]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Flush outstanding unpin tasks before pageflipping
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                         int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84         struct drm_i915_private *dev_priv = dev->dev_private;
85
86         WARN_ON(!HAS_PCH_SPLIT(dev));
87
88         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93                     int target, int refclk, intel_clock_t *match_clock,
94                     intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                         int target, int refclk, intel_clock_t *match_clock,
98                         intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102                       int target, int refclk, intel_clock_t *match_clock,
103                       intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106                            int target, int refclk, intel_clock_t *match_clock,
107                            intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111                         int target, int refclk, intel_clock_t *match_clock,
112                         intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117         if (IS_GEN5(dev)) {
118                 struct drm_i915_private *dev_priv = dev->dev_private;
119                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120         } else
121                 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125         .dot = { .min = 25000, .max = 350000 },
126         .vco = { .min = 930000, .max = 1400000 },
127         .n = { .min = 3, .max = 16 },
128         .m = { .min = 96, .max = 140 },
129         .m1 = { .min = 18, .max = 26 },
130         .m2 = { .min = 6, .max = 16 },
131         .p = { .min = 4, .max = 128 },
132         .p1 = { .min = 2, .max = 33 },
133         .p2 = { .dot_limit = 165000,
134                 .p2_slow = 4, .p2_fast = 2 },
135         .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139         .dot = { .min = 25000, .max = 350000 },
140         .vco = { .min = 930000, .max = 1400000 },
141         .n = { .min = 3, .max = 16 },
142         .m = { .min = 96, .max = 140 },
143         .m1 = { .min = 18, .max = 26 },
144         .m2 = { .min = 6, .max = 16 },
145         .p = { .min = 4, .max = 128 },
146         .p1 = { .min = 1, .max = 6 },
147         .p2 = { .dot_limit = 165000,
148                 .p2_slow = 14, .p2_fast = 7 },
149         .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153         .dot = { .min = 20000, .max = 400000 },
154         .vco = { .min = 1400000, .max = 2800000 },
155         .n = { .min = 1, .max = 6 },
156         .m = { .min = 70, .max = 120 },
157         .m1 = { .min = 10, .max = 22 },
158         .m2 = { .min = 5, .max = 9 },
159         .p = { .min = 5, .max = 80 },
160         .p1 = { .min = 1, .max = 8 },
161         .p2 = { .dot_limit = 200000,
162                 .p2_slow = 10, .p2_fast = 5 },
163         .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167         .dot = { .min = 20000, .max = 400000 },
168         .vco = { .min = 1400000, .max = 2800000 },
169         .n = { .min = 1, .max = 6 },
170         .m = { .min = 70, .max = 120 },
171         .m1 = { .min = 10, .max = 22 },
172         .m2 = { .min = 5, .max = 9 },
173         .p = { .min = 7, .max = 98 },
174         .p1 = { .min = 1, .max = 8 },
175         .p2 = { .dot_limit = 112000,
176                 .p2_slow = 14, .p2_fast = 7 },
177         .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182         .dot = { .min = 25000, .max = 270000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 17, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 10, .max = 30 },
189         .p1 = { .min = 1, .max = 3},
190         .p2 = { .dot_limit = 270000,
191                 .p2_slow = 10,
192                 .p2_fast = 10
193         },
194         .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198         .dot = { .min = 22000, .max = 400000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 16, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 5, .max = 80 },
205         .p1 = { .min = 1, .max = 8},
206         .p2 = { .dot_limit = 165000,
207                 .p2_slow = 10, .p2_fast = 5 },
208         .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212         .dot = { .min = 20000, .max = 115000 },
213         .vco = { .min = 1750000, .max = 3500000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 28, .max = 112 },
219         .p1 = { .min = 2, .max = 8 },
220         .p2 = { .dot_limit = 0,
221                 .p2_slow = 14, .p2_fast = 14
222         },
223         .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227         .dot = { .min = 80000, .max = 224000 },
228         .vco = { .min = 1750000, .max = 3500000 },
229         .n = { .min = 1, .max = 3 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 17, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 14, .max = 42 },
234         .p1 = { .min = 2, .max = 6 },
235         .p2 = { .dot_limit = 0,
236                 .p2_slow = 7, .p2_fast = 7
237         },
238         .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242         .dot = { .min = 161670, .max = 227000 },
243         .vco = { .min = 1750000, .max = 3500000},
244         .n = { .min = 1, .max = 2 },
245         .m = { .min = 97, .max = 108 },
246         .m1 = { .min = 0x10, .max = 0x12 },
247         .m2 = { .min = 0x05, .max = 0x06 },
248         .p = { .min = 10, .max = 20 },
249         .p1 = { .min = 1, .max = 2},
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 10, .p2_fast = 10 },
252         .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256         .dot = { .min = 20000, .max = 400000},
257         .vco = { .min = 1700000, .max = 3500000 },
258         /* Pineview's Ncounter is a ring counter */
259         .n = { .min = 3, .max = 6 },
260         .m = { .min = 2, .max = 256 },
261         /* Pineview only has one combined m divider, which we treat as m2. */
262         .m1 = { .min = 0, .max = 0 },
263         .m2 = { .min = 0, .max = 254 },
264         .p = { .min = 5, .max = 80 },
265         .p1 = { .min = 1, .max = 8 },
266         .p2 = { .dot_limit = 200000,
267                 .p2_slow = 10, .p2_fast = 5 },
268         .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272         .dot = { .min = 20000, .max = 400000 },
273         .vco = { .min = 1700000, .max = 3500000 },
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 7, .max = 112 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 112000,
281                 .p2_slow = 14, .p2_fast = 14 },
282         .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286  *
287  * We calculate clock using (register_value + 2) for N/M1/M2, so here
288  * the range value for them is (actual_value - 2).
289  */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 5 },
294         .m = { .min = 79, .max = 127 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 5, .max = 80 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 10, .p2_fast = 5 },
301         .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305         .dot = { .min = 25000, .max = 350000 },
306         .vco = { .min = 1760000, .max = 3510000 },
307         .n = { .min = 1, .max = 3 },
308         .m = { .min = 79, .max = 118 },
309         .m1 = { .min = 12, .max = 22 },
310         .m2 = { .min = 5, .max = 9 },
311         .p = { .min = 28, .max = 112 },
312         .p1 = { .min = 2, .max = 8 },
313         .p2 = { .dot_limit = 225000,
314                 .p2_slow = 14, .p2_fast = 14 },
315         .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 3 },
322         .m = { .min = 79, .max = 127 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 14, .max = 56 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 7, .p2_fast = 7 },
329         .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334         .dot = { .min = 25000, .max = 350000 },
335         .vco = { .min = 1760000, .max = 3510000 },
336         .n = { .min = 1, .max = 2 },
337         .m = { .min = 79, .max = 126 },
338         .m1 = { .min = 12, .max = 22 },
339         .m2 = { .min = 5, .max = 9 },
340         .p = { .min = 28, .max = 112 },
341         .p1 = { .min = 2, .max = 8 },
342         .p2 = { .dot_limit = 225000,
343                 .p2_slow = 14, .p2_fast = 14 },
344         .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348         .dot = { .min = 25000, .max = 350000 },
349         .vco = { .min = 1760000, .max = 3510000 },
350         .n = { .min = 1, .max = 3 },
351         .m = { .min = 79, .max = 126 },
352         .m1 = { .min = 12, .max = 22 },
353         .m2 = { .min = 5, .max = 9 },
354         .p = { .min = 14, .max = 42 },
355         .p1 = { .min = 2, .max = 6 },
356         .p2 = { .dot_limit = 225000,
357                 .p2_slow = 7, .p2_fast = 7 },
358         .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362         .dot = { .min = 25000, .max = 350000 },
363         .vco = { .min = 1760000, .max = 3510000},
364         .n = { .min = 1, .max = 2 },
365         .m = { .min = 81, .max = 90 },
366         .m1 = { .min = 12, .max = 22 },
367         .m2 = { .min = 5, .max = 9 },
368         .p = { .min = 10, .max = 20 },
369         .p1 = { .min = 1, .max = 2},
370         .p2 = { .dot_limit = 0,
371                 .p2_slow = 10, .p2_fast = 10 },
372         .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376         .dot = { .min = 25000, .max = 270000 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m = { .min = 22, .max = 450 }, /* guess */
380         .m1 = { .min = 2, .max = 3 },
381         .m2 = { .min = 11, .max = 156 },
382         .p = { .min = 10, .max = 30 },
383         .p1 = { .min = 2, .max = 3 },
384         .p2 = { .dot_limit = 270000,
385                 .p2_slow = 2, .p2_fast = 20 },
386         .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390         .dot = { .min = 20000, .max = 165000 },
391         .vco = { .min = 4000000, .max = 5994000},
392         .n = { .min = 1, .max = 7 },
393         .m = { .min = 60, .max = 300 }, /* guess */
394         .m1 = { .min = 2, .max = 3 },
395         .m2 = { .min = 11, .max = 156 },
396         .p = { .min = 10, .max = 30 },
397         .p1 = { .min = 2, .max = 3 },
398         .p2 = { .dot_limit = 270000,
399                 .p2_slow = 2, .p2_fast = 20 },
400         .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404         .dot = { .min = 25000, .max = 270000 },
405         .vco = { .min = 4000000, .max = 6000000 },
406         .n = { .min = 1, .max = 7 },
407         .m = { .min = 22, .max = 450 },
408         .m1 = { .min = 2, .max = 3 },
409         .m2 = { .min = 11, .max = 156 },
410         .p = { .min = 10, .max = 30 },
411         .p1 = { .min = 2, .max = 3 },
412         .p2 = { .dot_limit = 270000,
413                 .p2_slow = 2, .p2_fast = 20 },
414         .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419         unsigned long flags;
420         u32 val = 0;
421
422         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO idle wait timed out\n");
425                 goto out_unlock;
426         }
427
428         I915_WRITE(DPIO_REG, reg);
429         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430                    DPIO_BYTE);
431         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432                 DRM_ERROR("DPIO read wait timed out\n");
433                 goto out_unlock;
434         }
435         val = I915_READ(DPIO_DATA);
436
437 out_unlock:
438         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439         return val;
440 }
441
442 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443                              u32 val)
444 {
445         unsigned long flags;
446
447         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449                 DRM_ERROR("DPIO idle wait timed out\n");
450                 goto out_unlock;
451         }
452
453         I915_WRITE(DPIO_DATA, val);
454         I915_WRITE(DPIO_REG, reg);
455         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456                    DPIO_BYTE);
457         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458                 DRM_ERROR("DPIO write wait timed out\n");
459
460 out_unlock:
461        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462 }
463
464 static void vlv_init_dpio(struct drm_device *dev)
465 {
466         struct drm_i915_private *dev_priv = dev->dev_private;
467
468         /* Reset the DPIO config */
469         I915_WRITE(DPIO_CTL, 0);
470         POSTING_READ(DPIO_CTL);
471         I915_WRITE(DPIO_CTL, 1);
472         POSTING_READ(DPIO_CTL);
473 }
474
475 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
476 {
477         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
478         return 1;
479 }
480
481 static const struct dmi_system_id intel_dual_link_lvds[] = {
482         {
483                 .callback = intel_dual_link_lvds_callback,
484                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
485                 .matches = {
486                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
487                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
488                 },
489         },
490         { }     /* terminating entry */
491 };
492
493 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
494                               unsigned int reg)
495 {
496         unsigned int val;
497
498         /* use the module option value if specified */
499         if (i915_lvds_channel_mode > 0)
500                 return i915_lvds_channel_mode == 2;
501
502         if (dmi_check_system(intel_dual_link_lvds))
503                 return true;
504
505         if (dev_priv->lvds_val)
506                 val = dev_priv->lvds_val;
507         else {
508                 /* BIOS should set the proper LVDS register value at boot, but
509                  * in reality, it doesn't set the value when the lid is closed;
510                  * we need to check "the value to be set" in VBT when LVDS
511                  * register is uninitialized.
512                  */
513                 val = I915_READ(reg);
514                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
515                         val = dev_priv->bios_lvds_val;
516                 dev_priv->lvds_val = val;
517         }
518         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
519 }
520
521 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
522                                                 int refclk)
523 {
524         struct drm_device *dev = crtc->dev;
525         struct drm_i915_private *dev_priv = dev->dev_private;
526         const intel_limit_t *limit;
527
528         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
529                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
530                         /* LVDS dual channel */
531                         if (refclk == 100000)
532                                 limit = &intel_limits_ironlake_dual_lvds_100m;
533                         else
534                                 limit = &intel_limits_ironlake_dual_lvds;
535                 } else {
536                         if (refclk == 100000)
537                                 limit = &intel_limits_ironlake_single_lvds_100m;
538                         else
539                                 limit = &intel_limits_ironlake_single_lvds;
540                 }
541         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
542                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
543                 limit = &intel_limits_ironlake_display_port;
544         else
545                 limit = &intel_limits_ironlake_dac;
546
547         return limit;
548 }
549
550 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
551 {
552         struct drm_device *dev = crtc->dev;
553         struct drm_i915_private *dev_priv = dev->dev_private;
554         const intel_limit_t *limit;
555
556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557                 if (is_dual_link_lvds(dev_priv, LVDS))
558                         /* LVDS with dual channel */
559                         limit = &intel_limits_g4x_dual_channel_lvds;
560                 else
561                         /* LVDS with dual channel */
562                         limit = &intel_limits_g4x_single_channel_lvds;
563         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
564                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
565                 limit = &intel_limits_g4x_hdmi;
566         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
567                 limit = &intel_limits_g4x_sdvo;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
569                 limit = &intel_limits_g4x_display_port;
570         } else /* The option is for other outputs */
571                 limit = &intel_limits_i9xx_sdvo;
572
573         return limit;
574 }
575
576 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
577 {
578         struct drm_device *dev = crtc->dev;
579         const intel_limit_t *limit;
580
581         if (HAS_PCH_SPLIT(dev))
582                 limit = intel_ironlake_limit(crtc, refclk);
583         else if (IS_G4X(dev)) {
584                 limit = intel_g4x_limit(crtc);
585         } else if (IS_PINEVIEW(dev)) {
586                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
587                         limit = &intel_limits_pineview_lvds;
588                 else
589                         limit = &intel_limits_pineview_sdvo;
590         } else if (IS_VALLEYVIEW(dev)) {
591                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
592                         limit = &intel_limits_vlv_dac;
593                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
594                         limit = &intel_limits_vlv_hdmi;
595                 else
596                         limit = &intel_limits_vlv_dp;
597         } else if (!IS_GEN2(dev)) {
598                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
599                         limit = &intel_limits_i9xx_lvds;
600                 else
601                         limit = &intel_limits_i9xx_sdvo;
602         } else {
603                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
604                         limit = &intel_limits_i8xx_lvds;
605                 else
606                         limit = &intel_limits_i8xx_dvo;
607         }
608         return limit;
609 }
610
611 /* m1 is reserved as 0 in Pineview, n is a ring counter */
612 static void pineview_clock(int refclk, intel_clock_t *clock)
613 {
614         clock->m = clock->m2 + 2;
615         clock->p = clock->p1 * clock->p2;
616         clock->vco = refclk * clock->m / clock->n;
617         clock->dot = clock->vco / clock->p;
618 }
619
620 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
621 {
622         if (IS_PINEVIEW(dev)) {
623                 pineview_clock(refclk, clock);
624                 return;
625         }
626         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
627         clock->p = clock->p1 * clock->p2;
628         clock->vco = refclk * clock->m / (clock->n + 2);
629         clock->dot = clock->vco / clock->p;
630 }
631
632 /**
633  * Returns whether any output on the specified pipe is of the specified type
634  */
635 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
636 {
637         struct drm_device *dev = crtc->dev;
638         struct intel_encoder *encoder;
639
640         for_each_encoder_on_crtc(dev, crtc, encoder)
641                 if (encoder->type == type)
642                         return true;
643
644         return false;
645 }
646
647 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
648 /**
649  * Returns whether the given set of divisors are valid for a given refclk with
650  * the given connectors.
651  */
652
653 static bool intel_PLL_is_valid(struct drm_device *dev,
654                                const intel_limit_t *limit,
655                                const intel_clock_t *clock)
656 {
657         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
658                 INTELPllInvalid("p1 out of range\n");
659         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
660                 INTELPllInvalid("p out of range\n");
661         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
662                 INTELPllInvalid("m2 out of range\n");
663         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
664                 INTELPllInvalid("m1 out of range\n");
665         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
666                 INTELPllInvalid("m1 <= m2\n");
667         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
668                 INTELPllInvalid("m out of range\n");
669         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
670                 INTELPllInvalid("n out of range\n");
671         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
672                 INTELPllInvalid("vco out of range\n");
673         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
674          * connector, etc., rather than just a single range.
675          */
676         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
677                 INTELPllInvalid("dot out of range\n");
678
679         return true;
680 }
681
682 static bool
683 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
684                     int target, int refclk, intel_clock_t *match_clock,
685                     intel_clock_t *best_clock)
686
687 {
688         struct drm_device *dev = crtc->dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         intel_clock_t clock;
691         int err = target;
692
693         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
694             (I915_READ(LVDS)) != 0) {
695                 /*
696                  * For LVDS, if the panel is on, just rely on its current
697                  * settings for dual-channel.  We haven't figured out how to
698                  * reliably set up different single/dual channel state, if we
699                  * even can.
700                  */
701                 if (is_dual_link_lvds(dev_priv, LVDS))
702                         clock.p2 = limit->p2.p2_fast;
703                 else
704                         clock.p2 = limit->p2.p2_slow;
705         } else {
706                 if (target < limit->p2.dot_limit)
707                         clock.p2 = limit->p2.p2_slow;
708                 else
709                         clock.p2 = limit->p2.p2_fast;
710         }
711
712         memset(best_clock, 0, sizeof(*best_clock));
713
714         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715              clock.m1++) {
716                 for (clock.m2 = limit->m2.min;
717                      clock.m2 <= limit->m2.max; clock.m2++) {
718                         /* m1 is always 0 in Pineview */
719                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
720                                 break;
721                         for (clock.n = limit->n.min;
722                              clock.n <= limit->n.max; clock.n++) {
723                                 for (clock.p1 = limit->p1.min;
724                                         clock.p1 <= limit->p1.max; clock.p1++) {
725                                         int this_err;
726
727                                         intel_clock(dev, refclk, &clock);
728                                         if (!intel_PLL_is_valid(dev, limit,
729                                                                 &clock))
730                                                 continue;
731                                         if (match_clock &&
732                                             clock.p != match_clock->p)
733                                                 continue;
734
735                                         this_err = abs(clock.dot - target);
736                                         if (this_err < err) {
737                                                 *best_clock = clock;
738                                                 err = this_err;
739                                         }
740                                 }
741                         }
742                 }
743         }
744
745         return (err != target);
746 }
747
748 static bool
749 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
750                         int target, int refclk, intel_clock_t *match_clock,
751                         intel_clock_t *best_clock)
752 {
753         struct drm_device *dev = crtc->dev;
754         struct drm_i915_private *dev_priv = dev->dev_private;
755         intel_clock_t clock;
756         int max_n;
757         bool found;
758         /* approximately equals target * 0.00585 */
759         int err_most = (target >> 8) + (target >> 9);
760         found = false;
761
762         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
763                 int lvds_reg;
764
765                 if (HAS_PCH_SPLIT(dev))
766                         lvds_reg = PCH_LVDS;
767                 else
768                         lvds_reg = LVDS;
769                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
770                     LVDS_CLKB_POWER_UP)
771                         clock.p2 = limit->p2.p2_fast;
772                 else
773                         clock.p2 = limit->p2.p2_slow;
774         } else {
775                 if (target < limit->p2.dot_limit)
776                         clock.p2 = limit->p2.p2_slow;
777                 else
778                         clock.p2 = limit->p2.p2_fast;
779         }
780
781         memset(best_clock, 0, sizeof(*best_clock));
782         max_n = limit->n.max;
783         /* based on hardware requirement, prefer smaller n to precision */
784         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
785                 /* based on hardware requirement, prefere larger m1,m2 */
786                 for (clock.m1 = limit->m1.max;
787                      clock.m1 >= limit->m1.min; clock.m1--) {
788                         for (clock.m2 = limit->m2.max;
789                              clock.m2 >= limit->m2.min; clock.m2--) {
790                                 for (clock.p1 = limit->p1.max;
791                                      clock.p1 >= limit->p1.min; clock.p1--) {
792                                         int this_err;
793
794                                         intel_clock(dev, refclk, &clock);
795                                         if (!intel_PLL_is_valid(dev, limit,
796                                                                 &clock))
797                                                 continue;
798                                         if (match_clock &&
799                                             clock.p != match_clock->p)
800                                                 continue;
801
802                                         this_err = abs(clock.dot - target);
803                                         if (this_err < err_most) {
804                                                 *best_clock = clock;
805                                                 err_most = this_err;
806                                                 max_n = clock.n;
807                                                 found = true;
808                                         }
809                                 }
810                         }
811                 }
812         }
813         return found;
814 }
815
816 static bool
817 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
818                            int target, int refclk, intel_clock_t *match_clock,
819                            intel_clock_t *best_clock)
820 {
821         struct drm_device *dev = crtc->dev;
822         intel_clock_t clock;
823
824         if (target < 200000) {
825                 clock.n = 1;
826                 clock.p1 = 2;
827                 clock.p2 = 10;
828                 clock.m1 = 12;
829                 clock.m2 = 9;
830         } else {
831                 clock.n = 2;
832                 clock.p1 = 1;
833                 clock.p2 = 10;
834                 clock.m1 = 14;
835                 clock.m2 = 8;
836         }
837         intel_clock(dev, refclk, &clock);
838         memcpy(best_clock, &clock, sizeof(intel_clock_t));
839         return true;
840 }
841
842 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
843 static bool
844 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
845                       int target, int refclk, intel_clock_t *match_clock,
846                       intel_clock_t *best_clock)
847 {
848         intel_clock_t clock;
849         if (target < 200000) {
850                 clock.p1 = 2;
851                 clock.p2 = 10;
852                 clock.n = 2;
853                 clock.m1 = 23;
854                 clock.m2 = 8;
855         } else {
856                 clock.p1 = 1;
857                 clock.p2 = 10;
858                 clock.n = 1;
859                 clock.m1 = 14;
860                 clock.m2 = 2;
861         }
862         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
863         clock.p = (clock.p1 * clock.p2);
864         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
865         clock.vco = 0;
866         memcpy(best_clock, &clock, sizeof(intel_clock_t));
867         return true;
868 }
869 static bool
870 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
871                         int target, int refclk, intel_clock_t *match_clock,
872                         intel_clock_t *best_clock)
873 {
874         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
875         u32 m, n, fastclk;
876         u32 updrate, minupdate, fracbits, p;
877         unsigned long bestppm, ppm, absppm;
878         int dotclk, flag;
879
880         flag = 0;
881         dotclk = target * 1000;
882         bestppm = 1000000;
883         ppm = absppm = 0;
884         fastclk = dotclk / (2*100);
885         updrate = 0;
886         minupdate = 19200;
887         fracbits = 1;
888         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
889         bestm1 = bestm2 = bestp1 = bestp2 = 0;
890
891         /* based on hardware requirement, prefer smaller n to precision */
892         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
893                 updrate = refclk / n;
894                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
895                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
896                                 if (p2 > 10)
897                                         p2 = p2 - 1;
898                                 p = p1 * p2;
899                                 /* based on hardware requirement, prefer bigger m1,m2 values */
900                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
901                                         m2 = (((2*(fastclk * p * n / m1 )) +
902                                                refclk) / (2*refclk));
903                                         m = m1 * m2;
904                                         vco = updrate * m;
905                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
906                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
907                                                 absppm = (ppm > 0) ? ppm : (-ppm);
908                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
909                                                         bestppm = 0;
910                                                         flag = 1;
911                                                 }
912                                                 if (absppm < bestppm - 10) {
913                                                         bestppm = absppm;
914                                                         flag = 1;
915                                                 }
916                                                 if (flag) {
917                                                         bestn = n;
918                                                         bestm1 = m1;
919                                                         bestm2 = m2;
920                                                         bestp1 = p1;
921                                                         bestp2 = p2;
922                                                         flag = 0;
923                                                 }
924                                         }
925                                 }
926                         }
927                 }
928         }
929         best_clock->n = bestn;
930         best_clock->m1 = bestm1;
931         best_clock->m2 = bestm2;
932         best_clock->p1 = bestp1;
933         best_clock->p2 = bestp2;
934
935         return true;
936 }
937
938 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
939                                              enum pipe pipe)
940 {
941         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
943
944         return intel_crtc->cpu_transcoder;
945 }
946
947 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
948 {
949         struct drm_i915_private *dev_priv = dev->dev_private;
950         u32 frame, frame_reg = PIPEFRAME(pipe);
951
952         frame = I915_READ(frame_reg);
953
954         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
955                 DRM_DEBUG_KMS("vblank wait timed out\n");
956 }
957
958 /**
959  * intel_wait_for_vblank - wait for vblank on a given pipe
960  * @dev: drm device
961  * @pipe: pipe to wait for
962  *
963  * Wait for vblank to occur on a given pipe.  Needed for various bits of
964  * mode setting code.
965  */
966 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
967 {
968         struct drm_i915_private *dev_priv = dev->dev_private;
969         int pipestat_reg = PIPESTAT(pipe);
970
971         if (INTEL_INFO(dev)->gen >= 5) {
972                 ironlake_wait_for_vblank(dev, pipe);
973                 return;
974         }
975
976         /* Clear existing vblank status. Note this will clear any other
977          * sticky status fields as well.
978          *
979          * This races with i915_driver_irq_handler() with the result
980          * that either function could miss a vblank event.  Here it is not
981          * fatal, as we will either wait upon the next vblank interrupt or
982          * timeout.  Generally speaking intel_wait_for_vblank() is only
983          * called during modeset at which time the GPU should be idle and
984          * should *not* be performing page flips and thus not waiting on
985          * vblanks...
986          * Currently, the result of us stealing a vblank from the irq
987          * handler is that a single frame will be skipped during swapbuffers.
988          */
989         I915_WRITE(pipestat_reg,
990                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
991
992         /* Wait for vblank interrupt bit to set */
993         if (wait_for(I915_READ(pipestat_reg) &
994                      PIPE_VBLANK_INTERRUPT_STATUS,
995                      50))
996                 DRM_DEBUG_KMS("vblank wait timed out\n");
997 }
998
999 /*
1000  * intel_wait_for_pipe_off - wait for pipe to turn off
1001  * @dev: drm device
1002  * @pipe: pipe to wait for
1003  *
1004  * After disabling a pipe, we can't wait for vblank in the usual way,
1005  * spinning on the vblank interrupt status bit, since we won't actually
1006  * see an interrupt when the pipe is disabled.
1007  *
1008  * On Gen4 and above:
1009  *   wait for the pipe register state bit to turn off
1010  *
1011  * Otherwise:
1012  *   wait for the display line value to settle (it usually
1013  *   ends up stopping at the start of the next frame).
1014  *
1015  */
1016 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1020                                                                       pipe);
1021
1022         if (INTEL_INFO(dev)->gen >= 4) {
1023                 int reg = PIPECONF(cpu_transcoder);
1024
1025                 /* Wait for the Pipe State to go off */
1026                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1027                              100))
1028                         WARN(1, "pipe_off wait timed out\n");
1029         } else {
1030                 u32 last_line, line_mask;
1031                 int reg = PIPEDSL(pipe);
1032                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033
1034                 if (IS_GEN2(dev))
1035                         line_mask = DSL_LINEMASK_GEN2;
1036                 else
1037                         line_mask = DSL_LINEMASK_GEN3;
1038
1039                 /* Wait for the display line to settle */
1040                 do {
1041                         last_line = I915_READ(reg) & line_mask;
1042                         mdelay(5);
1043                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1044                          time_after(timeout, jiffies));
1045                 if (time_after(jiffies, timeout))
1046                         WARN(1, "pipe_off wait timed out\n");
1047         }
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052         return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 static void assert_pll(struct drm_i915_private *dev_priv,
1057                        enum pipe pipe, bool state)
1058 {
1059         int reg;
1060         u32 val;
1061         bool cur_state;
1062
1063         reg = DPLL(pipe);
1064         val = I915_READ(reg);
1065         cur_state = !!(val & DPLL_VCO_ENABLE);
1066         WARN(cur_state != state,
1067              "PLL state assertion failure (expected %s, current %s)\n",
1068              state_string(state), state_string(cur_state));
1069 }
1070 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1071 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1072
1073 /* For ILK+ */
1074 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1075                            struct intel_pch_pll *pll,
1076                            struct intel_crtc *crtc,
1077                            bool state)
1078 {
1079         u32 val;
1080         bool cur_state;
1081
1082         if (HAS_PCH_LPT(dev_priv->dev)) {
1083                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1084                 return;
1085         }
1086
1087         if (WARN (!pll,
1088                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1089                 return;
1090
1091         val = I915_READ(pll->pll_reg);
1092         cur_state = !!(val & DPLL_VCO_ENABLE);
1093         WARN(cur_state != state,
1094              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1095              pll->pll_reg, state_string(state), state_string(cur_state), val);
1096
1097         /* Make sure the selected PLL is correctly attached to the transcoder */
1098         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1099                 u32 pch_dpll;
1100
1101                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1102                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1103                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1104                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1105                           cur_state, crtc->pipe, pch_dpll)) {
1106                         cur_state = !!(val >> (4*crtc->pipe + 3));
1107                         WARN(cur_state != state,
1108                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1109                              pll->pll_reg == _PCH_DPLL_B,
1110                              state_string(state),
1111                              crtc->pipe,
1112                              val);
1113                 }
1114         }
1115 }
1116 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1117 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1118
1119 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1120                           enum pipe pipe, bool state)
1121 {
1122         int reg;
1123         u32 val;
1124         bool cur_state;
1125         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1126                                                                       pipe);
1127
1128         if (IS_HASWELL(dev_priv->dev)) {
1129                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1130                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133         } else {
1134                 reg = FDI_TX_CTL(pipe);
1135                 val = I915_READ(reg);
1136                 cur_state = !!(val & FDI_TX_ENABLE);
1137         }
1138         WARN(cur_state != state,
1139              "FDI TX state assertion failure (expected %s, current %s)\n",
1140              state_string(state), state_string(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146                           enum pipe pipe, bool state)
1147 {
1148         int reg;
1149         u32 val;
1150         bool cur_state;
1151
1152         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1153                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1154                         return;
1155         } else {
1156                 reg = FDI_RX_CTL(pipe);
1157                 val = I915_READ(reg);
1158                 cur_state = !!(val & FDI_RX_ENABLE);
1159         }
1160         WARN(cur_state != state,
1161              "FDI RX state assertion failure (expected %s, current %s)\n",
1162              state_string(state), state_string(cur_state));
1163 }
1164 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1165 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1166
1167 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1168                                       enum pipe pipe)
1169 {
1170         int reg;
1171         u32 val;
1172
1173         /* ILK FDI PLL is always enabled */
1174         if (dev_priv->info->gen == 5)
1175                 return;
1176
1177         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1178         if (IS_HASWELL(dev_priv->dev))
1179                 return;
1180
1181         reg = FDI_TX_CTL(pipe);
1182         val = I915_READ(reg);
1183         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1184 }
1185
1186 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1187                                       enum pipe pipe)
1188 {
1189         int reg;
1190         u32 val;
1191
1192         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1193                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1194                 return;
1195         }
1196         reg = FDI_RX_CTL(pipe);
1197         val = I915_READ(reg);
1198         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1199 }
1200
1201 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1202                                   enum pipe pipe)
1203 {
1204         int pp_reg, lvds_reg;
1205         u32 val;
1206         enum pipe panel_pipe = PIPE_A;
1207         bool locked = true;
1208
1209         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1210                 pp_reg = PCH_PP_CONTROL;
1211                 lvds_reg = PCH_LVDS;
1212         } else {
1213                 pp_reg = PP_CONTROL;
1214                 lvds_reg = LVDS;
1215         }
1216
1217         val = I915_READ(pp_reg);
1218         if (!(val & PANEL_POWER_ON) ||
1219             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1220                 locked = false;
1221
1222         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1223                 panel_pipe = PIPE_B;
1224
1225         WARN(panel_pipe == pipe && locked,
1226              "panel assertion failure, pipe %c regs locked\n",
1227              pipe_name(pipe));
1228 }
1229
1230 void assert_pipe(struct drm_i915_private *dev_priv,
1231                  enum pipe pipe, bool state)
1232 {
1233         int reg;
1234         u32 val;
1235         bool cur_state;
1236         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1237                                                                       pipe);
1238
1239         /* if we need the pipe A quirk it must be always on */
1240         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1241                 state = true;
1242
1243         reg = PIPECONF(cpu_transcoder);
1244         val = I915_READ(reg);
1245         cur_state = !!(val & PIPECONF_ENABLE);
1246         WARN(cur_state != state,
1247              "pipe %c assertion failure (expected %s, current %s)\n",
1248              pipe_name(pipe), state_string(state), state_string(cur_state));
1249 }
1250
1251 static void assert_plane(struct drm_i915_private *dev_priv,
1252                          enum plane plane, bool state)
1253 {
1254         int reg;
1255         u32 val;
1256         bool cur_state;
1257
1258         reg = DSPCNTR(plane);
1259         val = I915_READ(reg);
1260         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1261         WARN(cur_state != state,
1262              "plane %c assertion failure (expected %s, current %s)\n",
1263              plane_name(plane), state_string(state), state_string(cur_state));
1264 }
1265
1266 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1267 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1268
1269 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1270                                    enum pipe pipe)
1271 {
1272         int reg, i;
1273         u32 val;
1274         int cur_pipe;
1275
1276         /* Planes are fixed to pipes on ILK+ */
1277         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1278                 reg = DSPCNTR(pipe);
1279                 val = I915_READ(reg);
1280                 WARN((val & DISPLAY_PLANE_ENABLE),
1281                      "plane %c assertion failure, should be disabled but not\n",
1282                      plane_name(pipe));
1283                 return;
1284         }
1285
1286         /* Need to check both planes against the pipe */
1287         for (i = 0; i < 2; i++) {
1288                 reg = DSPCNTR(i);
1289                 val = I915_READ(reg);
1290                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1291                         DISPPLANE_SEL_PIPE_SHIFT;
1292                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1293                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1294                      plane_name(i), pipe_name(pipe));
1295         }
1296 }
1297
1298 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1299 {
1300         u32 val;
1301         bool enabled;
1302
1303         if (HAS_PCH_LPT(dev_priv->dev)) {
1304                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1305                 return;
1306         }
1307
1308         val = I915_READ(PCH_DREF_CONTROL);
1309         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1310                             DREF_SUPERSPREAD_SOURCE_MASK));
1311         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1312 }
1313
1314 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1315                                        enum pipe pipe)
1316 {
1317         int reg;
1318         u32 val;
1319         bool enabled;
1320
1321         reg = TRANSCONF(pipe);
1322         val = I915_READ(reg);
1323         enabled = !!(val & TRANS_ENABLE);
1324         WARN(enabled,
1325              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1326              pipe_name(pipe));
1327 }
1328
1329 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1330                             enum pipe pipe, u32 port_sel, u32 val)
1331 {
1332         if ((val & DP_PORT_EN) == 0)
1333                 return false;
1334
1335         if (HAS_PCH_CPT(dev_priv->dev)) {
1336                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1337                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1338                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1339                         return false;
1340         } else {
1341                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1342                         return false;
1343         }
1344         return true;
1345 }
1346
1347 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1348                               enum pipe pipe, u32 val)
1349 {
1350         if ((val & PORT_ENABLE) == 0)
1351                 return false;
1352
1353         if (HAS_PCH_CPT(dev_priv->dev)) {
1354                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1355                         return false;
1356         } else {
1357                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1358                         return false;
1359         }
1360         return true;
1361 }
1362
1363 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1364                               enum pipe pipe, u32 val)
1365 {
1366         if ((val & LVDS_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1371                         return false;
1372         } else {
1373                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1374                         return false;
1375         }
1376         return true;
1377 }
1378
1379 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1380                               enum pipe pipe, u32 val)
1381 {
1382         if ((val & ADPA_DAC_ENABLE) == 0)
1383                 return false;
1384         if (HAS_PCH_CPT(dev_priv->dev)) {
1385                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1386                         return false;
1387         } else {
1388                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1389                         return false;
1390         }
1391         return true;
1392 }
1393
1394 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1395                                    enum pipe pipe, int reg, u32 port_sel)
1396 {
1397         u32 val = I915_READ(reg);
1398         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1399              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1400              reg, pipe_name(pipe));
1401
1402         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1403              && (val & DP_PIPEB_SELECT),
1404              "IBX PCH dp port still using transcoder B\n");
1405 }
1406
1407 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1408                                      enum pipe pipe, int reg)
1409 {
1410         u32 val = I915_READ(reg);
1411         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1412              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1413              reg, pipe_name(pipe));
1414
1415         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1416              && (val & SDVO_PIPE_B_SELECT),
1417              "IBX PCH hdmi port still using transcoder B\n");
1418 }
1419
1420 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1421                                       enum pipe pipe)
1422 {
1423         int reg;
1424         u32 val;
1425
1426         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1427         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1429
1430         reg = PCH_ADPA;
1431         val = I915_READ(reg);
1432         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1433              "PCH VGA enabled on transcoder %c, should be disabled\n",
1434              pipe_name(pipe));
1435
1436         reg = PCH_LVDS;
1437         val = I915_READ(reg);
1438         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1439              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1440              pipe_name(pipe));
1441
1442         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1443         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1445 }
1446
1447 /**
1448  * intel_enable_pll - enable a PLL
1449  * @dev_priv: i915 private structure
1450  * @pipe: pipe PLL to enable
1451  *
1452  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1453  * make sure the PLL reg is writable first though, since the panel write
1454  * protect mechanism may be enabled.
1455  *
1456  * Note!  This is for pre-ILK only.
1457  *
1458  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1459  */
1460 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1461 {
1462         int reg;
1463         u32 val;
1464
1465         /* No really, not for ILK+ */
1466         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1467
1468         /* PLL is protected by panel, make sure we can write it */
1469         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1470                 assert_panel_unlocked(dev_priv, pipe);
1471
1472         reg = DPLL(pipe);
1473         val = I915_READ(reg);
1474         val |= DPLL_VCO_ENABLE;
1475
1476         /* We do this three times for luck */
1477         I915_WRITE(reg, val);
1478         POSTING_READ(reg);
1479         udelay(150); /* wait for warmup */
1480         I915_WRITE(reg, val);
1481         POSTING_READ(reg);
1482         udelay(150); /* wait for warmup */
1483         I915_WRITE(reg, val);
1484         POSTING_READ(reg);
1485         udelay(150); /* wait for warmup */
1486 }
1487
1488 /**
1489  * intel_disable_pll - disable a PLL
1490  * @dev_priv: i915 private structure
1491  * @pipe: pipe PLL to disable
1492  *
1493  * Disable the PLL for @pipe, making sure the pipe is off first.
1494  *
1495  * Note!  This is for pre-ILK only.
1496  */
1497 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1498 {
1499         int reg;
1500         u32 val;
1501
1502         /* Don't disable pipe A or pipe A PLLs if needed */
1503         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1504                 return;
1505
1506         /* Make sure the pipe isn't still relying on us */
1507         assert_pipe_disabled(dev_priv, pipe);
1508
1509         reg = DPLL(pipe);
1510         val = I915_READ(reg);
1511         val &= ~DPLL_VCO_ENABLE;
1512         I915_WRITE(reg, val);
1513         POSTING_READ(reg);
1514 }
1515
1516 /* SBI access */
1517 static void
1518 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1519 {
1520         unsigned long flags;
1521
1522         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1523         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1524                                 100)) {
1525                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1526                 goto out_unlock;
1527         }
1528
1529         I915_WRITE(SBI_ADDR,
1530                         (reg << 16));
1531         I915_WRITE(SBI_DATA,
1532                         value);
1533         I915_WRITE(SBI_CTL_STAT,
1534                         SBI_BUSY |
1535                         SBI_CTL_OP_CRWR);
1536
1537         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1538                                 100)) {
1539                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1540                 goto out_unlock;
1541         }
1542
1543 out_unlock:
1544         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1545 }
1546
1547 static u32
1548 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1549 {
1550         unsigned long flags;
1551         u32 value = 0;
1552
1553         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1554         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1555                                 100)) {
1556                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1557                 goto out_unlock;
1558         }
1559
1560         I915_WRITE(SBI_ADDR,
1561                         (reg << 16));
1562         I915_WRITE(SBI_CTL_STAT,
1563                         SBI_BUSY |
1564                         SBI_CTL_OP_CRRD);
1565
1566         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1567                                 100)) {
1568                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1569                 goto out_unlock;
1570         }
1571
1572         value = I915_READ(SBI_DATA);
1573
1574 out_unlock:
1575         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1576         return value;
1577 }
1578
1579 /**
1580  * ironlake_enable_pch_pll - enable PCH PLL
1581  * @dev_priv: i915 private structure
1582  * @pipe: pipe PLL to enable
1583  *
1584  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1585  * drives the transcoder clock.
1586  */
1587 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1588 {
1589         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1590         struct intel_pch_pll *pll;
1591         int reg;
1592         u32 val;
1593
1594         /* PCH PLLs only available on ILK, SNB and IVB */
1595         BUG_ON(dev_priv->info->gen < 5);
1596         pll = intel_crtc->pch_pll;
1597         if (pll == NULL)
1598                 return;
1599
1600         if (WARN_ON(pll->refcount == 0))
1601                 return;
1602
1603         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1604                       pll->pll_reg, pll->active, pll->on,
1605                       intel_crtc->base.base.id);
1606
1607         /* PCH refclock must be enabled first */
1608         assert_pch_refclk_enabled(dev_priv);
1609
1610         if (pll->active++ && pll->on) {
1611                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1612                 return;
1613         }
1614
1615         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1616
1617         reg = pll->pll_reg;
1618         val = I915_READ(reg);
1619         val |= DPLL_VCO_ENABLE;
1620         I915_WRITE(reg, val);
1621         POSTING_READ(reg);
1622         udelay(200);
1623
1624         pll->on = true;
1625 }
1626
1627 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1628 {
1629         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1630         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1631         int reg;
1632         u32 val;
1633
1634         /* PCH only available on ILK+ */
1635         BUG_ON(dev_priv->info->gen < 5);
1636         if (pll == NULL)
1637                return;
1638
1639         if (WARN_ON(pll->refcount == 0))
1640                 return;
1641
1642         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1643                       pll->pll_reg, pll->active, pll->on,
1644                       intel_crtc->base.base.id);
1645
1646         if (WARN_ON(pll->active == 0)) {
1647                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1648                 return;
1649         }
1650
1651         if (--pll->active) {
1652                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1653                 return;
1654         }
1655
1656         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1657
1658         /* Make sure transcoder isn't still depending on us */
1659         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1660
1661         reg = pll->pll_reg;
1662         val = I915_READ(reg);
1663         val &= ~DPLL_VCO_ENABLE;
1664         I915_WRITE(reg, val);
1665         POSTING_READ(reg);
1666         udelay(200);
1667
1668         pll->on = false;
1669 }
1670
1671 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1672                                            enum pipe pipe)
1673 {
1674         struct drm_device *dev = dev_priv->dev;
1675         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1676         uint32_t reg, val, pipeconf_val;
1677
1678         /* PCH only available on ILK+ */
1679         BUG_ON(dev_priv->info->gen < 5);
1680
1681         /* Make sure PCH DPLL is enabled */
1682         assert_pch_pll_enabled(dev_priv,
1683                                to_intel_crtc(crtc)->pch_pll,
1684                                to_intel_crtc(crtc));
1685
1686         /* FDI must be feeding us bits for PCH ports */
1687         assert_fdi_tx_enabled(dev_priv, pipe);
1688         assert_fdi_rx_enabled(dev_priv, pipe);
1689
1690         if (HAS_PCH_CPT(dev)) {
1691                 /* Workaround: Set the timing override bit before enabling the
1692                  * pch transcoder. */
1693                 reg = TRANS_CHICKEN2(pipe);
1694                 val = I915_READ(reg);
1695                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1696                 I915_WRITE(reg, val);
1697         }
1698
1699         reg = TRANSCONF(pipe);
1700         val = I915_READ(reg);
1701         pipeconf_val = I915_READ(PIPECONF(pipe));
1702
1703         if (HAS_PCH_IBX(dev_priv->dev)) {
1704                 /*
1705                  * make the BPC in transcoder be consistent with
1706                  * that in pipeconf reg.
1707                  */
1708                 val &= ~PIPE_BPC_MASK;
1709                 val |= pipeconf_val & PIPE_BPC_MASK;
1710         }
1711
1712         val &= ~TRANS_INTERLACE_MASK;
1713         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1714                 if (HAS_PCH_IBX(dev_priv->dev) &&
1715                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1716                         val |= TRANS_LEGACY_INTERLACED_ILK;
1717                 else
1718                         val |= TRANS_INTERLACED;
1719         else
1720                 val |= TRANS_PROGRESSIVE;
1721
1722         I915_WRITE(reg, val | TRANS_ENABLE);
1723         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1724                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1725 }
1726
1727 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1728                                       enum transcoder cpu_transcoder)
1729 {
1730         u32 val, pipeconf_val;
1731
1732         /* PCH only available on ILK+ */
1733         BUG_ON(dev_priv->info->gen < 5);
1734
1735         /* FDI must be feeding us bits for PCH ports */
1736         assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1737         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1738
1739         /* Workaround: set timing override bit. */
1740         val = I915_READ(_TRANSA_CHICKEN2);
1741         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1742         I915_WRITE(_TRANSA_CHICKEN2, val);
1743
1744         val = TRANS_ENABLE;
1745         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1746
1747         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1748             PIPECONF_INTERLACED_ILK)
1749                 val |= TRANS_INTERLACED;
1750         else
1751                 val |= TRANS_PROGRESSIVE;
1752
1753         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1754         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1755                 DRM_ERROR("Failed to enable PCH transcoder\n");
1756 }
1757
1758 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1759                                             enum pipe pipe)
1760 {
1761         struct drm_device *dev = dev_priv->dev;
1762         uint32_t reg, val;
1763
1764         /* FDI relies on the transcoder */
1765         assert_fdi_tx_disabled(dev_priv, pipe);
1766         assert_fdi_rx_disabled(dev_priv, pipe);
1767
1768         /* Ports must be off as well */
1769         assert_pch_ports_disabled(dev_priv, pipe);
1770
1771         reg = TRANSCONF(pipe);
1772         val = I915_READ(reg);
1773         val &= ~TRANS_ENABLE;
1774         I915_WRITE(reg, val);
1775         /* wait for PCH transcoder off, transcoder state */
1776         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1777                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1778
1779         if (!HAS_PCH_IBX(dev)) {
1780                 /* Workaround: Clear the timing override chicken bit again. */
1781                 reg = TRANS_CHICKEN2(pipe);
1782                 val = I915_READ(reg);
1783                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1784                 I915_WRITE(reg, val);
1785         }
1786 }
1787
1788 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1789 {
1790         u32 val;
1791
1792         val = I915_READ(_TRANSACONF);
1793         val &= ~TRANS_ENABLE;
1794         I915_WRITE(_TRANSACONF, val);
1795         /* wait for PCH transcoder off, transcoder state */
1796         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1797                 DRM_ERROR("Failed to disable PCH transcoder\n");
1798
1799         /* Workaround: clear timing override bit. */
1800         val = I915_READ(_TRANSA_CHICKEN2);
1801         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1802         I915_WRITE(_TRANSA_CHICKEN2, val);
1803 }
1804
1805 /**
1806  * intel_enable_pipe - enable a pipe, asserting requirements
1807  * @dev_priv: i915 private structure
1808  * @pipe: pipe to enable
1809  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1810  *
1811  * Enable @pipe, making sure that various hardware specific requirements
1812  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1813  *
1814  * @pipe should be %PIPE_A or %PIPE_B.
1815  *
1816  * Will wait until the pipe is actually running (i.e. first vblank) before
1817  * returning.
1818  */
1819 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1820                               bool pch_port)
1821 {
1822         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1823                                                                       pipe);
1824         int reg;
1825         u32 val;
1826
1827         /*
1828          * A pipe without a PLL won't actually be able to drive bits from
1829          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1830          * need the check.
1831          */
1832         if (!HAS_PCH_SPLIT(dev_priv->dev))
1833                 assert_pll_enabled(dev_priv, pipe);
1834         else {
1835                 if (pch_port) {
1836                         /* if driving the PCH, we need FDI enabled */
1837                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1838                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1839                 }
1840                 /* FIXME: assert CPU port conditions for SNB+ */
1841         }
1842
1843         reg = PIPECONF(cpu_transcoder);
1844         val = I915_READ(reg);
1845         if (val & PIPECONF_ENABLE)
1846                 return;
1847
1848         I915_WRITE(reg, val | PIPECONF_ENABLE);
1849         intel_wait_for_vblank(dev_priv->dev, pipe);
1850 }
1851
1852 /**
1853  * intel_disable_pipe - disable a pipe, asserting requirements
1854  * @dev_priv: i915 private structure
1855  * @pipe: pipe to disable
1856  *
1857  * Disable @pipe, making sure that various hardware specific requirements
1858  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1859  *
1860  * @pipe should be %PIPE_A or %PIPE_B.
1861  *
1862  * Will wait until the pipe has shut down before returning.
1863  */
1864 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1865                                enum pipe pipe)
1866 {
1867         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1868                                                                       pipe);
1869         int reg;
1870         u32 val;
1871
1872         /*
1873          * Make sure planes won't keep trying to pump pixels to us,
1874          * or we might hang the display.
1875          */
1876         assert_planes_disabled(dev_priv, pipe);
1877
1878         /* Don't disable pipe A or pipe A PLLs if needed */
1879         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1880                 return;
1881
1882         reg = PIPECONF(cpu_transcoder);
1883         val = I915_READ(reg);
1884         if ((val & PIPECONF_ENABLE) == 0)
1885                 return;
1886
1887         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1888         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1889 }
1890
1891 /*
1892  * Plane regs are double buffered, going from enabled->disabled needs a
1893  * trigger in order to latch.  The display address reg provides this.
1894  */
1895 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1896                                       enum plane plane)
1897 {
1898         if (dev_priv->info->gen >= 4)
1899                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1900         else
1901                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1902 }
1903
1904 /**
1905  * intel_enable_plane - enable a display plane on a given pipe
1906  * @dev_priv: i915 private structure
1907  * @plane: plane to enable
1908  * @pipe: pipe being fed
1909  *
1910  * Enable @plane on @pipe, making sure that @pipe is running first.
1911  */
1912 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1913                                enum plane plane, enum pipe pipe)
1914 {
1915         int reg;
1916         u32 val;
1917
1918         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1919         assert_pipe_enabled(dev_priv, pipe);
1920
1921         reg = DSPCNTR(plane);
1922         val = I915_READ(reg);
1923         if (val & DISPLAY_PLANE_ENABLE)
1924                 return;
1925
1926         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1927         intel_flush_display_plane(dev_priv, plane);
1928         intel_wait_for_vblank(dev_priv->dev, pipe);
1929 }
1930
1931 /**
1932  * intel_disable_plane - disable a display plane
1933  * @dev_priv: i915 private structure
1934  * @plane: plane to disable
1935  * @pipe: pipe consuming the data
1936  *
1937  * Disable @plane; should be an independent operation.
1938  */
1939 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1940                                 enum plane plane, enum pipe pipe)
1941 {
1942         int reg;
1943         u32 val;
1944
1945         reg = DSPCNTR(plane);
1946         val = I915_READ(reg);
1947         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1948                 return;
1949
1950         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1951         intel_flush_display_plane(dev_priv, plane);
1952         intel_wait_for_vblank(dev_priv->dev, pipe);
1953 }
1954
1955 int
1956 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1957                            struct drm_i915_gem_object *obj,
1958                            struct intel_ring_buffer *pipelined)
1959 {
1960         struct drm_i915_private *dev_priv = dev->dev_private;
1961         u32 alignment;
1962         int ret;
1963
1964         switch (obj->tiling_mode) {
1965         case I915_TILING_NONE:
1966                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1967                         alignment = 128 * 1024;
1968                 else if (INTEL_INFO(dev)->gen >= 4)
1969                         alignment = 4 * 1024;
1970                 else
1971                         alignment = 64 * 1024;
1972                 break;
1973         case I915_TILING_X:
1974                 /* pin() will align the object as required by fence */
1975                 alignment = 0;
1976                 break;
1977         case I915_TILING_Y:
1978                 /* FIXME: Is this true? */
1979                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1980                 return -EINVAL;
1981         default:
1982                 BUG();
1983         }
1984
1985         dev_priv->mm.interruptible = false;
1986         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1987         if (ret)
1988                 goto err_interruptible;
1989
1990         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1991          * fence, whereas 965+ only requires a fence if using
1992          * framebuffer compression.  For simplicity, we always install
1993          * a fence as the cost is not that onerous.
1994          */
1995         ret = i915_gem_object_get_fence(obj);
1996         if (ret)
1997                 goto err_unpin;
1998
1999         i915_gem_object_pin_fence(obj);
2000
2001         dev_priv->mm.interruptible = true;
2002         return 0;
2003
2004 err_unpin:
2005         i915_gem_object_unpin(obj);
2006 err_interruptible:
2007         dev_priv->mm.interruptible = true;
2008         return ret;
2009 }
2010
2011 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2012 {
2013         i915_gem_object_unpin_fence(obj);
2014         i915_gem_object_unpin(obj);
2015 }
2016
2017 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2018  * is assumed to be a power-of-two. */
2019 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2020                                                unsigned int bpp,
2021                                                unsigned int pitch)
2022 {
2023         int tile_rows, tiles;
2024
2025         tile_rows = *y / 8;
2026         *y %= 8;
2027         tiles = *x / (512/bpp);
2028         *x %= 512/bpp;
2029
2030         return tile_rows * pitch * 8 + tiles * 4096;
2031 }
2032
2033 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2034                              int x, int y)
2035 {
2036         struct drm_device *dev = crtc->dev;
2037         struct drm_i915_private *dev_priv = dev->dev_private;
2038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2039         struct intel_framebuffer *intel_fb;
2040         struct drm_i915_gem_object *obj;
2041         int plane = intel_crtc->plane;
2042         unsigned long linear_offset;
2043         u32 dspcntr;
2044         u32 reg;
2045
2046         switch (plane) {
2047         case 0:
2048         case 1:
2049                 break;
2050         default:
2051                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2052                 return -EINVAL;
2053         }
2054
2055         intel_fb = to_intel_framebuffer(fb);
2056         obj = intel_fb->obj;
2057
2058         reg = DSPCNTR(plane);
2059         dspcntr = I915_READ(reg);
2060         /* Mask out pixel format bits in case we change it */
2061         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2062         switch (fb->pixel_format) {
2063         case DRM_FORMAT_C8:
2064                 dspcntr |= DISPPLANE_8BPP;
2065                 break;
2066         case DRM_FORMAT_XRGB1555:
2067         case DRM_FORMAT_ARGB1555:
2068                 dspcntr |= DISPPLANE_BGRX555;
2069                 break;
2070         case DRM_FORMAT_RGB565:
2071                 dspcntr |= DISPPLANE_BGRX565;
2072                 break;
2073         case DRM_FORMAT_XRGB8888:
2074         case DRM_FORMAT_ARGB8888:
2075                 dspcntr |= DISPPLANE_BGRX888;
2076                 break;
2077         case DRM_FORMAT_XBGR8888:
2078         case DRM_FORMAT_ABGR8888:
2079                 dspcntr |= DISPPLANE_RGBX888;
2080                 break;
2081         case DRM_FORMAT_XRGB2101010:
2082         case DRM_FORMAT_ARGB2101010:
2083                 dspcntr |= DISPPLANE_BGRX101010;
2084                 break;
2085         case DRM_FORMAT_XBGR2101010:
2086         case DRM_FORMAT_ABGR2101010:
2087                 dspcntr |= DISPPLANE_RGBX101010;
2088                 break;
2089         default:
2090                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2091                 return -EINVAL;
2092         }
2093
2094         if (INTEL_INFO(dev)->gen >= 4) {
2095                 if (obj->tiling_mode != I915_TILING_NONE)
2096                         dspcntr |= DISPPLANE_TILED;
2097                 else
2098                         dspcntr &= ~DISPPLANE_TILED;
2099         }
2100
2101         I915_WRITE(reg, dspcntr);
2102
2103         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2104
2105         if (INTEL_INFO(dev)->gen >= 4) {
2106                 intel_crtc->dspaddr_offset =
2107                         intel_gen4_compute_offset_xtiled(&x, &y,
2108                                                          fb->bits_per_pixel / 8,
2109                                                          fb->pitches[0]);
2110                 linear_offset -= intel_crtc->dspaddr_offset;
2111         } else {
2112                 intel_crtc->dspaddr_offset = linear_offset;
2113         }
2114
2115         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2116                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2117         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2118         if (INTEL_INFO(dev)->gen >= 4) {
2119                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2120                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2121                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2122                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2123         } else
2124                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2125         POSTING_READ(reg);
2126
2127         return 0;
2128 }
2129
2130 static int ironlake_update_plane(struct drm_crtc *crtc,
2131                                  struct drm_framebuffer *fb, int x, int y)
2132 {
2133         struct drm_device *dev = crtc->dev;
2134         struct drm_i915_private *dev_priv = dev->dev_private;
2135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2136         struct intel_framebuffer *intel_fb;
2137         struct drm_i915_gem_object *obj;
2138         int plane = intel_crtc->plane;
2139         unsigned long linear_offset;
2140         u32 dspcntr;
2141         u32 reg;
2142
2143         switch (plane) {
2144         case 0:
2145         case 1:
2146         case 2:
2147                 break;
2148         default:
2149                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2150                 return -EINVAL;
2151         }
2152
2153         intel_fb = to_intel_framebuffer(fb);
2154         obj = intel_fb->obj;
2155
2156         reg = DSPCNTR(plane);
2157         dspcntr = I915_READ(reg);
2158         /* Mask out pixel format bits in case we change it */
2159         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2160         switch (fb->pixel_format) {
2161         case DRM_FORMAT_C8:
2162                 dspcntr |= DISPPLANE_8BPP;
2163                 break;
2164         case DRM_FORMAT_RGB565:
2165                 dspcntr |= DISPPLANE_BGRX565;
2166                 break;
2167         case DRM_FORMAT_XRGB8888:
2168         case DRM_FORMAT_ARGB8888:
2169                 dspcntr |= DISPPLANE_BGRX888;
2170                 break;
2171         case DRM_FORMAT_XBGR8888:
2172         case DRM_FORMAT_ABGR8888:
2173                 dspcntr |= DISPPLANE_RGBX888;
2174                 break;
2175         case DRM_FORMAT_XRGB2101010:
2176         case DRM_FORMAT_ARGB2101010:
2177                 dspcntr |= DISPPLANE_BGRX101010;
2178                 break;
2179         case DRM_FORMAT_XBGR2101010:
2180         case DRM_FORMAT_ABGR2101010:
2181                 dspcntr |= DISPPLANE_RGBX101010;
2182                 break;
2183         default:
2184                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2185                 return -EINVAL;
2186         }
2187
2188         if (obj->tiling_mode != I915_TILING_NONE)
2189                 dspcntr |= DISPPLANE_TILED;
2190         else
2191                 dspcntr &= ~DISPPLANE_TILED;
2192
2193         /* must disable */
2194         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2195
2196         I915_WRITE(reg, dspcntr);
2197
2198         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2199         intel_crtc->dspaddr_offset =
2200                 intel_gen4_compute_offset_xtiled(&x, &y,
2201                                                  fb->bits_per_pixel / 8,
2202                                                  fb->pitches[0]);
2203         linear_offset -= intel_crtc->dspaddr_offset;
2204
2205         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2206                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2207         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2208         I915_MODIFY_DISPBASE(DSPSURF(plane),
2209                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2210         if (IS_HASWELL(dev)) {
2211                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2212         } else {
2213                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2214                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2215         }
2216         POSTING_READ(reg);
2217
2218         return 0;
2219 }
2220
2221 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2222 static int
2223 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2224                            int x, int y, enum mode_set_atomic state)
2225 {
2226         struct drm_device *dev = crtc->dev;
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228
2229         if (dev_priv->display.disable_fbc)
2230                 dev_priv->display.disable_fbc(dev);
2231         intel_increase_pllclock(crtc);
2232
2233         return dev_priv->display.update_plane(crtc, fb, x, y);
2234 }
2235
2236 static int
2237 intel_finish_fb(struct drm_framebuffer *old_fb)
2238 {
2239         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2240         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2241         bool was_interruptible = dev_priv->mm.interruptible;
2242         int ret;
2243
2244         wait_event(dev_priv->pending_flip_queue,
2245                    atomic_read(&dev_priv->mm.wedged) ||
2246                    atomic_read(&obj->pending_flip) == 0);
2247
2248         /* Big Hammer, we also need to ensure that any pending
2249          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2250          * current scanout is retired before unpinning the old
2251          * framebuffer.
2252          *
2253          * This should only fail upon a hung GPU, in which case we
2254          * can safely continue.
2255          */
2256         dev_priv->mm.interruptible = false;
2257         ret = i915_gem_object_finish_gpu(obj);
2258         dev_priv->mm.interruptible = was_interruptible;
2259
2260         return ret;
2261 }
2262
2263 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2264 {
2265         struct drm_device *dev = crtc->dev;
2266         struct drm_i915_master_private *master_priv;
2267         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2268
2269         if (!dev->primary->master)
2270                 return;
2271
2272         master_priv = dev->primary->master->driver_priv;
2273         if (!master_priv->sarea_priv)
2274                 return;
2275
2276         switch (intel_crtc->pipe) {
2277         case 0:
2278                 master_priv->sarea_priv->pipeA_x = x;
2279                 master_priv->sarea_priv->pipeA_y = y;
2280                 break;
2281         case 1:
2282                 master_priv->sarea_priv->pipeB_x = x;
2283                 master_priv->sarea_priv->pipeB_y = y;
2284                 break;
2285         default:
2286                 break;
2287         }
2288 }
2289
2290 static int
2291 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2292                     struct drm_framebuffer *fb)
2293 {
2294         struct drm_device *dev = crtc->dev;
2295         struct drm_i915_private *dev_priv = dev->dev_private;
2296         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2297         struct drm_framebuffer *old_fb;
2298         int ret;
2299
2300         /* no fb bound */
2301         if (!fb) {
2302                 DRM_ERROR("No FB bound\n");
2303                 return 0;
2304         }
2305
2306         if(intel_crtc->plane > dev_priv->num_pipe) {
2307                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2308                                 intel_crtc->plane,
2309                                 dev_priv->num_pipe);
2310                 return -EINVAL;
2311         }
2312
2313         mutex_lock(&dev->struct_mutex);
2314         ret = intel_pin_and_fence_fb_obj(dev,
2315                                          to_intel_framebuffer(fb)->obj,
2316                                          NULL);
2317         if (ret != 0) {
2318                 mutex_unlock(&dev->struct_mutex);
2319                 DRM_ERROR("pin & fence failed\n");
2320                 return ret;
2321         }
2322
2323         if (crtc->fb)
2324                 intel_finish_fb(crtc->fb);
2325
2326         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2327         if (ret) {
2328                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2329                 mutex_unlock(&dev->struct_mutex);
2330                 DRM_ERROR("failed to update base address\n");
2331                 return ret;
2332         }
2333
2334         old_fb = crtc->fb;
2335         crtc->fb = fb;
2336         crtc->x = x;
2337         crtc->y = y;
2338
2339         if (old_fb) {
2340                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2341                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2342         }
2343
2344         intel_update_fbc(dev);
2345         mutex_unlock(&dev->struct_mutex);
2346
2347         intel_crtc_update_sarea_pos(crtc, x, y);
2348
2349         return 0;
2350 }
2351
2352 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2353 {
2354         struct drm_device *dev = crtc->dev;
2355         struct drm_i915_private *dev_priv = dev->dev_private;
2356         u32 dpa_ctl;
2357
2358         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2359         dpa_ctl = I915_READ(DP_A);
2360         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2361
2362         if (clock < 200000) {
2363                 u32 temp;
2364                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2365                 /* workaround for 160Mhz:
2366                    1) program 0x4600c bits 15:0 = 0x8124
2367                    2) program 0x46010 bit 0 = 1
2368                    3) program 0x46034 bit 24 = 1
2369                    4) program 0x64000 bit 14 = 1
2370                    */
2371                 temp = I915_READ(0x4600c);
2372                 temp &= 0xffff0000;
2373                 I915_WRITE(0x4600c, temp | 0x8124);
2374
2375                 temp = I915_READ(0x46010);
2376                 I915_WRITE(0x46010, temp | 1);
2377
2378                 temp = I915_READ(0x46034);
2379                 I915_WRITE(0x46034, temp | (1 << 24));
2380         } else {
2381                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2382         }
2383         I915_WRITE(DP_A, dpa_ctl);
2384
2385         POSTING_READ(DP_A);
2386         udelay(500);
2387 }
2388
2389 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2390 {
2391         struct drm_device *dev = crtc->dev;
2392         struct drm_i915_private *dev_priv = dev->dev_private;
2393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2394         int pipe = intel_crtc->pipe;
2395         u32 reg, temp;
2396
2397         /* enable normal train */
2398         reg = FDI_TX_CTL(pipe);
2399         temp = I915_READ(reg);
2400         if (IS_IVYBRIDGE(dev)) {
2401                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2402                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2403         } else {
2404                 temp &= ~FDI_LINK_TRAIN_NONE;
2405                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2406         }
2407         I915_WRITE(reg, temp);
2408
2409         reg = FDI_RX_CTL(pipe);
2410         temp = I915_READ(reg);
2411         if (HAS_PCH_CPT(dev)) {
2412                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2413                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2414         } else {
2415                 temp &= ~FDI_LINK_TRAIN_NONE;
2416                 temp |= FDI_LINK_TRAIN_NONE;
2417         }
2418         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2419
2420         /* wait one idle pattern time */
2421         POSTING_READ(reg);
2422         udelay(1000);
2423
2424         /* IVB wants error correction enabled */
2425         if (IS_IVYBRIDGE(dev))
2426                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2427                            FDI_FE_ERRC_ENABLE);
2428 }
2429
2430 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         u32 flags = I915_READ(SOUTH_CHICKEN1);
2434
2435         flags |= FDI_PHASE_SYNC_OVR(pipe);
2436         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2437         flags |= FDI_PHASE_SYNC_EN(pipe);
2438         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2439         POSTING_READ(SOUTH_CHICKEN1);
2440 }
2441
2442 static void ivb_modeset_global_resources(struct drm_device *dev)
2443 {
2444         struct drm_i915_private *dev_priv = dev->dev_private;
2445         struct intel_crtc *pipe_B_crtc =
2446                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2447         struct intel_crtc *pipe_C_crtc =
2448                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2449         uint32_t temp;
2450
2451         /* When everything is off disable fdi C so that we could enable fdi B
2452          * with all lanes. XXX: This misses the case where a pipe is not using
2453          * any pch resources and so doesn't need any fdi lanes. */
2454         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2455                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2456                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2457
2458                 temp = I915_READ(SOUTH_CHICKEN1);
2459                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2460                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2461                 I915_WRITE(SOUTH_CHICKEN1, temp);
2462         }
2463 }
2464
2465 /* The FDI link training functions for ILK/Ibexpeak. */
2466 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2467 {
2468         struct drm_device *dev = crtc->dev;
2469         struct drm_i915_private *dev_priv = dev->dev_private;
2470         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2471         int pipe = intel_crtc->pipe;
2472         int plane = intel_crtc->plane;
2473         u32 reg, temp, tries;
2474
2475         /* FDI needs bits from pipe & plane first */
2476         assert_pipe_enabled(dev_priv, pipe);
2477         assert_plane_enabled(dev_priv, plane);
2478
2479         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2480            for train result */
2481         reg = FDI_RX_IMR(pipe);
2482         temp = I915_READ(reg);
2483         temp &= ~FDI_RX_SYMBOL_LOCK;
2484         temp &= ~FDI_RX_BIT_LOCK;
2485         I915_WRITE(reg, temp);
2486         I915_READ(reg);
2487         udelay(150);
2488
2489         /* enable CPU FDI TX and PCH FDI RX */
2490         reg = FDI_TX_CTL(pipe);
2491         temp = I915_READ(reg);
2492         temp &= ~(7 << 19);
2493         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2494         temp &= ~FDI_LINK_TRAIN_NONE;
2495         temp |= FDI_LINK_TRAIN_PATTERN_1;
2496         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2497
2498         reg = FDI_RX_CTL(pipe);
2499         temp = I915_READ(reg);
2500         temp &= ~FDI_LINK_TRAIN_NONE;
2501         temp |= FDI_LINK_TRAIN_PATTERN_1;
2502         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2503
2504         POSTING_READ(reg);
2505         udelay(150);
2506
2507         /* Ironlake workaround, enable clock pointer after FDI enable*/
2508         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2509         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2510                    FDI_RX_PHASE_SYNC_POINTER_EN);
2511
2512         reg = FDI_RX_IIR(pipe);
2513         for (tries = 0; tries < 5; tries++) {
2514                 temp = I915_READ(reg);
2515                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2516
2517                 if ((temp & FDI_RX_BIT_LOCK)) {
2518                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2519                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2520                         break;
2521                 }
2522         }
2523         if (tries == 5)
2524                 DRM_ERROR("FDI train 1 fail!\n");
2525
2526         /* Train 2 */
2527         reg = FDI_TX_CTL(pipe);
2528         temp = I915_READ(reg);
2529         temp &= ~FDI_LINK_TRAIN_NONE;
2530         temp |= FDI_LINK_TRAIN_PATTERN_2;
2531         I915_WRITE(reg, temp);
2532
2533         reg = FDI_RX_CTL(pipe);
2534         temp = I915_READ(reg);
2535         temp &= ~FDI_LINK_TRAIN_NONE;
2536         temp |= FDI_LINK_TRAIN_PATTERN_2;
2537         I915_WRITE(reg, temp);
2538
2539         POSTING_READ(reg);
2540         udelay(150);
2541
2542         reg = FDI_RX_IIR(pipe);
2543         for (tries = 0; tries < 5; tries++) {
2544                 temp = I915_READ(reg);
2545                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2546
2547                 if (temp & FDI_RX_SYMBOL_LOCK) {
2548                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2549                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2550                         break;
2551                 }
2552         }
2553         if (tries == 5)
2554                 DRM_ERROR("FDI train 2 fail!\n");
2555
2556         DRM_DEBUG_KMS("FDI train done\n");
2557
2558 }
2559
2560 static const int snb_b_fdi_train_param[] = {
2561         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2562         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2563         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2564         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2565 };
2566
2567 /* The FDI link training functions for SNB/Cougarpoint. */
2568 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2569 {
2570         struct drm_device *dev = crtc->dev;
2571         struct drm_i915_private *dev_priv = dev->dev_private;
2572         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2573         int pipe = intel_crtc->pipe;
2574         u32 reg, temp, i, retry;
2575
2576         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2577            for train result */
2578         reg = FDI_RX_IMR(pipe);
2579         temp = I915_READ(reg);
2580         temp &= ~FDI_RX_SYMBOL_LOCK;
2581         temp &= ~FDI_RX_BIT_LOCK;
2582         I915_WRITE(reg, temp);
2583
2584         POSTING_READ(reg);
2585         udelay(150);
2586
2587         /* enable CPU FDI TX and PCH FDI RX */
2588         reg = FDI_TX_CTL(pipe);
2589         temp = I915_READ(reg);
2590         temp &= ~(7 << 19);
2591         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2592         temp &= ~FDI_LINK_TRAIN_NONE;
2593         temp |= FDI_LINK_TRAIN_PATTERN_1;
2594         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2595         /* SNB-B */
2596         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2597         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2598
2599         I915_WRITE(FDI_RX_MISC(pipe),
2600                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2601
2602         reg = FDI_RX_CTL(pipe);
2603         temp = I915_READ(reg);
2604         if (HAS_PCH_CPT(dev)) {
2605                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2606                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2607         } else {
2608                 temp &= ~FDI_LINK_TRAIN_NONE;
2609                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2610         }
2611         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2612
2613         POSTING_READ(reg);
2614         udelay(150);
2615
2616         cpt_phase_pointer_enable(dev, pipe);
2617
2618         for (i = 0; i < 4; i++) {
2619                 reg = FDI_TX_CTL(pipe);
2620                 temp = I915_READ(reg);
2621                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622                 temp |= snb_b_fdi_train_param[i];
2623                 I915_WRITE(reg, temp);
2624
2625                 POSTING_READ(reg);
2626                 udelay(500);
2627
2628                 for (retry = 0; retry < 5; retry++) {
2629                         reg = FDI_RX_IIR(pipe);
2630                         temp = I915_READ(reg);
2631                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2632                         if (temp & FDI_RX_BIT_LOCK) {
2633                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2634                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2635                                 break;
2636                         }
2637                         udelay(50);
2638                 }
2639                 if (retry < 5)
2640                         break;
2641         }
2642         if (i == 4)
2643                 DRM_ERROR("FDI train 1 fail!\n");
2644
2645         /* Train 2 */
2646         reg = FDI_TX_CTL(pipe);
2647         temp = I915_READ(reg);
2648         temp &= ~FDI_LINK_TRAIN_NONE;
2649         temp |= FDI_LINK_TRAIN_PATTERN_2;
2650         if (IS_GEN6(dev)) {
2651                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2652                 /* SNB-B */
2653                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2654         }
2655         I915_WRITE(reg, temp);
2656
2657         reg = FDI_RX_CTL(pipe);
2658         temp = I915_READ(reg);
2659         if (HAS_PCH_CPT(dev)) {
2660                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2661                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2662         } else {
2663                 temp &= ~FDI_LINK_TRAIN_NONE;
2664                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2665         }
2666         I915_WRITE(reg, temp);
2667
2668         POSTING_READ(reg);
2669         udelay(150);
2670
2671         for (i = 0; i < 4; i++) {
2672                 reg = FDI_TX_CTL(pipe);
2673                 temp = I915_READ(reg);
2674                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675                 temp |= snb_b_fdi_train_param[i];
2676                 I915_WRITE(reg, temp);
2677
2678                 POSTING_READ(reg);
2679                 udelay(500);
2680
2681                 for (retry = 0; retry < 5; retry++) {
2682                         reg = FDI_RX_IIR(pipe);
2683                         temp = I915_READ(reg);
2684                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2685                         if (temp & FDI_RX_SYMBOL_LOCK) {
2686                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2687                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2688                                 break;
2689                         }
2690                         udelay(50);
2691                 }
2692                 if (retry < 5)
2693                         break;
2694         }
2695         if (i == 4)
2696                 DRM_ERROR("FDI train 2 fail!\n");
2697
2698         DRM_DEBUG_KMS("FDI train done.\n");
2699 }
2700
2701 /* Manual link training for Ivy Bridge A0 parts */
2702 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2703 {
2704         struct drm_device *dev = crtc->dev;
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2707         int pipe = intel_crtc->pipe;
2708         u32 reg, temp, i;
2709
2710         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2711            for train result */
2712         reg = FDI_RX_IMR(pipe);
2713         temp = I915_READ(reg);
2714         temp &= ~FDI_RX_SYMBOL_LOCK;
2715         temp &= ~FDI_RX_BIT_LOCK;
2716         I915_WRITE(reg, temp);
2717
2718         POSTING_READ(reg);
2719         udelay(150);
2720
2721         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2722                       I915_READ(FDI_RX_IIR(pipe)));
2723
2724         /* enable CPU FDI TX and PCH FDI RX */
2725         reg = FDI_TX_CTL(pipe);
2726         temp = I915_READ(reg);
2727         temp &= ~(7 << 19);
2728         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2729         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2730         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2731         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2732         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2733         temp |= FDI_COMPOSITE_SYNC;
2734         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2735
2736         I915_WRITE(FDI_RX_MISC(pipe),
2737                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2738
2739         reg = FDI_RX_CTL(pipe);
2740         temp = I915_READ(reg);
2741         temp &= ~FDI_LINK_TRAIN_AUTO;
2742         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2743         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2744         temp |= FDI_COMPOSITE_SYNC;
2745         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2746
2747         POSTING_READ(reg);
2748         udelay(150);
2749
2750         cpt_phase_pointer_enable(dev, pipe);
2751
2752         for (i = 0; i < 4; i++) {
2753                 reg = FDI_TX_CTL(pipe);
2754                 temp = I915_READ(reg);
2755                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2756                 temp |= snb_b_fdi_train_param[i];
2757                 I915_WRITE(reg, temp);
2758
2759                 POSTING_READ(reg);
2760                 udelay(500);
2761
2762                 reg = FDI_RX_IIR(pipe);
2763                 temp = I915_READ(reg);
2764                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2765
2766                 if (temp & FDI_RX_BIT_LOCK ||
2767                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2768                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2769                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2770                         break;
2771                 }
2772         }
2773         if (i == 4)
2774                 DRM_ERROR("FDI train 1 fail!\n");
2775
2776         /* Train 2 */
2777         reg = FDI_TX_CTL(pipe);
2778         temp = I915_READ(reg);
2779         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2780         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2781         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2782         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2783         I915_WRITE(reg, temp);
2784
2785         reg = FDI_RX_CTL(pipe);
2786         temp = I915_READ(reg);
2787         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2788         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2789         I915_WRITE(reg, temp);
2790
2791         POSTING_READ(reg);
2792         udelay(150);
2793
2794         for (i = 0; i < 4; i++) {
2795                 reg = FDI_TX_CTL(pipe);
2796                 temp = I915_READ(reg);
2797                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2798                 temp |= snb_b_fdi_train_param[i];
2799                 I915_WRITE(reg, temp);
2800
2801                 POSTING_READ(reg);
2802                 udelay(500);
2803
2804                 reg = FDI_RX_IIR(pipe);
2805                 temp = I915_READ(reg);
2806                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2807
2808                 if (temp & FDI_RX_SYMBOL_LOCK) {
2809                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2810                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2811                         break;
2812                 }
2813         }
2814         if (i == 4)
2815                 DRM_ERROR("FDI train 2 fail!\n");
2816
2817         DRM_DEBUG_KMS("FDI train done.\n");
2818 }
2819
2820 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2821 {
2822         struct drm_device *dev = intel_crtc->base.dev;
2823         struct drm_i915_private *dev_priv = dev->dev_private;
2824         int pipe = intel_crtc->pipe;
2825         u32 reg, temp;
2826
2827
2828         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2829         reg = FDI_RX_CTL(pipe);
2830         temp = I915_READ(reg);
2831         temp &= ~((0x7 << 19) | (0x7 << 16));
2832         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2833         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2834         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2835
2836         POSTING_READ(reg);
2837         udelay(200);
2838
2839         /* Switch from Rawclk to PCDclk */
2840         temp = I915_READ(reg);
2841         I915_WRITE(reg, temp | FDI_PCDCLK);
2842
2843         POSTING_READ(reg);
2844         udelay(200);
2845
2846         /* On Haswell, the PLL configuration for ports and pipes is handled
2847          * separately, as part of DDI setup */
2848         if (!IS_HASWELL(dev)) {
2849                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2850                 reg = FDI_TX_CTL(pipe);
2851                 temp = I915_READ(reg);
2852                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2853                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2854
2855                         POSTING_READ(reg);
2856                         udelay(100);
2857                 }
2858         }
2859 }
2860
2861 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2862 {
2863         struct drm_device *dev = intel_crtc->base.dev;
2864         struct drm_i915_private *dev_priv = dev->dev_private;
2865         int pipe = intel_crtc->pipe;
2866         u32 reg, temp;
2867
2868         /* Switch from PCDclk to Rawclk */
2869         reg = FDI_RX_CTL(pipe);
2870         temp = I915_READ(reg);
2871         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2872
2873         /* Disable CPU FDI TX PLL */
2874         reg = FDI_TX_CTL(pipe);
2875         temp = I915_READ(reg);
2876         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2877
2878         POSTING_READ(reg);
2879         udelay(100);
2880
2881         reg = FDI_RX_CTL(pipe);
2882         temp = I915_READ(reg);
2883         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2884
2885         /* Wait for the clocks to turn off. */
2886         POSTING_READ(reg);
2887         udelay(100);
2888 }
2889
2890 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2891 {
2892         struct drm_i915_private *dev_priv = dev->dev_private;
2893         u32 flags = I915_READ(SOUTH_CHICKEN1);
2894
2895         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2896         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2897         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2898         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2899         POSTING_READ(SOUTH_CHICKEN1);
2900 }
2901 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2902 {
2903         struct drm_device *dev = crtc->dev;
2904         struct drm_i915_private *dev_priv = dev->dev_private;
2905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2906         int pipe = intel_crtc->pipe;
2907         u32 reg, temp;
2908
2909         /* disable CPU FDI tx and PCH FDI rx */
2910         reg = FDI_TX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2913         POSTING_READ(reg);
2914
2915         reg = FDI_RX_CTL(pipe);
2916         temp = I915_READ(reg);
2917         temp &= ~(0x7 << 16);
2918         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2919         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2920
2921         POSTING_READ(reg);
2922         udelay(100);
2923
2924         /* Ironlake workaround, disable clock pointer after downing FDI */
2925         if (HAS_PCH_IBX(dev)) {
2926                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2927         } else if (HAS_PCH_CPT(dev)) {
2928                 cpt_phase_pointer_disable(dev, pipe);
2929         }
2930
2931         /* still set train pattern 1 */
2932         reg = FDI_TX_CTL(pipe);
2933         temp = I915_READ(reg);
2934         temp &= ~FDI_LINK_TRAIN_NONE;
2935         temp |= FDI_LINK_TRAIN_PATTERN_1;
2936         I915_WRITE(reg, temp);
2937
2938         reg = FDI_RX_CTL(pipe);
2939         temp = I915_READ(reg);
2940         if (HAS_PCH_CPT(dev)) {
2941                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2942                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2943         } else {
2944                 temp &= ~FDI_LINK_TRAIN_NONE;
2945                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2946         }
2947         /* BPC in FDI rx is consistent with that in PIPECONF */
2948         temp &= ~(0x07 << 16);
2949         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2950         I915_WRITE(reg, temp);
2951
2952         POSTING_READ(reg);
2953         udelay(100);
2954 }
2955
2956 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2957 {
2958         struct drm_device *dev = crtc->dev;
2959         struct drm_i915_private *dev_priv = dev->dev_private;
2960         unsigned long flags;
2961         bool pending;
2962
2963         if (atomic_read(&dev_priv->mm.wedged))
2964                 return false;
2965
2966         spin_lock_irqsave(&dev->event_lock, flags);
2967         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2968         spin_unlock_irqrestore(&dev->event_lock, flags);
2969
2970         return pending;
2971 }
2972
2973 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2974 {
2975         struct drm_device *dev = crtc->dev;
2976         struct drm_i915_private *dev_priv = dev->dev_private;
2977
2978         if (crtc->fb == NULL)
2979                 return;
2980
2981         wait_event(dev_priv->pending_flip_queue,
2982                    !intel_crtc_has_pending_flip(crtc));
2983
2984         mutex_lock(&dev->struct_mutex);
2985         intel_finish_fb(crtc->fb);
2986         mutex_unlock(&dev->struct_mutex);
2987 }
2988
2989 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2990 {
2991         struct drm_device *dev = crtc->dev;
2992         struct intel_encoder *intel_encoder;
2993
2994         /*
2995          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2996          * must be driven by its own crtc; no sharing is possible.
2997          */
2998         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2999                 switch (intel_encoder->type) {
3000                 case INTEL_OUTPUT_EDP:
3001                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
3002                                 return false;
3003                         continue;
3004                 }
3005         }
3006
3007         return true;
3008 }
3009
3010 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3011 {
3012         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3013 }
3014
3015 /* Program iCLKIP clock to the desired frequency */
3016 static void lpt_program_iclkip(struct drm_crtc *crtc)
3017 {
3018         struct drm_device *dev = crtc->dev;
3019         struct drm_i915_private *dev_priv = dev->dev_private;
3020         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3021         u32 temp;
3022
3023         /* It is necessary to ungate the pixclk gate prior to programming
3024          * the divisors, and gate it back when it is done.
3025          */
3026         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3027
3028         /* Disable SSCCTL */
3029         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3030                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3031                                         SBI_SSCCTL_DISABLE);
3032
3033         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3034         if (crtc->mode.clock == 20000) {
3035                 auxdiv = 1;
3036                 divsel = 0x41;
3037                 phaseinc = 0x20;
3038         } else {
3039                 /* The iCLK virtual clock root frequency is in MHz,
3040                  * but the crtc->mode.clock in in KHz. To get the divisors,
3041                  * it is necessary to divide one by another, so we
3042                  * convert the virtual clock precision to KHz here for higher
3043                  * precision.
3044                  */
3045                 u32 iclk_virtual_root_freq = 172800 * 1000;
3046                 u32 iclk_pi_range = 64;
3047                 u32 desired_divisor, msb_divisor_value, pi_value;
3048
3049                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3050                 msb_divisor_value = desired_divisor / iclk_pi_range;
3051                 pi_value = desired_divisor % iclk_pi_range;
3052
3053                 auxdiv = 0;
3054                 divsel = msb_divisor_value - 2;
3055                 phaseinc = pi_value;
3056         }
3057
3058         /* This should not happen with any sane values */
3059         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3060                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3061         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3062                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3063
3064         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3065                         crtc->mode.clock,
3066                         auxdiv,
3067                         divsel,
3068                         phasedir,
3069                         phaseinc);
3070
3071         /* Program SSCDIVINTPHASE6 */
3072         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3073         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3074         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3075         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3076         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3077         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3078         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3079
3080         intel_sbi_write(dev_priv,
3081                         SBI_SSCDIVINTPHASE6,
3082                         temp);
3083
3084         /* Program SSCAUXDIV */
3085         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3086         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3087         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3088         intel_sbi_write(dev_priv,
3089                         SBI_SSCAUXDIV6,
3090                         temp);
3091
3092
3093         /* Enable modulator and associated divider */
3094         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3095         temp &= ~SBI_SSCCTL_DISABLE;
3096         intel_sbi_write(dev_priv,
3097                         SBI_SSCCTL6,
3098                         temp);
3099
3100         /* Wait for initialization time */
3101         udelay(24);
3102
3103         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3104 }
3105
3106 /*
3107  * Enable PCH resources required for PCH ports:
3108  *   - PCH PLLs
3109  *   - FDI training & RX/TX
3110  *   - update transcoder timings
3111  *   - DP transcoding bits
3112  *   - transcoder
3113  */
3114 static void ironlake_pch_enable(struct drm_crtc *crtc)
3115 {
3116         struct drm_device *dev = crtc->dev;
3117         struct drm_i915_private *dev_priv = dev->dev_private;
3118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3119         int pipe = intel_crtc->pipe;
3120         u32 reg, temp;
3121
3122         assert_transcoder_disabled(dev_priv, pipe);
3123
3124         /* Write the TU size bits before fdi link training, so that error
3125          * detection works. */
3126         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3127                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3128
3129         /* For PCH output, training FDI link */
3130         dev_priv->display.fdi_link_train(crtc);
3131
3132         /* XXX: pch pll's can be enabled any time before we enable the PCH
3133          * transcoder, and we actually should do this to not upset any PCH
3134          * transcoder that already use the clock when we share it.
3135          *
3136          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3137          * unconditionally resets the pll - we need that to have the right LVDS
3138          * enable sequence. */
3139         ironlake_enable_pch_pll(intel_crtc);
3140
3141         if (HAS_PCH_CPT(dev)) {
3142                 u32 sel;
3143
3144                 temp = I915_READ(PCH_DPLL_SEL);
3145                 switch (pipe) {
3146                 default:
3147                 case 0:
3148                         temp |= TRANSA_DPLL_ENABLE;
3149                         sel = TRANSA_DPLLB_SEL;
3150                         break;
3151                 case 1:
3152                         temp |= TRANSB_DPLL_ENABLE;
3153                         sel = TRANSB_DPLLB_SEL;
3154                         break;
3155                 case 2:
3156                         temp |= TRANSC_DPLL_ENABLE;
3157                         sel = TRANSC_DPLLB_SEL;
3158                         break;
3159                 }
3160                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3161                         temp |= sel;
3162                 else
3163                         temp &= ~sel;
3164                 I915_WRITE(PCH_DPLL_SEL, temp);
3165         }
3166
3167         /* set transcoder timing, panel must allow it */
3168         assert_panel_unlocked(dev_priv, pipe);
3169         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3170         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3171         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3172
3173         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3174         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3175         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3176         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3177
3178         intel_fdi_normal_train(crtc);
3179
3180         /* For PCH DP, enable TRANS_DP_CTL */
3181         if (HAS_PCH_CPT(dev) &&
3182             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3183              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3184                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3185                 reg = TRANS_DP_CTL(pipe);
3186                 temp = I915_READ(reg);
3187                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3188                           TRANS_DP_SYNC_MASK |
3189                           TRANS_DP_BPC_MASK);
3190                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3191                          TRANS_DP_ENH_FRAMING);
3192                 temp |= bpc << 9; /* same format but at 11:9 */
3193
3194                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3195                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3196                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3197                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3198
3199                 switch (intel_trans_dp_port_sel(crtc)) {
3200                 case PCH_DP_B:
3201                         temp |= TRANS_DP_PORT_SEL_B;
3202                         break;
3203                 case PCH_DP_C:
3204                         temp |= TRANS_DP_PORT_SEL_C;
3205                         break;
3206                 case PCH_DP_D:
3207                         temp |= TRANS_DP_PORT_SEL_D;
3208                         break;
3209                 default:
3210                         BUG();
3211                 }
3212
3213                 I915_WRITE(reg, temp);
3214         }
3215
3216         ironlake_enable_pch_transcoder(dev_priv, pipe);
3217 }
3218
3219 static void lpt_pch_enable(struct drm_crtc *crtc)
3220 {
3221         struct drm_device *dev = crtc->dev;
3222         struct drm_i915_private *dev_priv = dev->dev_private;
3223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3224         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3225
3226         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3227
3228         lpt_program_iclkip(crtc);
3229
3230         /* Set transcoder timing. */
3231         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3232         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3233         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3234
3235         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3236         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3237         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3238         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3239
3240         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3241 }
3242
3243 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3244 {
3245         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3246
3247         if (pll == NULL)
3248                 return;
3249
3250         if (pll->refcount == 0) {
3251                 WARN(1, "bad PCH PLL refcount\n");
3252                 return;
3253         }
3254
3255         --pll->refcount;
3256         intel_crtc->pch_pll = NULL;
3257 }
3258
3259 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3260 {
3261         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3262         struct intel_pch_pll *pll;
3263         int i;
3264
3265         pll = intel_crtc->pch_pll;
3266         if (pll) {
3267                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3268                               intel_crtc->base.base.id, pll->pll_reg);
3269                 goto prepare;
3270         }
3271
3272         if (HAS_PCH_IBX(dev_priv->dev)) {
3273                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3274                 i = intel_crtc->pipe;
3275                 pll = &dev_priv->pch_plls[i];
3276
3277                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3278                               intel_crtc->base.base.id, pll->pll_reg);
3279
3280                 goto found;
3281         }
3282
3283         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3284                 pll = &dev_priv->pch_plls[i];
3285
3286                 /* Only want to check enabled timings first */
3287                 if (pll->refcount == 0)
3288                         continue;
3289
3290                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3291                     fp == I915_READ(pll->fp0_reg)) {
3292                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3293                                       intel_crtc->base.base.id,
3294                                       pll->pll_reg, pll->refcount, pll->active);
3295
3296                         goto found;
3297                 }
3298         }
3299
3300         /* Ok no matching timings, maybe there's a free one? */
3301         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3302                 pll = &dev_priv->pch_plls[i];
3303                 if (pll->refcount == 0) {
3304                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3305                                       intel_crtc->base.base.id, pll->pll_reg);
3306                         goto found;
3307                 }
3308         }
3309
3310         return NULL;
3311
3312 found:
3313         intel_crtc->pch_pll = pll;
3314         pll->refcount++;
3315         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3316 prepare: /* separate function? */
3317         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3318
3319         /* Wait for the clocks to stabilize before rewriting the regs */
3320         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3321         POSTING_READ(pll->pll_reg);
3322         udelay(150);
3323
3324         I915_WRITE(pll->fp0_reg, fp);
3325         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3326         pll->on = false;
3327         return pll;
3328 }
3329
3330 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3331 {
3332         struct drm_i915_private *dev_priv = dev->dev_private;
3333         int dslreg = PIPEDSL(pipe);
3334         u32 temp;
3335
3336         temp = I915_READ(dslreg);
3337         udelay(500);
3338         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3339                 if (wait_for(I915_READ(dslreg) != temp, 5))
3340                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3341         }
3342 }
3343
3344 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3345 {
3346         struct drm_device *dev = crtc->dev;
3347         struct drm_i915_private *dev_priv = dev->dev_private;
3348         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3349         struct intel_encoder *encoder;
3350         int pipe = intel_crtc->pipe;
3351         int plane = intel_crtc->plane;
3352         u32 temp;
3353         bool is_pch_port;
3354
3355         WARN_ON(!crtc->enabled);
3356
3357         if (intel_crtc->active)
3358                 return;
3359
3360         intel_crtc->active = true;
3361         intel_update_watermarks(dev);
3362
3363         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3364                 temp = I915_READ(PCH_LVDS);
3365                 if ((temp & LVDS_PORT_EN) == 0)
3366                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3367         }
3368
3369         is_pch_port = ironlake_crtc_driving_pch(crtc);
3370
3371         if (is_pch_port) {
3372                 /* Note: FDI PLL enabling _must_ be done before we enable the
3373                  * cpu pipes, hence this is separate from all the other fdi/pch
3374                  * enabling. */
3375                 ironlake_fdi_pll_enable(intel_crtc);
3376         } else {
3377                 assert_fdi_tx_disabled(dev_priv, pipe);
3378                 assert_fdi_rx_disabled(dev_priv, pipe);
3379         }
3380
3381         for_each_encoder_on_crtc(dev, crtc, encoder)
3382                 if (encoder->pre_enable)
3383                         encoder->pre_enable(encoder);
3384
3385         /* Enable panel fitting for LVDS */
3386         if (dev_priv->pch_pf_size &&
3387             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3388              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3389                 /* Force use of hard-coded filter coefficients
3390                  * as some pre-programmed values are broken,
3391                  * e.g. x201.
3392                  */
3393                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3394                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3395                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3396         }
3397
3398         /*
3399          * On ILK+ LUT must be loaded before the pipe is running but with
3400          * clocks enabled
3401          */
3402         intel_crtc_load_lut(crtc);
3403
3404         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3405         intel_enable_plane(dev_priv, plane, pipe);
3406
3407         if (is_pch_port)
3408                 ironlake_pch_enable(crtc);
3409
3410         mutex_lock(&dev->struct_mutex);
3411         intel_update_fbc(dev);
3412         mutex_unlock(&dev->struct_mutex);
3413
3414         intel_crtc_update_cursor(crtc, true);
3415
3416         for_each_encoder_on_crtc(dev, crtc, encoder)
3417                 encoder->enable(encoder);
3418
3419         if (HAS_PCH_CPT(dev))
3420                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3421
3422         /*
3423          * There seems to be a race in PCH platform hw (at least on some
3424          * outputs) where an enabled pipe still completes any pageflip right
3425          * away (as if the pipe is off) instead of waiting for vblank. As soon
3426          * as the first vblank happend, everything works as expected. Hence just
3427          * wait for one vblank before returning to avoid strange things
3428          * happening.
3429          */
3430         intel_wait_for_vblank(dev, intel_crtc->pipe);
3431 }
3432
3433 static void haswell_crtc_enable(struct drm_crtc *crtc)
3434 {
3435         struct drm_device *dev = crtc->dev;
3436         struct drm_i915_private *dev_priv = dev->dev_private;
3437         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3438         struct intel_encoder *encoder;
3439         int pipe = intel_crtc->pipe;
3440         int plane = intel_crtc->plane;
3441         bool is_pch_port;
3442
3443         WARN_ON(!crtc->enabled);
3444
3445         if (intel_crtc->active)
3446                 return;
3447
3448         intel_crtc->active = true;
3449         intel_update_watermarks(dev);
3450
3451         is_pch_port = haswell_crtc_driving_pch(crtc);
3452
3453         if (is_pch_port)
3454                 dev_priv->display.fdi_link_train(crtc);
3455
3456         for_each_encoder_on_crtc(dev, crtc, encoder)
3457                 if (encoder->pre_enable)
3458                         encoder->pre_enable(encoder);
3459
3460         intel_ddi_enable_pipe_clock(intel_crtc);
3461
3462         /* Enable panel fitting for eDP */
3463         if (dev_priv->pch_pf_size &&
3464             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3465                 /* Force use of hard-coded filter coefficients
3466                  * as some pre-programmed values are broken,
3467                  * e.g. x201.
3468                  */
3469                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3470                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3471                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3472         }
3473
3474         /*
3475          * On ILK+ LUT must be loaded before the pipe is running but with
3476          * clocks enabled
3477          */
3478         intel_crtc_load_lut(crtc);
3479
3480         intel_ddi_set_pipe_settings(crtc);
3481         intel_ddi_enable_pipe_func(crtc);
3482
3483         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3484         intel_enable_plane(dev_priv, plane, pipe);
3485
3486         if (is_pch_port)
3487                 lpt_pch_enable(crtc);
3488
3489         mutex_lock(&dev->struct_mutex);
3490         intel_update_fbc(dev);
3491         mutex_unlock(&dev->struct_mutex);
3492
3493         intel_crtc_update_cursor(crtc, true);
3494
3495         for_each_encoder_on_crtc(dev, crtc, encoder)
3496                 encoder->enable(encoder);
3497
3498         /*
3499          * There seems to be a race in PCH platform hw (at least on some
3500          * outputs) where an enabled pipe still completes any pageflip right
3501          * away (as if the pipe is off) instead of waiting for vblank. As soon
3502          * as the first vblank happend, everything works as expected. Hence just
3503          * wait for one vblank before returning to avoid strange things
3504          * happening.
3505          */
3506         intel_wait_for_vblank(dev, intel_crtc->pipe);
3507 }
3508
3509 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3510 {
3511         struct drm_device *dev = crtc->dev;
3512         struct drm_i915_private *dev_priv = dev->dev_private;
3513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3514         struct intel_encoder *encoder;
3515         int pipe = intel_crtc->pipe;
3516         int plane = intel_crtc->plane;
3517         u32 reg, temp;
3518
3519
3520         if (!intel_crtc->active)
3521                 return;
3522
3523         for_each_encoder_on_crtc(dev, crtc, encoder)
3524                 encoder->disable(encoder);
3525
3526         intel_crtc_wait_for_pending_flips(crtc);
3527         drm_vblank_off(dev, pipe);
3528         intel_crtc_update_cursor(crtc, false);
3529
3530         intel_disable_plane(dev_priv, plane, pipe);
3531
3532         if (dev_priv->cfb_plane == plane)
3533                 intel_disable_fbc(dev);
3534
3535         intel_disable_pipe(dev_priv, pipe);
3536
3537         /* Disable PF */
3538         I915_WRITE(PF_CTL(pipe), 0);
3539         I915_WRITE(PF_WIN_SZ(pipe), 0);
3540
3541         for_each_encoder_on_crtc(dev, crtc, encoder)
3542                 if (encoder->post_disable)
3543                         encoder->post_disable(encoder);
3544
3545         ironlake_fdi_disable(crtc);
3546
3547         ironlake_disable_pch_transcoder(dev_priv, pipe);
3548
3549         if (HAS_PCH_CPT(dev)) {
3550                 /* disable TRANS_DP_CTL */
3551                 reg = TRANS_DP_CTL(pipe);
3552                 temp = I915_READ(reg);
3553                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3554                 temp |= TRANS_DP_PORT_SEL_NONE;
3555                 I915_WRITE(reg, temp);
3556
3557                 /* disable DPLL_SEL */
3558                 temp = I915_READ(PCH_DPLL_SEL);
3559                 switch (pipe) {
3560                 case 0:
3561                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3562                         break;
3563                 case 1:
3564                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3565                         break;
3566                 case 2:
3567                         /* C shares PLL A or B */
3568                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3569                         break;
3570                 default:
3571                         BUG(); /* wtf */
3572                 }
3573                 I915_WRITE(PCH_DPLL_SEL, temp);
3574         }
3575
3576         /* disable PCH DPLL */
3577         intel_disable_pch_pll(intel_crtc);
3578
3579         ironlake_fdi_pll_disable(intel_crtc);
3580
3581         intel_crtc->active = false;
3582         intel_update_watermarks(dev);
3583
3584         mutex_lock(&dev->struct_mutex);
3585         intel_update_fbc(dev);
3586         mutex_unlock(&dev->struct_mutex);
3587 }
3588
3589 static void haswell_crtc_disable(struct drm_crtc *crtc)
3590 {
3591         struct drm_device *dev = crtc->dev;
3592         struct drm_i915_private *dev_priv = dev->dev_private;
3593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3594         struct intel_encoder *encoder;
3595         int pipe = intel_crtc->pipe;
3596         int plane = intel_crtc->plane;
3597         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3598         bool is_pch_port;
3599
3600         if (!intel_crtc->active)
3601                 return;
3602
3603         is_pch_port = haswell_crtc_driving_pch(crtc);
3604
3605         for_each_encoder_on_crtc(dev, crtc, encoder)
3606                 encoder->disable(encoder);
3607
3608         intel_crtc_wait_for_pending_flips(crtc);
3609         drm_vblank_off(dev, pipe);
3610         intel_crtc_update_cursor(crtc, false);
3611
3612         intel_disable_plane(dev_priv, plane, pipe);
3613
3614         if (dev_priv->cfb_plane == plane)
3615                 intel_disable_fbc(dev);
3616
3617         intel_disable_pipe(dev_priv, pipe);
3618
3619         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3620
3621         /* Disable PF */
3622         I915_WRITE(PF_CTL(pipe), 0);
3623         I915_WRITE(PF_WIN_SZ(pipe), 0);
3624
3625         intel_ddi_disable_pipe_clock(intel_crtc);
3626
3627         for_each_encoder_on_crtc(dev, crtc, encoder)
3628                 if (encoder->post_disable)
3629                         encoder->post_disable(encoder);
3630
3631         if (is_pch_port) {
3632                 lpt_disable_pch_transcoder(dev_priv);
3633                 intel_ddi_fdi_disable(crtc);
3634         }
3635
3636         intel_crtc->active = false;
3637         intel_update_watermarks(dev);
3638
3639         mutex_lock(&dev->struct_mutex);
3640         intel_update_fbc(dev);
3641         mutex_unlock(&dev->struct_mutex);
3642 }
3643
3644 static void ironlake_crtc_off(struct drm_crtc *crtc)
3645 {
3646         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3647         intel_put_pch_pll(intel_crtc);
3648 }
3649
3650 static void haswell_crtc_off(struct drm_crtc *crtc)
3651 {
3652         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3653
3654         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3655          * start using it. */
3656         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3657
3658         intel_ddi_put_crtc_pll(crtc);
3659 }
3660
3661 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3662 {
3663         if (!enable && intel_crtc->overlay) {
3664                 struct drm_device *dev = intel_crtc->base.dev;
3665                 struct drm_i915_private *dev_priv = dev->dev_private;
3666
3667                 mutex_lock(&dev->struct_mutex);
3668                 dev_priv->mm.interruptible = false;
3669                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3670                 dev_priv->mm.interruptible = true;
3671                 mutex_unlock(&dev->struct_mutex);
3672         }
3673
3674         /* Let userspace switch the overlay on again. In most cases userspace
3675          * has to recompute where to put it anyway.
3676          */
3677 }
3678
3679 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3680 {
3681         struct drm_device *dev = crtc->dev;
3682         struct drm_i915_private *dev_priv = dev->dev_private;
3683         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3684         struct intel_encoder *encoder;
3685         int pipe = intel_crtc->pipe;
3686         int plane = intel_crtc->plane;
3687
3688         WARN_ON(!crtc->enabled);
3689
3690         if (intel_crtc->active)
3691                 return;
3692
3693         intel_crtc->active = true;
3694         intel_update_watermarks(dev);
3695
3696         intel_enable_pll(dev_priv, pipe);
3697         intel_enable_pipe(dev_priv, pipe, false);
3698         intel_enable_plane(dev_priv, plane, pipe);
3699
3700         intel_crtc_load_lut(crtc);
3701         intel_update_fbc(dev);
3702
3703         /* Give the overlay scaler a chance to enable if it's on this pipe */
3704         intel_crtc_dpms_overlay(intel_crtc, true);
3705         intel_crtc_update_cursor(crtc, true);
3706
3707         for_each_encoder_on_crtc(dev, crtc, encoder)
3708                 encoder->enable(encoder);
3709 }
3710
3711 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3712 {
3713         struct drm_device *dev = crtc->dev;
3714         struct drm_i915_private *dev_priv = dev->dev_private;
3715         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3716         struct intel_encoder *encoder;
3717         int pipe = intel_crtc->pipe;
3718         int plane = intel_crtc->plane;
3719
3720
3721         if (!intel_crtc->active)
3722                 return;
3723
3724         for_each_encoder_on_crtc(dev, crtc, encoder)
3725                 encoder->disable(encoder);
3726
3727         /* Give the overlay scaler a chance to disable if it's on this pipe */
3728         intel_crtc_wait_for_pending_flips(crtc);
3729         drm_vblank_off(dev, pipe);
3730         intel_crtc_dpms_overlay(intel_crtc, false);
3731         intel_crtc_update_cursor(crtc, false);
3732
3733         if (dev_priv->cfb_plane == plane)
3734                 intel_disable_fbc(dev);
3735
3736         intel_disable_plane(dev_priv, plane, pipe);
3737         intel_disable_pipe(dev_priv, pipe);
3738         intel_disable_pll(dev_priv, pipe);
3739
3740         intel_crtc->active = false;
3741         intel_update_fbc(dev);
3742         intel_update_watermarks(dev);
3743 }
3744
3745 static void i9xx_crtc_off(struct drm_crtc *crtc)
3746 {
3747 }
3748
3749 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3750                                     bool enabled)
3751 {
3752         struct drm_device *dev = crtc->dev;
3753         struct drm_i915_master_private *master_priv;
3754         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3755         int pipe = intel_crtc->pipe;
3756
3757         if (!dev->primary->master)
3758                 return;
3759
3760         master_priv = dev->primary->master->driver_priv;
3761         if (!master_priv->sarea_priv)
3762                 return;
3763
3764         switch (pipe) {
3765         case 0:
3766                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3767                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3768                 break;
3769         case 1:
3770                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3771                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3772                 break;
3773         default:
3774                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3775                 break;
3776         }
3777 }
3778
3779 /**
3780  * Sets the power management mode of the pipe and plane.
3781  */
3782 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3783 {
3784         struct drm_device *dev = crtc->dev;
3785         struct drm_i915_private *dev_priv = dev->dev_private;
3786         struct intel_encoder *intel_encoder;
3787         bool enable = false;
3788
3789         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3790                 enable |= intel_encoder->connectors_active;
3791
3792         if (enable)
3793                 dev_priv->display.crtc_enable(crtc);
3794         else
3795                 dev_priv->display.crtc_disable(crtc);
3796
3797         intel_crtc_update_sarea(crtc, enable);
3798 }
3799
3800 static void intel_crtc_noop(struct drm_crtc *crtc)
3801 {
3802 }
3803
3804 static void intel_crtc_disable(struct drm_crtc *crtc)
3805 {
3806         struct drm_device *dev = crtc->dev;
3807         struct drm_connector *connector;
3808         struct drm_i915_private *dev_priv = dev->dev_private;
3809
3810         /* crtc should still be enabled when we disable it. */
3811         WARN_ON(!crtc->enabled);
3812
3813         dev_priv->display.crtc_disable(crtc);
3814         intel_crtc_update_sarea(crtc, false);
3815         dev_priv->display.off(crtc);
3816
3817         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3818         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3819
3820         if (crtc->fb) {
3821                 mutex_lock(&dev->struct_mutex);
3822                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3823                 mutex_unlock(&dev->struct_mutex);
3824                 crtc->fb = NULL;
3825         }
3826
3827         /* Update computed state. */
3828         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3829                 if (!connector->encoder || !connector->encoder->crtc)
3830                         continue;
3831
3832                 if (connector->encoder->crtc != crtc)
3833                         continue;
3834
3835                 connector->dpms = DRM_MODE_DPMS_OFF;
3836                 to_intel_encoder(connector->encoder)->connectors_active = false;
3837         }
3838 }
3839
3840 void intel_modeset_disable(struct drm_device *dev)
3841 {
3842         struct drm_crtc *crtc;
3843
3844         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3845                 if (crtc->enabled)
3846                         intel_crtc_disable(crtc);
3847         }
3848 }
3849
3850 void intel_encoder_noop(struct drm_encoder *encoder)
3851 {
3852 }
3853
3854 void intel_encoder_destroy(struct drm_encoder *encoder)
3855 {
3856         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3857
3858         drm_encoder_cleanup(encoder);
3859         kfree(intel_encoder);
3860 }
3861
3862 /* Simple dpms helper for encodres with just one connector, no cloning and only
3863  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3864  * state of the entire output pipe. */
3865 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3866 {
3867         if (mode == DRM_MODE_DPMS_ON) {
3868                 encoder->connectors_active = true;
3869
3870                 intel_crtc_update_dpms(encoder->base.crtc);
3871         } else {
3872                 encoder->connectors_active = false;
3873
3874                 intel_crtc_update_dpms(encoder->base.crtc);
3875         }
3876 }
3877
3878 /* Cross check the actual hw state with our own modeset state tracking (and it's
3879  * internal consistency). */
3880 static void intel_connector_check_state(struct intel_connector *connector)
3881 {
3882         if (connector->get_hw_state(connector)) {
3883                 struct intel_encoder *encoder = connector->encoder;
3884                 struct drm_crtc *crtc;
3885                 bool encoder_enabled;
3886                 enum pipe pipe;
3887
3888                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3889                               connector->base.base.id,
3890                               drm_get_connector_name(&connector->base));
3891
3892                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3893                      "wrong connector dpms state\n");
3894                 WARN(connector->base.encoder != &encoder->base,
3895                      "active connector not linked to encoder\n");
3896                 WARN(!encoder->connectors_active,
3897                      "encoder->connectors_active not set\n");
3898
3899                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3900                 WARN(!encoder_enabled, "encoder not enabled\n");
3901                 if (WARN_ON(!encoder->base.crtc))
3902                         return;
3903
3904                 crtc = encoder->base.crtc;
3905
3906                 WARN(!crtc->enabled, "crtc not enabled\n");
3907                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3908                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3909                      "encoder active on the wrong pipe\n");
3910         }
3911 }
3912
3913 /* Even simpler default implementation, if there's really no special case to
3914  * consider. */
3915 void intel_connector_dpms(struct drm_connector *connector, int mode)
3916 {
3917         struct intel_encoder *encoder = intel_attached_encoder(connector);
3918
3919         /* All the simple cases only support two dpms states. */
3920         if (mode != DRM_MODE_DPMS_ON)
3921                 mode = DRM_MODE_DPMS_OFF;
3922
3923         if (mode == connector->dpms)
3924                 return;
3925
3926         connector->dpms = mode;
3927
3928         /* Only need to change hw state when actually enabled */
3929         if (encoder->base.crtc)
3930                 intel_encoder_dpms(encoder, mode);
3931         else
3932                 WARN_ON(encoder->connectors_active != false);
3933
3934         intel_modeset_check_state(connector->dev);
3935 }
3936
3937 /* Simple connector->get_hw_state implementation for encoders that support only
3938  * one connector and no cloning and hence the encoder state determines the state
3939  * of the connector. */
3940 bool intel_connector_get_hw_state(struct intel_connector *connector)
3941 {
3942         enum pipe pipe = 0;
3943         struct intel_encoder *encoder = connector->encoder;
3944
3945         return encoder->get_hw_state(encoder, &pipe);
3946 }
3947
3948 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3949                                   const struct drm_display_mode *mode,
3950                                   struct drm_display_mode *adjusted_mode)
3951 {
3952         struct drm_device *dev = crtc->dev;
3953
3954         if (HAS_PCH_SPLIT(dev)) {
3955                 /* FDI link clock is fixed at 2.7G */
3956                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3957                         return false;
3958         }
3959
3960         /* All interlaced capable intel hw wants timings in frames. Note though
3961          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3962          * timings, so we need to be careful not to clobber these.*/
3963         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3964                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3965
3966         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3967          * with a hsync front porch of 0.
3968          */
3969         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3970                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3971                 return false;
3972
3973         return true;
3974 }
3975
3976 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3977 {
3978         return 400000; /* FIXME */
3979 }
3980
3981 static int i945_get_display_clock_speed(struct drm_device *dev)
3982 {
3983         return 400000;
3984 }
3985
3986 static int i915_get_display_clock_speed(struct drm_device *dev)
3987 {
3988         return 333000;
3989 }
3990
3991 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3992 {
3993         return 200000;
3994 }
3995
3996 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3997 {
3998         u16 gcfgc = 0;
3999
4000         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4001
4002         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4003                 return 133000;
4004         else {
4005                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4006                 case GC_DISPLAY_CLOCK_333_MHZ:
4007                         return 333000;
4008                 default:
4009                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4010                         return 190000;
4011                 }
4012         }
4013 }
4014
4015 static int i865_get_display_clock_speed(struct drm_device *dev)
4016 {
4017         return 266000;
4018 }
4019
4020 static int i855_get_display_clock_speed(struct drm_device *dev)
4021 {
4022         u16 hpllcc = 0;
4023         /* Assume that the hardware is in the high speed state.  This
4024          * should be the default.
4025          */
4026         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4027         case GC_CLOCK_133_200:
4028         case GC_CLOCK_100_200:
4029                 return 200000;
4030         case GC_CLOCK_166_250:
4031                 return 250000;
4032         case GC_CLOCK_100_133:
4033                 return 133000;
4034         }
4035
4036         /* Shouldn't happen */
4037         return 0;
4038 }
4039
4040 static int i830_get_display_clock_speed(struct drm_device *dev)
4041 {
4042         return 133000;
4043 }
4044
4045 struct fdi_m_n {
4046         u32        tu;
4047         u32        gmch_m;
4048         u32        gmch_n;
4049         u32        link_m;
4050         u32        link_n;
4051 };
4052
4053 static void
4054 fdi_reduce_ratio(u32 *num, u32 *den)
4055 {
4056         while (*num > 0xffffff || *den > 0xffffff) {
4057                 *num >>= 1;
4058                 *den >>= 1;
4059         }
4060 }
4061
4062 static void
4063 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4064                      int link_clock, struct fdi_m_n *m_n)
4065 {
4066         m_n->tu = 64; /* default size */
4067
4068         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4069         m_n->gmch_m = bits_per_pixel * pixel_clock;
4070         m_n->gmch_n = link_clock * nlanes * 8;
4071         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4072
4073         m_n->link_m = pixel_clock;
4074         m_n->link_n = link_clock;
4075         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4076 }
4077
4078 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4079 {
4080         if (i915_panel_use_ssc >= 0)
4081                 return i915_panel_use_ssc != 0;
4082         return dev_priv->lvds_use_ssc
4083                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4084 }
4085
4086 /**
4087  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4088  * @crtc: CRTC structure
4089  * @mode: requested mode
4090  *
4091  * A pipe may be connected to one or more outputs.  Based on the depth of the
4092  * attached framebuffer, choose a good color depth to use on the pipe.
4093  *
4094  * If possible, match the pipe depth to the fb depth.  In some cases, this
4095  * isn't ideal, because the connected output supports a lesser or restricted
4096  * set of depths.  Resolve that here:
4097  *    LVDS typically supports only 6bpc, so clamp down in that case
4098  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4099  *    Displays may support a restricted set as well, check EDID and clamp as
4100  *      appropriate.
4101  *    DP may want to dither down to 6bpc to fit larger modes
4102  *
4103  * RETURNS:
4104  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4105  * true if they don't match).
4106  */
4107 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4108                                          struct drm_framebuffer *fb,
4109                                          unsigned int *pipe_bpp,
4110                                          struct drm_display_mode *mode)
4111 {
4112         struct drm_device *dev = crtc->dev;
4113         struct drm_i915_private *dev_priv = dev->dev_private;
4114         struct drm_connector *connector;
4115         struct intel_encoder *intel_encoder;
4116         unsigned int display_bpc = UINT_MAX, bpc;
4117
4118         /* Walk the encoders & connectors on this crtc, get min bpc */
4119         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4120
4121                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4122                         unsigned int lvds_bpc;
4123
4124                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4125                             LVDS_A3_POWER_UP)
4126                                 lvds_bpc = 8;
4127                         else
4128                                 lvds_bpc = 6;
4129
4130                         if (lvds_bpc < display_bpc) {
4131                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4132                                 display_bpc = lvds_bpc;
4133                         }
4134                         continue;
4135                 }
4136
4137                 /* Not one of the known troublemakers, check the EDID */
4138                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4139                                     head) {
4140                         if (connector->encoder != &intel_encoder->base)
4141                                 continue;
4142
4143                         /* Don't use an invalid EDID bpc value */
4144                         if (connector->display_info.bpc &&
4145                             connector->display_info.bpc < display_bpc) {
4146                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4147                                 display_bpc = connector->display_info.bpc;
4148                         }
4149                 }
4150
4151                 /*
4152                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4153                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4154                  */
4155                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4156                         if (display_bpc > 8 && display_bpc < 12) {
4157                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4158                                 display_bpc = 12;
4159                         } else {
4160                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4161                                 display_bpc = 8;
4162                         }
4163                 }
4164         }
4165
4166         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4167                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4168                 display_bpc = 6;
4169         }
4170
4171         /*
4172          * We could just drive the pipe at the highest bpc all the time and
4173          * enable dithering as needed, but that costs bandwidth.  So choose
4174          * the minimum value that expresses the full color range of the fb but
4175          * also stays within the max display bpc discovered above.
4176          */
4177
4178         switch (fb->depth) {
4179         case 8:
4180                 bpc = 8; /* since we go through a colormap */
4181                 break;
4182         case 15:
4183         case 16:
4184                 bpc = 6; /* min is 18bpp */
4185                 break;
4186         case 24:
4187                 bpc = 8;
4188                 break;
4189         case 30:
4190                 bpc = 10;
4191                 break;
4192         case 48:
4193                 bpc = 12;
4194                 break;
4195         default:
4196                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4197                 bpc = min((unsigned int)8, display_bpc);
4198                 break;
4199         }
4200
4201         display_bpc = min(display_bpc, bpc);
4202
4203         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4204                       bpc, display_bpc);
4205
4206         *pipe_bpp = display_bpc * 3;
4207
4208         return display_bpc != bpc;
4209 }
4210
4211 static int vlv_get_refclk(struct drm_crtc *crtc)
4212 {
4213         struct drm_device *dev = crtc->dev;
4214         struct drm_i915_private *dev_priv = dev->dev_private;
4215         int refclk = 27000; /* for DP & HDMI */
4216
4217         return 100000; /* only one validated so far */
4218
4219         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4220                 refclk = 96000;
4221         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4222                 if (intel_panel_use_ssc(dev_priv))
4223                         refclk = 100000;
4224                 else
4225                         refclk = 96000;
4226         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4227                 refclk = 100000;
4228         }
4229
4230         return refclk;
4231 }
4232
4233 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4234 {
4235         struct drm_device *dev = crtc->dev;
4236         struct drm_i915_private *dev_priv = dev->dev_private;
4237         int refclk;
4238
4239         if (IS_VALLEYVIEW(dev)) {
4240                 refclk = vlv_get_refclk(crtc);
4241         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4242             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4243                 refclk = dev_priv->lvds_ssc_freq * 1000;
4244                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4245                               refclk / 1000);
4246         } else if (!IS_GEN2(dev)) {
4247                 refclk = 96000;
4248         } else {
4249                 refclk = 48000;
4250         }
4251
4252         return refclk;
4253 }
4254
4255 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4256                                       intel_clock_t *clock)
4257 {
4258         /* SDVO TV has fixed PLL values depend on its clock range,
4259            this mirrors vbios setting. */
4260         if (adjusted_mode->clock >= 100000
4261             && adjusted_mode->clock < 140500) {
4262                 clock->p1 = 2;
4263                 clock->p2 = 10;
4264                 clock->n = 3;
4265                 clock->m1 = 16;
4266                 clock->m2 = 8;
4267         } else if (adjusted_mode->clock >= 140500
4268                    && adjusted_mode->clock <= 200000) {
4269                 clock->p1 = 1;
4270                 clock->p2 = 10;
4271                 clock->n = 6;
4272                 clock->m1 = 12;
4273                 clock->m2 = 8;
4274         }
4275 }
4276
4277 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4278                                      intel_clock_t *clock,
4279                                      intel_clock_t *reduced_clock)
4280 {
4281         struct drm_device *dev = crtc->dev;
4282         struct drm_i915_private *dev_priv = dev->dev_private;
4283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4284         int pipe = intel_crtc->pipe;
4285         u32 fp, fp2 = 0;
4286
4287         if (IS_PINEVIEW(dev)) {
4288                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4289                 if (reduced_clock)
4290                         fp2 = (1 << reduced_clock->n) << 16 |
4291                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4292         } else {
4293                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4294                 if (reduced_clock)
4295                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4296                                 reduced_clock->m2;
4297         }
4298
4299         I915_WRITE(FP0(pipe), fp);
4300
4301         intel_crtc->lowfreq_avail = false;
4302         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4303             reduced_clock && i915_powersave) {
4304                 I915_WRITE(FP1(pipe), fp2);
4305                 intel_crtc->lowfreq_avail = true;
4306         } else {
4307                 I915_WRITE(FP1(pipe), fp);
4308         }
4309 }
4310
4311 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4312                               struct drm_display_mode *adjusted_mode)
4313 {
4314         struct drm_device *dev = crtc->dev;
4315         struct drm_i915_private *dev_priv = dev->dev_private;
4316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4317         int pipe = intel_crtc->pipe;
4318         u32 temp;
4319
4320         temp = I915_READ(LVDS);
4321         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4322         if (pipe == 1) {
4323                 temp |= LVDS_PIPEB_SELECT;
4324         } else {
4325                 temp &= ~LVDS_PIPEB_SELECT;
4326         }
4327         /* set the corresponsding LVDS_BORDER bit */
4328         temp |= dev_priv->lvds_border_bits;
4329         /* Set the B0-B3 data pairs corresponding to whether we're going to
4330          * set the DPLLs for dual-channel mode or not.
4331          */
4332         if (clock->p2 == 7)
4333                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4334         else
4335                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4336
4337         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4338          * appropriately here, but we need to look more thoroughly into how
4339          * panels behave in the two modes.
4340          */
4341         /* set the dithering flag on LVDS as needed */
4342         if (INTEL_INFO(dev)->gen >= 4) {
4343                 if (dev_priv->lvds_dither)
4344                         temp |= LVDS_ENABLE_DITHER;
4345                 else
4346                         temp &= ~LVDS_ENABLE_DITHER;
4347         }
4348         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4349         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4350                 temp |= LVDS_HSYNC_POLARITY;
4351         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4352                 temp |= LVDS_VSYNC_POLARITY;
4353         I915_WRITE(LVDS, temp);
4354 }
4355
4356 static void vlv_update_pll(struct drm_crtc *crtc,
4357                            struct drm_display_mode *mode,
4358                            struct drm_display_mode *adjusted_mode,
4359                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4360                            int num_connectors)
4361 {
4362         struct drm_device *dev = crtc->dev;
4363         struct drm_i915_private *dev_priv = dev->dev_private;
4364         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4365         int pipe = intel_crtc->pipe;
4366         u32 dpll, mdiv, pdiv;
4367         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4368         bool is_sdvo;
4369         u32 temp;
4370
4371         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4372                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4373
4374         dpll = DPLL_VGA_MODE_DIS;
4375         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4376         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4377         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4378
4379         I915_WRITE(DPLL(pipe), dpll);
4380         POSTING_READ(DPLL(pipe));
4381
4382         bestn = clock->n;
4383         bestm1 = clock->m1;
4384         bestm2 = clock->m2;
4385         bestp1 = clock->p1;
4386         bestp2 = clock->p2;
4387
4388         /*
4389          * In Valleyview PLL and program lane counter registers are exposed
4390          * through DPIO interface
4391          */
4392         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4393         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4394         mdiv |= ((bestn << DPIO_N_SHIFT));
4395         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4396         mdiv |= (1 << DPIO_K_SHIFT);
4397         mdiv |= DPIO_ENABLE_CALIBRATION;
4398         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4399
4400         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4401
4402         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4403                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4404                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4405                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4406         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4407
4408         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4409
4410         dpll |= DPLL_VCO_ENABLE;
4411         I915_WRITE(DPLL(pipe), dpll);
4412         POSTING_READ(DPLL(pipe));
4413         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4414                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4415
4416         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4417
4418         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4419                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4420
4421         I915_WRITE(DPLL(pipe), dpll);
4422
4423         /* Wait for the clocks to stabilize. */
4424         POSTING_READ(DPLL(pipe));
4425         udelay(150);
4426
4427         temp = 0;
4428         if (is_sdvo) {
4429                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4430                 if (temp > 1)
4431                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4432                 else
4433                         temp = 0;
4434         }
4435         I915_WRITE(DPLL_MD(pipe), temp);
4436         POSTING_READ(DPLL_MD(pipe));
4437
4438         /* Now program lane control registers */
4439         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4440                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4441         {
4442                 temp = 0x1000C4;
4443                 if(pipe == 1)
4444                         temp |= (1 << 21);
4445                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4446         }
4447         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4448         {
4449                 temp = 0x1000C4;
4450                 if(pipe == 1)
4451                         temp |= (1 << 21);
4452                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4453         }
4454 }
4455
4456 static void i9xx_update_pll(struct drm_crtc *crtc,
4457                             struct drm_display_mode *mode,
4458                             struct drm_display_mode *adjusted_mode,
4459                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4460                             int num_connectors)
4461 {
4462         struct drm_device *dev = crtc->dev;
4463         struct drm_i915_private *dev_priv = dev->dev_private;
4464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4465         int pipe = intel_crtc->pipe;
4466         u32 dpll;
4467         bool is_sdvo;
4468
4469         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4470
4471         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4472                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4473
4474         dpll = DPLL_VGA_MODE_DIS;
4475
4476         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4477                 dpll |= DPLLB_MODE_LVDS;
4478         else
4479                 dpll |= DPLLB_MODE_DAC_SERIAL;
4480         if (is_sdvo) {
4481                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4482                 if (pixel_multiplier > 1) {
4483                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4484                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4485                 }
4486                 dpll |= DPLL_DVO_HIGH_SPEED;
4487         }
4488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4489                 dpll |= DPLL_DVO_HIGH_SPEED;
4490
4491         /* compute bitmask from p1 value */
4492         if (IS_PINEVIEW(dev))
4493                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4494         else {
4495                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4496                 if (IS_G4X(dev) && reduced_clock)
4497                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4498         }
4499         switch (clock->p2) {
4500         case 5:
4501                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4502                 break;
4503         case 7:
4504                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4505                 break;
4506         case 10:
4507                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4508                 break;
4509         case 14:
4510                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4511                 break;
4512         }
4513         if (INTEL_INFO(dev)->gen >= 4)
4514                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4515
4516         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4517                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4518         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4519                 /* XXX: just matching BIOS for now */
4520                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4521                 dpll |= 3;
4522         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4523                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4524                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4525         else
4526                 dpll |= PLL_REF_INPUT_DREFCLK;
4527
4528         dpll |= DPLL_VCO_ENABLE;
4529         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4530         POSTING_READ(DPLL(pipe));
4531         udelay(150);
4532
4533         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4534          * This is an exception to the general rule that mode_set doesn't turn
4535          * things on.
4536          */
4537         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4538                 intel_update_lvds(crtc, clock, adjusted_mode);
4539
4540         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4541                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4542
4543         I915_WRITE(DPLL(pipe), dpll);
4544
4545         /* Wait for the clocks to stabilize. */
4546         POSTING_READ(DPLL(pipe));
4547         udelay(150);
4548
4549         if (INTEL_INFO(dev)->gen >= 4) {
4550                 u32 temp = 0;
4551                 if (is_sdvo) {
4552                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4553                         if (temp > 1)
4554                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4555                         else
4556                                 temp = 0;
4557                 }
4558                 I915_WRITE(DPLL_MD(pipe), temp);
4559         } else {
4560                 /* The pixel multiplier can only be updated once the
4561                  * DPLL is enabled and the clocks are stable.
4562                  *
4563                  * So write it again.
4564                  */
4565                 I915_WRITE(DPLL(pipe), dpll);
4566         }
4567 }
4568
4569 static void i8xx_update_pll(struct drm_crtc *crtc,
4570                             struct drm_display_mode *adjusted_mode,
4571                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4572                             int num_connectors)
4573 {
4574         struct drm_device *dev = crtc->dev;
4575         struct drm_i915_private *dev_priv = dev->dev_private;
4576         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4577         int pipe = intel_crtc->pipe;
4578         u32 dpll;
4579
4580         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4581
4582         dpll = DPLL_VGA_MODE_DIS;
4583
4584         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4585                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4586         } else {
4587                 if (clock->p1 == 2)
4588                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4589                 else
4590                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4591                 if (clock->p2 == 4)
4592                         dpll |= PLL_P2_DIVIDE_BY_4;
4593         }
4594
4595         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4596                 /* XXX: just matching BIOS for now */
4597                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4598                 dpll |= 3;
4599         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4600                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4601                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4602         else
4603                 dpll |= PLL_REF_INPUT_DREFCLK;
4604
4605         dpll |= DPLL_VCO_ENABLE;
4606         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4607         POSTING_READ(DPLL(pipe));
4608         udelay(150);
4609
4610         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4611          * This is an exception to the general rule that mode_set doesn't turn
4612          * things on.
4613          */
4614         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4615                 intel_update_lvds(crtc, clock, adjusted_mode);
4616
4617         I915_WRITE(DPLL(pipe), dpll);
4618
4619         /* Wait for the clocks to stabilize. */
4620         POSTING_READ(DPLL(pipe));
4621         udelay(150);
4622
4623         /* The pixel multiplier can only be updated once the
4624          * DPLL is enabled and the clocks are stable.
4625          *
4626          * So write it again.
4627          */
4628         I915_WRITE(DPLL(pipe), dpll);
4629 }
4630
4631 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4632                                    struct drm_display_mode *mode,
4633                                    struct drm_display_mode *adjusted_mode)
4634 {
4635         struct drm_device *dev = intel_crtc->base.dev;
4636         struct drm_i915_private *dev_priv = dev->dev_private;
4637         enum pipe pipe = intel_crtc->pipe;
4638         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4639         uint32_t vsyncshift;
4640
4641         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4642                 /* the chip adds 2 halflines automatically */
4643                 adjusted_mode->crtc_vtotal -= 1;
4644                 adjusted_mode->crtc_vblank_end -= 1;
4645                 vsyncshift = adjusted_mode->crtc_hsync_start
4646                              - adjusted_mode->crtc_htotal / 2;
4647         } else {
4648                 vsyncshift = 0;
4649         }
4650
4651         if (INTEL_INFO(dev)->gen > 3)
4652                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4653
4654         I915_WRITE(HTOTAL(cpu_transcoder),
4655                    (adjusted_mode->crtc_hdisplay - 1) |
4656                    ((adjusted_mode->crtc_htotal - 1) << 16));
4657         I915_WRITE(HBLANK(cpu_transcoder),
4658                    (adjusted_mode->crtc_hblank_start - 1) |
4659                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4660         I915_WRITE(HSYNC(cpu_transcoder),
4661                    (adjusted_mode->crtc_hsync_start - 1) |
4662                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4663
4664         I915_WRITE(VTOTAL(cpu_transcoder),
4665                    (adjusted_mode->crtc_vdisplay - 1) |
4666                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4667         I915_WRITE(VBLANK(cpu_transcoder),
4668                    (adjusted_mode->crtc_vblank_start - 1) |
4669                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4670         I915_WRITE(VSYNC(cpu_transcoder),
4671                    (adjusted_mode->crtc_vsync_start - 1) |
4672                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4673
4674         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4675          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4676          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4677          * bits. */
4678         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4679             (pipe == PIPE_B || pipe == PIPE_C))
4680                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4681
4682         /* pipesrc controls the size that is scaled from, which should
4683          * always be the user's requested size.
4684          */
4685         I915_WRITE(PIPESRC(pipe),
4686                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4687 }
4688
4689 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4690                               struct drm_display_mode *mode,
4691                               struct drm_display_mode *adjusted_mode,
4692                               int x, int y,
4693                               struct drm_framebuffer *fb)
4694 {
4695         struct drm_device *dev = crtc->dev;
4696         struct drm_i915_private *dev_priv = dev->dev_private;
4697         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4698         int pipe = intel_crtc->pipe;
4699         int plane = intel_crtc->plane;
4700         int refclk, num_connectors = 0;
4701         intel_clock_t clock, reduced_clock;
4702         u32 dspcntr, pipeconf;
4703         bool ok, has_reduced_clock = false, is_sdvo = false;
4704         bool is_lvds = false, is_tv = false, is_dp = false;
4705         struct intel_encoder *encoder;
4706         const intel_limit_t *limit;
4707         int ret;
4708
4709         for_each_encoder_on_crtc(dev, crtc, encoder) {
4710                 switch (encoder->type) {
4711                 case INTEL_OUTPUT_LVDS:
4712                         is_lvds = true;
4713                         break;
4714                 case INTEL_OUTPUT_SDVO:
4715                 case INTEL_OUTPUT_HDMI:
4716                         is_sdvo = true;
4717                         if (encoder->needs_tv_clock)
4718                                 is_tv = true;
4719                         break;
4720                 case INTEL_OUTPUT_TVOUT:
4721                         is_tv = true;
4722                         break;
4723                 case INTEL_OUTPUT_DISPLAYPORT:
4724                         is_dp = true;
4725                         break;
4726                 }
4727
4728                 num_connectors++;
4729         }
4730
4731         refclk = i9xx_get_refclk(crtc, num_connectors);
4732
4733         /*
4734          * Returns a set of divisors for the desired target clock with the given
4735          * refclk, or FALSE.  The returned values represent the clock equation:
4736          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4737          */
4738         limit = intel_limit(crtc, refclk);
4739         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4740                              &clock);
4741         if (!ok) {
4742                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4743                 return -EINVAL;
4744         }
4745
4746         /* Ensure that the cursor is valid for the new mode before changing... */
4747         intel_crtc_update_cursor(crtc, true);
4748
4749         if (is_lvds && dev_priv->lvds_downclock_avail) {
4750                 /*
4751                  * Ensure we match the reduced clock's P to the target clock.
4752                  * If the clocks don't match, we can't switch the display clock
4753                  * by using the FP0/FP1. In such case we will disable the LVDS
4754                  * downclock feature.
4755                 */
4756                 has_reduced_clock = limit->find_pll(limit, crtc,
4757                                                     dev_priv->lvds_downclock,
4758                                                     refclk,
4759                                                     &clock,
4760                                                     &reduced_clock);
4761         }
4762
4763         if (is_sdvo && is_tv)
4764                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4765
4766         if (IS_GEN2(dev))
4767                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4768                                 has_reduced_clock ? &reduced_clock : NULL,
4769                                 num_connectors);
4770         else if (IS_VALLEYVIEW(dev))
4771                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4772                                 has_reduced_clock ? &reduced_clock : NULL,
4773                                 num_connectors);
4774         else
4775                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4776                                 has_reduced_clock ? &reduced_clock : NULL,
4777                                 num_connectors);
4778
4779         /* setup pipeconf */
4780         pipeconf = I915_READ(PIPECONF(pipe));
4781
4782         /* Set up the display plane register */
4783         dspcntr = DISPPLANE_GAMMA_ENABLE;
4784
4785         if (pipe == 0)
4786                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4787         else
4788                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4789
4790         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4791                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4792                  * core speed.
4793                  *
4794                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4795                  * pipe == 0 check?
4796                  */
4797                 if (mode->clock >
4798                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4799                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4800                 else
4801                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4802         }
4803
4804         /* default to 8bpc */
4805         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4806         if (is_dp) {
4807                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4808                         pipeconf |= PIPECONF_BPP_6 |
4809                                     PIPECONF_DITHER_EN |
4810                                     PIPECONF_DITHER_TYPE_SP;
4811                 }
4812         }
4813
4814         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4815                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4816                         pipeconf |= PIPECONF_BPP_6 |
4817                                         PIPECONF_ENABLE |
4818                                         I965_PIPECONF_ACTIVE;
4819                 }
4820         }
4821
4822         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4823         drm_mode_debug_printmodeline(mode);
4824
4825         if (HAS_PIPE_CXSR(dev)) {
4826                 if (intel_crtc->lowfreq_avail) {
4827                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4828                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4829                 } else {
4830                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4831                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4832                 }
4833         }
4834
4835         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4836         if (!IS_GEN2(dev) &&
4837             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4838                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4839         else
4840                 pipeconf |= PIPECONF_PROGRESSIVE;
4841
4842         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4843
4844         /* pipesrc and dspsize control the size that is scaled from,
4845          * which should always be the user's requested size.
4846          */
4847         I915_WRITE(DSPSIZE(plane),
4848                    ((mode->vdisplay - 1) << 16) |
4849                    (mode->hdisplay - 1));
4850         I915_WRITE(DSPPOS(plane), 0);
4851
4852         I915_WRITE(PIPECONF(pipe), pipeconf);
4853         POSTING_READ(PIPECONF(pipe));
4854         intel_enable_pipe(dev_priv, pipe, false);
4855
4856         intel_wait_for_vblank(dev, pipe);
4857
4858         I915_WRITE(DSPCNTR(plane), dspcntr);
4859         POSTING_READ(DSPCNTR(plane));
4860
4861         ret = intel_pipe_set_base(crtc, x, y, fb);
4862
4863         intel_update_watermarks(dev);
4864
4865         return ret;
4866 }
4867
4868 /*
4869  * Initialize reference clocks when the driver loads
4870  */
4871 void ironlake_init_pch_refclk(struct drm_device *dev)
4872 {
4873         struct drm_i915_private *dev_priv = dev->dev_private;
4874         struct drm_mode_config *mode_config = &dev->mode_config;
4875         struct intel_encoder *encoder;
4876         u32 temp;
4877         bool has_lvds = false;
4878         bool has_cpu_edp = false;
4879         bool has_pch_edp = false;
4880         bool has_panel = false;
4881         bool has_ck505 = false;
4882         bool can_ssc = false;
4883
4884         /* We need to take the global config into account */
4885         list_for_each_entry(encoder, &mode_config->encoder_list,
4886                             base.head) {
4887                 switch (encoder->type) {
4888                 case INTEL_OUTPUT_LVDS:
4889                         has_panel = true;
4890                         has_lvds = true;
4891                         break;
4892                 case INTEL_OUTPUT_EDP:
4893                         has_panel = true;
4894                         if (intel_encoder_is_pch_edp(&encoder->base))
4895                                 has_pch_edp = true;
4896                         else
4897                                 has_cpu_edp = true;
4898                         break;
4899                 }
4900         }
4901
4902         if (HAS_PCH_IBX(dev)) {
4903                 has_ck505 = dev_priv->display_clock_mode;
4904                 can_ssc = has_ck505;
4905         } else {
4906                 has_ck505 = false;
4907                 can_ssc = true;
4908         }
4909
4910         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4911                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4912                       has_ck505);
4913
4914         /* Ironlake: try to setup display ref clock before DPLL
4915          * enabling. This is only under driver's control after
4916          * PCH B stepping, previous chipset stepping should be
4917          * ignoring this setting.
4918          */
4919         temp = I915_READ(PCH_DREF_CONTROL);
4920         /* Always enable nonspread source */
4921         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4922
4923         if (has_ck505)
4924                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4925         else
4926                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4927
4928         if (has_panel) {
4929                 temp &= ~DREF_SSC_SOURCE_MASK;
4930                 temp |= DREF_SSC_SOURCE_ENABLE;
4931
4932                 /* SSC must be turned on before enabling the CPU output  */
4933                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4934                         DRM_DEBUG_KMS("Using SSC on panel\n");
4935                         temp |= DREF_SSC1_ENABLE;
4936                 } else
4937                         temp &= ~DREF_SSC1_ENABLE;
4938
4939                 /* Get SSC going before enabling the outputs */
4940                 I915_WRITE(PCH_DREF_CONTROL, temp);
4941                 POSTING_READ(PCH_DREF_CONTROL);
4942                 udelay(200);
4943
4944                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4945
4946                 /* Enable CPU source on CPU attached eDP */
4947                 if (has_cpu_edp) {
4948                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4949                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4950                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4951                         }
4952                         else
4953                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4954                 } else
4955                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4956
4957                 I915_WRITE(PCH_DREF_CONTROL, temp);
4958                 POSTING_READ(PCH_DREF_CONTROL);
4959                 udelay(200);
4960         } else {
4961                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4962
4963                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4964
4965                 /* Turn off CPU output */
4966                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4967
4968                 I915_WRITE(PCH_DREF_CONTROL, temp);
4969                 POSTING_READ(PCH_DREF_CONTROL);
4970                 udelay(200);
4971
4972                 /* Turn off the SSC source */
4973                 temp &= ~DREF_SSC_SOURCE_MASK;
4974                 temp |= DREF_SSC_SOURCE_DISABLE;
4975
4976                 /* Turn off SSC1 */
4977                 temp &= ~ DREF_SSC1_ENABLE;
4978
4979                 I915_WRITE(PCH_DREF_CONTROL, temp);
4980                 POSTING_READ(PCH_DREF_CONTROL);
4981                 udelay(200);
4982         }
4983 }
4984
4985 static int ironlake_get_refclk(struct drm_crtc *crtc)
4986 {
4987         struct drm_device *dev = crtc->dev;
4988         struct drm_i915_private *dev_priv = dev->dev_private;
4989         struct intel_encoder *encoder;
4990         struct intel_encoder *edp_encoder = NULL;
4991         int num_connectors = 0;
4992         bool is_lvds = false;
4993
4994         for_each_encoder_on_crtc(dev, crtc, encoder) {
4995                 switch (encoder->type) {
4996                 case INTEL_OUTPUT_LVDS:
4997                         is_lvds = true;
4998                         break;
4999                 case INTEL_OUTPUT_EDP:
5000                         edp_encoder = encoder;
5001                         break;
5002                 }
5003                 num_connectors++;
5004         }
5005
5006         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5007                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5008                               dev_priv->lvds_ssc_freq);
5009                 return dev_priv->lvds_ssc_freq * 1000;
5010         }
5011
5012         return 120000;
5013 }
5014
5015 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5016                                   struct drm_display_mode *adjusted_mode,
5017                                   bool dither)
5018 {
5019         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5020         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5021         int pipe = intel_crtc->pipe;
5022         uint32_t val;
5023
5024         val = I915_READ(PIPECONF(pipe));
5025
5026         val &= ~PIPE_BPC_MASK;
5027         switch (intel_crtc->bpp) {
5028         case 18:
5029                 val |= PIPE_6BPC;
5030                 break;
5031         case 24:
5032                 val |= PIPE_8BPC;
5033                 break;
5034         case 30:
5035                 val |= PIPE_10BPC;
5036                 break;
5037         case 36:
5038                 val |= PIPE_12BPC;
5039                 break;
5040         default:
5041                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5042                 BUG();
5043         }
5044
5045         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5046         if (dither)
5047                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5048
5049         val &= ~PIPECONF_INTERLACE_MASK;
5050         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5051                 val |= PIPECONF_INTERLACED_ILK;
5052         else
5053                 val |= PIPECONF_PROGRESSIVE;
5054
5055         I915_WRITE(PIPECONF(pipe), val);
5056         POSTING_READ(PIPECONF(pipe));
5057 }
5058
5059 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5060                                  struct drm_display_mode *adjusted_mode,
5061                                  bool dither)
5062 {
5063         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5064         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5065         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5066         uint32_t val;
5067
5068         val = I915_READ(PIPECONF(cpu_transcoder));
5069
5070         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5071         if (dither)
5072                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5073
5074         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5075         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5076                 val |= PIPECONF_INTERLACED_ILK;
5077         else
5078                 val |= PIPECONF_PROGRESSIVE;
5079
5080         I915_WRITE(PIPECONF(cpu_transcoder), val);
5081         POSTING_READ(PIPECONF(cpu_transcoder));
5082 }
5083
5084 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5085                                     struct drm_display_mode *adjusted_mode,
5086                                     intel_clock_t *clock,
5087                                     bool *has_reduced_clock,
5088                                     intel_clock_t *reduced_clock)
5089 {
5090         struct drm_device *dev = crtc->dev;
5091         struct drm_i915_private *dev_priv = dev->dev_private;
5092         struct intel_encoder *intel_encoder;
5093         int refclk;
5094         const intel_limit_t *limit;
5095         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5096
5097         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5098                 switch (intel_encoder->type) {
5099                 case INTEL_OUTPUT_LVDS:
5100                         is_lvds = true;
5101                         break;
5102                 case INTEL_OUTPUT_SDVO:
5103                 case INTEL_OUTPUT_HDMI:
5104                         is_sdvo = true;
5105                         if (intel_encoder->needs_tv_clock)
5106                                 is_tv = true;
5107                         break;
5108                 case INTEL_OUTPUT_TVOUT:
5109                         is_tv = true;
5110                         break;
5111                 }
5112         }
5113
5114         refclk = ironlake_get_refclk(crtc);
5115
5116         /*
5117          * Returns a set of divisors for the desired target clock with the given
5118          * refclk, or FALSE.  The returned values represent the clock equation:
5119          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5120          */
5121         limit = intel_limit(crtc, refclk);
5122         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5123                               clock);
5124         if (!ret)
5125                 return false;
5126
5127         if (is_lvds && dev_priv->lvds_downclock_avail) {
5128                 /*
5129                  * Ensure we match the reduced clock's P to the target clock.
5130                  * If the clocks don't match, we can't switch the display clock
5131                  * by using the FP0/FP1. In such case we will disable the LVDS
5132                  * downclock feature.
5133                 */
5134                 *has_reduced_clock = limit->find_pll(limit, crtc,
5135                                                      dev_priv->lvds_downclock,
5136                                                      refclk,
5137                                                      clock,
5138                                                      reduced_clock);
5139         }
5140
5141         if (is_sdvo && is_tv)
5142                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5143
5144         return true;
5145 }
5146
5147 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5148 {
5149         struct drm_i915_private *dev_priv = dev->dev_private;
5150         uint32_t temp;
5151
5152         temp = I915_READ(SOUTH_CHICKEN1);
5153         if (temp & FDI_BC_BIFURCATION_SELECT)
5154                 return;
5155
5156         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5157         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5158
5159         temp |= FDI_BC_BIFURCATION_SELECT;
5160         DRM_DEBUG_KMS("enabling fdi C rx\n");
5161         I915_WRITE(SOUTH_CHICKEN1, temp);
5162         POSTING_READ(SOUTH_CHICKEN1);
5163 }
5164
5165 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5166 {
5167         struct drm_device *dev = intel_crtc->base.dev;
5168         struct drm_i915_private *dev_priv = dev->dev_private;
5169         struct intel_crtc *pipe_B_crtc =
5170                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5171
5172         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5173                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5174         if (intel_crtc->fdi_lanes > 4) {
5175                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5176                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5177                 /* Clamp lanes to avoid programming the hw with bogus values. */
5178                 intel_crtc->fdi_lanes = 4;
5179
5180                 return false;
5181         }
5182
5183         if (dev_priv->num_pipe == 2)
5184                 return true;
5185
5186         switch (intel_crtc->pipe) {
5187         case PIPE_A:
5188                 return true;
5189         case PIPE_B:
5190                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5191                     intel_crtc->fdi_lanes > 2) {
5192                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5193                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5194                         /* Clamp lanes to avoid programming the hw with bogus values. */
5195                         intel_crtc->fdi_lanes = 2;
5196
5197                         return false;
5198                 }
5199
5200                 if (intel_crtc->fdi_lanes > 2)
5201                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5202                 else
5203                         cpt_enable_fdi_bc_bifurcation(dev);
5204
5205                 return true;
5206         case PIPE_C:
5207                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5208                         if (intel_crtc->fdi_lanes > 2) {
5209                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5210                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5211                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5212                                 intel_crtc->fdi_lanes = 2;
5213
5214                                 return false;
5215                         }
5216                 } else {
5217                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5218                         return false;
5219                 }
5220
5221                 cpt_enable_fdi_bc_bifurcation(dev);
5222
5223                 return true;
5224         default:
5225                 BUG();
5226         }
5227 }
5228
5229 static void ironlake_set_m_n(struct drm_crtc *crtc,
5230                              struct drm_display_mode *mode,
5231                              struct drm_display_mode *adjusted_mode)
5232 {
5233         struct drm_device *dev = crtc->dev;
5234         struct drm_i915_private *dev_priv = dev->dev_private;
5235         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5236         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5237         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5238         struct fdi_m_n m_n = {0};
5239         int target_clock, pixel_multiplier, lane, link_bw;
5240         bool is_dp = false, is_cpu_edp = false;
5241
5242         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5243                 switch (intel_encoder->type) {
5244                 case INTEL_OUTPUT_DISPLAYPORT:
5245                         is_dp = true;
5246                         break;
5247                 case INTEL_OUTPUT_EDP:
5248                         is_dp = true;
5249                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5250                                 is_cpu_edp = true;
5251                         edp_encoder = intel_encoder;
5252                         break;
5253                 }
5254         }
5255
5256         /* FDI link */
5257         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5258         lane = 0;
5259         /* CPU eDP doesn't require FDI link, so just set DP M/N
5260            according to current link config */
5261         if (is_cpu_edp) {
5262                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5263         } else {
5264                 /* FDI is a binary signal running at ~2.7GHz, encoding
5265                  * each output octet as 10 bits. The actual frequency
5266                  * is stored as a divider into a 100MHz clock, and the
5267                  * mode pixel clock is stored in units of 1KHz.
5268                  * Hence the bw of each lane in terms of the mode signal
5269                  * is:
5270                  */
5271                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5272         }
5273
5274         /* [e]DP over FDI requires target mode clock instead of link clock. */
5275         if (edp_encoder)
5276                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5277         else if (is_dp)
5278                 target_clock = mode->clock;
5279         else
5280                 target_clock = adjusted_mode->clock;
5281
5282         if (!lane) {
5283                 /*
5284                  * Account for spread spectrum to avoid
5285                  * oversubscribing the link. Max center spread
5286                  * is 2.5%; use 5% for safety's sake.
5287                  */
5288                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5289                 lane = bps / (link_bw * 8) + 1;
5290         }
5291
5292         intel_crtc->fdi_lanes = lane;
5293
5294         if (pixel_multiplier > 1)
5295                 link_bw *= pixel_multiplier;
5296         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5297                              &m_n);
5298
5299         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5300         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5301         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5302         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5303 }
5304
5305 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5306                                       struct drm_display_mode *adjusted_mode,
5307                                       intel_clock_t *clock, u32 fp)
5308 {
5309         struct drm_crtc *crtc = &intel_crtc->base;
5310         struct drm_device *dev = crtc->dev;
5311         struct drm_i915_private *dev_priv = dev->dev_private;
5312         struct intel_encoder *intel_encoder;
5313         uint32_t dpll;
5314         int factor, pixel_multiplier, num_connectors = 0;
5315         bool is_lvds = false, is_sdvo = false, is_tv = false;
5316         bool is_dp = false, is_cpu_edp = false;
5317
5318         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5319                 switch (intel_encoder->type) {
5320                 case INTEL_OUTPUT_LVDS:
5321                         is_lvds = true;
5322                         break;
5323                 case INTEL_OUTPUT_SDVO:
5324                 case INTEL_OUTPUT_HDMI:
5325                         is_sdvo = true;
5326                         if (intel_encoder->needs_tv_clock)
5327                                 is_tv = true;
5328                         break;
5329                 case INTEL_OUTPUT_TVOUT:
5330                         is_tv = true;
5331                         break;
5332                 case INTEL_OUTPUT_DISPLAYPORT:
5333                         is_dp = true;
5334                         break;
5335                 case INTEL_OUTPUT_EDP:
5336                         is_dp = true;
5337                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5338                                 is_cpu_edp = true;
5339                         break;
5340                 }
5341
5342                 num_connectors++;
5343         }
5344
5345         /* Enable autotuning of the PLL clock (if permissible) */
5346         factor = 21;
5347         if (is_lvds) {
5348                 if ((intel_panel_use_ssc(dev_priv) &&
5349                      dev_priv->lvds_ssc_freq == 100) ||
5350                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5351                         factor = 25;
5352         } else if (is_sdvo && is_tv)
5353                 factor = 20;
5354
5355         if (clock->m < factor * clock->n)
5356                 fp |= FP_CB_TUNE;
5357
5358         dpll = 0;
5359
5360         if (is_lvds)
5361                 dpll |= DPLLB_MODE_LVDS;
5362         else
5363                 dpll |= DPLLB_MODE_DAC_SERIAL;
5364         if (is_sdvo) {
5365                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5366                 if (pixel_multiplier > 1) {
5367                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5368                 }
5369                 dpll |= DPLL_DVO_HIGH_SPEED;
5370         }
5371         if (is_dp && !is_cpu_edp)
5372                 dpll |= DPLL_DVO_HIGH_SPEED;
5373
5374         /* compute bitmask from p1 value */
5375         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5376         /* also FPA1 */
5377         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5378
5379         switch (clock->p2) {
5380         case 5:
5381                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5382                 break;
5383         case 7:
5384                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5385                 break;
5386         case 10:
5387                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5388                 break;
5389         case 14:
5390                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5391                 break;
5392         }
5393
5394         if (is_sdvo && is_tv)
5395                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5396         else if (is_tv)
5397                 /* XXX: just matching BIOS for now */
5398                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5399                 dpll |= 3;
5400         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5401                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5402         else
5403                 dpll |= PLL_REF_INPUT_DREFCLK;
5404
5405         return dpll;
5406 }
5407
5408 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5409                                   struct drm_display_mode *mode,
5410                                   struct drm_display_mode *adjusted_mode,
5411                                   int x, int y,
5412                                   struct drm_framebuffer *fb)
5413 {
5414         struct drm_device *dev = crtc->dev;
5415         struct drm_i915_private *dev_priv = dev->dev_private;
5416         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5417         int pipe = intel_crtc->pipe;
5418         int plane = intel_crtc->plane;
5419         int num_connectors = 0;
5420         intel_clock_t clock, reduced_clock;
5421         u32 dpll, fp = 0, fp2 = 0;
5422         bool ok, has_reduced_clock = false;
5423         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5424         struct intel_encoder *encoder;
5425         u32 temp;
5426         int ret;
5427         bool dither, fdi_config_ok;
5428
5429         for_each_encoder_on_crtc(dev, crtc, encoder) {
5430                 switch (encoder->type) {
5431                 case INTEL_OUTPUT_LVDS:
5432                         is_lvds = true;
5433                         break;
5434                 case INTEL_OUTPUT_DISPLAYPORT:
5435                         is_dp = true;
5436                         break;
5437                 case INTEL_OUTPUT_EDP:
5438                         is_dp = true;
5439                         if (!intel_encoder_is_pch_edp(&encoder->base))
5440                                 is_cpu_edp = true;
5441                         break;
5442                 }
5443
5444                 num_connectors++;
5445         }
5446
5447         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5448              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5449
5450         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5451                                      &has_reduced_clock, &reduced_clock);
5452         if (!ok) {
5453                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5454                 return -EINVAL;
5455         }
5456
5457         /* Ensure that the cursor is valid for the new mode before changing... */
5458         intel_crtc_update_cursor(crtc, true);
5459
5460         /* determine panel color depth */
5461         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5462                                               adjusted_mode);
5463         if (is_lvds && dev_priv->lvds_dither)
5464                 dither = true;
5465
5466         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5467         if (has_reduced_clock)
5468                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5469                         reduced_clock.m2;
5470
5471         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5472
5473         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5474         drm_mode_debug_printmodeline(mode);
5475
5476         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5477         if (!is_cpu_edp) {
5478                 struct intel_pch_pll *pll;
5479
5480                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5481                 if (pll == NULL) {
5482                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5483                                          pipe);
5484                         return -EINVAL;
5485                 }
5486         } else
5487                 intel_put_pch_pll(intel_crtc);
5488
5489         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5490          * This is an exception to the general rule that mode_set doesn't turn
5491          * things on.
5492          */
5493         if (is_lvds) {
5494                 temp = I915_READ(PCH_LVDS);
5495                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5496                 if (HAS_PCH_CPT(dev)) {
5497                         temp &= ~PORT_TRANS_SEL_MASK;
5498                         temp |= PORT_TRANS_SEL_CPT(pipe);
5499                 } else {
5500                         if (pipe == 1)
5501                                 temp |= LVDS_PIPEB_SELECT;
5502                         else
5503                                 temp &= ~LVDS_PIPEB_SELECT;
5504                 }
5505
5506                 /* set the corresponsding LVDS_BORDER bit */
5507                 temp |= dev_priv->lvds_border_bits;
5508                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5509                  * set the DPLLs for dual-channel mode or not.
5510                  */
5511                 if (clock.p2 == 7)
5512                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5513                 else
5514                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5515
5516                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5517                  * appropriately here, but we need to look more thoroughly into how
5518                  * panels behave in the two modes.
5519                  */
5520                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5521                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5522                         temp |= LVDS_HSYNC_POLARITY;
5523                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5524                         temp |= LVDS_VSYNC_POLARITY;
5525                 I915_WRITE(PCH_LVDS, temp);
5526         }
5527
5528         if (is_dp && !is_cpu_edp) {
5529                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5530         } else {
5531                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5532                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5533                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5534                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5535                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5536         }
5537
5538         if (intel_crtc->pch_pll) {
5539                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5540
5541                 /* Wait for the clocks to stabilize. */
5542                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5543                 udelay(150);
5544
5545                 /* The pixel multiplier can only be updated once the
5546                  * DPLL is enabled and the clocks are stable.
5547                  *
5548                  * So write it again.
5549                  */
5550                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5551         }
5552
5553         intel_crtc->lowfreq_avail = false;
5554         if (intel_crtc->pch_pll) {
5555                 if (is_lvds && has_reduced_clock && i915_powersave) {
5556                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5557                         intel_crtc->lowfreq_avail = true;
5558                 } else {
5559                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5560                 }
5561         }
5562
5563         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5564
5565         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5566          * ironlake_check_fdi_lanes. */
5567         ironlake_set_m_n(crtc, mode, adjusted_mode);
5568
5569         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5570
5571         if (is_cpu_edp)
5572                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5573
5574         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5575
5576         intel_wait_for_vblank(dev, pipe);
5577
5578         /* Set up the display plane register */
5579         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5580         POSTING_READ(DSPCNTR(plane));
5581
5582         ret = intel_pipe_set_base(crtc, x, y, fb);
5583
5584         intel_update_watermarks(dev);
5585
5586         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5587
5588         return fdi_config_ok ? ret : -EINVAL;
5589 }
5590
5591 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5592                                  struct drm_display_mode *mode,
5593                                  struct drm_display_mode *adjusted_mode,
5594                                  int x, int y,
5595                                  struct drm_framebuffer *fb)
5596 {
5597         struct drm_device *dev = crtc->dev;
5598         struct drm_i915_private *dev_priv = dev->dev_private;
5599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5600         int pipe = intel_crtc->pipe;
5601         int plane = intel_crtc->plane;
5602         int num_connectors = 0;
5603         intel_clock_t clock, reduced_clock;
5604         u32 dpll = 0, fp = 0, fp2 = 0;
5605         bool ok, has_reduced_clock = false;
5606         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5607         struct intel_encoder *encoder;
5608         u32 temp;
5609         int ret;
5610         bool dither;
5611
5612         for_each_encoder_on_crtc(dev, crtc, encoder) {
5613                 switch (encoder->type) {
5614                 case INTEL_OUTPUT_LVDS:
5615                         is_lvds = true;
5616                         break;
5617                 case INTEL_OUTPUT_DISPLAYPORT:
5618                         is_dp = true;
5619                         break;
5620                 case INTEL_OUTPUT_EDP:
5621                         is_dp = true;
5622                         if (!intel_encoder_is_pch_edp(&encoder->base))
5623                                 is_cpu_edp = true;
5624                         break;
5625                 }
5626
5627                 num_connectors++;
5628         }
5629
5630         if (is_cpu_edp)
5631                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5632         else
5633                 intel_crtc->cpu_transcoder = pipe;
5634
5635         /* We are not sure yet this won't happen. */
5636         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5637              INTEL_PCH_TYPE(dev));
5638
5639         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5640              num_connectors, pipe_name(pipe));
5641
5642         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5643                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5644
5645         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5646
5647         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5648                 return -EINVAL;
5649
5650         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5651                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5652                                              &has_reduced_clock,
5653                                              &reduced_clock);
5654                 if (!ok) {
5655                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5656                         return -EINVAL;
5657                 }
5658         }
5659
5660         /* Ensure that the cursor is valid for the new mode before changing... */
5661         intel_crtc_update_cursor(crtc, true);
5662
5663         /* determine panel color depth */
5664         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5665                                               adjusted_mode);
5666         if (is_lvds && dev_priv->lvds_dither)
5667                 dither = true;
5668
5669         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5670         drm_mode_debug_printmodeline(mode);
5671
5672         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5673                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5674                 if (has_reduced_clock)
5675                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5676                               reduced_clock.m2;
5677
5678                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5679                                              fp);
5680
5681                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5682                  * own on pre-Haswell/LPT generation */
5683                 if (!is_cpu_edp) {
5684                         struct intel_pch_pll *pll;
5685
5686                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5687                         if (pll == NULL) {
5688                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5689                                                  pipe);
5690                                 return -EINVAL;
5691                         }
5692                 } else
5693                         intel_put_pch_pll(intel_crtc);
5694
5695                 /* The LVDS pin pair needs to be on before the DPLLs are
5696                  * enabled.  This is an exception to the general rule that
5697                  * mode_set doesn't turn things on.
5698                  */
5699                 if (is_lvds) {
5700                         temp = I915_READ(PCH_LVDS);
5701                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5702                         if (HAS_PCH_CPT(dev)) {
5703                                 temp &= ~PORT_TRANS_SEL_MASK;
5704                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5705                         } else {
5706                                 if (pipe == 1)
5707                                         temp |= LVDS_PIPEB_SELECT;
5708                                 else
5709                                         temp &= ~LVDS_PIPEB_SELECT;
5710                         }
5711
5712                         /* set the corresponsding LVDS_BORDER bit */
5713                         temp |= dev_priv->lvds_border_bits;
5714                         /* Set the B0-B3 data pairs corresponding to whether
5715                          * we're going to set the DPLLs for dual-channel mode or
5716                          * not.
5717                          */
5718                         if (clock.p2 == 7)
5719                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5720                         else
5721                                 temp &= ~(LVDS_B0B3_POWER_UP |
5722                                           LVDS_CLKB_POWER_UP);
5723
5724                         /* It would be nice to set 24 vs 18-bit mode
5725                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5726                          * look more thoroughly into how panels behave in the
5727                          * two modes.
5728                          */
5729                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5730                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5731                                 temp |= LVDS_HSYNC_POLARITY;
5732                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5733                                 temp |= LVDS_VSYNC_POLARITY;
5734                         I915_WRITE(PCH_LVDS, temp);
5735                 }
5736         }
5737
5738         if (is_dp && !is_cpu_edp) {
5739                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5740         } else {
5741                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5742                         /* For non-DP output, clear any trans DP clock recovery
5743                          * setting.*/
5744                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5745                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5746                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5747                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5748                 }
5749         }
5750
5751         intel_crtc->lowfreq_avail = false;
5752         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5753                 if (intel_crtc->pch_pll) {
5754                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5755
5756                         /* Wait for the clocks to stabilize. */
5757                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5758                         udelay(150);
5759
5760                         /* The pixel multiplier can only be updated once the
5761                          * DPLL is enabled and the clocks are stable.
5762                          *
5763                          * So write it again.
5764                          */
5765                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5766                 }
5767
5768                 if (intel_crtc->pch_pll) {
5769                         if (is_lvds && has_reduced_clock && i915_powersave) {
5770                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5771                                 intel_crtc->lowfreq_avail = true;
5772                         } else {
5773                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5774                         }
5775                 }
5776         }
5777
5778         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5779
5780         if (!is_dp || is_cpu_edp)
5781                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5782
5783         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5784                 if (is_cpu_edp)
5785                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5786
5787         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5788
5789         /* Set up the display plane register */
5790         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5791         POSTING_READ(DSPCNTR(plane));
5792
5793         ret = intel_pipe_set_base(crtc, x, y, fb);
5794
5795         intel_update_watermarks(dev);
5796
5797         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5798
5799         return ret;
5800 }
5801
5802 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5803                                struct drm_display_mode *mode,
5804                                struct drm_display_mode *adjusted_mode,
5805                                int x, int y,
5806                                struct drm_framebuffer *fb)
5807 {
5808         struct drm_device *dev = crtc->dev;
5809         struct drm_i915_private *dev_priv = dev->dev_private;
5810         struct drm_encoder_helper_funcs *encoder_funcs;
5811         struct intel_encoder *encoder;
5812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5813         int pipe = intel_crtc->pipe;
5814         int ret;
5815
5816         drm_vblank_pre_modeset(dev, pipe);
5817
5818         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5819                                               x, y, fb);
5820         drm_vblank_post_modeset(dev, pipe);
5821
5822         if (ret != 0)
5823                 return ret;
5824
5825         for_each_encoder_on_crtc(dev, crtc, encoder) {
5826                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5827                         encoder->base.base.id,
5828                         drm_get_encoder_name(&encoder->base),
5829                         mode->base.id, mode->name);
5830                 encoder_funcs = encoder->base.helper_private;
5831                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5832         }
5833
5834         return 0;
5835 }
5836
5837 static bool intel_eld_uptodate(struct drm_connector *connector,
5838                                int reg_eldv, uint32_t bits_eldv,
5839                                int reg_elda, uint32_t bits_elda,
5840                                int reg_edid)
5841 {
5842         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5843         uint8_t *eld = connector->eld;
5844         uint32_t i;
5845
5846         i = I915_READ(reg_eldv);
5847         i &= bits_eldv;
5848
5849         if (!eld[0])
5850                 return !i;
5851
5852         if (!i)
5853                 return false;
5854
5855         i = I915_READ(reg_elda);
5856         i &= ~bits_elda;
5857         I915_WRITE(reg_elda, i);
5858
5859         for (i = 0; i < eld[2]; i++)
5860                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5861                         return false;
5862
5863         return true;
5864 }
5865
5866 static void g4x_write_eld(struct drm_connector *connector,
5867                           struct drm_crtc *crtc)
5868 {
5869         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5870         uint8_t *eld = connector->eld;
5871         uint32_t eldv;
5872         uint32_t len;
5873         uint32_t i;
5874
5875         i = I915_READ(G4X_AUD_VID_DID);
5876
5877         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5878                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5879         else
5880                 eldv = G4X_ELDV_DEVCTG;
5881
5882         if (intel_eld_uptodate(connector,
5883                                G4X_AUD_CNTL_ST, eldv,
5884                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5885                                G4X_HDMIW_HDMIEDID))
5886                 return;
5887
5888         i = I915_READ(G4X_AUD_CNTL_ST);
5889         i &= ~(eldv | G4X_ELD_ADDR);
5890         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5891         I915_WRITE(G4X_AUD_CNTL_ST, i);
5892
5893         if (!eld[0])
5894                 return;
5895
5896         len = min_t(uint8_t, eld[2], len);
5897         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5898         for (i = 0; i < len; i++)
5899                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5900
5901         i = I915_READ(G4X_AUD_CNTL_ST);
5902         i |= eldv;
5903         I915_WRITE(G4X_AUD_CNTL_ST, i);
5904 }
5905
5906 static void haswell_write_eld(struct drm_connector *connector,
5907                                      struct drm_crtc *crtc)
5908 {
5909         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5910         uint8_t *eld = connector->eld;
5911         struct drm_device *dev = crtc->dev;
5912         uint32_t eldv;
5913         uint32_t i;
5914         int len;
5915         int pipe = to_intel_crtc(crtc)->pipe;
5916         int tmp;
5917
5918         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5919         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5920         int aud_config = HSW_AUD_CFG(pipe);
5921         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5922
5923
5924         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5925
5926         /* Audio output enable */
5927         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5928         tmp = I915_READ(aud_cntrl_st2);
5929         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5930         I915_WRITE(aud_cntrl_st2, tmp);
5931
5932         /* Wait for 1 vertical blank */
5933         intel_wait_for_vblank(dev, pipe);
5934
5935         /* Set ELD valid state */
5936         tmp = I915_READ(aud_cntrl_st2);
5937         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5938         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5939         I915_WRITE(aud_cntrl_st2, tmp);
5940         tmp = I915_READ(aud_cntrl_st2);
5941         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5942
5943         /* Enable HDMI mode */
5944         tmp = I915_READ(aud_config);
5945         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5946         /* clear N_programing_enable and N_value_index */
5947         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5948         I915_WRITE(aud_config, tmp);
5949
5950         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5951
5952         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5953
5954         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5955                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5956                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5957                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5958         } else
5959                 I915_WRITE(aud_config, 0);
5960
5961         if (intel_eld_uptodate(connector,
5962                                aud_cntrl_st2, eldv,
5963                                aud_cntl_st, IBX_ELD_ADDRESS,
5964                                hdmiw_hdmiedid))
5965                 return;
5966
5967         i = I915_READ(aud_cntrl_st2);
5968         i &= ~eldv;
5969         I915_WRITE(aud_cntrl_st2, i);
5970
5971         if (!eld[0])
5972                 return;
5973
5974         i = I915_READ(aud_cntl_st);
5975         i &= ~IBX_ELD_ADDRESS;
5976         I915_WRITE(aud_cntl_st, i);
5977         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5978         DRM_DEBUG_DRIVER("port num:%d\n", i);
5979
5980         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5981         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5982         for (i = 0; i < len; i++)
5983                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5984
5985         i = I915_READ(aud_cntrl_st2);
5986         i |= eldv;
5987         I915_WRITE(aud_cntrl_st2, i);
5988
5989 }
5990
5991 static void ironlake_write_eld(struct drm_connector *connector,
5992                                      struct drm_crtc *crtc)
5993 {
5994         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5995         uint8_t *eld = connector->eld;
5996         uint32_t eldv;
5997         uint32_t i;
5998         int len;
5999         int hdmiw_hdmiedid;
6000         int aud_config;
6001         int aud_cntl_st;
6002         int aud_cntrl_st2;
6003         int pipe = to_intel_crtc(crtc)->pipe;
6004
6005         if (HAS_PCH_IBX(connector->dev)) {
6006                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6007                 aud_config = IBX_AUD_CFG(pipe);
6008                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6009                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6010         } else {
6011                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6012                 aud_config = CPT_AUD_CFG(pipe);
6013                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6014                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6015         }
6016
6017         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6018
6019         i = I915_READ(aud_cntl_st);
6020         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6021         if (!i) {
6022                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6023                 /* operate blindly on all ports */
6024                 eldv = IBX_ELD_VALIDB;
6025                 eldv |= IBX_ELD_VALIDB << 4;
6026                 eldv |= IBX_ELD_VALIDB << 8;
6027         } else {
6028                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6029                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6030         }
6031
6032         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6033                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6034                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6035                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6036         } else
6037                 I915_WRITE(aud_config, 0);
6038
6039         if (intel_eld_uptodate(connector,
6040                                aud_cntrl_st2, eldv,
6041                                aud_cntl_st, IBX_ELD_ADDRESS,
6042                                hdmiw_hdmiedid))
6043                 return;
6044
6045         i = I915_READ(aud_cntrl_st2);
6046         i &= ~eldv;
6047         I915_WRITE(aud_cntrl_st2, i);
6048
6049         if (!eld[0])
6050                 return;
6051
6052         i = I915_READ(aud_cntl_st);
6053         i &= ~IBX_ELD_ADDRESS;
6054         I915_WRITE(aud_cntl_st, i);
6055
6056         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6057         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6058         for (i = 0; i < len; i++)
6059                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6060
6061         i = I915_READ(aud_cntrl_st2);
6062         i |= eldv;
6063         I915_WRITE(aud_cntrl_st2, i);
6064 }
6065
6066 void intel_write_eld(struct drm_encoder *encoder,
6067                      struct drm_display_mode *mode)
6068 {
6069         struct drm_crtc *crtc = encoder->crtc;
6070         struct drm_connector *connector;
6071         struct drm_device *dev = encoder->dev;
6072         struct drm_i915_private *dev_priv = dev->dev_private;
6073
6074         connector = drm_select_eld(encoder, mode);
6075         if (!connector)
6076                 return;
6077
6078         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6079                          connector->base.id,
6080                          drm_get_connector_name(connector),
6081                          connector->encoder->base.id,
6082                          drm_get_encoder_name(connector->encoder));
6083
6084         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6085
6086         if (dev_priv->display.write_eld)
6087                 dev_priv->display.write_eld(connector, crtc);
6088 }
6089
6090 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6091 void intel_crtc_load_lut(struct drm_crtc *crtc)
6092 {
6093         struct drm_device *dev = crtc->dev;
6094         struct drm_i915_private *dev_priv = dev->dev_private;
6095         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6096         int palreg = PALETTE(intel_crtc->pipe);
6097         int i;
6098
6099         /* The clocks have to be on to load the palette. */
6100         if (!crtc->enabled || !intel_crtc->active)
6101                 return;
6102
6103         /* use legacy palette for Ironlake */
6104         if (HAS_PCH_SPLIT(dev))
6105                 palreg = LGC_PALETTE(intel_crtc->pipe);
6106
6107         for (i = 0; i < 256; i++) {
6108                 I915_WRITE(palreg + 4 * i,
6109                            (intel_crtc->lut_r[i] << 16) |
6110                            (intel_crtc->lut_g[i] << 8) |
6111                            intel_crtc->lut_b[i]);
6112         }
6113 }
6114
6115 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6116 {
6117         struct drm_device *dev = crtc->dev;
6118         struct drm_i915_private *dev_priv = dev->dev_private;
6119         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6120         bool visible = base != 0;
6121         u32 cntl;
6122
6123         if (intel_crtc->cursor_visible == visible)
6124                 return;
6125
6126         cntl = I915_READ(_CURACNTR);
6127         if (visible) {
6128                 /* On these chipsets we can only modify the base whilst
6129                  * the cursor is disabled.
6130                  */
6131                 I915_WRITE(_CURABASE, base);
6132
6133                 cntl &= ~(CURSOR_FORMAT_MASK);
6134                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6135                 cntl |= CURSOR_ENABLE |
6136                         CURSOR_GAMMA_ENABLE |
6137                         CURSOR_FORMAT_ARGB;
6138         } else
6139                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6140         I915_WRITE(_CURACNTR, cntl);
6141
6142         intel_crtc->cursor_visible = visible;
6143 }
6144
6145 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6146 {
6147         struct drm_device *dev = crtc->dev;
6148         struct drm_i915_private *dev_priv = dev->dev_private;
6149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6150         int pipe = intel_crtc->pipe;
6151         bool visible = base != 0;
6152
6153         if (intel_crtc->cursor_visible != visible) {
6154                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6155                 if (base) {
6156                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6157                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6158                         cntl |= pipe << 28; /* Connect to correct pipe */
6159                 } else {
6160                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6161                         cntl |= CURSOR_MODE_DISABLE;
6162                 }
6163                 I915_WRITE(CURCNTR(pipe), cntl);
6164
6165                 intel_crtc->cursor_visible = visible;
6166         }
6167         /* and commit changes on next vblank */
6168         I915_WRITE(CURBASE(pipe), base);
6169 }
6170
6171 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6172 {
6173         struct drm_device *dev = crtc->dev;
6174         struct drm_i915_private *dev_priv = dev->dev_private;
6175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6176         int pipe = intel_crtc->pipe;
6177         bool visible = base != 0;
6178
6179         if (intel_crtc->cursor_visible != visible) {
6180                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6181                 if (base) {
6182                         cntl &= ~CURSOR_MODE;
6183                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6184                 } else {
6185                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6186                         cntl |= CURSOR_MODE_DISABLE;
6187                 }
6188                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6189
6190                 intel_crtc->cursor_visible = visible;
6191         }
6192         /* and commit changes on next vblank */
6193         I915_WRITE(CURBASE_IVB(pipe), base);
6194 }
6195
6196 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6197 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6198                                      bool on)
6199 {
6200         struct drm_device *dev = crtc->dev;
6201         struct drm_i915_private *dev_priv = dev->dev_private;
6202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6203         int pipe = intel_crtc->pipe;
6204         int x = intel_crtc->cursor_x;
6205         int y = intel_crtc->cursor_y;
6206         u32 base, pos;
6207         bool visible;
6208
6209         pos = 0;
6210
6211         if (on && crtc->enabled && crtc->fb) {
6212                 base = intel_crtc->cursor_addr;
6213                 if (x > (int) crtc->fb->width)
6214                         base = 0;
6215
6216                 if (y > (int) crtc->fb->height)
6217                         base = 0;
6218         } else
6219                 base = 0;
6220
6221         if (x < 0) {
6222                 if (x + intel_crtc->cursor_width < 0)
6223                         base = 0;
6224
6225                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6226                 x = -x;
6227         }
6228         pos |= x << CURSOR_X_SHIFT;
6229
6230         if (y < 0) {
6231                 if (y + intel_crtc->cursor_height < 0)
6232                         base = 0;
6233
6234                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6235                 y = -y;
6236         }
6237         pos |= y << CURSOR_Y_SHIFT;
6238
6239         visible = base != 0;
6240         if (!visible && !intel_crtc->cursor_visible)
6241                 return;
6242
6243         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6244                 I915_WRITE(CURPOS_IVB(pipe), pos);
6245                 ivb_update_cursor(crtc, base);
6246         } else {
6247                 I915_WRITE(CURPOS(pipe), pos);
6248                 if (IS_845G(dev) || IS_I865G(dev))
6249                         i845_update_cursor(crtc, base);
6250                 else
6251                         i9xx_update_cursor(crtc, base);
6252         }
6253 }
6254
6255 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6256                                  struct drm_file *file,
6257                                  uint32_t handle,
6258                                  uint32_t width, uint32_t height)
6259 {
6260         struct drm_device *dev = crtc->dev;
6261         struct drm_i915_private *dev_priv = dev->dev_private;
6262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6263         struct drm_i915_gem_object *obj;
6264         uint32_t addr;
6265         int ret;
6266
6267         /* if we want to turn off the cursor ignore width and height */
6268         if (!handle) {
6269                 DRM_DEBUG_KMS("cursor off\n");
6270                 addr = 0;
6271                 obj = NULL;
6272                 mutex_lock(&dev->struct_mutex);
6273                 goto finish;
6274         }
6275
6276         /* Currently we only support 64x64 cursors */
6277         if (width != 64 || height != 64) {
6278                 DRM_ERROR("we currently only support 64x64 cursors\n");
6279                 return -EINVAL;
6280         }
6281
6282         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6283         if (&obj->base == NULL)
6284                 return -ENOENT;
6285
6286         if (obj->base.size < width * height * 4) {
6287                 DRM_ERROR("buffer is to small\n");
6288                 ret = -ENOMEM;
6289                 goto fail;
6290         }
6291
6292         /* we only need to pin inside GTT if cursor is non-phy */
6293         mutex_lock(&dev->struct_mutex);
6294         if (!dev_priv->info->cursor_needs_physical) {
6295                 if (obj->tiling_mode) {
6296                         DRM_ERROR("cursor cannot be tiled\n");
6297                         ret = -EINVAL;
6298                         goto fail_locked;
6299                 }
6300
6301                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6302                 if (ret) {
6303                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6304                         goto fail_locked;
6305                 }
6306
6307                 ret = i915_gem_object_put_fence(obj);
6308                 if (ret) {
6309                         DRM_ERROR("failed to release fence for cursor");
6310                         goto fail_unpin;
6311                 }
6312
6313                 addr = obj->gtt_offset;
6314         } else {
6315                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6316                 ret = i915_gem_attach_phys_object(dev, obj,
6317                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6318                                                   align);
6319                 if (ret) {
6320                         DRM_ERROR("failed to attach phys object\n");
6321                         goto fail_locked;
6322                 }
6323                 addr = obj->phys_obj->handle->busaddr;
6324         }
6325
6326         if (IS_GEN2(dev))
6327                 I915_WRITE(CURSIZE, (height << 12) | width);
6328
6329  finish:
6330         if (intel_crtc->cursor_bo) {
6331                 if (dev_priv->info->cursor_needs_physical) {
6332                         if (intel_crtc->cursor_bo != obj)
6333                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6334                 } else
6335                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6336                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6337         }
6338
6339         mutex_unlock(&dev->struct_mutex);
6340
6341         intel_crtc->cursor_addr = addr;
6342         intel_crtc->cursor_bo = obj;
6343         intel_crtc->cursor_width = width;
6344         intel_crtc->cursor_height = height;
6345
6346         intel_crtc_update_cursor(crtc, true);
6347
6348         return 0;
6349 fail_unpin:
6350         i915_gem_object_unpin(obj);
6351 fail_locked:
6352         mutex_unlock(&dev->struct_mutex);
6353 fail:
6354         drm_gem_object_unreference_unlocked(&obj->base);
6355         return ret;
6356 }
6357
6358 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6359 {
6360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6361
6362         intel_crtc->cursor_x = x;
6363         intel_crtc->cursor_y = y;
6364
6365         intel_crtc_update_cursor(crtc, true);
6366
6367         return 0;
6368 }
6369
6370 /** Sets the color ramps on behalf of RandR */
6371 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6372                                  u16 blue, int regno)
6373 {
6374         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6375
6376         intel_crtc->lut_r[regno] = red >> 8;
6377         intel_crtc->lut_g[regno] = green >> 8;
6378         intel_crtc->lut_b[regno] = blue >> 8;
6379 }
6380
6381 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6382                              u16 *blue, int regno)
6383 {
6384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6385
6386         *red = intel_crtc->lut_r[regno] << 8;
6387         *green = intel_crtc->lut_g[regno] << 8;
6388         *blue = intel_crtc->lut_b[regno] << 8;
6389 }
6390
6391 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6392                                  u16 *blue, uint32_t start, uint32_t size)
6393 {
6394         int end = (start + size > 256) ? 256 : start + size, i;
6395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6396
6397         for (i = start; i < end; i++) {
6398                 intel_crtc->lut_r[i] = red[i] >> 8;
6399                 intel_crtc->lut_g[i] = green[i] >> 8;
6400                 intel_crtc->lut_b[i] = blue[i] >> 8;
6401         }
6402
6403         intel_crtc_load_lut(crtc);
6404 }
6405
6406 /**
6407  * Get a pipe with a simple mode set on it for doing load-based monitor
6408  * detection.
6409  *
6410  * It will be up to the load-detect code to adjust the pipe as appropriate for
6411  * its requirements.  The pipe will be connected to no other encoders.
6412  *
6413  * Currently this code will only succeed if there is a pipe with no encoders
6414  * configured for it.  In the future, it could choose to temporarily disable
6415  * some outputs to free up a pipe for its use.
6416  *
6417  * \return crtc, or NULL if no pipes are available.
6418  */
6419
6420 /* VESA 640x480x72Hz mode to set on the pipe */
6421 static struct drm_display_mode load_detect_mode = {
6422         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6423                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6424 };
6425
6426 static struct drm_framebuffer *
6427 intel_framebuffer_create(struct drm_device *dev,
6428                          struct drm_mode_fb_cmd2 *mode_cmd,
6429                          struct drm_i915_gem_object *obj)
6430 {
6431         struct intel_framebuffer *intel_fb;
6432         int ret;
6433
6434         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6435         if (!intel_fb) {
6436                 drm_gem_object_unreference_unlocked(&obj->base);
6437                 return ERR_PTR(-ENOMEM);
6438         }
6439
6440         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6441         if (ret) {
6442                 drm_gem_object_unreference_unlocked(&obj->base);
6443                 kfree(intel_fb);
6444                 return ERR_PTR(ret);
6445         }
6446
6447         return &intel_fb->base;
6448 }
6449
6450 static u32
6451 intel_framebuffer_pitch_for_width(int width, int bpp)
6452 {
6453         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6454         return ALIGN(pitch, 64);
6455 }
6456
6457 static u32
6458 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6459 {
6460         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6461         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6462 }
6463
6464 static struct drm_framebuffer *
6465 intel_framebuffer_create_for_mode(struct drm_device *dev,
6466                                   struct drm_display_mode *mode,
6467                                   int depth, int bpp)
6468 {
6469         struct drm_i915_gem_object *obj;
6470         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6471
6472         obj = i915_gem_alloc_object(dev,
6473                                     intel_framebuffer_size_for_mode(mode, bpp));
6474         if (obj == NULL)
6475                 return ERR_PTR(-ENOMEM);
6476
6477         mode_cmd.width = mode->hdisplay;
6478         mode_cmd.height = mode->vdisplay;
6479         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6480                                                                 bpp);
6481         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6482
6483         return intel_framebuffer_create(dev, &mode_cmd, obj);
6484 }
6485
6486 static struct drm_framebuffer *
6487 mode_fits_in_fbdev(struct drm_device *dev,
6488                    struct drm_display_mode *mode)
6489 {
6490         struct drm_i915_private *dev_priv = dev->dev_private;
6491         struct drm_i915_gem_object *obj;
6492         struct drm_framebuffer *fb;
6493
6494         if (dev_priv->fbdev == NULL)
6495                 return NULL;
6496
6497         obj = dev_priv->fbdev->ifb.obj;
6498         if (obj == NULL)
6499                 return NULL;
6500
6501         fb = &dev_priv->fbdev->ifb.base;
6502         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6503                                                                fb->bits_per_pixel))
6504                 return NULL;
6505
6506         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6507                 return NULL;
6508
6509         return fb;
6510 }
6511
6512 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6513                                 struct drm_display_mode *mode,
6514                                 struct intel_load_detect_pipe *old)
6515 {
6516         struct intel_crtc *intel_crtc;
6517         struct intel_encoder *intel_encoder =
6518                 intel_attached_encoder(connector);
6519         struct drm_crtc *possible_crtc;
6520         struct drm_encoder *encoder = &intel_encoder->base;
6521         struct drm_crtc *crtc = NULL;
6522         struct drm_device *dev = encoder->dev;
6523         struct drm_framebuffer *fb;
6524         int i = -1;
6525
6526         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6527                       connector->base.id, drm_get_connector_name(connector),
6528                       encoder->base.id, drm_get_encoder_name(encoder));
6529
6530         /*
6531          * Algorithm gets a little messy:
6532          *
6533          *   - if the connector already has an assigned crtc, use it (but make
6534          *     sure it's on first)
6535          *
6536          *   - try to find the first unused crtc that can drive this connector,
6537          *     and use that if we find one
6538          */
6539
6540         /* See if we already have a CRTC for this connector */
6541         if (encoder->crtc) {
6542                 crtc = encoder->crtc;
6543
6544                 old->dpms_mode = connector->dpms;
6545                 old->load_detect_temp = false;
6546
6547                 /* Make sure the crtc and connector are running */
6548                 if (connector->dpms != DRM_MODE_DPMS_ON)
6549                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6550
6551                 return true;
6552         }
6553
6554         /* Find an unused one (if possible) */
6555         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6556                 i++;
6557                 if (!(encoder->possible_crtcs & (1 << i)))
6558                         continue;
6559                 if (!possible_crtc->enabled) {
6560                         crtc = possible_crtc;
6561                         break;
6562                 }
6563         }
6564
6565         /*
6566          * If we didn't find an unused CRTC, don't use any.
6567          */
6568         if (!crtc) {
6569                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6570                 return false;
6571         }
6572
6573         intel_encoder->new_crtc = to_intel_crtc(crtc);
6574         to_intel_connector(connector)->new_encoder = intel_encoder;
6575
6576         intel_crtc = to_intel_crtc(crtc);
6577         old->dpms_mode = connector->dpms;
6578         old->load_detect_temp = true;
6579         old->release_fb = NULL;
6580
6581         if (!mode)
6582                 mode = &load_detect_mode;
6583
6584         /* We need a framebuffer large enough to accommodate all accesses
6585          * that the plane may generate whilst we perform load detection.
6586          * We can not rely on the fbcon either being present (we get called
6587          * during its initialisation to detect all boot displays, or it may
6588          * not even exist) or that it is large enough to satisfy the
6589          * requested mode.
6590          */
6591         fb = mode_fits_in_fbdev(dev, mode);
6592         if (fb == NULL) {
6593                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6594                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6595                 old->release_fb = fb;
6596         } else
6597                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6598         if (IS_ERR(fb)) {
6599                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6600                 return false;
6601         }
6602
6603         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6604                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6605                 if (old->release_fb)
6606                         old->release_fb->funcs->destroy(old->release_fb);
6607                 return false;
6608         }
6609
6610         /* let the connector get through one full cycle before testing */
6611         intel_wait_for_vblank(dev, intel_crtc->pipe);
6612         return true;
6613 }
6614
6615 void intel_release_load_detect_pipe(struct drm_connector *connector,
6616                                     struct intel_load_detect_pipe *old)
6617 {
6618         struct intel_encoder *intel_encoder =
6619                 intel_attached_encoder(connector);
6620         struct drm_encoder *encoder = &intel_encoder->base;
6621
6622         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6623                       connector->base.id, drm_get_connector_name(connector),
6624                       encoder->base.id, drm_get_encoder_name(encoder));
6625
6626         if (old->load_detect_temp) {
6627                 struct drm_crtc *crtc = encoder->crtc;
6628
6629                 to_intel_connector(connector)->new_encoder = NULL;
6630                 intel_encoder->new_crtc = NULL;
6631                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6632
6633                 if (old->release_fb)
6634                         old->release_fb->funcs->destroy(old->release_fb);
6635
6636                 return;
6637         }
6638
6639         /* Switch crtc and encoder back off if necessary */
6640         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6641                 connector->funcs->dpms(connector, old->dpms_mode);
6642 }
6643
6644 /* Returns the clock of the currently programmed mode of the given pipe. */
6645 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6646 {
6647         struct drm_i915_private *dev_priv = dev->dev_private;
6648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6649         int pipe = intel_crtc->pipe;
6650         u32 dpll = I915_READ(DPLL(pipe));
6651         u32 fp;
6652         intel_clock_t clock;
6653
6654         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6655                 fp = I915_READ(FP0(pipe));
6656         else
6657                 fp = I915_READ(FP1(pipe));
6658
6659         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6660         if (IS_PINEVIEW(dev)) {
6661                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6662                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6663         } else {
6664                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6665                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6666         }
6667
6668         if (!IS_GEN2(dev)) {
6669                 if (IS_PINEVIEW(dev))
6670                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6671                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6672                 else
6673                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6674                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6675
6676                 switch (dpll & DPLL_MODE_MASK) {
6677                 case DPLLB_MODE_DAC_SERIAL:
6678                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6679                                 5 : 10;
6680                         break;
6681                 case DPLLB_MODE_LVDS:
6682                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6683                                 7 : 14;
6684                         break;
6685                 default:
6686                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6687                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6688                         return 0;
6689                 }
6690
6691                 /* XXX: Handle the 100Mhz refclk */
6692                 intel_clock(dev, 96000, &clock);
6693         } else {
6694                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6695
6696                 if (is_lvds) {
6697                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6698                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6699                         clock.p2 = 14;
6700
6701                         if ((dpll & PLL_REF_INPUT_MASK) ==
6702                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6703                                 /* XXX: might not be 66MHz */
6704                                 intel_clock(dev, 66000, &clock);
6705                         } else
6706                                 intel_clock(dev, 48000, &clock);
6707                 } else {
6708                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6709                                 clock.p1 = 2;
6710                         else {
6711                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6712                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6713                         }
6714                         if (dpll & PLL_P2_DIVIDE_BY_4)
6715                                 clock.p2 = 4;
6716                         else
6717                                 clock.p2 = 2;
6718
6719                         intel_clock(dev, 48000, &clock);
6720                 }
6721         }
6722
6723         /* XXX: It would be nice to validate the clocks, but we can't reuse
6724          * i830PllIsValid() because it relies on the xf86_config connector
6725          * configuration being accurate, which it isn't necessarily.
6726          */
6727
6728         return clock.dot;
6729 }
6730
6731 /** Returns the currently programmed mode of the given pipe. */
6732 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6733                                              struct drm_crtc *crtc)
6734 {
6735         struct drm_i915_private *dev_priv = dev->dev_private;
6736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6737         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6738         struct drm_display_mode *mode;
6739         int htot = I915_READ(HTOTAL(cpu_transcoder));
6740         int hsync = I915_READ(HSYNC(cpu_transcoder));
6741         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6742         int vsync = I915_READ(VSYNC(cpu_transcoder));
6743
6744         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6745         if (!mode)
6746                 return NULL;
6747
6748         mode->clock = intel_crtc_clock_get(dev, crtc);
6749         mode->hdisplay = (htot & 0xffff) + 1;
6750         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6751         mode->hsync_start = (hsync & 0xffff) + 1;
6752         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6753         mode->vdisplay = (vtot & 0xffff) + 1;
6754         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6755         mode->vsync_start = (vsync & 0xffff) + 1;
6756         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6757
6758         drm_mode_set_name(mode);
6759
6760         return mode;
6761 }
6762
6763 static void intel_increase_pllclock(struct drm_crtc *crtc)
6764 {
6765         struct drm_device *dev = crtc->dev;
6766         drm_i915_private_t *dev_priv = dev->dev_private;
6767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6768         int pipe = intel_crtc->pipe;
6769         int dpll_reg = DPLL(pipe);
6770         int dpll;
6771
6772         if (HAS_PCH_SPLIT(dev))
6773                 return;
6774
6775         if (!dev_priv->lvds_downclock_avail)
6776                 return;
6777
6778         dpll = I915_READ(dpll_reg);
6779         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6780                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6781
6782                 assert_panel_unlocked(dev_priv, pipe);
6783
6784                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6785                 I915_WRITE(dpll_reg, dpll);
6786                 intel_wait_for_vblank(dev, pipe);
6787
6788                 dpll = I915_READ(dpll_reg);
6789                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6790                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6791         }
6792 }
6793
6794 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6795 {
6796         struct drm_device *dev = crtc->dev;
6797         drm_i915_private_t *dev_priv = dev->dev_private;
6798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6799
6800         if (HAS_PCH_SPLIT(dev))
6801                 return;
6802
6803         if (!dev_priv->lvds_downclock_avail)
6804                 return;
6805
6806         /*
6807          * Since this is called by a timer, we should never get here in
6808          * the manual case.
6809          */
6810         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6811                 int pipe = intel_crtc->pipe;
6812                 int dpll_reg = DPLL(pipe);
6813                 int dpll;
6814
6815                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6816
6817                 assert_panel_unlocked(dev_priv, pipe);
6818
6819                 dpll = I915_READ(dpll_reg);
6820                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6821                 I915_WRITE(dpll_reg, dpll);
6822                 intel_wait_for_vblank(dev, pipe);
6823                 dpll = I915_READ(dpll_reg);
6824                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6825                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6826         }
6827
6828 }
6829
6830 void intel_mark_busy(struct drm_device *dev)
6831 {
6832         i915_update_gfx_val(dev->dev_private);
6833 }
6834
6835 void intel_mark_idle(struct drm_device *dev)
6836 {
6837 }
6838
6839 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6840 {
6841         struct drm_device *dev = obj->base.dev;
6842         struct drm_crtc *crtc;
6843
6844         if (!i915_powersave)
6845                 return;
6846
6847         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6848                 if (!crtc->fb)
6849                         continue;
6850
6851                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6852                         intel_increase_pllclock(crtc);
6853         }
6854 }
6855
6856 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6857 {
6858         struct drm_device *dev = obj->base.dev;
6859         struct drm_crtc *crtc;
6860
6861         if (!i915_powersave)
6862                 return;
6863
6864         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6865                 if (!crtc->fb)
6866                         continue;
6867
6868                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6869                         intel_decrease_pllclock(crtc);
6870         }
6871 }
6872
6873 static void intel_crtc_destroy(struct drm_crtc *crtc)
6874 {
6875         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6876         struct drm_device *dev = crtc->dev;
6877         struct intel_unpin_work *work;
6878         unsigned long flags;
6879
6880         spin_lock_irqsave(&dev->event_lock, flags);
6881         work = intel_crtc->unpin_work;
6882         intel_crtc->unpin_work = NULL;
6883         spin_unlock_irqrestore(&dev->event_lock, flags);
6884
6885         if (work) {
6886                 cancel_work_sync(&work->work);
6887                 kfree(work);
6888         }
6889
6890         drm_crtc_cleanup(crtc);
6891
6892         kfree(intel_crtc);
6893 }
6894
6895 static void intel_unpin_work_fn(struct work_struct *__work)
6896 {
6897         struct intel_unpin_work *work =
6898                 container_of(__work, struct intel_unpin_work, work);
6899         struct drm_device *dev = work->crtc->dev;
6900
6901         mutex_lock(&dev->struct_mutex);
6902         intel_unpin_fb_obj(work->old_fb_obj);
6903         drm_gem_object_unreference(&work->pending_flip_obj->base);
6904         drm_gem_object_unreference(&work->old_fb_obj->base);
6905
6906         intel_update_fbc(dev);
6907         mutex_unlock(&dev->struct_mutex);
6908
6909         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6910         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6911
6912         kfree(work);
6913 }
6914
6915 static void do_intel_finish_page_flip(struct drm_device *dev,
6916                                       struct drm_crtc *crtc)
6917 {
6918         drm_i915_private_t *dev_priv = dev->dev_private;
6919         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6920         struct intel_unpin_work *work;
6921         struct drm_i915_gem_object *obj;
6922         struct drm_pending_vblank_event *e;
6923         struct timeval tvbl;
6924         unsigned long flags;
6925
6926         /* Ignore early vblank irqs */
6927         if (intel_crtc == NULL)
6928                 return;
6929
6930         spin_lock_irqsave(&dev->event_lock, flags);
6931         work = intel_crtc->unpin_work;
6932         if (work == NULL || !work->pending) {
6933                 spin_unlock_irqrestore(&dev->event_lock, flags);
6934                 return;
6935         }
6936
6937         intel_crtc->unpin_work = NULL;
6938
6939         if (work->event) {
6940                 e = work->event;
6941                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6942
6943                 e->event.tv_sec = tvbl.tv_sec;
6944                 e->event.tv_usec = tvbl.tv_usec;
6945
6946                 list_add_tail(&e->base.link,
6947                               &e->base.file_priv->event_list);
6948                 wake_up_interruptible(&e->base.file_priv->event_wait);
6949         }
6950
6951         drm_vblank_put(dev, intel_crtc->pipe);
6952
6953         spin_unlock_irqrestore(&dev->event_lock, flags);
6954
6955         obj = work->old_fb_obj;
6956
6957         atomic_clear_mask(1 << intel_crtc->plane,
6958                           &obj->pending_flip.counter);
6959         wake_up(&dev_priv->pending_flip_queue);
6960
6961         queue_work(dev_priv->wq, &work->work);
6962
6963         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6964 }
6965
6966 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6967 {
6968         drm_i915_private_t *dev_priv = dev->dev_private;
6969         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6970
6971         do_intel_finish_page_flip(dev, crtc);
6972 }
6973
6974 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6975 {
6976         drm_i915_private_t *dev_priv = dev->dev_private;
6977         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6978
6979         do_intel_finish_page_flip(dev, crtc);
6980 }
6981
6982 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6983 {
6984         drm_i915_private_t *dev_priv = dev->dev_private;
6985         struct intel_crtc *intel_crtc =
6986                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6987         unsigned long flags;
6988
6989         spin_lock_irqsave(&dev->event_lock, flags);
6990         if (intel_crtc->unpin_work) {
6991                 if ((++intel_crtc->unpin_work->pending) > 1)
6992                         DRM_ERROR("Prepared flip multiple times\n");
6993         } else {
6994                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6995         }
6996         spin_unlock_irqrestore(&dev->event_lock, flags);
6997 }
6998
6999 static int intel_gen2_queue_flip(struct drm_device *dev,
7000                                  struct drm_crtc *crtc,
7001                                  struct drm_framebuffer *fb,
7002                                  struct drm_i915_gem_object *obj)
7003 {
7004         struct drm_i915_private *dev_priv = dev->dev_private;
7005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7006         u32 flip_mask;
7007         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7008         int ret;
7009
7010         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7011         if (ret)
7012                 goto err;
7013
7014         ret = intel_ring_begin(ring, 6);
7015         if (ret)
7016                 goto err_unpin;
7017
7018         /* Can't queue multiple flips, so wait for the previous
7019          * one to finish before executing the next.
7020          */
7021         if (intel_crtc->plane)
7022                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7023         else
7024                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7025         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7026         intel_ring_emit(ring, MI_NOOP);
7027         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7028                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7029         intel_ring_emit(ring, fb->pitches[0]);
7030         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7031         intel_ring_emit(ring, 0); /* aux display base address, unused */
7032         intel_ring_advance(ring);
7033         return 0;
7034
7035 err_unpin:
7036         intel_unpin_fb_obj(obj);
7037 err:
7038         return ret;
7039 }
7040
7041 static int intel_gen3_queue_flip(struct drm_device *dev,
7042                                  struct drm_crtc *crtc,
7043                                  struct drm_framebuffer *fb,
7044                                  struct drm_i915_gem_object *obj)
7045 {
7046         struct drm_i915_private *dev_priv = dev->dev_private;
7047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7048         u32 flip_mask;
7049         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7050         int ret;
7051
7052         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7053         if (ret)
7054                 goto err;
7055
7056         ret = intel_ring_begin(ring, 6);
7057         if (ret)
7058                 goto err_unpin;
7059
7060         if (intel_crtc->plane)
7061                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7062         else
7063                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7064         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7065         intel_ring_emit(ring, MI_NOOP);
7066         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7067                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7068         intel_ring_emit(ring, fb->pitches[0]);
7069         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7070         intel_ring_emit(ring, MI_NOOP);
7071
7072         intel_ring_advance(ring);
7073         return 0;
7074
7075 err_unpin:
7076         intel_unpin_fb_obj(obj);
7077 err:
7078         return ret;
7079 }
7080
7081 static int intel_gen4_queue_flip(struct drm_device *dev,
7082                                  struct drm_crtc *crtc,
7083                                  struct drm_framebuffer *fb,
7084                                  struct drm_i915_gem_object *obj)
7085 {
7086         struct drm_i915_private *dev_priv = dev->dev_private;
7087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7088         uint32_t pf, pipesrc;
7089         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7090         int ret;
7091
7092         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7093         if (ret)
7094                 goto err;
7095
7096         ret = intel_ring_begin(ring, 4);
7097         if (ret)
7098                 goto err_unpin;
7099
7100         /* i965+ uses the linear or tiled offsets from the
7101          * Display Registers (which do not change across a page-flip)
7102          * so we need only reprogram the base address.
7103          */
7104         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7105                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7106         intel_ring_emit(ring, fb->pitches[0]);
7107         intel_ring_emit(ring,
7108                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7109                         obj->tiling_mode);
7110
7111         /* XXX Enabling the panel-fitter across page-flip is so far
7112          * untested on non-native modes, so ignore it for now.
7113          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7114          */
7115         pf = 0;
7116         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7117         intel_ring_emit(ring, pf | pipesrc);
7118         intel_ring_advance(ring);
7119         return 0;
7120
7121 err_unpin:
7122         intel_unpin_fb_obj(obj);
7123 err:
7124         return ret;
7125 }
7126
7127 static int intel_gen6_queue_flip(struct drm_device *dev,
7128                                  struct drm_crtc *crtc,
7129                                  struct drm_framebuffer *fb,
7130                                  struct drm_i915_gem_object *obj)
7131 {
7132         struct drm_i915_private *dev_priv = dev->dev_private;
7133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7134         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7135         uint32_t pf, pipesrc;
7136         int ret;
7137
7138         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7139         if (ret)
7140                 goto err;
7141
7142         ret = intel_ring_begin(ring, 4);
7143         if (ret)
7144                 goto err_unpin;
7145
7146         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7147                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7148         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7149         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7150
7151         /* Contrary to the suggestions in the documentation,
7152          * "Enable Panel Fitter" does not seem to be required when page
7153          * flipping with a non-native mode, and worse causes a normal
7154          * modeset to fail.
7155          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7156          */
7157         pf = 0;
7158         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7159         intel_ring_emit(ring, pf | pipesrc);
7160         intel_ring_advance(ring);
7161         return 0;
7162
7163 err_unpin:
7164         intel_unpin_fb_obj(obj);
7165 err:
7166         return ret;
7167 }
7168
7169 /*
7170  * On gen7 we currently use the blit ring because (in early silicon at least)
7171  * the render ring doesn't give us interrpts for page flip completion, which
7172  * means clients will hang after the first flip is queued.  Fortunately the
7173  * blit ring generates interrupts properly, so use it instead.
7174  */
7175 static int intel_gen7_queue_flip(struct drm_device *dev,
7176                                  struct drm_crtc *crtc,
7177                                  struct drm_framebuffer *fb,
7178                                  struct drm_i915_gem_object *obj)
7179 {
7180         struct drm_i915_private *dev_priv = dev->dev_private;
7181         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7182         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7183         uint32_t plane_bit = 0;
7184         int ret;
7185
7186         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7187         if (ret)
7188                 goto err;
7189
7190         switch(intel_crtc->plane) {
7191         case PLANE_A:
7192                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7193                 break;
7194         case PLANE_B:
7195                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7196                 break;
7197         case PLANE_C:
7198                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7199                 break;
7200         default:
7201                 WARN_ONCE(1, "unknown plane in flip command\n");
7202                 ret = -ENODEV;
7203                 goto err_unpin;
7204         }
7205
7206         ret = intel_ring_begin(ring, 4);
7207         if (ret)
7208                 goto err_unpin;
7209
7210         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7211         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7212         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7213         intel_ring_emit(ring, (MI_NOOP));
7214         intel_ring_advance(ring);
7215         return 0;
7216
7217 err_unpin:
7218         intel_unpin_fb_obj(obj);
7219 err:
7220         return ret;
7221 }
7222
7223 static int intel_default_queue_flip(struct drm_device *dev,
7224                                     struct drm_crtc *crtc,
7225                                     struct drm_framebuffer *fb,
7226                                     struct drm_i915_gem_object *obj)
7227 {
7228         return -ENODEV;
7229 }
7230
7231 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7232                                 struct drm_framebuffer *fb,
7233                                 struct drm_pending_vblank_event *event)
7234 {
7235         struct drm_device *dev = crtc->dev;
7236         struct drm_i915_private *dev_priv = dev->dev_private;
7237         struct intel_framebuffer *intel_fb;
7238         struct drm_i915_gem_object *obj;
7239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7240         struct intel_unpin_work *work;
7241         unsigned long flags;
7242         int ret;
7243
7244         /* Can't change pixel format via MI display flips. */
7245         if (fb->pixel_format != crtc->fb->pixel_format)
7246                 return -EINVAL;
7247
7248         /*
7249          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7250          * Note that pitch changes could also affect these register.
7251          */
7252         if (INTEL_INFO(dev)->gen > 3 &&
7253             (fb->offsets[0] != crtc->fb->offsets[0] ||
7254              fb->pitches[0] != crtc->fb->pitches[0]))
7255                 return -EINVAL;
7256
7257         work = kzalloc(sizeof *work, GFP_KERNEL);
7258         if (work == NULL)
7259                 return -ENOMEM;
7260
7261         work->event = event;
7262         work->crtc = crtc;
7263         intel_fb = to_intel_framebuffer(crtc->fb);
7264         work->old_fb_obj = intel_fb->obj;
7265         INIT_WORK(&work->work, intel_unpin_work_fn);
7266
7267         ret = drm_vblank_get(dev, intel_crtc->pipe);
7268         if (ret)
7269                 goto free_work;
7270
7271         /* We borrow the event spin lock for protecting unpin_work */
7272         spin_lock_irqsave(&dev->event_lock, flags);
7273         if (intel_crtc->unpin_work) {
7274                 spin_unlock_irqrestore(&dev->event_lock, flags);
7275                 kfree(work);
7276                 drm_vblank_put(dev, intel_crtc->pipe);
7277
7278                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7279                 return -EBUSY;
7280         }
7281         intel_crtc->unpin_work = work;
7282         spin_unlock_irqrestore(&dev->event_lock, flags);
7283
7284         intel_fb = to_intel_framebuffer(fb);
7285         obj = intel_fb->obj;
7286
7287         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7288                 flush_workqueue(dev_priv->wq);
7289
7290         ret = i915_mutex_lock_interruptible(dev);
7291         if (ret)
7292                 goto cleanup;
7293
7294         /* Reference the objects for the scheduled work. */
7295         drm_gem_object_reference(&work->old_fb_obj->base);
7296         drm_gem_object_reference(&obj->base);
7297
7298         crtc->fb = fb;
7299
7300         work->pending_flip_obj = obj;
7301
7302         work->enable_stall_check = true;
7303
7304         /* Block clients from rendering to the new back buffer until
7305          * the flip occurs and the object is no longer visible.
7306          */
7307         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7308         atomic_inc(&intel_crtc->unpin_work_count);
7309
7310         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7311         if (ret)
7312                 goto cleanup_pending;
7313
7314         intel_disable_fbc(dev);
7315         intel_mark_fb_busy(obj);
7316         mutex_unlock(&dev->struct_mutex);
7317
7318         trace_i915_flip_request(intel_crtc->plane, obj);
7319
7320         return 0;
7321
7322 cleanup_pending:
7323         atomic_dec(&intel_crtc->unpin_work_count);
7324         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7325         drm_gem_object_unreference(&work->old_fb_obj->base);
7326         drm_gem_object_unreference(&obj->base);
7327         mutex_unlock(&dev->struct_mutex);
7328
7329 cleanup:
7330         spin_lock_irqsave(&dev->event_lock, flags);
7331         intel_crtc->unpin_work = NULL;
7332         spin_unlock_irqrestore(&dev->event_lock, flags);
7333
7334         drm_vblank_put(dev, intel_crtc->pipe);
7335 free_work:
7336         kfree(work);
7337
7338         return ret;
7339 }
7340
7341 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7342         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7343         .load_lut = intel_crtc_load_lut,
7344         .disable = intel_crtc_noop,
7345 };
7346
7347 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7348 {
7349         struct intel_encoder *other_encoder;
7350         struct drm_crtc *crtc = &encoder->new_crtc->base;
7351
7352         if (WARN_ON(!crtc))
7353                 return false;
7354
7355         list_for_each_entry(other_encoder,
7356                             &crtc->dev->mode_config.encoder_list,
7357                             base.head) {
7358
7359                 if (&other_encoder->new_crtc->base != crtc ||
7360                     encoder == other_encoder)
7361                         continue;
7362                 else
7363                         return true;
7364         }
7365
7366         return false;
7367 }
7368
7369 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7370                                   struct drm_crtc *crtc)
7371 {
7372         struct drm_device *dev;
7373         struct drm_crtc *tmp;
7374         int crtc_mask = 1;
7375
7376         WARN(!crtc, "checking null crtc?\n");
7377
7378         dev = crtc->dev;
7379
7380         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7381                 if (tmp == crtc)
7382                         break;
7383                 crtc_mask <<= 1;
7384         }
7385
7386         if (encoder->possible_crtcs & crtc_mask)
7387                 return true;
7388         return false;
7389 }
7390
7391 /**
7392  * intel_modeset_update_staged_output_state
7393  *
7394  * Updates the staged output configuration state, e.g. after we've read out the
7395  * current hw state.
7396  */
7397 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7398 {
7399         struct intel_encoder *encoder;
7400         struct intel_connector *connector;
7401
7402         list_for_each_entry(connector, &dev->mode_config.connector_list,
7403                             base.head) {
7404                 connector->new_encoder =
7405                         to_intel_encoder(connector->base.encoder);
7406         }
7407
7408         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7409                             base.head) {
7410                 encoder->new_crtc =
7411                         to_intel_crtc(encoder->base.crtc);
7412         }
7413 }
7414
7415 /**
7416  * intel_modeset_commit_output_state
7417  *
7418  * This function copies the stage display pipe configuration to the real one.
7419  */
7420 static void intel_modeset_commit_output_state(struct drm_device *dev)
7421 {
7422         struct intel_encoder *encoder;
7423         struct intel_connector *connector;
7424
7425         list_for_each_entry(connector, &dev->mode_config.connector_list,
7426                             base.head) {
7427                 connector->base.encoder = &connector->new_encoder->base;
7428         }
7429
7430         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7431                             base.head) {
7432                 encoder->base.crtc = &encoder->new_crtc->base;
7433         }
7434 }
7435
7436 static struct drm_display_mode *
7437 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7438                             struct drm_display_mode *mode)
7439 {
7440         struct drm_device *dev = crtc->dev;
7441         struct drm_display_mode *adjusted_mode;
7442         struct drm_encoder_helper_funcs *encoder_funcs;
7443         struct intel_encoder *encoder;
7444
7445         adjusted_mode = drm_mode_duplicate(dev, mode);
7446         if (!adjusted_mode)
7447                 return ERR_PTR(-ENOMEM);
7448
7449         /* Pass our mode to the connectors and the CRTC to give them a chance to
7450          * adjust it according to limitations or connector properties, and also
7451          * a chance to reject the mode entirely.
7452          */
7453         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7454                             base.head) {
7455
7456                 if (&encoder->new_crtc->base != crtc)
7457                         continue;
7458                 encoder_funcs = encoder->base.helper_private;
7459                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7460                                                 adjusted_mode))) {
7461                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7462                         goto fail;
7463                 }
7464         }
7465
7466         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7467                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7468                 goto fail;
7469         }
7470         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7471
7472         return adjusted_mode;
7473 fail:
7474         drm_mode_destroy(dev, adjusted_mode);
7475         return ERR_PTR(-EINVAL);
7476 }
7477
7478 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7479  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7480 static void
7481 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7482                              unsigned *prepare_pipes, unsigned *disable_pipes)
7483 {
7484         struct intel_crtc *intel_crtc;
7485         struct drm_device *dev = crtc->dev;
7486         struct intel_encoder *encoder;
7487         struct intel_connector *connector;
7488         struct drm_crtc *tmp_crtc;
7489
7490         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7491
7492         /* Check which crtcs have changed outputs connected to them, these need
7493          * to be part of the prepare_pipes mask. We don't (yet) support global
7494          * modeset across multiple crtcs, so modeset_pipes will only have one
7495          * bit set at most. */
7496         list_for_each_entry(connector, &dev->mode_config.connector_list,
7497                             base.head) {
7498                 if (connector->base.encoder == &connector->new_encoder->base)
7499                         continue;
7500
7501                 if (connector->base.encoder) {
7502                         tmp_crtc = connector->base.encoder->crtc;
7503
7504                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7505                 }
7506
7507                 if (connector->new_encoder)
7508                         *prepare_pipes |=
7509                                 1 << connector->new_encoder->new_crtc->pipe;
7510         }
7511
7512         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7513                             base.head) {
7514                 if (encoder->base.crtc == &encoder->new_crtc->base)
7515                         continue;
7516
7517                 if (encoder->base.crtc) {
7518                         tmp_crtc = encoder->base.crtc;
7519
7520                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7521                 }
7522
7523                 if (encoder->new_crtc)
7524                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7525         }
7526
7527         /* Check for any pipes that will be fully disabled ... */
7528         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7529                             base.head) {
7530                 bool used = false;
7531
7532                 /* Don't try to disable disabled crtcs. */
7533                 if (!intel_crtc->base.enabled)
7534                         continue;
7535
7536                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7537                                     base.head) {
7538                         if (encoder->new_crtc == intel_crtc)
7539                                 used = true;
7540                 }
7541
7542                 if (!used)
7543                         *disable_pipes |= 1 << intel_crtc->pipe;
7544         }
7545
7546
7547         /* set_mode is also used to update properties on life display pipes. */
7548         intel_crtc = to_intel_crtc(crtc);
7549         if (crtc->enabled)
7550                 *prepare_pipes |= 1 << intel_crtc->pipe;
7551
7552         /* We only support modeset on one single crtc, hence we need to do that
7553          * only for the passed in crtc iff we change anything else than just
7554          * disable crtcs.
7555          *
7556          * This is actually not true, to be fully compatible with the old crtc
7557          * helper we automatically disable _any_ output (i.e. doesn't need to be
7558          * connected to the crtc we're modesetting on) if it's disconnected.
7559          * Which is a rather nutty api (since changed the output configuration
7560          * without userspace's explicit request can lead to confusion), but
7561          * alas. Hence we currently need to modeset on all pipes we prepare. */
7562         if (*prepare_pipes)
7563                 *modeset_pipes = *prepare_pipes;
7564
7565         /* ... and mask these out. */
7566         *modeset_pipes &= ~(*disable_pipes);
7567         *prepare_pipes &= ~(*disable_pipes);
7568 }
7569
7570 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7571 {
7572         struct drm_encoder *encoder;
7573         struct drm_device *dev = crtc->dev;
7574
7575         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7576                 if (encoder->crtc == crtc)
7577                         return true;
7578
7579         return false;
7580 }
7581
7582 static void
7583 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7584 {
7585         struct intel_encoder *intel_encoder;
7586         struct intel_crtc *intel_crtc;
7587         struct drm_connector *connector;
7588
7589         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7590                             base.head) {
7591                 if (!intel_encoder->base.crtc)
7592                         continue;
7593
7594                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7595
7596                 if (prepare_pipes & (1 << intel_crtc->pipe))
7597                         intel_encoder->connectors_active = false;
7598         }
7599
7600         intel_modeset_commit_output_state(dev);
7601
7602         /* Update computed state. */
7603         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7604                             base.head) {
7605                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7606         }
7607
7608         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7609                 if (!connector->encoder || !connector->encoder->crtc)
7610                         continue;
7611
7612                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7613
7614                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7615                         struct drm_property *dpms_property =
7616                                 dev->mode_config.dpms_property;
7617
7618                         connector->dpms = DRM_MODE_DPMS_ON;
7619                         drm_connector_property_set_value(connector,
7620                                                          dpms_property,
7621                                                          DRM_MODE_DPMS_ON);
7622
7623                         intel_encoder = to_intel_encoder(connector->encoder);
7624                         intel_encoder->connectors_active = true;
7625                 }
7626         }
7627
7628 }
7629
7630 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7631         list_for_each_entry((intel_crtc), \
7632                             &(dev)->mode_config.crtc_list, \
7633                             base.head) \
7634                 if (mask & (1 <<(intel_crtc)->pipe)) \
7635
7636 void
7637 intel_modeset_check_state(struct drm_device *dev)
7638 {
7639         struct intel_crtc *crtc;
7640         struct intel_encoder *encoder;
7641         struct intel_connector *connector;
7642
7643         list_for_each_entry(connector, &dev->mode_config.connector_list,
7644                             base.head) {
7645                 /* This also checks the encoder/connector hw state with the
7646                  * ->get_hw_state callbacks. */
7647                 intel_connector_check_state(connector);
7648
7649                 WARN(&connector->new_encoder->base != connector->base.encoder,
7650                      "connector's staged encoder doesn't match current encoder\n");
7651         }
7652
7653         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7654                             base.head) {
7655                 bool enabled = false;
7656                 bool active = false;
7657                 enum pipe pipe, tracked_pipe;
7658
7659                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7660                               encoder->base.base.id,
7661                               drm_get_encoder_name(&encoder->base));
7662
7663                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7664                      "encoder's stage crtc doesn't match current crtc\n");
7665                 WARN(encoder->connectors_active && !encoder->base.crtc,
7666                      "encoder's active_connectors set, but no crtc\n");
7667
7668                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7669                                     base.head) {
7670                         if (connector->base.encoder != &encoder->base)
7671                                 continue;
7672                         enabled = true;
7673                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7674                                 active = true;
7675                 }
7676                 WARN(!!encoder->base.crtc != enabled,
7677                      "encoder's enabled state mismatch "
7678                      "(expected %i, found %i)\n",
7679                      !!encoder->base.crtc, enabled);
7680                 WARN(active && !encoder->base.crtc,
7681                      "active encoder with no crtc\n");
7682
7683                 WARN(encoder->connectors_active != active,
7684                      "encoder's computed active state doesn't match tracked active state "
7685                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7686
7687                 active = encoder->get_hw_state(encoder, &pipe);
7688                 WARN(active != encoder->connectors_active,
7689                      "encoder's hw state doesn't match sw tracking "
7690                      "(expected %i, found %i)\n",
7691                      encoder->connectors_active, active);
7692
7693                 if (!encoder->base.crtc)
7694                         continue;
7695
7696                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7697                 WARN(active && pipe != tracked_pipe,
7698                      "active encoder's pipe doesn't match"
7699                      "(expected %i, found %i)\n",
7700                      tracked_pipe, pipe);
7701
7702         }
7703
7704         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7705                             base.head) {
7706                 bool enabled = false;
7707                 bool active = false;
7708
7709                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7710                               crtc->base.base.id);
7711
7712                 WARN(crtc->active && !crtc->base.enabled,
7713                      "active crtc, but not enabled in sw tracking\n");
7714
7715                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7716                                     base.head) {
7717                         if (encoder->base.crtc != &crtc->base)
7718                                 continue;
7719                         enabled = true;
7720                         if (encoder->connectors_active)
7721                                 active = true;
7722                 }
7723                 WARN(active != crtc->active,
7724                      "crtc's computed active state doesn't match tracked active state "
7725                      "(expected %i, found %i)\n", active, crtc->active);
7726                 WARN(enabled != crtc->base.enabled,
7727                      "crtc's computed enabled state doesn't match tracked enabled state "
7728                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7729
7730                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7731         }
7732 }
7733
7734 bool intel_set_mode(struct drm_crtc *crtc,
7735                     struct drm_display_mode *mode,
7736                     int x, int y, struct drm_framebuffer *fb)
7737 {
7738         struct drm_device *dev = crtc->dev;
7739         drm_i915_private_t *dev_priv = dev->dev_private;
7740         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7741         struct intel_crtc *intel_crtc;
7742         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7743         bool ret = true;
7744
7745         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7746                                      &prepare_pipes, &disable_pipes);
7747
7748         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7749                       modeset_pipes, prepare_pipes, disable_pipes);
7750
7751         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7752                 intel_crtc_disable(&intel_crtc->base);
7753
7754         saved_hwmode = crtc->hwmode;
7755         saved_mode = crtc->mode;
7756
7757         /* Hack: Because we don't (yet) support global modeset on multiple
7758          * crtcs, we don't keep track of the new mode for more than one crtc.
7759          * Hence simply check whether any bit is set in modeset_pipes in all the
7760          * pieces of code that are not yet converted to deal with mutliple crtcs
7761          * changing their mode at the same time. */
7762         adjusted_mode = NULL;
7763         if (modeset_pipes) {
7764                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7765                 if (IS_ERR(adjusted_mode)) {
7766                         return false;
7767                 }
7768         }
7769
7770         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7771                 if (intel_crtc->base.enabled)
7772                         dev_priv->display.crtc_disable(&intel_crtc->base);
7773         }
7774
7775         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7776          * to set it here already despite that we pass it down the callchain.
7777          */
7778         if (modeset_pipes)
7779                 crtc->mode = *mode;
7780
7781         /* Only after disabling all output pipelines that will be changed can we
7782          * update the the output configuration. */
7783         intel_modeset_update_state(dev, prepare_pipes);
7784
7785         if (dev_priv->display.modeset_global_resources)
7786                 dev_priv->display.modeset_global_resources(dev);
7787
7788         /* Set up the DPLL and any encoders state that needs to adjust or depend
7789          * on the DPLL.
7790          */
7791         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7792                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7793                                            mode, adjusted_mode,
7794                                            x, y, fb);
7795                 if (!ret)
7796                     goto done;
7797         }
7798
7799         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7800         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7801                 dev_priv->display.crtc_enable(&intel_crtc->base);
7802
7803         if (modeset_pipes) {
7804                 /* Store real post-adjustment hardware mode. */
7805                 crtc->hwmode = *adjusted_mode;
7806
7807                 /* Calculate and store various constants which
7808                  * are later needed by vblank and swap-completion
7809                  * timestamping. They are derived from true hwmode.
7810                  */
7811                 drm_calc_timestamping_constants(crtc);
7812         }
7813
7814         /* FIXME: add subpixel order */
7815 done:
7816         drm_mode_destroy(dev, adjusted_mode);
7817         if (!ret && crtc->enabled) {
7818                 crtc->hwmode = saved_hwmode;
7819                 crtc->mode = saved_mode;
7820         } else {
7821                 intel_modeset_check_state(dev);
7822         }
7823
7824         return ret;
7825 }
7826
7827 #undef for_each_intel_crtc_masked
7828
7829 static void intel_set_config_free(struct intel_set_config *config)
7830 {
7831         if (!config)
7832                 return;
7833
7834         kfree(config->save_connector_encoders);
7835         kfree(config->save_encoder_crtcs);
7836         kfree(config);
7837 }
7838
7839 static int intel_set_config_save_state(struct drm_device *dev,
7840                                        struct intel_set_config *config)
7841 {
7842         struct drm_encoder *encoder;
7843         struct drm_connector *connector;
7844         int count;
7845
7846         config->save_encoder_crtcs =
7847                 kcalloc(dev->mode_config.num_encoder,
7848                         sizeof(struct drm_crtc *), GFP_KERNEL);
7849         if (!config->save_encoder_crtcs)
7850                 return -ENOMEM;
7851
7852         config->save_connector_encoders =
7853                 kcalloc(dev->mode_config.num_connector,
7854                         sizeof(struct drm_encoder *), GFP_KERNEL);
7855         if (!config->save_connector_encoders)
7856                 return -ENOMEM;
7857
7858         /* Copy data. Note that driver private data is not affected.
7859          * Should anything bad happen only the expected state is
7860          * restored, not the drivers personal bookkeeping.
7861          */
7862         count = 0;
7863         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7864                 config->save_encoder_crtcs[count++] = encoder->crtc;
7865         }
7866
7867         count = 0;
7868         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7869                 config->save_connector_encoders[count++] = connector->encoder;
7870         }
7871
7872         return 0;
7873 }
7874
7875 static void intel_set_config_restore_state(struct drm_device *dev,
7876                                            struct intel_set_config *config)
7877 {
7878         struct intel_encoder *encoder;
7879         struct intel_connector *connector;
7880         int count;
7881
7882         count = 0;
7883         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7884                 encoder->new_crtc =
7885                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7886         }
7887
7888         count = 0;
7889         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7890                 connector->new_encoder =
7891                         to_intel_encoder(config->save_connector_encoders[count++]);
7892         }
7893 }
7894
7895 static void
7896 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7897                                       struct intel_set_config *config)
7898 {
7899
7900         /* We should be able to check here if the fb has the same properties
7901          * and then just flip_or_move it */
7902         if (set->crtc->fb != set->fb) {
7903                 /* If we have no fb then treat it as a full mode set */
7904                 if (set->crtc->fb == NULL) {
7905                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7906                         config->mode_changed = true;
7907                 } else if (set->fb == NULL) {
7908                         config->mode_changed = true;
7909                 } else if (set->fb->depth != set->crtc->fb->depth) {
7910                         config->mode_changed = true;
7911                 } else if (set->fb->bits_per_pixel !=
7912                            set->crtc->fb->bits_per_pixel) {
7913                         config->mode_changed = true;
7914                 } else
7915                         config->fb_changed = true;
7916         }
7917
7918         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7919                 config->fb_changed = true;
7920
7921         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7922                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7923                 drm_mode_debug_printmodeline(&set->crtc->mode);
7924                 drm_mode_debug_printmodeline(set->mode);
7925                 config->mode_changed = true;
7926         }
7927 }
7928
7929 static int
7930 intel_modeset_stage_output_state(struct drm_device *dev,
7931                                  struct drm_mode_set *set,
7932                                  struct intel_set_config *config)
7933 {
7934         struct drm_crtc *new_crtc;
7935         struct intel_connector *connector;
7936         struct intel_encoder *encoder;
7937         int count, ro;
7938
7939         /* The upper layers ensure that we either disabl a crtc or have a list
7940          * of connectors. For paranoia, double-check this. */
7941         WARN_ON(!set->fb && (set->num_connectors != 0));
7942         WARN_ON(set->fb && (set->num_connectors == 0));
7943
7944         count = 0;
7945         list_for_each_entry(connector, &dev->mode_config.connector_list,
7946                             base.head) {
7947                 /* Otherwise traverse passed in connector list and get encoders
7948                  * for them. */
7949                 for (ro = 0; ro < set->num_connectors; ro++) {
7950                         if (set->connectors[ro] == &connector->base) {
7951                                 connector->new_encoder = connector->encoder;
7952                                 break;
7953                         }
7954                 }
7955
7956                 /* If we disable the crtc, disable all its connectors. Also, if
7957                  * the connector is on the changing crtc but not on the new
7958                  * connector list, disable it. */
7959                 if ((!set->fb || ro == set->num_connectors) &&
7960                     connector->base.encoder &&
7961                     connector->base.encoder->crtc == set->crtc) {
7962                         connector->new_encoder = NULL;
7963
7964                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7965                                 connector->base.base.id,
7966                                 drm_get_connector_name(&connector->base));
7967                 }
7968
7969
7970                 if (&connector->new_encoder->base != connector->base.encoder) {
7971                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7972                         config->mode_changed = true;
7973                 }
7974
7975                 /* Disable all disconnected encoders. */
7976                 if (connector->base.status == connector_status_disconnected)
7977                         connector->new_encoder = NULL;
7978         }
7979         /* connector->new_encoder is now updated for all connectors. */
7980
7981         /* Update crtc of enabled connectors. */
7982         count = 0;
7983         list_for_each_entry(connector, &dev->mode_config.connector_list,
7984                             base.head) {
7985                 if (!connector->new_encoder)
7986                         continue;
7987
7988                 new_crtc = connector->new_encoder->base.crtc;
7989
7990                 for (ro = 0; ro < set->num_connectors; ro++) {
7991                         if (set->connectors[ro] == &connector->base)
7992                                 new_crtc = set->crtc;
7993                 }
7994
7995                 /* Make sure the new CRTC will work with the encoder */
7996                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7997                                            new_crtc)) {
7998                         return -EINVAL;
7999                 }
8000                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8001
8002                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8003                         connector->base.base.id,
8004                         drm_get_connector_name(&connector->base),
8005                         new_crtc->base.id);
8006         }
8007
8008         /* Check for any encoders that needs to be disabled. */
8009         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8010                             base.head) {
8011                 list_for_each_entry(connector,
8012                                     &dev->mode_config.connector_list,
8013                                     base.head) {
8014                         if (connector->new_encoder == encoder) {
8015                                 WARN_ON(!connector->new_encoder->new_crtc);
8016
8017                                 goto next_encoder;
8018                         }
8019                 }
8020                 encoder->new_crtc = NULL;
8021 next_encoder:
8022                 /* Only now check for crtc changes so we don't miss encoders
8023                  * that will be disabled. */
8024                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8025                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8026                         config->mode_changed = true;
8027                 }
8028         }
8029         /* Now we've also updated encoder->new_crtc for all encoders. */
8030
8031         return 0;
8032 }
8033
8034 static int intel_crtc_set_config(struct drm_mode_set *set)
8035 {
8036         struct drm_device *dev;
8037         struct drm_mode_set save_set;
8038         struct intel_set_config *config;
8039         int ret;
8040
8041         BUG_ON(!set);
8042         BUG_ON(!set->crtc);
8043         BUG_ON(!set->crtc->helper_private);
8044
8045         if (!set->mode)
8046                 set->fb = NULL;
8047
8048         /* The fb helper likes to play gross jokes with ->mode_set_config.
8049          * Unfortunately the crtc helper doesn't do much at all for this case,
8050          * so we have to cope with this madness until the fb helper is fixed up. */
8051         if (set->fb && set->num_connectors == 0)
8052                 return 0;
8053
8054         if (set->fb) {
8055                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8056                                 set->crtc->base.id, set->fb->base.id,
8057                                 (int)set->num_connectors, set->x, set->y);
8058         } else {
8059                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8060         }
8061
8062         dev = set->crtc->dev;
8063
8064         ret = -ENOMEM;
8065         config = kzalloc(sizeof(*config), GFP_KERNEL);
8066         if (!config)
8067                 goto out_config;
8068
8069         ret = intel_set_config_save_state(dev, config);
8070         if (ret)
8071                 goto out_config;
8072
8073         save_set.crtc = set->crtc;
8074         save_set.mode = &set->crtc->mode;
8075         save_set.x = set->crtc->x;
8076         save_set.y = set->crtc->y;
8077         save_set.fb = set->crtc->fb;
8078
8079         /* Compute whether we need a full modeset, only an fb base update or no
8080          * change at all. In the future we might also check whether only the
8081          * mode changed, e.g. for LVDS where we only change the panel fitter in
8082          * such cases. */
8083         intel_set_config_compute_mode_changes(set, config);
8084
8085         ret = intel_modeset_stage_output_state(dev, set, config);
8086         if (ret)
8087                 goto fail;
8088
8089         if (config->mode_changed) {
8090                 if (set->mode) {
8091                         DRM_DEBUG_KMS("attempting to set mode from"
8092                                         " userspace\n");
8093                         drm_mode_debug_printmodeline(set->mode);
8094                 }
8095
8096                 if (!intel_set_mode(set->crtc, set->mode,
8097                                     set->x, set->y, set->fb)) {
8098                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8099                                   set->crtc->base.id);
8100                         ret = -EINVAL;
8101                         goto fail;
8102                 }
8103         } else if (config->fb_changed) {
8104                 ret = intel_pipe_set_base(set->crtc,
8105                                           set->x, set->y, set->fb);
8106         }
8107
8108         intel_set_config_free(config);
8109
8110         return 0;
8111
8112 fail:
8113         intel_set_config_restore_state(dev, config);
8114
8115         /* Try to restore the config */
8116         if (config->mode_changed &&
8117             !intel_set_mode(save_set.crtc, save_set.mode,
8118                             save_set.x, save_set.y, save_set.fb))
8119                 DRM_ERROR("failed to restore config after modeset failure\n");
8120
8121 out_config:
8122         intel_set_config_free(config);
8123         return ret;
8124 }
8125
8126 static const struct drm_crtc_funcs intel_crtc_funcs = {
8127         .cursor_set = intel_crtc_cursor_set,
8128         .cursor_move = intel_crtc_cursor_move,
8129         .gamma_set = intel_crtc_gamma_set,
8130         .set_config = intel_crtc_set_config,
8131         .destroy = intel_crtc_destroy,
8132         .page_flip = intel_crtc_page_flip,
8133 };
8134
8135 static void intel_cpu_pll_init(struct drm_device *dev)
8136 {
8137         if (IS_HASWELL(dev))
8138                 intel_ddi_pll_init(dev);
8139 }
8140
8141 static void intel_pch_pll_init(struct drm_device *dev)
8142 {
8143         drm_i915_private_t *dev_priv = dev->dev_private;
8144         int i;
8145
8146         if (dev_priv->num_pch_pll == 0) {
8147                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8148                 return;
8149         }
8150
8151         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8152                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8153                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8154                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8155         }
8156 }
8157
8158 static void intel_crtc_init(struct drm_device *dev, int pipe)
8159 {
8160         drm_i915_private_t *dev_priv = dev->dev_private;
8161         struct intel_crtc *intel_crtc;
8162         int i;
8163
8164         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8165         if (intel_crtc == NULL)
8166                 return;
8167
8168         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8169
8170         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8171         for (i = 0; i < 256; i++) {
8172                 intel_crtc->lut_r[i] = i;
8173                 intel_crtc->lut_g[i] = i;
8174                 intel_crtc->lut_b[i] = i;
8175         }
8176
8177         /* Swap pipes & planes for FBC on pre-965 */
8178         intel_crtc->pipe = pipe;
8179         intel_crtc->plane = pipe;
8180         intel_crtc->cpu_transcoder = pipe;
8181         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8182                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8183                 intel_crtc->plane = !pipe;
8184         }
8185
8186         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8187                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8188         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8189         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8190
8191         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8192
8193         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8194 }
8195
8196 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8197                                 struct drm_file *file)
8198 {
8199         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8200         struct drm_mode_object *drmmode_obj;
8201         struct intel_crtc *crtc;
8202
8203         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8204                 return -ENODEV;
8205
8206         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8207                         DRM_MODE_OBJECT_CRTC);
8208
8209         if (!drmmode_obj) {
8210                 DRM_ERROR("no such CRTC id\n");
8211                 return -EINVAL;
8212         }
8213
8214         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8215         pipe_from_crtc_id->pipe = crtc->pipe;
8216
8217         return 0;
8218 }
8219
8220 static int intel_encoder_clones(struct intel_encoder *encoder)
8221 {
8222         struct drm_device *dev = encoder->base.dev;
8223         struct intel_encoder *source_encoder;
8224         int index_mask = 0;
8225         int entry = 0;
8226
8227         list_for_each_entry(source_encoder,
8228                             &dev->mode_config.encoder_list, base.head) {
8229
8230                 if (encoder == source_encoder)
8231                         index_mask |= (1 << entry);
8232
8233                 /* Intel hw has only one MUX where enocoders could be cloned. */
8234                 if (encoder->cloneable && source_encoder->cloneable)
8235                         index_mask |= (1 << entry);
8236
8237                 entry++;
8238         }
8239
8240         return index_mask;
8241 }
8242
8243 static bool has_edp_a(struct drm_device *dev)
8244 {
8245         struct drm_i915_private *dev_priv = dev->dev_private;
8246
8247         if (!IS_MOBILE(dev))
8248                 return false;
8249
8250         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8251                 return false;
8252
8253         if (IS_GEN5(dev) &&
8254             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8255                 return false;
8256
8257         return true;
8258 }
8259
8260 static void intel_setup_outputs(struct drm_device *dev)
8261 {
8262         struct drm_i915_private *dev_priv = dev->dev_private;
8263         struct intel_encoder *encoder;
8264         bool dpd_is_edp = false;
8265         bool has_lvds;
8266
8267         has_lvds = intel_lvds_init(dev);
8268         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8269                 /* disable the panel fitter on everything but LVDS */
8270                 I915_WRITE(PFIT_CONTROL, 0);
8271         }
8272
8273         intel_crt_init(dev);
8274
8275         if (IS_HASWELL(dev)) {
8276                 int found;
8277
8278                 /* Haswell uses DDI functions to detect digital outputs */
8279                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8280                 /* DDI A only supports eDP */
8281                 if (found)
8282                         intel_ddi_init(dev, PORT_A);
8283
8284                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8285                  * register */
8286                 found = I915_READ(SFUSE_STRAP);
8287
8288                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8289                         intel_ddi_init(dev, PORT_B);
8290                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8291                         intel_ddi_init(dev, PORT_C);
8292                 if (found & SFUSE_STRAP_DDID_DETECTED)
8293                         intel_ddi_init(dev, PORT_D);
8294         } else if (HAS_PCH_SPLIT(dev)) {
8295                 int found;
8296                 dpd_is_edp = intel_dpd_is_edp(dev);
8297
8298                 if (has_edp_a(dev))
8299                         intel_dp_init(dev, DP_A, PORT_A);
8300
8301                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8302                         /* PCH SDVOB multiplex with HDMIB */
8303                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8304                         if (!found)
8305                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8306                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8307                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8308                 }
8309
8310                 if (I915_READ(HDMIC) & PORT_DETECTED)
8311                         intel_hdmi_init(dev, HDMIC, PORT_C);
8312
8313                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8314                         intel_hdmi_init(dev, HDMID, PORT_D);
8315
8316                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8317                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8318
8319                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8320                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8321         } else if (IS_VALLEYVIEW(dev)) {
8322                 int found;
8323
8324                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8325                 if (I915_READ(DP_C) & DP_DETECTED)
8326                         intel_dp_init(dev, DP_C, PORT_C);
8327
8328                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8329                         /* SDVOB multiplex with HDMIB */
8330                         found = intel_sdvo_init(dev, SDVOB, true);
8331                         if (!found)
8332                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8333                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8334                                 intel_dp_init(dev, DP_B, PORT_B);
8335                 }
8336
8337                 if (I915_READ(SDVOC) & PORT_DETECTED)
8338                         intel_hdmi_init(dev, SDVOC, PORT_C);
8339
8340         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8341                 bool found = false;
8342
8343                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8344                         DRM_DEBUG_KMS("probing SDVOB\n");
8345                         found = intel_sdvo_init(dev, SDVOB, true);
8346                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8347                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8348                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8349                         }
8350
8351                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8352                                 DRM_DEBUG_KMS("probing DP_B\n");
8353                                 intel_dp_init(dev, DP_B, PORT_B);
8354                         }
8355                 }
8356
8357                 /* Before G4X SDVOC doesn't have its own detect register */
8358
8359                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8360                         DRM_DEBUG_KMS("probing SDVOC\n");
8361                         found = intel_sdvo_init(dev, SDVOC, false);
8362                 }
8363
8364                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8365
8366                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8367                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8368                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8369                         }
8370                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8371                                 DRM_DEBUG_KMS("probing DP_C\n");
8372                                 intel_dp_init(dev, DP_C, PORT_C);
8373                         }
8374                 }
8375
8376                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8377                     (I915_READ(DP_D) & DP_DETECTED)) {
8378                         DRM_DEBUG_KMS("probing DP_D\n");
8379                         intel_dp_init(dev, DP_D, PORT_D);
8380                 }
8381         } else if (IS_GEN2(dev))
8382                 intel_dvo_init(dev);
8383
8384         if (SUPPORTS_TV(dev))
8385                 intel_tv_init(dev);
8386
8387         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8388                 encoder->base.possible_crtcs = encoder->crtc_mask;
8389                 encoder->base.possible_clones =
8390                         intel_encoder_clones(encoder);
8391         }
8392
8393         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8394                 ironlake_init_pch_refclk(dev);
8395
8396         drm_helper_move_panel_connectors_to_head(dev);
8397 }
8398
8399 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8400 {
8401         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8402
8403         drm_framebuffer_cleanup(fb);
8404         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8405
8406         kfree(intel_fb);
8407 }
8408
8409 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8410                                                 struct drm_file *file,
8411                                                 unsigned int *handle)
8412 {
8413         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8414         struct drm_i915_gem_object *obj = intel_fb->obj;
8415
8416         return drm_gem_handle_create(file, &obj->base, handle);
8417 }
8418
8419 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8420         .destroy = intel_user_framebuffer_destroy,
8421         .create_handle = intel_user_framebuffer_create_handle,
8422 };
8423
8424 int intel_framebuffer_init(struct drm_device *dev,
8425                            struct intel_framebuffer *intel_fb,
8426                            struct drm_mode_fb_cmd2 *mode_cmd,
8427                            struct drm_i915_gem_object *obj)
8428 {
8429         int ret;
8430
8431         if (obj->tiling_mode == I915_TILING_Y)
8432                 return -EINVAL;
8433
8434         if (mode_cmd->pitches[0] & 63)
8435                 return -EINVAL;
8436
8437         /* FIXME <= Gen4 stride limits are bit unclear */
8438         if (mode_cmd->pitches[0] > 32768)
8439                 return -EINVAL;
8440
8441         if (obj->tiling_mode != I915_TILING_NONE &&
8442             mode_cmd->pitches[0] != obj->stride)
8443                 return -EINVAL;
8444
8445         /* Reject formats not supported by any plane early. */
8446         switch (mode_cmd->pixel_format) {
8447         case DRM_FORMAT_C8:
8448         case DRM_FORMAT_RGB565:
8449         case DRM_FORMAT_XRGB8888:
8450         case DRM_FORMAT_ARGB8888:
8451                 break;
8452         case DRM_FORMAT_XRGB1555:
8453         case DRM_FORMAT_ARGB1555:
8454                 if (INTEL_INFO(dev)->gen > 3)
8455                         return -EINVAL;
8456                 break;
8457         case DRM_FORMAT_XBGR8888:
8458         case DRM_FORMAT_ABGR8888:
8459         case DRM_FORMAT_XRGB2101010:
8460         case DRM_FORMAT_ARGB2101010:
8461         case DRM_FORMAT_XBGR2101010:
8462         case DRM_FORMAT_ABGR2101010:
8463                 if (INTEL_INFO(dev)->gen < 4)
8464                         return -EINVAL;
8465                 break;
8466         case DRM_FORMAT_YUYV:
8467         case DRM_FORMAT_UYVY:
8468         case DRM_FORMAT_YVYU:
8469         case DRM_FORMAT_VYUY:
8470                 if (INTEL_INFO(dev)->gen < 6)
8471                         return -EINVAL;
8472                 break;
8473         default:
8474                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8475                 return -EINVAL;
8476         }
8477
8478         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8479         if (mode_cmd->offsets[0] != 0)
8480                 return -EINVAL;
8481
8482         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8483         if (ret) {
8484                 DRM_ERROR("framebuffer init failed %d\n", ret);
8485                 return ret;
8486         }
8487
8488         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8489         intel_fb->obj = obj;
8490         return 0;
8491 }
8492
8493 static struct drm_framebuffer *
8494 intel_user_framebuffer_create(struct drm_device *dev,
8495                               struct drm_file *filp,
8496                               struct drm_mode_fb_cmd2 *mode_cmd)
8497 {
8498         struct drm_i915_gem_object *obj;
8499
8500         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8501                                                 mode_cmd->handles[0]));
8502         if (&obj->base == NULL)
8503                 return ERR_PTR(-ENOENT);
8504
8505         return intel_framebuffer_create(dev, mode_cmd, obj);
8506 }
8507
8508 static const struct drm_mode_config_funcs intel_mode_funcs = {
8509         .fb_create = intel_user_framebuffer_create,
8510         .output_poll_changed = intel_fb_output_poll_changed,
8511 };
8512
8513 /* Set up chip specific display functions */
8514 static void intel_init_display(struct drm_device *dev)
8515 {
8516         struct drm_i915_private *dev_priv = dev->dev_private;
8517
8518         /* We always want a DPMS function */
8519         if (IS_HASWELL(dev)) {
8520                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8521                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8522                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8523                 dev_priv->display.off = haswell_crtc_off;
8524                 dev_priv->display.update_plane = ironlake_update_plane;
8525         } else if (HAS_PCH_SPLIT(dev)) {
8526                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8527                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8528                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8529                 dev_priv->display.off = ironlake_crtc_off;
8530                 dev_priv->display.update_plane = ironlake_update_plane;
8531         } else {
8532                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8533                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8534                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8535                 dev_priv->display.off = i9xx_crtc_off;
8536                 dev_priv->display.update_plane = i9xx_update_plane;
8537         }
8538
8539         /* Returns the core display clock speed */
8540         if (IS_VALLEYVIEW(dev))
8541                 dev_priv->display.get_display_clock_speed =
8542                         valleyview_get_display_clock_speed;
8543         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8544                 dev_priv->display.get_display_clock_speed =
8545                         i945_get_display_clock_speed;
8546         else if (IS_I915G(dev))
8547                 dev_priv->display.get_display_clock_speed =
8548                         i915_get_display_clock_speed;
8549         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8550                 dev_priv->display.get_display_clock_speed =
8551                         i9xx_misc_get_display_clock_speed;
8552         else if (IS_I915GM(dev))
8553                 dev_priv->display.get_display_clock_speed =
8554                         i915gm_get_display_clock_speed;
8555         else if (IS_I865G(dev))
8556                 dev_priv->display.get_display_clock_speed =
8557                         i865_get_display_clock_speed;
8558         else if (IS_I85X(dev))
8559                 dev_priv->display.get_display_clock_speed =
8560                         i855_get_display_clock_speed;
8561         else /* 852, 830 */
8562                 dev_priv->display.get_display_clock_speed =
8563                         i830_get_display_clock_speed;
8564
8565         if (HAS_PCH_SPLIT(dev)) {
8566                 if (IS_GEN5(dev)) {
8567                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8568                         dev_priv->display.write_eld = ironlake_write_eld;
8569                 } else if (IS_GEN6(dev)) {
8570                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8571                         dev_priv->display.write_eld = ironlake_write_eld;
8572                 } else if (IS_IVYBRIDGE(dev)) {
8573                         /* FIXME: detect B0+ stepping and use auto training */
8574                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8575                         dev_priv->display.write_eld = ironlake_write_eld;
8576                         dev_priv->display.modeset_global_resources =
8577                                 ivb_modeset_global_resources;
8578                 } else if (IS_HASWELL(dev)) {
8579                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8580                         dev_priv->display.write_eld = haswell_write_eld;
8581                 } else
8582                         dev_priv->display.update_wm = NULL;
8583         } else if (IS_G4X(dev)) {
8584                 dev_priv->display.write_eld = g4x_write_eld;
8585         }
8586
8587         /* Default just returns -ENODEV to indicate unsupported */
8588         dev_priv->display.queue_flip = intel_default_queue_flip;
8589
8590         switch (INTEL_INFO(dev)->gen) {
8591         case 2:
8592                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8593                 break;
8594
8595         case 3:
8596                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8597                 break;
8598
8599         case 4:
8600         case 5:
8601                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8602                 break;
8603
8604         case 6:
8605                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8606                 break;
8607         case 7:
8608                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8609                 break;
8610         }
8611 }
8612
8613 /*
8614  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8615  * resume, or other times.  This quirk makes sure that's the case for
8616  * affected systems.
8617  */
8618 static void quirk_pipea_force(struct drm_device *dev)
8619 {
8620         struct drm_i915_private *dev_priv = dev->dev_private;
8621
8622         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8623         DRM_INFO("applying pipe a force quirk\n");
8624 }
8625
8626 /*
8627  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8628  */
8629 static void quirk_ssc_force_disable(struct drm_device *dev)
8630 {
8631         struct drm_i915_private *dev_priv = dev->dev_private;
8632         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8633         DRM_INFO("applying lvds SSC disable quirk\n");
8634 }
8635
8636 /*
8637  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8638  * brightness value
8639  */
8640 static void quirk_invert_brightness(struct drm_device *dev)
8641 {
8642         struct drm_i915_private *dev_priv = dev->dev_private;
8643         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8644         DRM_INFO("applying inverted panel brightness quirk\n");
8645 }
8646
8647 struct intel_quirk {
8648         int device;
8649         int subsystem_vendor;
8650         int subsystem_device;
8651         void (*hook)(struct drm_device *dev);
8652 };
8653
8654 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8655 struct intel_dmi_quirk {
8656         void (*hook)(struct drm_device *dev);
8657         const struct dmi_system_id (*dmi_id_list)[];
8658 };
8659
8660 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8661 {
8662         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8663         return 1;
8664 }
8665
8666 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8667         {
8668                 .dmi_id_list = &(const struct dmi_system_id[]) {
8669                         {
8670                                 .callback = intel_dmi_reverse_brightness,
8671                                 .ident = "NCR Corporation",
8672                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8673                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8674                                 },
8675                         },
8676                         { }  /* terminating entry */
8677                 },
8678                 .hook = quirk_invert_brightness,
8679         },
8680 };
8681
8682 static struct intel_quirk intel_quirks[] = {
8683         /* HP Mini needs pipe A force quirk (LP: #322104) */
8684         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8685
8686         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8687         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8688
8689         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8690         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8691
8692         /* 830/845 need to leave pipe A & dpll A up */
8693         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8694         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8695
8696         /* Lenovo U160 cannot use SSC on LVDS */
8697         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8698
8699         /* Sony Vaio Y cannot use SSC on LVDS */
8700         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8701
8702         /* Acer Aspire 5734Z must invert backlight brightness */
8703         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8704 };
8705
8706 static void intel_init_quirks(struct drm_device *dev)
8707 {
8708         struct pci_dev *d = dev->pdev;
8709         int i;
8710
8711         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8712                 struct intel_quirk *q = &intel_quirks[i];
8713
8714                 if (d->device == q->device &&
8715                     (d->subsystem_vendor == q->subsystem_vendor ||
8716                      q->subsystem_vendor == PCI_ANY_ID) &&
8717                     (d->subsystem_device == q->subsystem_device ||
8718                      q->subsystem_device == PCI_ANY_ID))
8719                         q->hook(dev);
8720         }
8721         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8722                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8723                         intel_dmi_quirks[i].hook(dev);
8724         }
8725 }
8726
8727 /* Disable the VGA plane that we never use */
8728 static void i915_disable_vga(struct drm_device *dev)
8729 {
8730         struct drm_i915_private *dev_priv = dev->dev_private;
8731         u8 sr1;
8732         u32 vga_reg;
8733
8734         if (HAS_PCH_SPLIT(dev))
8735                 vga_reg = CPU_VGACNTRL;
8736         else
8737                 vga_reg = VGACNTRL;
8738
8739         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8740         outb(SR01, VGA_SR_INDEX);
8741         sr1 = inb(VGA_SR_DATA);
8742         outb(sr1 | 1<<5, VGA_SR_DATA);
8743         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8744         udelay(300);
8745
8746         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8747         POSTING_READ(vga_reg);
8748 }
8749
8750 void intel_modeset_init_hw(struct drm_device *dev)
8751 {
8752         /* We attempt to init the necessary power wells early in the initialization
8753          * time, so the subsystems that expect power to be enabled can work.
8754          */
8755         intel_init_power_wells(dev);
8756
8757         intel_prepare_ddi(dev);
8758
8759         intel_init_clock_gating(dev);
8760
8761         mutex_lock(&dev->struct_mutex);
8762         intel_enable_gt_powersave(dev);
8763         mutex_unlock(&dev->struct_mutex);
8764 }
8765
8766 void intel_modeset_init(struct drm_device *dev)
8767 {
8768         struct drm_i915_private *dev_priv = dev->dev_private;
8769         int i, ret;
8770
8771         drm_mode_config_init(dev);
8772
8773         dev->mode_config.min_width = 0;
8774         dev->mode_config.min_height = 0;
8775
8776         dev->mode_config.preferred_depth = 24;
8777         dev->mode_config.prefer_shadow = 1;
8778
8779         dev->mode_config.funcs = &intel_mode_funcs;
8780
8781         intel_init_quirks(dev);
8782
8783         intel_init_pm(dev);
8784
8785         intel_init_display(dev);
8786
8787         if (IS_GEN2(dev)) {
8788                 dev->mode_config.max_width = 2048;
8789                 dev->mode_config.max_height = 2048;
8790         } else if (IS_GEN3(dev)) {
8791                 dev->mode_config.max_width = 4096;
8792                 dev->mode_config.max_height = 4096;
8793         } else {
8794                 dev->mode_config.max_width = 8192;
8795                 dev->mode_config.max_height = 8192;
8796         }
8797         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8798
8799         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8800                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8801
8802         for (i = 0; i < dev_priv->num_pipe; i++) {
8803                 intel_crtc_init(dev, i);
8804                 ret = intel_plane_init(dev, i);
8805                 if (ret)
8806                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8807         }
8808
8809         intel_cpu_pll_init(dev);
8810         intel_pch_pll_init(dev);
8811
8812         /* Just disable it once at startup */
8813         i915_disable_vga(dev);
8814         intel_setup_outputs(dev);
8815 }
8816
8817 static void
8818 intel_connector_break_all_links(struct intel_connector *connector)
8819 {
8820         connector->base.dpms = DRM_MODE_DPMS_OFF;
8821         connector->base.encoder = NULL;
8822         connector->encoder->connectors_active = false;
8823         connector->encoder->base.crtc = NULL;
8824 }
8825
8826 static void intel_enable_pipe_a(struct drm_device *dev)
8827 {
8828         struct intel_connector *connector;
8829         struct drm_connector *crt = NULL;
8830         struct intel_load_detect_pipe load_detect_temp;
8831
8832         /* We can't just switch on the pipe A, we need to set things up with a
8833          * proper mode and output configuration. As a gross hack, enable pipe A
8834          * by enabling the load detect pipe once. */
8835         list_for_each_entry(connector,
8836                             &dev->mode_config.connector_list,
8837                             base.head) {
8838                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8839                         crt = &connector->base;
8840                         break;
8841                 }
8842         }
8843
8844         if (!crt)
8845                 return;
8846
8847         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8848                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8849
8850
8851 }
8852
8853 static bool
8854 intel_check_plane_mapping(struct intel_crtc *crtc)
8855 {
8856         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8857         u32 reg, val;
8858
8859         if (dev_priv->num_pipe == 1)
8860                 return true;
8861
8862         reg = DSPCNTR(!crtc->plane);
8863         val = I915_READ(reg);
8864
8865         if ((val & DISPLAY_PLANE_ENABLE) &&
8866             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8867                 return false;
8868
8869         return true;
8870 }
8871
8872 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8873 {
8874         struct drm_device *dev = crtc->base.dev;
8875         struct drm_i915_private *dev_priv = dev->dev_private;
8876         u32 reg;
8877
8878         /* Clear any frame start delays used for debugging left by the BIOS */
8879         reg = PIPECONF(crtc->cpu_transcoder);
8880         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8881
8882         /* We need to sanitize the plane -> pipe mapping first because this will
8883          * disable the crtc (and hence change the state) if it is wrong. Note
8884          * that gen4+ has a fixed plane -> pipe mapping.  */
8885         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8886                 struct intel_connector *connector;
8887                 bool plane;
8888
8889                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8890                               crtc->base.base.id);
8891
8892                 /* Pipe has the wrong plane attached and the plane is active.
8893                  * Temporarily change the plane mapping and disable everything
8894                  * ...  */
8895                 plane = crtc->plane;
8896                 crtc->plane = !plane;
8897                 dev_priv->display.crtc_disable(&crtc->base);
8898                 crtc->plane = plane;
8899
8900                 /* ... and break all links. */
8901                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8902                                     base.head) {
8903                         if (connector->encoder->base.crtc != &crtc->base)
8904                                 continue;
8905
8906                         intel_connector_break_all_links(connector);
8907                 }
8908
8909                 WARN_ON(crtc->active);
8910                 crtc->base.enabled = false;
8911         }
8912
8913         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8914             crtc->pipe == PIPE_A && !crtc->active) {
8915                 /* BIOS forgot to enable pipe A, this mostly happens after
8916                  * resume. Force-enable the pipe to fix this, the update_dpms
8917                  * call below we restore the pipe to the right state, but leave
8918                  * the required bits on. */
8919                 intel_enable_pipe_a(dev);
8920         }
8921
8922         /* Adjust the state of the output pipe according to whether we
8923          * have active connectors/encoders. */
8924         intel_crtc_update_dpms(&crtc->base);
8925
8926         if (crtc->active != crtc->base.enabled) {
8927                 struct intel_encoder *encoder;
8928
8929                 /* This can happen either due to bugs in the get_hw_state
8930                  * functions or because the pipe is force-enabled due to the
8931                  * pipe A quirk. */
8932                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8933                               crtc->base.base.id,
8934                               crtc->base.enabled ? "enabled" : "disabled",
8935                               crtc->active ? "enabled" : "disabled");
8936
8937                 crtc->base.enabled = crtc->active;
8938
8939                 /* Because we only establish the connector -> encoder ->
8940                  * crtc links if something is active, this means the
8941                  * crtc is now deactivated. Break the links. connector
8942                  * -> encoder links are only establish when things are
8943                  *  actually up, hence no need to break them. */
8944                 WARN_ON(crtc->active);
8945
8946                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8947                         WARN_ON(encoder->connectors_active);
8948                         encoder->base.crtc = NULL;
8949                 }
8950         }
8951 }
8952
8953 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8954 {
8955         struct intel_connector *connector;
8956         struct drm_device *dev = encoder->base.dev;
8957
8958         /* We need to check both for a crtc link (meaning that the
8959          * encoder is active and trying to read from a pipe) and the
8960          * pipe itself being active. */
8961         bool has_active_crtc = encoder->base.crtc &&
8962                 to_intel_crtc(encoder->base.crtc)->active;
8963
8964         if (encoder->connectors_active && !has_active_crtc) {
8965                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8966                               encoder->base.base.id,
8967                               drm_get_encoder_name(&encoder->base));
8968
8969                 /* Connector is active, but has no active pipe. This is
8970                  * fallout from our resume register restoring. Disable
8971                  * the encoder manually again. */
8972                 if (encoder->base.crtc) {
8973                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8974                                       encoder->base.base.id,
8975                                       drm_get_encoder_name(&encoder->base));
8976                         encoder->disable(encoder);
8977                 }
8978
8979                 /* Inconsistent output/port/pipe state happens presumably due to
8980                  * a bug in one of the get_hw_state functions. Or someplace else
8981                  * in our code, like the register restore mess on resume. Clamp
8982                  * things to off as a safer default. */
8983                 list_for_each_entry(connector,
8984                                     &dev->mode_config.connector_list,
8985                                     base.head) {
8986                         if (connector->encoder != encoder)
8987                                 continue;
8988
8989                         intel_connector_break_all_links(connector);
8990                 }
8991         }
8992         /* Enabled encoders without active connectors will be fixed in
8993          * the crtc fixup. */
8994 }
8995
8996 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8997  * and i915 state tracking structures. */
8998 void intel_modeset_setup_hw_state(struct drm_device *dev)
8999 {
9000         struct drm_i915_private *dev_priv = dev->dev_private;
9001         enum pipe pipe;
9002         u32 tmp;
9003         struct intel_crtc *crtc;
9004         struct intel_encoder *encoder;
9005         struct intel_connector *connector;
9006
9007         if (IS_HASWELL(dev)) {
9008                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9009
9010                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9011                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9012                         case TRANS_DDI_EDP_INPUT_A_ON:
9013                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9014                                 pipe = PIPE_A;
9015                                 break;
9016                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9017                                 pipe = PIPE_B;
9018                                 break;
9019                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9020                                 pipe = PIPE_C;
9021                                 break;
9022                         }
9023
9024                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9025                         crtc->cpu_transcoder = TRANSCODER_EDP;
9026
9027                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9028                                       pipe_name(pipe));
9029                 }
9030         }
9031
9032         for_each_pipe(pipe) {
9033                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9034
9035                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9036                 if (tmp & PIPECONF_ENABLE)
9037                         crtc->active = true;
9038                 else
9039                         crtc->active = false;
9040
9041                 crtc->base.enabled = crtc->active;
9042
9043                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9044                               crtc->base.base.id,
9045                               crtc->active ? "enabled" : "disabled");
9046         }
9047
9048         if (IS_HASWELL(dev))
9049                 intel_ddi_setup_hw_pll_state(dev);
9050
9051         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9052                             base.head) {
9053                 pipe = 0;
9054
9055                 if (encoder->get_hw_state(encoder, &pipe)) {
9056                         encoder->base.crtc =
9057                                 dev_priv->pipe_to_crtc_mapping[pipe];
9058                 } else {
9059                         encoder->base.crtc = NULL;
9060                 }
9061
9062                 encoder->connectors_active = false;
9063                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9064                               encoder->base.base.id,
9065                               drm_get_encoder_name(&encoder->base),
9066                               encoder->base.crtc ? "enabled" : "disabled",
9067                               pipe);
9068         }
9069
9070         list_for_each_entry(connector, &dev->mode_config.connector_list,
9071                             base.head) {
9072                 if (connector->get_hw_state(connector)) {
9073                         connector->base.dpms = DRM_MODE_DPMS_ON;
9074                         connector->encoder->connectors_active = true;
9075                         connector->base.encoder = &connector->encoder->base;
9076                 } else {
9077                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9078                         connector->base.encoder = NULL;
9079                 }
9080                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9081                               connector->base.base.id,
9082                               drm_get_connector_name(&connector->base),
9083                               connector->base.encoder ? "enabled" : "disabled");
9084         }
9085
9086         /* HW state is read out, now we need to sanitize this mess. */
9087         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9088                             base.head) {
9089                 intel_sanitize_encoder(encoder);
9090         }
9091
9092         for_each_pipe(pipe) {
9093                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9094                 intel_sanitize_crtc(crtc);
9095         }
9096
9097         intel_modeset_update_staged_output_state(dev);
9098
9099         intel_modeset_check_state(dev);
9100
9101         drm_mode_config_reset(dev);
9102 }
9103
9104 void intel_modeset_gem_init(struct drm_device *dev)
9105 {
9106         intel_modeset_init_hw(dev);
9107
9108         intel_setup_overlay(dev);
9109
9110         intel_modeset_setup_hw_state(dev);
9111 }
9112
9113 void intel_modeset_cleanup(struct drm_device *dev)
9114 {
9115         struct drm_i915_private *dev_priv = dev->dev_private;
9116         struct drm_crtc *crtc;
9117         struct intel_crtc *intel_crtc;
9118
9119         drm_kms_helper_poll_fini(dev);
9120         mutex_lock(&dev->struct_mutex);
9121
9122         intel_unregister_dsm_handler();
9123
9124
9125         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9126                 /* Skip inactive CRTCs */
9127                 if (!crtc->fb)
9128                         continue;
9129
9130                 intel_crtc = to_intel_crtc(crtc);
9131                 intel_increase_pllclock(crtc);
9132         }
9133
9134         intel_disable_fbc(dev);
9135
9136         intel_disable_gt_powersave(dev);
9137
9138         ironlake_teardown_rc6(dev);
9139
9140         if (IS_VALLEYVIEW(dev))
9141                 vlv_init_dpio(dev);
9142
9143         mutex_unlock(&dev->struct_mutex);
9144
9145         /* Disable the irq before mode object teardown, for the irq might
9146          * enqueue unpin/hotplug work. */
9147         drm_irq_uninstall(dev);
9148         cancel_work_sync(&dev_priv->hotplug_work);
9149         cancel_work_sync(&dev_priv->rps.work);
9150
9151         /* flush any delayed tasks or pending work */
9152         flush_scheduled_work();
9153
9154         drm_mode_config_cleanup(dev);
9155 }
9156
9157 /*
9158  * Return which encoder is currently attached for connector.
9159  */
9160 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9161 {
9162         return &intel_attached_encoder(connector)->base;
9163 }
9164
9165 void intel_connector_attach_encoder(struct intel_connector *connector,
9166                                     struct intel_encoder *encoder)
9167 {
9168         connector->encoder = encoder;
9169         drm_mode_connector_attach_encoder(&connector->base,
9170                                           &encoder->base);
9171 }
9172
9173 /*
9174  * set vga decode state - true == enable VGA decode
9175  */
9176 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9177 {
9178         struct drm_i915_private *dev_priv = dev->dev_private;
9179         u16 gmch_ctrl;
9180
9181         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9182         if (state)
9183                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9184         else
9185                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9186         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9187         return 0;
9188 }
9189
9190 #ifdef CONFIG_DEBUG_FS
9191 #include <linux/seq_file.h>
9192
9193 struct intel_display_error_state {
9194         struct intel_cursor_error_state {
9195                 u32 control;
9196                 u32 position;
9197                 u32 base;
9198                 u32 size;
9199         } cursor[I915_MAX_PIPES];
9200
9201         struct intel_pipe_error_state {
9202                 u32 conf;
9203                 u32 source;
9204
9205                 u32 htotal;
9206                 u32 hblank;
9207                 u32 hsync;
9208                 u32 vtotal;
9209                 u32 vblank;
9210                 u32 vsync;
9211         } pipe[I915_MAX_PIPES];
9212
9213         struct intel_plane_error_state {
9214                 u32 control;
9215                 u32 stride;
9216                 u32 size;
9217                 u32 pos;
9218                 u32 addr;
9219                 u32 surface;
9220                 u32 tile_offset;
9221         } plane[I915_MAX_PIPES];
9222 };
9223
9224 struct intel_display_error_state *
9225 intel_display_capture_error_state(struct drm_device *dev)
9226 {
9227         drm_i915_private_t *dev_priv = dev->dev_private;
9228         struct intel_display_error_state *error;
9229         enum transcoder cpu_transcoder;
9230         int i;
9231
9232         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9233         if (error == NULL)
9234                 return NULL;
9235
9236         for_each_pipe(i) {
9237                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9238
9239                 error->cursor[i].control = I915_READ(CURCNTR(i));
9240                 error->cursor[i].position = I915_READ(CURPOS(i));
9241                 error->cursor[i].base = I915_READ(CURBASE(i));
9242
9243                 error->plane[i].control = I915_READ(DSPCNTR(i));
9244                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9245                 error->plane[i].size = I915_READ(DSPSIZE(i));
9246                 error->plane[i].pos = I915_READ(DSPPOS(i));
9247                 error->plane[i].addr = I915_READ(DSPADDR(i));
9248                 if (INTEL_INFO(dev)->gen >= 4) {
9249                         error->plane[i].surface = I915_READ(DSPSURF(i));
9250                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9251                 }
9252
9253                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9254                 error->pipe[i].source = I915_READ(PIPESRC(i));
9255                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9256                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9257                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9258                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9259                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9260                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9261         }
9262
9263         return error;
9264 }
9265
9266 void
9267 intel_display_print_error_state(struct seq_file *m,
9268                                 struct drm_device *dev,
9269                                 struct intel_display_error_state *error)
9270 {
9271         drm_i915_private_t *dev_priv = dev->dev_private;
9272         int i;
9273
9274         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9275         for_each_pipe(i) {
9276                 seq_printf(m, "Pipe [%d]:\n", i);
9277                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9278                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9279                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9280                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9281                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9282                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9283                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9284                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9285
9286                 seq_printf(m, "Plane [%d]:\n", i);
9287                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9288                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9289                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9290                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9291                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9292                 if (INTEL_INFO(dev)->gen >= 4) {
9293                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9294                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9295                 }
9296
9297                 seq_printf(m, "Cursor [%d]:\n", i);
9298                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9299                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9300                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9301         }
9302 }
9303 #endif