054
5055         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5056         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5057
5058         temp |= FDI_BC_BIFURCATION_SELECT;
5059         DRM_DEBUG_KMS("enabling fdi C rx\n");
5060         I915_WRITE(SOUTH_CHICKEN1, temp);
5061         POSTING_READ(SOUTH_CHICKEN1);
5062 }
5063
5064 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5065 {
5066         struct drm_device *dev = intel_crtc->base.dev;
5067         struct drm_i915_private *dev_priv = dev->dev_private;
5068         struct intel_crtc *pipe_B_crtc =
5069                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5070
5071         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5072                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5073         if (intel_crtc->fdi_lanes > 4) {
5074                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5075                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5076                 /* Clamp lanes to avoid programming the hw with bogus values. */
5077                 intel_crtc->fdi_lanes = 4;
5078
5079                 return false;
5080         }
5081
5082         if (dev_priv->num_pipe == 2)
5083                 return true;
5084
5085         switch (intel_crtc->pipe) {
5086         case PIPE_A:
5087                 return true;
5088         case PIPE_B:
5089                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5090                     intel_crtc->fdi_lanes > 2) {
5091                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5092                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5093                         /* Clamp lanes to avoid programming the hw with bogus values. */
5094                         intel_crtc->fdi_lanes = 2;
5095
5096                         return false;
5097                 }
5098
5099                 if (intel_crtc->fdi_lanes > 2)
5100                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5101                 else
5102                         cpt_enable_fdi_bc_bifurcation(dev);
5103
5104                 return true;
5105         case PIPE_C:
5106                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5107                         if (intel_crtc->fdi_lanes > 2) {
5108                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5109                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5110                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5111                                 intel_crtc->fdi_lanes = 2;
5112
5113                                 return false;
5114                         }
5115                 } else {
5116                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5117                         return false;
5118                 }
5119
5120                 cpt_enable_fdi_bc_bifurcation(dev);
5121
5122                 return true;
5123         default:
5124                 BUG();
5125         }
5126 }
5127
5128 static void ironlake_set_m_n(struct drm_crtc *crtc,
5129                              struct drm_display_mode *mode,
5130                              struct drm_display_mode *adjusted_mode)
5131 {
5132         struct drm_device *dev = crtc->dev;
5133         struct drm_i915_private *dev_priv = dev->dev_private;
5134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5135         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5136         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5137         struct fdi_m_n m_n = {0};
5138         int target_clock, pixel_multiplier, lane, link_bw;
5139         bool is_dp = false, is_cpu_edp = false;
5140
5141         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5142                 switch (intel_encoder->type) {
5143                 case INTEL_OUTPUT_DISPLAYPORT:
5144                         is_dp = true;
5145                         break;
5146                 case INTEL_OUTPUT_EDP:
5147                         is_dp = true;
5148                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5149                                 is_cpu_edp = true;
5150                         edp_encoder = intel_encoder;
5151                         break;
5152                 }
5153         }
5154
5155         /* FDI link */
5156         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5157         lane = 0;
5158         /* CPU eDP doesn't require FDI link, so just set DP M/N
5159            according to current link config */
5160         if (is_cpu_edp) {
5161                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5162         } else {
5163                 /* FDI is a binary signal running at ~2.7GHz, encoding
5164                  * each output octet as 10 bits. The actual frequency
5165                  * is stored as a divider into a 100MHz clock, and the
5166                  * mode pixel clock is stored in units of 1KHz.
5167                  * Hence the bw of each lane in terms of the mode signal
5168                  * is:
5169                  */
5170                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5171         }
5172
5173         /* [e]DP over FDI requires target mode clock instead of link clock. */
5174         if (edp_encoder)
5175                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5176         else if (is_dp)
5177                 target_clock = mode->clock;
5178         else
5179                 target_clock = adjusted_mode->clock;
5180
5181         if (!lane) {
5182                 /*
5183                  * Account for spread spectrum to avoid
5184                  * oversubscribing the link. Max center spread
5185                  * is 2.5%; use 5% for safety's sake.
5186                  */
5187                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5188                 lane = bps / (link_bw * 8) + 1;
5189         }
5190
5191         intel_crtc->fdi_lanes = lane;
5192
5193         if (pixel_multiplier > 1)
5194                 link_bw *= pixel_multiplier;
5195         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5196                              &m_n);
5197
5198         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5199         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5200         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5201         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5202 }
5203
5204 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5205                                       struct drm_display_mode *adjusted_mode,
5206                                       intel_clock_t *clock, u32 fp)
5207 {
5208         struct drm_crtc *crtc = &intel_crtc->base;
5209         struct drm_device *dev = crtc->dev;
5210         struct drm_i915_private *dev_priv = dev->dev_private;
5211         struct intel_encoder *intel_encoder;
5212         uint32_t dpll;
5213         int factor, pixel_multiplier, num_connectors = 0;
5214         bool is_lvds = false, is_sdvo = false, is_tv = false;
5215         bool is_dp = false, is_cpu_edp = false;
5216
5217         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5218                 switch (intel_encoder->type) {
5219                 case INTEL_OUTPUT_LVDS:
5220                         is_lvds = true;
5221                         break;
5222                 case INTEL_OUTPUT_SDVO:
5223                 case INTEL_OUTPUT_HDMI:
5224                         is_sdvo = true;
5225                         if (intel_encoder->needs_tv_clock)
5226                                 is_tv = true;
5227                         break;
5228                 case INTEL_OUTPUT_TVOUT:
5229                         is_tv = true;
5230                         break;
5231                 case INTEL_OUTPUT_DISPLAYPORT:
5232                         is_dp = true;
5233                         break;
5234                 case INTEL_OUTPUT_EDP:
5235                         is_dp = true;
5236                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5237                                 is_cpu_edp = true;
5238                         break;
5239                 }
5240
5241                 num_connectors++;
5242         }
5243
5244         /* Enable autotuning of the PLL clock (if permissible) */
5245         factor = 21;
5246         if (is_lvds) {
5247                 if ((intel_panel_use_ssc(dev_priv) &&
5248                      dev_priv->lvds_ssc_freq == 100) ||
5249                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5250                         factor = 25;
5251         } else if (is_sdvo && is_tv)
5252                 factor = 20;
5253
5254         if (clock->m < factor * clock->n)
5255                 fp |= FP_CB_TUNE;
5256
5257         dpll = 0;
5258
5259         if (is_lvds)
5260                 dpll |= DPLLB_MODE_LVDS;
5261         else
5262                 dpll |= DPLLB_MODE_DAC_SERIAL;
5263         if (is_sdvo) {
5264                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5265                 if (pixel_multiplier > 1) {
5266                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5267                 }
5268                 dpll |= DPLL_DVO_HIGH_SPEED;
5269         }
5270         if (is_dp && !is_cpu_edp)
5271                 dpll |= DPLL_DVO_HIGH_SPEED;
5272
5273         /* compute bitmask from p1 value */
5274         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5275         /* also FPA1 */
5276         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5277
5278         switch (clock->p2) {
5279         case 5:
5280                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5281                 break;
5282         case 7:
5283                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5284                 break;
5285         case 10:
5286                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5287                 break;
5288         case 14:
5289                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5290                 break;
5291         }
5292
5293         if (is_sdvo && is_tv)
5294                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5295         else if (is_tv)
5296                 /* XXX: just matching BIOS for now */
5297                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5298                 dpll |= 3;
5299         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5300                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5301         else
5302                 dpll |= PLL_REF_INPUT_DREFCLK;
5303
5304         return dpll;
5305 }
5306
5307 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5308                                   struct drm_display_mode *mode,
5309                                   struct drm_display_mode *adjusted_mode,
5310                                   int x, int y,
5311                                   struct drm_framebuffer *fb)
5312 {
5313         struct drm_device *dev = crtc->dev;
5314         struct drm_i915_private *dev_priv = dev->dev_private;
5315         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5316         int pipe = intel_crtc->pipe;
5317         int plane = intel_crtc->plane;
5318         int num_connectors = 0;
5319         intel_clock_t clock, reduced_clock;
5320         u32 dpll, fp = 0, fp2 = 0;
5321         bool ok, has_reduced_clock = false;
5322         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5323         struct intel_encoder *encoder;
5324         u32 temp;
5325         int ret;
5326         bool dither, fdi_config_ok;
5327
5328         for_each_encoder_on_crtc(dev, crtc, encoder) {
5329                 switch (encoder->type) {
5330                 case INTEL_OUTPUT_LVDS:
5331                         is_lvds = true;
5332                         break;
5333                 case INTEL_OUTPUT_DISPLAYPORT:
5334                         is_dp = true;
5335                         break;
5336                 case INTEL_OUTPUT_EDP:
5337                         is_dp = true;
5338                         if (!intel_encoder_is_pch_edp(&encoder->base))
5339                                 is_cpu_edp = true;
5340                         break;
5341                 }
5342
5343                 num_connectors++;
5344         }
5345
5346         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5347              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5348
5349         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5350                                      &has_reduced_clock, &reduced_clock);
5351         if (!ok) {
5352                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5353                 return -EINVAL;
5354         }
5355
5356         /* Ensure that the cursor is valid for the new mode before changing... */
5357         intel_crtc_update_cursor(crtc, true);
5358
5359         /* determine panel color depth */
5360         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5361                                               adjusted_mode);
5362         if (is_lvds && dev_priv->lvds_dither)
5363                 dither = true;
5364
5365         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5366         if (has_reduced_clock)
5367                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5368                         reduced_clock.m2;
5369
5370         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5371
5372         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5373         drm_mode_debug_printmodeline(mode);
5374
5375         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5376         if (!is_cpu_edp) {
5377                 struct intel_pch_pll *pll;
5378
5379                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5380                 if (pll == NULL) {
5381                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5382                                          pipe);
5383                         return -EINVAL;
5384                 }
5385         } else
5386                 intel_put_pch_pll(intel_crtc);
5387
5388         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5389          * This is an exception to the general rule that mode_set doesn't turn
5390          * things on.
5391          */
5392         if (is_lvds) {
5393                 temp = I915_READ(PCH_LVDS);
5394                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5395                 if (HAS_PCH_CPT(dev)) {
5396                         temp &= ~PORT_TRANS_SEL_MASK;
5397                         temp |= PORT_TRANS_SEL_CPT(pipe);
5398                 } else {
5399                         if (pipe == 1)
5400                                 temp |= LVDS_PIPEB_SELECT;
5401                         else
5402                                 temp &= ~LVDS_PIPEB_SELECT;
5403                 }
5404
5405                 /* set the corresponsding LVDS_BORDER bit */
5406                 temp |= dev_priv->lvds_border_bits;
5407                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5408                  * set the DPLLs for dual-channel mode or not.
5409                  */
5410                 if (clock.p2 == 7)
5411                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5412                 else
5413                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5414
5415                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5416                  * appropriately here, but we need to look more thoroughly into how
5417                  * panels behave in the two modes.
5418                  */
5419                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5420                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5421                         temp |= LVDS_HSYNC_POLARITY;
5422                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5423                         temp |= LVDS_VSYNC_POLARITY;
5424                 I915_WRITE(PCH_LVDS, temp);
5425         }
5426
5427         if (is_dp && !is_cpu_edp) {
5428                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5429         } else {
5430                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5431                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5432                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5433                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5434                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5435         }
5436
5437         if (intel_crtc->pch_pll) {
5438                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5439
5440                 /* Wait for the clocks to stabilize. */
5441                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5442                 udelay(150);
5443
5444                 /* The pixel multiplier can only be updated once the
5445                  * DPLL is enabled and the clocks are stable.
5446                  *
5447                  * So write it again.
5448                  */
5449                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5450         }
5451
5452         intel_crtc->lowfreq_avail = false;
5453         if (intel_crtc->pch_pll) {
5454                 if (is_lvds && has_reduced_clock && i915_powersave) {
5455                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5456                         intel_crtc->lowfreq_avail = true;
5457                 } else {
5458                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5459                 }
5460         }
5461
5462         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5463
5464         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5465          * ironlake_check_fdi_lanes. */
5466         ironlake_set_m_n(crtc, mode, adjusted_mode);
5467
5468         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5469
5470         if (is_cpu_edp)
5471                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5472
5473         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5474
5475         intel_wait_for_vblank(dev, pipe);
5476
5477         /* Set up the display plane register */
5478         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5479         POSTING_READ(DSPCNTR(plane));
5480
5481         ret = intel_pipe_set_base(crtc, x, y, fb);
5482
5483         intel_update_watermarks(dev);
5484
5485         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5486
5487         return fdi_config_ok ? ret : -EINVAL;
5488 }
5489
5490 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5491                                  struct drm_display_mode *mode,
5492                                  struct drm_display_mode *adjusted_mode,
5493                                  int x, int y,
5494                                  struct drm_framebuffer *fb)
5495 {
5496         struct drm_device *dev = crtc->dev;
5497         struct drm_i915_private *dev_priv = dev->dev_private;
5498         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5499         int pipe = intel_crtc->pipe;
5500         int plane = intel_crtc->plane;
5501         int num_connectors = 0;
5502         intel_clock_t clock, reduced_clock;
5503         u32 dpll = 0, fp = 0, fp2 = 0;
5504         bool ok, has_reduced_clock = false;
5505         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5506         struct intel_encoder *encoder;
5507         u32 temp;
5508         int ret;
5509         bool dither;
5510
5511         for_each_encoder_on_crtc(dev, crtc, encoder) {
5512                 switch (encoder->type) {
5513                 case INTEL_OUTPUT_LVDS:
5514                         is_lvds = true;
5515                         break;
5516                 case INTEL_OUTPUT_DISPLAYPORT:
5517                         is_dp = true;
5518                         break;
5519                 case INTEL_OUTPUT_EDP:
5520                         is_dp = true;
5521                         if (!intel_encoder_is_pch_edp(&encoder->base))
5522                                 is_cpu_edp = true;
5523                         break;
5524                 }
5525
5526                 num_connectors++;
5527         }
5528
5529         if (is_cpu_edp)
5530                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5531         else
5532                 intel_crtc->cpu_transcoder = pipe;
5533
5534         /* We are not sure yet this won't happen. */
5535         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5536              INTEL_PCH_TYPE(dev));
5537
5538         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5539              num_connectors, pipe_name(pipe));
5540
5541         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5542                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5543
5544         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5545
5546         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5547                 return -EINVAL;
5548
5549         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5550                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5551                                              &has_reduced_clock,
5552                                              &reduced_clock);
5553                 if (!ok) {
5554                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5555                         return -EINVAL;
5556                 }
5557         }
5558
5559         /* Ensure that the cursor is valid for the new mode before changing... */
5560         intel_crtc_update_cursor(crtc, true);
5561
5562         /* determine panel color depth */
5563         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5564                                               adjusted_mode);
5565         if (is_lvds && dev_priv->lvds_dither)
5566                 dither = true;
5567
5568         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5569         drm_mode_debug_printmodeline(mode);
5570
5571         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5572                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5573                 if (has_reduced_clock)
5574                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5575                               reduced_clock.m2;
5576
5577                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5578                                              fp);
5579
5580                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5581                  * own on pre-Haswell/LPT generation */
5582                 if (!is_cpu_edp) {
5583                         struct intel_pch_pll *pll;
5584
5585                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5586                         if (pll == NULL) {
5587                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5588                                                  pipe);
5589                                 return -EINVAL;
5590                         }
5591                 } else
5592                         intel_put_pch_pll(intel_crtc);
5593
5594                 /* The LVDS pin pair needs to be on before the DPLLs are
5595                  * enabled.  This is an exception to the general rule that
5596                  * mode_set doesn't turn things on.
5597                  */
5598                 if (is_lvds) {
5599                         temp = I915_READ(PCH_LVDS);
5600                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5601                         if (HAS_PCH_CPT(dev)) {
5602                                 temp &= ~PORT_TRANS_SEL_MASK;
5603                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5604                         } else {
5605                                 if (pipe == 1)
5606                                         temp |= LVDS_PIPEB_SELECT;
5607                                 else
5608                                         temp &= ~LVDS_PIPEB_SELECT;
5609                         }
5610
5611                         /* set the corresponsding LVDS_BORDER bit */
5612                         temp |= dev_priv->lvds_border_bits;
5613                         /* Set the B0-B3 data pairs corresponding to whether
5614                          * we're going to set the DPLLs for dual-channel mode or
5615                          * not.
5616                          */
5617                         if (clock.p2 == 7)
5618                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5619                         else
5620                                 temp &= ~(LVDS_B0B3_POWER_UP |
5621                                           LVDS_CLKB_POWER_UP);
5622
5623                         /* It would be nice to set 24 vs 18-bit mode
5624                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5625                          * look more thoroughly into how panels behave in the
5626                          * two modes.
5627                          */
5628                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5629                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5630                                 temp |= LVDS_HSYNC_POLARITY;
5631                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5632                                 temp |= LVDS_VSYNC_POLARITY;
5633                         I915_WRITE(PCH_LVDS, temp);
5634                 }
5635         }
5636
5637         if (is_dp && !is_cpu_edp) {
5638                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5639         } else {
5640                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5641                         /* For non-DP output, clear any trans DP clock recovery
5642                          * setting.*/
5643                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5644                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5645                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5646                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5647                 }
5648         }
5649
5650         intel_crtc->lowfreq_avail = false;
5651         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5652                 if (intel_crtc->pch_pll) {
5653                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5654
5655                         /* Wait for the clocks to stabilize. */
5656                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5657                         udelay(150);
5658
5659                         /* The pixel multiplier can only be updated once the
5660                          * DPLL is enabled and the clocks are stable.
5661                          *
5662                          * So write it again.
5663                          */
5664                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5665                 }
5666
5667                 if (intel_crtc->pch_pll) {
5668                         if (is_lvds && has_reduced_clock && i915_powersave) {
5669                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5670                                 intel_crtc->lowfreq_avail = true;
5671                         } else {
5672                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5673                         }
5674                 }
5675         }
5676
5677         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5678
5679         if (!is_dp || is_cpu_edp)
5680                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5681
5682         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5683                 if (is_cpu_edp)
5684                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5685
5686         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5687
5688         /* Set up the display plane register */
5689         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5690         POSTING_READ(DSPCNTR(plane));
5691
5692         ret = intel_pipe_set_base(crtc, x, y, fb);
5693
5694         intel_update_watermarks(dev);
5695
5696         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5697
5698         return ret;
5699 }
5700
5701 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5702                                struct drm_display_mode *mode,
5703                                struct drm_display_mode *adjusted_mode,
5704                                int x, int y,
5705                                struct drm_framebuffer *fb)
5706 {
5707         struct drm_device *dev = crtc->dev;
5708         struct drm_i915_private *dev_priv = dev->dev_private;
5709         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5710         int pipe = intel_crtc->pipe;
5711         int ret;
5712
5713         drm_vblank_pre_modeset(dev, pipe);
5714
5715         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5716                                               x, y, fb);
5717         drm_vblank_post_modeset(dev, pipe);
5718
5719         return ret;
5720 }
5721
5722 static bool intel_eld_uptodate(struct drm_connector *connector,
5723                                int reg_eldv, uint32_t bits_eldv,
5724                                int reg_elda, uint32_t bits_elda,
5725                                int reg_edid)
5726 {
5727         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5728         uint8_t *eld = connector->eld;
5729         uint32_t i;
5730
5731         i = I915_READ(reg_eldv);
5732         i &= bits_eldv;
5733
5734         if (!eld[0])
5735                 return !i;
5736
5737         if (!i)
5738                 return false;
5739
5740         i = I915_READ(reg_elda);
5741         i &= ~bits_elda;
5742         I915_WRITE(reg_elda, i);
5743
5744         for (i = 0; i < eld[2]; i++)
5745                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5746                         return false;
5747
5748         return true;
5749 }
5750
5751 static void g4x_write_eld(struct drm_connector *connector,
5752                           struct drm_crtc *crtc)
5753 {
5754         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5755         uint8_t *eld = connector->eld;
5756         uint32_t eldv;
5757         uint32_t len;
5758         uint32_t i;
5759
5760         i = I915_READ(G4X_AUD_VID_DID);
5761
5762         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5763                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5764         else
5765                 eldv = G4X_ELDV_DEVCTG;
5766
5767         if (intel_eld_uptodate(connector,
5768                                G4X_AUD_CNTL_ST, eldv,
5769                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5770                                G4X_HDMIW_HDMIEDID))
5771                 return;
5772
5773         i = I915_READ(G4X_AUD_CNTL_ST);
5774         i &= ~(eldv | G4X_ELD_ADDR);
5775         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5776         I915_WRITE(G4X_AUD_CNTL_ST, i);
5777
5778         if (!eld[0])
5779                 return;
5780
5781         len = min_t(uint8_t, eld[2], len);
5782         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5783         for (i = 0; i < len; i++)
5784                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5785
5786         i = I915_READ(G4X_AUD_CNTL_ST);
5787         i |= eldv;
5788         I915_WRITE(G4X_AUD_CNTL_ST, i);
5789 }
5790
5791 static void haswell_write_eld(struct drm_connector *connector,
5792                                      struct drm_crtc *crtc)
5793 {
5794         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5795         uint8_t *eld = connector->eld;
5796         struct drm_device *dev = crtc->dev;
5797         uint32_t eldv;
5798         uint32_t i;
5799         int len;
5800         int pipe = to_intel_crtc(crtc)->pipe;
5801         int tmp;
5802
5803         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5804         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5805         int aud_config = HSW_AUD_CFG(pipe);
5806         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5807
5808
5809         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5810
5811         /* Audio output enable */
5812         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5813         tmp = I915_READ(aud_cntrl_st2);
5814         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5815         I915_WRITE(aud_cntrl_st2, tmp);
5816
5817         /* Wait for 1 vertical blank */
5818         intel_wait_for_vblank(dev, pipe);
5819
5820         /* Set ELD valid state */
5821         tmp = I915_READ(aud_cntrl_st2);
5822         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5823         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5824         I915_WRITE(aud_cntrl_st2, tmp);
5825         tmp = I915_READ(aud_cntrl_st2);
5826         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5827
5828         /* Enable HDMI mode */
5829         tmp = I915_READ(aud_config);
5830         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5831         /* clear N_programing_enable and N_value_index */
5832         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5833         I915_WRITE(aud_config, tmp);
5834
5835         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5836
5837         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5838
5839         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5840                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5841                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5842                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5843         } else
5844                 I915_WRITE(aud_config, 0);
5845
5846         if (intel_eld_uptodate(connector,
5847                                aud_cntrl_st2, eldv,
5848                                aud_cntl_st, IBX_ELD_ADDRESS,
5849                                hdmiw_hdmiedid))
5850                 return;
5851
5852         i = I915_READ(aud_cntrl_st2);
5853         i &= ~eldv;
5854         I915_WRITE(aud_cntrl_st2, i);
5855
5856         if (!eld[0])
5857                 return;
5858
5859         i = I915_READ(aud_cntl_st);
5860         i &= ~IBX_ELD_ADDRESS;
5861         I915_WRITE(aud_cntl_st, i);
5862         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5863         DRM_DEBUG_DRIVER("port num:%d\n", i);
5864
5865         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5866         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5867         for (i = 0; i < len; i++)
5868                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5869
5870         i = I915_READ(aud_cntrl_st2);
5871         i |= eldv;
5872         I915_WRITE(aud_cntrl_st2, i);
5873
5874 }
5875
5876 static void ironlake_write_eld(struct drm_connector *connector,
5877                                      struct drm_crtc *crtc)
5878 {
5879         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5880         uint8_t *eld = connector->eld;
5881         uint32_t eldv;
5882         uint32_t i;
5883         int len;
5884         int hdmiw_hdmiedid;
5885         int aud_config;
5886         int aud_cntl_st;
5887         int aud_cntrl_st2;
5888         int pipe = to_intel_crtc(crtc)->pipe;
5889
5890         if (HAS_PCH_IBX(connector->dev)) {
5891                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5892                 aud_config = IBX_AUD_CFG(pipe);
5893                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5894                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5895         } else {
5896                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5897                 aud_config = CPT_AUD_CFG(pipe);
5898                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5899                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5900         }
5901
5902         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5903
5904         i = I915_READ(aud_cntl_st);
5905         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5906         if (!i) {
5907                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5908                 /* operate blindly on all ports */
5909                 eldv = IBX_ELD_VALIDB;
5910                 eldv |= IBX_ELD_VALIDB << 4;
5911                 eldv |= IBX_ELD_VALIDB << 8;
5912         } else {
5913                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5914                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5915         }
5916
5917         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5918                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5919                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5920                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5921         } else
5922                 I915_WRITE(aud_config, 0);
5923
5924         if (intel_eld_uptodate(connector,
5925                                aud_cntrl_st2, eldv,
5926                                aud_cntl_st, IBX_ELD_ADDRESS,
5927                                hdmiw_hdmiedid))
5928                 return;
5929
5930         i = I915_READ(aud_cntrl_st2);
5931         i &= ~eldv;
5932         I915_WRITE(aud_cntrl_st2, i);
5933
5934         if (!eld[0])
5935                 return;
5936
5937         i = I915_READ(aud_cntl_st);
5938         i &= ~IBX_ELD_ADDRESS;
5939         I915_WRITE(aud_cntl_st, i);
5940
5941         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5942         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5943         for (i = 0; i < len; i++)
5944                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5945
5946         i = I915_READ(aud_cntrl_st2);
5947         i |= eldv;
5948         I915_WRITE(aud_cntrl_st2, i);
5949 }
5950
5951 void intel_write_eld(struct drm_encoder *encoder,
5952                      struct drm_display_mode *mode)
5953 {
5954         struct drm_crtc *crtc = encoder->crtc;
5955         struct drm_connector *connector;
5956         struct drm_device *dev = encoder->dev;
5957         struct drm_i915_private *dev_priv = dev->dev_private;
5958
5959         connector = drm_select_eld(encoder, mode);
5960         if (!connector)
5961                 return;
5962
5963         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5964                          connector->base.id,
5965                          drm_get_connector_name(connector),
5966                          connector->encoder->base.id,
5967                          drm_get_encoder_name(connector->encoder));
5968
5969         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5970
5971         if (dev_priv->display.write_eld)
5972                 dev_priv->display.write_eld(connector, crtc);
5973 }
5974
5975 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5976 void intel_crtc_load_lut(struct drm_crtc *crtc)
5977 {
5978         struct drm_device *dev = crtc->dev;
5979         struct drm_i915_private *dev_priv = dev->dev_private;
5980         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5981         int palreg = PALETTE(intel_crtc->pipe);
5982         int i;
5983
5984         /* The clocks have to be on to load the palette. */
5985         if (!crtc->enabled || !intel_crtc->active)
5986                 return;
5987
5988         /* use legacy palette for Ironlake */
5989         if (HAS_PCH_SPLIT(dev))
5990                 palreg = LGC_PALETTE(intel_crtc->pipe);
5991
5992         for (i = 0; i < 256; i++) {
5993                 I915_WRITE(palreg + 4 * i,
5994                            (intel_crtc->lut_r[i] << 16) |
5995                            (intel_crtc->lut_g[i] << 8) |
5996                            intel_crtc->lut_b[i]);
5997         }
5998 }
5999
6000 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6001 {
6002         struct drm_device *dev = crtc->dev;
6003         struct drm_i915_private *dev_priv = dev->dev_private;
6004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6005         bool visible = base != 0;
6006         u32 cntl;
6007
6008         if (intel_crtc->cursor_visible == visible)
6009                 return;
6010
6011         cntl = I915_READ(_CURACNTR);
6012         if (visible) {
6013                 /* On these chipsets we can only modify the base whilst
6014                  * the cursor is disabled.
6015                  */
6016                 I915_WRITE(_CURABASE, base);
6017
6018                 cntl &= ~(CURSOR_FORMAT_MASK);
6019                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6020                 cntl |= CURSOR_ENABLE |
6021                         CURSOR_GAMMA_ENABLE |
6022                         CURSOR_FORMAT_ARGB;
6023         } else
6024                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6025         I915_WRITE(_CURACNTR, cntl);
6026
6027         intel_crtc->cursor_visible = visible;
6028 }
6029
6030 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6031 {
6032         struct drm_device *dev = crtc->dev;
6033         struct drm_i915_private *dev_priv = dev->dev_private;
6034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6035         int pipe = intel_crtc->pipe;
6036         bool visible = base != 0;
6037
6038         if (intel_crtc->cursor_visible != visible) {
6039                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6040                 if (base) {
6041                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6042                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6043                         cntl |= pipe << 28; /* Connect to correct pipe */
6044                 } else {
6045                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6046                         cntl |= CURSOR_MODE_DISABLE;
6047                 }
6048                 I915_WRITE(CURCNTR(pipe), cntl);
6049
6050                 intel_crtc->cursor_visible = visible;
6051         }
6052         /* and commit changes on next vblank */
6053         I915_WRITE(CURBASE(pipe), base);
6054 }
6055
6056 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6057 {
6058         struct drm_device *dev = crtc->dev;
6059         struct drm_i915_private *dev_priv = dev->dev_private;
6060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6061         int pipe = intel_crtc->pipe;
6062         bool visible = base != 0;
6063
6064         if (intel_crtc->cursor_visible != visible) {
6065                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6066                 if (base) {
6067                         cntl &= ~CURSOR_MODE;
6068                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6069                 } else {
6070                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6071                         cntl |= CURSOR_MODE_DISABLE;
6072                 }
6073                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6074
6075                 intel_crtc->cursor_visible = visible;
6076         }
6077         /* and commit changes on next vblank */
6078         I915_WRITE(CURBASE_IVB(pipe), base);
6079 }
6080
6081 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6082 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6083                                      bool on)
6084 {
6085         struct drm_device *dev = crtc->dev;
6086         struct drm_i915_private *dev_priv = dev->dev_private;
6087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6088         int pipe = intel_crtc->pipe;
6089         int x = intel_crtc->cursor_x;
6090         int y = intel_crtc->cursor_y;
6091         u32 base, pos;
6092         bool visible;
6093
6094         pos = 0;
6095
6096         if (on && crtc->enabled && crtc->fb) {
6097                 base = intel_crtc->cursor_addr;
6098                 if (x > (int) crtc->fb->width)
6099                         base = 0;
6100
6101                 if (y > (int) crtc->fb->height)
6102                         base = 0;
6103         } else
6104                 base = 0;
6105
6106         if (x < 0) {
6107                 if (x + intel_crtc->cursor_width < 0)
6108                         base = 0;
6109
6110                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6111                 x = -x;
6112         }
6113         pos |= x << CURSOR_X_SHIFT;
6114
6115         if (y < 0) {
6116                 if (y + intel_crtc->cursor_height < 0)
6117                         base = 0;
6118
6119                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6120                 y = -y;
6121         }
6122         pos |= y << CURSOR_Y_SHIFT;
6123
6124         visible = base != 0;
6125         if (!visible && !intel_crtc->cursor_visible)
6126                 return;
6127
6128         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6129                 I915_WRITE(CURPOS_IVB(pipe), pos);
6130                 ivb_update_cursor(crtc, base);
6131         } else {
6132                 I915_WRITE(CURPOS(pipe), pos);
6133                 if (IS_845G(dev) || IS_I865G(dev))
6134                         i845_update_cursor(crtc, base);
6135                 else
6136                         i9xx_update_cursor(crtc, base);
6137         }
6138 }
6139
6140 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6141                                  struct drm_file *file,
6142                                  uint32_t handle,
6143                                  uint32_t width, uint32_t height)
6144 {
6145         struct drm_device *dev = crtc->dev;
6146         struct drm_i915_private *dev_priv = dev->dev_private;
6147         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6148         struct drm_i915_gem_object *obj;
6149         uint32_t addr;
6150         int ret;
6151
6152         /* if we want to turn off the cursor ignore width and height */
6153         if (!handle) {
6154                 DRM_DEBUG_KMS("cursor off\n");
6155                 addr = 0;
6156                 obj = NULL;
6157                 mutex_lock(&dev->struct_mutex);
6158                 goto finish;
6159         }
6160
6161         /* Currently we only support 64x64 cursors */
6162         if (width != 64 || height != 64) {
6163                 DRM_ERROR("we currently only support 64x64 cursors\n");
6164                 return -EINVAL;
6165         }
6166
6167         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6168         if (&obj->base == NULL)
6169                 return -ENOENT;
6170
6171         if (obj->base.size < width * height * 4) {
6172                 DRM_ERROR("buffer is to small\n");
6173                 ret = -ENOMEM;
6174                 goto fail;
6175         }
6176
6177         /* we only need to pin inside GTT if cursor is non-phy */
6178         mutex_lock(&dev->struct_mutex);
6179         if (!dev_priv->info->cursor_needs_physical) {
6180                 if (obj->tiling_mode) {
6181                         DRM_ERROR("cursor cannot be tiled\n");
6182                         ret = -EINVAL;
6183                         goto fail_locked;
6184                 }
6185
6186                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6187                 if (ret) {
6188                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6189                         goto fail_locked;
6190                 }
6191
6192                 ret = i915_gem_object_put_fence(obj);
6193                 if (ret) {
6194                         DRM_ERROR("failed to release fence for cursor");
6195                         goto fail_unpin;
6196                 }
6197
6198                 addr = obj->gtt_offset;
6199         } else {
6200                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6201                 ret = i915_gem_attach_phys_object(dev, obj,
6202                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6203                                                   align);
6204                 if (ret) {
6205                         DRM_ERROR("failed to attach phys object\n");
6206                         goto fail_locked;
6207                 }
6208                 addr = obj->phys_obj->handle->busaddr;
6209         }
6210
6211         if (IS_GEN2(dev))
6212                 I915_WRITE(CURSIZE, (height << 12) | width);
6213
6214  finish:
6215         if (intel_crtc->cursor_bo) {
6216                 if (dev_priv->info->cursor_needs_physical) {
6217                         if (intel_crtc->cursor_bo != obj)
6218                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6219                 } else
6220                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6221                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6222         }
6223
6224         mutex_unlock(&dev->struct_mutex);
6225
6226         intel_crtc->cursor_addr = addr;
6227         intel_crtc->cursor_bo = obj;
6228         intel_crtc->cursor_width = width;
6229         intel_crtc->cursor_height = height;
6230
6231         intel_crtc_update_cursor(crtc, true);
6232
6233         return 0;
6234 fail_unpin:
6235         i915_gem_object_unpin(obj);
6236 fail_locked:
6237         mutex_unlock(&dev->struct_mutex);
6238 fail:
6239         drm_gem_object_unreference_unlocked(&obj->base);
6240         return ret;
6241 }
6242
6243 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6244 {
6245         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6246
6247         intel_crtc->cursor_x = x;
6248         intel_crtc->cursor_y = y;
6249
6250         intel_crtc_update_cursor(crtc, true);
6251
6252         return 0;
6253 }
6254
6255 /** Sets the color ramps on behalf of RandR */
6256 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6257                                  u16 blue, int regno)
6258 {
6259         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6260
6261         intel_crtc->lut_r[regno] = red >> 8;
6262         intel_crtc->lut_g[regno] = green >> 8;
6263         intel_crtc->lut_b[regno] = blue >> 8;
6264 }
6265
6266 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6267                              u16 *blue, int regno)
6268 {
6269         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6270
6271         *red = intel_crtc->lut_r[regno] << 8;
6272         *green = intel_crtc->lut_g[regno] << 8;
6273         *blue = intel_crtc->lut_b[regno] << 8;
6274 }
6275
6276 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6277                                  u16 *blue, uint32_t start, uint32_t size)
6278 {
6279         int end = (start + size > 256) ? 256 : start + size, i;
6280         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6281
6282         for (i = start; i < end; i++) {
6283                 intel_crtc->lut_r[i] = red[i] >> 8;
6284                 intel_crtc->lut_g[i] = green[i] >> 8;
6285                 intel_crtc->lut_b[i] = blue[i] >> 8;
6286         }
6287
6288         intel_crtc_load_lut(crtc);
6289 }
6290
6291 /**
6292  * Get a pipe with a simple mode set on it for doing load-based monitor
6293  * detection.
6294  *
6295  * It will be up to the load-detect code to adjust the pipe as appropriate for
6296  * its requirements.  The pipe will be connected to no other encoders.
6297  *
6298  * Currently this code will only succeed if there is a pipe with no encoders
6299  * configured for it.  In the future, it could choose to temporarily disable
6300  * some outputs to free up a pipe for its use.
6301  *
6302  * \return crtc, or NULL if no pipes are available.
6303  */
6304
6305 /* VESA 640x480x72Hz mode to set on the pipe */
6306 static struct drm_display_mode load_detect_mode = {
6307         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6308                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6309 };
6310
6311 static struct drm_framebuffer *
6312 intel_framebuffer_create(struct drm_device *dev,
6313                          struct drm_mode_fb_cmd2 *mode_cmd,
6314                          struct drm_i915_gem_object *obj)
6315 {
6316         struct intel_framebuffer *intel_fb;
6317         int ret;
6318
6319         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6320         if (!intel_fb) {
6321                 drm_gem_object_unreference_unlocked(&obj->base);
6322                 return ERR_PTR(-ENOMEM);
6323         }
6324
6325         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6326         if (ret) {
6327                 drm_gem_object_unreference_unlocked(&obj->base);
6328                 kfree(intel_fb);
6329                 return ERR_PTR(ret);
6330         }
6331
6332         return &intel_fb->base;
6333 }
6334
6335 static u32
6336 intel_framebuffer_pitch_for_width(int width, int bpp)
6337 {
6338         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6339         return ALIGN(pitch, 64);
6340 }
6341
6342 static u32
6343 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6344 {
6345         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6346         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6347 }
6348
6349 static struct drm_framebuffer *
6350 intel_framebuffer_create_for_mode(struct drm_device *dev,
6351                                   struct drm_display_mode *mode,
6352                                   int depth, int bpp)
6353 {
6354         struct drm_i915_gem_object *obj;
6355         struct drm_mode_fb_cmd2 mode_cmd;
6356
6357         obj = i915_gem_alloc_object(dev,
6358                                     intel_framebuffer_size_for_mode(mode, bpp));
6359         if (obj == NULL)
6360                 return ERR_PTR(-ENOMEM);
6361
6362         mode_cmd.width = mode->hdisplay;
6363         mode_cmd.height = mode->vdisplay;
6364         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6365                                                                 bpp);
6366         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6367
6368         return intel_framebuffer_create(dev, &mode_cmd, obj);
6369 }
6370
6371 static struct drm_framebuffer *
6372 mode_fits_in_fbdev(struct drm_device *dev,
6373                    struct drm_display_mode *mode)
6374 {
6375         struct drm_i915_private *dev_priv = dev->dev_private;
6376         struct drm_i915_gem_object *obj;
6377         struct drm_framebuffer *fb;
6378
6379         if (dev_priv->fbdev == NULL)
6380                 return NULL;
6381
6382         obj = dev_priv->fbdev->ifb.obj;
6383         if (obj == NULL)
6384                 return NULL;
6385
6386         fb = &dev_priv->fbdev->ifb.base;
6387         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6388                                                                fb->bits_per_pixel))
6389                 return NULL;
6390
6391         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6392                 return NULL;
6393
6394         return fb;
6395 }
6396
6397 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6398                                 struct drm_display_mode *mode,
6399                                 struct intel_load_detect_pipe *old)
6400 {
6401         struct intel_crtc *intel_crtc;
6402         struct intel_encoder *intel_encoder =
6403                 intel_attached_encoder(connector);
6404         struct drm_crtc *possible_crtc;
6405         struct drm_encoder *encoder = &intel_encoder->base;
6406         struct drm_crtc *crtc = NULL;
6407         struct drm_device *dev = encoder->dev;
6408         struct drm_framebuffer *fb;
6409         int i = -1;
6410
6411         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6412                       connector->base.id, drm_get_connector_name(connector),
6413                       encoder->base.id, drm_get_encoder_name(encoder));
6414
6415         /*
6416          * Algorithm gets a little messy:
6417          *
6418          *   - if the connector already has an assigned crtc, use it (but make
6419          *     sure it's on first)
6420          *
6421          *   - try to find the first unused crtc that can drive this connector,
6422          *     and use that if we find one
6423          */
6424
6425         /* See if we already have a CRTC for this connector */
6426         if (encoder->crtc) {
6427                 crtc = encoder->crtc;
6428
6429                 old->dpms_mode = connector->dpms;
6430                 old->load_detect_temp = false;
6431
6432                 /* Make sure the crtc and connector are running */
6433                 if (connector->dpms != DRM_MODE_DPMS_ON)
6434                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6435
6436                 return true;
6437         }
6438
6439         /* Find an unused one (if possible) */
6440         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6441                 i++;
6442                 if (!(encoder->possible_crtcs & (1 << i)))
6443                         continue;
6444                 if (!possible_crtc->enabled) {
6445                         crtc = possible_crtc;
6446                         break;
6447                 }
6448         }
6449
6450         /*
6451          * If we didn't find an unused CRTC, don't use any.
6452          */
6453         if (!crtc) {
6454                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6455                 return false;
6456         }
6457
6458         intel_encoder->new_crtc = to_intel_crtc(crtc);
6459         to_intel_connector(connector)->new_encoder = intel_encoder;
6460
6461         intel_crtc = to_intel_crtc(crtc);
6462         old->dpms_mode = connector->dpms;
6463         old->load_detect_temp = true;
6464         old->release_fb = NULL;
6465
6466         if (!mode)
6467                 mode = &load_detect_mode;
6468
6469         /* We need a framebuffer large enough to accommodate all accesses
6470          * that the plane may generate whilst we perform load detection.
6471          * We can not rely on the fbcon either being present (we get called
6472          * during its initialisation to detect all boot displays, or it may
6473          * not even exist) or that it is large enough to satisfy the
6474          * requested mode.
6475          */
6476         fb = mode_fits_in_fbdev(dev, mode);
6477         if (fb == NULL) {
6478                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6479                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6480                 old->release_fb = fb;
6481         } else
6482                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6483         if (IS_ERR(fb)) {
6484                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6485                 goto fail;
6486         }
6487
6488         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6489                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6490                 if (old->release_fb)
6491                         old->release_fb->funcs->destroy(old->release_fb);
6492                 goto fail;
6493         }
6494
6495         /* let the connector get through one full cycle before testing */
6496         intel_wait_for_vblank(dev, intel_crtc->pipe);
6497
6498         return true;
6499 fail:
6500         connector->encoder = NULL;
6501         encoder->crtc = NULL;
6502         return false;
6503 }
6504
6505 void intel_release_load_detect_pipe(struct drm_connector *connector,
6506                                     struct intel_load_detect_pipe *old)
6507 {
6508         struct intel_encoder *intel_encoder =
6509                 intel_attached_encoder(connector);
6510         struct drm_encoder *encoder = &intel_encoder->base;
6511
6512         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6513                       connector->base.id, drm_get_connector_name(connector),
6514                       encoder->base.id, drm_get_encoder_name(encoder));
6515
6516         if (old->load_detect_temp) {
6517                 struct drm_crtc *crtc = encoder->crtc;
6518
6519                 to_intel_connector(connector)->new_encoder = NULL;
6520                 intel_encoder->new_crtc = NULL;
6521                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6522
6523                 if (old->release_fb)
6524                         old->release_fb->funcs->destroy(old->release_fb);
6525
6526                 return;
6527         }
6528
6529         /* Switch crtc and encoder back off if necessary */
6530         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6531                 connector->funcs->dpms(connector, old->dpms_mode);
6532 }
6533
6534 /* Returns the clock of the currently programmed mode of the given pipe. */
6535 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6536 {
6537         struct drm_i915_private *dev_priv = dev->dev_private;
6538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6539         int pipe = intel_crtc->pipe;
6540         u32 dpll = I915_READ(DPLL(pipe));
6541         u32 fp;
6542         intel_clock_t clock;
6543
6544         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6545                 fp = I915_READ(FP0(pipe));
6546         else
6547                 fp = I915_READ(FP1(pipe));
6548
6549         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6550         if (IS_PINEVIEW(dev)) {
6551                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6552                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6553         } else {
6554                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6555                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6556         }
6557
6558         if (!IS_GEN2(dev)) {
6559                 if (IS_PINEVIEW(dev))
6560                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6561                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6562                 else
6563                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6564                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6565
6566                 switch (dpll & DPLL_MODE_MASK) {
6567                 case DPLLB_MODE_DAC_SERIAL:
6568                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6569                                 5 : 10;
6570                         break;
6571                 case DPLLB_MODE_LVDS:
6572                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6573                                 7 : 14;
6574                         break;
6575                 default:
6576                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6577                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6578                         return 0;
6579                 }
6580
6581                 /* XXX: Handle the 100Mhz refclk */
6582                 intel_clock(dev, 96000, &clock);
6583         } else {
6584                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6585
6586                 if (is_lvds) {
6587                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6588                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6589                         clock.p2 = 14;
6590
6591                         if ((dpll & PLL_REF_INPUT_MASK) ==
6592                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6593                                 /* XXX: might not be 66MHz */
6594                                 intel_clock(dev, 66000, &clock);
6595                         } else
6596                                 intel_clock(dev, 48000, &clock);
6597                 } else {
6598                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6599                                 clock.p1 = 2;
6600                         else {
6601                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6602                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6603                         }
6604                         if (dpll & PLL_P2_DIVIDE_BY_4)
6605                                 clock.p2 = 4;
6606                         else
6607                                 clock.p2 = 2;
6608
6609                         intel_clock(dev, 48000, &clock);
6610                 }
6611         }
6612
6613         /* XXX: It would be nice to validate the clocks, but we can't reuse
6614          * i830PllIsValid() because it relies on the xf86_config connector
6615          * configuration being accurate, which it isn't necessarily.
6616          */
6617
6618         return clock.dot;
6619 }
6620
6621 /** Returns the currently programmed mode of the given pipe. */
6622 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6623                                              struct drm_crtc *crtc)
6624 {
6625         struct drm_i915_private *dev_priv = dev->dev_private;
6626         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6627         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6628         struct drm_display_mode *mode;
6629         int htot = I915_READ(HTOTAL(cpu_transcoder));
6630         int hsync = I915_READ(HSYNC(cpu_transcoder));
6631         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6632         int vsync = I915_READ(VSYNC(cpu_transcoder));
6633
6634         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6635         if (!mode)
6636                 return NULL;
6637
6638         mode->clock = intel_crtc_clock_get(dev, crtc);
6639         mode->hdisplay = (htot & 0xffff) + 1;
6640         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6641         mode->hsync_start = (hsync & 0xffff) + 1;
6642         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6643         mode->vdisplay = (vtot & 0xffff) + 1;
6644         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6645         mode->vsync_start = (vsync & 0xffff) + 1;
6646         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6647
6648         drm_mode_set_name(mode);
6649
6650         return mode;
6651 }
6652
6653 static void intel_increase_pllclock(struct drm_crtc *crtc)
6654 {
6655         struct drm_device *dev = crtc->dev;
6656         drm_i915_private_t *dev_priv = dev->dev_private;
6657         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6658         int pipe = intel_crtc->pipe;
6659         int dpll_reg = DPLL(pipe);
6660         int dpll;
6661
6662         if (HAS_PCH_SPLIT(dev))
6663                 return;
6664
6665         if (!dev_priv->lvds_downclock_avail)
6666                 return;
6667
6668         dpll = I915_READ(dpll_reg);
6669         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6670                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6671
6672                 assert_panel_unlocked(dev_priv, pipe);
6673
6674                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6675                 I915_WRITE(dpll_reg, dpll);
6676                 intel_wait_for_vblank(dev, pipe);
6677
6678                 dpll = I915_READ(dpll_reg);
6679                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6680                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6681         }
6682 }
6683
6684 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6685 {
6686         struct drm_device *dev = crtc->dev;
6687         drm_i915_private_t *dev_priv = dev->dev_private;
6688         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6689
6690         if (HAS_PCH_SPLIT(dev))
6691                 return;
6692
6693         if (!dev_priv->lvds_downclock_avail)
6694                 return;
6695
6696         /*
6697          * Since this is called by a timer, we should never get here in
6698          * the manual case.
6699          */
6700         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6701                 int pipe = intel_crtc->pipe;
6702                 int dpll_reg = DPLL(pipe);
6703                 int dpll;
6704
6705                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6706
6707                 assert_panel_unlocked(dev_priv, pipe);
6708
6709                 dpll = I915_READ(dpll_reg);
6710                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6711                 I915_WRITE(dpll_reg, dpll);
6712                 intel_wait_for_vblank(dev, pipe);
6713                 dpll = I915_READ(dpll_reg);
6714                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6715                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6716         }
6717
6718 }
6719
6720 void intel_mark_busy(struct drm_device *dev)
6721 {
6722         i915_update_gfx_val(dev->dev_private);
6723 }
6724
6725 void intel_mark_idle(struct drm_device *dev)
6726 {
6727 }
6728
6729 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6730 {
6731         struct drm_device *dev = obj->base.dev;
6732         struct drm_crtc *crtc;
6733
6734         if (!i915_powersave)
6735                 return;
6736
6737         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6738                 if (!crtc->fb)
6739                         continue;
6740
6741                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6742                         intel_increase_pllclock(crtc);
6743         }
6744 }
6745
6746 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6747 {
6748         struct drm_device *dev = obj->base.dev;
6749         struct drm_crtc *crtc;
6750
6751         if (!i915_powersave)
6752                 return;
6753
6754         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6755                 if (!crtc->fb)
6756                         continue;
6757
6758                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6759                         intel_decrease_pllclock(crtc);
6760         }
6761 }
6762
6763 static void intel_crtc_destroy(struct drm_crtc *crtc)
6764 {
6765         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6766         struct drm_device *dev = crtc->dev;
6767         struct intel_unpin_work *work;
6768         unsigned long flags;
6769
6770         spin_lock_irqsave(&dev->event_lock, flags);
6771         work = intel_crtc->unpin_work;
6772         intel_crtc->unpin_work = NULL;
6773         spin_unlock_irqrestore(&dev->event_lock, flags);
6774
6775         if (work) {
6776                 cancel_work_sync(&work->work);
6777                 kfree(work);
6778         }
6779
6780         drm_crtc_cleanup(crtc);
6781
6782         kfree(intel_crtc);
6783 }
6784
6785 static void intel_unpin_work_fn(struct work_struct *__work)
6786 {
6787         struct intel_unpin_work *work =
6788                 container_of(__work, struct intel_unpin_work, work);
6789
6790         mutex_lock(&work->dev->struct_mutex);
6791         intel_unpin_fb_obj(work->old_fb_obj);
6792         drm_gem_object_unreference(&work->pending_flip_obj->base);
6793         drm_gem_object_unreference(&work->old_fb_obj->base);
6794
6795         intel_update_fbc(work->dev);
6796         mutex_unlock(&work->dev->struct_mutex);
6797         kfree(work);
6798 }
6799
6800 static void do_intel_finish_page_flip(struct drm_device *dev,
6801                                       struct drm_crtc *crtc)
6802 {
6803         drm_i915_private_t *dev_priv = dev->dev_private;
6804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6805         struct intel_unpin_work *work;
6806         struct drm_i915_gem_object *obj;
6807         struct drm_pending_vblank_event *e;
6808         struct timeval tvbl;
6809         unsigned long flags;
6810
6811         /* Ignore early vblank irqs */
6812         if (intel_crtc == NULL)
6813                 return;
6814
6815         spin_lock_irqsave(&dev->event_lock, flags);
6816         work = intel_crtc->unpin_work;
6817         if (work == NULL || !work->pending) {
6818                 spin_unlock_irqrestore(&dev->event_lock, flags);
6819                 return;
6820         }
6821
6822         intel_crtc->unpin_work = NULL;
6823
6824         if (work->event) {
6825                 e = work->event;
6826                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6827
6828                 e->event.tv_sec = tvbl.tv_sec;
6829                 e->event.tv_usec = tvbl.tv_usec;
6830
6831                 list_add_tail(&e->base.link,
6832                               &e->base.file_priv->event_list);
6833                 wake_up_interruptible(&e->base.file_priv->event_wait);
6834         }
6835
6836         drm_vblank_put(dev, intel_crtc->pipe);
6837
6838         spin_unlock_irqrestore(&dev->event_lock, flags);
6839
6840         obj = work->old_fb_obj;
6841
6842         atomic_clear_mask(1 << intel_crtc->plane,
6843                           &obj->pending_flip.counter);
6844
6845         wake_up(&dev_priv->pending_flip_queue);
6846         schedule_work(&work->work);
6847
6848         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6849 }
6850
6851 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6852 {
6853         drm_i915_private_t *dev_priv = dev->dev_private;
6854         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6855
6856         do_intel_finish_page_flip(dev, crtc);
6857 }
6858
6859 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6860 {
6861         drm_i915_private_t *dev_priv = dev->dev_private;
6862         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6863
6864         do_intel_finish_page_flip(dev, crtc);
6865 }
6866
6867 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6868 {
6869         drm_i915_private_t *dev_priv = dev->dev_private;
6870         struct intel_crtc *intel_crtc =
6871                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6872         unsigned long flags;
6873
6874         spin_lock_irqsave(&dev->event_lock, flags);
6875         if (intel_crtc->unpin_work) {
6876                 if ((++intel_crtc->unpin_work->pending) > 1)
6877                         DRM_ERROR("Prepared flip multiple times\n");
6878         } else {
6879                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6880         }
6881         spin_unlock_irqrestore(&dev->event_lock, flags);
6882 }
6883
6884 static int intel_gen2_queue_flip(struct drm_device *dev,
6885                                  struct drm_crtc *crtc,
6886                                  struct drm_framebuffer *fb,
6887                                  struct drm_i915_gem_object *obj)
6888 {
6889         struct drm_i915_private *dev_priv = dev->dev_private;
6890         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6891         u32 flip_mask;
6892         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6893         int ret;
6894
6895         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6896         if (ret)
6897                 goto err;
6898
6899         ret = intel_ring_begin(ring, 6);
6900         if (ret)
6901                 goto err_unpin;
6902
6903         /* Can't queue multiple flips, so wait for the previous
6904          * one to finish before executing the next.
6905          */
6906         if (intel_crtc->plane)
6907                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6908         else
6909                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6910         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6911         intel_ring_emit(ring, MI_NOOP);
6912         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6913                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6914         intel_ring_emit(ring, fb->pitches[0]);
6915         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6916         intel_ring_emit(ring, 0); /* aux display base address, unused */
6917         intel_ring_advance(ring);
6918         return 0;
6919
6920 err_unpin:
6921         intel_unpin_fb_obj(obj);
6922 err:
6923         return ret;
6924 }
6925
6926 static int intel_gen3_queue_flip(struct drm_device *dev,
6927                                  struct drm_crtc *crtc,
6928                                  struct drm_framebuffer *fb,
6929                                  struct drm_i915_gem_object *obj)
6930 {
6931         struct drm_i915_private *dev_priv = dev->dev_private;
6932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6933         u32 flip_mask;
6934         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6935         int ret;
6936
6937         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6938         if (ret)
6939                 goto err;
6940
6941         ret = intel_ring_begin(ring, 6);
6942         if (ret)
6943                 goto err_unpin;
6944
6945         if (intel_crtc->plane)
6946                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6947         else
6948                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6949         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6950         intel_ring_emit(ring, MI_NOOP);
6951         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6952                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6953         intel_ring_emit(ring, fb->pitches[0]);
6954         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6955         intel_ring_emit(ring, MI_NOOP);
6956
6957         intel_ring_advance(ring);
6958         return 0;
6959
6960 err_unpin:
6961         intel_unpin_fb_obj(obj);
6962 err:
6963         return ret;
6964 }
6965
6966 static int intel_gen4_queue_flip(struct drm_device *dev,
6967                                  struct drm_crtc *crtc,
6968                                  struct drm_framebuffer *fb,
6969                                  struct drm_i915_gem_object *obj)
6970 {
6971         struct drm_i915_private *dev_priv = dev->dev_private;
6972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6973         uint32_t pf, pipesrc;
6974         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6975         int ret;
6976
6977         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6978         if (ret)
6979                 goto err;
6980
6981         ret = intel_ring_begin(ring, 4);
6982         if (ret)
6983                 goto err_unpin;
6984
6985         /* i965+ uses the linear or tiled offsets from the
6986          * Display Registers (which do not change across a page-flip)
6987          * so we need only reprogram the base address.
6988          */
6989         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6990                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6991         intel_ring_emit(ring, fb->pitches[0]);
6992         intel_ring_emit(ring,
6993                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6994                         obj->tiling_mode);
6995
6996         /* XXX Enabling the panel-fitter across page-flip is so far
6997          * untested on non-native modes, so ignore it for now.
6998          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6999          */
7000         pf = 0;
7001         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7002         intel_ring_emit(ring, pf | pipesrc);
7003         intel_ring_advance(ring);
7004         return 0;
7005
7006 err_unpin:
7007         intel_unpin_fb_obj(obj);
7008 err:
7009         return ret;
7010 }
7011
7012 static int intel_gen6_queue_flip(struct drm_device *dev,
7013                                  struct drm_crtc *crtc,
7014                                  struct drm_framebuffer *fb,
7015                                  struct drm_i915_gem_object *obj)
7016 {
7017         struct drm_i915_private *dev_priv = dev->dev_private;
7018         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7019         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7020         uint32_t pf, pipesrc;
7021         int ret;
7022
7023         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7024         if (ret)
7025                 goto err;
7026
7027         ret = intel_ring_begin(ring, 4);
7028         if (ret)
7029                 goto err_unpin;
7030
7031         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7032                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7033         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7034         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7035
7036         /* Contrary to the suggestions in the documentation,
7037          * "Enable Panel Fitter" does not seem to be required when page
7038          * flipping with a non-native mode, and worse causes a normal
7039          * modeset to fail.
7040          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7041          */
7042         pf = 0;
7043         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7044         intel_ring_emit(ring, pf | pipesrc);
7045         intel_ring_advance(ring);
7046         return 0;
7047
7048 err_unpin:
7049         intel_unpin_fb_obj(obj);
7050 err:
7051         return ret;
7052 }
7053
7054 /*
7055  * On gen7 we currently use the blit ring because (in early silicon at least)
7056  * the render ring doesn't give us interrpts for page flip completion, which
7057  * means clients will hang after the first flip is queued.  Fortunately the
7058  * blit ring generates interrupts properly, so use it instead.
7059  */
7060 static int intel_gen7_queue_flip(struct drm_device *dev,
7061                                  struct drm_crtc *crtc,
7062                                  struct drm_framebuffer *fb,
7063                                  struct drm_i915_gem_object *obj)
7064 {
7065         struct drm_i915_private *dev_priv = dev->dev_private;
7066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7067         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7068         uint32_t plane_bit = 0;
7069         int ret;
7070
7071         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7072         if (ret)
7073                 goto err;
7074
7075         switch(intel_crtc->plane) {
7076         case PLANE_A:
7077                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7078                 break;
7079         case PLANE_B:
7080                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7081                 break;
7082         case PLANE_C:
7083                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7084                 break;
7085         default:
7086                 WARN_ONCE(1, "unknown plane in flip command\n");
7087                 ret = -ENODEV;
7088                 goto err_unpin;
7089         }
7090
7091         ret = intel_ring_begin(ring, 4);
7092         if (ret)
7093                 goto err_unpin;
7094
7095         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7096         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7097         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7098         intel_ring_emit(ring, (MI_NOOP));
7099         intel_ring_advance(ring);
7100         return 0;
7101
7102 err_unpin:
7103         intel_unpin_fb_obj(obj);
7104 err:
7105         return ret;
7106 }
7107
7108 static int intel_default_queue_flip(struct drm_device *dev,
7109                                     struct drm_crtc *crtc,
7110                                     struct drm_framebuffer *fb,
7111                                     struct drm_i915_gem_object *obj)
7112 {
7113         return -ENODEV;
7114 }
7115
7116 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7117                                 struct drm_framebuffer *fb,
7118                                 struct drm_pending_vblank_event *event)
7119 {
7120         struct drm_device *dev = crtc->dev;
7121         struct drm_i915_private *dev_priv = dev->dev_private;
7122         struct intel_framebuffer *intel_fb;
7123         struct drm_i915_gem_object *obj;
7124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7125         struct intel_unpin_work *work;
7126         unsigned long flags;
7127         int ret;
7128
7129         /* Can't change pixel format via MI display flips. */
7130         if (fb->pixel_format != crtc->fb->pixel_format)
7131                 return -EINVAL;
7132
7133         /*
7134          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7135          * Note that pitch changes could also affect these register.
7136          */
7137         if (INTEL_INFO(dev)->gen > 3 &&
7138             (fb->offsets[0] != crtc->fb->offsets[0] ||
7139              fb->pitches[0] != crtc->fb->pitches[0]))
7140                 return -EINVAL;
7141
7142         work = kzalloc(sizeof *work, GFP_KERNEL);
7143         if (work == NULL)
7144                 return -ENOMEM;
7145
7146         work->event = event;
7147         work->dev = crtc->dev;
7148         intel_fb = to_intel_framebuffer(crtc->fb);
7149         work->old_fb_obj = intel_fb->obj;
7150         INIT_WORK(&work->work, intel_unpin_work_fn);
7151
7152         ret = drm_vblank_get(dev, intel_crtc->pipe);
7153         if (ret)
7154                 goto free_work;
7155
7156         /* We borrow the event spin lock for protecting unpin_work */
7157         spin_lock_irqsave(&dev->event_lock, flags);
7158         if (intel_crtc->unpin_work) {
7159                 spin_unlock_irqrestore(&dev->event_lock, flags);
7160                 kfree(work);
7161                 drm_vblank_put(dev, intel_crtc->pipe);
7162
7163                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7164                 return -EBUSY;
7165         }
7166         intel_crtc->unpin_work = work;
7167         spin_unlock_irqrestore(&dev->event_lock, flags);
7168
7169         intel_fb = to_intel_framebuffer(fb);
7170         obj = intel_fb->obj;
7171
7172         ret = i915_mutex_lock_interruptible(dev);
7173         if (ret)
7174                 goto cleanup;
7175
7176         /* Reference the objects for the scheduled work. */
7177         drm_gem_object_reference(&work->old_fb_obj->base);
7178         drm_gem_object_reference(&obj->base);
7179
7180         crtc->fb = fb;
7181
7182         work->pending_flip_obj = obj;
7183
7184         work->enable_stall_check = true;
7185
7186         /* Block clients from rendering to the new back buffer until
7187          * the flip occurs and the object is no longer visible.
7188          */
7189         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7190
7191         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7192         if (ret)
7193                 goto cleanup_pending;
7194
7195         intel_disable_fbc(dev);
7196         intel_mark_fb_busy(obj);
7197         mutex_unlock(&dev->struct_mutex);
7198
7199         trace_i915_flip_request(intel_crtc->plane, obj);
7200
7201         return 0;
7202
7203 cleanup_pending:
7204         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7205         drm_gem_object_unreference(&work->old_fb_obj->base);
7206         drm_gem_object_unreference(&obj->base);
7207         mutex_unlock(&dev->struct_mutex);
7208
7209 cleanup:
7210         spin_lock_irqsave(&dev->event_lock, flags);
7211         intel_crtc->unpin_work = NULL;
7212         spin_unlock_irqrestore(&dev->event_lock, flags);
7213
7214         drm_vblank_put(dev, intel_crtc->pipe);
7215 free_work:
7216         kfree(work);
7217
7218         return ret;
7219 }
7220
7221 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7222         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7223         .load_lut = intel_crtc_load_lut,
7224         .disable = intel_crtc_noop,
7225 };
7226
7227 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7228 {
7229         struct intel_encoder *other_encoder;
7230         struct drm_crtc *crtc = &encoder->new_crtc->base;
7231
7232         if (WARN_ON(!crtc))
7233                 return false;
7234
7235         list_for_each_entry(other_encoder,
7236                             &crtc->dev->mode_config.encoder_list,
7237                             base.head) {
7238
7239                 if (&other_encoder->new_crtc->base != crtc ||
7240                     encoder == other_encoder)
7241                         continue;
7242                 else
7243                         return true;
7244         }
7245
7246         return false;
7247 }
7248
7249 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7250                                   struct drm_crtc *crtc)
7251 {
7252         struct drm_device *dev;
7253         struct drm_crtc *tmp;
7254         int crtc_mask = 1;
7255
7256         WARN(!crtc, "checking null crtc?\n");
7257
7258         dev = crtc->dev;
7259
7260         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7261                 if (tmp == crtc)
7262                         break;
7263                 crtc_mask <<= 1;
7264         }
7265
7266         if (encoder->possible_crtcs & crtc_mask)
7267                 return true;
7268         return false;
7269 }
7270
7271 /**
7272  * intel_modeset_update_staged_output_state
7273  *
7274  * Updates the staged output configuration state, e.g. after we've read out the
7275  * current hw state.
7276  */
7277 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7278 {
7279         struct intel_encoder *encoder;
7280         struct intel_connector *connector;
7281
7282         list_for_each_entry(connector, &dev->mode_config.connector_list,
7283                             base.head) {
7284                 connector->new_encoder =
7285                         to_intel_encoder(connector->base.encoder);
7286         }
7287
7288         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7289                             base.head) {
7290                 encoder->new_crtc =
7291                         to_intel_crtc(encoder->base.crtc);
7292         }
7293 }
7294
7295 /**
7296  * intel_modeset_commit_output_state
7297  *
7298  * This function copies the stage display pipe configuration to the real one.
7299  */
7300 static void intel_modeset_commit_output_state(struct drm_device *dev)
7301 {
7302         struct intel_encoder *encoder;
7303         struct intel_connector *connector;
7304
7305         list_for_each_entry(connector, &dev->mode_config.connector_list,
7306                             base.head) {
7307                 connector->base.encoder = &connector->new_encoder->base;
7308         }
7309
7310         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7311                             base.head) {
7312                 encoder->base.crtc = &encoder->new_crtc->base;
7313         }
7314 }
7315
7316 static struct drm_display_mode *
7317 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7318                             struct drm_display_mode *mode)
7319 {
7320         struct drm_device *dev = crtc->dev;
7321         struct drm_display_mode *adjusted_mode;
7322         struct drm_encoder_helper_funcs *encoder_funcs;
7323         struct intel_encoder *encoder;
7324
7325         adjusted_mode = drm_mode_duplicate(dev, mode);
7326         if (!adjusted_mode)
7327                 return ERR_PTR(-ENOMEM);
7328
7329         /* Pass our mode to the connectors and the CRTC to give them a chance to
7330          * adjust it according to limitations or connector properties, and also
7331          * a chance to reject the mode entirely.
7332          */
7333         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7334                             base.head) {
7335
7336                 if (&encoder->new_crtc->base != crtc)
7337                         continue;
7338                 encoder_funcs = encoder->base.helper_private;
7339                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7340                                                 adjusted_mode))) {
7341                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7342                         goto fail;
7343                 }
7344         }
7345
7346         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7347                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7348                 goto fail;
7349         }
7350         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7351
7352         return adjusted_mode;
7353 fail:
7354         drm_mode_destroy(dev, adjusted_mode);
7355         return ERR_PTR(-EINVAL);
7356 }
7357
7358 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7359  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7360 static void
7361 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7362                              unsigned *prepare_pipes, unsigned *disable_pipes)
7363 {
7364         struct intel_crtc *intel_crtc;
7365         struct drm_device *dev = crtc->dev;
7366         struct intel_encoder *encoder;
7367         struct intel_connector *connector;
7368         struct drm_crtc *tmp_crtc;
7369
7370         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7371
7372         /* Check which crtcs have changed outputs connected to them, these need
7373          * to be part of the prepare_pipes mask. We don't (yet) support global
7374          * modeset across multiple crtcs, so modeset_pipes will only have one
7375          * bit set at most. */
7376         list_for_each_entry(connector, &dev->mode_config.connector_list,
7377                             base.head) {
7378                 if (connector->base.encoder == &connector->new_encoder->base)
7379                         continue;
7380
7381                 if (connector->base.encoder) {
7382                         tmp_crtc = connector->base.encoder->crtc;
7383
7384                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7385                 }
7386
7387                 if (connector->new_encoder)
7388                         *prepare_pipes |=
7389                                 1 << connector->new_encoder->new_crtc->pipe;
7390         }
7391
7392         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7393                             base.head) {
7394                 if (encoder->base.crtc == &encoder->new_crtc->base)
7395                         continue;
7396
7397                 if (encoder->base.crtc) {
7398                         tmp_crtc = encoder->base.crtc;
7399
7400                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7401                 }
7402
7403                 if (encoder->new_crtc)
7404                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7405         }
7406
7407         /* Check for any pipes that will be fully disabled ... */
7408         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7409                             base.head) {
7410                 bool used = false;
7411
7412                 /* Don't try to disable disabled crtcs. */
7413                 if (!intel_crtc->base.enabled)
7414                         continue;
7415
7416                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7417                                     base.head) {
7418                         if (encoder->new_crtc == intel_crtc)
7419                                 used = true;
7420                 }
7421
7422                 if (!used)
7423                         *disable_pipes |= 1 << intel_crtc->pipe;
7424         }
7425
7426
7427         /* set_mode is also used to update properties on life display pipes. */
7428         intel_crtc = to_intel_crtc(crtc);
7429         if (crtc->enabled)
7430                 *prepare_pipes |= 1 << intel_crtc->pipe;
7431
7432         /* We only support modeset on one single crtc, hence we need to do that
7433          * only for the passed in crtc iff we change anything else than just
7434          * disable crtcs.
7435          *
7436          * This is actually not true, to be fully compatible with the old crtc
7437          * helper we automatically disable _any_ output (i.e. doesn't need to be
7438          * connected to the crtc we're modesetting on) if it's disconnected.
7439          * Which is a rather nutty api (since changed the output configuration
7440          * without userspace's explicit request can lead to confusion), but
7441          * alas. Hence we currently need to modeset on all pipes we prepare. */
7442         if (*prepare_pipes)
7443                 *modeset_pipes = *prepare_pipes;
7444
7445         /* ... and mask these out. */
7446         *modeset_pipes &= ~(*disable_pipes);
7447         *prepare_pipes &= ~(*disable_pipes);
7448 }
7449
7450 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7451 {
7452         struct drm_encoder *encoder;
7453         struct drm_device *dev = crtc->dev;
7454
7455         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7456                 if (encoder->crtc == crtc)
7457                         return true;
7458
7459         return false;
7460 }
7461
7462 static void
7463 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7464 {
7465         struct intel_encoder *intel_encoder;
7466         struct intel_crtc *intel_crtc;
7467         struct drm_connector *connector;
7468
7469         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7470                             base.head) {
7471                 if (!intel_encoder->base.crtc)
7472                         continue;
7473
7474                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7475
7476                 if (prepare_pipes & (1 << intel_crtc->pipe))
7477                         intel_encoder->connectors_active = false;
7478         }
7479
7480         intel_modeset_commit_output_state(dev);
7481
7482         /* Update computed state. */
7483         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7484                             base.head) {
7485                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7486         }
7487
7488         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7489                 if (!connector->encoder || !connector->encoder->crtc)
7490                         continue;
7491
7492                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7493
7494                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7495                         struct drm_property *dpms_property =
7496                                 dev->mode_config.dpms_property;
7497
7498                         connector->dpms = DRM_MODE_DPMS_ON;
7499                         drm_connector_property_set_value(connector,
7500                                                          dpms_property,
7501                                                          DRM_MODE_DPMS_ON);
7502
7503                         intel_encoder = to_intel_encoder(connector->encoder);
7504                         intel_encoder->connectors_active = true;
7505                 }
7506         }
7507
7508 }
7509
7510 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7511         list_for_each_entry((intel_crtc), \
7512                             &(dev)->mode_config.crtc_list, \
7513                             base.head) \
7514                 if (mask & (1 <<(intel_crtc)->pipe)) \
7515
7516 void
7517 intel_modeset_check_state(struct drm_device *dev)
7518 {
7519         struct intel_crtc *crtc;
7520         struct intel_encoder *encoder;
7521         struct intel_connector *connector;
7522
7523         list_for_each_entry(connector, &dev->mode_config.connector_list,
7524                             base.head) {
7525                 /* This also checks the encoder/connector hw state with the
7526                  * ->get_hw_state callbacks. */
7527                 intel_connector_check_state(connector);
7528
7529                 WARN(&connector->new_encoder->base != connector->base.encoder,
7530                      "connector's staged encoder doesn't match current encoder\n");
7531         }
7532
7533         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7534                             base.head) {
7535                 bool enabled = false;
7536                 bool active = false;
7537                 enum pipe pipe, tracked_pipe;
7538
7539                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7540                               encoder->base.base.id,
7541                               drm_get_encoder_name(&encoder->base));
7542
7543                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7544                      "encoder's stage crtc doesn't match current crtc\n");
7545                 WARN(encoder->connectors_active && !encoder->base.crtc,
7546                      "encoder's active_connectors set, but no crtc\n");
7547
7548                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7549                                     base.head) {
7550                         if (connector->base.encoder != &encoder->base)
7551                                 continue;
7552                         enabled = true;
7553                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7554                                 active = true;
7555                 }
7556                 WARN(!!encoder->base.crtc != enabled,
7557                      "encoder's enabled state mismatch "
7558                      "(expected %i, found %i)\n",
7559                      !!encoder->base.crtc, enabled);
7560                 WARN(active && !encoder->base.crtc,
7561                      "active encoder with no crtc\n");
7562
7563                 WARN(encoder->connectors_active != active,
7564                      "encoder's computed active state doesn't match tracked active state "
7565                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7566
7567                 active = encoder->get_hw_state(encoder, &pipe);
7568                 WARN(active != encoder->connectors_active,
7569                      "encoder's hw state doesn't match sw tracking "
7570                      "(expected %i, found %i)\n",
7571                      encoder->connectors_active, active);
7572
7573                 if (!encoder->base.crtc)
7574                         continue;
7575
7576                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7577                 WARN(active && pipe != tracked_pipe,
7578                      "active encoder's pipe doesn't match"
7579                      "(expected %i, found %i)\n",
7580                      tracked_pipe, pipe);
7581
7582         }
7583
7584         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7585                             base.head) {
7586                 bool enabled = false;
7587                 bool active = false;
7588
7589                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7590                               crtc->base.base.id);
7591
7592                 WARN(crtc->active && !crtc->base.enabled,
7593                      "active crtc, but not enabled in sw tracking\n");
7594
7595                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7596                                     base.head) {
7597                         if (encoder->base.crtc != &crtc->base)
7598                                 continue;
7599                         enabled = true;
7600                         if (encoder->connectors_active)
7601                                 active = true;
7602                 }
7603                 WARN(active != crtc->active,
7604                      "crtc's computed active state doesn't match tracked active state "
7605                      "(expected %i, found %i)\n", active, crtc->active);
7606                 WARN(enabled != crtc->base.enabled,
7607                      "crtc's computed enabled state doesn't match tracked enabled state "
7608                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7609
7610                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7611         }
7612 }
7613
7614 bool intel_set_mode(struct drm_crtc *crtc,
7615                     struct drm_display_mode *mode,
7616                     int x, int y, struct drm_framebuffer *fb)
7617 {
7618         struct drm_device *dev = crtc->dev;
7619         drm_i915_private_t *dev_priv = dev->dev_private;
7620         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7621         struct drm_encoder_helper_funcs *encoder_funcs;
7622         struct drm_encoder *encoder;
7623         struct intel_crtc *intel_crtc;
7624         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7625         bool ret = true;
7626
7627         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7628                                      &prepare_pipes, &disable_pipes);
7629
7630         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7631                       modeset_pipes, prepare_pipes, disable_pipes);
7632
7633         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7634                 intel_crtc_disable(&intel_crtc->base);
7635
7636         saved_hwmode = crtc->hwmode;
7637         saved_mode = crtc->mode;
7638
7639         /* Hack: Because we don't (yet) support global modeset on multiple
7640          * crtcs, we don't keep track of the new mode for more than one crtc.
7641          * Hence simply check whether any bit is set in modeset_pipes in all the
7642          * pieces of code that are not yet converted to deal with mutliple crtcs
7643          * changing their mode at the same time. */
7644         adjusted_mode = NULL;
7645         if (modeset_pipes) {
7646                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7647                 if (IS_ERR(adjusted_mode)) {
7648                         return false;
7649                 }
7650         }
7651
7652         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7653                 if (intel_crtc->base.enabled)
7654                         dev_priv->display.crtc_disable(&intel_crtc->base);
7655         }
7656
7657         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7658          * to set it here already despite that we pass it down the callchain.
7659          */
7660         if (modeset_pipes)
7661                 crtc->mode = *mode;
7662
7663         /* Only after disabling all output pipelines that will be changed can we
7664          * update the the output configuration. */
7665         intel_modeset_update_state(dev, prepare_pipes);
7666
7667         if (dev_priv->display.modeset_global_resources)
7668                 dev_priv->display.modeset_global_resources(dev);
7669
7670         /* Set up the DPLL and any encoders state that needs to adjust or depend
7671          * on the DPLL.
7672          */
7673         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7674                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7675                                            mode, adjusted_mode,
7676                                            x, y, fb);
7677                 if (!ret)
7678                     goto done;
7679
7680                 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7681
7682                         if (encoder->crtc != &intel_crtc->base)
7683                                 continue;
7684
7685                         DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7686                                 encoder->base.id, drm_get_encoder_name(encoder),
7687                                 mode->base.id, mode->name);
7688                         encoder_funcs = encoder->helper_private;
7689                         encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7690                 }
7691         }
7692
7693         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7694         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7695                 dev_priv->display.crtc_enable(&intel_crtc->base);
7696
7697         if (modeset_pipes) {
7698                 /* Store real post-adjustment hardware mode. */
7699                 crtc->hwmode = *adjusted_mode;
7700
7701                 /* Calculate and store various constants which
7702                  * are later needed by vblank and swap-completion
7703                  * timestamping. They are derived from true hwmode.
7704                  */
7705                 drm_calc_timestamping_constants(crtc);
7706         }
7707
7708         /* FIXME: add subpixel order */
7709 done:
7710         drm_mode_destroy(dev, adjusted_mode);
7711         if (!ret && crtc->enabled) {
7712                 crtc->hwmode = saved_hwmode;
7713                 crtc->mode = saved_mode;
7714         } else {
7715                 intel_modeset_check_state(dev);
7716         }
7717
7718         return ret;
7719 }
7720
7721 #undef for_each_intel_crtc_masked
7722
7723 static void intel_set_config_free(struct intel_set_config *config)
7724 {
7725         if (!config)
7726                 return;
7727
7728         kfree(config->save_connector_encoders);
7729         kfree(config->save_encoder_crtcs);
7730         kfree(config);
7731 }
7732
7733 static int intel_set_config_save_state(struct drm_device *dev,
7734                                        struct intel_set_config *config)
7735 {
7736         struct drm_encoder *encoder;
7737         struct drm_connector *connector;
7738         int count;
7739
7740         config->save_encoder_crtcs =
7741                 kcalloc(dev->mode_config.num_encoder,
7742                         sizeof(struct drm_crtc *), GFP_KERNEL);
7743         if (!config->save_encoder_crtcs)
7744                 return -ENOMEM;
7745
7746         config->save_connector_encoders =
7747                 kcalloc(dev->mode_config.num_connector,
7748                         sizeof(struct drm_encoder *), GFP_KERNEL);
7749         if (!config->save_connector_encoders)
7750                 return -ENOMEM;
7751
7752         /* Copy data. Note that driver private data is not affected.
7753          * Should anything bad happen only the expected state is
7754          * restored, not the drivers personal bookkeeping.
7755          */
7756         count = 0;
7757         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7758                 config->save_encoder_crtcs[count++] = encoder->crtc;
7759         }
7760
7761         count = 0;
7762         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7763                 config->save_connector_encoders[count++] = connector->encoder;
7764         }
7765
7766         return 0;
7767 }
7768
7769 static void intel_set_config_restore_state(struct drm_device *dev,
7770                                            struct intel_set_config *config)
7771 {
7772         struct intel_encoder *encoder;
7773         struct intel_connector *connector;
7774         int count;
7775
7776         count = 0;
7777         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7778                 encoder->new_crtc =
7779                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7780         }
7781
7782         count = 0;
7783         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7784                 connector->new_encoder =
7785                         to_intel_encoder(config->save_connector_encoders[count++]);
7786         }
7787 }
7788
7789 static void
7790 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7791                                       struct intel_set_config *config)
7792 {
7793
7794         /* We should be able to check here if the fb has the same properties
7795          * and then just flip_or_move it */
7796         if (set->crtc->fb != set->fb) {
7797                 /* If we have no fb then treat it as a full mode set */
7798                 if (set->crtc->fb == NULL) {
7799                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7800                         config->mode_changed = true;
7801                 } else if (set->fb == NULL) {
7802                         config->mode_changed = true;
7803                 } else if (set->fb->depth != set->crtc->fb->depth) {
7804                         config->mode_changed = true;
7805                 } else if (set->fb->bits_per_pixel !=
7806                            set->crtc->fb->bits_per_pixel) {
7807                         config->mode_changed = true;
7808                 } else
7809                         config->fb_changed = true;
7810         }
7811
7812         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7813                 config->fb_changed = true;
7814
7815         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7816                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7817                 drm_mode_debug_printmodeline(&set->crtc->mode);
7818                 drm_mode_debug_printmodeline(set->mode);
7819                 config->mode_changed = true;
7820         }
7821 }
7822
7823 static int
7824 intel_modeset_stage_output_state(struct drm_device *dev,
7825                                  struct drm_mode_set *set,
7826                                  struct intel_set_config *config)
7827 {
7828         struct drm_crtc *new_crtc;
7829         struct intel_connector *connector;
7830         struct intel_encoder *encoder;
7831         int count, ro;
7832
7833         /* The upper layers ensure that we either disabl a crtc or have a list
7834          * of connectors. For paranoia, double-check this. */
7835         WARN_ON(!set->fb && (set->num_connectors != 0));
7836         WARN_ON(set->fb && (set->num_connectors == 0));
7837
7838         count = 0;
7839         list_for_each_entry(connector, &dev->mode_config.connector_list,
7840                             base.head) {
7841                 /* Otherwise traverse passed in connector list and get encoders
7842                  * for them. */
7843                 for (ro = 0; ro < set->num_connectors; ro++) {
7844                         if (set->connectors[ro] == &connector->base) {
7845                                 connector->new_encoder = connector->encoder;
7846                                 break;
7847                         }
7848                 }
7849
7850                 /* If we disable the crtc, disable all its connectors. Also, if
7851                  * the connector is on the changing crtc but not on the new
7852                  * connector list, disable it. */
7853                 if ((!set->fb || ro == set->num_connectors) &&
7854                     connector->base.encoder &&
7855                     connector->base.encoder->crtc == set->crtc) {
7856                         connector->new_encoder = NULL;
7857
7858                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7859                                 connector->base.base.id,
7860                                 drm_get_connector_name(&connector->base));
7861                 }
7862
7863
7864                 if (&connector->new_encoder->base != connector->base.encoder) {
7865                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7866                         config->mode_changed = true;
7867                 }
7868
7869                 /* Disable all disconnected encoders. */
7870                 if (connector->base.status == connector_status_disconnected)
7871                         connector->new_encoder = NULL;
7872         }
7873         /* connector->new_encoder is now updated for all connectors. */
7874
7875         /* Update crtc of enabled connectors. */
7876         count = 0;
7877         list_for_each_entry(connector, &dev->mode_config.connector_list,
7878                             base.head) {
7879                 if (!connector->new_encoder)
7880                         continue;
7881
7882                 new_crtc = connector->new_encoder->base.crtc;
7883
7884                 for (ro = 0; ro < set->num_connectors; ro++) {
7885                         if (set->connectors[ro] == &connector->base)
7886                                 new_crtc = set->crtc;
7887                 }
7888
7889                 /* Make sure the new CRTC will work with the encoder */
7890                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7891                                            new_crtc)) {
7892                         return -EINVAL;
7893                 }
7894                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7895
7896                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7897                         connector->base.base.id,
7898                         drm_get_connector_name(&connector->base),
7899                         new_crtc->base.id);
7900         }
7901
7902         /* Check for any encoders that needs to be disabled. */
7903         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7904                             base.head) {
7905                 list_for_each_entry(connector,
7906                                     &dev->mode_config.connector_list,
7907                                     base.head) {
7908                         if (connector->new_encoder == encoder) {
7909                                 WARN_ON(!connector->new_encoder->new_crtc);
7910
7911                                 goto next_encoder;
7912                         }
7913                 }
7914                 encoder->new_crtc = NULL;
7915 next_encoder:
7916                 /* Only now check for crtc changes so we don't miss encoders
7917                  * that will be disabled. */
7918                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7919                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7920                         config->mode_changed = true;
7921                 }
7922         }
7923         /* Now we've also updated encoder->new_crtc for all encoders. */
7924
7925         return 0;
7926 }
7927
7928 static int intel_crtc_set_config(struct drm_mode_set *set)
7929 {
7930         struct drm_device *dev;
7931         struct drm_mode_set save_set;
7932         struct intel_set_config *config;
7933         int ret;
7934
7935         BUG_ON(!set);
7936         BUG_ON(!set->crtc);
7937         BUG_ON(!set->crtc->helper_private);
7938
7939         if (!set->mode)
7940                 set->fb = NULL;
7941
7942         /* The fb helper likes to play gross jokes with ->mode_set_config.
7943          * Unfortunately the crtc helper doesn't do much at all for this case,
7944          * so we have to cope with this madness until the fb helper is fixed up. */
7945         if (set->fb && set->num_connectors == 0)
7946                 return 0;
7947
7948         if (set->fb) {
7949                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7950                                 set->crtc->base.id, set->fb->base.id,
7951                                 (int)set->num_connectors, set->x, set->y);
7952         } else {
7953                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7954         }
7955
7956         dev = set->crtc->dev;
7957
7958         ret = -ENOMEM;
7959         config = kzalloc(sizeof(*config), GFP_KERNEL);
7960         if (!config)
7961                 goto out_config;
7962
7963         ret = intel_set_config_save_state(dev, config);
7964         if (ret)
7965                 goto out_config;
7966
7967         save_set.crtc = set->crtc;
7968         save_set.mode = &set->crtc->mode;
7969         save_set.x = set->crtc->x;
7970         save_set.y = set->crtc->y;
7971         save_set.fb = set->crtc->fb;
7972
7973         /* Compute whether we need a full modeset, only an fb base update or no
7974          * change at all. In the future we might also check whether only the
7975          * mode changed, e.g. for LVDS where we only change the panel fitter in
7976          * such cases. */
7977         intel_set_config_compute_mode_changes(set, config);
7978
7979         ret = intel_modeset_stage_output_state(dev, set, config);
7980         if (ret)
7981                 goto fail;
7982
7983         if (config->mode_changed) {
7984                 if (set->mode) {
7985                         DRM_DEBUG_KMS("attempting to set mode from"
7986                                         " userspace\n");
7987                         drm_mode_debug_printmodeline(set->mode);
7988                 }
7989
7990                 if (!intel_set_mode(set->crtc, set->mode,
7991                                     set->x, set->y, set->fb)) {
7992                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7993                                   set->crtc->base.id);
7994                         ret = -EINVAL;
7995                         goto fail;
7996                 }
7997         } else if (config->fb_changed) {
7998                 ret = intel_pipe_set_base(set->crtc,
7999                                           set->x, set->y, set->fb);
8000         }
8001
8002         intel_set_config_free(config);
8003
8004         return 0;
8005
8006 fail:
8007         intel_set_config_restore_state(dev, config);
8008
8009         /* Try to restore the config */
8010         if (config->mode_changed &&
8011             !intel_set_mode(save_set.crtc, save_set.mode,
8012                             save_set.x, save_set.y, save_set.fb))
8013                 DRM_ERROR("failed to restore config after modeset failure\n");
8014
8015 out_config:
8016         intel_set_config_free(config);
8017         return ret;
8018 }
8019
8020 static const struct drm_crtc_funcs intel_crtc_funcs = {
8021         .cursor_set = intel_crtc_cursor_set,
8022         .cursor_move = intel_crtc_cursor_move,
8023         .gamma_set = intel_crtc_gamma_set,
8024         .set_config = intel_crtc_set_config,
8025         .destroy = intel_crtc_destroy,
8026         .page_flip = intel_crtc_page_flip,
8027 };
8028
8029 static void intel_cpu_pll_init(struct drm_device *dev)
8030 {
8031         if (IS_HASWELL(dev))
8032                 intel_ddi_pll_init(dev);
8033 }
8034
8035 static void intel_pch_pll_init(struct drm_device *dev)
8036 {
8037         drm_i915_private_t *dev_priv = dev->dev_private;
8038         int i;
8039
8040         if (dev_priv->num_pch_pll == 0) {
8041                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8042                 return;
8043         }
8044
8045         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8046                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8047                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8048                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8049         }
8050 }
8051
8052 static void intel_crtc_init(struct drm_device *dev, int pipe)
8053 {
8054         drm_i915_private_t *dev_priv = dev->dev_private;
8055         struct intel_crtc *intel_crtc;
8056         int i;
8057
8058         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8059         if (intel_crtc == NULL)
8060                 return;
8061
8062         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8063
8064         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8065         for (i = 0; i < 256; i++) {
8066                 intel_crtc->lut_r[i] = i;
8067                 intel_crtc->lut_g[i] = i;
8068                 intel_crtc->lut_b[i] = i;
8069         }
8070
8071         /* Swap pipes & planes for FBC on pre-965 */
8072         intel_crtc->pipe = pipe;
8073         intel_crtc->plane = pipe;
8074         intel_crtc->cpu_transcoder = pipe;
8075         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8076                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8077                 intel_crtc->plane = !pipe;
8078         }
8079
8080         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8081                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8082         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8083         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8084
8085         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8086
8087         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8088 }
8089
8090 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8091                                 struct drm_file *file)
8092 {
8093         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8094         struct drm_mode_object *drmmode_obj;
8095         struct intel_crtc *crtc;
8096
8097         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8098                 return -ENODEV;
8099
8100         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8101                         DRM_MODE_OBJECT_CRTC);
8102
8103         if (!drmmode_obj) {
8104                 DRM_ERROR("no such CRTC id\n");
8105                 return -EINVAL;
8106         }
8107
8108         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8109         pipe_from_crtc_id->pipe = crtc->pipe;
8110
8111         return 0;
8112 }
8113
8114 static int intel_encoder_clones(struct intel_encoder *encoder)
8115 {
8116         struct drm_device *dev = encoder->base.dev;
8117         struct intel_encoder *source_encoder;
8118         int index_mask = 0;
8119         int entry = 0;
8120
8121         list_for_each_entry(source_encoder,
8122                             &dev->mode_config.encoder_list, base.head) {
8123
8124                 if (encoder == source_encoder)
8125                         index_mask |= (1 << entry);
8126
8127                 /* Intel hw has only one MUX where enocoders could be cloned. */
8128                 if (encoder->cloneable && source_encoder->cloneable)
8129                         index_mask |= (1 << entry);
8130
8131                 entry++;
8132         }
8133
8134         return index_mask;
8135 }
8136
8137 static bool has_edp_a(struct drm_device *dev)
8138 {
8139         struct drm_i915_private *dev_priv = dev->dev_private;
8140
8141         if (!IS_MOBILE(dev))
8142                 return false;
8143
8144         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8145                 return false;
8146
8147         if (IS_GEN5(dev) &&
8148             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8149                 return false;
8150
8151         return true;
8152 }
8153
8154 static void intel_setup_outputs(struct drm_device *dev)
8155 {
8156         struct drm_i915_private *dev_priv = dev->dev_private;
8157         struct intel_encoder *encoder;
8158         bool dpd_is_edp = false;
8159         bool has_lvds;
8160
8161         has_lvds = intel_lvds_init(dev);
8162         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8163                 /* disable the panel fitter on everything but LVDS */
8164                 I915_WRITE(PFIT_CONTROL, 0);
8165         }
8166
8167         if (HAS_PCH_SPLIT(dev)) {
8168                 dpd_is_edp = intel_dpd_is_edp(dev);
8169
8170                 if (has_edp_a(dev))
8171                         intel_dp_init(dev, DP_A, PORT_A);
8172
8173                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8174                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8175         }
8176
8177         intel_crt_init(dev);
8178
8179         if (IS_HASWELL(dev)) {
8180                 int found;
8181
8182                 /* Haswell uses DDI functions to detect digital outputs */
8183                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8184                 /* DDI A only supports eDP */
8185                 if (found)
8186                         intel_ddi_init(dev, PORT_A);
8187
8188                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8189                  * register */
8190                 found = I915_READ(SFUSE_STRAP);
8191
8192                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8193                         intel_ddi_init(dev, PORT_B);
8194                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8195                         intel_ddi_init(dev, PORT_C);
8196                 if (found & SFUSE_STRAP_DDID_DETECTED)
8197                         intel_ddi_init(dev, PORT_D);
8198         } else if (HAS_PCH_SPLIT(dev)) {
8199                 int found;
8200
8201                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8202                         /* PCH SDVOB multiplex with HDMIB */
8203                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8204                         if (!found)
8205                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8206                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8207                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8208                 }
8209
8210                 if (I915_READ(HDMIC) & PORT_DETECTED)
8211                         intel_hdmi_init(dev, HDMIC, PORT_C);
8212
8213                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8214                         intel_hdmi_init(dev, HDMID, PORT_D);
8215
8216                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8217                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8218
8219                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8220                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8221         } else if (IS_VALLEYVIEW(dev)) {
8222                 int found;
8223
8224                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8225                 if (I915_READ(DP_C) & DP_DETECTED)
8226                         intel_dp_init(dev, DP_C, PORT_C);
8227
8228                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8229                         /* SDVOB multiplex with HDMIB */
8230                         found = intel_sdvo_init(dev, SDVOB, true);
8231                         if (!found)
8232                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8233                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8234                                 intel_dp_init(dev, DP_B, PORT_B);
8235                 }
8236
8237                 if (I915_READ(SDVOC) & PORT_DETECTED)
8238                         intel_hdmi_init(dev, SDVOC, PORT_C);
8239
8240         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8241                 bool found = false;
8242
8243                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8244                         DRM_DEBUG_KMS("probing SDVOB\n");
8245                         found = intel_sdvo_init(dev, SDVOB, true);
8246                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8247                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8248                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8249                         }
8250
8251                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8252                                 DRM_DEBUG_KMS("probing DP_B\n");
8253                                 intel_dp_init(dev, DP_B, PORT_B);
8254                         }
8255                 }
8256
8257                 /* Before G4X SDVOC doesn't have its own detect register */
8258
8259                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8260                         DRM_DEBUG_KMS("probing SDVOC\n");
8261                         found = intel_sdvo_init(dev, SDVOC, false);
8262                 }
8263
8264                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8265
8266                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8267                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8268                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8269                         }
8270                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8271                                 DRM_DEBUG_KMS("probing DP_C\n");
8272                                 intel_dp_init(dev, DP_C, PORT_C);
8273                         }
8274                 }
8275
8276                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8277                     (I915_READ(DP_D) & DP_DETECTED)) {
8278                         DRM_DEBUG_KMS("probing DP_D\n");
8279                         intel_dp_init(dev, DP_D, PORT_D);
8280                 }
8281         } else if (IS_GEN2(dev))
8282                 intel_dvo_init(dev);
8283
8284         if (SUPPORTS_TV(dev))
8285                 intel_tv_init(dev);
8286
8287         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8288                 encoder->base.possible_crtcs = encoder->crtc_mask;
8289                 encoder->base.possible_clones =
8290                         intel_encoder_clones(encoder);
8291         }
8292
8293         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8294                 ironlake_init_pch_refclk(dev);
8295 }
8296
8297 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8298 {
8299         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8300
8301         drm_framebuffer_cleanup(fb);
8302         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8303
8304         kfree(intel_fb);
8305 }
8306
8307 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8308                                                 struct drm_file *file,
8309                                                 unsigned int *handle)
8310 {
8311         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8312         struct drm_i915_gem_object *obj = intel_fb->obj;
8313
8314         return drm_gem_handle_create(file, &obj->base, handle);
8315 }
8316
8317 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8318         .destroy = intel_user_framebuffer_destroy,
8319         .create_handle = intel_user_framebuffer_create_handle,
8320 };
8321
8322 int intel_framebuffer_init(struct drm_device *dev,
8323                            struct intel_framebuffer *intel_fb,
8324                            struct drm_mode_fb_cmd2 *mode_cmd,
8325                            struct drm_i915_gem_object *obj)
8326 {
8327         int ret;
8328
8329         if (obj->tiling_mode == I915_TILING_Y)
8330                 return -EINVAL;
8331
8332         if (mode_cmd->pitches[0] & 63)
8333                 return -EINVAL;
8334
8335         switch (mode_cmd->pixel_format) {
8336         case DRM_FORMAT_RGB332:
8337         case DRM_FORMAT_RGB565:
8338         case DRM_FORMAT_XRGB8888:
8339         case DRM_FORMAT_XBGR8888:
8340         case DRM_FORMAT_ARGB8888:
8341         case DRM_FORMAT_XRGB2101010:
8342         case DRM_FORMAT_ARGB2101010:
8343                 /* RGB formats are common across chipsets */
8344                 break;
8345         case DRM_FORMAT_YUYV:
8346         case DRM_FORMAT_UYVY:
8347         case DRM_FORMAT_YVYU:
8348         case DRM_FORMAT_VYUY:
8349                 break;
8350         default:
8351                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8352                                 mode_cmd->pixel_format);
8353                 return -EINVAL;
8354         }
8355
8356         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8357         if (ret) {
8358                 DRM_ERROR("framebuffer init failed %d\n", ret);
8359                 return ret;
8360         }
8361
8362         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8363         intel_fb->obj = obj;
8364         return 0;
8365 }
8366
8367 static struct drm_framebuffer *
8368 intel_user_framebuffer_create(struct drm_device *dev,
8369                               struct drm_file *filp,
8370                               struct drm_mode_fb_cmd2 *mode_cmd)
8371 {
8372         struct drm_i915_gem_object *obj;
8373
8374         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8375                                                 mode_cmd->handles[0]));
8376         if (&obj->base == NULL)
8377                 return ERR_PTR(-ENOENT);
8378
8379         return intel_framebuffer_create(dev, mode_cmd, obj);
8380 }
8381
8382 static const struct drm_mode_config_funcs intel_mode_funcs = {
8383         .fb_create = intel_user_framebuffer_create,
8384         .output_poll_changed = intel_fb_output_poll_changed,
8385 };
8386
8387 /* Set up chip specific display functions */
8388 static void intel_init_display(struct drm_device *dev)
8389 {
8390         struct drm_i915_private *dev_priv = dev->dev_private;
8391
8392         /* We always want a DPMS function */
8393         if (IS_HASWELL(dev)) {
8394                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8395                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8396                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8397                 dev_priv->display.off = haswell_crtc_off;
8398                 dev_priv->display.update_plane = ironlake_update_plane;
8399         } else if (HAS_PCH_SPLIT(dev)) {
8400                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8401                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8402                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8403                 dev_priv->display.off = ironlake_crtc_off;
8404                 dev_priv->display.update_plane = ironlake_update_plane;
8405         } else {
8406                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8407                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8408                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8409                 dev_priv->display.off = i9xx_crtc_off;
8410                 dev_priv->display.update_plane = i9xx_update_plane;
8411         }
8412
8413         /* Returns the core display clock speed */
8414         if (IS_VALLEYVIEW(dev))
8415                 dev_priv->display.get_display_clock_speed =
8416                         valleyview_get_display_clock_speed;
8417         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8418                 dev_priv->display.get_display_clock_speed =
8419                         i945_get_display_clock_speed;
8420         else if (IS_I915G(dev))
8421                 dev_priv->display.get_display_clock_speed =
8422                         i915_get_display_clock_speed;
8423         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8424                 dev_priv->display.get_display_clock_speed =
8425                         i9xx_misc_get_display_clock_speed;
8426         else if (IS_I915GM(dev))
8427                 dev_priv->display.get_display_clock_speed =
8428                         i915gm_get_display_clock_speed;
8429         else if (IS_I865G(dev))
8430                 dev_priv->display.get_display_clock_speed =
8431                         i865_get_display_clock_speed;
8432         else if (IS_I85X(dev))
8433                 dev_priv->display.get_display_clock_speed =
8434                         i855_get_display_clock_speed;
8435         else /* 852, 830 */
8436                 dev_priv->display.get_display_clock_speed =
8437                         i830_get_display_clock_speed;
8438
8439         if (HAS_PCH_SPLIT(dev)) {
8440                 if (IS_GEN5(dev)) {
8441                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8442                         dev_priv->display.write_eld = ironlake_write_eld;
8443                 } else if (IS_GEN6(dev)) {
8444                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8445                         dev_priv->display.write_eld = ironlake_write_eld;
8446                 } else if (IS_IVYBRIDGE(dev)) {
8447                         /* FIXME: detect B0+ stepping and use auto training */
8448                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8449                         dev_priv->display.write_eld = ironlake_write_eld;
8450                         dev_priv->display.modeset_global_resources =
8451                                 ivb_modeset_global_resources;
8452                 } else if (IS_HASWELL(dev)) {
8453                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8454                         dev_priv->display.write_eld = haswell_write_eld;
8455                 } else
8456                         dev_priv->display.update_wm = NULL;
8457         } else if (IS_G4X(dev)) {
8458                 dev_priv->display.write_eld = g4x_write_eld;
8459         }
8460
8461         /* Default just returns -ENODEV to indicate unsupported */
8462         dev_priv->display.queue_flip = intel_default_queue_flip;
8463
8464         switch (INTEL_INFO(dev)->gen) {
8465         case 2:
8466                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8467                 break;
8468
8469         case 3:
8470                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8471                 break;
8472
8473         case 4:
8474         case 5:
8475                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8476                 break;
8477
8478         case 6:
8479                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8480                 break;
8481         case 7:
8482                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8483                 break;
8484         }
8485 }
8486
8487 /*
8488  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8489  * resume, or other times.  This quirk makes sure that's the case for
8490  * affected systems.
8491  */
8492 static void quirk_pipea_force(struct drm_device *dev)
8493 {
8494         struct drm_i915_private *dev_priv = dev->dev_private;
8495
8496         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8497         DRM_INFO("applying pipe a force quirk\n");
8498 }
8499
8500 /*
8501  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8502  */
8503 static void quirk_ssc_force_disable(struct drm_device *dev)
8504 {
8505         struct drm_i915_private *dev_priv = dev->dev_private;
8506         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8507         DRM_INFO("applying lvds SSC disable quirk\n");
8508 }
8509
8510 /*
8511  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8512  * brightness value
8513  */
8514 static void quirk_invert_brightness(struct drm_device *dev)
8515 {
8516         struct drm_i915_private *dev_priv = dev->dev_private;
8517         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8518         DRM_INFO("applying inverted panel brightness quirk\n");
8519 }
8520
8521 struct intel_quirk {
8522         int device;
8523         int subsystem_vendor;
8524         int subsystem_device;
8525         void (*hook)(struct drm_device *dev);
8526 };
8527
8528 static struct intel_quirk intel_quirks[] = {
8529         /* HP Mini needs pipe A force quirk (LP: #322104) */
8530         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8531
8532         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8533         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8534
8535         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8536         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8537
8538         /* 830/845 need to leave pipe A & dpll A up */
8539         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8540         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8541
8542         /* Lenovo U160 cannot use SSC on LVDS */
8543         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8544
8545         /* Sony Vaio Y cannot use SSC on LVDS */
8546         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8547
8548         /* Acer Aspire 5734Z must invert backlight brightness */
8549         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8550 };
8551
8552 static void intel_init_quirks(struct drm_device *dev)
8553 {
8554         struct pci_dev *d = dev->pdev;
8555         int i;
8556
8557         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8558                 struct intel_quirk *q = &intel_quirks[i];
8559
8560                 if (d->device == q->device &&
8561                     (d->subsystem_vendor == q->subsystem_vendor ||
8562                      q->subsystem_vendor == PCI_ANY_ID) &&
8563                     (d->subsystem_device == q->subsystem_device ||
8564                      q->subsystem_device == PCI_ANY_ID))
8565                         q->hook(dev);
8566         }
8567 }
8568
8569 /* Disable the VGA plane that we never use */
8570 static void i915_disable_vga(struct drm_device *dev)
8571 {
8572         struct drm_i915_private *dev_priv = dev->dev_private;
8573         u8 sr1;
8574         u32 vga_reg;
8575
8576         if (HAS_PCH_SPLIT(dev))
8577                 vga_reg = CPU_VGACNTRL;
8578         else
8579                 vga_reg = VGACNTRL;
8580
8581         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8582         outb(SR01, VGA_SR_INDEX);
8583         sr1 = inb(VGA_SR_DATA);
8584         outb(sr1 | 1<<5, VGA_SR_DATA);
8585         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8586         udelay(300);
8587
8588         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8589         POSTING_READ(vga_reg);
8590 }
8591
8592 void intel_modeset_init_hw(struct drm_device *dev)
8593 {
8594         /* We attempt to init the necessary power wells early in the initialization
8595          * time, so the subsystems that expect power to be enabled can work.
8596          */
8597         intel_init_power_wells(dev);
8598
8599         intel_prepare_ddi(dev);
8600
8601         intel_init_clock_gating(dev);
8602
8603         mutex_lock(&dev->struct_mutex);
8604         intel_enable_gt_powersave(dev);
8605         mutex_unlock(&dev->struct_mutex);
8606 }
8607
8608 void intel_modeset_init(struct drm_device *dev)
8609 {
8610         struct drm_i915_private *dev_priv = dev->dev_private;
8611         int i, ret;
8612
8613         drm_mode_config_init(dev);
8614
8615         dev->mode_config.min_width = 0;
8616         dev->mode_config.min_height = 0;
8617
8618         dev->mode_config.preferred_depth = 24;
8619         dev->mode_config.prefer_shadow = 1;
8620
8621         dev->mode_config.funcs = &intel_mode_funcs;
8622
8623         intel_init_quirks(dev);
8624
8625         intel_init_pm(dev);
8626
8627         intel_init_display(dev);
8628
8629         if (IS_GEN2(dev)) {
8630                 dev->mode_config.max_width = 2048;
8631                 dev->mode_config.max_height = 2048;
8632         } else if (IS_GEN3(dev)) {
8633                 dev->mode_config.max_width = 4096;
8634                 dev->mode_config.max_height = 4096;
8635         } else {
8636                 dev->mode_config.max_width = 8192;
8637                 dev->mode_config.max_height = 8192;
8638         }
8639         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8640
8641         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8642                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8643
8644         for (i = 0; i < dev_priv->num_pipe; i++) {
8645                 intel_crtc_init(dev, i);
8646                 ret = intel_plane_init(dev, i);
8647                 if (ret)
8648                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8649         }
8650
8651         intel_cpu_pll_init(dev);
8652         intel_pch_pll_init(dev);
8653
8654         /* Just disable it once at startup */
8655         i915_disable_vga(dev);
8656         intel_setup_outputs(dev);
8657 }
8658
8659 static void
8660 intel_connector_break_all_links(struct intel_connector *connector)
8661 {
8662         connector->base.dpms = DRM_MODE_DPMS_OFF;
8663         connector->base.encoder = NULL;
8664         connector->encoder->connectors_active = false;
8665         connector->encoder->base.crtc = NULL;
8666 }
8667
8668 static void intel_enable_pipe_a(struct drm_device *dev)
8669 {
8670         struct intel_connector *connector;
8671         struct drm_connector *crt = NULL;
8672         struct intel_load_detect_pipe load_detect_temp;
8673
8674         /* We can't just switch on the pipe A, we need to set things up with a
8675          * proper mode and output configuration. As a gross hack, enable pipe A
8676          * by enabling the load detect pipe once. */
8677         list_for_each_entry(connector,
8678                             &dev->mode_config.connector_list,
8679                             base.head) {
8680                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8681                         crt = &connector->base;
8682                         break;
8683                 }
8684         }
8685
8686         if (!crt)
8687                 return;
8688
8689         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8690                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8691
8692
8693 }
8694
8695 static bool
8696 intel_check_plane_mapping(struct intel_crtc *crtc)
8697 {
8698         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8699         u32 reg, val;
8700
8701         if (dev_priv->num_pipe == 1)
8702                 return true;
8703
8704         reg = DSPCNTR(!crtc->plane);
8705         val = I915_READ(reg);
8706
8707         if ((val & DISPLAY_PLANE_ENABLE) &&
8708             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8709                 return false;
8710
8711         return true;
8712 }
8713
8714 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8715 {
8716         struct drm_device *dev = crtc->base.dev;
8717         struct drm_i915_private *dev_priv = dev->dev_private;
8718         u32 reg;
8719
8720         /* Clear any frame start delays used for debugging left by the BIOS */
8721         reg = PIPECONF(crtc->cpu_transcoder);
8722         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8723
8724         /* We need to sanitize the plane -> pipe mapping first because this will
8725          * disable the crtc (and hence change the state) if it is wrong. Note
8726          * that gen4+ has a fixed plane -> pipe mapping.  */
8727         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8728                 struct intel_connector *connector;
8729                 bool plane;
8730
8731                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8732                               crtc->base.base.id);
8733
8734                 /* Pipe has the wrong plane attached and the plane is active.
8735                  * Temporarily change the plane mapping and disable everything
8736                  * ...  */
8737                 plane = crtc->plane;
8738                 crtc->plane = !plane;
8739                 dev_priv->display.crtc_disable(&crtc->base);
8740                 crtc->plane = plane;
8741
8742                 /* ... and break all links. */
8743                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8744                                     base.head) {
8745                         if (connector->encoder->base.crtc != &crtc->base)
8746                                 continue;
8747
8748                         intel_connector_break_all_links(connector);
8749                 }
8750
8751                 WARN_ON(crtc->active);
8752                 crtc->base.enabled = false;
8753         }
8754
8755         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8756             crtc->pipe == PIPE_A && !crtc->active) {
8757                 /* BIOS forgot to enable pipe A, this mostly happens after
8758                  * resume. Force-enable the pipe to fix this, the update_dpms
8759                  * call below we restore the pipe to the right state, but leave
8760                  * the required bits on. */
8761                 intel_enable_pipe_a(dev);
8762         }
8763
8764         /* Adjust the state of the output pipe according to whether we
8765          * have active connectors/encoders. */
8766         intel_crtc_update_dpms(&crtc->base);
8767
8768         if (crtc->active != crtc->base.enabled) {
8769                 struct intel_encoder *encoder;
8770
8771                 /* This can happen either due to bugs in the get_hw_state
8772                  * functions or because the pipe is force-enabled due to the
8773                  * pipe A quirk. */
8774                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8775                               crtc->base.base.id,
8776                               crtc->base.enabled ? "enabled" : "disabled",
8777                               crtc->active ? "enabled" : "disabled");
8778
8779                 crtc->base.enabled = crtc->active;
8780
8781                 /* Because we only establish the connector -> encoder ->
8782                  * crtc links if something is active, this means the
8783                  * crtc is now deactivated. Break the links. connector
8784                  * -> encoder links are only establish when things are
8785                  *  actually up, hence no need to break them. */
8786                 WARN_ON(crtc->active);
8787
8788                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8789                         WARN_ON(encoder->connectors_active);
8790                         encoder->base.crtc = NULL;
8791                 }
8792         }
8793 }
8794
8795 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8796 {
8797         struct intel_connector *connector;
8798         struct drm_device *dev = encoder->base.dev;
8799
8800         /* We need to check both for a crtc link (meaning that the
8801          * encoder is active and trying to read from a pipe) and the
8802          * pipe itself being active. */
8803         bool has_active_crtc = encoder->base.crtc &&
8804                 to_intel_crtc(encoder->base.crtc)->active;
8805
8806         if (encoder->connectors_active && !has_active_crtc) {
8807                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8808                               encoder->base.base.id,
8809                               drm_get_encoder_name(&encoder->base));
8810
8811                 /* Connector is active, but has no active pipe. This is
8812                  * fallout from our resume register restoring. Disable
8813                  * the encoder manually again. */
8814                 if (encoder->base.crtc) {
8815                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8816                                       encoder->base.base.id,
8817                                       drm_get_encoder_name(&encoder->base));
8818                         encoder->disable(encoder);
8819                 }
8820
8821                 /* Inconsistent output/port/pipe state happens presumably due to
8822                  * a bug in one of the get_hw_state functions. Or someplace else
8823                  * in our code, like the register restore mess on resume. Clamp
8824                  * things to off as a safer default. */
8825                 list_for_each_entry(connector,
8826                                     &dev->mode_config.connector_list,
8827                                     base.head) {
8828                         if (connector->encoder != encoder)
8829                                 continue;
8830
8831                         intel_connector_break_all_links(connector);
8832                 }
8833         }
8834         /* Enabled encoders without active connectors will be fixed in
8835          * the crtc fixup. */
8836 }
8837
8838 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8839  * and i915 state tracking structures. */
8840 void intel_modeset_setup_hw_state(struct drm_device *dev)
8841 {
8842         struct drm_i915_private *dev_priv = dev->dev_private;
8843         enum pipe pipe;
8844         u32 tmp;
8845         struct intel_crtc *crtc;
8846         struct intel_encoder *encoder;
8847         struct intel_connector *connector;
8848
8849         if (IS_HASWELL(dev)) {
8850                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8851
8852                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8853                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8854                         case TRANS_DDI_EDP_INPUT_A_ON:
8855                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8856                                 pipe = PIPE_A;
8857                                 break;
8858                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8859                                 pipe = PIPE_B;
8860                                 break;
8861                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8862                                 pipe = PIPE_C;
8863                                 break;
8864                         }
8865
8866                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8867                         crtc->cpu_transcoder = TRANSCODER_EDP;
8868
8869                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8870                                       pipe_name(pipe));
8871                 }
8872         }
8873
8874         for_each_pipe(pipe) {
8875                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8876
8877                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8878                 if (tmp & PIPECONF_ENABLE)
8879                         crtc->active = true;
8880                 else
8881                         crtc->active = false;
8882
8883                 crtc->base.enabled = crtc->active;
8884
8885                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8886                               crtc->base.base.id,
8887                               crtc->active ? "enabled" : "disabled");
8888         }
8889
8890         if (IS_HASWELL(dev))
8891                 intel_ddi_setup_hw_pll_state(dev);
8892
8893         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8894                             base.head) {
8895                 pipe = 0;
8896
8897                 if (encoder->get_hw_state(encoder, &pipe)) {
8898                         encoder->base.crtc =
8899                                 dev_priv->pipe_to_crtc_mapping[pipe];
8900                 } else {
8901                         encoder->base.crtc = NULL;
8902                 }
8903
8904                 encoder->connectors_active = false;
8905                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8906                               encoder->base.base.id,
8907                               drm_get_encoder_name(&encoder->base),
8908                               encoder->base.crtc ? "enabled" : "disabled",
8909                               pipe);
8910         }
8911
8912         list_for_each_entry(connector, &dev->mode_config.connector_list,
8913                             base.head) {
8914                 if (connector->get_hw_state(connector)) {
8915                         connector->base.dpms = DRM_MODE_DPMS_ON;
8916                         connector->encoder->connectors_active = true;
8917                         connector->base.encoder = &connector->encoder->base;
8918                 } else {
8919                         connector->base.dpms = DRM_MODE_DPMS_OFF;
8920                         connector->base.encoder = NULL;
8921                 }
8922                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8923                               connector->base.base.id,
8924                               drm_get_connector_name(&connector->base),
8925                               connector->base.encoder ? "enabled" : "disabled");
8926         }
8927
8928         /* HW state is read out, now we need to sanitize this mess. */
8929         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8930                             base.head) {
8931                 intel_sanitize_encoder(encoder);
8932         }
8933
8934         for_each_pipe(pipe) {
8935                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8936                 intel_sanitize_crtc(crtc);
8937         }
8938
8939         intel_modeset_update_staged_output_state(dev);
8940
8941         intel_modeset_check_state(dev);
8942
8943         drm_mode_config_reset(dev);
8944 }
8945
8946 void intel_modeset_gem_init(struct drm_device *dev)
8947 {
8948         intel_modeset_init_hw(dev);
8949
8950         intel_setup_overlay(dev);
8951
8952         intel_modeset_setup_hw_state(dev);
8953 }
8954
8955 void intel_modeset_cleanup(struct drm_device *dev)
8956 {
8957         struct drm_i915_private *dev_priv = dev->dev_private;
8958         struct drm_crtc *crtc;
8959         struct intel_crtc *intel_crtc;
8960
8961         drm_kms_helper_poll_fini(dev);
8962         mutex_lock(&dev->struct_mutex);
8963
8964         intel_unregister_dsm_handler();
8965
8966
8967         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8968                 /* Skip inactive CRTCs */
8969                 if (!crtc->fb)
8970                         continue;
8971
8972                 intel_crtc = to_intel_crtc(crtc);
8973                 intel_increase_pllclock(crtc);
8974         }
8975
8976         intel_disable_fbc(dev);
8977
8978         intel_disable_gt_powersave(dev);
8979
8980         ironlake_teardown_rc6(dev);
8981
8982         if (IS_VALLEYVIEW(dev))
8983                 vlv_init_dpio(dev);
8984
8985         mutex_unlock(&dev->struct_mutex);
8986
8987         /* Disable the irq before mode object teardown, for the irq might
8988          * enqueue unpin/hotplug work. */
8989         drm_irq_uninstall(dev);
8990         cancel_work_sync(&dev_priv->hotplug_work);
8991         cancel_work_sync(&dev_priv->rps.work);
8992
8993         /* flush any delayed tasks or pending work */
8994         flush_scheduled_work();
8995
8996         drm_mode_config_cleanup(dev);
8997 }
8998
8999 /*
9000  * Return which encoder is currently attached for connector.
9001  */
9002 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9003 {
9004         return &intel_attached_encoder(connector)->base;
9005 }
9006
9007 void intel_connector_attach_encoder(struct intel_connector *connector,
9008                                     struct intel_encoder *encoder)
9009 {
9010         connector->encoder = encoder;
9011         drm_mode_connector_attach_encoder(&connector->base,
9012                                           &encoder->base);
9013 }
9014
9015 /*
9016  * set vga decode state - true == enable VGA decode
9017  */
9018 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9019 {
9020         struct drm_i915_private *dev_priv = dev->dev_private;
9021         u16 gmch_ctrl;
9022
9023         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9024         if (state)
9025                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9026         else
9027                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9028         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9029         return 0;
9030 }
9031
9032 #ifdef CONFIG_DEBUG_FS
9033 #include <linux/seq_file.h>
9034
9035 struct intel_display_error_state {
9036         struct intel_cursor_error_state {
9037                 u32 control;
9038                 u32 position;
9039                 u32 base;
9040                 u32 size;
9041         } cursor[I915_MAX_PIPES];
9042
9043         struct intel_pipe_error_state {
9044                 u32 conf;
9045                 u32 source;
9046
9047                 u32 htotal;
9048                 u32 hblank;
9049                 u32 hsync;
9050                 u32 vtotal;
9051                 u32 vblank;
9052                 u32 vsync;
9053         } pipe[I915_MAX_PIPES];
9054
9055         struct intel_plane_error_state {
9056                 u32 control;
9057                 u32 stride;
9058                 u32 size;
9059                 u32 pos;
9060                 u32 addr;
9061                 u32 surface;
9062                 u32 tile_offset;
9063         } plane[I915_MAX_PIPES];
9064 };
9065
9066 struct intel_display_error_state *
9067 intel_display_capture_error_state(struct drm_device *dev)
9068 {
9069         drm_i915_private_t *dev_priv = dev->dev_private;
9070         struct intel_display_error_state *error;
9071         enum transcoder cpu_transcoder;
9072         int i;
9073
9074         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9075         if (error == NULL)
9076                 return NULL;
9077
9078         for_each_pipe(i) {
9079                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9080
9081                 error->cursor[i].control = I915_READ(CURCNTR(i));
9082                 error->cursor[i].position = I915_READ(CURPOS(i));
9083                 error->cursor[i].base = I915_READ(CURBASE(i));
9084
9085                 error->plane[i].control = I915_READ(DSPCNTR(i));
9086                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9087                 error->plane[i].size = I915_READ(DSPSIZE(i));
9088                 error->plane[i].pos = I915_READ(DSPPOS(i));
9089                 error->plane[i].addr = I915_READ(DSPADDR(i));
9090                 if (INTEL_INFO(dev)->gen >= 4) {
9091                         error->plane[i].surface = I915_READ(DSPSURF(i));
9092                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9093                 }
9094
9095                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9096                 error->pipe[i].source = I915_READ(PIPESRC(i));
9097                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9098                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9099                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9100                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9101                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9102                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9103         }
9104
9105         return error;
9106 }
9107
9108 void
9109 intel_display_print_error_state(struct seq_file *m,
9110                                 struct drm_device *dev,
9111                                 struct intel_display_error_state *error)
9112 {
9113         drm_i915_private_t *dev_priv = dev->dev_private;
9114         int i;
9115
9116         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9117         for_each_pipe(i) {
9118                 seq_printf(m, "Pipe [%d]:\n", i);
9119                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9120                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9121                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9122                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9123                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9124                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9125                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9126                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9127
9128                 seq_printf(m, "Plane [%d]:\n", i);
9129                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9130                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9131                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9132                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9133                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9134                 if (INTEL_INFO(dev)->gen >= 4) {
9135                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9136                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9137                 }
9138
9139                 seq_printf(m, "Cursor [%d]:\n", i);
9140                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9141                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9142                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9143         }
9144 }
9145 #endif