]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: rename intel_{en, dis}able_transcoder
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941                                              enum pipe pipe)
942 {
943         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946         return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 frame, frame_reg = PIPEFRAME(pipe);
953
954         frame = I915_READ(frame_reg);
955
956         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957                 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961  * intel_wait_for_vblank - wait for vblank on a given pipe
962  * @dev: drm device
963  * @pipe: pipe to wait for
964  *
965  * Wait for vblank to occur on a given pipe.  Needed for various bits of
966  * mode setting code.
967  */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         int pipestat_reg = PIPESTAT(pipe);
972
973         if (INTEL_INFO(dev)->gen >= 5) {
974                 ironlake_wait_for_vblank(dev, pipe);
975                 return;
976         }
977
978         /* Clear existing vblank status. Note this will clear any other
979          * sticky status fields as well.
980          *
981          * This races with i915_driver_irq_handler() with the result
982          * that either function could miss a vblank event.  Here it is not
983          * fatal, as we will either wait upon the next vblank interrupt or
984          * timeout.  Generally speaking intel_wait_for_vblank() is only
985          * called during modeset at which time the GPU should be idle and
986          * should *not* be performing page flips and thus not waiting on
987          * vblanks...
988          * Currently, the result of us stealing a vblank from the irq
989          * handler is that a single frame will be skipped during swapbuffers.
990          */
991         I915_WRITE(pipestat_reg,
992                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994         /* Wait for vblank interrupt bit to set */
995         if (wait_for(I915_READ(pipestat_reg) &
996                      PIPE_VBLANK_INTERRUPT_STATUS,
997                      50))
998                 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002  * intel_wait_for_pipe_off - wait for pipe to turn off
1003  * @dev: drm device
1004  * @pipe: pipe to wait for
1005  *
1006  * After disabling a pipe, we can't wait for vblank in the usual way,
1007  * spinning on the vblank interrupt status bit, since we won't actually
1008  * see an interrupt when the pipe is disabled.
1009  *
1010  * On Gen4 and above:
1011  *   wait for the pipe register state bit to turn off
1012  *
1013  * Otherwise:
1014  *   wait for the display line value to settle (it usually
1015  *   ends up stopping at the start of the next frame).
1016  *
1017  */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022                                                                       pipe);
1023
1024         if (INTEL_INFO(dev)->gen >= 4) {
1025                 int reg = PIPECONF(cpu_transcoder);
1026
1027                 /* Wait for the Pipe State to go off */
1028                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029                              100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         } else {
1032                 u32 last_line, line_mask;
1033                 int reg = PIPEDSL(pipe);
1034                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036                 if (IS_GEN2(dev))
1037                         line_mask = DSL_LINEMASK_GEN2;
1038                 else
1039                         line_mask = DSL_LINEMASK_GEN3;
1040
1041                 /* Wait for the display line to settle */
1042                 do {
1043                         last_line = I915_READ(reg) & line_mask;
1044                         mdelay(5);
1045                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046                          time_after(timeout, jiffies));
1047                 if (time_after(jiffies, timeout))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054         return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059                        enum pipe pipe, bool state)
1060 {
1061         int reg;
1062         u32 val;
1063         bool cur_state;
1064
1065         reg = DPLL(pipe);
1066         val = I915_READ(reg);
1067         cur_state = !!(val & DPLL_VCO_ENABLE);
1068         WARN(cur_state != state,
1069              "PLL state assertion failure (expected %s, current %s)\n",
1070              state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077                            struct intel_pch_pll *pll,
1078                            struct intel_crtc *crtc,
1079                            bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         if (HAS_PCH_LPT(dev_priv->dev)) {
1085                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086                 return;
1087         }
1088
1089         if (WARN (!pll,
1090                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091                 return;
1092
1093         val = I915_READ(pll->pll_reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097              pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099         /* Make sure the selected PLL is correctly attached to the transcoder */
1100         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101                 u32 pch_dpll;
1102
1103                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1107                           cur_state, crtc->pipe, pch_dpll)) {
1108                         cur_state = !!(val >> (4*crtc->pipe + 3));
1109                         WARN(cur_state != state,
1110                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1111                              pll->pll_reg == _PCH_DPLL_B,
1112                              state_string(state),
1113                              crtc->pipe,
1114                              val);
1115                 }
1116         }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122                           enum pipe pipe, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (IS_HASWELL(dev_priv->dev)) {
1131                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133                 val = I915_READ(reg);
1134                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135         } else {
1136                 reg = FDI_TX_CTL(pipe);
1137                 val = I915_READ(reg);
1138                 cur_state = !!(val & FDI_TX_ENABLE);
1139         }
1140         WARN(cur_state != state,
1141              "FDI TX state assertion failure (expected %s, current %s)\n",
1142              state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148                           enum pipe pipe, bool state)
1149 {
1150         int reg;
1151         u32 val;
1152         bool cur_state;
1153
1154         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156                         return;
1157         } else {
1158                 reg = FDI_RX_CTL(pipe);
1159                 val = I915_READ(reg);
1160                 cur_state = !!(val & FDI_RX_ENABLE);
1161         }
1162         WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (dev_priv->info->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (IS_HASWELL(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189                                       enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196                 return;
1197         }
1198         reg = FDI_RX_CTL(pipe);
1199         val = I915_READ(reg);
1200         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                                   enum pipe pipe)
1205 {
1206         int pp_reg, lvds_reg;
1207         u32 val;
1208         enum pipe panel_pipe = PIPE_A;
1209         bool locked = true;
1210
1211         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212                 pp_reg = PCH_PP_CONTROL;
1213                 lvds_reg = PCH_LVDS;
1214         } else {
1215                 pp_reg = PP_CONTROL;
1216                 lvds_reg = LVDS;
1217         }
1218
1219         val = I915_READ(pp_reg);
1220         if (!(val & PANEL_POWER_ON) ||
1221             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222                 locked = false;
1223
1224         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225                 panel_pipe = PIPE_B;
1226
1227         WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233                  enum pipe pipe, bool state)
1234 {
1235         int reg;
1236         u32 val;
1237         bool cur_state;
1238         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239                                                                       pipe);
1240
1241         /* if we need the pipe A quirk it must be always on */
1242         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243                 state = true;
1244
1245         reg = PIPECONF(cpu_transcoder);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & PIPECONF_ENABLE);
1248         WARN(cur_state != state,
1249              "pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254                          enum plane plane, bool state)
1255 {
1256         int reg;
1257         u32 val;
1258         bool cur_state;
1259
1260         reg = DSPCNTR(plane);
1261         val = I915_READ(reg);
1262         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263         WARN(cur_state != state,
1264              "plane %c assertion failure (expected %s, current %s)\n",
1265              plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe)
1273 {
1274         int reg, i;
1275         u32 val;
1276         int cur_pipe;
1277
1278         /* Planes are fixed to pipes on ILK+ */
1279         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280                 reg = DSPCNTR(pipe);
1281                 val = I915_READ(reg);
1282                 WARN((val & DISPLAY_PLANE_ENABLE),
1283                      "plane %c assertion failure, should be disabled but not\n",
1284                      plane_name(pipe));
1285                 return;
1286         }
1287
1288         /* Need to check both planes against the pipe */
1289         for (i = 0; i < 2; i++) {
1290                 reg = DSPCNTR(i);
1291                 val = I915_READ(reg);
1292                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293                         DISPPLANE_SEL_PIPE_SHIFT;
1294                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296                      plane_name(i), pipe_name(pipe));
1297         }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302         u32 val;
1303         bool enabled;
1304
1305         if (HAS_PCH_LPT(dev_priv->dev)) {
1306                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307                 return;
1308         }
1309
1310         val = I915_READ(PCH_DREF_CONTROL);
1311         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312                             DREF_SUPERSPREAD_SOURCE_MASK));
1313         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317                                        enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321         bool enabled;
1322
1323         reg = TRANSCONF(pipe);
1324         val = I915_READ(reg);
1325         enabled = !!(val & TRANS_ENABLE);
1326         WARN(enabled,
1327              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328              pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332                             enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334         if ((val & DP_PORT_EN) == 0)
1335                 return false;
1336
1337         if (HAS_PCH_CPT(dev_priv->dev)) {
1338                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341                         return false;
1342         } else {
1343                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344                         return false;
1345         }
1346         return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350                               enum pipe pipe, u32 val)
1351 {
1352         if ((val & PORT_ENABLE) == 0)
1353                 return false;
1354
1355         if (HAS_PCH_CPT(dev_priv->dev)) {
1356                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357                         return false;
1358         } else {
1359                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360                         return false;
1361         }
1362         return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366                               enum pipe pipe, u32 val)
1367 {
1368         if ((val & LVDS_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & ADPA_DAC_ENABLE) == 0)
1385                 return false;
1386         if (HAS_PCH_CPT(dev_priv->dev)) {
1387                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388                         return false;
1389         } else {
1390                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391                         return false;
1392         }
1393         return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397                                    enum pipe pipe, int reg, u32 port_sel)
1398 {
1399         u32 val = I915_READ(reg);
1400         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402              reg, pipe_name(pipe));
1403
1404         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405              && (val & DP_PIPEB_SELECT),
1406              "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410                                      enum pipe pipe, int reg)
1411 {
1412         u32 val = I915_READ(reg);
1413         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415              reg, pipe_name(pipe));
1416
1417         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418              && (val & SDVO_PIPE_B_SELECT),
1419              "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423                                       enum pipe pipe)
1424 {
1425         int reg;
1426         u32 val;
1427
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432         reg = PCH_ADPA;
1433         val = I915_READ(reg);
1434         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435              "PCH VGA enabled on transcoder %c, should be disabled\n",
1436              pipe_name(pipe));
1437
1438         reg = PCH_LVDS;
1439         val = I915_READ(reg);
1440         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442              pipe_name(pipe));
1443
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450  * intel_enable_pll - enable a PLL
1451  * @dev_priv: i915 private structure
1452  * @pipe: pipe PLL to enable
1453  *
1454  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1455  * make sure the PLL reg is writable first though, since the panel write
1456  * protect mechanism may be enabled.
1457  *
1458  * Note!  This is for pre-ILK only.
1459  *
1460  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461  */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464         int reg;
1465         u32 val;
1466
1467         /* No really, not for ILK+ */
1468         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472                 assert_panel_unlocked(dev_priv, pipe);
1473
1474         reg = DPLL(pipe);
1475         val = I915_READ(reg);
1476         val |= DPLL_VCO_ENABLE;
1477
1478         /* We do this three times for luck */
1479         I915_WRITE(reg, val);
1480         POSTING_READ(reg);
1481         udelay(150); /* wait for warmup */
1482         I915_WRITE(reg, val);
1483         POSTING_READ(reg);
1484         udelay(150); /* wait for warmup */
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487         udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491  * intel_disable_pll - disable a PLL
1492  * @dev_priv: i915 private structure
1493  * @pipe: pipe PLL to disable
1494  *
1495  * Disable the PLL for @pipe, making sure the pipe is off first.
1496  *
1497  * Note!  This is for pre-ILK only.
1498  */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501         int reg;
1502         u32 val;
1503
1504         /* Don't disable pipe A or pipe A PLLs if needed */
1505         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506                 return;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         reg = DPLL(pipe);
1512         val = I915_READ(reg);
1513         val &= ~DPLL_VCO_ENABLE;
1514         I915_WRITE(reg, val);
1515         POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522         unsigned long flags;
1523
1524         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528                 goto out_unlock;
1529         }
1530
1531         I915_WRITE(SBI_ADDR,
1532                         (reg << 16));
1533         I915_WRITE(SBI_DATA,
1534                         value);
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRWR);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545 out_unlock:
1546         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552         unsigned long flags;
1553         u32 value = 0;
1554
1555         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557                                 100)) {
1558                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559                 goto out_unlock;
1560         }
1561
1562         I915_WRITE(SBI_ADDR,
1563                         (reg << 16));
1564         I915_WRITE(SBI_CTL_STAT,
1565                         SBI_BUSY |
1566                         SBI_CTL_OP_CRRD);
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571                 goto out_unlock;
1572         }
1573
1574         value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578         return value;
1579 }
1580
1581 /**
1582  * ironlake_enable_pch_pll - enable PCH PLL
1583  * @dev_priv: i915 private structure
1584  * @pipe: pipe PLL to enable
1585  *
1586  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587  * drives the transcoder clock.
1588  */
1589 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592         struct intel_pch_pll *pll;
1593         int reg;
1594         u32 val;
1595
1596         /* PCH PLLs only available on ILK, SNB and IVB */
1597         BUG_ON(dev_priv->info->gen < 5);
1598         pll = intel_crtc->pch_pll;
1599         if (pll == NULL)
1600                 return;
1601
1602         if (WARN_ON(pll->refcount == 0))
1603                 return;
1604
1605         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606                       pll->pll_reg, pll->active, pll->on,
1607                       intel_crtc->base.base.id);
1608
1609         /* PCH refclock must be enabled first */
1610         assert_pch_refclk_enabled(dev_priv);
1611
1612         if (pll->active++ && pll->on) {
1613                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614                 return;
1615         }
1616
1617         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619         reg = pll->pll_reg;
1620         val = I915_READ(reg);
1621         val |= DPLL_VCO_ENABLE;
1622         I915_WRITE(reg, val);
1623         POSTING_READ(reg);
1624         udelay(200);
1625
1626         pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633         int reg;
1634         u32 val;
1635
1636         /* PCH only available on ILK+ */
1637         BUG_ON(dev_priv->info->gen < 5);
1638         if (pll == NULL)
1639                return;
1640
1641         if (WARN_ON(pll->refcount == 0))
1642                 return;
1643
1644         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645                       pll->pll_reg, pll->active, pll->on,
1646                       intel_crtc->base.base.id);
1647
1648         if (WARN_ON(pll->active == 0)) {
1649                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650                 return;
1651         }
1652
1653         if (--pll->active) {
1654                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655                 return;
1656         }
1657
1658         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660         /* Make sure transcoder isn't still depending on us */
1661         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663         reg = pll->pll_reg;
1664         val = I915_READ(reg);
1665         val &= ~DPLL_VCO_ENABLE;
1666         I915_WRITE(reg, val);
1667         POSTING_READ(reg);
1668         udelay(200);
1669
1670         pll->on = false;
1671 }
1672
1673 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1674                                            enum pipe pipe)
1675 {
1676         int reg;
1677         u32 val, pipeconf_val;
1678         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680         /* PCH only available on ILK+ */
1681         BUG_ON(dev_priv->info->gen < 5);
1682
1683         /* Make sure PCH DPLL is enabled */
1684         assert_pch_pll_enabled(dev_priv,
1685                                to_intel_crtc(crtc)->pch_pll,
1686                                to_intel_crtc(crtc));
1687
1688         /* FDI must be feeding us bits for PCH ports */
1689         assert_fdi_tx_enabled(dev_priv, pipe);
1690         assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694                 return;
1695         }
1696         reg = TRANSCONF(pipe);
1697         val = I915_READ(reg);
1698         pipeconf_val = I915_READ(PIPECONF(pipe));
1699
1700         if (HAS_PCH_IBX(dev_priv->dev)) {
1701                 /*
1702                  * make the BPC in transcoder be consistent with
1703                  * that in pipeconf reg.
1704                  */
1705                 val &= ~PIPE_BPC_MASK;
1706                 val |= pipeconf_val & PIPE_BPC_MASK;
1707         }
1708
1709         val &= ~TRANS_INTERLACE_MASK;
1710         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1711                 if (HAS_PCH_IBX(dev_priv->dev) &&
1712                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713                         val |= TRANS_LEGACY_INTERLACED_ILK;
1714                 else
1715                         val |= TRANS_INTERLACED;
1716         else
1717                 val |= TRANS_PROGRESSIVE;
1718
1719         I915_WRITE(reg, val | TRANS_ENABLE);
1720         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722 }
1723
1724 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1725                                             enum pipe pipe)
1726 {
1727         int reg;
1728         u32 val;
1729
1730         /* FDI relies on the transcoder */
1731         assert_fdi_tx_disabled(dev_priv, pipe);
1732         assert_fdi_rx_disabled(dev_priv, pipe);
1733
1734         /* Ports must be off as well */
1735         assert_pch_ports_disabled(dev_priv, pipe);
1736
1737         reg = TRANSCONF(pipe);
1738         val = I915_READ(reg);
1739         val &= ~TRANS_ENABLE;
1740         I915_WRITE(reg, val);
1741         /* wait for PCH transcoder off, transcoder state */
1742         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1743                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1744 }
1745
1746 /**
1747  * intel_enable_pipe - enable a pipe, asserting requirements
1748  * @dev_priv: i915 private structure
1749  * @pipe: pipe to enable
1750  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1751  *
1752  * Enable @pipe, making sure that various hardware specific requirements
1753  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754  *
1755  * @pipe should be %PIPE_A or %PIPE_B.
1756  *
1757  * Will wait until the pipe is actually running (i.e. first vblank) before
1758  * returning.
1759  */
1760 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761                               bool pch_port)
1762 {
1763         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764                                                                       pipe);
1765         int reg;
1766         u32 val;
1767
1768         /*
1769          * A pipe without a PLL won't actually be able to drive bits from
1770          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1771          * need the check.
1772          */
1773         if (!HAS_PCH_SPLIT(dev_priv->dev))
1774                 assert_pll_enabled(dev_priv, pipe);
1775         else {
1776                 if (pch_port) {
1777                         /* if driving the PCH, we need FDI enabled */
1778                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780                 }
1781                 /* FIXME: assert CPU port conditions for SNB+ */
1782         }
1783
1784         reg = PIPECONF(cpu_transcoder);
1785         val = I915_READ(reg);
1786         if (val & PIPECONF_ENABLE)
1787                 return;
1788
1789         I915_WRITE(reg, val | PIPECONF_ENABLE);
1790         intel_wait_for_vblank(dev_priv->dev, pipe);
1791 }
1792
1793 /**
1794  * intel_disable_pipe - disable a pipe, asserting requirements
1795  * @dev_priv: i915 private structure
1796  * @pipe: pipe to disable
1797  *
1798  * Disable @pipe, making sure that various hardware specific requirements
1799  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800  *
1801  * @pipe should be %PIPE_A or %PIPE_B.
1802  *
1803  * Will wait until the pipe has shut down before returning.
1804  */
1805 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806                                enum pipe pipe)
1807 {
1808         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809                                                                       pipe);
1810         int reg;
1811         u32 val;
1812
1813         /*
1814          * Make sure planes won't keep trying to pump pixels to us,
1815          * or we might hang the display.
1816          */
1817         assert_planes_disabled(dev_priv, pipe);
1818
1819         /* Don't disable pipe A or pipe A PLLs if needed */
1820         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821                 return;
1822
1823         reg = PIPECONF(cpu_transcoder);
1824         val = I915_READ(reg);
1825         if ((val & PIPECONF_ENABLE) == 0)
1826                 return;
1827
1828         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1829         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830 }
1831
1832 /*
1833  * Plane regs are double buffered, going from enabled->disabled needs a
1834  * trigger in order to latch.  The display address reg provides this.
1835  */
1836 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1837                                       enum plane plane)
1838 {
1839         if (dev_priv->info->gen >= 4)
1840                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841         else
1842                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1843 }
1844
1845 /**
1846  * intel_enable_plane - enable a display plane on a given pipe
1847  * @dev_priv: i915 private structure
1848  * @plane: plane to enable
1849  * @pipe: pipe being fed
1850  *
1851  * Enable @plane on @pipe, making sure that @pipe is running first.
1852  */
1853 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1854                                enum plane plane, enum pipe pipe)
1855 {
1856         int reg;
1857         u32 val;
1858
1859         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1860         assert_pipe_enabled(dev_priv, pipe);
1861
1862         reg = DSPCNTR(plane);
1863         val = I915_READ(reg);
1864         if (val & DISPLAY_PLANE_ENABLE)
1865                 return;
1866
1867         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1868         intel_flush_display_plane(dev_priv, plane);
1869         intel_wait_for_vblank(dev_priv->dev, pipe);
1870 }
1871
1872 /**
1873  * intel_disable_plane - disable a display plane
1874  * @dev_priv: i915 private structure
1875  * @plane: plane to disable
1876  * @pipe: pipe consuming the data
1877  *
1878  * Disable @plane; should be an independent operation.
1879  */
1880 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1881                                 enum plane plane, enum pipe pipe)
1882 {
1883         int reg;
1884         u32 val;
1885
1886         reg = DSPCNTR(plane);
1887         val = I915_READ(reg);
1888         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1889                 return;
1890
1891         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1892         intel_flush_display_plane(dev_priv, plane);
1893         intel_wait_for_vblank(dev_priv->dev, pipe);
1894 }
1895
1896 int
1897 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1898                            struct drm_i915_gem_object *obj,
1899                            struct intel_ring_buffer *pipelined)
1900 {
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         u32 alignment;
1903         int ret;
1904
1905         switch (obj->tiling_mode) {
1906         case I915_TILING_NONE:
1907                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1908                         alignment = 128 * 1024;
1909                 else if (INTEL_INFO(dev)->gen >= 4)
1910                         alignment = 4 * 1024;
1911                 else
1912                         alignment = 64 * 1024;
1913                 break;
1914         case I915_TILING_X:
1915                 /* pin() will align the object as required by fence */
1916                 alignment = 0;
1917                 break;
1918         case I915_TILING_Y:
1919                 /* FIXME: Is this true? */
1920                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1921                 return -EINVAL;
1922         default:
1923                 BUG();
1924         }
1925
1926         dev_priv->mm.interruptible = false;
1927         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1928         if (ret)
1929                 goto err_interruptible;
1930
1931         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1932          * fence, whereas 965+ only requires a fence if using
1933          * framebuffer compression.  For simplicity, we always install
1934          * a fence as the cost is not that onerous.
1935          */
1936         ret = i915_gem_object_get_fence(obj);
1937         if (ret)
1938                 goto err_unpin;
1939
1940         i915_gem_object_pin_fence(obj);
1941
1942         dev_priv->mm.interruptible = true;
1943         return 0;
1944
1945 err_unpin:
1946         i915_gem_object_unpin(obj);
1947 err_interruptible:
1948         dev_priv->mm.interruptible = true;
1949         return ret;
1950 }
1951
1952 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1953 {
1954         i915_gem_object_unpin_fence(obj);
1955         i915_gem_object_unpin(obj);
1956 }
1957
1958 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1959  * is assumed to be a power-of-two. */
1960 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1961                                                unsigned int bpp,
1962                                                unsigned int pitch)
1963 {
1964         int tile_rows, tiles;
1965
1966         tile_rows = *y / 8;
1967         *y %= 8;
1968         tiles = *x / (512/bpp);
1969         *x %= 512/bpp;
1970
1971         return tile_rows * pitch * 8 + tiles * 4096;
1972 }
1973
1974 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1975                              int x, int y)
1976 {
1977         struct drm_device *dev = crtc->dev;
1978         struct drm_i915_private *dev_priv = dev->dev_private;
1979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1980         struct intel_framebuffer *intel_fb;
1981         struct drm_i915_gem_object *obj;
1982         int plane = intel_crtc->plane;
1983         unsigned long linear_offset;
1984         u32 dspcntr;
1985         u32 reg;
1986
1987         switch (plane) {
1988         case 0:
1989         case 1:
1990                 break;
1991         default:
1992                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1993                 return -EINVAL;
1994         }
1995
1996         intel_fb = to_intel_framebuffer(fb);
1997         obj = intel_fb->obj;
1998
1999         reg = DSPCNTR(plane);
2000         dspcntr = I915_READ(reg);
2001         /* Mask out pixel format bits in case we change it */
2002         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2003         switch (fb->pixel_format) {
2004         case DRM_FORMAT_C8:
2005                 dspcntr |= DISPPLANE_8BPP;
2006                 break;
2007         case DRM_FORMAT_XRGB1555:
2008         case DRM_FORMAT_ARGB1555:
2009                 dspcntr |= DISPPLANE_BGRX555;
2010                 break;
2011         case DRM_FORMAT_RGB565:
2012                 dspcntr |= DISPPLANE_BGRX565;
2013                 break;
2014         case DRM_FORMAT_XRGB8888:
2015         case DRM_FORMAT_ARGB8888:
2016                 dspcntr |= DISPPLANE_BGRX888;
2017                 break;
2018         case DRM_FORMAT_XBGR8888:
2019         case DRM_FORMAT_ABGR8888:
2020                 dspcntr |= DISPPLANE_RGBX888;
2021                 break;
2022         case DRM_FORMAT_XRGB2101010:
2023         case DRM_FORMAT_ARGB2101010:
2024                 dspcntr |= DISPPLANE_BGRX101010;
2025                 break;
2026         case DRM_FORMAT_XBGR2101010:
2027         case DRM_FORMAT_ABGR2101010:
2028                 dspcntr |= DISPPLANE_RGBX101010;
2029                 break;
2030         default:
2031                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2032                 return -EINVAL;
2033         }
2034
2035         if (INTEL_INFO(dev)->gen >= 4) {
2036                 if (obj->tiling_mode != I915_TILING_NONE)
2037                         dspcntr |= DISPPLANE_TILED;
2038                 else
2039                         dspcntr &= ~DISPPLANE_TILED;
2040         }
2041
2042         I915_WRITE(reg, dspcntr);
2043
2044         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2045
2046         if (INTEL_INFO(dev)->gen >= 4) {
2047                 intel_crtc->dspaddr_offset =
2048                         intel_gen4_compute_offset_xtiled(&x, &y,
2049                                                          fb->bits_per_pixel / 8,
2050                                                          fb->pitches[0]);
2051                 linear_offset -= intel_crtc->dspaddr_offset;
2052         } else {
2053                 intel_crtc->dspaddr_offset = linear_offset;
2054         }
2055
2056         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2057                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2058         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2059         if (INTEL_INFO(dev)->gen >= 4) {
2060                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2061                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2062                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2063                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2064         } else
2065                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2066         POSTING_READ(reg);
2067
2068         return 0;
2069 }
2070
2071 static int ironlake_update_plane(struct drm_crtc *crtc,
2072                                  struct drm_framebuffer *fb, int x, int y)
2073 {
2074         struct drm_device *dev = crtc->dev;
2075         struct drm_i915_private *dev_priv = dev->dev_private;
2076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2077         struct intel_framebuffer *intel_fb;
2078         struct drm_i915_gem_object *obj;
2079         int plane = intel_crtc->plane;
2080         unsigned long linear_offset;
2081         u32 dspcntr;
2082         u32 reg;
2083
2084         switch (plane) {
2085         case 0:
2086         case 1:
2087         case 2:
2088                 break;
2089         default:
2090                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2091                 return -EINVAL;
2092         }
2093
2094         intel_fb = to_intel_framebuffer(fb);
2095         obj = intel_fb->obj;
2096
2097         reg = DSPCNTR(plane);
2098         dspcntr = I915_READ(reg);
2099         /* Mask out pixel format bits in case we change it */
2100         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2101         switch (fb->pixel_format) {
2102         case DRM_FORMAT_C8:
2103                 dspcntr |= DISPPLANE_8BPP;
2104                 break;
2105         case DRM_FORMAT_RGB565:
2106                 dspcntr |= DISPPLANE_BGRX565;
2107                 break;
2108         case DRM_FORMAT_XRGB8888:
2109         case DRM_FORMAT_ARGB8888:
2110                 dspcntr |= DISPPLANE_BGRX888;
2111                 break;
2112         case DRM_FORMAT_XBGR8888:
2113         case DRM_FORMAT_ABGR8888:
2114                 dspcntr |= DISPPLANE_RGBX888;
2115                 break;
2116         case DRM_FORMAT_XRGB2101010:
2117         case DRM_FORMAT_ARGB2101010:
2118                 dspcntr |= DISPPLANE_BGRX101010;
2119                 break;
2120         case DRM_FORMAT_XBGR2101010:
2121         case DRM_FORMAT_ABGR2101010:
2122                 dspcntr |= DISPPLANE_RGBX101010;
2123                 break;
2124         default:
2125                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2126                 return -EINVAL;
2127         }
2128
2129         if (obj->tiling_mode != I915_TILING_NONE)
2130                 dspcntr |= DISPPLANE_TILED;
2131         else
2132                 dspcntr &= ~DISPPLANE_TILED;
2133
2134         /* must disable */
2135         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2136
2137         I915_WRITE(reg, dspcntr);
2138
2139         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2140         intel_crtc->dspaddr_offset =
2141                 intel_gen4_compute_offset_xtiled(&x, &y,
2142                                                  fb->bits_per_pixel / 8,
2143                                                  fb->pitches[0]);
2144         linear_offset -= intel_crtc->dspaddr_offset;
2145
2146         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2147                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2148         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2149         I915_MODIFY_DISPBASE(DSPSURF(plane),
2150                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2151         if (IS_HASWELL(dev)) {
2152                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2153         } else {
2154                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2155                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2156         }
2157         POSTING_READ(reg);
2158
2159         return 0;
2160 }
2161
2162 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2163 static int
2164 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2165                            int x, int y, enum mode_set_atomic state)
2166 {
2167         struct drm_device *dev = crtc->dev;
2168         struct drm_i915_private *dev_priv = dev->dev_private;
2169
2170         if (dev_priv->display.disable_fbc)
2171                 dev_priv->display.disable_fbc(dev);
2172         intel_increase_pllclock(crtc);
2173
2174         return dev_priv->display.update_plane(crtc, fb, x, y);
2175 }
2176
2177 static int
2178 intel_finish_fb(struct drm_framebuffer *old_fb)
2179 {
2180         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2181         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182         bool was_interruptible = dev_priv->mm.interruptible;
2183         int ret;
2184
2185         wait_event(dev_priv->pending_flip_queue,
2186                    atomic_read(&dev_priv->mm.wedged) ||
2187                    atomic_read(&obj->pending_flip) == 0);
2188
2189         /* Big Hammer, we also need to ensure that any pending
2190          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2191          * current scanout is retired before unpinning the old
2192          * framebuffer.
2193          *
2194          * This should only fail upon a hung GPU, in which case we
2195          * can safely continue.
2196          */
2197         dev_priv->mm.interruptible = false;
2198         ret = i915_gem_object_finish_gpu(obj);
2199         dev_priv->mm.interruptible = was_interruptible;
2200
2201         return ret;
2202 }
2203
2204 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2205 {
2206         struct drm_device *dev = crtc->dev;
2207         struct drm_i915_master_private *master_priv;
2208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2209
2210         if (!dev->primary->master)
2211                 return;
2212
2213         master_priv = dev->primary->master->driver_priv;
2214         if (!master_priv->sarea_priv)
2215                 return;
2216
2217         switch (intel_crtc->pipe) {
2218         case 0:
2219                 master_priv->sarea_priv->pipeA_x = x;
2220                 master_priv->sarea_priv->pipeA_y = y;
2221                 break;
2222         case 1:
2223                 master_priv->sarea_priv->pipeB_x = x;
2224                 master_priv->sarea_priv->pipeB_y = y;
2225                 break;
2226         default:
2227                 break;
2228         }
2229 }
2230
2231 static int
2232 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2233                     struct drm_framebuffer *fb)
2234 {
2235         struct drm_device *dev = crtc->dev;
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2238         struct drm_framebuffer *old_fb;
2239         int ret;
2240
2241         /* no fb bound */
2242         if (!fb) {
2243                 DRM_ERROR("No FB bound\n");
2244                 return 0;
2245         }
2246
2247         if(intel_crtc->plane > dev_priv->num_pipe) {
2248                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2249                                 intel_crtc->plane,
2250                                 dev_priv->num_pipe);
2251                 return -EINVAL;
2252         }
2253
2254         mutex_lock(&dev->struct_mutex);
2255         ret = intel_pin_and_fence_fb_obj(dev,
2256                                          to_intel_framebuffer(fb)->obj,
2257                                          NULL);
2258         if (ret != 0) {
2259                 mutex_unlock(&dev->struct_mutex);
2260                 DRM_ERROR("pin & fence failed\n");
2261                 return ret;
2262         }
2263
2264         if (crtc->fb)
2265                 intel_finish_fb(crtc->fb);
2266
2267         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2268         if (ret) {
2269                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2270                 mutex_unlock(&dev->struct_mutex);
2271                 DRM_ERROR("failed to update base address\n");
2272                 return ret;
2273         }
2274
2275         old_fb = crtc->fb;
2276         crtc->fb = fb;
2277         crtc->x = x;
2278         crtc->y = y;
2279
2280         if (old_fb) {
2281                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2282                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2283         }
2284
2285         intel_update_fbc(dev);
2286         mutex_unlock(&dev->struct_mutex);
2287
2288         intel_crtc_update_sarea_pos(crtc, x, y);
2289
2290         return 0;
2291 }
2292
2293 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2294 {
2295         struct drm_device *dev = crtc->dev;
2296         struct drm_i915_private *dev_priv = dev->dev_private;
2297         u32 dpa_ctl;
2298
2299         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2300         dpa_ctl = I915_READ(DP_A);
2301         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2302
2303         if (clock < 200000) {
2304                 u32 temp;
2305                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2306                 /* workaround for 160Mhz:
2307                    1) program 0x4600c bits 15:0 = 0x8124
2308                    2) program 0x46010 bit 0 = 1
2309                    3) program 0x46034 bit 24 = 1
2310                    4) program 0x64000 bit 14 = 1
2311                    */
2312                 temp = I915_READ(0x4600c);
2313                 temp &= 0xffff0000;
2314                 I915_WRITE(0x4600c, temp | 0x8124);
2315
2316                 temp = I915_READ(0x46010);
2317                 I915_WRITE(0x46010, temp | 1);
2318
2319                 temp = I915_READ(0x46034);
2320                 I915_WRITE(0x46034, temp | (1 << 24));
2321         } else {
2322                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2323         }
2324         I915_WRITE(DP_A, dpa_ctl);
2325
2326         POSTING_READ(DP_A);
2327         udelay(500);
2328 }
2329
2330 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2331 {
2332         struct drm_device *dev = crtc->dev;
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2335         int pipe = intel_crtc->pipe;
2336         u32 reg, temp;
2337
2338         /* enable normal train */
2339         reg = FDI_TX_CTL(pipe);
2340         temp = I915_READ(reg);
2341         if (IS_IVYBRIDGE(dev)) {
2342                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2343                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2344         } else {
2345                 temp &= ~FDI_LINK_TRAIN_NONE;
2346                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2347         }
2348         I915_WRITE(reg, temp);
2349
2350         reg = FDI_RX_CTL(pipe);
2351         temp = I915_READ(reg);
2352         if (HAS_PCH_CPT(dev)) {
2353                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2354                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2355         } else {
2356                 temp &= ~FDI_LINK_TRAIN_NONE;
2357                 temp |= FDI_LINK_TRAIN_NONE;
2358         }
2359         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2360
2361         /* wait one idle pattern time */
2362         POSTING_READ(reg);
2363         udelay(1000);
2364
2365         /* IVB wants error correction enabled */
2366         if (IS_IVYBRIDGE(dev))
2367                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2368                            FDI_FE_ERRC_ENABLE);
2369 }
2370
2371 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2372 {
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         u32 flags = I915_READ(SOUTH_CHICKEN1);
2375
2376         flags |= FDI_PHASE_SYNC_OVR(pipe);
2377         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2378         flags |= FDI_PHASE_SYNC_EN(pipe);
2379         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2380         POSTING_READ(SOUTH_CHICKEN1);
2381 }
2382
2383 static void ivb_modeset_global_resources(struct drm_device *dev)
2384 {
2385         struct drm_i915_private *dev_priv = dev->dev_private;
2386         struct intel_crtc *pipe_B_crtc =
2387                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2388         struct intel_crtc *pipe_C_crtc =
2389                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2390         uint32_t temp;
2391
2392         /* When everything is off disable fdi C so that we could enable fdi B
2393          * with all lanes. XXX: This misses the case where a pipe is not using
2394          * any pch resources and so doesn't need any fdi lanes. */
2395         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2396                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2397                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2398
2399                 temp = I915_READ(SOUTH_CHICKEN1);
2400                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2401                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2402                 I915_WRITE(SOUTH_CHICKEN1, temp);
2403         }
2404 }
2405
2406 /* The FDI link training functions for ILK/Ibexpeak. */
2407 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2408 {
2409         struct drm_device *dev = crtc->dev;
2410         struct drm_i915_private *dev_priv = dev->dev_private;
2411         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2412         int pipe = intel_crtc->pipe;
2413         int plane = intel_crtc->plane;
2414         u32 reg, temp, tries;
2415
2416         /* FDI needs bits from pipe & plane first */
2417         assert_pipe_enabled(dev_priv, pipe);
2418         assert_plane_enabled(dev_priv, plane);
2419
2420         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2421            for train result */
2422         reg = FDI_RX_IMR(pipe);
2423         temp = I915_READ(reg);
2424         temp &= ~FDI_RX_SYMBOL_LOCK;
2425         temp &= ~FDI_RX_BIT_LOCK;
2426         I915_WRITE(reg, temp);
2427         I915_READ(reg);
2428         udelay(150);
2429
2430         /* enable CPU FDI TX and PCH FDI RX */
2431         reg = FDI_TX_CTL(pipe);
2432         temp = I915_READ(reg);
2433         temp &= ~(7 << 19);
2434         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2435         temp &= ~FDI_LINK_TRAIN_NONE;
2436         temp |= FDI_LINK_TRAIN_PATTERN_1;
2437         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2438
2439         reg = FDI_RX_CTL(pipe);
2440         temp = I915_READ(reg);
2441         temp &= ~FDI_LINK_TRAIN_NONE;
2442         temp |= FDI_LINK_TRAIN_PATTERN_1;
2443         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2444
2445         POSTING_READ(reg);
2446         udelay(150);
2447
2448         /* Ironlake workaround, enable clock pointer after FDI enable*/
2449         if (HAS_PCH_IBX(dev)) {
2450                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2451                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2452                            FDI_RX_PHASE_SYNC_POINTER_EN);
2453         }
2454
2455         reg = FDI_RX_IIR(pipe);
2456         for (tries = 0; tries < 5; tries++) {
2457                 temp = I915_READ(reg);
2458                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2459
2460                 if ((temp & FDI_RX_BIT_LOCK)) {
2461                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2462                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2463                         break;
2464                 }
2465         }
2466         if (tries == 5)
2467                 DRM_ERROR("FDI train 1 fail!\n");
2468
2469         /* Train 2 */
2470         reg = FDI_TX_CTL(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~FDI_LINK_TRAIN_NONE;
2473         temp |= FDI_LINK_TRAIN_PATTERN_2;
2474         I915_WRITE(reg, temp);
2475
2476         reg = FDI_RX_CTL(pipe);
2477         temp = I915_READ(reg);
2478         temp &= ~FDI_LINK_TRAIN_NONE;
2479         temp |= FDI_LINK_TRAIN_PATTERN_2;
2480         I915_WRITE(reg, temp);
2481
2482         POSTING_READ(reg);
2483         udelay(150);
2484
2485         reg = FDI_RX_IIR(pipe);
2486         for (tries = 0; tries < 5; tries++) {
2487                 temp = I915_READ(reg);
2488                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2489
2490                 if (temp & FDI_RX_SYMBOL_LOCK) {
2491                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2492                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2493                         break;
2494                 }
2495         }
2496         if (tries == 5)
2497                 DRM_ERROR("FDI train 2 fail!\n");
2498
2499         DRM_DEBUG_KMS("FDI train done\n");
2500
2501 }
2502
2503 static const int snb_b_fdi_train_param[] = {
2504         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2505         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2506         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2507         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2508 };
2509
2510 /* The FDI link training functions for SNB/Cougarpoint. */
2511 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2512 {
2513         struct drm_device *dev = crtc->dev;
2514         struct drm_i915_private *dev_priv = dev->dev_private;
2515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2516         int pipe = intel_crtc->pipe;
2517         u32 reg, temp, i, retry;
2518
2519         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2520            for train result */
2521         reg = FDI_RX_IMR(pipe);
2522         temp = I915_READ(reg);
2523         temp &= ~FDI_RX_SYMBOL_LOCK;
2524         temp &= ~FDI_RX_BIT_LOCK;
2525         I915_WRITE(reg, temp);
2526
2527         POSTING_READ(reg);
2528         udelay(150);
2529
2530         /* enable CPU FDI TX and PCH FDI RX */
2531         reg = FDI_TX_CTL(pipe);
2532         temp = I915_READ(reg);
2533         temp &= ~(7 << 19);
2534         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2535         temp &= ~FDI_LINK_TRAIN_NONE;
2536         temp |= FDI_LINK_TRAIN_PATTERN_1;
2537         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2538         /* SNB-B */
2539         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2540         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2541
2542         I915_WRITE(FDI_RX_MISC(pipe),
2543                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2544
2545         reg = FDI_RX_CTL(pipe);
2546         temp = I915_READ(reg);
2547         if (HAS_PCH_CPT(dev)) {
2548                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2549                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2550         } else {
2551                 temp &= ~FDI_LINK_TRAIN_NONE;
2552                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2553         }
2554         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2555
2556         POSTING_READ(reg);
2557         udelay(150);
2558
2559         if (HAS_PCH_CPT(dev))
2560                 cpt_phase_pointer_enable(dev, pipe);
2561
2562         for (i = 0; i < 4; i++) {
2563                 reg = FDI_TX_CTL(pipe);
2564                 temp = I915_READ(reg);
2565                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2566                 temp |= snb_b_fdi_train_param[i];
2567                 I915_WRITE(reg, temp);
2568
2569                 POSTING_READ(reg);
2570                 udelay(500);
2571
2572                 for (retry = 0; retry < 5; retry++) {
2573                         reg = FDI_RX_IIR(pipe);
2574                         temp = I915_READ(reg);
2575                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2576                         if (temp & FDI_RX_BIT_LOCK) {
2577                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2578                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2579                                 break;
2580                         }
2581                         udelay(50);
2582                 }
2583                 if (retry < 5)
2584                         break;
2585         }
2586         if (i == 4)
2587                 DRM_ERROR("FDI train 1 fail!\n");
2588
2589         /* Train 2 */
2590         reg = FDI_TX_CTL(pipe);
2591         temp = I915_READ(reg);
2592         temp &= ~FDI_LINK_TRAIN_NONE;
2593         temp |= FDI_LINK_TRAIN_PATTERN_2;
2594         if (IS_GEN6(dev)) {
2595                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2596                 /* SNB-B */
2597                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2598         }
2599         I915_WRITE(reg, temp);
2600
2601         reg = FDI_RX_CTL(pipe);
2602         temp = I915_READ(reg);
2603         if (HAS_PCH_CPT(dev)) {
2604                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2605                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2606         } else {
2607                 temp &= ~FDI_LINK_TRAIN_NONE;
2608                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2609         }
2610         I915_WRITE(reg, temp);
2611
2612         POSTING_READ(reg);
2613         udelay(150);
2614
2615         for (i = 0; i < 4; i++) {
2616                 reg = FDI_TX_CTL(pipe);
2617                 temp = I915_READ(reg);
2618                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2619                 temp |= snb_b_fdi_train_param[i];
2620                 I915_WRITE(reg, temp);
2621
2622                 POSTING_READ(reg);
2623                 udelay(500);
2624
2625                 for (retry = 0; retry < 5; retry++) {
2626                         reg = FDI_RX_IIR(pipe);
2627                         temp = I915_READ(reg);
2628                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2629                         if (temp & FDI_RX_SYMBOL_LOCK) {
2630                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2631                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2632                                 break;
2633                         }
2634                         udelay(50);
2635                 }
2636                 if (retry < 5)
2637                         break;
2638         }
2639         if (i == 4)
2640                 DRM_ERROR("FDI train 2 fail!\n");
2641
2642         DRM_DEBUG_KMS("FDI train done.\n");
2643 }
2644
2645 /* Manual link training for Ivy Bridge A0 parts */
2646 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2647 {
2648         struct drm_device *dev = crtc->dev;
2649         struct drm_i915_private *dev_priv = dev->dev_private;
2650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651         int pipe = intel_crtc->pipe;
2652         u32 reg, temp, i;
2653
2654         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2655            for train result */
2656         reg = FDI_RX_IMR(pipe);
2657         temp = I915_READ(reg);
2658         temp &= ~FDI_RX_SYMBOL_LOCK;
2659         temp &= ~FDI_RX_BIT_LOCK;
2660         I915_WRITE(reg, temp);
2661
2662         POSTING_READ(reg);
2663         udelay(150);
2664
2665         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2666                       I915_READ(FDI_RX_IIR(pipe)));
2667
2668         /* enable CPU FDI TX and PCH FDI RX */
2669         reg = FDI_TX_CTL(pipe);
2670         temp = I915_READ(reg);
2671         temp &= ~(7 << 19);
2672         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2673         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2674         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2675         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2677         temp |= FDI_COMPOSITE_SYNC;
2678         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2679
2680         I915_WRITE(FDI_RX_MISC(pipe),
2681                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2682
2683         reg = FDI_RX_CTL(pipe);
2684         temp = I915_READ(reg);
2685         temp &= ~FDI_LINK_TRAIN_AUTO;
2686         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2688         temp |= FDI_COMPOSITE_SYNC;
2689         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2690
2691         POSTING_READ(reg);
2692         udelay(150);
2693
2694         if (HAS_PCH_CPT(dev))
2695                 cpt_phase_pointer_enable(dev, pipe);
2696
2697         for (i = 0; i < 4; i++) {
2698                 reg = FDI_TX_CTL(pipe);
2699                 temp = I915_READ(reg);
2700                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2701                 temp |= snb_b_fdi_train_param[i];
2702                 I915_WRITE(reg, temp);
2703
2704                 POSTING_READ(reg);
2705                 udelay(500);
2706
2707                 reg = FDI_RX_IIR(pipe);
2708                 temp = I915_READ(reg);
2709                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2710
2711                 if (temp & FDI_RX_BIT_LOCK ||
2712                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2713                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2714                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2715                         break;
2716                 }
2717         }
2718         if (i == 4)
2719                 DRM_ERROR("FDI train 1 fail!\n");
2720
2721         /* Train 2 */
2722         reg = FDI_TX_CTL(pipe);
2723         temp = I915_READ(reg);
2724         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2725         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2726         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2727         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2728         I915_WRITE(reg, temp);
2729
2730         reg = FDI_RX_CTL(pipe);
2731         temp = I915_READ(reg);
2732         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2733         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2734         I915_WRITE(reg, temp);
2735
2736         POSTING_READ(reg);
2737         udelay(150);
2738
2739         for (i = 0; i < 4; i++) {
2740                 reg = FDI_TX_CTL(pipe);
2741                 temp = I915_READ(reg);
2742                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2743                 temp |= snb_b_fdi_train_param[i];
2744                 I915_WRITE(reg, temp);
2745
2746                 POSTING_READ(reg);
2747                 udelay(500);
2748
2749                 reg = FDI_RX_IIR(pipe);
2750                 temp = I915_READ(reg);
2751                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2752
2753                 if (temp & FDI_RX_SYMBOL_LOCK) {
2754                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2755                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2756                         break;
2757                 }
2758         }
2759         if (i == 4)
2760                 DRM_ERROR("FDI train 2 fail!\n");
2761
2762         DRM_DEBUG_KMS("FDI train done.\n");
2763 }
2764
2765 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2766 {
2767         struct drm_device *dev = intel_crtc->base.dev;
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         int pipe = intel_crtc->pipe;
2770         u32 reg, temp;
2771
2772
2773         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2774         reg = FDI_RX_CTL(pipe);
2775         temp = I915_READ(reg);
2776         temp &= ~((0x7 << 19) | (0x7 << 16));
2777         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2778         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2779         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2780
2781         POSTING_READ(reg);
2782         udelay(200);
2783
2784         /* Switch from Rawclk to PCDclk */
2785         temp = I915_READ(reg);
2786         I915_WRITE(reg, temp | FDI_PCDCLK);
2787
2788         POSTING_READ(reg);
2789         udelay(200);
2790
2791         /* On Haswell, the PLL configuration for ports and pipes is handled
2792          * separately, as part of DDI setup */
2793         if (!IS_HASWELL(dev)) {
2794                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2795                 reg = FDI_TX_CTL(pipe);
2796                 temp = I915_READ(reg);
2797                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2798                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2799
2800                         POSTING_READ(reg);
2801                         udelay(100);
2802                 }
2803         }
2804 }
2805
2806 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2807 {
2808         struct drm_device *dev = intel_crtc->base.dev;
2809         struct drm_i915_private *dev_priv = dev->dev_private;
2810         int pipe = intel_crtc->pipe;
2811         u32 reg, temp;
2812
2813         /* Switch from PCDclk to Rawclk */
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2817
2818         /* Disable CPU FDI TX PLL */
2819         reg = FDI_TX_CTL(pipe);
2820         temp = I915_READ(reg);
2821         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2822
2823         POSTING_READ(reg);
2824         udelay(100);
2825
2826         reg = FDI_RX_CTL(pipe);
2827         temp = I915_READ(reg);
2828         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2829
2830         /* Wait for the clocks to turn off. */
2831         POSTING_READ(reg);
2832         udelay(100);
2833 }
2834
2835 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2836 {
2837         struct drm_i915_private *dev_priv = dev->dev_private;
2838         u32 flags = I915_READ(SOUTH_CHICKEN1);
2839
2840         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2841         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2842         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2843         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2844         POSTING_READ(SOUTH_CHICKEN1);
2845 }
2846 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2847 {
2848         struct drm_device *dev = crtc->dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2851         int pipe = intel_crtc->pipe;
2852         u32 reg, temp;
2853
2854         /* disable CPU FDI tx and PCH FDI rx */
2855         reg = FDI_TX_CTL(pipe);
2856         temp = I915_READ(reg);
2857         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2858         POSTING_READ(reg);
2859
2860         reg = FDI_RX_CTL(pipe);
2861         temp = I915_READ(reg);
2862         temp &= ~(0x7 << 16);
2863         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2864         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2865
2866         POSTING_READ(reg);
2867         udelay(100);
2868
2869         /* Ironlake workaround, disable clock pointer after downing FDI */
2870         if (HAS_PCH_IBX(dev)) {
2871                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2872                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2873                            I915_READ(FDI_RX_CHICKEN(pipe) &
2874                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2875         } else if (HAS_PCH_CPT(dev)) {
2876                 cpt_phase_pointer_disable(dev, pipe);
2877         }
2878
2879         /* still set train pattern 1 */
2880         reg = FDI_TX_CTL(pipe);
2881         temp = I915_READ(reg);
2882         temp &= ~FDI_LINK_TRAIN_NONE;
2883         temp |= FDI_LINK_TRAIN_PATTERN_1;
2884         I915_WRITE(reg, temp);
2885
2886         reg = FDI_RX_CTL(pipe);
2887         temp = I915_READ(reg);
2888         if (HAS_PCH_CPT(dev)) {
2889                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2890                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2891         } else {
2892                 temp &= ~FDI_LINK_TRAIN_NONE;
2893                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2894         }
2895         /* BPC in FDI rx is consistent with that in PIPECONF */
2896         temp &= ~(0x07 << 16);
2897         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2898         I915_WRITE(reg, temp);
2899
2900         POSTING_READ(reg);
2901         udelay(100);
2902 }
2903
2904 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2905 {
2906         struct drm_device *dev = crtc->dev;
2907         struct drm_i915_private *dev_priv = dev->dev_private;
2908         unsigned long flags;
2909         bool pending;
2910
2911         if (atomic_read(&dev_priv->mm.wedged))
2912                 return false;
2913
2914         spin_lock_irqsave(&dev->event_lock, flags);
2915         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2916         spin_unlock_irqrestore(&dev->event_lock, flags);
2917
2918         return pending;
2919 }
2920
2921 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2922 {
2923         struct drm_device *dev = crtc->dev;
2924         struct drm_i915_private *dev_priv = dev->dev_private;
2925
2926         if (crtc->fb == NULL)
2927                 return;
2928
2929         wait_event(dev_priv->pending_flip_queue,
2930                    !intel_crtc_has_pending_flip(crtc));
2931
2932         mutex_lock(&dev->struct_mutex);
2933         intel_finish_fb(crtc->fb);
2934         mutex_unlock(&dev->struct_mutex);
2935 }
2936
2937 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2938 {
2939         struct drm_device *dev = crtc->dev;
2940         struct intel_encoder *intel_encoder;
2941
2942         /*
2943          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2944          * must be driven by its own crtc; no sharing is possible.
2945          */
2946         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2947                 switch (intel_encoder->type) {
2948                 case INTEL_OUTPUT_EDP:
2949                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2950                                 return false;
2951                         continue;
2952                 }
2953         }
2954
2955         return true;
2956 }
2957
2958 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2959 {
2960         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2961 }
2962
2963 /* Program iCLKIP clock to the desired frequency */
2964 static void lpt_program_iclkip(struct drm_crtc *crtc)
2965 {
2966         struct drm_device *dev = crtc->dev;
2967         struct drm_i915_private *dev_priv = dev->dev_private;
2968         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2969         u32 temp;
2970
2971         /* It is necessary to ungate the pixclk gate prior to programming
2972          * the divisors, and gate it back when it is done.
2973          */
2974         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2975
2976         /* Disable SSCCTL */
2977         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2978                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2979                                         SBI_SSCCTL_DISABLE);
2980
2981         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2982         if (crtc->mode.clock == 20000) {
2983                 auxdiv = 1;
2984                 divsel = 0x41;
2985                 phaseinc = 0x20;
2986         } else {
2987                 /* The iCLK virtual clock root frequency is in MHz,
2988                  * but the crtc->mode.clock in in KHz. To get the divisors,
2989                  * it is necessary to divide one by another, so we
2990                  * convert the virtual clock precision to KHz here for higher
2991                  * precision.
2992                  */
2993                 u32 iclk_virtual_root_freq = 172800 * 1000;
2994                 u32 iclk_pi_range = 64;
2995                 u32 desired_divisor, msb_divisor_value, pi_value;
2996
2997                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2998                 msb_divisor_value = desired_divisor / iclk_pi_range;
2999                 pi_value = desired_divisor % iclk_pi_range;
3000
3001                 auxdiv = 0;
3002                 divsel = msb_divisor_value - 2;
3003                 phaseinc = pi_value;
3004         }
3005
3006         /* This should not happen with any sane values */
3007         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3008                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3009         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3010                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3011
3012         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3013                         crtc->mode.clock,
3014                         auxdiv,
3015                         divsel,
3016                         phasedir,
3017                         phaseinc);
3018
3019         /* Program SSCDIVINTPHASE6 */
3020         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3021         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3022         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3023         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3024         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3025         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3026         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3027
3028         intel_sbi_write(dev_priv,
3029                         SBI_SSCDIVINTPHASE6,
3030                         temp);
3031
3032         /* Program SSCAUXDIV */
3033         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3034         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3035         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3036         intel_sbi_write(dev_priv,
3037                         SBI_SSCAUXDIV6,
3038                         temp);
3039
3040
3041         /* Enable modulator and associated divider */
3042         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3043         temp &= ~SBI_SSCCTL_DISABLE;
3044         intel_sbi_write(dev_priv,
3045                         SBI_SSCCTL6,
3046                         temp);
3047
3048         /* Wait for initialization time */
3049         udelay(24);
3050
3051         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3052 }
3053
3054 /*
3055  * Enable PCH resources required for PCH ports:
3056  *   - PCH PLLs
3057  *   - FDI training & RX/TX
3058  *   - update transcoder timings
3059  *   - DP transcoding bits
3060  *   - transcoder
3061  */
3062 static void ironlake_pch_enable(struct drm_crtc *crtc)
3063 {
3064         struct drm_device *dev = crtc->dev;
3065         struct drm_i915_private *dev_priv = dev->dev_private;
3066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3067         int pipe = intel_crtc->pipe;
3068         u32 reg, temp;
3069
3070         assert_transcoder_disabled(dev_priv, pipe);
3071
3072         /* Write the TU size bits before fdi link training, so that error
3073          * detection works. */
3074         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3075                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3076
3077         /* For PCH output, training FDI link */
3078         dev_priv->display.fdi_link_train(crtc);
3079
3080         /* XXX: pch pll's can be enabled any time before we enable the PCH
3081          * transcoder, and we actually should do this to not upset any PCH
3082          * transcoder that already use the clock when we share it.
3083          *
3084          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3085          * unconditionally resets the pll - we need that to have the right LVDS
3086          * enable sequence. */
3087         ironlake_enable_pch_pll(intel_crtc);
3088
3089         if (HAS_PCH_CPT(dev)) {
3090                 u32 sel;
3091
3092                 temp = I915_READ(PCH_DPLL_SEL);
3093                 switch (pipe) {
3094                 default:
3095                 case 0:
3096                         temp |= TRANSA_DPLL_ENABLE;
3097                         sel = TRANSA_DPLLB_SEL;
3098                         break;
3099                 case 1:
3100                         temp |= TRANSB_DPLL_ENABLE;
3101                         sel = TRANSB_DPLLB_SEL;
3102                         break;
3103                 case 2:
3104                         temp |= TRANSC_DPLL_ENABLE;
3105                         sel = TRANSC_DPLLB_SEL;
3106                         break;
3107                 }
3108                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3109                         temp |= sel;
3110                 else
3111                         temp &= ~sel;
3112                 I915_WRITE(PCH_DPLL_SEL, temp);
3113         }
3114
3115         /* set transcoder timing, panel must allow it */
3116         assert_panel_unlocked(dev_priv, pipe);
3117         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3118         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3119         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3120
3121         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3122         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3123         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3124         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3125
3126         intel_fdi_normal_train(crtc);
3127
3128         /* For PCH DP, enable TRANS_DP_CTL */
3129         if (HAS_PCH_CPT(dev) &&
3130             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3131              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3132                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3133                 reg = TRANS_DP_CTL(pipe);
3134                 temp = I915_READ(reg);
3135                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3136                           TRANS_DP_SYNC_MASK |
3137                           TRANS_DP_BPC_MASK);
3138                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3139                          TRANS_DP_ENH_FRAMING);
3140                 temp |= bpc << 9; /* same format but at 11:9 */
3141
3142                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3143                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3144                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3145                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3146
3147                 switch (intel_trans_dp_port_sel(crtc)) {
3148                 case PCH_DP_B:
3149                         temp |= TRANS_DP_PORT_SEL_B;
3150                         break;
3151                 case PCH_DP_C:
3152                         temp |= TRANS_DP_PORT_SEL_C;
3153                         break;
3154                 case PCH_DP_D:
3155                         temp |= TRANS_DP_PORT_SEL_D;
3156                         break;
3157                 default:
3158                         BUG();
3159                 }
3160
3161                 I915_WRITE(reg, temp);
3162         }
3163
3164         ironlake_enable_pch_transcoder(dev_priv, pipe);
3165 }
3166
3167 static void lpt_pch_enable(struct drm_crtc *crtc)
3168 {
3169         struct drm_device *dev = crtc->dev;
3170         struct drm_i915_private *dev_priv = dev->dev_private;
3171         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3172         int pipe = intel_crtc->pipe;
3173         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3174
3175         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3176
3177         /* Write the TU size bits before fdi link training, so that error
3178          * detection works. */
3179         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3180                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3181
3182         /* For PCH output, training FDI link */
3183         dev_priv->display.fdi_link_train(crtc);
3184
3185         lpt_program_iclkip(crtc);
3186
3187         /* Set transcoder timing. */
3188         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3189         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3190         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3191
3192         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3193         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3194         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3195         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3196
3197         ironlake_enable_pch_transcoder(dev_priv, intel_crtc->pipe);
3198 }
3199
3200 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3201 {
3202         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3203
3204         if (pll == NULL)
3205                 return;
3206
3207         if (pll->refcount == 0) {
3208                 WARN(1, "bad PCH PLL refcount\n");
3209                 return;
3210         }
3211
3212         --pll->refcount;
3213         intel_crtc->pch_pll = NULL;
3214 }
3215
3216 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3217 {
3218         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3219         struct intel_pch_pll *pll;
3220         int i;
3221
3222         pll = intel_crtc->pch_pll;
3223         if (pll) {
3224                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3225                               intel_crtc->base.base.id, pll->pll_reg);
3226                 goto prepare;
3227         }
3228
3229         if (HAS_PCH_IBX(dev_priv->dev)) {
3230                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3231                 i = intel_crtc->pipe;
3232                 pll = &dev_priv->pch_plls[i];
3233
3234                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3235                               intel_crtc->base.base.id, pll->pll_reg);
3236
3237                 goto found;
3238         }
3239
3240         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3241                 pll = &dev_priv->pch_plls[i];
3242
3243                 /* Only want to check enabled timings first */
3244                 if (pll->refcount == 0)
3245                         continue;
3246
3247                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3248                     fp == I915_READ(pll->fp0_reg)) {
3249                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3250                                       intel_crtc->base.base.id,
3251                                       pll->pll_reg, pll->refcount, pll->active);
3252
3253                         goto found;
3254                 }
3255         }
3256
3257         /* Ok no matching timings, maybe there's a free one? */
3258         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3259                 pll = &dev_priv->pch_plls[i];
3260                 if (pll->refcount == 0) {
3261                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3262                                       intel_crtc->base.base.id, pll->pll_reg);
3263                         goto found;
3264                 }
3265         }
3266
3267         return NULL;
3268
3269 found:
3270         intel_crtc->pch_pll = pll;
3271         pll->refcount++;
3272         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3273 prepare: /* separate function? */
3274         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3275
3276         /* Wait for the clocks to stabilize before rewriting the regs */
3277         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3278         POSTING_READ(pll->pll_reg);
3279         udelay(150);
3280
3281         I915_WRITE(pll->fp0_reg, fp);
3282         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3283         pll->on = false;
3284         return pll;
3285 }
3286
3287 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3288 {
3289         struct drm_i915_private *dev_priv = dev->dev_private;
3290         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3291         u32 temp;
3292
3293         temp = I915_READ(dslreg);
3294         udelay(500);
3295         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3296                 /* Without this, mode sets may fail silently on FDI */
3297                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3298                 udelay(250);
3299                 I915_WRITE(tc2reg, 0);
3300                 if (wait_for(I915_READ(dslreg) != temp, 5))
3301                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3302         }
3303 }
3304
3305 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3306 {
3307         struct drm_device *dev = crtc->dev;
3308         struct drm_i915_private *dev_priv = dev->dev_private;
3309         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3310         struct intel_encoder *encoder;
3311         int pipe = intel_crtc->pipe;
3312         int plane = intel_crtc->plane;
3313         u32 temp;
3314         bool is_pch_port;
3315
3316         WARN_ON(!crtc->enabled);
3317
3318         if (intel_crtc->active)
3319                 return;
3320
3321         intel_crtc->active = true;
3322         intel_update_watermarks(dev);
3323
3324         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3325                 temp = I915_READ(PCH_LVDS);
3326                 if ((temp & LVDS_PORT_EN) == 0)
3327                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3328         }
3329
3330         is_pch_port = ironlake_crtc_driving_pch(crtc);
3331
3332         if (is_pch_port) {
3333                 /* Note: FDI PLL enabling _must_ be done before we enable the
3334                  * cpu pipes, hence this is separate from all the other fdi/pch
3335                  * enabling. */
3336                 ironlake_fdi_pll_enable(intel_crtc);
3337         } else {
3338                 assert_fdi_tx_disabled(dev_priv, pipe);
3339                 assert_fdi_rx_disabled(dev_priv, pipe);
3340         }
3341
3342         for_each_encoder_on_crtc(dev, crtc, encoder)
3343                 if (encoder->pre_enable)
3344                         encoder->pre_enable(encoder);
3345
3346         /* Enable panel fitting for LVDS */
3347         if (dev_priv->pch_pf_size &&
3348             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3349                 /* Force use of hard-coded filter coefficients
3350                  * as some pre-programmed values are broken,
3351                  * e.g. x201.
3352                  */
3353                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3354                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3355                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3356         }
3357
3358         /*
3359          * On ILK+ LUT must be loaded before the pipe is running but with
3360          * clocks enabled
3361          */
3362         intel_crtc_load_lut(crtc);
3363
3364         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3365         intel_enable_plane(dev_priv, plane, pipe);
3366
3367         if (is_pch_port)
3368                 ironlake_pch_enable(crtc);
3369
3370         mutex_lock(&dev->struct_mutex);
3371         intel_update_fbc(dev);
3372         mutex_unlock(&dev->struct_mutex);
3373
3374         intel_crtc_update_cursor(crtc, true);
3375
3376         for_each_encoder_on_crtc(dev, crtc, encoder)
3377                 encoder->enable(encoder);
3378
3379         if (HAS_PCH_CPT(dev))
3380                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3381
3382         /*
3383          * There seems to be a race in PCH platform hw (at least on some
3384          * outputs) where an enabled pipe still completes any pageflip right
3385          * away (as if the pipe is off) instead of waiting for vblank. As soon
3386          * as the first vblank happend, everything works as expected. Hence just
3387          * wait for one vblank before returning to avoid strange things
3388          * happening.
3389          */
3390         intel_wait_for_vblank(dev, intel_crtc->pipe);
3391 }
3392
3393 static void haswell_crtc_enable(struct drm_crtc *crtc)
3394 {
3395         struct drm_device *dev = crtc->dev;
3396         struct drm_i915_private *dev_priv = dev->dev_private;
3397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3398         struct intel_encoder *encoder;
3399         int pipe = intel_crtc->pipe;
3400         int plane = intel_crtc->plane;
3401         bool is_pch_port;
3402
3403         WARN_ON(!crtc->enabled);
3404
3405         if (intel_crtc->active)
3406                 return;
3407
3408         intel_crtc->active = true;
3409         intel_update_watermarks(dev);
3410
3411         is_pch_port = haswell_crtc_driving_pch(crtc);
3412
3413         if (is_pch_port)
3414                 ironlake_fdi_pll_enable(intel_crtc);
3415
3416         for_each_encoder_on_crtc(dev, crtc, encoder)
3417                 if (encoder->pre_enable)
3418                         encoder->pre_enable(encoder);
3419
3420         intel_ddi_enable_pipe_clock(intel_crtc);
3421
3422         /* Enable panel fitting for eDP */
3423         if (dev_priv->pch_pf_size && HAS_eDP) {
3424                 /* Force use of hard-coded filter coefficients
3425                  * as some pre-programmed values are broken,
3426                  * e.g. x201.
3427                  */
3428                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3429                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3430                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3431         }
3432
3433         /*
3434          * On ILK+ LUT must be loaded before the pipe is running but with
3435          * clocks enabled
3436          */
3437         intel_crtc_load_lut(crtc);
3438
3439         intel_ddi_set_pipe_settings(crtc);
3440         intel_ddi_enable_pipe_func(crtc);
3441
3442         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3443         intel_enable_plane(dev_priv, plane, pipe);
3444
3445         if (is_pch_port)
3446                 lpt_pch_enable(crtc);
3447
3448         mutex_lock(&dev->struct_mutex);
3449         intel_update_fbc(dev);
3450         mutex_unlock(&dev->struct_mutex);
3451
3452         intel_crtc_update_cursor(crtc, true);
3453
3454         for_each_encoder_on_crtc(dev, crtc, encoder)
3455                 encoder->enable(encoder);
3456
3457         /*
3458          * There seems to be a race in PCH platform hw (at least on some
3459          * outputs) where an enabled pipe still completes any pageflip right
3460          * away (as if the pipe is off) instead of waiting for vblank. As soon
3461          * as the first vblank happend, everything works as expected. Hence just
3462          * wait for one vblank before returning to avoid strange things
3463          * happening.
3464          */
3465         intel_wait_for_vblank(dev, intel_crtc->pipe);
3466 }
3467
3468 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3469 {
3470         struct drm_device *dev = crtc->dev;
3471         struct drm_i915_private *dev_priv = dev->dev_private;
3472         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3473         struct intel_encoder *encoder;
3474         int pipe = intel_crtc->pipe;
3475         int plane = intel_crtc->plane;
3476         u32 reg, temp;
3477
3478
3479         if (!intel_crtc->active)
3480                 return;
3481
3482         for_each_encoder_on_crtc(dev, crtc, encoder)
3483                 encoder->disable(encoder);
3484
3485         intel_crtc_wait_for_pending_flips(crtc);
3486         drm_vblank_off(dev, pipe);
3487         intel_crtc_update_cursor(crtc, false);
3488
3489         intel_disable_plane(dev_priv, plane, pipe);
3490
3491         if (dev_priv->cfb_plane == plane)
3492                 intel_disable_fbc(dev);
3493
3494         intel_disable_pipe(dev_priv, pipe);
3495
3496         /* Disable PF */
3497         I915_WRITE(PF_CTL(pipe), 0);
3498         I915_WRITE(PF_WIN_SZ(pipe), 0);
3499
3500         for_each_encoder_on_crtc(dev, crtc, encoder)
3501                 if (encoder->post_disable)
3502                         encoder->post_disable(encoder);
3503
3504         ironlake_fdi_disable(crtc);
3505
3506         ironlake_disable_pch_transcoder(dev_priv, pipe);
3507
3508         if (HAS_PCH_CPT(dev)) {
3509                 /* disable TRANS_DP_CTL */
3510                 reg = TRANS_DP_CTL(pipe);
3511                 temp = I915_READ(reg);
3512                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3513                 temp |= TRANS_DP_PORT_SEL_NONE;
3514                 I915_WRITE(reg, temp);
3515
3516                 /* disable DPLL_SEL */
3517                 temp = I915_READ(PCH_DPLL_SEL);
3518                 switch (pipe) {
3519                 case 0:
3520                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3521                         break;
3522                 case 1:
3523                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3524                         break;
3525                 case 2:
3526                         /* C shares PLL A or B */
3527                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3528                         break;
3529                 default:
3530                         BUG(); /* wtf */
3531                 }
3532                 I915_WRITE(PCH_DPLL_SEL, temp);
3533         }
3534
3535         /* disable PCH DPLL */
3536         intel_disable_pch_pll(intel_crtc);
3537
3538         ironlake_fdi_pll_disable(intel_crtc);
3539
3540         intel_crtc->active = false;
3541         intel_update_watermarks(dev);
3542
3543         mutex_lock(&dev->struct_mutex);
3544         intel_update_fbc(dev);
3545         mutex_unlock(&dev->struct_mutex);
3546 }
3547
3548 static void haswell_crtc_disable(struct drm_crtc *crtc)
3549 {
3550         struct drm_device *dev = crtc->dev;
3551         struct drm_i915_private *dev_priv = dev->dev_private;
3552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553         struct intel_encoder *encoder;
3554         int pipe = intel_crtc->pipe;
3555         int plane = intel_crtc->plane;
3556         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3557         bool is_pch_port;
3558
3559         if (!intel_crtc->active)
3560                 return;
3561
3562         is_pch_port = haswell_crtc_driving_pch(crtc);
3563
3564         for_each_encoder_on_crtc(dev, crtc, encoder)
3565                 encoder->disable(encoder);
3566
3567         intel_crtc_wait_for_pending_flips(crtc);
3568         drm_vblank_off(dev, pipe);
3569         intel_crtc_update_cursor(crtc, false);
3570
3571         intel_disable_plane(dev_priv, plane, pipe);
3572
3573         if (dev_priv->cfb_plane == plane)
3574                 intel_disable_fbc(dev);
3575
3576         intel_disable_pipe(dev_priv, pipe);
3577
3578         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3579
3580         /* Disable PF */
3581         I915_WRITE(PF_CTL(pipe), 0);
3582         I915_WRITE(PF_WIN_SZ(pipe), 0);
3583
3584         intel_ddi_disable_pipe_clock(intel_crtc);
3585
3586         for_each_encoder_on_crtc(dev, crtc, encoder)
3587                 if (encoder->post_disable)
3588                         encoder->post_disable(encoder);
3589
3590         if (is_pch_port) {
3591                 ironlake_fdi_disable(crtc);
3592                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3593                 intel_disable_pch_pll(intel_crtc);
3594                 ironlake_fdi_pll_disable(intel_crtc);
3595         }
3596
3597         intel_crtc->active = false;
3598         intel_update_watermarks(dev);
3599
3600         mutex_lock(&dev->struct_mutex);
3601         intel_update_fbc(dev);
3602         mutex_unlock(&dev->struct_mutex);
3603 }
3604
3605 static void ironlake_crtc_off(struct drm_crtc *crtc)
3606 {
3607         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3608         intel_put_pch_pll(intel_crtc);
3609 }
3610
3611 static void haswell_crtc_off(struct drm_crtc *crtc)
3612 {
3613         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3614
3615         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3616          * start using it. */
3617         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3618
3619         intel_ddi_put_crtc_pll(crtc);
3620 }
3621
3622 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3623 {
3624         if (!enable && intel_crtc->overlay) {
3625                 struct drm_device *dev = intel_crtc->base.dev;
3626                 struct drm_i915_private *dev_priv = dev->dev_private;
3627
3628                 mutex_lock(&dev->struct_mutex);
3629                 dev_priv->mm.interruptible = false;
3630                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3631                 dev_priv->mm.interruptible = true;
3632                 mutex_unlock(&dev->struct_mutex);
3633         }
3634
3635         /* Let userspace switch the overlay on again. In most cases userspace
3636          * has to recompute where to put it anyway.
3637          */
3638 }
3639
3640 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3641 {
3642         struct drm_device *dev = crtc->dev;
3643         struct drm_i915_private *dev_priv = dev->dev_private;
3644         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3645         struct intel_encoder *encoder;
3646         int pipe = intel_crtc->pipe;
3647         int plane = intel_crtc->plane;
3648
3649         WARN_ON(!crtc->enabled);
3650
3651         if (intel_crtc->active)
3652                 return;
3653
3654         intel_crtc->active = true;
3655         intel_update_watermarks(dev);
3656
3657         intel_enable_pll(dev_priv, pipe);
3658         intel_enable_pipe(dev_priv, pipe, false);
3659         intel_enable_plane(dev_priv, plane, pipe);
3660
3661         intel_crtc_load_lut(crtc);
3662         intel_update_fbc(dev);
3663
3664         /* Give the overlay scaler a chance to enable if it's on this pipe */
3665         intel_crtc_dpms_overlay(intel_crtc, true);
3666         intel_crtc_update_cursor(crtc, true);
3667
3668         for_each_encoder_on_crtc(dev, crtc, encoder)
3669                 encoder->enable(encoder);
3670 }
3671
3672 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3673 {
3674         struct drm_device *dev = crtc->dev;
3675         struct drm_i915_private *dev_priv = dev->dev_private;
3676         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3677         struct intel_encoder *encoder;
3678         int pipe = intel_crtc->pipe;
3679         int plane = intel_crtc->plane;
3680
3681
3682         if (!intel_crtc->active)
3683                 return;
3684
3685         for_each_encoder_on_crtc(dev, crtc, encoder)
3686                 encoder->disable(encoder);
3687
3688         /* Give the overlay scaler a chance to disable if it's on this pipe */
3689         intel_crtc_wait_for_pending_flips(crtc);
3690         drm_vblank_off(dev, pipe);
3691         intel_crtc_dpms_overlay(intel_crtc, false);
3692         intel_crtc_update_cursor(crtc, false);
3693
3694         if (dev_priv->cfb_plane == plane)
3695                 intel_disable_fbc(dev);
3696
3697         intel_disable_plane(dev_priv, plane, pipe);
3698         intel_disable_pipe(dev_priv, pipe);
3699         intel_disable_pll(dev_priv, pipe);
3700
3701         intel_crtc->active = false;
3702         intel_update_fbc(dev);
3703         intel_update_watermarks(dev);
3704 }
3705
3706 static void i9xx_crtc_off(struct drm_crtc *crtc)
3707 {
3708 }
3709
3710 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3711                                     bool enabled)
3712 {
3713         struct drm_device *dev = crtc->dev;
3714         struct drm_i915_master_private *master_priv;
3715         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3716         int pipe = intel_crtc->pipe;
3717
3718         if (!dev->primary->master)
3719                 return;
3720
3721         master_priv = dev->primary->master->driver_priv;
3722         if (!master_priv->sarea_priv)
3723                 return;
3724
3725         switch (pipe) {
3726         case 0:
3727                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3728                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3729                 break;
3730         case 1:
3731                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3732                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3733                 break;
3734         default:
3735                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3736                 break;
3737         }
3738 }
3739
3740 /**
3741  * Sets the power management mode of the pipe and plane.
3742  */
3743 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3744 {
3745         struct drm_device *dev = crtc->dev;
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747         struct intel_encoder *intel_encoder;
3748         bool enable = false;
3749
3750         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3751                 enable |= intel_encoder->connectors_active;
3752
3753         if (enable)
3754                 dev_priv->display.crtc_enable(crtc);
3755         else
3756                 dev_priv->display.crtc_disable(crtc);
3757
3758         intel_crtc_update_sarea(crtc, enable);
3759 }
3760
3761 static void intel_crtc_noop(struct drm_crtc *crtc)
3762 {
3763 }
3764
3765 static void intel_crtc_disable(struct drm_crtc *crtc)
3766 {
3767         struct drm_device *dev = crtc->dev;
3768         struct drm_connector *connector;
3769         struct drm_i915_private *dev_priv = dev->dev_private;
3770
3771         /* crtc should still be enabled when we disable it. */
3772         WARN_ON(!crtc->enabled);
3773
3774         dev_priv->display.crtc_disable(crtc);
3775         intel_crtc_update_sarea(crtc, false);
3776         dev_priv->display.off(crtc);
3777
3778         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3779         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3780
3781         if (crtc->fb) {
3782                 mutex_lock(&dev->struct_mutex);
3783                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3784                 mutex_unlock(&dev->struct_mutex);
3785                 crtc->fb = NULL;
3786         }
3787
3788         /* Update computed state. */
3789         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3790                 if (!connector->encoder || !connector->encoder->crtc)
3791                         continue;
3792
3793                 if (connector->encoder->crtc != crtc)
3794                         continue;
3795
3796                 connector->dpms = DRM_MODE_DPMS_OFF;
3797                 to_intel_encoder(connector->encoder)->connectors_active = false;
3798         }
3799 }
3800
3801 void intel_modeset_disable(struct drm_device *dev)
3802 {
3803         struct drm_crtc *crtc;
3804
3805         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3806                 if (crtc->enabled)
3807                         intel_crtc_disable(crtc);
3808         }
3809 }
3810
3811 void intel_encoder_noop(struct drm_encoder *encoder)
3812 {
3813 }
3814
3815 void intel_encoder_destroy(struct drm_encoder *encoder)
3816 {
3817         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3818
3819         drm_encoder_cleanup(encoder);
3820         kfree(intel_encoder);
3821 }
3822
3823 /* Simple dpms helper for encodres with just one connector, no cloning and only
3824  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3825  * state of the entire output pipe. */
3826 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3827 {
3828         if (mode == DRM_MODE_DPMS_ON) {
3829                 encoder->connectors_active = true;
3830
3831                 intel_crtc_update_dpms(encoder->base.crtc);
3832         } else {
3833                 encoder->connectors_active = false;
3834
3835                 intel_crtc_update_dpms(encoder->base.crtc);
3836         }
3837 }
3838
3839 /* Cross check the actual hw state with our own modeset state tracking (and it's
3840  * internal consistency). */
3841 static void intel_connector_check_state(struct intel_connector *connector)
3842 {
3843         if (connector->get_hw_state(connector)) {
3844                 struct intel_encoder *encoder = connector->encoder;
3845                 struct drm_crtc *crtc;
3846                 bool encoder_enabled;
3847                 enum pipe pipe;
3848
3849                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3850                               connector->base.base.id,
3851                               drm_get_connector_name(&connector->base));
3852
3853                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3854                      "wrong connector dpms state\n");
3855                 WARN(connector->base.encoder != &encoder->base,
3856                      "active connector not linked to encoder\n");
3857                 WARN(!encoder->connectors_active,
3858                      "encoder->connectors_active not set\n");
3859
3860                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3861                 WARN(!encoder_enabled, "encoder not enabled\n");
3862                 if (WARN_ON(!encoder->base.crtc))
3863                         return;
3864
3865                 crtc = encoder->base.crtc;
3866
3867                 WARN(!crtc->enabled, "crtc not enabled\n");
3868                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3869                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3870                      "encoder active on the wrong pipe\n");
3871         }
3872 }
3873
3874 /* Even simpler default implementation, if there's really no special case to
3875  * consider. */
3876 void intel_connector_dpms(struct drm_connector *connector, int mode)
3877 {
3878         struct intel_encoder *encoder = intel_attached_encoder(connector);
3879
3880         /* All the simple cases only support two dpms states. */
3881         if (mode != DRM_MODE_DPMS_ON)
3882                 mode = DRM_MODE_DPMS_OFF;
3883
3884         if (mode == connector->dpms)
3885                 return;
3886
3887         connector->dpms = mode;
3888
3889         /* Only need to change hw state when actually enabled */
3890         if (encoder->base.crtc)
3891                 intel_encoder_dpms(encoder, mode);
3892         else
3893                 WARN_ON(encoder->connectors_active != false);
3894
3895         intel_modeset_check_state(connector->dev);
3896 }
3897
3898 /* Simple connector->get_hw_state implementation for encoders that support only
3899  * one connector and no cloning and hence the encoder state determines the state
3900  * of the connector. */
3901 bool intel_connector_get_hw_state(struct intel_connector *connector)
3902 {
3903         enum pipe pipe = 0;
3904         struct intel_encoder *encoder = connector->encoder;
3905
3906         return encoder->get_hw_state(encoder, &pipe);
3907 }
3908
3909 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3910                                   const struct drm_display_mode *mode,
3911                                   struct drm_display_mode *adjusted_mode)
3912 {
3913         struct drm_device *dev = crtc->dev;
3914
3915         if (HAS_PCH_SPLIT(dev)) {
3916                 /* FDI link clock is fixed at 2.7G */
3917                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3918                         return false;
3919         }
3920
3921         /* All interlaced capable intel hw wants timings in frames. Note though
3922          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3923          * timings, so we need to be careful not to clobber these.*/
3924         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3925                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3926
3927         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3928          * with a hsync front porch of 0.
3929          */
3930         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3931                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3932                 return false;
3933
3934         return true;
3935 }
3936
3937 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3938 {
3939         return 400000; /* FIXME */
3940 }
3941
3942 static int i945_get_display_clock_speed(struct drm_device *dev)
3943 {
3944         return 400000;
3945 }
3946
3947 static int i915_get_display_clock_speed(struct drm_device *dev)
3948 {
3949         return 333000;
3950 }
3951
3952 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3953 {
3954         return 200000;
3955 }
3956
3957 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3958 {
3959         u16 gcfgc = 0;
3960
3961         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3962
3963         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3964                 return 133000;
3965         else {
3966                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3967                 case GC_DISPLAY_CLOCK_333_MHZ:
3968                         return 333000;
3969                 default:
3970                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3971                         return 190000;
3972                 }
3973         }
3974 }
3975
3976 static int i865_get_display_clock_speed(struct drm_device *dev)
3977 {
3978         return 266000;
3979 }
3980
3981 static int i855_get_display_clock_speed(struct drm_device *dev)
3982 {
3983         u16 hpllcc = 0;
3984         /* Assume that the hardware is in the high speed state.  This
3985          * should be the default.
3986          */
3987         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3988         case GC_CLOCK_133_200:
3989         case GC_CLOCK_100_200:
3990                 return 200000;
3991         case GC_CLOCK_166_250:
3992                 return 250000;
3993         case GC_CLOCK_100_133:
3994                 return 133000;
3995         }
3996
3997         /* Shouldn't happen */
3998         return 0;
3999 }
4000
4001 static int i830_get_display_clock_speed(struct drm_device *dev)
4002 {
4003         return 133000;
4004 }
4005
4006 struct fdi_m_n {
4007         u32        tu;
4008         u32        gmch_m;
4009         u32        gmch_n;
4010         u32        link_m;
4011         u32        link_n;
4012 };
4013
4014 static void
4015 fdi_reduce_ratio(u32 *num, u32 *den)
4016 {
4017         while (*num > 0xffffff || *den > 0xffffff) {
4018                 *num >>= 1;
4019                 *den >>= 1;
4020         }
4021 }
4022
4023 static void
4024 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4025                      int link_clock, struct fdi_m_n *m_n)
4026 {
4027         m_n->tu = 64; /* default size */
4028
4029         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4030         m_n->gmch_m = bits_per_pixel * pixel_clock;
4031         m_n->gmch_n = link_clock * nlanes * 8;
4032         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4033
4034         m_n->link_m = pixel_clock;
4035         m_n->link_n = link_clock;
4036         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4037 }
4038
4039 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4040 {
4041         if (i915_panel_use_ssc >= 0)
4042                 return i915_panel_use_ssc != 0;
4043         return dev_priv->lvds_use_ssc
4044                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4045 }
4046
4047 /**
4048  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4049  * @crtc: CRTC structure
4050  * @mode: requested mode
4051  *
4052  * A pipe may be connected to one or more outputs.  Based on the depth of the
4053  * attached framebuffer, choose a good color depth to use on the pipe.
4054  *
4055  * If possible, match the pipe depth to the fb depth.  In some cases, this
4056  * isn't ideal, because the connected output supports a lesser or restricted
4057  * set of depths.  Resolve that here:
4058  *    LVDS typically supports only 6bpc, so clamp down in that case
4059  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4060  *    Displays may support a restricted set as well, check EDID and clamp as
4061  *      appropriate.
4062  *    DP may want to dither down to 6bpc to fit larger modes
4063  *
4064  * RETURNS:
4065  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4066  * true if they don't match).
4067  */
4068 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4069                                          struct drm_framebuffer *fb,
4070                                          unsigned int *pipe_bpp,
4071                                          struct drm_display_mode *mode)
4072 {
4073         struct drm_device *dev = crtc->dev;
4074         struct drm_i915_private *dev_priv = dev->dev_private;
4075         struct drm_connector *connector;
4076         struct intel_encoder *intel_encoder;
4077         unsigned int display_bpc = UINT_MAX, bpc;
4078
4079         /* Walk the encoders & connectors on this crtc, get min bpc */
4080         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4081
4082                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4083                         unsigned int lvds_bpc;
4084
4085                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4086                             LVDS_A3_POWER_UP)
4087                                 lvds_bpc = 8;
4088                         else
4089                                 lvds_bpc = 6;
4090
4091                         if (lvds_bpc < display_bpc) {
4092                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4093                                 display_bpc = lvds_bpc;
4094                         }
4095                         continue;
4096                 }
4097
4098                 /* Not one of the known troublemakers, check the EDID */
4099                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4100                                     head) {
4101                         if (connector->encoder != &intel_encoder->base)
4102                                 continue;
4103
4104                         /* Don't use an invalid EDID bpc value */
4105                         if (connector->display_info.bpc &&
4106                             connector->display_info.bpc < display_bpc) {
4107                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4108                                 display_bpc = connector->display_info.bpc;
4109                         }
4110                 }
4111
4112                 /*
4113                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4114                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4115                  */
4116                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4117                         if (display_bpc > 8 && display_bpc < 12) {
4118                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4119                                 display_bpc = 12;
4120                         } else {
4121                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4122                                 display_bpc = 8;
4123                         }
4124                 }
4125         }
4126
4127         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4128                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4129                 display_bpc = 6;
4130         }
4131
4132         /*
4133          * We could just drive the pipe at the highest bpc all the time and
4134          * enable dithering as needed, but that costs bandwidth.  So choose
4135          * the minimum value that expresses the full color range of the fb but
4136          * also stays within the max display bpc discovered above.
4137          */
4138
4139         switch (fb->depth) {
4140         case 8:
4141                 bpc = 8; /* since we go through a colormap */
4142                 break;
4143         case 15:
4144         case 16:
4145                 bpc = 6; /* min is 18bpp */
4146                 break;
4147         case 24:
4148                 bpc = 8;
4149                 break;
4150         case 30:
4151                 bpc = 10;
4152                 break;
4153         case 48:
4154                 bpc = 12;
4155                 break;
4156         default:
4157                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4158                 bpc = min((unsigned int)8, display_bpc);
4159                 break;
4160         }
4161
4162         display_bpc = min(display_bpc, bpc);
4163
4164         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4165                       bpc, display_bpc);
4166
4167         *pipe_bpp = display_bpc * 3;
4168
4169         return display_bpc != bpc;
4170 }
4171
4172 static int vlv_get_refclk(struct drm_crtc *crtc)
4173 {
4174         struct drm_device *dev = crtc->dev;
4175         struct drm_i915_private *dev_priv = dev->dev_private;
4176         int refclk = 27000; /* for DP & HDMI */
4177
4178         return 100000; /* only one validated so far */
4179
4180         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4181                 refclk = 96000;
4182         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4183                 if (intel_panel_use_ssc(dev_priv))
4184                         refclk = 100000;
4185                 else
4186                         refclk = 96000;
4187         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4188                 refclk = 100000;
4189         }
4190
4191         return refclk;
4192 }
4193
4194 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4195 {
4196         struct drm_device *dev = crtc->dev;
4197         struct drm_i915_private *dev_priv = dev->dev_private;
4198         int refclk;
4199
4200         if (IS_VALLEYVIEW(dev)) {
4201                 refclk = vlv_get_refclk(crtc);
4202         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4203             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4204                 refclk = dev_priv->lvds_ssc_freq * 1000;
4205                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4206                               refclk / 1000);
4207         } else if (!IS_GEN2(dev)) {
4208                 refclk = 96000;
4209         } else {
4210                 refclk = 48000;
4211         }
4212
4213         return refclk;
4214 }
4215
4216 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4217                                       intel_clock_t *clock)
4218 {
4219         /* SDVO TV has fixed PLL values depend on its clock range,
4220            this mirrors vbios setting. */
4221         if (adjusted_mode->clock >= 100000
4222             && adjusted_mode->clock < 140500) {
4223                 clock->p1 = 2;
4224                 clock->p2 = 10;
4225                 clock->n = 3;
4226                 clock->m1 = 16;
4227                 clock->m2 = 8;
4228         } else if (adjusted_mode->clock >= 140500
4229                    && adjusted_mode->clock <= 200000) {
4230                 clock->p1 = 1;
4231                 clock->p2 = 10;
4232                 clock->n = 6;
4233                 clock->m1 = 12;
4234                 clock->m2 = 8;
4235         }
4236 }
4237
4238 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4239                                      intel_clock_t *clock,
4240                                      intel_clock_t *reduced_clock)
4241 {
4242         struct drm_device *dev = crtc->dev;
4243         struct drm_i915_private *dev_priv = dev->dev_private;
4244         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4245         int pipe = intel_crtc->pipe;
4246         u32 fp, fp2 = 0;
4247
4248         if (IS_PINEVIEW(dev)) {
4249                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4250                 if (reduced_clock)
4251                         fp2 = (1 << reduced_clock->n) << 16 |
4252                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4253         } else {
4254                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4255                 if (reduced_clock)
4256                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4257                                 reduced_clock->m2;
4258         }
4259
4260         I915_WRITE(FP0(pipe), fp);
4261
4262         intel_crtc->lowfreq_avail = false;
4263         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4264             reduced_clock && i915_powersave) {
4265                 I915_WRITE(FP1(pipe), fp2);
4266                 intel_crtc->lowfreq_avail = true;
4267         } else {
4268                 I915_WRITE(FP1(pipe), fp);
4269         }
4270 }
4271
4272 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4273                               struct drm_display_mode *adjusted_mode)
4274 {
4275         struct drm_device *dev = crtc->dev;
4276         struct drm_i915_private *dev_priv = dev->dev_private;
4277         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4278         int pipe = intel_crtc->pipe;
4279         u32 temp;
4280
4281         temp = I915_READ(LVDS);
4282         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4283         if (pipe == 1) {
4284                 temp |= LVDS_PIPEB_SELECT;
4285         } else {
4286                 temp &= ~LVDS_PIPEB_SELECT;
4287         }
4288         /* set the corresponsding LVDS_BORDER bit */
4289         temp |= dev_priv->lvds_border_bits;
4290         /* Set the B0-B3 data pairs corresponding to whether we're going to
4291          * set the DPLLs for dual-channel mode or not.
4292          */
4293         if (clock->p2 == 7)
4294                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4295         else
4296                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4297
4298         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4299          * appropriately here, but we need to look more thoroughly into how
4300          * panels behave in the two modes.
4301          */
4302         /* set the dithering flag on LVDS as needed */
4303         if (INTEL_INFO(dev)->gen >= 4) {
4304                 if (dev_priv->lvds_dither)
4305                         temp |= LVDS_ENABLE_DITHER;
4306                 else
4307                         temp &= ~LVDS_ENABLE_DITHER;
4308         }
4309         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4310         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4311                 temp |= LVDS_HSYNC_POLARITY;
4312         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4313                 temp |= LVDS_VSYNC_POLARITY;
4314         I915_WRITE(LVDS, temp);
4315 }
4316
4317 static void vlv_update_pll(struct drm_crtc *crtc,
4318                            struct drm_display_mode *mode,
4319                            struct drm_display_mode *adjusted_mode,
4320                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4321                            int num_connectors)
4322 {
4323         struct drm_device *dev = crtc->dev;
4324         struct drm_i915_private *dev_priv = dev->dev_private;
4325         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4326         int pipe = intel_crtc->pipe;
4327         u32 dpll, mdiv, pdiv;
4328         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4329         bool is_sdvo;
4330         u32 temp;
4331
4332         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4333                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4334
4335         dpll = DPLL_VGA_MODE_DIS;
4336         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4337         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4338         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4339
4340         I915_WRITE(DPLL(pipe), dpll);
4341         POSTING_READ(DPLL(pipe));
4342
4343         bestn = clock->n;
4344         bestm1 = clock->m1;
4345         bestm2 = clock->m2;
4346         bestp1 = clock->p1;
4347         bestp2 = clock->p2;
4348
4349         /*
4350          * In Valleyview PLL and program lane counter registers are exposed
4351          * through DPIO interface
4352          */
4353         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4354         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4355         mdiv |= ((bestn << DPIO_N_SHIFT));
4356         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4357         mdiv |= (1 << DPIO_K_SHIFT);
4358         mdiv |= DPIO_ENABLE_CALIBRATION;
4359         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4360
4361         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4362
4363         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4364                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4365                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4366                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4367         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4368
4369         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4370
4371         dpll |= DPLL_VCO_ENABLE;
4372         I915_WRITE(DPLL(pipe), dpll);
4373         POSTING_READ(DPLL(pipe));
4374         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4375                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4376
4377         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4378
4379         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4380                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4381
4382         I915_WRITE(DPLL(pipe), dpll);
4383
4384         /* Wait for the clocks to stabilize. */
4385         POSTING_READ(DPLL(pipe));
4386         udelay(150);
4387
4388         temp = 0;
4389         if (is_sdvo) {
4390                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4391                 if (temp > 1)
4392                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4393                 else
4394                         temp = 0;
4395         }
4396         I915_WRITE(DPLL_MD(pipe), temp);
4397         POSTING_READ(DPLL_MD(pipe));
4398
4399         /* Now program lane control registers */
4400         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4401                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4402         {
4403                 temp = 0x1000C4;
4404                 if(pipe == 1)
4405                         temp |= (1 << 21);
4406                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4407         }
4408         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4409         {
4410                 temp = 0x1000C4;
4411                 if(pipe == 1)
4412                         temp |= (1 << 21);
4413                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4414         }
4415 }
4416
4417 static void i9xx_update_pll(struct drm_crtc *crtc,
4418                             struct drm_display_mode *mode,
4419                             struct drm_display_mode *adjusted_mode,
4420                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4421                             int num_connectors)
4422 {
4423         struct drm_device *dev = crtc->dev;
4424         struct drm_i915_private *dev_priv = dev->dev_private;
4425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4426         int pipe = intel_crtc->pipe;
4427         u32 dpll;
4428         bool is_sdvo;
4429
4430         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4431
4432         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4433                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4434
4435         dpll = DPLL_VGA_MODE_DIS;
4436
4437         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4438                 dpll |= DPLLB_MODE_LVDS;
4439         else
4440                 dpll |= DPLLB_MODE_DAC_SERIAL;
4441         if (is_sdvo) {
4442                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4443                 if (pixel_multiplier > 1) {
4444                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4445                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4446                 }
4447                 dpll |= DPLL_DVO_HIGH_SPEED;
4448         }
4449         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4450                 dpll |= DPLL_DVO_HIGH_SPEED;
4451
4452         /* compute bitmask from p1 value */
4453         if (IS_PINEVIEW(dev))
4454                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4455         else {
4456                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4457                 if (IS_G4X(dev) && reduced_clock)
4458                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4459         }
4460         switch (clock->p2) {
4461         case 5:
4462                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4463                 break;
4464         case 7:
4465                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4466                 break;
4467         case 10:
4468                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4469                 break;
4470         case 14:
4471                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4472                 break;
4473         }
4474         if (INTEL_INFO(dev)->gen >= 4)
4475                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4476
4477         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4478                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4479         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4480                 /* XXX: just matching BIOS for now */
4481                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4482                 dpll |= 3;
4483         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4484                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4485                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4486         else
4487                 dpll |= PLL_REF_INPUT_DREFCLK;
4488
4489         dpll |= DPLL_VCO_ENABLE;
4490         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4491         POSTING_READ(DPLL(pipe));
4492         udelay(150);
4493
4494         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4495          * This is an exception to the general rule that mode_set doesn't turn
4496          * things on.
4497          */
4498         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4499                 intel_update_lvds(crtc, clock, adjusted_mode);
4500
4501         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4502                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4503
4504         I915_WRITE(DPLL(pipe), dpll);
4505
4506         /* Wait for the clocks to stabilize. */
4507         POSTING_READ(DPLL(pipe));
4508         udelay(150);
4509
4510         if (INTEL_INFO(dev)->gen >= 4) {
4511                 u32 temp = 0;
4512                 if (is_sdvo) {
4513                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4514                         if (temp > 1)
4515                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4516                         else
4517                                 temp = 0;
4518                 }
4519                 I915_WRITE(DPLL_MD(pipe), temp);
4520         } else {
4521                 /* The pixel multiplier can only be updated once the
4522                  * DPLL is enabled and the clocks are stable.
4523                  *
4524                  * So write it again.
4525                  */
4526                 I915_WRITE(DPLL(pipe), dpll);
4527         }
4528 }
4529
4530 static void i8xx_update_pll(struct drm_crtc *crtc,
4531                             struct drm_display_mode *adjusted_mode,
4532                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4533                             int num_connectors)
4534 {
4535         struct drm_device *dev = crtc->dev;
4536         struct drm_i915_private *dev_priv = dev->dev_private;
4537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4538         int pipe = intel_crtc->pipe;
4539         u32 dpll;
4540
4541         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4542
4543         dpll = DPLL_VGA_MODE_DIS;
4544
4545         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4546                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4547         } else {
4548                 if (clock->p1 == 2)
4549                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4550                 else
4551                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4552                 if (clock->p2 == 4)
4553                         dpll |= PLL_P2_DIVIDE_BY_4;
4554         }
4555
4556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4557                 /* XXX: just matching BIOS for now */
4558                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4559                 dpll |= 3;
4560         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4561                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4562                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4563         else
4564                 dpll |= PLL_REF_INPUT_DREFCLK;
4565
4566         dpll |= DPLL_VCO_ENABLE;
4567         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4568         POSTING_READ(DPLL(pipe));
4569         udelay(150);
4570
4571         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4572          * This is an exception to the general rule that mode_set doesn't turn
4573          * things on.
4574          */
4575         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4576                 intel_update_lvds(crtc, clock, adjusted_mode);
4577
4578         I915_WRITE(DPLL(pipe), dpll);
4579
4580         /* Wait for the clocks to stabilize. */
4581         POSTING_READ(DPLL(pipe));
4582         udelay(150);
4583
4584         /* The pixel multiplier can only be updated once the
4585          * DPLL is enabled and the clocks are stable.
4586          *
4587          * So write it again.
4588          */
4589         I915_WRITE(DPLL(pipe), dpll);
4590 }
4591
4592 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4593                                    struct drm_display_mode *mode,
4594                                    struct drm_display_mode *adjusted_mode)
4595 {
4596         struct drm_device *dev = intel_crtc->base.dev;
4597         struct drm_i915_private *dev_priv = dev->dev_private;
4598         enum pipe pipe = intel_crtc->pipe;
4599         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4600         uint32_t vsyncshift;
4601
4602         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4603                 /* the chip adds 2 halflines automatically */
4604                 adjusted_mode->crtc_vtotal -= 1;
4605                 adjusted_mode->crtc_vblank_end -= 1;
4606                 vsyncshift = adjusted_mode->crtc_hsync_start
4607                              - adjusted_mode->crtc_htotal / 2;
4608         } else {
4609                 vsyncshift = 0;
4610         }
4611
4612         if (INTEL_INFO(dev)->gen > 3)
4613                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4614
4615         I915_WRITE(HTOTAL(cpu_transcoder),
4616                    (adjusted_mode->crtc_hdisplay - 1) |
4617                    ((adjusted_mode->crtc_htotal - 1) << 16));
4618         I915_WRITE(HBLANK(cpu_transcoder),
4619                    (adjusted_mode->crtc_hblank_start - 1) |
4620                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4621         I915_WRITE(HSYNC(cpu_transcoder),
4622                    (adjusted_mode->crtc_hsync_start - 1) |
4623                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4624
4625         I915_WRITE(VTOTAL(cpu_transcoder),
4626                    (adjusted_mode->crtc_vdisplay - 1) |
4627                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4628         I915_WRITE(VBLANK(cpu_transcoder),
4629                    (adjusted_mode->crtc_vblank_start - 1) |
4630                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4631         I915_WRITE(VSYNC(cpu_transcoder),
4632                    (adjusted_mode->crtc_vsync_start - 1) |
4633                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4634
4635         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4636          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4637          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4638          * bits. */
4639         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4640             (pipe == PIPE_B || pipe == PIPE_C))
4641                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4642
4643         /* pipesrc controls the size that is scaled from, which should
4644          * always be the user's requested size.
4645          */
4646         I915_WRITE(PIPESRC(pipe),
4647                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4648 }
4649
4650 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4651                               struct drm_display_mode *mode,
4652                               struct drm_display_mode *adjusted_mode,
4653                               int x, int y,
4654                               struct drm_framebuffer *fb)
4655 {
4656         struct drm_device *dev = crtc->dev;
4657         struct drm_i915_private *dev_priv = dev->dev_private;
4658         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4659         int pipe = intel_crtc->pipe;
4660         int plane = intel_crtc->plane;
4661         int refclk, num_connectors = 0;
4662         intel_clock_t clock, reduced_clock;
4663         u32 dspcntr, pipeconf;
4664         bool ok, has_reduced_clock = false, is_sdvo = false;
4665         bool is_lvds = false, is_tv = false, is_dp = false;
4666         struct intel_encoder *encoder;
4667         const intel_limit_t *limit;
4668         int ret;
4669
4670         for_each_encoder_on_crtc(dev, crtc, encoder) {
4671                 switch (encoder->type) {
4672                 case INTEL_OUTPUT_LVDS:
4673                         is_lvds = true;
4674                         break;
4675                 case INTEL_OUTPUT_SDVO:
4676                 case INTEL_OUTPUT_HDMI:
4677                         is_sdvo = true;
4678                         if (encoder->needs_tv_clock)
4679                                 is_tv = true;
4680                         break;
4681                 case INTEL_OUTPUT_TVOUT:
4682                         is_tv = true;
4683                         break;
4684                 case INTEL_OUTPUT_DISPLAYPORT:
4685                         is_dp = true;
4686                         break;
4687                 }
4688
4689                 num_connectors++;
4690         }
4691
4692         refclk = i9xx_get_refclk(crtc, num_connectors);
4693
4694         /*
4695          * Returns a set of divisors for the desired target clock with the given
4696          * refclk, or FALSE.  The returned values represent the clock equation:
4697          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4698          */
4699         limit = intel_limit(crtc, refclk);
4700         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4701                              &clock);
4702         if (!ok) {
4703                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4704                 return -EINVAL;
4705         }
4706
4707         /* Ensure that the cursor is valid for the new mode before changing... */
4708         intel_crtc_update_cursor(crtc, true);
4709
4710         if (is_lvds && dev_priv->lvds_downclock_avail) {
4711                 /*
4712                  * Ensure we match the reduced clock's P to the target clock.
4713                  * If the clocks don't match, we can't switch the display clock
4714                  * by using the FP0/FP1. In such case we will disable the LVDS
4715                  * downclock feature.
4716                 */
4717                 has_reduced_clock = limit->find_pll(limit, crtc,
4718                                                     dev_priv->lvds_downclock,
4719                                                     refclk,
4720                                                     &clock,
4721                                                     &reduced_clock);
4722         }
4723
4724         if (is_sdvo && is_tv)
4725                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4726
4727         if (IS_GEN2(dev))
4728                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4729                                 has_reduced_clock ? &reduced_clock : NULL,
4730                                 num_connectors);
4731         else if (IS_VALLEYVIEW(dev))
4732                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4733                                 has_reduced_clock ? &reduced_clock : NULL,
4734                                 num_connectors);
4735         else
4736                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4737                                 has_reduced_clock ? &reduced_clock : NULL,
4738                                 num_connectors);
4739
4740         /* setup pipeconf */
4741         pipeconf = I915_READ(PIPECONF(pipe));
4742
4743         /* Set up the display plane register */
4744         dspcntr = DISPPLANE_GAMMA_ENABLE;
4745
4746         if (pipe == 0)
4747                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4748         else
4749                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4750
4751         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4752                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4753                  * core speed.
4754                  *
4755                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4756                  * pipe == 0 check?
4757                  */
4758                 if (mode->clock >
4759                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4760                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4761                 else
4762                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4763         }
4764
4765         /* default to 8bpc */
4766         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4767         if (is_dp) {
4768                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4769                         pipeconf |= PIPECONF_BPP_6 |
4770                                     PIPECONF_DITHER_EN |
4771                                     PIPECONF_DITHER_TYPE_SP;
4772                 }
4773         }
4774
4775         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4776                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4777                         pipeconf |= PIPECONF_BPP_6 |
4778                                         PIPECONF_ENABLE |
4779                                         I965_PIPECONF_ACTIVE;
4780                 }
4781         }
4782
4783         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4784         drm_mode_debug_printmodeline(mode);
4785
4786         if (HAS_PIPE_CXSR(dev)) {
4787                 if (intel_crtc->lowfreq_avail) {
4788                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4789                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4790                 } else {
4791                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4792                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4793                 }
4794         }
4795
4796         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4797         if (!IS_GEN2(dev) &&
4798             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4799                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4800         else
4801                 pipeconf |= PIPECONF_PROGRESSIVE;
4802
4803         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4804
4805         /* pipesrc and dspsize control the size that is scaled from,
4806          * which should always be the user's requested size.
4807          */
4808         I915_WRITE(DSPSIZE(plane),
4809                    ((mode->vdisplay - 1) << 16) |
4810                    (mode->hdisplay - 1));
4811         I915_WRITE(DSPPOS(plane), 0);
4812
4813         I915_WRITE(PIPECONF(pipe), pipeconf);
4814         POSTING_READ(PIPECONF(pipe));
4815         intel_enable_pipe(dev_priv, pipe, false);
4816
4817         intel_wait_for_vblank(dev, pipe);
4818
4819         I915_WRITE(DSPCNTR(plane), dspcntr);
4820         POSTING_READ(DSPCNTR(plane));
4821
4822         ret = intel_pipe_set_base(crtc, x, y, fb);
4823
4824         intel_update_watermarks(dev);
4825
4826         return ret;
4827 }
4828
4829 /*
4830  * Initialize reference clocks when the driver loads
4831  */
4832 void ironlake_init_pch_refclk(struct drm_device *dev)
4833 {
4834         struct drm_i915_private *dev_priv = dev->dev_private;
4835         struct drm_mode_config *mode_config = &dev->mode_config;
4836         struct intel_encoder *encoder;
4837         u32 temp;
4838         bool has_lvds = false;
4839         bool has_cpu_edp = false;
4840         bool has_pch_edp = false;
4841         bool has_panel = false;
4842         bool has_ck505 = false;
4843         bool can_ssc = false;
4844
4845         /* We need to take the global config into account */
4846         list_for_each_entry(encoder, &mode_config->encoder_list,
4847                             base.head) {
4848                 switch (encoder->type) {
4849                 case INTEL_OUTPUT_LVDS:
4850                         has_panel = true;
4851                         has_lvds = true;
4852                         break;
4853                 case INTEL_OUTPUT_EDP:
4854                         has_panel = true;
4855                         if (intel_encoder_is_pch_edp(&encoder->base))
4856                                 has_pch_edp = true;
4857                         else
4858                                 has_cpu_edp = true;
4859                         break;
4860                 }
4861         }
4862
4863         if (HAS_PCH_IBX(dev)) {
4864                 has_ck505 = dev_priv->display_clock_mode;
4865                 can_ssc = has_ck505;
4866         } else {
4867                 has_ck505 = false;
4868                 can_ssc = true;
4869         }
4870
4871         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4872                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4873                       has_ck505);
4874
4875         /* Ironlake: try to setup display ref clock before DPLL
4876          * enabling. This is only under driver's control after
4877          * PCH B stepping, previous chipset stepping should be
4878          * ignoring this setting.
4879          */
4880         temp = I915_READ(PCH_DREF_CONTROL);
4881         /* Always enable nonspread source */
4882         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4883
4884         if (has_ck505)
4885                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4886         else
4887                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4888
4889         if (has_panel) {
4890                 temp &= ~DREF_SSC_SOURCE_MASK;
4891                 temp |= DREF_SSC_SOURCE_ENABLE;
4892
4893                 /* SSC must be turned on before enabling the CPU output  */
4894                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4895                         DRM_DEBUG_KMS("Using SSC on panel\n");
4896                         temp |= DREF_SSC1_ENABLE;
4897                 } else
4898                         temp &= ~DREF_SSC1_ENABLE;
4899
4900                 /* Get SSC going before enabling the outputs */
4901                 I915_WRITE(PCH_DREF_CONTROL, temp);
4902                 POSTING_READ(PCH_DREF_CONTROL);
4903                 udelay(200);
4904
4905                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4906
4907                 /* Enable CPU source on CPU attached eDP */
4908                 if (has_cpu_edp) {
4909                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4910                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4911                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4912                         }
4913                         else
4914                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4915                 } else
4916                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4917
4918                 I915_WRITE(PCH_DREF_CONTROL, temp);
4919                 POSTING_READ(PCH_DREF_CONTROL);
4920                 udelay(200);
4921         } else {
4922                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4923
4924                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4925
4926                 /* Turn off CPU output */
4927                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4928
4929                 I915_WRITE(PCH_DREF_CONTROL, temp);
4930                 POSTING_READ(PCH_DREF_CONTROL);
4931                 udelay(200);
4932
4933                 /* Turn off the SSC source */
4934                 temp &= ~DREF_SSC_SOURCE_MASK;
4935                 temp |= DREF_SSC_SOURCE_DISABLE;
4936
4937                 /* Turn off SSC1 */
4938                 temp &= ~ DREF_SSC1_ENABLE;
4939
4940                 I915_WRITE(PCH_DREF_CONTROL, temp);
4941                 POSTING_READ(PCH_DREF_CONTROL);
4942                 udelay(200);
4943         }
4944 }
4945
4946 static int ironlake_get_refclk(struct drm_crtc *crtc)
4947 {
4948         struct drm_device *dev = crtc->dev;
4949         struct drm_i915_private *dev_priv = dev->dev_private;
4950         struct intel_encoder *encoder;
4951         struct intel_encoder *edp_encoder = NULL;
4952         int num_connectors = 0;
4953         bool is_lvds = false;
4954
4955         for_each_encoder_on_crtc(dev, crtc, encoder) {
4956                 switch (encoder->type) {
4957                 case INTEL_OUTPUT_LVDS:
4958                         is_lvds = true;
4959                         break;
4960                 case INTEL_OUTPUT_EDP:
4961                         edp_encoder = encoder;
4962                         break;
4963                 }
4964                 num_connectors++;
4965         }
4966
4967         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4968                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4969                               dev_priv->lvds_ssc_freq);
4970                 return dev_priv->lvds_ssc_freq * 1000;
4971         }
4972
4973         return 120000;
4974 }
4975
4976 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4977                                   struct drm_display_mode *adjusted_mode,
4978                                   bool dither)
4979 {
4980         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4981         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4982         int pipe = intel_crtc->pipe;
4983         uint32_t val;
4984
4985         val = I915_READ(PIPECONF(pipe));
4986
4987         val &= ~PIPE_BPC_MASK;
4988         switch (intel_crtc->bpp) {
4989         case 18:
4990                 val |= PIPE_6BPC;
4991                 break;
4992         case 24:
4993                 val |= PIPE_8BPC;
4994                 break;
4995         case 30:
4996                 val |= PIPE_10BPC;
4997                 break;
4998         case 36:
4999                 val |= PIPE_12BPC;
5000                 break;
5001         default:
5002                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5003                 BUG();
5004         }
5005
5006         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5007         if (dither)
5008                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5009
5010         val &= ~PIPECONF_INTERLACE_MASK;
5011         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5012                 val |= PIPECONF_INTERLACED_ILK;
5013         else
5014                 val |= PIPECONF_PROGRESSIVE;
5015
5016         I915_WRITE(PIPECONF(pipe), val);
5017         POSTING_READ(PIPECONF(pipe));
5018 }
5019
5020 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5021                                  struct drm_display_mode *adjusted_mode,
5022                                  bool dither)
5023 {
5024         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5025         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5026         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5027         uint32_t val;
5028
5029         val = I915_READ(PIPECONF(cpu_transcoder));
5030
5031         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5032         if (dither)
5033                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5034
5035         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5036         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5037                 val |= PIPECONF_INTERLACED_ILK;
5038         else
5039                 val |= PIPECONF_PROGRESSIVE;
5040
5041         I915_WRITE(PIPECONF(cpu_transcoder), val);
5042         POSTING_READ(PIPECONF(cpu_transcoder));
5043 }
5044
5045 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5046                                     struct drm_display_mode *adjusted_mode,
5047                                     intel_clock_t *clock,
5048                                     bool *has_reduced_clock,
5049                                     intel_clock_t *reduced_clock)
5050 {
5051         struct drm_device *dev = crtc->dev;
5052         struct drm_i915_private *dev_priv = dev->dev_private;
5053         struct intel_encoder *intel_encoder;
5054         int refclk;
5055         const intel_limit_t *limit;
5056         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5057
5058         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5059                 switch (intel_encoder->type) {
5060                 case INTEL_OUTPUT_LVDS:
5061                         is_lvds = true;
5062                         break;
5063                 case INTEL_OUTPUT_SDVO:
5064                 case INTEL_OUTPUT_HDMI:
5065                         is_sdvo = true;
5066                         if (intel_encoder->needs_tv_clock)
5067                                 is_tv = true;
5068                         break;
5069                 case INTEL_OUTPUT_TVOUT:
5070                         is_tv = true;
5071                         break;
5072                 }
5073         }
5074
5075         refclk = ironlake_get_refclk(crtc);
5076
5077         /*
5078          * Returns a set of divisors for the desired target clock with the given
5079          * refclk, or FALSE.  The returned values represent the clock equation:
5080          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5081          */
5082         limit = intel_limit(crtc, refclk);
5083         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5084                               clock);
5085         if (!ret)
5086                 return false;
5087
5088         if (is_lvds && dev_priv->lvds_downclock_avail) {
5089                 /*
5090                  * Ensure we match the reduced clock's P to the target clock.
5091                  * If the clocks don't match, we can't switch the display clock
5092                  * by using the FP0/FP1. In such case we will disable the LVDS
5093                  * downclock feature.
5094                 */
5095                 *has_reduced_clock = limit->find_pll(limit, crtc,
5096                                                      dev_priv->lvds_downclock,
5097                                                      refclk,
5098                                                      clock,
5099                                                      reduced_clock);
5100         }
5101
5102         if (is_sdvo && is_tv)
5103                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5104
5105         return true;
5106 }
5107
5108 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5109 {
5110         struct drm_i915_private *dev_priv = dev->dev_private;
5111         uint32_t temp;
5112
5113         temp = I915_READ(SOUTH_CHICKEN1);
5114         if (temp & FDI_BC_BIFURCATION_SELECT)
5115                 return;
5116
5117         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5118         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5119
5120         temp |= FDI_BC_BIFURCATION_SELECT;
5121         DRM_DEBUG_KMS("enabling fdi C rx\n");
5122         I915_WRITE(SOUTH_CHICKEN1, temp);
5123         POSTING_READ(SOUTH_CHICKEN1);
5124 }
5125
5126 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5127 {
5128         struct drm_device *dev = intel_crtc->base.dev;
5129         struct drm_i915_private *dev_priv = dev->dev_private;
5130         struct intel_crtc *pipe_B_crtc =
5131                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5132
5133         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5134                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5135         if (intel_crtc->fdi_lanes > 4) {
5136                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5137                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5138                 /* Clamp lanes to avoid programming the hw with bogus values. */
5139                 intel_crtc->fdi_lanes = 4;
5140
5141                 return false;
5142         }
5143
5144         if (dev_priv->num_pipe == 2)
5145                 return true;
5146
5147         switch (intel_crtc->pipe) {
5148         case PIPE_A:
5149                 return true;
5150         case PIPE_B:
5151                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5152                     intel_crtc->fdi_lanes > 2) {
5153                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5154                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5155                         /* Clamp lanes to avoid programming the hw with bogus values. */
5156                         intel_crtc->fdi_lanes = 2;
5157
5158                         return false;
5159                 }
5160
5161                 if (intel_crtc->fdi_lanes > 2)
5162                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5163                 else
5164                         cpt_enable_fdi_bc_bifurcation(dev);
5165
5166                 return true;
5167         case PIPE_C:
5168                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5169                         if (intel_crtc->fdi_lanes > 2) {
5170                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5171                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5172                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5173                                 intel_crtc->fdi_lanes = 2;
5174
5175                                 return false;
5176                         }
5177                 } else {
5178                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5179                         return false;
5180                 }
5181
5182                 cpt_enable_fdi_bc_bifurcation(dev);
5183
5184                 return true;
5185         default:
5186                 BUG();
5187         }
5188 }
5189
5190 static void ironlake_set_m_n(struct drm_crtc *crtc,
5191                              struct drm_display_mode *mode,
5192                              struct drm_display_mode *adjusted_mode)
5193 {
5194         struct drm_device *dev = crtc->dev;
5195         struct drm_i915_private *dev_priv = dev->dev_private;
5196         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5197         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5198         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5199         struct fdi_m_n m_n = {0};
5200         int target_clock, pixel_multiplier, lane, link_bw;
5201         bool is_dp = false, is_cpu_edp = false;
5202
5203         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5204                 switch (intel_encoder->type) {
5205                 case INTEL_OUTPUT_DISPLAYPORT:
5206                         is_dp = true;
5207                         break;
5208                 case INTEL_OUTPUT_EDP:
5209                         is_dp = true;
5210                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5211                                 is_cpu_edp = true;
5212                         edp_encoder = intel_encoder;
5213                         break;
5214                 }
5215         }
5216
5217         /* FDI link */
5218         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5219         lane = 0;
5220         /* CPU eDP doesn't require FDI link, so just set DP M/N
5221            according to current link config */
5222         if (is_cpu_edp) {
5223                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5224         } else {
5225                 /* FDI is a binary signal running at ~2.7GHz, encoding
5226                  * each output octet as 10 bits. The actual frequency
5227                  * is stored as a divider into a 100MHz clock, and the
5228                  * mode pixel clock is stored in units of 1KHz.
5229                  * Hence the bw of each lane in terms of the mode signal
5230                  * is:
5231                  */
5232                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5233         }
5234
5235         /* [e]DP over FDI requires target mode clock instead of link clock. */
5236         if (edp_encoder)
5237                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5238         else if (is_dp)
5239                 target_clock = mode->clock;
5240         else
5241                 target_clock = adjusted_mode->clock;
5242
5243         if (!lane) {
5244                 /*
5245                  * Account for spread spectrum to avoid
5246                  * oversubscribing the link. Max center spread
5247                  * is 2.5%; use 5% for safety's sake.
5248                  */
5249                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5250                 lane = bps / (link_bw * 8) + 1;
5251         }
5252
5253         intel_crtc->fdi_lanes = lane;
5254
5255         if (pixel_multiplier > 1)
5256                 link_bw *= pixel_multiplier;
5257         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5258                              &m_n);
5259
5260         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5261         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5262         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5263         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5264 }
5265
5266 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5267                                       struct drm_display_mode *adjusted_mode,
5268                                       intel_clock_t *clock, u32 fp)
5269 {
5270         struct drm_crtc *crtc = &intel_crtc->base;
5271         struct drm_device *dev = crtc->dev;
5272         struct drm_i915_private *dev_priv = dev->dev_private;
5273         struct intel_encoder *intel_encoder;
5274         uint32_t dpll;
5275         int factor, pixel_multiplier, num_connectors = 0;
5276         bool is_lvds = false, is_sdvo = false, is_tv = false;
5277         bool is_dp = false, is_cpu_edp = false;
5278
5279         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5280                 switch (intel_encoder->type) {
5281                 case INTEL_OUTPUT_LVDS:
5282                         is_lvds = true;
5283                         break;
5284                 case INTEL_OUTPUT_SDVO:
5285                 case INTEL_OUTPUT_HDMI:
5286                         is_sdvo = true;
5287                         if (intel_encoder->needs_tv_clock)
5288                                 is_tv = true;
5289                         break;
5290                 case INTEL_OUTPUT_TVOUT:
5291                         is_tv = true;
5292                         break;
5293                 case INTEL_OUTPUT_DISPLAYPORT:
5294                         is_dp = true;
5295                         break;
5296                 case INTEL_OUTPUT_EDP:
5297                         is_dp = true;
5298                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5299                                 is_cpu_edp = true;
5300                         break;
5301                 }
5302
5303                 num_connectors++;
5304         }
5305
5306         /* Enable autotuning of the PLL clock (if permissible) */
5307         factor = 21;
5308         if (is_lvds) {
5309                 if ((intel_panel_use_ssc(dev_priv) &&
5310                      dev_priv->lvds_ssc_freq == 100) ||
5311                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5312                         factor = 25;
5313         } else if (is_sdvo && is_tv)
5314                 factor = 20;
5315
5316         if (clock->m < factor * clock->n)
5317                 fp |= FP_CB_TUNE;
5318
5319         dpll = 0;
5320
5321         if (is_lvds)
5322                 dpll |= DPLLB_MODE_LVDS;
5323         else
5324                 dpll |= DPLLB_MODE_DAC_SERIAL;
5325         if (is_sdvo) {
5326                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5327                 if (pixel_multiplier > 1) {
5328                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5329                 }
5330                 dpll |= DPLL_DVO_HIGH_SPEED;
5331         }
5332         if (is_dp && !is_cpu_edp)
5333                 dpll |= DPLL_DVO_HIGH_SPEED;
5334
5335         /* compute bitmask from p1 value */
5336         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5337         /* also FPA1 */
5338         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5339
5340         switch (clock->p2) {
5341         case 5:
5342                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5343                 break;
5344         case 7:
5345                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5346                 break;
5347         case 10:
5348                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5349                 break;
5350         case 14:
5351                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5352                 break;
5353         }
5354
5355         if (is_sdvo && is_tv)
5356                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5357         else if (is_tv)
5358                 /* XXX: just matching BIOS for now */
5359                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5360                 dpll |= 3;
5361         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5362                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5363         else
5364                 dpll |= PLL_REF_INPUT_DREFCLK;
5365
5366         return dpll;
5367 }
5368
5369 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5370                                   struct drm_display_mode *mode,
5371                                   struct drm_display_mode *adjusted_mode,
5372                                   int x, int y,
5373                                   struct drm_framebuffer *fb)
5374 {
5375         struct drm_device *dev = crtc->dev;
5376         struct drm_i915_private *dev_priv = dev->dev_private;
5377         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5378         int pipe = intel_crtc->pipe;
5379         int plane = intel_crtc->plane;
5380         int num_connectors = 0;
5381         intel_clock_t clock, reduced_clock;
5382         u32 dpll, fp = 0, fp2 = 0;
5383         bool ok, has_reduced_clock = false;
5384         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5385         struct intel_encoder *encoder;
5386         u32 temp;
5387         int ret;
5388         bool dither, fdi_config_ok;
5389
5390         for_each_encoder_on_crtc(dev, crtc, encoder) {
5391                 switch (encoder->type) {
5392                 case INTEL_OUTPUT_LVDS:
5393                         is_lvds = true;
5394                         break;
5395                 case INTEL_OUTPUT_DISPLAYPORT:
5396                         is_dp = true;
5397                         break;
5398                 case INTEL_OUTPUT_EDP:
5399                         is_dp = true;
5400                         if (!intel_encoder_is_pch_edp(&encoder->base))
5401                                 is_cpu_edp = true;
5402                         break;
5403                 }
5404
5405                 num_connectors++;
5406         }
5407
5408         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5409              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5410
5411         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5412                                      &has_reduced_clock, &reduced_clock);
5413         if (!ok) {
5414                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5415                 return -EINVAL;
5416         }
5417
5418         /* Ensure that the cursor is valid for the new mode before changing... */
5419         intel_crtc_update_cursor(crtc, true);
5420
5421         /* determine panel color depth */
5422         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5423                                               adjusted_mode);
5424         if (is_lvds && dev_priv->lvds_dither)
5425                 dither = true;
5426
5427         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5428         if (has_reduced_clock)
5429                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5430                         reduced_clock.m2;
5431
5432         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5433
5434         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5435         drm_mode_debug_printmodeline(mode);
5436
5437         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5438         if (!is_cpu_edp) {
5439                 struct intel_pch_pll *pll;
5440
5441                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5442                 if (pll == NULL) {
5443                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5444                                          pipe);
5445                         return -EINVAL;
5446                 }
5447         } else
5448                 intel_put_pch_pll(intel_crtc);
5449
5450         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5451          * This is an exception to the general rule that mode_set doesn't turn
5452          * things on.
5453          */
5454         if (is_lvds) {
5455                 temp = I915_READ(PCH_LVDS);
5456                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5457                 if (HAS_PCH_CPT(dev)) {
5458                         temp &= ~PORT_TRANS_SEL_MASK;
5459                         temp |= PORT_TRANS_SEL_CPT(pipe);
5460                 } else {
5461                         if (pipe == 1)
5462                                 temp |= LVDS_PIPEB_SELECT;
5463                         else
5464                                 temp &= ~LVDS_PIPEB_SELECT;
5465                 }
5466
5467                 /* set the corresponsding LVDS_BORDER bit */
5468                 temp |= dev_priv->lvds_border_bits;
5469                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5470                  * set the DPLLs for dual-channel mode or not.
5471                  */
5472                 if (clock.p2 == 7)
5473                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5474                 else
5475                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5476
5477                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5478                  * appropriately here, but we need to look more thoroughly into how
5479                  * panels behave in the two modes.
5480                  */
5481                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5482                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5483                         temp |= LVDS_HSYNC_POLARITY;
5484                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5485                         temp |= LVDS_VSYNC_POLARITY;
5486                 I915_WRITE(PCH_LVDS, temp);
5487         }
5488
5489         if (is_dp && !is_cpu_edp) {
5490                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5491         } else {
5492                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5493                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5494                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5495                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5496                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5497         }
5498
5499         if (intel_crtc->pch_pll) {
5500                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5501
5502                 /* Wait for the clocks to stabilize. */
5503                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5504                 udelay(150);
5505
5506                 /* The pixel multiplier can only be updated once the
5507                  * DPLL is enabled and the clocks are stable.
5508                  *
5509                  * So write it again.
5510                  */
5511                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5512         }
5513
5514         intel_crtc->lowfreq_avail = false;
5515         if (intel_crtc->pch_pll) {
5516                 if (is_lvds && has_reduced_clock && i915_powersave) {
5517                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5518                         intel_crtc->lowfreq_avail = true;
5519                 } else {
5520                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5521                 }
5522         }
5523
5524         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5525
5526         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5527          * ironlake_check_fdi_lanes. */
5528         ironlake_set_m_n(crtc, mode, adjusted_mode);
5529
5530         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5531
5532         if (is_cpu_edp)
5533                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5534
5535         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5536
5537         intel_wait_for_vblank(dev, pipe);
5538
5539         /* Set up the display plane register */
5540         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5541         POSTING_READ(DSPCNTR(plane));
5542
5543         ret = intel_pipe_set_base(crtc, x, y, fb);
5544
5545         intel_update_watermarks(dev);
5546
5547         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5548
5549         return fdi_config_ok ? ret : -EINVAL;
5550 }
5551
5552 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5553                                  struct drm_display_mode *mode,
5554                                  struct drm_display_mode *adjusted_mode,
5555                                  int x, int y,
5556                                  struct drm_framebuffer *fb)
5557 {
5558         struct drm_device *dev = crtc->dev;
5559         struct drm_i915_private *dev_priv = dev->dev_private;
5560         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5561         int pipe = intel_crtc->pipe;
5562         int plane = intel_crtc->plane;
5563         int num_connectors = 0;
5564         intel_clock_t clock, reduced_clock;
5565         u32 dpll = 0, fp = 0, fp2 = 0;
5566         bool ok, has_reduced_clock = false;
5567         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5568         struct intel_encoder *encoder;
5569         u32 temp;
5570         int ret;
5571         bool dither;
5572
5573         for_each_encoder_on_crtc(dev, crtc, encoder) {
5574                 switch (encoder->type) {
5575                 case INTEL_OUTPUT_LVDS:
5576                         is_lvds = true;
5577                         break;
5578                 case INTEL_OUTPUT_DISPLAYPORT:
5579                         is_dp = true;
5580                         break;
5581                 case INTEL_OUTPUT_EDP:
5582                         is_dp = true;
5583                         if (!intel_encoder_is_pch_edp(&encoder->base))
5584                                 is_cpu_edp = true;
5585                         break;
5586                 }
5587
5588                 num_connectors++;
5589         }
5590
5591         if (is_cpu_edp)
5592                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5593         else
5594                 intel_crtc->cpu_transcoder = pipe;
5595
5596         /* We are not sure yet this won't happen. */
5597         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5598              INTEL_PCH_TYPE(dev));
5599
5600         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5601              num_connectors, pipe_name(pipe));
5602
5603         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5604                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5605
5606         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5607
5608         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5609                 return -EINVAL;
5610
5611         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5612                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5613                                              &has_reduced_clock,
5614                                              &reduced_clock);
5615                 if (!ok) {
5616                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5617                         return -EINVAL;
5618                 }
5619         }
5620
5621         /* Ensure that the cursor is valid for the new mode before changing... */
5622         intel_crtc_update_cursor(crtc, true);
5623
5624         /* determine panel color depth */
5625         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5626                                               adjusted_mode);
5627         if (is_lvds && dev_priv->lvds_dither)
5628                 dither = true;
5629
5630         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5631         drm_mode_debug_printmodeline(mode);
5632
5633         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5634                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5635                 if (has_reduced_clock)
5636                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5637                               reduced_clock.m2;
5638
5639                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5640                                              fp);
5641
5642                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5643                  * own on pre-Haswell/LPT generation */
5644                 if (!is_cpu_edp) {
5645                         struct intel_pch_pll *pll;
5646
5647                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5648                         if (pll == NULL) {
5649                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5650                                                  pipe);
5651                                 return -EINVAL;
5652                         }
5653                 } else
5654                         intel_put_pch_pll(intel_crtc);
5655
5656                 /* The LVDS pin pair needs to be on before the DPLLs are
5657                  * enabled.  This is an exception to the general rule that
5658                  * mode_set doesn't turn things on.
5659                  */
5660                 if (is_lvds) {
5661                         temp = I915_READ(PCH_LVDS);
5662                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5663                         if (HAS_PCH_CPT(dev)) {
5664                                 temp &= ~PORT_TRANS_SEL_MASK;
5665                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5666                         } else {
5667                                 if (pipe == 1)
5668                                         temp |= LVDS_PIPEB_SELECT;
5669                                 else
5670                                         temp &= ~LVDS_PIPEB_SELECT;
5671                         }
5672
5673                         /* set the corresponsding LVDS_BORDER bit */
5674                         temp |= dev_priv->lvds_border_bits;
5675                         /* Set the B0-B3 data pairs corresponding to whether
5676                          * we're going to set the DPLLs for dual-channel mode or
5677                          * not.
5678                          */
5679                         if (clock.p2 == 7)
5680                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5681                         else
5682                                 temp &= ~(LVDS_B0B3_POWER_UP |
5683                                           LVDS_CLKB_POWER_UP);
5684
5685                         /* It would be nice to set 24 vs 18-bit mode
5686                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5687                          * look more thoroughly into how panels behave in the
5688                          * two modes.
5689                          */
5690                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5691                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5692                                 temp |= LVDS_HSYNC_POLARITY;
5693                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5694                                 temp |= LVDS_VSYNC_POLARITY;
5695                         I915_WRITE(PCH_LVDS, temp);
5696                 }
5697         }
5698
5699         if (is_dp && !is_cpu_edp) {
5700                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5701         } else {
5702                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5703                         /* For non-DP output, clear any trans DP clock recovery
5704                          * setting.*/
5705                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5706                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5707                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5708                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5709                 }
5710         }
5711
5712         intel_crtc->lowfreq_avail = false;
5713         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5714                 if (intel_crtc->pch_pll) {
5715                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5716
5717                         /* Wait for the clocks to stabilize. */
5718                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5719                         udelay(150);
5720
5721                         /* The pixel multiplier can only be updated once the
5722                          * DPLL is enabled and the clocks are stable.
5723                          *
5724                          * So write it again.
5725                          */
5726                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5727                 }
5728
5729                 if (intel_crtc->pch_pll) {
5730                         if (is_lvds && has_reduced_clock && i915_powersave) {
5731                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5732                                 intel_crtc->lowfreq_avail = true;
5733                         } else {
5734                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5735                         }
5736                 }
5737         }
5738
5739         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5740
5741         if (!is_dp || is_cpu_edp)
5742                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5743
5744         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5745                 if (is_cpu_edp)
5746                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5747
5748         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5749
5750         /* Set up the display plane register */
5751         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5752         POSTING_READ(DSPCNTR(plane));
5753
5754         ret = intel_pipe_set_base(crtc, x, y, fb);
5755
5756         intel_update_watermarks(dev);
5757
5758         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5759
5760         return ret;
5761 }
5762
5763 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5764                                struct drm_display_mode *mode,
5765                                struct drm_display_mode *adjusted_mode,
5766                                int x, int y,
5767                                struct drm_framebuffer *fb)
5768 {
5769         struct drm_device *dev = crtc->dev;
5770         struct drm_i915_private *dev_priv = dev->dev_private;
5771         struct drm_encoder_helper_funcs *encoder_funcs;
5772         struct intel_encoder *encoder;
5773         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5774         int pipe = intel_crtc->pipe;
5775         int ret;
5776
5777         drm_vblank_pre_modeset(dev, pipe);
5778
5779         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5780                                               x, y, fb);
5781         drm_vblank_post_modeset(dev, pipe);
5782
5783         if (ret != 0)
5784                 return ret;
5785
5786         for_each_encoder_on_crtc(dev, crtc, encoder) {
5787                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5788                         encoder->base.base.id,
5789                         drm_get_encoder_name(&encoder->base),
5790                         mode->base.id, mode->name);
5791                 encoder_funcs = encoder->base.helper_private;
5792                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5793         }
5794
5795         return 0;
5796 }
5797
5798 static bool intel_eld_uptodate(struct drm_connector *connector,
5799                                int reg_eldv, uint32_t bits_eldv,
5800                                int reg_elda, uint32_t bits_elda,
5801                                int reg_edid)
5802 {
5803         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5804         uint8_t *eld = connector->eld;
5805         uint32_t i;
5806
5807         i = I915_READ(reg_eldv);
5808         i &= bits_eldv;
5809
5810         if (!eld[0])
5811                 return !i;
5812
5813         if (!i)
5814                 return false;
5815
5816         i = I915_READ(reg_elda);
5817         i &= ~bits_elda;
5818         I915_WRITE(reg_elda, i);
5819
5820         for (i = 0; i < eld[2]; i++)
5821                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5822                         return false;
5823
5824         return true;
5825 }
5826
5827 static void g4x_write_eld(struct drm_connector *connector,
5828                           struct drm_crtc *crtc)
5829 {
5830         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5831         uint8_t *eld = connector->eld;
5832         uint32_t eldv;
5833         uint32_t len;
5834         uint32_t i;
5835
5836         i = I915_READ(G4X_AUD_VID_DID);
5837
5838         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5839                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5840         else
5841                 eldv = G4X_ELDV_DEVCTG;
5842
5843         if (intel_eld_uptodate(connector,
5844                                G4X_AUD_CNTL_ST, eldv,
5845                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5846                                G4X_HDMIW_HDMIEDID))
5847                 return;
5848
5849         i = I915_READ(G4X_AUD_CNTL_ST);
5850         i &= ~(eldv | G4X_ELD_ADDR);
5851         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5852         I915_WRITE(G4X_AUD_CNTL_ST, i);
5853
5854         if (!eld[0])
5855                 return;
5856
5857         len = min_t(uint8_t, eld[2], len);
5858         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5859         for (i = 0; i < len; i++)
5860                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5861
5862         i = I915_READ(G4X_AUD_CNTL_ST);
5863         i |= eldv;
5864         I915_WRITE(G4X_AUD_CNTL_ST, i);
5865 }
5866
5867 static void haswell_write_eld(struct drm_connector *connector,
5868                                      struct drm_crtc *crtc)
5869 {
5870         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5871         uint8_t *eld = connector->eld;
5872         struct drm_device *dev = crtc->dev;
5873         uint32_t eldv;
5874         uint32_t i;
5875         int len;
5876         int pipe = to_intel_crtc(crtc)->pipe;
5877         int tmp;
5878
5879         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5880         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5881         int aud_config = HSW_AUD_CFG(pipe);
5882         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5883
5884
5885         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5886
5887         /* Audio output enable */
5888         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5889         tmp = I915_READ(aud_cntrl_st2);
5890         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5891         I915_WRITE(aud_cntrl_st2, tmp);
5892
5893         /* Wait for 1 vertical blank */
5894         intel_wait_for_vblank(dev, pipe);
5895
5896         /* Set ELD valid state */
5897         tmp = I915_READ(aud_cntrl_st2);
5898         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5899         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5900         I915_WRITE(aud_cntrl_st2, tmp);
5901         tmp = I915_READ(aud_cntrl_st2);
5902         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5903
5904         /* Enable HDMI mode */
5905         tmp = I915_READ(aud_config);
5906         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5907         /* clear N_programing_enable and N_value_index */
5908         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5909         I915_WRITE(aud_config, tmp);
5910
5911         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5912
5913         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5914
5915         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5916                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5917                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5918                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5919         } else
5920                 I915_WRITE(aud_config, 0);
5921
5922         if (intel_eld_uptodate(connector,
5923                                aud_cntrl_st2, eldv,
5924                                aud_cntl_st, IBX_ELD_ADDRESS,
5925                                hdmiw_hdmiedid))
5926                 return;
5927
5928         i = I915_READ(aud_cntrl_st2);
5929         i &= ~eldv;
5930         I915_WRITE(aud_cntrl_st2, i);
5931
5932         if (!eld[0])
5933                 return;
5934
5935         i = I915_READ(aud_cntl_st);
5936         i &= ~IBX_ELD_ADDRESS;
5937         I915_WRITE(aud_cntl_st, i);
5938         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5939         DRM_DEBUG_DRIVER("port num:%d\n", i);
5940
5941         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5942         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5943         for (i = 0; i < len; i++)
5944                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5945
5946         i = I915_READ(aud_cntrl_st2);
5947         i |= eldv;
5948         I915_WRITE(aud_cntrl_st2, i);
5949
5950 }
5951
5952 static void ironlake_write_eld(struct drm_connector *connector,
5953                                      struct drm_crtc *crtc)
5954 {
5955         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5956         uint8_t *eld = connector->eld;
5957         uint32_t eldv;
5958         uint32_t i;
5959         int len;
5960         int hdmiw_hdmiedid;
5961         int aud_config;
5962         int aud_cntl_st;
5963         int aud_cntrl_st2;
5964         int pipe = to_intel_crtc(crtc)->pipe;
5965
5966         if (HAS_PCH_IBX(connector->dev)) {
5967                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5968                 aud_config = IBX_AUD_CFG(pipe);
5969                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5970                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5971         } else {
5972                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5973                 aud_config = CPT_AUD_CFG(pipe);
5974                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5975                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5976         }
5977
5978         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5979
5980         i = I915_READ(aud_cntl_st);
5981         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5982         if (!i) {
5983                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5984                 /* operate blindly on all ports */
5985                 eldv = IBX_ELD_VALIDB;
5986                 eldv |= IBX_ELD_VALIDB << 4;
5987                 eldv |= IBX_ELD_VALIDB << 8;
5988         } else {
5989                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5990                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5991         }
5992
5993         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5994                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5995                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5996                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5997         } else
5998                 I915_WRITE(aud_config, 0);
5999
6000         if (intel_eld_uptodate(connector,
6001                                aud_cntrl_st2, eldv,
6002                                aud_cntl_st, IBX_ELD_ADDRESS,
6003                                hdmiw_hdmiedid))
6004                 return;
6005
6006         i = I915_READ(aud_cntrl_st2);
6007         i &= ~eldv;
6008         I915_WRITE(aud_cntrl_st2, i);
6009
6010         if (!eld[0])
6011                 return;
6012
6013         i = I915_READ(aud_cntl_st);
6014         i &= ~IBX_ELD_ADDRESS;
6015         I915_WRITE(aud_cntl_st, i);
6016
6017         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6018         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6019         for (i = 0; i < len; i++)
6020                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6021
6022         i = I915_READ(aud_cntrl_st2);
6023         i |= eldv;
6024         I915_WRITE(aud_cntrl_st2, i);
6025 }
6026
6027 void intel_write_eld(struct drm_encoder *encoder,
6028                      struct drm_display_mode *mode)
6029 {
6030         struct drm_crtc *crtc = encoder->crtc;
6031         struct drm_connector *connector;
6032         struct drm_device *dev = encoder->dev;
6033         struct drm_i915_private *dev_priv = dev->dev_private;
6034
6035         connector = drm_select_eld(encoder, mode);
6036         if (!connector)
6037                 return;
6038
6039         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6040                          connector->base.id,
6041                          drm_get_connector_name(connector),
6042                          connector->encoder->base.id,
6043                          drm_get_encoder_name(connector->encoder));
6044
6045         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6046
6047         if (dev_priv->display.write_eld)
6048                 dev_priv->display.write_eld(connector, crtc);
6049 }
6050
6051 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6052 void intel_crtc_load_lut(struct drm_crtc *crtc)
6053 {
6054         struct drm_device *dev = crtc->dev;
6055         struct drm_i915_private *dev_priv = dev->dev_private;
6056         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6057         int palreg = PALETTE(intel_crtc->pipe);
6058         int i;
6059
6060         /* The clocks have to be on to load the palette. */
6061         if (!crtc->enabled || !intel_crtc->active)
6062                 return;
6063
6064         /* use legacy palette for Ironlake */
6065         if (HAS_PCH_SPLIT(dev))
6066                 palreg = LGC_PALETTE(intel_crtc->pipe);
6067
6068         for (i = 0; i < 256; i++) {
6069                 I915_WRITE(palreg + 4 * i,
6070                            (intel_crtc->lut_r[i] << 16) |
6071                            (intel_crtc->lut_g[i] << 8) |
6072                            intel_crtc->lut_b[i]);
6073         }
6074 }
6075
6076 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6077 {
6078         struct drm_device *dev = crtc->dev;
6079         struct drm_i915_private *dev_priv = dev->dev_private;
6080         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6081         bool visible = base != 0;
6082         u32 cntl;
6083
6084         if (intel_crtc->cursor_visible == visible)
6085                 return;
6086
6087         cntl = I915_READ(_CURACNTR);
6088         if (visible) {
6089                 /* On these chipsets we can only modify the base whilst
6090                  * the cursor is disabled.
6091                  */
6092                 I915_WRITE(_CURABASE, base);
6093
6094                 cntl &= ~(CURSOR_FORMAT_MASK);
6095                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6096                 cntl |= CURSOR_ENABLE |
6097                         CURSOR_GAMMA_ENABLE |
6098                         CURSOR_FORMAT_ARGB;
6099         } else
6100                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6101         I915_WRITE(_CURACNTR, cntl);
6102
6103         intel_crtc->cursor_visible = visible;
6104 }
6105
6106 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6107 {
6108         struct drm_device *dev = crtc->dev;
6109         struct drm_i915_private *dev_priv = dev->dev_private;
6110         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6111         int pipe = intel_crtc->pipe;
6112         bool visible = base != 0;
6113
6114         if (intel_crtc->cursor_visible != visible) {
6115                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6116                 if (base) {
6117                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6118                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6119                         cntl |= pipe << 28; /* Connect to correct pipe */
6120                 } else {
6121                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6122                         cntl |= CURSOR_MODE_DISABLE;
6123                 }
6124                 I915_WRITE(CURCNTR(pipe), cntl);
6125
6126                 intel_crtc->cursor_visible = visible;
6127         }
6128         /* and commit changes on next vblank */
6129         I915_WRITE(CURBASE(pipe), base);
6130 }
6131
6132 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6133 {
6134         struct drm_device *dev = crtc->dev;
6135         struct drm_i915_private *dev_priv = dev->dev_private;
6136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6137         int pipe = intel_crtc->pipe;
6138         bool visible = base != 0;
6139
6140         if (intel_crtc->cursor_visible != visible) {
6141                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6142                 if (base) {
6143                         cntl &= ~CURSOR_MODE;
6144                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6145                 } else {
6146                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6147                         cntl |= CURSOR_MODE_DISABLE;
6148                 }
6149                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6150
6151                 intel_crtc->cursor_visible = visible;
6152         }
6153         /* and commit changes on next vblank */
6154         I915_WRITE(CURBASE_IVB(pipe), base);
6155 }
6156
6157 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6158 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6159                                      bool on)
6160 {
6161         struct drm_device *dev = crtc->dev;
6162         struct drm_i915_private *dev_priv = dev->dev_private;
6163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6164         int pipe = intel_crtc->pipe;
6165         int x = intel_crtc->cursor_x;
6166         int y = intel_crtc->cursor_y;
6167         u32 base, pos;
6168         bool visible;
6169
6170         pos = 0;
6171
6172         if (on && crtc->enabled && crtc->fb) {
6173                 base = intel_crtc->cursor_addr;
6174                 if (x > (int) crtc->fb->width)
6175                         base = 0;
6176
6177                 if (y > (int) crtc->fb->height)
6178                         base = 0;
6179         } else
6180                 base = 0;
6181
6182         if (x < 0) {
6183                 if (x + intel_crtc->cursor_width < 0)
6184                         base = 0;
6185
6186                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6187                 x = -x;
6188         }
6189         pos |= x << CURSOR_X_SHIFT;
6190
6191         if (y < 0) {
6192                 if (y + intel_crtc->cursor_height < 0)
6193                         base = 0;
6194
6195                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6196                 y = -y;
6197         }
6198         pos |= y << CURSOR_Y_SHIFT;
6199
6200         visible = base != 0;
6201         if (!visible && !intel_crtc->cursor_visible)
6202                 return;
6203
6204         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6205                 I915_WRITE(CURPOS_IVB(pipe), pos);
6206                 ivb_update_cursor(crtc, base);
6207         } else {
6208                 I915_WRITE(CURPOS(pipe), pos);
6209                 if (IS_845G(dev) || IS_I865G(dev))
6210                         i845_update_cursor(crtc, base);
6211                 else
6212                         i9xx_update_cursor(crtc, base);
6213         }
6214 }
6215
6216 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6217                                  struct drm_file *file,
6218                                  uint32_t handle,
6219                                  uint32_t width, uint32_t height)
6220 {
6221         struct drm_device *dev = crtc->dev;
6222         struct drm_i915_private *dev_priv = dev->dev_private;
6223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6224         struct drm_i915_gem_object *obj;
6225         uint32_t addr;
6226         int ret;
6227
6228         /* if we want to turn off the cursor ignore width and height */
6229         if (!handle) {
6230                 DRM_DEBUG_KMS("cursor off\n");
6231                 addr = 0;
6232                 obj = NULL;
6233                 mutex_lock(&dev->struct_mutex);
6234                 goto finish;
6235         }
6236
6237         /* Currently we only support 64x64 cursors */
6238         if (width != 64 || height != 64) {
6239                 DRM_ERROR("we currently only support 64x64 cursors\n");
6240                 return -EINVAL;
6241         }
6242
6243         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6244         if (&obj->base == NULL)
6245                 return -ENOENT;
6246
6247         if (obj->base.size < width * height * 4) {
6248                 DRM_ERROR("buffer is to small\n");
6249                 ret = -ENOMEM;
6250                 goto fail;
6251         }
6252
6253         /* we only need to pin inside GTT if cursor is non-phy */
6254         mutex_lock(&dev->struct_mutex);
6255         if (!dev_priv->info->cursor_needs_physical) {
6256                 if (obj->tiling_mode) {
6257                         DRM_ERROR("cursor cannot be tiled\n");
6258                         ret = -EINVAL;
6259                         goto fail_locked;
6260                 }
6261
6262                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6263                 if (ret) {
6264                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6265                         goto fail_locked;
6266                 }
6267
6268                 ret = i915_gem_object_put_fence(obj);
6269                 if (ret) {
6270                         DRM_ERROR("failed to release fence for cursor");
6271                         goto fail_unpin;
6272                 }
6273
6274                 addr = obj->gtt_offset;
6275         } else {
6276                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6277                 ret = i915_gem_attach_phys_object(dev, obj,
6278                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6279                                                   align);
6280                 if (ret) {
6281                         DRM_ERROR("failed to attach phys object\n");
6282                         goto fail_locked;
6283                 }
6284                 addr = obj->phys_obj->handle->busaddr;
6285         }
6286
6287         if (IS_GEN2(dev))
6288                 I915_WRITE(CURSIZE, (height << 12) | width);
6289
6290  finish:
6291         if (intel_crtc->cursor_bo) {
6292                 if (dev_priv->info->cursor_needs_physical) {
6293                         if (intel_crtc->cursor_bo != obj)
6294                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6295                 } else
6296                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6297                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6298         }
6299
6300         mutex_unlock(&dev->struct_mutex);
6301
6302         intel_crtc->cursor_addr = addr;
6303         intel_crtc->cursor_bo = obj;
6304         intel_crtc->cursor_width = width;
6305         intel_crtc->cursor_height = height;
6306
6307         intel_crtc_update_cursor(crtc, true);
6308
6309         return 0;
6310 fail_unpin:
6311         i915_gem_object_unpin(obj);
6312 fail_locked:
6313         mutex_unlock(&dev->struct_mutex);
6314 fail:
6315         drm_gem_object_unreference_unlocked(&obj->base);
6316         return ret;
6317 }
6318
6319 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6320 {
6321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6322
6323         intel_crtc->cursor_x = x;
6324         intel_crtc->cursor_y = y;
6325
6326         intel_crtc_update_cursor(crtc, true);
6327
6328         return 0;
6329 }
6330
6331 /** Sets the color ramps on behalf of RandR */
6332 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6333                                  u16 blue, int regno)
6334 {
6335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6336
6337         intel_crtc->lut_r[regno] = red >> 8;
6338         intel_crtc->lut_g[regno] = green >> 8;
6339         intel_crtc->lut_b[regno] = blue >> 8;
6340 }
6341
6342 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6343                              u16 *blue, int regno)
6344 {
6345         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6346
6347         *red = intel_crtc->lut_r[regno] << 8;
6348         *green = intel_crtc->lut_g[regno] << 8;
6349         *blue = intel_crtc->lut_b[regno] << 8;
6350 }
6351
6352 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6353                                  u16 *blue, uint32_t start, uint32_t size)
6354 {
6355         int end = (start + size > 256) ? 256 : start + size, i;
6356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6357
6358         for (i = start; i < end; i++) {
6359                 intel_crtc->lut_r[i] = red[i] >> 8;
6360                 intel_crtc->lut_g[i] = green[i] >> 8;
6361                 intel_crtc->lut_b[i] = blue[i] >> 8;
6362         }
6363
6364         intel_crtc_load_lut(crtc);
6365 }
6366
6367 /**
6368  * Get a pipe with a simple mode set on it for doing load-based monitor
6369  * detection.
6370  *
6371  * It will be up to the load-detect code to adjust the pipe as appropriate for
6372  * its requirements.  The pipe will be connected to no other encoders.
6373  *
6374  * Currently this code will only succeed if there is a pipe with no encoders
6375  * configured for it.  In the future, it could choose to temporarily disable
6376  * some outputs to free up a pipe for its use.
6377  *
6378  * \return crtc, or NULL if no pipes are available.
6379  */
6380
6381 /* VESA 640x480x72Hz mode to set on the pipe */
6382 static struct drm_display_mode load_detect_mode = {
6383         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6384                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6385 };
6386
6387 static struct drm_framebuffer *
6388 intel_framebuffer_create(struct drm_device *dev,
6389                          struct drm_mode_fb_cmd2 *mode_cmd,
6390                          struct drm_i915_gem_object *obj)
6391 {
6392         struct intel_framebuffer *intel_fb;
6393         int ret;
6394
6395         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6396         if (!intel_fb) {
6397                 drm_gem_object_unreference_unlocked(&obj->base);
6398                 return ERR_PTR(-ENOMEM);
6399         }
6400
6401         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6402         if (ret) {
6403                 drm_gem_object_unreference_unlocked(&obj->base);
6404                 kfree(intel_fb);
6405                 return ERR_PTR(ret);
6406         }
6407
6408         return &intel_fb->base;
6409 }
6410
6411 static u32
6412 intel_framebuffer_pitch_for_width(int width, int bpp)
6413 {
6414         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6415         return ALIGN(pitch, 64);
6416 }
6417
6418 static u32
6419 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6420 {
6421         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6422         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6423 }
6424
6425 static struct drm_framebuffer *
6426 intel_framebuffer_create_for_mode(struct drm_device *dev,
6427                                   struct drm_display_mode *mode,
6428                                   int depth, int bpp)
6429 {
6430         struct drm_i915_gem_object *obj;
6431         struct drm_mode_fb_cmd2 mode_cmd;
6432
6433         obj = i915_gem_alloc_object(dev,
6434                                     intel_framebuffer_size_for_mode(mode, bpp));
6435         if (obj == NULL)
6436                 return ERR_PTR(-ENOMEM);
6437
6438         mode_cmd.width = mode->hdisplay;
6439         mode_cmd.height = mode->vdisplay;
6440         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6441                                                                 bpp);
6442         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6443
6444         return intel_framebuffer_create(dev, &mode_cmd, obj);
6445 }
6446
6447 static struct drm_framebuffer *
6448 mode_fits_in_fbdev(struct drm_device *dev,
6449                    struct drm_display_mode *mode)
6450 {
6451         struct drm_i915_private *dev_priv = dev->dev_private;
6452         struct drm_i915_gem_object *obj;
6453         struct drm_framebuffer *fb;
6454
6455         if (dev_priv->fbdev == NULL)
6456                 return NULL;
6457
6458         obj = dev_priv->fbdev->ifb.obj;
6459         if (obj == NULL)
6460                 return NULL;
6461
6462         fb = &dev_priv->fbdev->ifb.base;
6463         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6464                                                                fb->bits_per_pixel))
6465                 return NULL;
6466
6467         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6468                 return NULL;
6469
6470         return fb;
6471 }
6472
6473 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6474                                 struct drm_display_mode *mode,
6475                                 struct intel_load_detect_pipe *old)
6476 {
6477         struct intel_crtc *intel_crtc;
6478         struct intel_encoder *intel_encoder =
6479                 intel_attached_encoder(connector);
6480         struct drm_crtc *possible_crtc;
6481         struct drm_encoder *encoder = &intel_encoder->base;
6482         struct drm_crtc *crtc = NULL;
6483         struct drm_device *dev = encoder->dev;
6484         struct drm_framebuffer *fb;
6485         int i = -1;
6486
6487         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6488                       connector->base.id, drm_get_connector_name(connector),
6489                       encoder->base.id, drm_get_encoder_name(encoder));
6490
6491         /*
6492          * Algorithm gets a little messy:
6493          *
6494          *   - if the connector already has an assigned crtc, use it (but make
6495          *     sure it's on first)
6496          *
6497          *   - try to find the first unused crtc that can drive this connector,
6498          *     and use that if we find one
6499          */
6500
6501         /* See if we already have a CRTC for this connector */
6502         if (encoder->crtc) {
6503                 crtc = encoder->crtc;
6504
6505                 old->dpms_mode = connector->dpms;
6506                 old->load_detect_temp = false;
6507
6508                 /* Make sure the crtc and connector are running */
6509                 if (connector->dpms != DRM_MODE_DPMS_ON)
6510                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6511
6512                 return true;
6513         }
6514
6515         /* Find an unused one (if possible) */
6516         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6517                 i++;
6518                 if (!(encoder->possible_crtcs & (1 << i)))
6519                         continue;
6520                 if (!possible_crtc->enabled) {
6521                         crtc = possible_crtc;
6522                         break;
6523                 }
6524         }
6525
6526         /*
6527          * If we didn't find an unused CRTC, don't use any.
6528          */
6529         if (!crtc) {
6530                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6531                 return false;
6532         }
6533
6534         intel_encoder->new_crtc = to_intel_crtc(crtc);
6535         to_intel_connector(connector)->new_encoder = intel_encoder;
6536
6537         intel_crtc = to_intel_crtc(crtc);
6538         old->dpms_mode = connector->dpms;
6539         old->load_detect_temp = true;
6540         old->release_fb = NULL;
6541
6542         if (!mode)
6543                 mode = &load_detect_mode;
6544
6545         /* We need a framebuffer large enough to accommodate all accesses
6546          * that the plane may generate whilst we perform load detection.
6547          * We can not rely on the fbcon either being present (we get called
6548          * during its initialisation to detect all boot displays, or it may
6549          * not even exist) or that it is large enough to satisfy the
6550          * requested mode.
6551          */
6552         fb = mode_fits_in_fbdev(dev, mode);
6553         if (fb == NULL) {
6554                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6555                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6556                 old->release_fb = fb;
6557         } else
6558                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6559         if (IS_ERR(fb)) {
6560                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6561                 goto fail;
6562         }
6563
6564         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6565                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6566                 if (old->release_fb)
6567                         old->release_fb->funcs->destroy(old->release_fb);
6568                 goto fail;
6569         }
6570
6571         /* let the connector get through one full cycle before testing */
6572         intel_wait_for_vblank(dev, intel_crtc->pipe);
6573
6574         return true;
6575 fail:
6576         connector->encoder = NULL;
6577         encoder->crtc = NULL;
6578         return false;
6579 }
6580
6581 void intel_release_load_detect_pipe(struct drm_connector *connector,
6582                                     struct intel_load_detect_pipe *old)
6583 {
6584         struct intel_encoder *intel_encoder =
6585                 intel_attached_encoder(connector);
6586         struct drm_encoder *encoder = &intel_encoder->base;
6587
6588         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6589                       connector->base.id, drm_get_connector_name(connector),
6590                       encoder->base.id, drm_get_encoder_name(encoder));
6591
6592         if (old->load_detect_temp) {
6593                 struct drm_crtc *crtc = encoder->crtc;
6594
6595                 to_intel_connector(connector)->new_encoder = NULL;
6596                 intel_encoder->new_crtc = NULL;
6597                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6598
6599                 if (old->release_fb)
6600                         old->release_fb->funcs->destroy(old->release_fb);
6601
6602                 return;
6603         }
6604
6605         /* Switch crtc and encoder back off if necessary */
6606         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6607                 connector->funcs->dpms(connector, old->dpms_mode);
6608 }
6609
6610 /* Returns the clock of the currently programmed mode of the given pipe. */
6611 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6612 {
6613         struct drm_i915_private *dev_priv = dev->dev_private;
6614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6615         int pipe = intel_crtc->pipe;
6616         u32 dpll = I915_READ(DPLL(pipe));
6617         u32 fp;
6618         intel_clock_t clock;
6619
6620         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6621                 fp = I915_READ(FP0(pipe));
6622         else
6623                 fp = I915_READ(FP1(pipe));
6624
6625         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6626         if (IS_PINEVIEW(dev)) {
6627                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6628                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6629         } else {
6630                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6631                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6632         }
6633
6634         if (!IS_GEN2(dev)) {
6635                 if (IS_PINEVIEW(dev))
6636                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6637                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6638                 else
6639                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6640                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6641
6642                 switch (dpll & DPLL_MODE_MASK) {
6643                 case DPLLB_MODE_DAC_SERIAL:
6644                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6645                                 5 : 10;
6646                         break;
6647                 case DPLLB_MODE_LVDS:
6648                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6649                                 7 : 14;
6650                         break;
6651                 default:
6652                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6653                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6654                         return 0;
6655                 }
6656
6657                 /* XXX: Handle the 100Mhz refclk */
6658                 intel_clock(dev, 96000, &clock);
6659         } else {
6660                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6661
6662                 if (is_lvds) {
6663                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6664                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6665                         clock.p2 = 14;
6666
6667                         if ((dpll & PLL_REF_INPUT_MASK) ==
6668                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6669                                 /* XXX: might not be 66MHz */
6670                                 intel_clock(dev, 66000, &clock);
6671                         } else
6672                                 intel_clock(dev, 48000, &clock);
6673                 } else {
6674                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6675                                 clock.p1 = 2;
6676                         else {
6677                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6678                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6679                         }
6680                         if (dpll & PLL_P2_DIVIDE_BY_4)
6681                                 clock.p2 = 4;
6682                         else
6683                                 clock.p2 = 2;
6684
6685                         intel_clock(dev, 48000, &clock);
6686                 }
6687         }
6688
6689         /* XXX: It would be nice to validate the clocks, but we can't reuse
6690          * i830PllIsValid() because it relies on the xf86_config connector
6691          * configuration being accurate, which it isn't necessarily.
6692          */
6693
6694         return clock.dot;
6695 }
6696
6697 /** Returns the currently programmed mode of the given pipe. */
6698 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6699                                              struct drm_crtc *crtc)
6700 {
6701         struct drm_i915_private *dev_priv = dev->dev_private;
6702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6703         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6704         struct drm_display_mode *mode;
6705         int htot = I915_READ(HTOTAL(cpu_transcoder));
6706         int hsync = I915_READ(HSYNC(cpu_transcoder));
6707         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6708         int vsync = I915_READ(VSYNC(cpu_transcoder));
6709
6710         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6711         if (!mode)
6712                 return NULL;
6713
6714         mode->clock = intel_crtc_clock_get(dev, crtc);
6715         mode->hdisplay = (htot & 0xffff) + 1;
6716         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6717         mode->hsync_start = (hsync & 0xffff) + 1;
6718         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6719         mode->vdisplay = (vtot & 0xffff) + 1;
6720         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6721         mode->vsync_start = (vsync & 0xffff) + 1;
6722         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6723
6724         drm_mode_set_name(mode);
6725
6726         return mode;
6727 }
6728
6729 static void intel_increase_pllclock(struct drm_crtc *crtc)
6730 {
6731         struct drm_device *dev = crtc->dev;
6732         drm_i915_private_t *dev_priv = dev->dev_private;
6733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6734         int pipe = intel_crtc->pipe;
6735         int dpll_reg = DPLL(pipe);
6736         int dpll;
6737
6738         if (HAS_PCH_SPLIT(dev))
6739                 return;
6740
6741         if (!dev_priv->lvds_downclock_avail)
6742                 return;
6743
6744         dpll = I915_READ(dpll_reg);
6745         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6746                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6747
6748                 assert_panel_unlocked(dev_priv, pipe);
6749
6750                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6751                 I915_WRITE(dpll_reg, dpll);
6752                 intel_wait_for_vblank(dev, pipe);
6753
6754                 dpll = I915_READ(dpll_reg);
6755                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6756                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6757         }
6758 }
6759
6760 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6761 {
6762         struct drm_device *dev = crtc->dev;
6763         drm_i915_private_t *dev_priv = dev->dev_private;
6764         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6765
6766         if (HAS_PCH_SPLIT(dev))
6767                 return;
6768
6769         if (!dev_priv->lvds_downclock_avail)
6770                 return;
6771
6772         /*
6773          * Since this is called by a timer, we should never get here in
6774          * the manual case.
6775          */
6776         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6777                 int pipe = intel_crtc->pipe;
6778                 int dpll_reg = DPLL(pipe);
6779                 int dpll;
6780
6781                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6782
6783                 assert_panel_unlocked(dev_priv, pipe);
6784
6785                 dpll = I915_READ(dpll_reg);
6786                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6787                 I915_WRITE(dpll_reg, dpll);
6788                 intel_wait_for_vblank(dev, pipe);
6789                 dpll = I915_READ(dpll_reg);
6790                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6791                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6792         }
6793
6794 }
6795
6796 void intel_mark_busy(struct drm_device *dev)
6797 {
6798         i915_update_gfx_val(dev->dev_private);
6799 }
6800
6801 void intel_mark_idle(struct drm_device *dev)
6802 {
6803 }
6804
6805 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6806 {
6807         struct drm_device *dev = obj->base.dev;
6808         struct drm_crtc *crtc;
6809
6810         if (!i915_powersave)
6811                 return;
6812
6813         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6814                 if (!crtc->fb)
6815                         continue;
6816
6817                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6818                         intel_increase_pllclock(crtc);
6819         }
6820 }
6821
6822 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6823 {
6824         struct drm_device *dev = obj->base.dev;
6825         struct drm_crtc *crtc;
6826
6827         if (!i915_powersave)
6828                 return;
6829
6830         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6831                 if (!crtc->fb)
6832                         continue;
6833
6834                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6835                         intel_decrease_pllclock(crtc);
6836         }
6837 }
6838
6839 static void intel_crtc_destroy(struct drm_crtc *crtc)
6840 {
6841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6842         struct drm_device *dev = crtc->dev;
6843         struct intel_unpin_work *work;
6844         unsigned long flags;
6845
6846         spin_lock_irqsave(&dev->event_lock, flags);
6847         work = intel_crtc->unpin_work;
6848         intel_crtc->unpin_work = NULL;
6849         spin_unlock_irqrestore(&dev->event_lock, flags);
6850
6851         if (work) {
6852                 cancel_work_sync(&work->work);
6853                 kfree(work);
6854         }
6855
6856         drm_crtc_cleanup(crtc);
6857
6858         kfree(intel_crtc);
6859 }
6860
6861 static void intel_unpin_work_fn(struct work_struct *__work)
6862 {
6863         struct intel_unpin_work *work =
6864                 container_of(__work, struct intel_unpin_work, work);
6865
6866         mutex_lock(&work->dev->struct_mutex);
6867         intel_unpin_fb_obj(work->old_fb_obj);
6868         drm_gem_object_unreference(&work->pending_flip_obj->base);
6869         drm_gem_object_unreference(&work->old_fb_obj->base);
6870
6871         intel_update_fbc(work->dev);
6872         mutex_unlock(&work->dev->struct_mutex);
6873         kfree(work);
6874 }
6875
6876 static void do_intel_finish_page_flip(struct drm_device *dev,
6877                                       struct drm_crtc *crtc)
6878 {
6879         drm_i915_private_t *dev_priv = dev->dev_private;
6880         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6881         struct intel_unpin_work *work;
6882         struct drm_i915_gem_object *obj;
6883         struct drm_pending_vblank_event *e;
6884         struct timeval tvbl;
6885         unsigned long flags;
6886
6887         /* Ignore early vblank irqs */
6888         if (intel_crtc == NULL)
6889                 return;
6890
6891         spin_lock_irqsave(&dev->event_lock, flags);
6892         work = intel_crtc->unpin_work;
6893         if (work == NULL || !work->pending) {
6894                 spin_unlock_irqrestore(&dev->event_lock, flags);
6895                 return;
6896         }
6897
6898         intel_crtc->unpin_work = NULL;
6899
6900         if (work->event) {
6901                 e = work->event;
6902                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6903
6904                 e->event.tv_sec = tvbl.tv_sec;
6905                 e->event.tv_usec = tvbl.tv_usec;
6906
6907                 list_add_tail(&e->base.link,
6908                               &e->base.file_priv->event_list);
6909                 wake_up_interruptible(&e->base.file_priv->event_wait);
6910         }
6911
6912         drm_vblank_put(dev, intel_crtc->pipe);
6913
6914         spin_unlock_irqrestore(&dev->event_lock, flags);
6915
6916         obj = work->old_fb_obj;
6917
6918         atomic_clear_mask(1 << intel_crtc->plane,
6919                           &obj->pending_flip.counter);
6920
6921         wake_up(&dev_priv->pending_flip_queue);
6922         schedule_work(&work->work);
6923
6924         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6925 }
6926
6927 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6928 {
6929         drm_i915_private_t *dev_priv = dev->dev_private;
6930         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6931
6932         do_intel_finish_page_flip(dev, crtc);
6933 }
6934
6935 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6936 {
6937         drm_i915_private_t *dev_priv = dev->dev_private;
6938         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6939
6940         do_intel_finish_page_flip(dev, crtc);
6941 }
6942
6943 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6944 {
6945         drm_i915_private_t *dev_priv = dev->dev_private;
6946         struct intel_crtc *intel_crtc =
6947                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6948         unsigned long flags;
6949
6950         spin_lock_irqsave(&dev->event_lock, flags);
6951         if (intel_crtc->unpin_work) {
6952                 if ((++intel_crtc->unpin_work->pending) > 1)
6953                         DRM_ERROR("Prepared flip multiple times\n");
6954         } else {
6955                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6956         }
6957         spin_unlock_irqrestore(&dev->event_lock, flags);
6958 }
6959
6960 static int intel_gen2_queue_flip(struct drm_device *dev,
6961                                  struct drm_crtc *crtc,
6962                                  struct drm_framebuffer *fb,
6963                                  struct drm_i915_gem_object *obj)
6964 {
6965         struct drm_i915_private *dev_priv = dev->dev_private;
6966         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6967         u32 flip_mask;
6968         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6969         int ret;
6970
6971         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6972         if (ret)
6973                 goto err;
6974
6975         ret = intel_ring_begin(ring, 6);
6976         if (ret)
6977                 goto err_unpin;
6978
6979         /* Can't queue multiple flips, so wait for the previous
6980          * one to finish before executing the next.
6981          */
6982         if (intel_crtc->plane)
6983                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6984         else
6985                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6986         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6987         intel_ring_emit(ring, MI_NOOP);
6988         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6989                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6990         intel_ring_emit(ring, fb->pitches[0]);
6991         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6992         intel_ring_emit(ring, 0); /* aux display base address, unused */
6993         intel_ring_advance(ring);
6994         return 0;
6995
6996 err_unpin:
6997         intel_unpin_fb_obj(obj);
6998 err:
6999         return ret;
7000 }
7001
7002 static int intel_gen3_queue_flip(struct drm_device *dev,
7003                                  struct drm_crtc *crtc,
7004                                  struct drm_framebuffer *fb,
7005                                  struct drm_i915_gem_object *obj)
7006 {
7007         struct drm_i915_private *dev_priv = dev->dev_private;
7008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7009         u32 flip_mask;
7010         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7011         int ret;
7012
7013         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7014         if (ret)
7015                 goto err;
7016
7017         ret = intel_ring_begin(ring, 6);
7018         if (ret)
7019                 goto err_unpin;
7020
7021         if (intel_crtc->plane)
7022                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7023         else
7024                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7025         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7026         intel_ring_emit(ring, MI_NOOP);
7027         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7028                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7029         intel_ring_emit(ring, fb->pitches[0]);
7030         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7031         intel_ring_emit(ring, MI_NOOP);
7032
7033         intel_ring_advance(ring);
7034         return 0;
7035
7036 err_unpin:
7037         intel_unpin_fb_obj(obj);
7038 err:
7039         return ret;
7040 }
7041
7042 static int intel_gen4_queue_flip(struct drm_device *dev,
7043                                  struct drm_crtc *crtc,
7044                                  struct drm_framebuffer *fb,
7045                                  struct drm_i915_gem_object *obj)
7046 {
7047         struct drm_i915_private *dev_priv = dev->dev_private;
7048         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7049         uint32_t pf, pipesrc;
7050         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7051         int ret;
7052
7053         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7054         if (ret)
7055                 goto err;
7056
7057         ret = intel_ring_begin(ring, 4);
7058         if (ret)
7059                 goto err_unpin;
7060
7061         /* i965+ uses the linear or tiled offsets from the
7062          * Display Registers (which do not change across a page-flip)
7063          * so we need only reprogram the base address.
7064          */
7065         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7066                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7067         intel_ring_emit(ring, fb->pitches[0]);
7068         intel_ring_emit(ring,
7069                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7070                         obj->tiling_mode);
7071
7072         /* XXX Enabling the panel-fitter across page-flip is so far
7073          * untested on non-native modes, so ignore it for now.
7074          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7075          */
7076         pf = 0;
7077         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7078         intel_ring_emit(ring, pf | pipesrc);
7079         intel_ring_advance(ring);
7080         return 0;
7081
7082 err_unpin:
7083         intel_unpin_fb_obj(obj);
7084 err:
7085         return ret;
7086 }
7087
7088 static int intel_gen6_queue_flip(struct drm_device *dev,
7089                                  struct drm_crtc *crtc,
7090                                  struct drm_framebuffer *fb,
7091                                  struct drm_i915_gem_object *obj)
7092 {
7093         struct drm_i915_private *dev_priv = dev->dev_private;
7094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7095         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7096         uint32_t pf, pipesrc;
7097         int ret;
7098
7099         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7100         if (ret)
7101                 goto err;
7102
7103         ret = intel_ring_begin(ring, 4);
7104         if (ret)
7105                 goto err_unpin;
7106
7107         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7108                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7109         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7110         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7111
7112         /* Contrary to the suggestions in the documentation,
7113          * "Enable Panel Fitter" does not seem to be required when page
7114          * flipping with a non-native mode, and worse causes a normal
7115          * modeset to fail.
7116          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7117          */
7118         pf = 0;
7119         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7120         intel_ring_emit(ring, pf | pipesrc);
7121         intel_ring_advance(ring);
7122         return 0;
7123
7124 err_unpin:
7125         intel_unpin_fb_obj(obj);
7126 err:
7127         return ret;
7128 }
7129
7130 /*
7131  * On gen7 we currently use the blit ring because (in early silicon at least)
7132  * the render ring doesn't give us interrpts for page flip completion, which
7133  * means clients will hang after the first flip is queued.  Fortunately the
7134  * blit ring generates interrupts properly, so use it instead.
7135  */
7136 static int intel_gen7_queue_flip(struct drm_device *dev,
7137                                  struct drm_crtc *crtc,
7138                                  struct drm_framebuffer *fb,
7139                                  struct drm_i915_gem_object *obj)
7140 {
7141         struct drm_i915_private *dev_priv = dev->dev_private;
7142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7143         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7144         uint32_t plane_bit = 0;
7145         int ret;
7146
7147         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7148         if (ret)
7149                 goto err;
7150
7151         switch(intel_crtc->plane) {
7152         case PLANE_A:
7153                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7154                 break;
7155         case PLANE_B:
7156                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7157                 break;
7158         case PLANE_C:
7159                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7160                 break;
7161         default:
7162                 WARN_ONCE(1, "unknown plane in flip command\n");
7163                 ret = -ENODEV;
7164                 goto err_unpin;
7165         }
7166
7167         ret = intel_ring_begin(ring, 4);
7168         if (ret)
7169                 goto err_unpin;
7170
7171         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7172         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7173         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7174         intel_ring_emit(ring, (MI_NOOP));
7175         intel_ring_advance(ring);
7176         return 0;
7177
7178 err_unpin:
7179         intel_unpin_fb_obj(obj);
7180 err:
7181         return ret;
7182 }
7183
7184 static int intel_default_queue_flip(struct drm_device *dev,
7185                                     struct drm_crtc *crtc,
7186                                     struct drm_framebuffer *fb,
7187                                     struct drm_i915_gem_object *obj)
7188 {
7189         return -ENODEV;
7190 }
7191
7192 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7193                                 struct drm_framebuffer *fb,
7194                                 struct drm_pending_vblank_event *event)
7195 {
7196         struct drm_device *dev = crtc->dev;
7197         struct drm_i915_private *dev_priv = dev->dev_private;
7198         struct intel_framebuffer *intel_fb;
7199         struct drm_i915_gem_object *obj;
7200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7201         struct intel_unpin_work *work;
7202         unsigned long flags;
7203         int ret;
7204
7205         /* Can't change pixel format via MI display flips. */
7206         if (fb->pixel_format != crtc->fb->pixel_format)
7207                 return -EINVAL;
7208
7209         /*
7210          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7211          * Note that pitch changes could also affect these register.
7212          */
7213         if (INTEL_INFO(dev)->gen > 3 &&
7214             (fb->offsets[0] != crtc->fb->offsets[0] ||
7215              fb->pitches[0] != crtc->fb->pitches[0]))
7216                 return -EINVAL;
7217
7218         work = kzalloc(sizeof *work, GFP_KERNEL);
7219         if (work == NULL)
7220                 return -ENOMEM;
7221
7222         work->event = event;
7223         work->dev = crtc->dev;
7224         intel_fb = to_intel_framebuffer(crtc->fb);
7225         work->old_fb_obj = intel_fb->obj;
7226         INIT_WORK(&work->work, intel_unpin_work_fn);
7227
7228         ret = drm_vblank_get(dev, intel_crtc->pipe);
7229         if (ret)
7230                 goto free_work;
7231
7232         /* We borrow the event spin lock for protecting unpin_work */
7233         spin_lock_irqsave(&dev->event_lock, flags);
7234         if (intel_crtc->unpin_work) {
7235                 spin_unlock_irqrestore(&dev->event_lock, flags);
7236                 kfree(work);
7237                 drm_vblank_put(dev, intel_crtc->pipe);
7238
7239                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7240                 return -EBUSY;
7241         }
7242         intel_crtc->unpin_work = work;
7243         spin_unlock_irqrestore(&dev->event_lock, flags);
7244
7245         intel_fb = to_intel_framebuffer(fb);
7246         obj = intel_fb->obj;
7247
7248         ret = i915_mutex_lock_interruptible(dev);
7249         if (ret)
7250                 goto cleanup;
7251
7252         /* Reference the objects for the scheduled work. */
7253         drm_gem_object_reference(&work->old_fb_obj->base);
7254         drm_gem_object_reference(&obj->base);
7255
7256         crtc->fb = fb;
7257
7258         work->pending_flip_obj = obj;
7259
7260         work->enable_stall_check = true;
7261
7262         /* Block clients from rendering to the new back buffer until
7263          * the flip occurs and the object is no longer visible.
7264          */
7265         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7266
7267         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7268         if (ret)
7269                 goto cleanup_pending;
7270
7271         intel_disable_fbc(dev);
7272         intel_mark_fb_busy(obj);
7273         mutex_unlock(&dev->struct_mutex);
7274
7275         trace_i915_flip_request(intel_crtc->plane, obj);
7276
7277         return 0;
7278
7279 cleanup_pending:
7280         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7281         drm_gem_object_unreference(&work->old_fb_obj->base);
7282         drm_gem_object_unreference(&obj->base);
7283         mutex_unlock(&dev->struct_mutex);
7284
7285 cleanup:
7286         spin_lock_irqsave(&dev->event_lock, flags);
7287         intel_crtc->unpin_work = NULL;
7288         spin_unlock_irqrestore(&dev->event_lock, flags);
7289
7290         drm_vblank_put(dev, intel_crtc->pipe);
7291 free_work:
7292         kfree(work);
7293
7294         return ret;
7295 }
7296
7297 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7298         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7299         .load_lut = intel_crtc_load_lut,
7300         .disable = intel_crtc_noop,
7301 };
7302
7303 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7304 {
7305         struct intel_encoder *other_encoder;
7306         struct drm_crtc *crtc = &encoder->new_crtc->base;
7307
7308         if (WARN_ON(!crtc))
7309                 return false;
7310
7311         list_for_each_entry(other_encoder,
7312                             &crtc->dev->mode_config.encoder_list,
7313                             base.head) {
7314
7315                 if (&other_encoder->new_crtc->base != crtc ||
7316                     encoder == other_encoder)
7317                         continue;
7318                 else
7319                         return true;
7320         }
7321
7322         return false;
7323 }
7324
7325 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7326                                   struct drm_crtc *crtc)
7327 {
7328         struct drm_device *dev;
7329         struct drm_crtc *tmp;
7330         int crtc_mask = 1;
7331
7332         WARN(!crtc, "checking null crtc?\n");
7333
7334         dev = crtc->dev;
7335
7336         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7337                 if (tmp == crtc)
7338                         break;
7339                 crtc_mask <<= 1;
7340         }
7341
7342         if (encoder->possible_crtcs & crtc_mask)
7343                 return true;
7344         return false;
7345 }
7346
7347 /**
7348  * intel_modeset_update_staged_output_state
7349  *
7350  * Updates the staged output configuration state, e.g. after we've read out the
7351  * current hw state.
7352  */
7353 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7354 {
7355         struct intel_encoder *encoder;
7356         struct intel_connector *connector;
7357
7358         list_for_each_entry(connector, &dev->mode_config.connector_list,
7359                             base.head) {
7360                 connector->new_encoder =
7361                         to_intel_encoder(connector->base.encoder);
7362         }
7363
7364         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7365                             base.head) {
7366                 encoder->new_crtc =
7367                         to_intel_crtc(encoder->base.crtc);
7368         }
7369 }
7370
7371 /**
7372  * intel_modeset_commit_output_state
7373  *
7374  * This function copies the stage display pipe configuration to the real one.
7375  */
7376 static void intel_modeset_commit_output_state(struct drm_device *dev)
7377 {
7378         struct intel_encoder *encoder;
7379         struct intel_connector *connector;
7380
7381         list_for_each_entry(connector, &dev->mode_config.connector_list,
7382                             base.head) {
7383                 connector->base.encoder = &connector->new_encoder->base;
7384         }
7385
7386         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7387                             base.head) {
7388                 encoder->base.crtc = &encoder->new_crtc->base;
7389         }
7390 }
7391
7392 static struct drm_display_mode *
7393 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7394                             struct drm_display_mode *mode)
7395 {
7396         struct drm_device *dev = crtc->dev;
7397         struct drm_display_mode *adjusted_mode;
7398         struct drm_encoder_helper_funcs *encoder_funcs;
7399         struct intel_encoder *encoder;
7400
7401         adjusted_mode = drm_mode_duplicate(dev, mode);
7402         if (!adjusted_mode)
7403                 return ERR_PTR(-ENOMEM);
7404
7405         /* Pass our mode to the connectors and the CRTC to give them a chance to
7406          * adjust it according to limitations or connector properties, and also
7407          * a chance to reject the mode entirely.
7408          */
7409         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7410                             base.head) {
7411
7412                 if (&encoder->new_crtc->base != crtc)
7413                         continue;
7414                 encoder_funcs = encoder->base.helper_private;
7415                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7416                                                 adjusted_mode))) {
7417                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7418                         goto fail;
7419                 }
7420         }
7421
7422         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7423                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7424                 goto fail;
7425         }
7426         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7427
7428         return adjusted_mode;
7429 fail:
7430         drm_mode_destroy(dev, adjusted_mode);
7431         return ERR_PTR(-EINVAL);
7432 }
7433
7434 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7435  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7436 static void
7437 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7438                              unsigned *prepare_pipes, unsigned *disable_pipes)
7439 {
7440         struct intel_crtc *intel_crtc;
7441         struct drm_device *dev = crtc->dev;
7442         struct intel_encoder *encoder;
7443         struct intel_connector *connector;
7444         struct drm_crtc *tmp_crtc;
7445
7446         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7447
7448         /* Check which crtcs have changed outputs connected to them, these need
7449          * to be part of the prepare_pipes mask. We don't (yet) support global
7450          * modeset across multiple crtcs, so modeset_pipes will only have one
7451          * bit set at most. */
7452         list_for_each_entry(connector, &dev->mode_config.connector_list,
7453                             base.head) {
7454                 if (connector->base.encoder == &connector->new_encoder->base)
7455                         continue;
7456
7457                 if (connector->base.encoder) {
7458                         tmp_crtc = connector->base.encoder->crtc;
7459
7460                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7461                 }
7462
7463                 if (connector->new_encoder)
7464                         *prepare_pipes |=
7465                                 1 << connector->new_encoder->new_crtc->pipe;
7466         }
7467
7468         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7469                             base.head) {
7470                 if (encoder->base.crtc == &encoder->new_crtc->base)
7471                         continue;
7472
7473                 if (encoder->base.crtc) {
7474                         tmp_crtc = encoder->base.crtc;
7475
7476                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7477                 }
7478
7479                 if (encoder->new_crtc)
7480                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7481         }
7482
7483         /* Check for any pipes that will be fully disabled ... */
7484         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7485                             base.head) {
7486                 bool used = false;
7487
7488                 /* Don't try to disable disabled crtcs. */
7489                 if (!intel_crtc->base.enabled)
7490                         continue;
7491
7492                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7493                                     base.head) {
7494                         if (encoder->new_crtc == intel_crtc)
7495                                 used = true;
7496                 }
7497
7498                 if (!used)
7499                         *disable_pipes |= 1 << intel_crtc->pipe;
7500         }
7501
7502
7503         /* set_mode is also used to update properties on life display pipes. */
7504         intel_crtc = to_intel_crtc(crtc);
7505         if (crtc->enabled)
7506                 *prepare_pipes |= 1 << intel_crtc->pipe;
7507
7508         /* We only support modeset on one single crtc, hence we need to do that
7509          * only for the passed in crtc iff we change anything else than just
7510          * disable crtcs.
7511          *
7512          * This is actually not true, to be fully compatible with the old crtc
7513          * helper we automatically disable _any_ output (i.e. doesn't need to be
7514          * connected to the crtc we're modesetting on) if it's disconnected.
7515          * Which is a rather nutty api (since changed the output configuration
7516          * without userspace's explicit request can lead to confusion), but
7517          * alas. Hence we currently need to modeset on all pipes we prepare. */
7518         if (*prepare_pipes)
7519                 *modeset_pipes = *prepare_pipes;
7520
7521         /* ... and mask these out. */
7522         *modeset_pipes &= ~(*disable_pipes);
7523         *prepare_pipes &= ~(*disable_pipes);
7524 }
7525
7526 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7527 {
7528         struct drm_encoder *encoder;
7529         struct drm_device *dev = crtc->dev;
7530
7531         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7532                 if (encoder->crtc == crtc)
7533                         return true;
7534
7535         return false;
7536 }
7537
7538 static void
7539 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7540 {
7541         struct intel_encoder *intel_encoder;
7542         struct intel_crtc *intel_crtc;
7543         struct drm_connector *connector;
7544
7545         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7546                             base.head) {
7547                 if (!intel_encoder->base.crtc)
7548                         continue;
7549
7550                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7551
7552                 if (prepare_pipes & (1 << intel_crtc->pipe))
7553                         intel_encoder->connectors_active = false;
7554         }
7555
7556         intel_modeset_commit_output_state(dev);
7557
7558         /* Update computed state. */
7559         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7560                             base.head) {
7561                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7562         }
7563
7564         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7565                 if (!connector->encoder || !connector->encoder->crtc)
7566                         continue;
7567
7568                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7569
7570                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7571                         struct drm_property *dpms_property =
7572                                 dev->mode_config.dpms_property;
7573
7574                         connector->dpms = DRM_MODE_DPMS_ON;
7575                         drm_connector_property_set_value(connector,
7576                                                          dpms_property,
7577                                                          DRM_MODE_DPMS_ON);
7578
7579                         intel_encoder = to_intel_encoder(connector->encoder);
7580                         intel_encoder->connectors_active = true;
7581                 }
7582         }
7583
7584 }
7585
7586 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7587         list_for_each_entry((intel_crtc), \
7588                             &(dev)->mode_config.crtc_list, \
7589                             base.head) \
7590                 if (mask & (1 <<(intel_crtc)->pipe)) \
7591
7592 void
7593 intel_modeset_check_state(struct drm_device *dev)
7594 {
7595         struct intel_crtc *crtc;
7596         struct intel_encoder *encoder;
7597         struct intel_connector *connector;
7598
7599         list_for_each_entry(connector, &dev->mode_config.connector_list,
7600                             base.head) {
7601                 /* This also checks the encoder/connector hw state with the
7602                  * ->get_hw_state callbacks. */
7603                 intel_connector_check_state(connector);
7604
7605                 WARN(&connector->new_encoder->base != connector->base.encoder,
7606                      "connector's staged encoder doesn't match current encoder\n");
7607         }
7608
7609         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7610                             base.head) {
7611                 bool enabled = false;
7612                 bool active = false;
7613                 enum pipe pipe, tracked_pipe;
7614
7615                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7616                               encoder->base.base.id,
7617                               drm_get_encoder_name(&encoder->base));
7618
7619                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7620                      "encoder's stage crtc doesn't match current crtc\n");
7621                 WARN(encoder->connectors_active && !encoder->base.crtc,
7622                      "encoder's active_connectors set, but no crtc\n");
7623
7624                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7625                                     base.head) {
7626                         if (connector->base.encoder != &encoder->base)
7627                                 continue;
7628                         enabled = true;
7629                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7630                                 active = true;
7631                 }
7632                 WARN(!!encoder->base.crtc != enabled,
7633                      "encoder's enabled state mismatch "
7634                      "(expected %i, found %i)\n",
7635                      !!encoder->base.crtc, enabled);
7636                 WARN(active && !encoder->base.crtc,
7637                      "active encoder with no crtc\n");
7638
7639                 WARN(encoder->connectors_active != active,
7640                      "encoder's computed active state doesn't match tracked active state "
7641                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7642
7643                 active = encoder->get_hw_state(encoder, &pipe);
7644                 WARN(active != encoder->connectors_active,
7645                      "encoder's hw state doesn't match sw tracking "
7646                      "(expected %i, found %i)\n",
7647                      encoder->connectors_active, active);
7648
7649                 if (!encoder->base.crtc)
7650                         continue;
7651
7652                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7653                 WARN(active && pipe != tracked_pipe,
7654                      "active encoder's pipe doesn't match"
7655                      "(expected %i, found %i)\n",
7656                      tracked_pipe, pipe);
7657
7658         }
7659
7660         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7661                             base.head) {
7662                 bool enabled = false;
7663                 bool active = false;
7664
7665                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7666                               crtc->base.base.id);
7667
7668                 WARN(crtc->active && !crtc->base.enabled,
7669                      "active crtc, but not enabled in sw tracking\n");
7670
7671                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7672                                     base.head) {
7673                         if (encoder->base.crtc != &crtc->base)
7674                                 continue;
7675                         enabled = true;
7676                         if (encoder->connectors_active)
7677                                 active = true;
7678                 }
7679                 WARN(active != crtc->active,
7680                      "crtc's computed active state doesn't match tracked active state "
7681                      "(expected %i, found %i)\n", active, crtc->active);
7682                 WARN(enabled != crtc->base.enabled,
7683                      "crtc's computed enabled state doesn't match tracked enabled state "
7684                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7685
7686                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7687         }
7688 }
7689
7690 bool intel_set_mode(struct drm_crtc *crtc,
7691                     struct drm_display_mode *mode,
7692                     int x, int y, struct drm_framebuffer *fb)
7693 {
7694         struct drm_device *dev = crtc->dev;
7695         drm_i915_private_t *dev_priv = dev->dev_private;
7696         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7697         struct intel_crtc *intel_crtc;
7698         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7699         bool ret = true;
7700
7701         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7702                                      &prepare_pipes, &disable_pipes);
7703
7704         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7705                       modeset_pipes, prepare_pipes, disable_pipes);
7706
7707         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7708                 intel_crtc_disable(&intel_crtc->base);
7709
7710         saved_hwmode = crtc->hwmode;
7711         saved_mode = crtc->mode;
7712
7713         /* Hack: Because we don't (yet) support global modeset on multiple
7714          * crtcs, we don't keep track of the new mode for more than one crtc.
7715          * Hence simply check whether any bit is set in modeset_pipes in all the
7716          * pieces of code that are not yet converted to deal with mutliple crtcs
7717          * changing their mode at the same time. */
7718         adjusted_mode = NULL;
7719         if (modeset_pipes) {
7720                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7721                 if (IS_ERR(adjusted_mode)) {
7722                         return false;
7723                 }
7724         }
7725
7726         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7727                 if (intel_crtc->base.enabled)
7728                         dev_priv->display.crtc_disable(&intel_crtc->base);
7729         }
7730
7731         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7732          * to set it here already despite that we pass it down the callchain.
7733          */
7734         if (modeset_pipes)
7735                 crtc->mode = *mode;
7736
7737         /* Only after disabling all output pipelines that will be changed can we
7738          * update the the output configuration. */
7739         intel_modeset_update_state(dev, prepare_pipes);
7740
7741         if (dev_priv->display.modeset_global_resources)
7742                 dev_priv->display.modeset_global_resources(dev);
7743
7744         /* Set up the DPLL and any encoders state that needs to adjust or depend
7745          * on the DPLL.
7746          */
7747         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7748                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7749                                            mode, adjusted_mode,
7750                                            x, y, fb);
7751                 if (!ret)
7752                     goto done;
7753         }
7754
7755         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7756         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7757                 dev_priv->display.crtc_enable(&intel_crtc->base);
7758
7759         if (modeset_pipes) {
7760                 /* Store real post-adjustment hardware mode. */
7761                 crtc->hwmode = *adjusted_mode;
7762
7763                 /* Calculate and store various constants which
7764                  * are later needed by vblank and swap-completion
7765                  * timestamping. They are derived from true hwmode.
7766                  */
7767                 drm_calc_timestamping_constants(crtc);
7768         }
7769
7770         /* FIXME: add subpixel order */
7771 done:
7772         drm_mode_destroy(dev, adjusted_mode);
7773         if (!ret && crtc->enabled) {
7774                 crtc->hwmode = saved_hwmode;
7775                 crtc->mode = saved_mode;
7776         } else {
7777                 intel_modeset_check_state(dev);
7778         }
7779
7780         return ret;
7781 }
7782
7783 #undef for_each_intel_crtc_masked
7784
7785 static void intel_set_config_free(struct intel_set_config *config)
7786 {
7787         if (!config)
7788                 return;
7789
7790         kfree(config->save_connector_encoders);
7791         kfree(config->save_encoder_crtcs);
7792         kfree(config);
7793 }
7794
7795 static int intel_set_config_save_state(struct drm_device *dev,
7796                                        struct intel_set_config *config)
7797 {
7798         struct drm_encoder *encoder;
7799         struct drm_connector *connector;
7800         int count;
7801
7802         config->save_encoder_crtcs =
7803                 kcalloc(dev->mode_config.num_encoder,
7804                         sizeof(struct drm_crtc *), GFP_KERNEL);
7805         if (!config->save_encoder_crtcs)
7806                 return -ENOMEM;
7807
7808         config->save_connector_encoders =
7809                 kcalloc(dev->mode_config.num_connector,
7810                         sizeof(struct drm_encoder *), GFP_KERNEL);
7811         if (!config->save_connector_encoders)
7812                 return -ENOMEM;
7813
7814         /* Copy data. Note that driver private data is not affected.
7815          * Should anything bad happen only the expected state is
7816          * restored, not the drivers personal bookkeeping.
7817          */
7818         count = 0;
7819         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7820                 config->save_encoder_crtcs[count++] = encoder->crtc;
7821         }
7822
7823         count = 0;
7824         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7825                 config->save_connector_encoders[count++] = connector->encoder;
7826         }
7827
7828         return 0;
7829 }
7830
7831 static void intel_set_config_restore_state(struct drm_device *dev,
7832                                            struct intel_set_config *config)
7833 {
7834         struct intel_encoder *encoder;
7835         struct intel_connector *connector;
7836         int count;
7837
7838         count = 0;
7839         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7840                 encoder->new_crtc =
7841                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7842         }
7843
7844         count = 0;
7845         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7846                 connector->new_encoder =
7847                         to_intel_encoder(config->save_connector_encoders[count++]);
7848         }
7849 }
7850
7851 static void
7852 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7853                                       struct intel_set_config *config)
7854 {
7855
7856         /* We should be able to check here if the fb has the same properties
7857          * and then just flip_or_move it */
7858         if (set->crtc->fb != set->fb) {
7859                 /* If we have no fb then treat it as a full mode set */
7860                 if (set->crtc->fb == NULL) {
7861                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7862                         config->mode_changed = true;
7863                 } else if (set->fb == NULL) {
7864                         config->mode_changed = true;
7865                 } else if (set->fb->depth != set->crtc->fb->depth) {
7866                         config->mode_changed = true;
7867                 } else if (set->fb->bits_per_pixel !=
7868                            set->crtc->fb->bits_per_pixel) {
7869                         config->mode_changed = true;
7870                 } else
7871                         config->fb_changed = true;
7872         }
7873
7874         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7875                 config->fb_changed = true;
7876
7877         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7878                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7879                 drm_mode_debug_printmodeline(&set->crtc->mode);
7880                 drm_mode_debug_printmodeline(set->mode);
7881                 config->mode_changed = true;
7882         }
7883 }
7884
7885 static int
7886 intel_modeset_stage_output_state(struct drm_device *dev,
7887                                  struct drm_mode_set *set,
7888                                  struct intel_set_config *config)
7889 {
7890         struct drm_crtc *new_crtc;
7891         struct intel_connector *connector;
7892         struct intel_encoder *encoder;
7893         int count, ro;
7894
7895         /* The upper layers ensure that we either disabl a crtc or have a list
7896          * of connectors. For paranoia, double-check this. */
7897         WARN_ON(!set->fb && (set->num_connectors != 0));
7898         WARN_ON(set->fb && (set->num_connectors == 0));
7899
7900         count = 0;
7901         list_for_each_entry(connector, &dev->mode_config.connector_list,
7902                             base.head) {
7903                 /* Otherwise traverse passed in connector list and get encoders
7904                  * for them. */
7905                 for (ro = 0; ro < set->num_connectors; ro++) {
7906                         if (set->connectors[ro] == &connector->base) {
7907                                 connector->new_encoder = connector->encoder;
7908                                 break;
7909                         }
7910                 }
7911
7912                 /* If we disable the crtc, disable all its connectors. Also, if
7913                  * the connector is on the changing crtc but not on the new
7914                  * connector list, disable it. */
7915                 if ((!set->fb || ro == set->num_connectors) &&
7916                     connector->base.encoder &&
7917                     connector->base.encoder->crtc == set->crtc) {
7918                         connector->new_encoder = NULL;
7919
7920                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7921                                 connector->base.base.id,
7922                                 drm_get_connector_name(&connector->base));
7923                 }
7924
7925
7926                 if (&connector->new_encoder->base != connector->base.encoder) {
7927                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7928                         config->mode_changed = true;
7929                 }
7930
7931                 /* Disable all disconnected encoders. */
7932                 if (connector->base.status == connector_status_disconnected)
7933                         connector->new_encoder = NULL;
7934         }
7935         /* connector->new_encoder is now updated for all connectors. */
7936
7937         /* Update crtc of enabled connectors. */
7938         count = 0;
7939         list_for_each_entry(connector, &dev->mode_config.connector_list,
7940                             base.head) {
7941                 if (!connector->new_encoder)
7942                         continue;
7943
7944                 new_crtc = connector->new_encoder->base.crtc;
7945
7946                 for (ro = 0; ro < set->num_connectors; ro++) {
7947                         if (set->connectors[ro] == &connector->base)
7948                                 new_crtc = set->crtc;
7949                 }
7950
7951                 /* Make sure the new CRTC will work with the encoder */
7952                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7953                                            new_crtc)) {
7954                         return -EINVAL;
7955                 }
7956                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7957
7958                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7959                         connector->base.base.id,
7960                         drm_get_connector_name(&connector->base),
7961                         new_crtc->base.id);
7962         }
7963
7964         /* Check for any encoders that needs to be disabled. */
7965         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7966                             base.head) {
7967                 list_for_each_entry(connector,
7968                                     &dev->mode_config.connector_list,
7969                                     base.head) {
7970                         if (connector->new_encoder == encoder) {
7971                                 WARN_ON(!connector->new_encoder->new_crtc);
7972
7973                                 goto next_encoder;
7974                         }
7975                 }
7976                 encoder->new_crtc = NULL;
7977 next_encoder:
7978                 /* Only now check for crtc changes so we don't miss encoders
7979                  * that will be disabled. */
7980                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7981                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7982                         config->mode_changed = true;
7983                 }
7984         }
7985         /* Now we've also updated encoder->new_crtc for all encoders. */
7986
7987         return 0;
7988 }
7989
7990 static int intel_crtc_set_config(struct drm_mode_set *set)
7991 {
7992         struct drm_device *dev;
7993         struct drm_mode_set save_set;
7994         struct intel_set_config *config;
7995         int ret;
7996
7997         BUG_ON(!set);
7998         BUG_ON(!set->crtc);
7999         BUG_ON(!set->crtc->helper_private);
8000
8001         if (!set->mode)
8002                 set->fb = NULL;
8003
8004         /* The fb helper likes to play gross jokes with ->mode_set_config.
8005          * Unfortunately the crtc helper doesn't do much at all for this case,
8006          * so we have to cope with this madness until the fb helper is fixed up. */
8007         if (set->fb && set->num_connectors == 0)
8008                 return 0;
8009
8010         if (set->fb) {
8011                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8012                                 set->crtc->base.id, set->fb->base.id,
8013                                 (int)set->num_connectors, set->x, set->y);
8014         } else {
8015                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8016         }
8017
8018         dev = set->crtc->dev;
8019
8020         ret = -ENOMEM;
8021         config = kzalloc(sizeof(*config), GFP_KERNEL);
8022         if (!config)
8023                 goto out_config;
8024
8025         ret = intel_set_config_save_state(dev, config);
8026         if (ret)
8027                 goto out_config;
8028
8029         save_set.crtc = set->crtc;
8030         save_set.mode = &set->crtc->mode;
8031         save_set.x = set->crtc->x;
8032         save_set.y = set->crtc->y;
8033         save_set.fb = set->crtc->fb;
8034
8035         /* Compute whether we need a full modeset, only an fb base update or no
8036          * change at all. In the future we might also check whether only the
8037          * mode changed, e.g. for LVDS where we only change the panel fitter in
8038          * such cases. */
8039         intel_set_config_compute_mode_changes(set, config);
8040
8041         ret = intel_modeset_stage_output_state(dev, set, config);
8042         if (ret)
8043                 goto fail;
8044
8045         if (config->mode_changed) {
8046                 if (set->mode) {
8047                         DRM_DEBUG_KMS("attempting to set mode from"
8048                                         " userspace\n");
8049                         drm_mode_debug_printmodeline(set->mode);
8050                 }
8051
8052                 if (!intel_set_mode(set->crtc, set->mode,
8053                                     set->x, set->y, set->fb)) {
8054                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8055                                   set->crtc->base.id);
8056                         ret = -EINVAL;
8057                         goto fail;
8058                 }
8059         } else if (config->fb_changed) {
8060                 ret = intel_pipe_set_base(set->crtc,
8061                                           set->x, set->y, set->fb);
8062         }
8063
8064         intel_set_config_free(config);
8065
8066         return 0;
8067
8068 fail:
8069         intel_set_config_restore_state(dev, config);
8070
8071         /* Try to restore the config */
8072         if (config->mode_changed &&
8073             !intel_set_mode(save_set.crtc, save_set.mode,
8074                             save_set.x, save_set.y, save_set.fb))
8075                 DRM_ERROR("failed to restore config after modeset failure\n");
8076
8077 out_config:
8078         intel_set_config_free(config);
8079         return ret;
8080 }
8081
8082 static const struct drm_crtc_funcs intel_crtc_funcs = {
8083         .cursor_set = intel_crtc_cursor_set,
8084         .cursor_move = intel_crtc_cursor_move,
8085         .gamma_set = intel_crtc_gamma_set,
8086         .set_config = intel_crtc_set_config,
8087         .destroy = intel_crtc_destroy,
8088         .page_flip = intel_crtc_page_flip,
8089 };
8090
8091 static void intel_cpu_pll_init(struct drm_device *dev)
8092 {
8093         if (IS_HASWELL(dev))
8094                 intel_ddi_pll_init(dev);
8095 }
8096
8097 static void intel_pch_pll_init(struct drm_device *dev)
8098 {
8099         drm_i915_private_t *dev_priv = dev->dev_private;
8100         int i;
8101
8102         if (dev_priv->num_pch_pll == 0) {
8103                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8104                 return;
8105         }
8106
8107         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8108                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8109                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8110                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8111         }
8112 }
8113
8114 static void intel_crtc_init(struct drm_device *dev, int pipe)
8115 {
8116         drm_i915_private_t *dev_priv = dev->dev_private;
8117         struct intel_crtc *intel_crtc;
8118         int i;
8119
8120         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8121         if (intel_crtc == NULL)
8122                 return;
8123
8124         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8125
8126         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8127         for (i = 0; i < 256; i++) {
8128                 intel_crtc->lut_r[i] = i;
8129                 intel_crtc->lut_g[i] = i;
8130                 intel_crtc->lut_b[i] = i;
8131         }
8132
8133         /* Swap pipes & planes for FBC on pre-965 */
8134         intel_crtc->pipe = pipe;
8135         intel_crtc->plane = pipe;
8136         intel_crtc->cpu_transcoder = pipe;
8137         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8138                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8139                 intel_crtc->plane = !pipe;
8140         }
8141
8142         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8143                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8144         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8145         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8146
8147         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8148
8149         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8150 }
8151
8152 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8153                                 struct drm_file *file)
8154 {
8155         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8156         struct drm_mode_object *drmmode_obj;
8157         struct intel_crtc *crtc;
8158
8159         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8160                 return -ENODEV;
8161
8162         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8163                         DRM_MODE_OBJECT_CRTC);
8164
8165         if (!drmmode_obj) {
8166                 DRM_ERROR("no such CRTC id\n");
8167                 return -EINVAL;
8168         }
8169
8170         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8171         pipe_from_crtc_id->pipe = crtc->pipe;
8172
8173         return 0;
8174 }
8175
8176 static int intel_encoder_clones(struct intel_encoder *encoder)
8177 {
8178         struct drm_device *dev = encoder->base.dev;
8179         struct intel_encoder *source_encoder;
8180         int index_mask = 0;
8181         int entry = 0;
8182
8183         list_for_each_entry(source_encoder,
8184                             &dev->mode_config.encoder_list, base.head) {
8185
8186                 if (encoder == source_encoder)
8187                         index_mask |= (1 << entry);
8188
8189                 /* Intel hw has only one MUX where enocoders could be cloned. */
8190                 if (encoder->cloneable && source_encoder->cloneable)
8191                         index_mask |= (1 << entry);
8192
8193                 entry++;
8194         }
8195
8196         return index_mask;
8197 }
8198
8199 static bool has_edp_a(struct drm_device *dev)
8200 {
8201         struct drm_i915_private *dev_priv = dev->dev_private;
8202
8203         if (!IS_MOBILE(dev))
8204                 return false;
8205
8206         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8207                 return false;
8208
8209         if (IS_GEN5(dev) &&
8210             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8211                 return false;
8212
8213         return true;
8214 }
8215
8216 static void intel_setup_outputs(struct drm_device *dev)
8217 {
8218         struct drm_i915_private *dev_priv = dev->dev_private;
8219         struct intel_encoder *encoder;
8220         bool dpd_is_edp = false;
8221         bool has_lvds;
8222
8223         has_lvds = intel_lvds_init(dev);
8224         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8225                 /* disable the panel fitter on everything but LVDS */
8226                 I915_WRITE(PFIT_CONTROL, 0);
8227         }
8228
8229         if (HAS_PCH_SPLIT(dev)) {
8230                 dpd_is_edp = intel_dpd_is_edp(dev);
8231
8232                 if (has_edp_a(dev))
8233                         intel_dp_init(dev, DP_A, PORT_A);
8234
8235                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8236                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8237         }
8238
8239         intel_crt_init(dev);
8240
8241         if (IS_HASWELL(dev)) {
8242                 int found;
8243
8244                 /* Haswell uses DDI functions to detect digital outputs */
8245                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8246                 /* DDI A only supports eDP */
8247                 if (found)
8248                         intel_ddi_init(dev, PORT_A);
8249
8250                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8251                  * register */
8252                 found = I915_READ(SFUSE_STRAP);
8253
8254                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8255                         intel_ddi_init(dev, PORT_B);
8256                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8257                         intel_ddi_init(dev, PORT_C);
8258                 if (found & SFUSE_STRAP_DDID_DETECTED)
8259                         intel_ddi_init(dev, PORT_D);
8260         } else if (HAS_PCH_SPLIT(dev)) {
8261                 int found;
8262
8263                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8264                         /* PCH SDVOB multiplex with HDMIB */
8265                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8266                         if (!found)
8267                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8268                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8269                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8270                 }
8271
8272                 if (I915_READ(HDMIC) & PORT_DETECTED)
8273                         intel_hdmi_init(dev, HDMIC, PORT_C);
8274
8275                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8276                         intel_hdmi_init(dev, HDMID, PORT_D);
8277
8278                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8279                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8280
8281                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8282                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8283         } else if (IS_VALLEYVIEW(dev)) {
8284                 int found;
8285
8286                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8287                 if (I915_READ(DP_C) & DP_DETECTED)
8288                         intel_dp_init(dev, DP_C, PORT_C);
8289
8290                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8291                         /* SDVOB multiplex with HDMIB */
8292                         found = intel_sdvo_init(dev, SDVOB, true);
8293                         if (!found)
8294                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8295                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8296                                 intel_dp_init(dev, DP_B, PORT_B);
8297                 }
8298
8299                 if (I915_READ(SDVOC) & PORT_DETECTED)
8300                         intel_hdmi_init(dev, SDVOC, PORT_C);
8301
8302         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8303                 bool found = false;
8304
8305                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8306                         DRM_DEBUG_KMS("probing SDVOB\n");
8307                         found = intel_sdvo_init(dev, SDVOB, true);
8308                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8309                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8310                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8311                         }
8312
8313                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8314                                 DRM_DEBUG_KMS("probing DP_B\n");
8315                                 intel_dp_init(dev, DP_B, PORT_B);
8316                         }
8317                 }
8318
8319                 /* Before G4X SDVOC doesn't have its own detect register */
8320
8321                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8322                         DRM_DEBUG_KMS("probing SDVOC\n");
8323                         found = intel_sdvo_init(dev, SDVOC, false);
8324                 }
8325
8326                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8327
8328                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8329                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8330                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8331                         }
8332                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8333                                 DRM_DEBUG_KMS("probing DP_C\n");
8334                                 intel_dp_init(dev, DP_C, PORT_C);
8335                         }
8336                 }
8337
8338                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8339                     (I915_READ(DP_D) & DP_DETECTED)) {
8340                         DRM_DEBUG_KMS("probing DP_D\n");
8341                         intel_dp_init(dev, DP_D, PORT_D);
8342                 }
8343         } else if (IS_GEN2(dev))
8344                 intel_dvo_init(dev);
8345
8346         if (SUPPORTS_TV(dev))
8347                 intel_tv_init(dev);
8348
8349         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8350                 encoder->base.possible_crtcs = encoder->crtc_mask;
8351                 encoder->base.possible_clones =
8352                         intel_encoder_clones(encoder);
8353         }
8354
8355         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8356                 ironlake_init_pch_refclk(dev);
8357 }
8358
8359 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8360 {
8361         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8362
8363         drm_framebuffer_cleanup(fb);
8364         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8365
8366         kfree(intel_fb);
8367 }
8368
8369 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8370                                                 struct drm_file *file,
8371                                                 unsigned int *handle)
8372 {
8373         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8374         struct drm_i915_gem_object *obj = intel_fb->obj;
8375
8376         return drm_gem_handle_create(file, &obj->base, handle);
8377 }
8378
8379 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8380         .destroy = intel_user_framebuffer_destroy,
8381         .create_handle = intel_user_framebuffer_create_handle,
8382 };
8383
8384 int intel_framebuffer_init(struct drm_device *dev,
8385                            struct intel_framebuffer *intel_fb,
8386                            struct drm_mode_fb_cmd2 *mode_cmd,
8387                            struct drm_i915_gem_object *obj)
8388 {
8389         int ret;
8390
8391         if (obj->tiling_mode == I915_TILING_Y)
8392                 return -EINVAL;
8393
8394         if (mode_cmd->pitches[0] & 63)
8395                 return -EINVAL;
8396
8397         /* FIXME <= Gen4 stride limits are bit unclear */
8398         if (mode_cmd->pitches[0] > 32768)
8399                 return -EINVAL;
8400
8401         if (obj->tiling_mode != I915_TILING_NONE &&
8402             mode_cmd->pitches[0] != obj->stride)
8403                 return -EINVAL;
8404
8405         /* Reject formats not supported by any plane early. */
8406         switch (mode_cmd->pixel_format) {
8407         case DRM_FORMAT_C8:
8408         case DRM_FORMAT_RGB565:
8409         case DRM_FORMAT_XRGB8888:
8410         case DRM_FORMAT_ARGB8888:
8411                 break;
8412         case DRM_FORMAT_XRGB1555:
8413         case DRM_FORMAT_ARGB1555:
8414                 if (INTEL_INFO(dev)->gen > 3)
8415                         return -EINVAL;
8416                 break;
8417         case DRM_FORMAT_XBGR8888:
8418         case DRM_FORMAT_ABGR8888:
8419         case DRM_FORMAT_XRGB2101010:
8420         case DRM_FORMAT_ARGB2101010:
8421         case DRM_FORMAT_XBGR2101010:
8422         case DRM_FORMAT_ABGR2101010:
8423                 if (INTEL_INFO(dev)->gen < 4)
8424                         return -EINVAL;
8425                 break;
8426         case DRM_FORMAT_YUYV:
8427         case DRM_FORMAT_UYVY:
8428         case DRM_FORMAT_YVYU:
8429         case DRM_FORMAT_VYUY:
8430                 if (INTEL_INFO(dev)->gen < 6)
8431                         return -EINVAL;
8432                 break;
8433         default:
8434                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8435                 return -EINVAL;
8436         }
8437
8438         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8439         if (mode_cmd->offsets[0] != 0)
8440                 return -EINVAL;
8441
8442         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8443         if (ret) {
8444                 DRM_ERROR("framebuffer init failed %d\n", ret);
8445                 return ret;
8446         }
8447
8448         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8449         intel_fb->obj = obj;
8450         return 0;
8451 }
8452
8453 static struct drm_framebuffer *
8454 intel_user_framebuffer_create(struct drm_device *dev,
8455                               struct drm_file *filp,
8456                               struct drm_mode_fb_cmd2 *mode_cmd)
8457 {
8458         struct drm_i915_gem_object *obj;
8459
8460         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8461                                                 mode_cmd->handles[0]));
8462         if (&obj->base == NULL)
8463                 return ERR_PTR(-ENOENT);
8464
8465         return intel_framebuffer_create(dev, mode_cmd, obj);
8466 }
8467
8468 static const struct drm_mode_config_funcs intel_mode_funcs = {
8469         .fb_create = intel_user_framebuffer_create,
8470         .output_poll_changed = intel_fb_output_poll_changed,
8471 };
8472
8473 /* Set up chip specific display functions */
8474 static void intel_init_display(struct drm_device *dev)
8475 {
8476         struct drm_i915_private *dev_priv = dev->dev_private;
8477
8478         /* We always want a DPMS function */
8479         if (IS_HASWELL(dev)) {
8480                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8481                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8482                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8483                 dev_priv->display.off = haswell_crtc_off;
8484                 dev_priv->display.update_plane = ironlake_update_plane;
8485         } else if (HAS_PCH_SPLIT(dev)) {
8486                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8487                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8488                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8489                 dev_priv->display.off = ironlake_crtc_off;
8490                 dev_priv->display.update_plane = ironlake_update_plane;
8491         } else {
8492                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8493                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8494                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8495                 dev_priv->display.off = i9xx_crtc_off;
8496                 dev_priv->display.update_plane = i9xx_update_plane;
8497         }
8498
8499         /* Returns the core display clock speed */
8500         if (IS_VALLEYVIEW(dev))
8501                 dev_priv->display.get_display_clock_speed =
8502                         valleyview_get_display_clock_speed;
8503         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8504                 dev_priv->display.get_display_clock_speed =
8505                         i945_get_display_clock_speed;
8506         else if (IS_I915G(dev))
8507                 dev_priv->display.get_display_clock_speed =
8508                         i915_get_display_clock_speed;
8509         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8510                 dev_priv->display.get_display_clock_speed =
8511                         i9xx_misc_get_display_clock_speed;
8512         else if (IS_I915GM(dev))
8513                 dev_priv->display.get_display_clock_speed =
8514                         i915gm_get_display_clock_speed;
8515         else if (IS_I865G(dev))
8516                 dev_priv->display.get_display_clock_speed =
8517                         i865_get_display_clock_speed;
8518         else if (IS_I85X(dev))
8519                 dev_priv->display.get_display_clock_speed =
8520                         i855_get_display_clock_speed;
8521         else /* 852, 830 */
8522                 dev_priv->display.get_display_clock_speed =
8523                         i830_get_display_clock_speed;
8524
8525         if (HAS_PCH_SPLIT(dev)) {
8526                 if (IS_GEN5(dev)) {
8527                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8528                         dev_priv->display.write_eld = ironlake_write_eld;
8529                 } else if (IS_GEN6(dev)) {
8530                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8531                         dev_priv->display.write_eld = ironlake_write_eld;
8532                 } else if (IS_IVYBRIDGE(dev)) {
8533                         /* FIXME: detect B0+ stepping and use auto training */
8534                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8535                         dev_priv->display.write_eld = ironlake_write_eld;
8536                         dev_priv->display.modeset_global_resources =
8537                                 ivb_modeset_global_resources;
8538                 } else if (IS_HASWELL(dev)) {
8539                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8540                         dev_priv->display.write_eld = haswell_write_eld;
8541                 } else
8542                         dev_priv->display.update_wm = NULL;
8543         } else if (IS_G4X(dev)) {
8544                 dev_priv->display.write_eld = g4x_write_eld;
8545         }
8546
8547         /* Default just returns -ENODEV to indicate unsupported */
8548         dev_priv->display.queue_flip = intel_default_queue_flip;
8549
8550         switch (INTEL_INFO(dev)->gen) {
8551         case 2:
8552                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8553                 break;
8554
8555         case 3:
8556                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8557                 break;
8558
8559         case 4:
8560         case 5:
8561                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8562                 break;
8563
8564         case 6:
8565                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8566                 break;
8567         case 7:
8568                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8569                 break;
8570         }
8571 }
8572
8573 /*
8574  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8575  * resume, or other times.  This quirk makes sure that's the case for
8576  * affected systems.
8577  */
8578 static void quirk_pipea_force(struct drm_device *dev)
8579 {
8580         struct drm_i915_private *dev_priv = dev->dev_private;
8581
8582         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8583         DRM_INFO("applying pipe a force quirk\n");
8584 }
8585
8586 /*
8587  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8588  */
8589 static void quirk_ssc_force_disable(struct drm_device *dev)
8590 {
8591         struct drm_i915_private *dev_priv = dev->dev_private;
8592         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8593         DRM_INFO("applying lvds SSC disable quirk\n");
8594 }
8595
8596 /*
8597  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8598  * brightness value
8599  */
8600 static void quirk_invert_brightness(struct drm_device *dev)
8601 {
8602         struct drm_i915_private *dev_priv = dev->dev_private;
8603         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8604         DRM_INFO("applying inverted panel brightness quirk\n");
8605 }
8606
8607 struct intel_quirk {
8608         int device;
8609         int subsystem_vendor;
8610         int subsystem_device;
8611         void (*hook)(struct drm_device *dev);
8612 };
8613
8614 static struct intel_quirk intel_quirks[] = {
8615         /* HP Mini needs pipe A force quirk (LP: #322104) */
8616         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8617
8618         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8619         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8620
8621         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8622         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8623
8624         /* 830/845 need to leave pipe A & dpll A up */
8625         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8626         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8627
8628         /* Lenovo U160 cannot use SSC on LVDS */
8629         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8630
8631         /* Sony Vaio Y cannot use SSC on LVDS */
8632         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8633
8634         /* Acer Aspire 5734Z must invert backlight brightness */
8635         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8636 };
8637
8638 static void intel_init_quirks(struct drm_device *dev)
8639 {
8640         struct pci_dev *d = dev->pdev;
8641         int i;
8642
8643         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8644                 struct intel_quirk *q = &intel_quirks[i];
8645
8646                 if (d->device == q->device &&
8647                     (d->subsystem_vendor == q->subsystem_vendor ||
8648                      q->subsystem_vendor == PCI_ANY_ID) &&
8649                     (d->subsystem_device == q->subsystem_device ||
8650                      q->subsystem_device == PCI_ANY_ID))
8651                         q->hook(dev);
8652         }
8653 }
8654
8655 /* Disable the VGA plane that we never use */
8656 static void i915_disable_vga(struct drm_device *dev)
8657 {
8658         struct drm_i915_private *dev_priv = dev->dev_private;
8659         u8 sr1;
8660         u32 vga_reg;
8661
8662         if (HAS_PCH_SPLIT(dev))
8663                 vga_reg = CPU_VGACNTRL;
8664         else
8665                 vga_reg = VGACNTRL;
8666
8667         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8668         outb(SR01, VGA_SR_INDEX);
8669         sr1 = inb(VGA_SR_DATA);
8670         outb(sr1 | 1<<5, VGA_SR_DATA);
8671         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8672         udelay(300);
8673
8674         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8675         POSTING_READ(vga_reg);
8676 }
8677
8678 void intel_modeset_init_hw(struct drm_device *dev)
8679 {
8680         /* We attempt to init the necessary power wells early in the initialization
8681          * time, so the subsystems that expect power to be enabled can work.
8682          */
8683         intel_init_power_wells(dev);
8684
8685         intel_prepare_ddi(dev);
8686
8687         intel_init_clock_gating(dev);
8688
8689         mutex_lock(&dev->struct_mutex);
8690         intel_enable_gt_powersave(dev);
8691         mutex_unlock(&dev->struct_mutex);
8692 }
8693
8694 void intel_modeset_init(struct drm_device *dev)
8695 {
8696         struct drm_i915_private *dev_priv = dev->dev_private;
8697         int i, ret;
8698
8699         drm_mode_config_init(dev);
8700
8701         dev->mode_config.min_width = 0;
8702         dev->mode_config.min_height = 0;
8703
8704         dev->mode_config.preferred_depth = 24;
8705         dev->mode_config.prefer_shadow = 1;
8706
8707         dev->mode_config.funcs = &intel_mode_funcs;
8708
8709         intel_init_quirks(dev);
8710
8711         intel_init_pm(dev);
8712
8713         intel_init_display(dev);
8714
8715         if (IS_GEN2(dev)) {
8716                 dev->mode_config.max_width = 2048;
8717                 dev->mode_config.max_height = 2048;
8718         } else if (IS_GEN3(dev)) {
8719                 dev->mode_config.max_width = 4096;
8720                 dev->mode_config.max_height = 4096;
8721         } else {
8722                 dev->mode_config.max_width = 8192;
8723                 dev->mode_config.max_height = 8192;
8724         }
8725         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8726
8727         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8728                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8729
8730         for (i = 0; i < dev_priv->num_pipe; i++) {
8731                 intel_crtc_init(dev, i);
8732                 ret = intel_plane_init(dev, i);
8733                 if (ret)
8734                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8735         }
8736
8737         intel_cpu_pll_init(dev);
8738         intel_pch_pll_init(dev);
8739
8740         /* Just disable it once at startup */
8741         i915_disable_vga(dev);
8742         intel_setup_outputs(dev);
8743 }
8744
8745 static void
8746 intel_connector_break_all_links(struct intel_connector *connector)
8747 {
8748         connector->base.dpms = DRM_MODE_DPMS_OFF;
8749         connector->base.encoder = NULL;
8750         connector->encoder->connectors_active = false;
8751         connector->encoder->base.crtc = NULL;
8752 }
8753
8754 static void intel_enable_pipe_a(struct drm_device *dev)
8755 {
8756         struct intel_connector *connector;
8757         struct drm_connector *crt = NULL;
8758         struct intel_load_detect_pipe load_detect_temp;
8759
8760         /* We can't just switch on the pipe A, we need to set things up with a
8761          * proper mode and output configuration. As a gross hack, enable pipe A
8762          * by enabling the load detect pipe once. */
8763         list_for_each_entry(connector,
8764                             &dev->mode_config.connector_list,
8765                             base.head) {
8766                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8767                         crt = &connector->base;
8768                         break;
8769                 }
8770         }
8771
8772         if (!crt)
8773                 return;
8774
8775         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8776                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8777
8778
8779 }
8780
8781 static bool
8782 intel_check_plane_mapping(struct intel_crtc *crtc)
8783 {
8784         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8785         u32 reg, val;
8786
8787         if (dev_priv->num_pipe == 1)
8788                 return true;
8789
8790         reg = DSPCNTR(!crtc->plane);
8791         val = I915_READ(reg);
8792
8793         if ((val & DISPLAY_PLANE_ENABLE) &&
8794             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8795                 return false;
8796
8797         return true;
8798 }
8799
8800 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8801 {
8802         struct drm_device *dev = crtc->base.dev;
8803         struct drm_i915_private *dev_priv = dev->dev_private;
8804         u32 reg;
8805
8806         /* Clear any frame start delays used for debugging left by the BIOS */
8807         reg = PIPECONF(crtc->cpu_transcoder);
8808         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8809
8810         /* We need to sanitize the plane -> pipe mapping first because this will
8811          * disable the crtc (and hence change the state) if it is wrong. Note
8812          * that gen4+ has a fixed plane -> pipe mapping.  */
8813         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8814                 struct intel_connector *connector;
8815                 bool plane;
8816
8817                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8818                               crtc->base.base.id);
8819
8820                 /* Pipe has the wrong plane attached and the plane is active.
8821                  * Temporarily change the plane mapping and disable everything
8822                  * ...  */
8823                 plane = crtc->plane;
8824                 crtc->plane = !plane;
8825                 dev_priv->display.crtc_disable(&crtc->base);
8826                 crtc->plane = plane;
8827
8828                 /* ... and break all links. */
8829                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8830                                     base.head) {
8831                         if (connector->encoder->base.crtc != &crtc->base)
8832                                 continue;
8833
8834                         intel_connector_break_all_links(connector);
8835                 }
8836
8837                 WARN_ON(crtc->active);
8838                 crtc->base.enabled = false;
8839         }
8840
8841         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8842             crtc->pipe == PIPE_A && !crtc->active) {
8843                 /* BIOS forgot to enable pipe A, this mostly happens after
8844                  * resume. Force-enable the pipe to fix this, the update_dpms
8845                  * call below we restore the pipe to the right state, but leave
8846                  * the required bits on. */
8847                 intel_enable_pipe_a(dev);
8848         }
8849
8850         /* Adjust the state of the output pipe according to whether we
8851          * have active connectors/encoders. */
8852         intel_crtc_update_dpms(&crtc->base);
8853
8854         if (crtc->active != crtc->base.enabled) {
8855                 struct intel_encoder *encoder;
8856
8857                 /* This can happen either due to bugs in the get_hw_state
8858                  * functions or because the pipe is force-enabled due to the
8859                  * pipe A quirk. */
8860                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8861                               crtc->base.base.id,
8862                               crtc->base.enabled ? "enabled" : "disabled",
8863                               crtc->active ? "enabled" : "disabled");
8864
8865                 crtc->base.enabled = crtc->active;
8866
8867                 /* Because we only establish the connector -> encoder ->
8868                  * crtc links if something is active, this means the
8869                  * crtc is now deactivated. Break the links. connector
8870                  * -> encoder links are only establish when things are
8871                  *  actually up, hence no need to break them. */
8872                 WARN_ON(crtc->active);
8873
8874                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8875                         WARN_ON(encoder->connectors_active);
8876                         encoder->base.crtc = NULL;
8877                 }
8878         }
8879 }
8880
8881 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8882 {
8883         struct intel_connector *connector;
8884         struct drm_device *dev = encoder->base.dev;
8885
8886         /* We need to check both for a crtc link (meaning that the
8887          * encoder is active and trying to read from a pipe) and the
8888          * pipe itself being active. */
8889         bool has_active_crtc = encoder->base.crtc &&
8890                 to_intel_crtc(encoder->base.crtc)->active;
8891
8892         if (encoder->connectors_active && !has_active_crtc) {
8893                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8894                               encoder->base.base.id,
8895                               drm_get_encoder_name(&encoder->base));
8896
8897                 /* Connector is active, but has no active pipe. This is
8898                  * fallout from our resume register restoring. Disable
8899                  * the encoder manually again. */
8900                 if (encoder->base.crtc) {
8901                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8902                                       encoder->base.base.id,
8903                                       drm_get_encoder_name(&encoder->base));
8904                         encoder->disable(encoder);
8905                 }
8906
8907                 /* Inconsistent output/port/pipe state happens presumably due to
8908                  * a bug in one of the get_hw_state functions. Or someplace else
8909                  * in our code, like the register restore mess on resume. Clamp
8910                  * things to off as a safer default. */
8911                 list_for_each_entry(connector,
8912                                     &dev->mode_config.connector_list,
8913                                     base.head) {
8914                         if (connector->encoder != encoder)
8915                                 continue;
8916
8917                         intel_connector_break_all_links(connector);
8918                 }
8919         }
8920         /* Enabled encoders without active connectors will be fixed in
8921          * the crtc fixup. */
8922 }
8923
8924 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8925  * and i915 state tracking structures. */
8926 void intel_modeset_setup_hw_state(struct drm_device *dev)
8927 {
8928         struct drm_i915_private *dev_priv = dev->dev_private;
8929         enum pipe pipe;
8930         u32 tmp;
8931         struct intel_crtc *crtc;
8932         struct intel_encoder *encoder;
8933         struct intel_connector *connector;
8934
8935         if (IS_HASWELL(dev)) {
8936                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8937
8938                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8939                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8940                         case TRANS_DDI_EDP_INPUT_A_ON:
8941                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8942                                 pipe = PIPE_A;
8943                                 break;
8944                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8945                                 pipe = PIPE_B;
8946                                 break;
8947                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8948                                 pipe = PIPE_C;
8949                                 break;
8950                         }
8951
8952                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8953                         crtc->cpu_transcoder = TRANSCODER_EDP;
8954
8955                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8956                                       pipe_name(pipe));
8957                 }
8958         }
8959
8960         for_each_pipe(pipe) {
8961                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8962
8963                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8964                 if (tmp & PIPECONF_ENABLE)
8965                         crtc->active = true;
8966                 else
8967                         crtc->active = false;
8968
8969                 crtc->base.enabled = crtc->active;
8970
8971                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8972                               crtc->base.base.id,
8973                               crtc->active ? "enabled" : "disabled");
8974         }
8975
8976         if (IS_HASWELL(dev))
8977                 intel_ddi_setup_hw_pll_state(dev);
8978
8979         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8980                             base.head) {
8981                 pipe = 0;
8982
8983                 if (encoder->get_hw_state(encoder, &pipe)) {
8984                         encoder->base.crtc =
8985                                 dev_priv->pipe_to_crtc_mapping[pipe];
8986                 } else {
8987                         encoder->base.crtc = NULL;
8988                 }
8989
8990                 encoder->connectors_active = false;
8991                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8992                               encoder->base.base.id,
8993                               drm_get_encoder_name(&encoder->base),
8994                               encoder->base.crtc ? "enabled" : "disabled",
8995                               pipe);
8996         }
8997
8998         list_for_each_entry(connector, &dev->mode_config.connector_list,
8999                             base.head) {
9000                 if (connector->get_hw_state(connector)) {
9001                         connector->base.dpms = DRM_MODE_DPMS_ON;
9002                         connector->encoder->connectors_active = true;
9003                         connector->base.encoder = &connector->encoder->base;
9004                 } else {
9005                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9006                         connector->base.encoder = NULL;
9007                 }
9008                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9009                               connector->base.base.id,
9010                               drm_get_connector_name(&connector->base),
9011                               connector->base.encoder ? "enabled" : "disabled");
9012         }
9013
9014         /* HW state is read out, now we need to sanitize this mess. */
9015         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9016                             base.head) {
9017                 intel_sanitize_encoder(encoder);
9018         }
9019
9020         for_each_pipe(pipe) {
9021                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9022                 intel_sanitize_crtc(crtc);
9023         }
9024
9025         intel_modeset_update_staged_output_state(dev);
9026
9027         intel_modeset_check_state(dev);
9028
9029         drm_mode_config_reset(dev);
9030 }
9031
9032 void intel_modeset_gem_init(struct drm_device *dev)
9033 {
9034         intel_modeset_init_hw(dev);
9035
9036         intel_setup_overlay(dev);
9037
9038         intel_modeset_setup_hw_state(dev);
9039 }
9040
9041 void intel_modeset_cleanup(struct drm_device *dev)
9042 {
9043         struct drm_i915_private *dev_priv = dev->dev_private;
9044         struct drm_crtc *crtc;
9045         struct intel_crtc *intel_crtc;
9046
9047         drm_kms_helper_poll_fini(dev);
9048         mutex_lock(&dev->struct_mutex);
9049
9050         intel_unregister_dsm_handler();
9051
9052
9053         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9054                 /* Skip inactive CRTCs */
9055                 if (!crtc->fb)
9056                         continue;
9057
9058                 intel_crtc = to_intel_crtc(crtc);
9059                 intel_increase_pllclock(crtc);
9060         }
9061
9062         intel_disable_fbc(dev);
9063
9064         intel_disable_gt_powersave(dev);
9065
9066         ironlake_teardown_rc6(dev);
9067
9068         if (IS_VALLEYVIEW(dev))
9069                 vlv_init_dpio(dev);
9070
9071         mutex_unlock(&dev->struct_mutex);
9072
9073         /* Disable the irq before mode object teardown, for the irq might
9074          * enqueue unpin/hotplug work. */
9075         drm_irq_uninstall(dev);
9076         cancel_work_sync(&dev_priv->hotplug_work);
9077         cancel_work_sync(&dev_priv->rps.work);
9078
9079         /* flush any delayed tasks or pending work */
9080         flush_scheduled_work();
9081
9082         drm_mode_config_cleanup(dev);
9083 }
9084
9085 /*
9086  * Return which encoder is currently attached for connector.
9087  */
9088 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9089 {
9090         return &intel_attached_encoder(connector)->base;
9091 }
9092
9093 void intel_connector_attach_encoder(struct intel_connector *connector,
9094                                     struct intel_encoder *encoder)
9095 {
9096         connector->encoder = encoder;
9097         drm_mode_connector_attach_encoder(&connector->base,
9098                                           &encoder->base);
9099 }
9100
9101 /*
9102  * set vga decode state - true == enable VGA decode
9103  */
9104 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9105 {
9106         struct drm_i915_private *dev_priv = dev->dev_private;
9107         u16 gmch_ctrl;
9108
9109         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9110         if (state)
9111                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9112         else
9113                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9114         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9115         return 0;
9116 }
9117
9118 #ifdef CONFIG_DEBUG_FS
9119 #include <linux/seq_file.h>
9120
9121 struct intel_display_error_state {
9122         struct intel_cursor_error_state {
9123                 u32 control;
9124                 u32 position;
9125                 u32 base;
9126                 u32 size;
9127         } cursor[I915_MAX_PIPES];
9128
9129         struct intel_pipe_error_state {
9130                 u32 conf;
9131                 u32 source;
9132
9133                 u32 htotal;
9134                 u32 hblank;
9135                 u32 hsync;
9136                 u32 vtotal;
9137                 u32 vblank;
9138                 u32 vsync;
9139         } pipe[I915_MAX_PIPES];
9140
9141         struct intel_plane_error_state {
9142                 u32 control;
9143                 u32 stride;
9144                 u32 size;
9145                 u32 pos;
9146                 u32 addr;
9147                 u32 surface;
9148                 u32 tile_offset;
9149         } plane[I915_MAX_PIPES];
9150 };
9151
9152 struct intel_display_error_state *
9153 intel_display_capture_error_state(struct drm_device *dev)
9154 {
9155         drm_i915_private_t *dev_priv = dev->dev_private;
9156         struct intel_display_error_state *error;
9157         enum transcoder cpu_transcoder;
9158         int i;
9159
9160         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9161         if (error == NULL)
9162                 return NULL;
9163
9164         for_each_pipe(i) {
9165                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9166
9167                 error->cursor[i].control = I915_READ(CURCNTR(i));
9168                 error->cursor[i].position = I915_READ(CURPOS(i));
9169                 error->cursor[i].base = I915_READ(CURBASE(i));
9170
9171                 error->plane[i].control = I915_READ(DSPCNTR(i));
9172                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9173                 error->plane[i].size = I915_READ(DSPSIZE(i));
9174                 error->plane[i].pos = I915_READ(DSPPOS(i));
9175                 error->plane[i].addr = I915_READ(DSPADDR(i));
9176                 if (INTEL_INFO(dev)->gen >= 4) {
9177                         error->plane[i].surface = I915_READ(DSPSURF(i));
9178                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9179                 }
9180
9181                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9182                 error->pipe[i].source = I915_READ(PIPESRC(i));
9183                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9184                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9185                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9186                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9187                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9188                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9189         }
9190
9191         return error;
9192 }
9193
9194 void
9195 intel_display_print_error_state(struct seq_file *m,
9196                                 struct drm_device *dev,
9197                                 struct intel_display_error_state *error)
9198 {
9199         drm_i915_private_t *dev_priv = dev->dev_private;
9200         int i;
9201
9202         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9203         for_each_pipe(i) {
9204                 seq_printf(m, "Pipe [%d]:\n", i);
9205                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9206                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9207                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9208                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9209                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9210                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9211                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9212                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9213
9214                 seq_printf(m, "Plane [%d]:\n", i);
9215                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9216                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9217                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9218                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9219                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9220                 if (INTEL_INFO(dev)->gen >= 4) {
9221                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9222                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9223                 }
9224
9225                 seq_printf(m, "Cursor [%d]:\n", i);
9226                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9227                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9228                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9229         }
9230 }
9231 #endif