]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: replace ad-hoc dual-link lvds checks
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                         int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84         struct drm_i915_private *dev_priv = dev->dev_private;
85
86         WARN_ON(!HAS_PCH_SPLIT(dev));
87
88         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93                     int target, int refclk, intel_clock_t *match_clock,
94                     intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                         int target, int refclk, intel_clock_t *match_clock,
98                         intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102                       int target, int refclk, intel_clock_t *match_clock,
103                       intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106                            int target, int refclk, intel_clock_t *match_clock,
107                            intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111                         int target, int refclk, intel_clock_t *match_clock,
112                         intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117         if (IS_GEN5(dev)) {
118                 struct drm_i915_private *dev_priv = dev->dev_private;
119                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120         } else
121                 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125         .dot = { .min = 25000, .max = 350000 },
126         .vco = { .min = 930000, .max = 1400000 },
127         .n = { .min = 3, .max = 16 },
128         .m = { .min = 96, .max = 140 },
129         .m1 = { .min = 18, .max = 26 },
130         .m2 = { .min = 6, .max = 16 },
131         .p = { .min = 4, .max = 128 },
132         .p1 = { .min = 2, .max = 33 },
133         .p2 = { .dot_limit = 165000,
134                 .p2_slow = 4, .p2_fast = 2 },
135         .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139         .dot = { .min = 25000, .max = 350000 },
140         .vco = { .min = 930000, .max = 1400000 },
141         .n = { .min = 3, .max = 16 },
142         .m = { .min = 96, .max = 140 },
143         .m1 = { .min = 18, .max = 26 },
144         .m2 = { .min = 6, .max = 16 },
145         .p = { .min = 4, .max = 128 },
146         .p1 = { .min = 1, .max = 6 },
147         .p2 = { .dot_limit = 165000,
148                 .p2_slow = 14, .p2_fast = 7 },
149         .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153         .dot = { .min = 20000, .max = 400000 },
154         .vco = { .min = 1400000, .max = 2800000 },
155         .n = { .min = 1, .max = 6 },
156         .m = { .min = 70, .max = 120 },
157         .m1 = { .min = 10, .max = 22 },
158         .m2 = { .min = 5, .max = 9 },
159         .p = { .min = 5, .max = 80 },
160         .p1 = { .min = 1, .max = 8 },
161         .p2 = { .dot_limit = 200000,
162                 .p2_slow = 10, .p2_fast = 5 },
163         .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167         .dot = { .min = 20000, .max = 400000 },
168         .vco = { .min = 1400000, .max = 2800000 },
169         .n = { .min = 1, .max = 6 },
170         .m = { .min = 70, .max = 120 },
171         .m1 = { .min = 10, .max = 22 },
172         .m2 = { .min = 5, .max = 9 },
173         .p = { .min = 7, .max = 98 },
174         .p1 = { .min = 1, .max = 8 },
175         .p2 = { .dot_limit = 112000,
176                 .p2_slow = 14, .p2_fast = 7 },
177         .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182         .dot = { .min = 25000, .max = 270000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 17, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 10, .max = 30 },
189         .p1 = { .min = 1, .max = 3},
190         .p2 = { .dot_limit = 270000,
191                 .p2_slow = 10,
192                 .p2_fast = 10
193         },
194         .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198         .dot = { .min = 22000, .max = 400000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 16, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 5, .max = 80 },
205         .p1 = { .min = 1, .max = 8},
206         .p2 = { .dot_limit = 165000,
207                 .p2_slow = 10, .p2_fast = 5 },
208         .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212         .dot = { .min = 20000, .max = 115000 },
213         .vco = { .min = 1750000, .max = 3500000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 28, .max = 112 },
219         .p1 = { .min = 2, .max = 8 },
220         .p2 = { .dot_limit = 0,
221                 .p2_slow = 14, .p2_fast = 14
222         },
223         .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227         .dot = { .min = 80000, .max = 224000 },
228         .vco = { .min = 1750000, .max = 3500000 },
229         .n = { .min = 1, .max = 3 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 17, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 14, .max = 42 },
234         .p1 = { .min = 2, .max = 6 },
235         .p2 = { .dot_limit = 0,
236                 .p2_slow = 7, .p2_fast = 7
237         },
238         .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242         .dot = { .min = 161670, .max = 227000 },
243         .vco = { .min = 1750000, .max = 3500000},
244         .n = { .min = 1, .max = 2 },
245         .m = { .min = 97, .max = 108 },
246         .m1 = { .min = 0x10, .max = 0x12 },
247         .m2 = { .min = 0x05, .max = 0x06 },
248         .p = { .min = 10, .max = 20 },
249         .p1 = { .min = 1, .max = 2},
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 10, .p2_fast = 10 },
252         .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256         .dot = { .min = 20000, .max = 400000},
257         .vco = { .min = 1700000, .max = 3500000 },
258         /* Pineview's Ncounter is a ring counter */
259         .n = { .min = 3, .max = 6 },
260         .m = { .min = 2, .max = 256 },
261         /* Pineview only has one combined m divider, which we treat as m2. */
262         .m1 = { .min = 0, .max = 0 },
263         .m2 = { .min = 0, .max = 254 },
264         .p = { .min = 5, .max = 80 },
265         .p1 = { .min = 1, .max = 8 },
266         .p2 = { .dot_limit = 200000,
267                 .p2_slow = 10, .p2_fast = 5 },
268         .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272         .dot = { .min = 20000, .max = 400000 },
273         .vco = { .min = 1700000, .max = 3500000 },
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 7, .max = 112 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 112000,
281                 .p2_slow = 14, .p2_fast = 14 },
282         .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286  *
287  * We calculate clock using (register_value + 2) for N/M1/M2, so here
288  * the range value for them is (actual_value - 2).
289  */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 5 },
294         .m = { .min = 79, .max = 127 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 5, .max = 80 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 10, .p2_fast = 5 },
301         .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305         .dot = { .min = 25000, .max = 350000 },
306         .vco = { .min = 1760000, .max = 3510000 },
307         .n = { .min = 1, .max = 3 },
308         .m = { .min = 79, .max = 118 },
309         .m1 = { .min = 12, .max = 22 },
310         .m2 = { .min = 5, .max = 9 },
311         .p = { .min = 28, .max = 112 },
312         .p1 = { .min = 2, .max = 8 },
313         .p2 = { .dot_limit = 225000,
314                 .p2_slow = 14, .p2_fast = 14 },
315         .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 3 },
322         .m = { .min = 79, .max = 127 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 14, .max = 56 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 7, .p2_fast = 7 },
329         .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334         .dot = { .min = 25000, .max = 350000 },
335         .vco = { .min = 1760000, .max = 3510000 },
336         .n = { .min = 1, .max = 2 },
337         .m = { .min = 79, .max = 126 },
338         .m1 = { .min = 12, .max = 22 },
339         .m2 = { .min = 5, .max = 9 },
340         .p = { .min = 28, .max = 112 },
341         .p1 = { .min = 2, .max = 8 },
342         .p2 = { .dot_limit = 225000,
343                 .p2_slow = 14, .p2_fast = 14 },
344         .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348         .dot = { .min = 25000, .max = 350000 },
349         .vco = { .min = 1760000, .max = 3510000 },
350         .n = { .min = 1, .max = 3 },
351         .m = { .min = 79, .max = 126 },
352         .m1 = { .min = 12, .max = 22 },
353         .m2 = { .min = 5, .max = 9 },
354         .p = { .min = 14, .max = 42 },
355         .p1 = { .min = 2, .max = 6 },
356         .p2 = { .dot_limit = 225000,
357                 .p2_slow = 7, .p2_fast = 7 },
358         .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362         .dot = { .min = 25000, .max = 350000 },
363         .vco = { .min = 1760000, .max = 3510000},
364         .n = { .min = 1, .max = 2 },
365         .m = { .min = 81, .max = 90 },
366         .m1 = { .min = 12, .max = 22 },
367         .m2 = { .min = 5, .max = 9 },
368         .p = { .min = 10, .max = 20 },
369         .p1 = { .min = 1, .max = 2},
370         .p2 = { .dot_limit = 0,
371                 .p2_slow = 10, .p2_fast = 10 },
372         .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376         .dot = { .min = 25000, .max = 270000 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m = { .min = 22, .max = 450 }, /* guess */
380         .m1 = { .min = 2, .max = 3 },
381         .m2 = { .min = 11, .max = 156 },
382         .p = { .min = 10, .max = 30 },
383         .p1 = { .min = 2, .max = 3 },
384         .p2 = { .dot_limit = 270000,
385                 .p2_slow = 2, .p2_fast = 20 },
386         .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390         .dot = { .min = 20000, .max = 165000 },
391         .vco = { .min = 4000000, .max = 5994000},
392         .n = { .min = 1, .max = 7 },
393         .m = { .min = 60, .max = 300 }, /* guess */
394         .m1 = { .min = 2, .max = 3 },
395         .m2 = { .min = 11, .max = 156 },
396         .p = { .min = 10, .max = 30 },
397         .p1 = { .min = 2, .max = 3 },
398         .p2 = { .dot_limit = 270000,
399                 .p2_slow = 2, .p2_fast = 20 },
400         .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404         .dot = { .min = 25000, .max = 270000 },
405         .vco = { .min = 4000000, .max = 6000000 },
406         .n = { .min = 1, .max = 7 },
407         .m = { .min = 22, .max = 450 },
408         .m1 = { .min = 2, .max = 3 },
409         .m2 = { .min = 11, .max = 156 },
410         .p = { .min = 10, .max = 30 },
411         .p1 = { .min = 2, .max = 3 },
412         .p2 = { .dot_limit = 270000,
413                 .p2_slow = 2, .p2_fast = 20 },
414         .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419         unsigned long flags;
420         u32 val = 0;
421
422         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO idle wait timed out\n");
425                 goto out_unlock;
426         }
427
428         I915_WRITE(DPIO_REG, reg);
429         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430                    DPIO_BYTE);
431         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432                 DRM_ERROR("DPIO read wait timed out\n");
433                 goto out_unlock;
434         }
435         val = I915_READ(DPIO_DATA);
436
437 out_unlock:
438         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439         return val;
440 }
441
442 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443                              u32 val)
444 {
445         unsigned long flags;
446
447         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449                 DRM_ERROR("DPIO idle wait timed out\n");
450                 goto out_unlock;
451         }
452
453         I915_WRITE(DPIO_DATA, val);
454         I915_WRITE(DPIO_REG, reg);
455         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456                    DPIO_BYTE);
457         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458                 DRM_ERROR("DPIO write wait timed out\n");
459
460 out_unlock:
461        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462 }
463
464 static void vlv_init_dpio(struct drm_device *dev)
465 {
466         struct drm_i915_private *dev_priv = dev->dev_private;
467
468         /* Reset the DPIO config */
469         I915_WRITE(DPIO_CTL, 0);
470         POSTING_READ(DPIO_CTL);
471         I915_WRITE(DPIO_CTL, 1);
472         POSTING_READ(DPIO_CTL);
473 }
474
475 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
476 {
477         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
478         return 1;
479 }
480
481 static const struct dmi_system_id intel_dual_link_lvds[] = {
482         {
483                 .callback = intel_dual_link_lvds_callback,
484                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
485                 .matches = {
486                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
487                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
488                 },
489         },
490         { }     /* terminating entry */
491 };
492
493 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
494                               unsigned int reg)
495 {
496         unsigned int val;
497
498         /* use the module option value if specified */
499         if (i915_lvds_channel_mode > 0)
500                 return i915_lvds_channel_mode == 2;
501
502         if (dmi_check_system(intel_dual_link_lvds))
503                 return true;
504
505         if (dev_priv->lvds_val)
506                 val = dev_priv->lvds_val;
507         else {
508                 /* BIOS should set the proper LVDS register value at boot, but
509                  * in reality, it doesn't set the value when the lid is closed;
510                  * we need to check "the value to be set" in VBT when LVDS
511                  * register is uninitialized.
512                  */
513                 val = I915_READ(reg);
514                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
515                         val = dev_priv->bios_lvds_val;
516                 dev_priv->lvds_val = val;
517         }
518         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
519 }
520
521 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
522                                                 int refclk)
523 {
524         struct drm_device *dev = crtc->dev;
525         struct drm_i915_private *dev_priv = dev->dev_private;
526         const intel_limit_t *limit;
527
528         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
529                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
530                         /* LVDS dual channel */
531                         if (refclk == 100000)
532                                 limit = &intel_limits_ironlake_dual_lvds_100m;
533                         else
534                                 limit = &intel_limits_ironlake_dual_lvds;
535                 } else {
536                         if (refclk == 100000)
537                                 limit = &intel_limits_ironlake_single_lvds_100m;
538                         else
539                                 limit = &intel_limits_ironlake_single_lvds;
540                 }
541         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
542                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
543                 limit = &intel_limits_ironlake_display_port;
544         else
545                 limit = &intel_limits_ironlake_dac;
546
547         return limit;
548 }
549
550 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
551 {
552         struct drm_device *dev = crtc->dev;
553         struct drm_i915_private *dev_priv = dev->dev_private;
554         const intel_limit_t *limit;
555
556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557                 if (is_dual_link_lvds(dev_priv, LVDS))
558                         /* LVDS with dual channel */
559                         limit = &intel_limits_g4x_dual_channel_lvds;
560                 else
561                         /* LVDS with dual channel */
562                         limit = &intel_limits_g4x_single_channel_lvds;
563         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
564                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
565                 limit = &intel_limits_g4x_hdmi;
566         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
567                 limit = &intel_limits_g4x_sdvo;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
569                 limit = &intel_limits_g4x_display_port;
570         } else /* The option is for other outputs */
571                 limit = &intel_limits_i9xx_sdvo;
572
573         return limit;
574 }
575
576 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
577 {
578         struct drm_device *dev = crtc->dev;
579         const intel_limit_t *limit;
580
581         if (HAS_PCH_SPLIT(dev))
582                 limit = intel_ironlake_limit(crtc, refclk);
583         else if (IS_G4X(dev)) {
584                 limit = intel_g4x_limit(crtc);
585         } else if (IS_PINEVIEW(dev)) {
586                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
587                         limit = &intel_limits_pineview_lvds;
588                 else
589                         limit = &intel_limits_pineview_sdvo;
590         } else if (IS_VALLEYVIEW(dev)) {
591                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
592                         limit = &intel_limits_vlv_dac;
593                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
594                         limit = &intel_limits_vlv_hdmi;
595                 else
596                         limit = &intel_limits_vlv_dp;
597         } else if (!IS_GEN2(dev)) {
598                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
599                         limit = &intel_limits_i9xx_lvds;
600                 else
601                         limit = &intel_limits_i9xx_sdvo;
602         } else {
603                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
604                         limit = &intel_limits_i8xx_lvds;
605                 else
606                         limit = &intel_limits_i8xx_dvo;
607         }
608         return limit;
609 }
610
611 /* m1 is reserved as 0 in Pineview, n is a ring counter */
612 static void pineview_clock(int refclk, intel_clock_t *clock)
613 {
614         clock->m = clock->m2 + 2;
615         clock->p = clock->p1 * clock->p2;
616         clock->vco = refclk * clock->m / clock->n;
617         clock->dot = clock->vco / clock->p;
618 }
619
620 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
621 {
622         if (IS_PINEVIEW(dev)) {
623                 pineview_clock(refclk, clock);
624                 return;
625         }
626         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
627         clock->p = clock->p1 * clock->p2;
628         clock->vco = refclk * clock->m / (clock->n + 2);
629         clock->dot = clock->vco / clock->p;
630 }
631
632 /**
633  * Returns whether any output on the specified pipe is of the specified type
634  */
635 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
636 {
637         struct drm_device *dev = crtc->dev;
638         struct intel_encoder *encoder;
639
640         for_each_encoder_on_crtc(dev, crtc, encoder)
641                 if (encoder->type == type)
642                         return true;
643
644         return false;
645 }
646
647 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
648 /**
649  * Returns whether the given set of divisors are valid for a given refclk with
650  * the given connectors.
651  */
652
653 static bool intel_PLL_is_valid(struct drm_device *dev,
654                                const intel_limit_t *limit,
655                                const intel_clock_t *clock)
656 {
657         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
658                 INTELPllInvalid("p1 out of range\n");
659         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
660                 INTELPllInvalid("p out of range\n");
661         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
662                 INTELPllInvalid("m2 out of range\n");
663         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
664                 INTELPllInvalid("m1 out of range\n");
665         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
666                 INTELPllInvalid("m1 <= m2\n");
667         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
668                 INTELPllInvalid("m out of range\n");
669         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
670                 INTELPllInvalid("n out of range\n");
671         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
672                 INTELPllInvalid("vco out of range\n");
673         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
674          * connector, etc., rather than just a single range.
675          */
676         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
677                 INTELPllInvalid("dot out of range\n");
678
679         return true;
680 }
681
682 static bool
683 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
684                     int target, int refclk, intel_clock_t *match_clock,
685                     intel_clock_t *best_clock)
686
687 {
688         struct drm_device *dev = crtc->dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         intel_clock_t clock;
691         int err = target;
692
693         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
694                 /*
695                  * For LVDS just rely on its current settings for dual-channel.
696                  * We haven't figured out how to reliably set up different
697                  * single/dual channel state, if we even can.
698                  */
699                 if (is_dual_link_lvds(dev_priv, LVDS))
700                         clock.p2 = limit->p2.p2_fast;
701                 else
702                         clock.p2 = limit->p2.p2_slow;
703         } else {
704                 if (target < limit->p2.dot_limit)
705                         clock.p2 = limit->p2.p2_slow;
706                 else
707                         clock.p2 = limit->p2.p2_fast;
708         }
709
710         memset(best_clock, 0, sizeof(*best_clock));
711
712         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
713              clock.m1++) {
714                 for (clock.m2 = limit->m2.min;
715                      clock.m2 <= limit->m2.max; clock.m2++) {
716                         /* m1 is always 0 in Pineview */
717                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
718                                 break;
719                         for (clock.n = limit->n.min;
720                              clock.n <= limit->n.max; clock.n++) {
721                                 for (clock.p1 = limit->p1.min;
722                                         clock.p1 <= limit->p1.max; clock.p1++) {
723                                         int this_err;
724
725                                         intel_clock(dev, refclk, &clock);
726                                         if (!intel_PLL_is_valid(dev, limit,
727                                                                 &clock))
728                                                 continue;
729                                         if (match_clock &&
730                                             clock.p != match_clock->p)
731                                                 continue;
732
733                                         this_err = abs(clock.dot - target);
734                                         if (this_err < err) {
735                                                 *best_clock = clock;
736                                                 err = this_err;
737                                         }
738                                 }
739                         }
740                 }
741         }
742
743         return (err != target);
744 }
745
746 static bool
747 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
748                         int target, int refclk, intel_clock_t *match_clock,
749                         intel_clock_t *best_clock)
750 {
751         struct drm_device *dev = crtc->dev;
752         struct drm_i915_private *dev_priv = dev->dev_private;
753         intel_clock_t clock;
754         int max_n;
755         bool found;
756         /* approximately equals target * 0.00585 */
757         int err_most = (target >> 8) + (target >> 9);
758         found = false;
759
760         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
761                 int lvds_reg;
762
763                 if (HAS_PCH_SPLIT(dev))
764                         lvds_reg = PCH_LVDS;
765                 else
766                         lvds_reg = LVDS;
767                 if (is_dual_link_lvds(dev_priv, lvds_reg))
768                         clock.p2 = limit->p2.p2_fast;
769                 else
770                         clock.p2 = limit->p2.p2_slow;
771         } else {
772                 if (target < limit->p2.dot_limit)
773                         clock.p2 = limit->p2.p2_slow;
774                 else
775                         clock.p2 = limit->p2.p2_fast;
776         }
777
778         memset(best_clock, 0, sizeof(*best_clock));
779         max_n = limit->n.max;
780         /* based on hardware requirement, prefer smaller n to precision */
781         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
782                 /* based on hardware requirement, prefere larger m1,m2 */
783                 for (clock.m1 = limit->m1.max;
784                      clock.m1 >= limit->m1.min; clock.m1--) {
785                         for (clock.m2 = limit->m2.max;
786                              clock.m2 >= limit->m2.min; clock.m2--) {
787                                 for (clock.p1 = limit->p1.max;
788                                      clock.p1 >= limit->p1.min; clock.p1--) {
789                                         int this_err;
790
791                                         intel_clock(dev, refclk, &clock);
792                                         if (!intel_PLL_is_valid(dev, limit,
793                                                                 &clock))
794                                                 continue;
795                                         if (match_clock &&
796                                             clock.p != match_clock->p)
797                                                 continue;
798
799                                         this_err = abs(clock.dot - target);
800                                         if (this_err < err_most) {
801                                                 *best_clock = clock;
802                                                 err_most = this_err;
803                                                 max_n = clock.n;
804                                                 found = true;
805                                         }
806                                 }
807                         }
808                 }
809         }
810         return found;
811 }
812
813 static bool
814 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
815                            int target, int refclk, intel_clock_t *match_clock,
816                            intel_clock_t *best_clock)
817 {
818         struct drm_device *dev = crtc->dev;
819         intel_clock_t clock;
820
821         if (target < 200000) {
822                 clock.n = 1;
823                 clock.p1 = 2;
824                 clock.p2 = 10;
825                 clock.m1 = 12;
826                 clock.m2 = 9;
827         } else {
828                 clock.n = 2;
829                 clock.p1 = 1;
830                 clock.p2 = 10;
831                 clock.m1 = 14;
832                 clock.m2 = 8;
833         }
834         intel_clock(dev, refclk, &clock);
835         memcpy(best_clock, &clock, sizeof(intel_clock_t));
836         return true;
837 }
838
839 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
840 static bool
841 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
842                       int target, int refclk, intel_clock_t *match_clock,
843                       intel_clock_t *best_clock)
844 {
845         intel_clock_t clock;
846         if (target < 200000) {
847                 clock.p1 = 2;
848                 clock.p2 = 10;
849                 clock.n = 2;
850                 clock.m1 = 23;
851                 clock.m2 = 8;
852         } else {
853                 clock.p1 = 1;
854                 clock.p2 = 10;
855                 clock.n = 1;
856                 clock.m1 = 14;
857                 clock.m2 = 2;
858         }
859         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
860         clock.p = (clock.p1 * clock.p2);
861         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
862         clock.vco = 0;
863         memcpy(best_clock, &clock, sizeof(intel_clock_t));
864         return true;
865 }
866 static bool
867 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
868                         int target, int refclk, intel_clock_t *match_clock,
869                         intel_clock_t *best_clock)
870 {
871         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
872         u32 m, n, fastclk;
873         u32 updrate, minupdate, fracbits, p;
874         unsigned long bestppm, ppm, absppm;
875         int dotclk, flag;
876
877         flag = 0;
878         dotclk = target * 1000;
879         bestppm = 1000000;
880         ppm = absppm = 0;
881         fastclk = dotclk / (2*100);
882         updrate = 0;
883         minupdate = 19200;
884         fracbits = 1;
885         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
886         bestm1 = bestm2 = bestp1 = bestp2 = 0;
887
888         /* based on hardware requirement, prefer smaller n to precision */
889         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
890                 updrate = refclk / n;
891                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
892                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
893                                 if (p2 > 10)
894                                         p2 = p2 - 1;
895                                 p = p1 * p2;
896                                 /* based on hardware requirement, prefer bigger m1,m2 values */
897                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
898                                         m2 = (((2*(fastclk * p * n / m1 )) +
899                                                refclk) / (2*refclk));
900                                         m = m1 * m2;
901                                         vco = updrate * m;
902                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
903                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
904                                                 absppm = (ppm > 0) ? ppm : (-ppm);
905                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
906                                                         bestppm = 0;
907                                                         flag = 1;
908                                                 }
909                                                 if (absppm < bestppm - 10) {
910                                                         bestppm = absppm;
911                                                         flag = 1;
912                                                 }
913                                                 if (flag) {
914                                                         bestn = n;
915                                                         bestm1 = m1;
916                                                         bestm2 = m2;
917                                                         bestp1 = p1;
918                                                         bestp2 = p2;
919                                                         flag = 0;
920                                                 }
921                                         }
922                                 }
923                         }
924                 }
925         }
926         best_clock->n = bestn;
927         best_clock->m1 = bestm1;
928         best_clock->m2 = bestm2;
929         best_clock->p1 = bestp1;
930         best_clock->p2 = bestp2;
931
932         return true;
933 }
934
935 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
936                                              enum pipe pipe)
937 {
938         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
939         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
940
941         return intel_crtc->cpu_transcoder;
942 }
943
944 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
945 {
946         struct drm_i915_private *dev_priv = dev->dev_private;
947         u32 frame, frame_reg = PIPEFRAME(pipe);
948
949         frame = I915_READ(frame_reg);
950
951         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
952                 DRM_DEBUG_KMS("vblank wait timed out\n");
953 }
954
955 /**
956  * intel_wait_for_vblank - wait for vblank on a given pipe
957  * @dev: drm device
958  * @pipe: pipe to wait for
959  *
960  * Wait for vblank to occur on a given pipe.  Needed for various bits of
961  * mode setting code.
962  */
963 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
964 {
965         struct drm_i915_private *dev_priv = dev->dev_private;
966         int pipestat_reg = PIPESTAT(pipe);
967
968         if (INTEL_INFO(dev)->gen >= 5) {
969                 ironlake_wait_for_vblank(dev, pipe);
970                 return;
971         }
972
973         /* Clear existing vblank status. Note this will clear any other
974          * sticky status fields as well.
975          *
976          * This races with i915_driver_irq_handler() with the result
977          * that either function could miss a vblank event.  Here it is not
978          * fatal, as we will either wait upon the next vblank interrupt or
979          * timeout.  Generally speaking intel_wait_for_vblank() is only
980          * called during modeset at which time the GPU should be idle and
981          * should *not* be performing page flips and thus not waiting on
982          * vblanks...
983          * Currently, the result of us stealing a vblank from the irq
984          * handler is that a single frame will be skipped during swapbuffers.
985          */
986         I915_WRITE(pipestat_reg,
987                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
988
989         /* Wait for vblank interrupt bit to set */
990         if (wait_for(I915_READ(pipestat_reg) &
991                      PIPE_VBLANK_INTERRUPT_STATUS,
992                      50))
993                 DRM_DEBUG_KMS("vblank wait timed out\n");
994 }
995
996 /*
997  * intel_wait_for_pipe_off - wait for pipe to turn off
998  * @dev: drm device
999  * @pipe: pipe to wait for
1000  *
1001  * After disabling a pipe, we can't wait for vblank in the usual way,
1002  * spinning on the vblank interrupt status bit, since we won't actually
1003  * see an interrupt when the pipe is disabled.
1004  *
1005  * On Gen4 and above:
1006  *   wait for the pipe register state bit to turn off
1007  *
1008  * Otherwise:
1009  *   wait for the display line value to settle (it usually
1010  *   ends up stopping at the start of the next frame).
1011  *
1012  */
1013 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1014 {
1015         struct drm_i915_private *dev_priv = dev->dev_private;
1016         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1017                                                                       pipe);
1018
1019         if (INTEL_INFO(dev)->gen >= 4) {
1020                 int reg = PIPECONF(cpu_transcoder);
1021
1022                 /* Wait for the Pipe State to go off */
1023                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1024                              100))
1025                         WARN(1, "pipe_off wait timed out\n");
1026         } else {
1027                 u32 last_line, line_mask;
1028                 int reg = PIPEDSL(pipe);
1029                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1030
1031                 if (IS_GEN2(dev))
1032                         line_mask = DSL_LINEMASK_GEN2;
1033                 else
1034                         line_mask = DSL_LINEMASK_GEN3;
1035
1036                 /* Wait for the display line to settle */
1037                 do {
1038                         last_line = I915_READ(reg) & line_mask;
1039                         mdelay(5);
1040                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1041                          time_after(timeout, jiffies));
1042                 if (time_after(jiffies, timeout))
1043                         WARN(1, "pipe_off wait timed out\n");
1044         }
1045 }
1046
1047 static const char *state_string(bool enabled)
1048 {
1049         return enabled ? "on" : "off";
1050 }
1051
1052 /* Only for pre-ILK configs */
1053 static void assert_pll(struct drm_i915_private *dev_priv,
1054                        enum pipe pipe, bool state)
1055 {
1056         int reg;
1057         u32 val;
1058         bool cur_state;
1059
1060         reg = DPLL(pipe);
1061         val = I915_READ(reg);
1062         cur_state = !!(val & DPLL_VCO_ENABLE);
1063         WARN(cur_state != state,
1064              "PLL state assertion failure (expected %s, current %s)\n",
1065              state_string(state), state_string(cur_state));
1066 }
1067 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1068 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1069
1070 /* For ILK+ */
1071 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1072                            struct intel_pch_pll *pll,
1073                            struct intel_crtc *crtc,
1074                            bool state)
1075 {
1076         u32 val;
1077         bool cur_state;
1078
1079         if (HAS_PCH_LPT(dev_priv->dev)) {
1080                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1081                 return;
1082         }
1083
1084         if (WARN (!pll,
1085                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1086                 return;
1087
1088         val = I915_READ(pll->pll_reg);
1089         cur_state = !!(val & DPLL_VCO_ENABLE);
1090         WARN(cur_state != state,
1091              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1092              pll->pll_reg, state_string(state), state_string(cur_state), val);
1093
1094         /* Make sure the selected PLL is correctly attached to the transcoder */
1095         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1096                 u32 pch_dpll;
1097
1098                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1099                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1100                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1101                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1102                           cur_state, crtc->pipe, pch_dpll)) {
1103                         cur_state = !!(val >> (4*crtc->pipe + 3));
1104                         WARN(cur_state != state,
1105                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1106                              pll->pll_reg == _PCH_DPLL_B,
1107                              state_string(state),
1108                              crtc->pipe,
1109                              val);
1110                 }
1111         }
1112 }
1113 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1114 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1115
1116 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1117                           enum pipe pipe, bool state)
1118 {
1119         int reg;
1120         u32 val;
1121         bool cur_state;
1122         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1123                                                                       pipe);
1124
1125         if (IS_HASWELL(dev_priv->dev)) {
1126                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1127                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1128                 val = I915_READ(reg);
1129                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1130         } else {
1131                 reg = FDI_TX_CTL(pipe);
1132                 val = I915_READ(reg);
1133                 cur_state = !!(val & FDI_TX_ENABLE);
1134         }
1135         WARN(cur_state != state,
1136              "FDI TX state assertion failure (expected %s, current %s)\n",
1137              state_string(state), state_string(cur_state));
1138 }
1139 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1140 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1141
1142 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1143                           enum pipe pipe, bool state)
1144 {
1145         int reg;
1146         u32 val;
1147         bool cur_state;
1148
1149         reg = FDI_RX_CTL(pipe);
1150         val = I915_READ(reg);
1151         cur_state = !!(val & FDI_RX_ENABLE);
1152         WARN(cur_state != state,
1153              "FDI RX state assertion failure (expected %s, current %s)\n",
1154              state_string(state), state_string(cur_state));
1155 }
1156 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1157 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1158
1159 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1160                                       enum pipe pipe)
1161 {
1162         int reg;
1163         u32 val;
1164
1165         /* ILK FDI PLL is always enabled */
1166         if (dev_priv->info->gen == 5)
1167                 return;
1168
1169         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170         if (IS_HASWELL(dev_priv->dev))
1171                 return;
1172
1173         reg = FDI_TX_CTL(pipe);
1174         val = I915_READ(reg);
1175         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1176 }
1177
1178 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1179                                       enum pipe pipe)
1180 {
1181         int reg;
1182         u32 val;
1183
1184         reg = FDI_RX_CTL(pipe);
1185         val = I915_READ(reg);
1186         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1187 }
1188
1189 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190                                   enum pipe pipe)
1191 {
1192         int pp_reg, lvds_reg;
1193         u32 val;
1194         enum pipe panel_pipe = PIPE_A;
1195         bool locked = true;
1196
1197         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1198                 pp_reg = PCH_PP_CONTROL;
1199                 lvds_reg = PCH_LVDS;
1200         } else {
1201                 pp_reg = PP_CONTROL;
1202                 lvds_reg = LVDS;
1203         }
1204
1205         val = I915_READ(pp_reg);
1206         if (!(val & PANEL_POWER_ON) ||
1207             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1208                 locked = false;
1209
1210         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1211                 panel_pipe = PIPE_B;
1212
1213         WARN(panel_pipe == pipe && locked,
1214              "panel assertion failure, pipe %c regs locked\n",
1215              pipe_name(pipe));
1216 }
1217
1218 void assert_pipe(struct drm_i915_private *dev_priv,
1219                  enum pipe pipe, bool state)
1220 {
1221         int reg;
1222         u32 val;
1223         bool cur_state;
1224         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1225                                                                       pipe);
1226
1227         /* if we need the pipe A quirk it must be always on */
1228         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1229                 state = true;
1230
1231         reg = PIPECONF(cpu_transcoder);
1232         val = I915_READ(reg);
1233         cur_state = !!(val & PIPECONF_ENABLE);
1234         WARN(cur_state != state,
1235              "pipe %c assertion failure (expected %s, current %s)\n",
1236              pipe_name(pipe), state_string(state), state_string(cur_state));
1237 }
1238
1239 static void assert_plane(struct drm_i915_private *dev_priv,
1240                          enum plane plane, bool state)
1241 {
1242         int reg;
1243         u32 val;
1244         bool cur_state;
1245
1246         reg = DSPCNTR(plane);
1247         val = I915_READ(reg);
1248         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1249         WARN(cur_state != state,
1250              "plane %c assertion failure (expected %s, current %s)\n",
1251              plane_name(plane), state_string(state), state_string(cur_state));
1252 }
1253
1254 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1255 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1256
1257 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1258                                    enum pipe pipe)
1259 {
1260         int reg, i;
1261         u32 val;
1262         int cur_pipe;
1263
1264         /* Planes are fixed to pipes on ILK+ */
1265         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1266                 reg = DSPCNTR(pipe);
1267                 val = I915_READ(reg);
1268                 WARN((val & DISPLAY_PLANE_ENABLE),
1269                      "plane %c assertion failure, should be disabled but not\n",
1270                      plane_name(pipe));
1271                 return;
1272         }
1273
1274         /* Need to check both planes against the pipe */
1275         for (i = 0; i < 2; i++) {
1276                 reg = DSPCNTR(i);
1277                 val = I915_READ(reg);
1278                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1279                         DISPPLANE_SEL_PIPE_SHIFT;
1280                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1281                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1282                      plane_name(i), pipe_name(pipe));
1283         }
1284 }
1285
1286 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1287 {
1288         u32 val;
1289         bool enabled;
1290
1291         if (HAS_PCH_LPT(dev_priv->dev)) {
1292                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1293                 return;
1294         }
1295
1296         val = I915_READ(PCH_DREF_CONTROL);
1297         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1298                             DREF_SUPERSPREAD_SOURCE_MASK));
1299         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1300 }
1301
1302 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1303                                        enum pipe pipe)
1304 {
1305         int reg;
1306         u32 val;
1307         bool enabled;
1308
1309         reg = TRANSCONF(pipe);
1310         val = I915_READ(reg);
1311         enabled = !!(val & TRANS_ENABLE);
1312         WARN(enabled,
1313              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1314              pipe_name(pipe));
1315 }
1316
1317 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1318                             enum pipe pipe, u32 port_sel, u32 val)
1319 {
1320         if ((val & DP_PORT_EN) == 0)
1321                 return false;
1322
1323         if (HAS_PCH_CPT(dev_priv->dev)) {
1324                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1325                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1326                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1327                         return false;
1328         } else {
1329                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1330                         return false;
1331         }
1332         return true;
1333 }
1334
1335 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1336                               enum pipe pipe, u32 val)
1337 {
1338         if ((val & PORT_ENABLE) == 0)
1339                 return false;
1340
1341         if (HAS_PCH_CPT(dev_priv->dev)) {
1342                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1343                         return false;
1344         } else {
1345                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1346                         return false;
1347         }
1348         return true;
1349 }
1350
1351 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1352                               enum pipe pipe, u32 val)
1353 {
1354         if ((val & LVDS_PORT_EN) == 0)
1355                 return false;
1356
1357         if (HAS_PCH_CPT(dev_priv->dev)) {
1358                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1359                         return false;
1360         } else {
1361                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1362                         return false;
1363         }
1364         return true;
1365 }
1366
1367 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1368                               enum pipe pipe, u32 val)
1369 {
1370         if ((val & ADPA_DAC_ENABLE) == 0)
1371                 return false;
1372         if (HAS_PCH_CPT(dev_priv->dev)) {
1373                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1374                         return false;
1375         } else {
1376                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1377                         return false;
1378         }
1379         return true;
1380 }
1381
1382 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1383                                    enum pipe pipe, int reg, u32 port_sel)
1384 {
1385         u32 val = I915_READ(reg);
1386         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1387              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1388              reg, pipe_name(pipe));
1389
1390         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1391              && (val & DP_PIPEB_SELECT),
1392              "IBX PCH dp port still using transcoder B\n");
1393 }
1394
1395 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1396                                      enum pipe pipe, int reg)
1397 {
1398         u32 val = I915_READ(reg);
1399         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1400              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1401              reg, pipe_name(pipe));
1402
1403         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1404              && (val & SDVO_PIPE_B_SELECT),
1405              "IBX PCH hdmi port still using transcoder B\n");
1406 }
1407
1408 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1409                                       enum pipe pipe)
1410 {
1411         int reg;
1412         u32 val;
1413
1414         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1415         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1416         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1417
1418         reg = PCH_ADPA;
1419         val = I915_READ(reg);
1420         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1421              "PCH VGA enabled on transcoder %c, should be disabled\n",
1422              pipe_name(pipe));
1423
1424         reg = PCH_LVDS;
1425         val = I915_READ(reg);
1426         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1427              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1428              pipe_name(pipe));
1429
1430         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1431         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1432         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1433 }
1434
1435 /**
1436  * intel_enable_pll - enable a PLL
1437  * @dev_priv: i915 private structure
1438  * @pipe: pipe PLL to enable
1439  *
1440  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1441  * make sure the PLL reg is writable first though, since the panel write
1442  * protect mechanism may be enabled.
1443  *
1444  * Note!  This is for pre-ILK only.
1445  *
1446  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1447  */
1448 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1449 {
1450         int reg;
1451         u32 val;
1452
1453         /* No really, not for ILK+ */
1454         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1455
1456         /* PLL is protected by panel, make sure we can write it */
1457         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1458                 assert_panel_unlocked(dev_priv, pipe);
1459
1460         reg = DPLL(pipe);
1461         val = I915_READ(reg);
1462         val |= DPLL_VCO_ENABLE;
1463
1464         /* We do this three times for luck */
1465         I915_WRITE(reg, val);
1466         POSTING_READ(reg);
1467         udelay(150); /* wait for warmup */
1468         I915_WRITE(reg, val);
1469         POSTING_READ(reg);
1470         udelay(150); /* wait for warmup */
1471         I915_WRITE(reg, val);
1472         POSTING_READ(reg);
1473         udelay(150); /* wait for warmup */
1474 }
1475
1476 /**
1477  * intel_disable_pll - disable a PLL
1478  * @dev_priv: i915 private structure
1479  * @pipe: pipe PLL to disable
1480  *
1481  * Disable the PLL for @pipe, making sure the pipe is off first.
1482  *
1483  * Note!  This is for pre-ILK only.
1484  */
1485 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1486 {
1487         int reg;
1488         u32 val;
1489
1490         /* Don't disable pipe A or pipe A PLLs if needed */
1491         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1492                 return;
1493
1494         /* Make sure the pipe isn't still relying on us */
1495         assert_pipe_disabled(dev_priv, pipe);
1496
1497         reg = DPLL(pipe);
1498         val = I915_READ(reg);
1499         val &= ~DPLL_VCO_ENABLE;
1500         I915_WRITE(reg, val);
1501         POSTING_READ(reg);
1502 }
1503
1504 /* SBI access */
1505 static void
1506 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1507 {
1508         unsigned long flags;
1509
1510         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1511         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1512                                 100)) {
1513                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1514                 goto out_unlock;
1515         }
1516
1517         I915_WRITE(SBI_ADDR,
1518                         (reg << 16));
1519         I915_WRITE(SBI_DATA,
1520                         value);
1521         I915_WRITE(SBI_CTL_STAT,
1522                         SBI_BUSY |
1523                         SBI_CTL_OP_CRWR);
1524
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1528                 goto out_unlock;
1529         }
1530
1531 out_unlock:
1532         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1533 }
1534
1535 static u32
1536 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1537 {
1538         unsigned long flags;
1539         u32 value = 0;
1540
1541         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1542         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1543                                 100)) {
1544                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1545                 goto out_unlock;
1546         }
1547
1548         I915_WRITE(SBI_ADDR,
1549                         (reg << 16));
1550         I915_WRITE(SBI_CTL_STAT,
1551                         SBI_BUSY |
1552                         SBI_CTL_OP_CRRD);
1553
1554         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1555                                 100)) {
1556                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1557                 goto out_unlock;
1558         }
1559
1560         value = I915_READ(SBI_DATA);
1561
1562 out_unlock:
1563         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1564         return value;
1565 }
1566
1567 /**
1568  * ironlake_enable_pch_pll - enable PCH PLL
1569  * @dev_priv: i915 private structure
1570  * @pipe: pipe PLL to enable
1571  *
1572  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1573  * drives the transcoder clock.
1574  */
1575 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1576 {
1577         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1578         struct intel_pch_pll *pll;
1579         int reg;
1580         u32 val;
1581
1582         /* PCH PLLs only available on ILK, SNB and IVB */
1583         BUG_ON(dev_priv->info->gen < 5);
1584         pll = intel_crtc->pch_pll;
1585         if (pll == NULL)
1586                 return;
1587
1588         if (WARN_ON(pll->refcount == 0))
1589                 return;
1590
1591         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1592                       pll->pll_reg, pll->active, pll->on,
1593                       intel_crtc->base.base.id);
1594
1595         /* PCH refclock must be enabled first */
1596         assert_pch_refclk_enabled(dev_priv);
1597
1598         if (pll->active++ && pll->on) {
1599                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1600                 return;
1601         }
1602
1603         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1604
1605         reg = pll->pll_reg;
1606         val = I915_READ(reg);
1607         val |= DPLL_VCO_ENABLE;
1608         I915_WRITE(reg, val);
1609         POSTING_READ(reg);
1610         udelay(200);
1611
1612         pll->on = true;
1613 }
1614
1615 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1616 {
1617         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1618         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1619         int reg;
1620         u32 val;
1621
1622         /* PCH only available on ILK+ */
1623         BUG_ON(dev_priv->info->gen < 5);
1624         if (pll == NULL)
1625                return;
1626
1627         if (WARN_ON(pll->refcount == 0))
1628                 return;
1629
1630         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1631                       pll->pll_reg, pll->active, pll->on,
1632                       intel_crtc->base.base.id);
1633
1634         if (WARN_ON(pll->active == 0)) {
1635                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1636                 return;
1637         }
1638
1639         if (--pll->active) {
1640                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1641                 return;
1642         }
1643
1644         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1645
1646         /* Make sure transcoder isn't still depending on us */
1647         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1648
1649         reg = pll->pll_reg;
1650         val = I915_READ(reg);
1651         val &= ~DPLL_VCO_ENABLE;
1652         I915_WRITE(reg, val);
1653         POSTING_READ(reg);
1654         udelay(200);
1655
1656         pll->on = false;
1657 }
1658
1659 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1660                                            enum pipe pipe)
1661 {
1662         struct drm_device *dev = dev_priv->dev;
1663         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1664         uint32_t reg, val, pipeconf_val;
1665
1666         /* PCH only available on ILK+ */
1667         BUG_ON(dev_priv->info->gen < 5);
1668
1669         /* Make sure PCH DPLL is enabled */
1670         assert_pch_pll_enabled(dev_priv,
1671                                to_intel_crtc(crtc)->pch_pll,
1672                                to_intel_crtc(crtc));
1673
1674         /* FDI must be feeding us bits for PCH ports */
1675         assert_fdi_tx_enabled(dev_priv, pipe);
1676         assert_fdi_rx_enabled(dev_priv, pipe);
1677
1678         if (HAS_PCH_CPT(dev)) {
1679                 /* Workaround: Set the timing override bit before enabling the
1680                  * pch transcoder. */
1681                 reg = TRANS_CHICKEN2(pipe);
1682                 val = I915_READ(reg);
1683                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1684                 I915_WRITE(reg, val);
1685         }
1686
1687         reg = TRANSCONF(pipe);
1688         val = I915_READ(reg);
1689         pipeconf_val = I915_READ(PIPECONF(pipe));
1690
1691         if (HAS_PCH_IBX(dev_priv->dev)) {
1692                 /*
1693                  * make the BPC in transcoder be consistent with
1694                  * that in pipeconf reg.
1695                  */
1696                 val &= ~PIPE_BPC_MASK;
1697                 val |= pipeconf_val & PIPE_BPC_MASK;
1698         }
1699
1700         val &= ~TRANS_INTERLACE_MASK;
1701         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1702                 if (HAS_PCH_IBX(dev_priv->dev) &&
1703                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1704                         val |= TRANS_LEGACY_INTERLACED_ILK;
1705                 else
1706                         val |= TRANS_INTERLACED;
1707         else
1708                 val |= TRANS_PROGRESSIVE;
1709
1710         I915_WRITE(reg, val | TRANS_ENABLE);
1711         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1712                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1713 }
1714
1715 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1716                                       enum transcoder cpu_transcoder)
1717 {
1718         u32 val, pipeconf_val;
1719
1720         /* PCH only available on ILK+ */
1721         BUG_ON(dev_priv->info->gen < 5);
1722
1723         /* FDI must be feeding us bits for PCH ports */
1724         assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1725         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1726
1727         /* Workaround: set timing override bit. */
1728         val = I915_READ(_TRANSA_CHICKEN2);
1729         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1730         I915_WRITE(_TRANSA_CHICKEN2, val);
1731
1732         val = TRANS_ENABLE;
1733         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1734
1735         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1736             PIPECONF_INTERLACED_ILK)
1737                 val |= TRANS_INTERLACED;
1738         else
1739                 val |= TRANS_PROGRESSIVE;
1740
1741         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1742         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1743                 DRM_ERROR("Failed to enable PCH transcoder\n");
1744 }
1745
1746 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1747                                             enum pipe pipe)
1748 {
1749         struct drm_device *dev = dev_priv->dev;
1750         uint32_t reg, val;
1751
1752         /* FDI relies on the transcoder */
1753         assert_fdi_tx_disabled(dev_priv, pipe);
1754         assert_fdi_rx_disabled(dev_priv, pipe);
1755
1756         /* Ports must be off as well */
1757         assert_pch_ports_disabled(dev_priv, pipe);
1758
1759         reg = TRANSCONF(pipe);
1760         val = I915_READ(reg);
1761         val &= ~TRANS_ENABLE;
1762         I915_WRITE(reg, val);
1763         /* wait for PCH transcoder off, transcoder state */
1764         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1765                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1766
1767         if (!HAS_PCH_IBX(dev)) {
1768                 /* Workaround: Clear the timing override chicken bit again. */
1769                 reg = TRANS_CHICKEN2(pipe);
1770                 val = I915_READ(reg);
1771                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1772                 I915_WRITE(reg, val);
1773         }
1774 }
1775
1776 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1777 {
1778         u32 val;
1779
1780         val = I915_READ(_TRANSACONF);
1781         val &= ~TRANS_ENABLE;
1782         I915_WRITE(_TRANSACONF, val);
1783         /* wait for PCH transcoder off, transcoder state */
1784         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1785                 DRM_ERROR("Failed to disable PCH transcoder\n");
1786
1787         /* Workaround: clear timing override bit. */
1788         val = I915_READ(_TRANSA_CHICKEN2);
1789         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1790         I915_WRITE(_TRANSA_CHICKEN2, val);
1791 }
1792
1793 /**
1794  * intel_enable_pipe - enable a pipe, asserting requirements
1795  * @dev_priv: i915 private structure
1796  * @pipe: pipe to enable
1797  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1798  *
1799  * Enable @pipe, making sure that various hardware specific requirements
1800  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1801  *
1802  * @pipe should be %PIPE_A or %PIPE_B.
1803  *
1804  * Will wait until the pipe is actually running (i.e. first vblank) before
1805  * returning.
1806  */
1807 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1808                               bool pch_port)
1809 {
1810         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1811                                                                       pipe);
1812         enum transcoder pch_transcoder;
1813         int reg;
1814         u32 val;
1815
1816         if (IS_HASWELL(dev_priv->dev))
1817                 pch_transcoder = TRANSCODER_A;
1818         else
1819                 pch_transcoder = pipe;
1820
1821         /*
1822          * A pipe without a PLL won't actually be able to drive bits from
1823          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1824          * need the check.
1825          */
1826         if (!HAS_PCH_SPLIT(dev_priv->dev))
1827                 assert_pll_enabled(dev_priv, pipe);
1828         else {
1829                 if (pch_port) {
1830                         /* if driving the PCH, we need FDI enabled */
1831                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1832                         assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
1833                 }
1834                 /* FIXME: assert CPU port conditions for SNB+ */
1835         }
1836
1837         reg = PIPECONF(cpu_transcoder);
1838         val = I915_READ(reg);
1839         if (val & PIPECONF_ENABLE)
1840                 return;
1841
1842         I915_WRITE(reg, val | PIPECONF_ENABLE);
1843         intel_wait_for_vblank(dev_priv->dev, pipe);
1844 }
1845
1846 /**
1847  * intel_disable_pipe - disable a pipe, asserting requirements
1848  * @dev_priv: i915 private structure
1849  * @pipe: pipe to disable
1850  *
1851  * Disable @pipe, making sure that various hardware specific requirements
1852  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1853  *
1854  * @pipe should be %PIPE_A or %PIPE_B.
1855  *
1856  * Will wait until the pipe has shut down before returning.
1857  */
1858 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1859                                enum pipe pipe)
1860 {
1861         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1862                                                                       pipe);
1863         int reg;
1864         u32 val;
1865
1866         /*
1867          * Make sure planes won't keep trying to pump pixels to us,
1868          * or we might hang the display.
1869          */
1870         assert_planes_disabled(dev_priv, pipe);
1871
1872         /* Don't disable pipe A or pipe A PLLs if needed */
1873         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1874                 return;
1875
1876         reg = PIPECONF(cpu_transcoder);
1877         val = I915_READ(reg);
1878         if ((val & PIPECONF_ENABLE) == 0)
1879                 return;
1880
1881         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1882         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1883 }
1884
1885 /*
1886  * Plane regs are double buffered, going from enabled->disabled needs a
1887  * trigger in order to latch.  The display address reg provides this.
1888  */
1889 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1890                                       enum plane plane)
1891 {
1892         if (dev_priv->info->gen >= 4)
1893                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1894         else
1895                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1896 }
1897
1898 /**
1899  * intel_enable_plane - enable a display plane on a given pipe
1900  * @dev_priv: i915 private structure
1901  * @plane: plane to enable
1902  * @pipe: pipe being fed
1903  *
1904  * Enable @plane on @pipe, making sure that @pipe is running first.
1905  */
1906 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1907                                enum plane plane, enum pipe pipe)
1908 {
1909         int reg;
1910         u32 val;
1911
1912         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1913         assert_pipe_enabled(dev_priv, pipe);
1914
1915         reg = DSPCNTR(plane);
1916         val = I915_READ(reg);
1917         if (val & DISPLAY_PLANE_ENABLE)
1918                 return;
1919
1920         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1921         intel_flush_display_plane(dev_priv, plane);
1922         intel_wait_for_vblank(dev_priv->dev, pipe);
1923 }
1924
1925 /**
1926  * intel_disable_plane - disable a display plane
1927  * @dev_priv: i915 private structure
1928  * @plane: plane to disable
1929  * @pipe: pipe consuming the data
1930  *
1931  * Disable @plane; should be an independent operation.
1932  */
1933 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1934                                 enum plane plane, enum pipe pipe)
1935 {
1936         int reg;
1937         u32 val;
1938
1939         reg = DSPCNTR(plane);
1940         val = I915_READ(reg);
1941         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1942                 return;
1943
1944         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1945         intel_flush_display_plane(dev_priv, plane);
1946         intel_wait_for_vblank(dev_priv->dev, pipe);
1947 }
1948
1949 int
1950 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1951                            struct drm_i915_gem_object *obj,
1952                            struct intel_ring_buffer *pipelined)
1953 {
1954         struct drm_i915_private *dev_priv = dev->dev_private;
1955         u32 alignment;
1956         int ret;
1957
1958         switch (obj->tiling_mode) {
1959         case I915_TILING_NONE:
1960                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1961                         alignment = 128 * 1024;
1962                 else if (INTEL_INFO(dev)->gen >= 4)
1963                         alignment = 4 * 1024;
1964                 else
1965                         alignment = 64 * 1024;
1966                 break;
1967         case I915_TILING_X:
1968                 /* pin() will align the object as required by fence */
1969                 alignment = 0;
1970                 break;
1971         case I915_TILING_Y:
1972                 /* FIXME: Is this true? */
1973                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1974                 return -EINVAL;
1975         default:
1976                 BUG();
1977         }
1978
1979         dev_priv->mm.interruptible = false;
1980         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1981         if (ret)
1982                 goto err_interruptible;
1983
1984         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1985          * fence, whereas 965+ only requires a fence if using
1986          * framebuffer compression.  For simplicity, we always install
1987          * a fence as the cost is not that onerous.
1988          */
1989         ret = i915_gem_object_get_fence(obj);
1990         if (ret)
1991                 goto err_unpin;
1992
1993         i915_gem_object_pin_fence(obj);
1994
1995         dev_priv->mm.interruptible = true;
1996         return 0;
1997
1998 err_unpin:
1999         i915_gem_object_unpin(obj);
2000 err_interruptible:
2001         dev_priv->mm.interruptible = true;
2002         return ret;
2003 }
2004
2005 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2006 {
2007         i915_gem_object_unpin_fence(obj);
2008         i915_gem_object_unpin(obj);
2009 }
2010
2011 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2012  * is assumed to be a power-of-two. */
2013 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2014                                                unsigned int bpp,
2015                                                unsigned int pitch)
2016 {
2017         int tile_rows, tiles;
2018
2019         tile_rows = *y / 8;
2020         *y %= 8;
2021         tiles = *x / (512/bpp);
2022         *x %= 512/bpp;
2023
2024         return tile_rows * pitch * 8 + tiles * 4096;
2025 }
2026
2027 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2028                              int x, int y)
2029 {
2030         struct drm_device *dev = crtc->dev;
2031         struct drm_i915_private *dev_priv = dev->dev_private;
2032         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2033         struct intel_framebuffer *intel_fb;
2034         struct drm_i915_gem_object *obj;
2035         int plane = intel_crtc->plane;
2036         unsigned long linear_offset;
2037         u32 dspcntr;
2038         u32 reg;
2039
2040         switch (plane) {
2041         case 0:
2042         case 1:
2043                 break;
2044         default:
2045                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046                 return -EINVAL;
2047         }
2048
2049         intel_fb = to_intel_framebuffer(fb);
2050         obj = intel_fb->obj;
2051
2052         reg = DSPCNTR(plane);
2053         dspcntr = I915_READ(reg);
2054         /* Mask out pixel format bits in case we change it */
2055         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056         switch (fb->pixel_format) {
2057         case DRM_FORMAT_C8:
2058                 dspcntr |= DISPPLANE_8BPP;
2059                 break;
2060         case DRM_FORMAT_XRGB1555:
2061         case DRM_FORMAT_ARGB1555:
2062                 dspcntr |= DISPPLANE_BGRX555;
2063                 break;
2064         case DRM_FORMAT_RGB565:
2065                 dspcntr |= DISPPLANE_BGRX565;
2066                 break;
2067         case DRM_FORMAT_XRGB8888:
2068         case DRM_FORMAT_ARGB8888:
2069                 dspcntr |= DISPPLANE_BGRX888;
2070                 break;
2071         case DRM_FORMAT_XBGR8888:
2072         case DRM_FORMAT_ABGR8888:
2073                 dspcntr |= DISPPLANE_RGBX888;
2074                 break;
2075         case DRM_FORMAT_XRGB2101010:
2076         case DRM_FORMAT_ARGB2101010:
2077                 dspcntr |= DISPPLANE_BGRX101010;
2078                 break;
2079         case DRM_FORMAT_XBGR2101010:
2080         case DRM_FORMAT_ABGR2101010:
2081                 dspcntr |= DISPPLANE_RGBX101010;
2082                 break;
2083         default:
2084                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2085                 return -EINVAL;
2086         }
2087
2088         if (INTEL_INFO(dev)->gen >= 4) {
2089                 if (obj->tiling_mode != I915_TILING_NONE)
2090                         dspcntr |= DISPPLANE_TILED;
2091                 else
2092                         dspcntr &= ~DISPPLANE_TILED;
2093         }
2094
2095         I915_WRITE(reg, dspcntr);
2096
2097         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2098
2099         if (INTEL_INFO(dev)->gen >= 4) {
2100                 intel_crtc->dspaddr_offset =
2101                         intel_gen4_compute_offset_xtiled(&x, &y,
2102                                                          fb->bits_per_pixel / 8,
2103                                                          fb->pitches[0]);
2104                 linear_offset -= intel_crtc->dspaddr_offset;
2105         } else {
2106                 intel_crtc->dspaddr_offset = linear_offset;
2107         }
2108
2109         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2110                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2111         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2112         if (INTEL_INFO(dev)->gen >= 4) {
2113                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2114                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2115                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2116                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2117         } else
2118                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2119         POSTING_READ(reg);
2120
2121         return 0;
2122 }
2123
2124 static int ironlake_update_plane(struct drm_crtc *crtc,
2125                                  struct drm_framebuffer *fb, int x, int y)
2126 {
2127         struct drm_device *dev = crtc->dev;
2128         struct drm_i915_private *dev_priv = dev->dev_private;
2129         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2130         struct intel_framebuffer *intel_fb;
2131         struct drm_i915_gem_object *obj;
2132         int plane = intel_crtc->plane;
2133         unsigned long linear_offset;
2134         u32 dspcntr;
2135         u32 reg;
2136
2137         switch (plane) {
2138         case 0:
2139         case 1:
2140         case 2:
2141                 break;
2142         default:
2143                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2144                 return -EINVAL;
2145         }
2146
2147         intel_fb = to_intel_framebuffer(fb);
2148         obj = intel_fb->obj;
2149
2150         reg = DSPCNTR(plane);
2151         dspcntr = I915_READ(reg);
2152         /* Mask out pixel format bits in case we change it */
2153         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2154         switch (fb->pixel_format) {
2155         case DRM_FORMAT_C8:
2156                 dspcntr |= DISPPLANE_8BPP;
2157                 break;
2158         case DRM_FORMAT_RGB565:
2159                 dspcntr |= DISPPLANE_BGRX565;
2160                 break;
2161         case DRM_FORMAT_XRGB8888:
2162         case DRM_FORMAT_ARGB8888:
2163                 dspcntr |= DISPPLANE_BGRX888;
2164                 break;
2165         case DRM_FORMAT_XBGR8888:
2166         case DRM_FORMAT_ABGR8888:
2167                 dspcntr |= DISPPLANE_RGBX888;
2168                 break;
2169         case DRM_FORMAT_XRGB2101010:
2170         case DRM_FORMAT_ARGB2101010:
2171                 dspcntr |= DISPPLANE_BGRX101010;
2172                 break;
2173         case DRM_FORMAT_XBGR2101010:
2174         case DRM_FORMAT_ABGR2101010:
2175                 dspcntr |= DISPPLANE_RGBX101010;
2176                 break;
2177         default:
2178                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2179                 return -EINVAL;
2180         }
2181
2182         if (obj->tiling_mode != I915_TILING_NONE)
2183                 dspcntr |= DISPPLANE_TILED;
2184         else
2185                 dspcntr &= ~DISPPLANE_TILED;
2186
2187         /* must disable */
2188         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2189
2190         I915_WRITE(reg, dspcntr);
2191
2192         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2193         intel_crtc->dspaddr_offset =
2194                 intel_gen4_compute_offset_xtiled(&x, &y,
2195                                                  fb->bits_per_pixel / 8,
2196                                                  fb->pitches[0]);
2197         linear_offset -= intel_crtc->dspaddr_offset;
2198
2199         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2200                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2201         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2202         I915_MODIFY_DISPBASE(DSPSURF(plane),
2203                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2204         if (IS_HASWELL(dev)) {
2205                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2206         } else {
2207                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2208                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2209         }
2210         POSTING_READ(reg);
2211
2212         return 0;
2213 }
2214
2215 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2216 static int
2217 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2218                            int x, int y, enum mode_set_atomic state)
2219 {
2220         struct drm_device *dev = crtc->dev;
2221         struct drm_i915_private *dev_priv = dev->dev_private;
2222
2223         if (dev_priv->display.disable_fbc)
2224                 dev_priv->display.disable_fbc(dev);
2225         intel_increase_pllclock(crtc);
2226
2227         return dev_priv->display.update_plane(crtc, fb, x, y);
2228 }
2229
2230 static int
2231 intel_finish_fb(struct drm_framebuffer *old_fb)
2232 {
2233         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2234         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2235         bool was_interruptible = dev_priv->mm.interruptible;
2236         int ret;
2237
2238         wait_event(dev_priv->pending_flip_queue,
2239                    atomic_read(&dev_priv->mm.wedged) ||
2240                    atomic_read(&obj->pending_flip) == 0);
2241
2242         /* Big Hammer, we also need to ensure that any pending
2243          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2244          * current scanout is retired before unpinning the old
2245          * framebuffer.
2246          *
2247          * This should only fail upon a hung GPU, in which case we
2248          * can safely continue.
2249          */
2250         dev_priv->mm.interruptible = false;
2251         ret = i915_gem_object_finish_gpu(obj);
2252         dev_priv->mm.interruptible = was_interruptible;
2253
2254         return ret;
2255 }
2256
2257 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2258 {
2259         struct drm_device *dev = crtc->dev;
2260         struct drm_i915_master_private *master_priv;
2261         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2262
2263         if (!dev->primary->master)
2264                 return;
2265
2266         master_priv = dev->primary->master->driver_priv;
2267         if (!master_priv->sarea_priv)
2268                 return;
2269
2270         switch (intel_crtc->pipe) {
2271         case 0:
2272                 master_priv->sarea_priv->pipeA_x = x;
2273                 master_priv->sarea_priv->pipeA_y = y;
2274                 break;
2275         case 1:
2276                 master_priv->sarea_priv->pipeB_x = x;
2277                 master_priv->sarea_priv->pipeB_y = y;
2278                 break;
2279         default:
2280                 break;
2281         }
2282 }
2283
2284 static int
2285 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2286                     struct drm_framebuffer *fb)
2287 {
2288         struct drm_device *dev = crtc->dev;
2289         struct drm_i915_private *dev_priv = dev->dev_private;
2290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2291         struct drm_framebuffer *old_fb;
2292         int ret;
2293
2294         /* no fb bound */
2295         if (!fb) {
2296                 DRM_ERROR("No FB bound\n");
2297                 return 0;
2298         }
2299
2300         if(intel_crtc->plane > dev_priv->num_pipe) {
2301                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2302                                 intel_crtc->plane,
2303                                 dev_priv->num_pipe);
2304                 return -EINVAL;
2305         }
2306
2307         mutex_lock(&dev->struct_mutex);
2308         ret = intel_pin_and_fence_fb_obj(dev,
2309                                          to_intel_framebuffer(fb)->obj,
2310                                          NULL);
2311         if (ret != 0) {
2312                 mutex_unlock(&dev->struct_mutex);
2313                 DRM_ERROR("pin & fence failed\n");
2314                 return ret;
2315         }
2316
2317         if (crtc->fb)
2318                 intel_finish_fb(crtc->fb);
2319
2320         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2321         if (ret) {
2322                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2323                 mutex_unlock(&dev->struct_mutex);
2324                 DRM_ERROR("failed to update base address\n");
2325                 return ret;
2326         }
2327
2328         old_fb = crtc->fb;
2329         crtc->fb = fb;
2330         crtc->x = x;
2331         crtc->y = y;
2332
2333         if (old_fb) {
2334                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2335                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2336         }
2337
2338         intel_update_fbc(dev);
2339         mutex_unlock(&dev->struct_mutex);
2340
2341         intel_crtc_update_sarea_pos(crtc, x, y);
2342
2343         return 0;
2344 }
2345
2346 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2347 {
2348         struct drm_device *dev = crtc->dev;
2349         struct drm_i915_private *dev_priv = dev->dev_private;
2350         u32 dpa_ctl;
2351
2352         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2353         dpa_ctl = I915_READ(DP_A);
2354         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2355
2356         if (clock < 200000) {
2357                 u32 temp;
2358                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2359                 /* workaround for 160Mhz:
2360                    1) program 0x4600c bits 15:0 = 0x8124
2361                    2) program 0x46010 bit 0 = 1
2362                    3) program 0x46034 bit 24 = 1
2363                    4) program 0x64000 bit 14 = 1
2364                    */
2365                 temp = I915_READ(0x4600c);
2366                 temp &= 0xffff0000;
2367                 I915_WRITE(0x4600c, temp | 0x8124);
2368
2369                 temp = I915_READ(0x46010);
2370                 I915_WRITE(0x46010, temp | 1);
2371
2372                 temp = I915_READ(0x46034);
2373                 I915_WRITE(0x46034, temp | (1 << 24));
2374         } else {
2375                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2376         }
2377         I915_WRITE(DP_A, dpa_ctl);
2378
2379         POSTING_READ(DP_A);
2380         udelay(500);
2381 }
2382
2383 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2384 {
2385         struct drm_device *dev = crtc->dev;
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2388         int pipe = intel_crtc->pipe;
2389         u32 reg, temp;
2390
2391         /* enable normal train */
2392         reg = FDI_TX_CTL(pipe);
2393         temp = I915_READ(reg);
2394         if (IS_IVYBRIDGE(dev)) {
2395                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2396                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2397         } else {
2398                 temp &= ~FDI_LINK_TRAIN_NONE;
2399                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2400         }
2401         I915_WRITE(reg, temp);
2402
2403         reg = FDI_RX_CTL(pipe);
2404         temp = I915_READ(reg);
2405         if (HAS_PCH_CPT(dev)) {
2406                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2407                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2408         } else {
2409                 temp &= ~FDI_LINK_TRAIN_NONE;
2410                 temp |= FDI_LINK_TRAIN_NONE;
2411         }
2412         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2413
2414         /* wait one idle pattern time */
2415         POSTING_READ(reg);
2416         udelay(1000);
2417
2418         /* IVB wants error correction enabled */
2419         if (IS_IVYBRIDGE(dev))
2420                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2421                            FDI_FE_ERRC_ENABLE);
2422 }
2423
2424 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2425 {
2426         struct drm_i915_private *dev_priv = dev->dev_private;
2427         u32 flags = I915_READ(SOUTH_CHICKEN1);
2428
2429         flags |= FDI_PHASE_SYNC_OVR(pipe);
2430         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2431         flags |= FDI_PHASE_SYNC_EN(pipe);
2432         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2433         POSTING_READ(SOUTH_CHICKEN1);
2434 }
2435
2436 static void ivb_modeset_global_resources(struct drm_device *dev)
2437 {
2438         struct drm_i915_private *dev_priv = dev->dev_private;
2439         struct intel_crtc *pipe_B_crtc =
2440                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2441         struct intel_crtc *pipe_C_crtc =
2442                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2443         uint32_t temp;
2444
2445         /* When everything is off disable fdi C so that we could enable fdi B
2446          * with all lanes. XXX: This misses the case where a pipe is not using
2447          * any pch resources and so doesn't need any fdi lanes. */
2448         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2449                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2450                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2451
2452                 temp = I915_READ(SOUTH_CHICKEN1);
2453                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2454                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2455                 I915_WRITE(SOUTH_CHICKEN1, temp);
2456         }
2457 }
2458
2459 /* The FDI link training functions for ILK/Ibexpeak. */
2460 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2461 {
2462         struct drm_device *dev = crtc->dev;
2463         struct drm_i915_private *dev_priv = dev->dev_private;
2464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2465         int pipe = intel_crtc->pipe;
2466         int plane = intel_crtc->plane;
2467         u32 reg, temp, tries;
2468
2469         /* FDI needs bits from pipe & plane first */
2470         assert_pipe_enabled(dev_priv, pipe);
2471         assert_plane_enabled(dev_priv, plane);
2472
2473         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2474            for train result */
2475         reg = FDI_RX_IMR(pipe);
2476         temp = I915_READ(reg);
2477         temp &= ~FDI_RX_SYMBOL_LOCK;
2478         temp &= ~FDI_RX_BIT_LOCK;
2479         I915_WRITE(reg, temp);
2480         I915_READ(reg);
2481         udelay(150);
2482
2483         /* enable CPU FDI TX and PCH FDI RX */
2484         reg = FDI_TX_CTL(pipe);
2485         temp = I915_READ(reg);
2486         temp &= ~(7 << 19);
2487         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2488         temp &= ~FDI_LINK_TRAIN_NONE;
2489         temp |= FDI_LINK_TRAIN_PATTERN_1;
2490         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2491
2492         reg = FDI_RX_CTL(pipe);
2493         temp = I915_READ(reg);
2494         temp &= ~FDI_LINK_TRAIN_NONE;
2495         temp |= FDI_LINK_TRAIN_PATTERN_1;
2496         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2497
2498         POSTING_READ(reg);
2499         udelay(150);
2500
2501         /* Ironlake workaround, enable clock pointer after FDI enable*/
2502         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2503         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2504                    FDI_RX_PHASE_SYNC_POINTER_EN);
2505
2506         reg = FDI_RX_IIR(pipe);
2507         for (tries = 0; tries < 5; tries++) {
2508                 temp = I915_READ(reg);
2509                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2510
2511                 if ((temp & FDI_RX_BIT_LOCK)) {
2512                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2513                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2514                         break;
2515                 }
2516         }
2517         if (tries == 5)
2518                 DRM_ERROR("FDI train 1 fail!\n");
2519
2520         /* Train 2 */
2521         reg = FDI_TX_CTL(pipe);
2522         temp = I915_READ(reg);
2523         temp &= ~FDI_LINK_TRAIN_NONE;
2524         temp |= FDI_LINK_TRAIN_PATTERN_2;
2525         I915_WRITE(reg, temp);
2526
2527         reg = FDI_RX_CTL(pipe);
2528         temp = I915_READ(reg);
2529         temp &= ~FDI_LINK_TRAIN_NONE;
2530         temp |= FDI_LINK_TRAIN_PATTERN_2;
2531         I915_WRITE(reg, temp);
2532
2533         POSTING_READ(reg);
2534         udelay(150);
2535
2536         reg = FDI_RX_IIR(pipe);
2537         for (tries = 0; tries < 5; tries++) {
2538                 temp = I915_READ(reg);
2539                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2540
2541                 if (temp & FDI_RX_SYMBOL_LOCK) {
2542                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2543                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2544                         break;
2545                 }
2546         }
2547         if (tries == 5)
2548                 DRM_ERROR("FDI train 2 fail!\n");
2549
2550         DRM_DEBUG_KMS("FDI train done\n");
2551
2552 }
2553
2554 static const int snb_b_fdi_train_param[] = {
2555         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2556         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2557         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2558         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2559 };
2560
2561 /* The FDI link training functions for SNB/Cougarpoint. */
2562 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2563 {
2564         struct drm_device *dev = crtc->dev;
2565         struct drm_i915_private *dev_priv = dev->dev_private;
2566         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2567         int pipe = intel_crtc->pipe;
2568         u32 reg, temp, i, retry;
2569
2570         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2571            for train result */
2572         reg = FDI_RX_IMR(pipe);
2573         temp = I915_READ(reg);
2574         temp &= ~FDI_RX_SYMBOL_LOCK;
2575         temp &= ~FDI_RX_BIT_LOCK;
2576         I915_WRITE(reg, temp);
2577
2578         POSTING_READ(reg);
2579         udelay(150);
2580
2581         /* enable CPU FDI TX and PCH FDI RX */
2582         reg = FDI_TX_CTL(pipe);
2583         temp = I915_READ(reg);
2584         temp &= ~(7 << 19);
2585         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2586         temp &= ~FDI_LINK_TRAIN_NONE;
2587         temp |= FDI_LINK_TRAIN_PATTERN_1;
2588         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2589         /* SNB-B */
2590         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2591         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2592
2593         I915_WRITE(FDI_RX_MISC(pipe),
2594                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2595
2596         reg = FDI_RX_CTL(pipe);
2597         temp = I915_READ(reg);
2598         if (HAS_PCH_CPT(dev)) {
2599                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2600                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2601         } else {
2602                 temp &= ~FDI_LINK_TRAIN_NONE;
2603                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2604         }
2605         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2606
2607         POSTING_READ(reg);
2608         udelay(150);
2609
2610         cpt_phase_pointer_enable(dev, pipe);
2611
2612         for (i = 0; i < 4; i++) {
2613                 reg = FDI_TX_CTL(pipe);
2614                 temp = I915_READ(reg);
2615                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2616                 temp |= snb_b_fdi_train_param[i];
2617                 I915_WRITE(reg, temp);
2618
2619                 POSTING_READ(reg);
2620                 udelay(500);
2621
2622                 for (retry = 0; retry < 5; retry++) {
2623                         reg = FDI_RX_IIR(pipe);
2624                         temp = I915_READ(reg);
2625                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2626                         if (temp & FDI_RX_BIT_LOCK) {
2627                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2628                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2629                                 break;
2630                         }
2631                         udelay(50);
2632                 }
2633                 if (retry < 5)
2634                         break;
2635         }
2636         if (i == 4)
2637                 DRM_ERROR("FDI train 1 fail!\n");
2638
2639         /* Train 2 */
2640         reg = FDI_TX_CTL(pipe);
2641         temp = I915_READ(reg);
2642         temp &= ~FDI_LINK_TRAIN_NONE;
2643         temp |= FDI_LINK_TRAIN_PATTERN_2;
2644         if (IS_GEN6(dev)) {
2645                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2646                 /* SNB-B */
2647                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2648         }
2649         I915_WRITE(reg, temp);
2650
2651         reg = FDI_RX_CTL(pipe);
2652         temp = I915_READ(reg);
2653         if (HAS_PCH_CPT(dev)) {
2654                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2655                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2656         } else {
2657                 temp &= ~FDI_LINK_TRAIN_NONE;
2658                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2659         }
2660         I915_WRITE(reg, temp);
2661
2662         POSTING_READ(reg);
2663         udelay(150);
2664
2665         for (i = 0; i < 4; i++) {
2666                 reg = FDI_TX_CTL(pipe);
2667                 temp = I915_READ(reg);
2668                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2669                 temp |= snb_b_fdi_train_param[i];
2670                 I915_WRITE(reg, temp);
2671
2672                 POSTING_READ(reg);
2673                 udelay(500);
2674
2675                 for (retry = 0; retry < 5; retry++) {
2676                         reg = FDI_RX_IIR(pipe);
2677                         temp = I915_READ(reg);
2678                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2679                         if (temp & FDI_RX_SYMBOL_LOCK) {
2680                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2681                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2682                                 break;
2683                         }
2684                         udelay(50);
2685                 }
2686                 if (retry < 5)
2687                         break;
2688         }
2689         if (i == 4)
2690                 DRM_ERROR("FDI train 2 fail!\n");
2691
2692         DRM_DEBUG_KMS("FDI train done.\n");
2693 }
2694
2695 /* Manual link training for Ivy Bridge A0 parts */
2696 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2697 {
2698         struct drm_device *dev = crtc->dev;
2699         struct drm_i915_private *dev_priv = dev->dev_private;
2700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2701         int pipe = intel_crtc->pipe;
2702         u32 reg, temp, i;
2703
2704         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2705            for train result */
2706         reg = FDI_RX_IMR(pipe);
2707         temp = I915_READ(reg);
2708         temp &= ~FDI_RX_SYMBOL_LOCK;
2709         temp &= ~FDI_RX_BIT_LOCK;
2710         I915_WRITE(reg, temp);
2711
2712         POSTING_READ(reg);
2713         udelay(150);
2714
2715         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2716                       I915_READ(FDI_RX_IIR(pipe)));
2717
2718         /* enable CPU FDI TX and PCH FDI RX */
2719         reg = FDI_TX_CTL(pipe);
2720         temp = I915_READ(reg);
2721         temp &= ~(7 << 19);
2722         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2723         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2724         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2725         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2726         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2727         temp |= FDI_COMPOSITE_SYNC;
2728         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2729
2730         I915_WRITE(FDI_RX_MISC(pipe),
2731                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2732
2733         reg = FDI_RX_CTL(pipe);
2734         temp = I915_READ(reg);
2735         temp &= ~FDI_LINK_TRAIN_AUTO;
2736         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2737         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2738         temp |= FDI_COMPOSITE_SYNC;
2739         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2740
2741         POSTING_READ(reg);
2742         udelay(150);
2743
2744         cpt_phase_pointer_enable(dev, pipe);
2745
2746         for (i = 0; i < 4; i++) {
2747                 reg = FDI_TX_CTL(pipe);
2748                 temp = I915_READ(reg);
2749                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2750                 temp |= snb_b_fdi_train_param[i];
2751                 I915_WRITE(reg, temp);
2752
2753                 POSTING_READ(reg);
2754                 udelay(500);
2755
2756                 reg = FDI_RX_IIR(pipe);
2757                 temp = I915_READ(reg);
2758                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2759
2760                 if (temp & FDI_RX_BIT_LOCK ||
2761                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2762                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2763                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2764                         break;
2765                 }
2766         }
2767         if (i == 4)
2768                 DRM_ERROR("FDI train 1 fail!\n");
2769
2770         /* Train 2 */
2771         reg = FDI_TX_CTL(pipe);
2772         temp = I915_READ(reg);
2773         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2774         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2775         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2776         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2777         I915_WRITE(reg, temp);
2778
2779         reg = FDI_RX_CTL(pipe);
2780         temp = I915_READ(reg);
2781         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2782         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2783         I915_WRITE(reg, temp);
2784
2785         POSTING_READ(reg);
2786         udelay(150);
2787
2788         for (i = 0; i < 4; i++) {
2789                 reg = FDI_TX_CTL(pipe);
2790                 temp = I915_READ(reg);
2791                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2792                 temp |= snb_b_fdi_train_param[i];
2793                 I915_WRITE(reg, temp);
2794
2795                 POSTING_READ(reg);
2796                 udelay(500);
2797
2798                 reg = FDI_RX_IIR(pipe);
2799                 temp = I915_READ(reg);
2800                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2801
2802                 if (temp & FDI_RX_SYMBOL_LOCK) {
2803                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2804                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2805                         break;
2806                 }
2807         }
2808         if (i == 4)
2809                 DRM_ERROR("FDI train 2 fail!\n");
2810
2811         DRM_DEBUG_KMS("FDI train done.\n");
2812 }
2813
2814 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2815 {
2816         struct drm_device *dev = intel_crtc->base.dev;
2817         struct drm_i915_private *dev_priv = dev->dev_private;
2818         int pipe = intel_crtc->pipe;
2819         u32 reg, temp;
2820
2821
2822         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2823         reg = FDI_RX_CTL(pipe);
2824         temp = I915_READ(reg);
2825         temp &= ~((0x7 << 19) | (0x7 << 16));
2826         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2827         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2828         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2829
2830         POSTING_READ(reg);
2831         udelay(200);
2832
2833         /* Switch from Rawclk to PCDclk */
2834         temp = I915_READ(reg);
2835         I915_WRITE(reg, temp | FDI_PCDCLK);
2836
2837         POSTING_READ(reg);
2838         udelay(200);
2839
2840         /* On Haswell, the PLL configuration for ports and pipes is handled
2841          * separately, as part of DDI setup */
2842         if (!IS_HASWELL(dev)) {
2843                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2844                 reg = FDI_TX_CTL(pipe);
2845                 temp = I915_READ(reg);
2846                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2847                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2848
2849                         POSTING_READ(reg);
2850                         udelay(100);
2851                 }
2852         }
2853 }
2854
2855 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2856 {
2857         struct drm_device *dev = intel_crtc->base.dev;
2858         struct drm_i915_private *dev_priv = dev->dev_private;
2859         int pipe = intel_crtc->pipe;
2860         u32 reg, temp;
2861
2862         /* Switch from PCDclk to Rawclk */
2863         reg = FDI_RX_CTL(pipe);
2864         temp = I915_READ(reg);
2865         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2866
2867         /* Disable CPU FDI TX PLL */
2868         reg = FDI_TX_CTL(pipe);
2869         temp = I915_READ(reg);
2870         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2871
2872         POSTING_READ(reg);
2873         udelay(100);
2874
2875         reg = FDI_RX_CTL(pipe);
2876         temp = I915_READ(reg);
2877         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2878
2879         /* Wait for the clocks to turn off. */
2880         POSTING_READ(reg);
2881         udelay(100);
2882 }
2883
2884 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2885 {
2886         struct drm_i915_private *dev_priv = dev->dev_private;
2887         u32 flags = I915_READ(SOUTH_CHICKEN1);
2888
2889         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2890         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2891         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2892         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2893         POSTING_READ(SOUTH_CHICKEN1);
2894 }
2895 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2896 {
2897         struct drm_device *dev = crtc->dev;
2898         struct drm_i915_private *dev_priv = dev->dev_private;
2899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2900         int pipe = intel_crtc->pipe;
2901         u32 reg, temp;
2902
2903         /* disable CPU FDI tx and PCH FDI rx */
2904         reg = FDI_TX_CTL(pipe);
2905         temp = I915_READ(reg);
2906         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2907         POSTING_READ(reg);
2908
2909         reg = FDI_RX_CTL(pipe);
2910         temp = I915_READ(reg);
2911         temp &= ~(0x7 << 16);
2912         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2913         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2914
2915         POSTING_READ(reg);
2916         udelay(100);
2917
2918         /* Ironlake workaround, disable clock pointer after downing FDI */
2919         if (HAS_PCH_IBX(dev)) {
2920                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2921         } else if (HAS_PCH_CPT(dev)) {
2922                 cpt_phase_pointer_disable(dev, pipe);
2923         }
2924
2925         /* still set train pattern 1 */
2926         reg = FDI_TX_CTL(pipe);
2927         temp = I915_READ(reg);
2928         temp &= ~FDI_LINK_TRAIN_NONE;
2929         temp |= FDI_LINK_TRAIN_PATTERN_1;
2930         I915_WRITE(reg, temp);
2931
2932         reg = FDI_RX_CTL(pipe);
2933         temp = I915_READ(reg);
2934         if (HAS_PCH_CPT(dev)) {
2935                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2936                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2937         } else {
2938                 temp &= ~FDI_LINK_TRAIN_NONE;
2939                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2940         }
2941         /* BPC in FDI rx is consistent with that in PIPECONF */
2942         temp &= ~(0x07 << 16);
2943         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2944         I915_WRITE(reg, temp);
2945
2946         POSTING_READ(reg);
2947         udelay(100);
2948 }
2949
2950 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2951 {
2952         struct drm_device *dev = crtc->dev;
2953         struct drm_i915_private *dev_priv = dev->dev_private;
2954         unsigned long flags;
2955         bool pending;
2956
2957         if (atomic_read(&dev_priv->mm.wedged))
2958                 return false;
2959
2960         spin_lock_irqsave(&dev->event_lock, flags);
2961         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2962         spin_unlock_irqrestore(&dev->event_lock, flags);
2963
2964         return pending;
2965 }
2966
2967 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2968 {
2969         struct drm_device *dev = crtc->dev;
2970         struct drm_i915_private *dev_priv = dev->dev_private;
2971
2972         if (crtc->fb == NULL)
2973                 return;
2974
2975         wait_event(dev_priv->pending_flip_queue,
2976                    !intel_crtc_has_pending_flip(crtc));
2977
2978         mutex_lock(&dev->struct_mutex);
2979         intel_finish_fb(crtc->fb);
2980         mutex_unlock(&dev->struct_mutex);
2981 }
2982
2983 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2984 {
2985         struct drm_device *dev = crtc->dev;
2986         struct intel_encoder *intel_encoder;
2987
2988         /*
2989          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2990          * must be driven by its own crtc; no sharing is possible.
2991          */
2992         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2993                 switch (intel_encoder->type) {
2994                 case INTEL_OUTPUT_EDP:
2995                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2996                                 return false;
2997                         continue;
2998                 }
2999         }
3000
3001         return true;
3002 }
3003
3004 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3005 {
3006         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3007 }
3008
3009 /* Program iCLKIP clock to the desired frequency */
3010 static void lpt_program_iclkip(struct drm_crtc *crtc)
3011 {
3012         struct drm_device *dev = crtc->dev;
3013         struct drm_i915_private *dev_priv = dev->dev_private;
3014         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3015         u32 temp;
3016
3017         /* It is necessary to ungate the pixclk gate prior to programming
3018          * the divisors, and gate it back when it is done.
3019          */
3020         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3021
3022         /* Disable SSCCTL */
3023         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3024                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3025                                         SBI_SSCCTL_DISABLE);
3026
3027         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3028         if (crtc->mode.clock == 20000) {
3029                 auxdiv = 1;
3030                 divsel = 0x41;
3031                 phaseinc = 0x20;
3032         } else {
3033                 /* The iCLK virtual clock root frequency is in MHz,
3034                  * but the crtc->mode.clock in in KHz. To get the divisors,
3035                  * it is necessary to divide one by another, so we
3036                  * convert the virtual clock precision to KHz here for higher
3037                  * precision.
3038                  */
3039                 u32 iclk_virtual_root_freq = 172800 * 1000;
3040                 u32 iclk_pi_range = 64;
3041                 u32 desired_divisor, msb_divisor_value, pi_value;
3042
3043                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3044                 msb_divisor_value = desired_divisor / iclk_pi_range;
3045                 pi_value = desired_divisor % iclk_pi_range;
3046
3047                 auxdiv = 0;
3048                 divsel = msb_divisor_value - 2;
3049                 phaseinc = pi_value;
3050         }
3051
3052         /* This should not happen with any sane values */
3053         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3054                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3055         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3056                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3057
3058         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3059                         crtc->mode.clock,
3060                         auxdiv,
3061                         divsel,
3062                         phasedir,
3063                         phaseinc);
3064
3065         /* Program SSCDIVINTPHASE6 */
3066         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3067         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3068         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3069         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3070         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3071         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3072         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3073
3074         intel_sbi_write(dev_priv,
3075                         SBI_SSCDIVINTPHASE6,
3076                         temp);
3077
3078         /* Program SSCAUXDIV */
3079         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3080         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3081         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3082         intel_sbi_write(dev_priv,
3083                         SBI_SSCAUXDIV6,
3084                         temp);
3085
3086
3087         /* Enable modulator and associated divider */
3088         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3089         temp &= ~SBI_SSCCTL_DISABLE;
3090         intel_sbi_write(dev_priv,
3091                         SBI_SSCCTL6,
3092                         temp);
3093
3094         /* Wait for initialization time */
3095         udelay(24);
3096
3097         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3098 }
3099
3100 /*
3101  * Enable PCH resources required for PCH ports:
3102  *   - PCH PLLs
3103  *   - FDI training & RX/TX
3104  *   - update transcoder timings
3105  *   - DP transcoding bits
3106  *   - transcoder
3107  */
3108 static void ironlake_pch_enable(struct drm_crtc *crtc)
3109 {
3110         struct drm_device *dev = crtc->dev;
3111         struct drm_i915_private *dev_priv = dev->dev_private;
3112         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3113         int pipe = intel_crtc->pipe;
3114         u32 reg, temp;
3115
3116         assert_transcoder_disabled(dev_priv, pipe);
3117
3118         /* Write the TU size bits before fdi link training, so that error
3119          * detection works. */
3120         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3121                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3122
3123         /* For PCH output, training FDI link */
3124         dev_priv->display.fdi_link_train(crtc);
3125
3126         /* XXX: pch pll's can be enabled any time before we enable the PCH
3127          * transcoder, and we actually should do this to not upset any PCH
3128          * transcoder that already use the clock when we share it.
3129          *
3130          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3131          * unconditionally resets the pll - we need that to have the right LVDS
3132          * enable sequence. */
3133         ironlake_enable_pch_pll(intel_crtc);
3134
3135         if (HAS_PCH_CPT(dev)) {
3136                 u32 sel;
3137
3138                 temp = I915_READ(PCH_DPLL_SEL);
3139                 switch (pipe) {
3140                 default:
3141                 case 0:
3142                         temp |= TRANSA_DPLL_ENABLE;
3143                         sel = TRANSA_DPLLB_SEL;
3144                         break;
3145                 case 1:
3146                         temp |= TRANSB_DPLL_ENABLE;
3147                         sel = TRANSB_DPLLB_SEL;
3148                         break;
3149                 case 2:
3150                         temp |= TRANSC_DPLL_ENABLE;
3151                         sel = TRANSC_DPLLB_SEL;
3152                         break;
3153                 }
3154                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3155                         temp |= sel;
3156                 else
3157                         temp &= ~sel;
3158                 I915_WRITE(PCH_DPLL_SEL, temp);
3159         }
3160
3161         /* set transcoder timing, panel must allow it */
3162         assert_panel_unlocked(dev_priv, pipe);
3163         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3164         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3165         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3166
3167         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3168         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3169         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3170         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3171
3172         intel_fdi_normal_train(crtc);
3173
3174         /* For PCH DP, enable TRANS_DP_CTL */
3175         if (HAS_PCH_CPT(dev) &&
3176             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3177              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3178                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3179                 reg = TRANS_DP_CTL(pipe);
3180                 temp = I915_READ(reg);
3181                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3182                           TRANS_DP_SYNC_MASK |
3183                           TRANS_DP_BPC_MASK);
3184                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3185                          TRANS_DP_ENH_FRAMING);
3186                 temp |= bpc << 9; /* same format but at 11:9 */
3187
3188                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3189                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3190                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3191                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3192
3193                 switch (intel_trans_dp_port_sel(crtc)) {
3194                 case PCH_DP_B:
3195                         temp |= TRANS_DP_PORT_SEL_B;
3196                         break;
3197                 case PCH_DP_C:
3198                         temp |= TRANS_DP_PORT_SEL_C;
3199                         break;
3200                 case PCH_DP_D:
3201                         temp |= TRANS_DP_PORT_SEL_D;
3202                         break;
3203                 default:
3204                         BUG();
3205                 }
3206
3207                 I915_WRITE(reg, temp);
3208         }
3209
3210         ironlake_enable_pch_transcoder(dev_priv, pipe);
3211 }
3212
3213 static void lpt_pch_enable(struct drm_crtc *crtc)
3214 {
3215         struct drm_device *dev = crtc->dev;
3216         struct drm_i915_private *dev_priv = dev->dev_private;
3217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3218         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3219
3220         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3221
3222         lpt_program_iclkip(crtc);
3223
3224         /* Set transcoder timing. */
3225         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3226         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3227         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3228
3229         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3230         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3231         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3232         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3233
3234         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3235 }
3236
3237 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3238 {
3239         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3240
3241         if (pll == NULL)
3242                 return;
3243
3244         if (pll->refcount == 0) {
3245                 WARN(1, "bad PCH PLL refcount\n");
3246                 return;
3247         }
3248
3249         --pll->refcount;
3250         intel_crtc->pch_pll = NULL;
3251 }
3252
3253 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3254 {
3255         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3256         struct intel_pch_pll *pll;
3257         int i;
3258
3259         pll = intel_crtc->pch_pll;
3260         if (pll) {
3261                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3262                               intel_crtc->base.base.id, pll->pll_reg);
3263                 goto prepare;
3264         }
3265
3266         if (HAS_PCH_IBX(dev_priv->dev)) {
3267                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3268                 i = intel_crtc->pipe;
3269                 pll = &dev_priv->pch_plls[i];
3270
3271                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3272                               intel_crtc->base.base.id, pll->pll_reg);
3273
3274                 goto found;
3275         }
3276
3277         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3278                 pll = &dev_priv->pch_plls[i];
3279
3280                 /* Only want to check enabled timings first */
3281                 if (pll->refcount == 0)
3282                         continue;
3283
3284                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3285                     fp == I915_READ(pll->fp0_reg)) {
3286                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3287                                       intel_crtc->base.base.id,
3288                                       pll->pll_reg, pll->refcount, pll->active);
3289
3290                         goto found;
3291                 }
3292         }
3293
3294         /* Ok no matching timings, maybe there's a free one? */
3295         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3296                 pll = &dev_priv->pch_plls[i];
3297                 if (pll->refcount == 0) {
3298                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3299                                       intel_crtc->base.base.id, pll->pll_reg);
3300                         goto found;
3301                 }
3302         }
3303
3304         return NULL;
3305
3306 found:
3307         intel_crtc->pch_pll = pll;
3308         pll->refcount++;
3309         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3310 prepare: /* separate function? */
3311         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3312
3313         /* Wait for the clocks to stabilize before rewriting the regs */
3314         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3315         POSTING_READ(pll->pll_reg);
3316         udelay(150);
3317
3318         I915_WRITE(pll->fp0_reg, fp);
3319         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3320         pll->on = false;
3321         return pll;
3322 }
3323
3324 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3325 {
3326         struct drm_i915_private *dev_priv = dev->dev_private;
3327         int dslreg = PIPEDSL(pipe);
3328         u32 temp;
3329
3330         temp = I915_READ(dslreg);
3331         udelay(500);
3332         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3333                 if (wait_for(I915_READ(dslreg) != temp, 5))
3334                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3335         }
3336 }
3337
3338 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3339 {
3340         struct drm_device *dev = crtc->dev;
3341         struct drm_i915_private *dev_priv = dev->dev_private;
3342         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3343         struct intel_encoder *encoder;
3344         int pipe = intel_crtc->pipe;
3345         int plane = intel_crtc->plane;
3346         u32 temp;
3347         bool is_pch_port;
3348
3349         WARN_ON(!crtc->enabled);
3350
3351         if (intel_crtc->active)
3352                 return;
3353
3354         intel_crtc->active = true;
3355         intel_update_watermarks(dev);
3356
3357         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3358                 temp = I915_READ(PCH_LVDS);
3359                 if ((temp & LVDS_PORT_EN) == 0)
3360                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3361         }
3362
3363         is_pch_port = ironlake_crtc_driving_pch(crtc);
3364
3365         if (is_pch_port) {
3366                 /* Note: FDI PLL enabling _must_ be done before we enable the
3367                  * cpu pipes, hence this is separate from all the other fdi/pch
3368                  * enabling. */
3369                 ironlake_fdi_pll_enable(intel_crtc);
3370         } else {
3371                 assert_fdi_tx_disabled(dev_priv, pipe);
3372                 assert_fdi_rx_disabled(dev_priv, pipe);
3373         }
3374
3375         for_each_encoder_on_crtc(dev, crtc, encoder)
3376                 if (encoder->pre_enable)
3377                         encoder->pre_enable(encoder);
3378
3379         /* Enable panel fitting for LVDS */
3380         if (dev_priv->pch_pf_size &&
3381             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3382              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3383                 /* Force use of hard-coded filter coefficients
3384                  * as some pre-programmed values are broken,
3385                  * e.g. x201.
3386                  */
3387                 if (IS_IVYBRIDGE(dev))
3388                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3389                                                  PF_PIPE_SEL_IVB(pipe));
3390                 else
3391                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3392                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3393                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3394         }
3395
3396         /*
3397          * On ILK+ LUT must be loaded before the pipe is running but with
3398          * clocks enabled
3399          */
3400         intel_crtc_load_lut(crtc);
3401
3402         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3403         intel_enable_plane(dev_priv, plane, pipe);
3404
3405         if (is_pch_port)
3406                 ironlake_pch_enable(crtc);
3407
3408         mutex_lock(&dev->struct_mutex);
3409         intel_update_fbc(dev);
3410         mutex_unlock(&dev->struct_mutex);
3411
3412         intel_crtc_update_cursor(crtc, true);
3413
3414         for_each_encoder_on_crtc(dev, crtc, encoder)
3415                 encoder->enable(encoder);
3416
3417         if (HAS_PCH_CPT(dev))
3418                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3419
3420         /*
3421          * There seems to be a race in PCH platform hw (at least on some
3422          * outputs) where an enabled pipe still completes any pageflip right
3423          * away (as if the pipe is off) instead of waiting for vblank. As soon
3424          * as the first vblank happend, everything works as expected. Hence just
3425          * wait for one vblank before returning to avoid strange things
3426          * happening.
3427          */
3428         intel_wait_for_vblank(dev, intel_crtc->pipe);
3429 }
3430
3431 static void haswell_crtc_enable(struct drm_crtc *crtc)
3432 {
3433         struct drm_device *dev = crtc->dev;
3434         struct drm_i915_private *dev_priv = dev->dev_private;
3435         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3436         struct intel_encoder *encoder;
3437         int pipe = intel_crtc->pipe;
3438         int plane = intel_crtc->plane;
3439         bool is_pch_port;
3440
3441         WARN_ON(!crtc->enabled);
3442
3443         if (intel_crtc->active)
3444                 return;
3445
3446         intel_crtc->active = true;
3447         intel_update_watermarks(dev);
3448
3449         is_pch_port = haswell_crtc_driving_pch(crtc);
3450
3451         if (is_pch_port)
3452                 dev_priv->display.fdi_link_train(crtc);
3453
3454         for_each_encoder_on_crtc(dev, crtc, encoder)
3455                 if (encoder->pre_enable)
3456                         encoder->pre_enable(encoder);
3457
3458         intel_ddi_enable_pipe_clock(intel_crtc);
3459
3460         /* Enable panel fitting for eDP */
3461         if (dev_priv->pch_pf_size &&
3462             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3463                 /* Force use of hard-coded filter coefficients
3464                  * as some pre-programmed values are broken,
3465                  * e.g. x201.
3466                  */
3467                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3468                                          PF_PIPE_SEL_IVB(pipe));
3469                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3470                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3471         }
3472
3473         /*
3474          * On ILK+ LUT must be loaded before the pipe is running but with
3475          * clocks enabled
3476          */
3477         intel_crtc_load_lut(crtc);
3478
3479         intel_ddi_set_pipe_settings(crtc);
3480         intel_ddi_enable_pipe_func(crtc);
3481
3482         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3483         intel_enable_plane(dev_priv, plane, pipe);
3484
3485         if (is_pch_port)
3486                 lpt_pch_enable(crtc);
3487
3488         mutex_lock(&dev->struct_mutex);
3489         intel_update_fbc(dev);
3490         mutex_unlock(&dev->struct_mutex);
3491
3492         intel_crtc_update_cursor(crtc, true);
3493
3494         for_each_encoder_on_crtc(dev, crtc, encoder)
3495                 encoder->enable(encoder);
3496
3497         /*
3498          * There seems to be a race in PCH platform hw (at least on some
3499          * outputs) where an enabled pipe still completes any pageflip right
3500          * away (as if the pipe is off) instead of waiting for vblank. As soon
3501          * as the first vblank happend, everything works as expected. Hence just
3502          * wait for one vblank before returning to avoid strange things
3503          * happening.
3504          */
3505         intel_wait_for_vblank(dev, intel_crtc->pipe);
3506 }
3507
3508 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3509 {
3510         struct drm_device *dev = crtc->dev;
3511         struct drm_i915_private *dev_priv = dev->dev_private;
3512         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3513         struct intel_encoder *encoder;
3514         int pipe = intel_crtc->pipe;
3515         int plane = intel_crtc->plane;
3516         u32 reg, temp;
3517
3518
3519         if (!intel_crtc->active)
3520                 return;
3521
3522         for_each_encoder_on_crtc(dev, crtc, encoder)
3523                 encoder->disable(encoder);
3524
3525         intel_crtc_wait_for_pending_flips(crtc);
3526         drm_vblank_off(dev, pipe);
3527         intel_crtc_update_cursor(crtc, false);
3528
3529         intel_disable_plane(dev_priv, plane, pipe);
3530
3531         if (dev_priv->cfb_plane == plane)
3532                 intel_disable_fbc(dev);
3533
3534         intel_disable_pipe(dev_priv, pipe);
3535
3536         /* Disable PF */
3537         I915_WRITE(PF_CTL(pipe), 0);
3538         I915_WRITE(PF_WIN_SZ(pipe), 0);
3539
3540         for_each_encoder_on_crtc(dev, crtc, encoder)
3541                 if (encoder->post_disable)
3542                         encoder->post_disable(encoder);
3543
3544         ironlake_fdi_disable(crtc);
3545
3546         ironlake_disable_pch_transcoder(dev_priv, pipe);
3547
3548         if (HAS_PCH_CPT(dev)) {
3549                 /* disable TRANS_DP_CTL */
3550                 reg = TRANS_DP_CTL(pipe);
3551                 temp = I915_READ(reg);
3552                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3553                 temp |= TRANS_DP_PORT_SEL_NONE;
3554                 I915_WRITE(reg, temp);
3555
3556                 /* disable DPLL_SEL */
3557                 temp = I915_READ(PCH_DPLL_SEL);
3558                 switch (pipe) {
3559                 case 0:
3560                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3561                         break;
3562                 case 1:
3563                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3564                         break;
3565                 case 2:
3566                         /* C shares PLL A or B */
3567                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3568                         break;
3569                 default:
3570                         BUG(); /* wtf */
3571                 }
3572                 I915_WRITE(PCH_DPLL_SEL, temp);
3573         }
3574
3575         /* disable PCH DPLL */
3576         intel_disable_pch_pll(intel_crtc);
3577
3578         ironlake_fdi_pll_disable(intel_crtc);
3579
3580         intel_crtc->active = false;
3581         intel_update_watermarks(dev);
3582
3583         mutex_lock(&dev->struct_mutex);
3584         intel_update_fbc(dev);
3585         mutex_unlock(&dev->struct_mutex);
3586 }
3587
3588 static void haswell_crtc_disable(struct drm_crtc *crtc)
3589 {
3590         struct drm_device *dev = crtc->dev;
3591         struct drm_i915_private *dev_priv = dev->dev_private;
3592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3593         struct intel_encoder *encoder;
3594         int pipe = intel_crtc->pipe;
3595         int plane = intel_crtc->plane;
3596         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3597         bool is_pch_port;
3598
3599         if (!intel_crtc->active)
3600                 return;
3601
3602         is_pch_port = haswell_crtc_driving_pch(crtc);
3603
3604         for_each_encoder_on_crtc(dev, crtc, encoder)
3605                 encoder->disable(encoder);
3606
3607         intel_crtc_wait_for_pending_flips(crtc);
3608         drm_vblank_off(dev, pipe);
3609         intel_crtc_update_cursor(crtc, false);
3610
3611         intel_disable_plane(dev_priv, plane, pipe);
3612
3613         if (dev_priv->cfb_plane == plane)
3614                 intel_disable_fbc(dev);
3615
3616         intel_disable_pipe(dev_priv, pipe);
3617
3618         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3619
3620         /* Disable PF */
3621         I915_WRITE(PF_CTL(pipe), 0);
3622         I915_WRITE(PF_WIN_SZ(pipe), 0);
3623
3624         intel_ddi_disable_pipe_clock(intel_crtc);
3625
3626         for_each_encoder_on_crtc(dev, crtc, encoder)
3627                 if (encoder->post_disable)
3628                         encoder->post_disable(encoder);
3629
3630         if (is_pch_port) {
3631                 lpt_disable_pch_transcoder(dev_priv);
3632                 intel_ddi_fdi_disable(crtc);
3633         }
3634
3635         intel_crtc->active = false;
3636         intel_update_watermarks(dev);
3637
3638         mutex_lock(&dev->struct_mutex);
3639         intel_update_fbc(dev);
3640         mutex_unlock(&dev->struct_mutex);
3641 }
3642
3643 static void ironlake_crtc_off(struct drm_crtc *crtc)
3644 {
3645         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3646         intel_put_pch_pll(intel_crtc);
3647 }
3648
3649 static void haswell_crtc_off(struct drm_crtc *crtc)
3650 {
3651         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3652
3653         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3654          * start using it. */
3655         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3656
3657         intel_ddi_put_crtc_pll(crtc);
3658 }
3659
3660 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3661 {
3662         if (!enable && intel_crtc->overlay) {
3663                 struct drm_device *dev = intel_crtc->base.dev;
3664                 struct drm_i915_private *dev_priv = dev->dev_private;
3665
3666                 mutex_lock(&dev->struct_mutex);
3667                 dev_priv->mm.interruptible = false;
3668                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3669                 dev_priv->mm.interruptible = true;
3670                 mutex_unlock(&dev->struct_mutex);
3671         }
3672
3673         /* Let userspace switch the overlay on again. In most cases userspace
3674          * has to recompute where to put it anyway.
3675          */
3676 }
3677
3678 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3679 {
3680         struct drm_device *dev = crtc->dev;
3681         struct drm_i915_private *dev_priv = dev->dev_private;
3682         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3683         struct intel_encoder *encoder;
3684         int pipe = intel_crtc->pipe;
3685         int plane = intel_crtc->plane;
3686
3687         WARN_ON(!crtc->enabled);
3688
3689         if (intel_crtc->active)
3690                 return;
3691
3692         intel_crtc->active = true;
3693         intel_update_watermarks(dev);
3694
3695         intel_enable_pll(dev_priv, pipe);
3696         intel_enable_pipe(dev_priv, pipe, false);
3697         intel_enable_plane(dev_priv, plane, pipe);
3698
3699         intel_crtc_load_lut(crtc);
3700         intel_update_fbc(dev);
3701
3702         /* Give the overlay scaler a chance to enable if it's on this pipe */
3703         intel_crtc_dpms_overlay(intel_crtc, true);
3704         intel_crtc_update_cursor(crtc, true);
3705
3706         for_each_encoder_on_crtc(dev, crtc, encoder)
3707                 encoder->enable(encoder);
3708 }
3709
3710 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3711 {
3712         struct drm_device *dev = crtc->dev;
3713         struct drm_i915_private *dev_priv = dev->dev_private;
3714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3715         struct intel_encoder *encoder;
3716         int pipe = intel_crtc->pipe;
3717         int plane = intel_crtc->plane;
3718
3719
3720         if (!intel_crtc->active)
3721                 return;
3722
3723         for_each_encoder_on_crtc(dev, crtc, encoder)
3724                 encoder->disable(encoder);
3725
3726         /* Give the overlay scaler a chance to disable if it's on this pipe */
3727         intel_crtc_wait_for_pending_flips(crtc);
3728         drm_vblank_off(dev, pipe);
3729         intel_crtc_dpms_overlay(intel_crtc, false);
3730         intel_crtc_update_cursor(crtc, false);
3731
3732         if (dev_priv->cfb_plane == plane)
3733                 intel_disable_fbc(dev);
3734
3735         intel_disable_plane(dev_priv, plane, pipe);
3736         intel_disable_pipe(dev_priv, pipe);
3737         intel_disable_pll(dev_priv, pipe);
3738
3739         intel_crtc->active = false;
3740         intel_update_fbc(dev);
3741         intel_update_watermarks(dev);
3742 }
3743
3744 static void i9xx_crtc_off(struct drm_crtc *crtc)
3745 {
3746 }
3747
3748 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3749                                     bool enabled)
3750 {
3751         struct drm_device *dev = crtc->dev;
3752         struct drm_i915_master_private *master_priv;
3753         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3754         int pipe = intel_crtc->pipe;
3755
3756         if (!dev->primary->master)
3757                 return;
3758
3759         master_priv = dev->primary->master->driver_priv;
3760         if (!master_priv->sarea_priv)
3761                 return;
3762
3763         switch (pipe) {
3764         case 0:
3765                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3766                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3767                 break;
3768         case 1:
3769                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3770                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3771                 break;
3772         default:
3773                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3774                 break;
3775         }
3776 }
3777
3778 /**
3779  * Sets the power management mode of the pipe and plane.
3780  */
3781 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3782 {
3783         struct drm_device *dev = crtc->dev;
3784         struct drm_i915_private *dev_priv = dev->dev_private;
3785         struct intel_encoder *intel_encoder;
3786         bool enable = false;
3787
3788         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3789                 enable |= intel_encoder->connectors_active;
3790
3791         if (enable)
3792                 dev_priv->display.crtc_enable(crtc);
3793         else
3794                 dev_priv->display.crtc_disable(crtc);
3795
3796         intel_crtc_update_sarea(crtc, enable);
3797 }
3798
3799 static void intel_crtc_noop(struct drm_crtc *crtc)
3800 {
3801 }
3802
3803 static void intel_crtc_disable(struct drm_crtc *crtc)
3804 {
3805         struct drm_device *dev = crtc->dev;
3806         struct drm_connector *connector;
3807         struct drm_i915_private *dev_priv = dev->dev_private;
3808
3809         /* crtc should still be enabled when we disable it. */
3810         WARN_ON(!crtc->enabled);
3811
3812         dev_priv->display.crtc_disable(crtc);
3813         intel_crtc_update_sarea(crtc, false);
3814         dev_priv->display.off(crtc);
3815
3816         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3817         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3818
3819         if (crtc->fb) {
3820                 mutex_lock(&dev->struct_mutex);
3821                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3822                 mutex_unlock(&dev->struct_mutex);
3823                 crtc->fb = NULL;
3824         }
3825
3826         /* Update computed state. */
3827         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3828                 if (!connector->encoder || !connector->encoder->crtc)
3829                         continue;
3830
3831                 if (connector->encoder->crtc != crtc)
3832                         continue;
3833
3834                 connector->dpms = DRM_MODE_DPMS_OFF;
3835                 to_intel_encoder(connector->encoder)->connectors_active = false;
3836         }
3837 }
3838
3839 void intel_modeset_disable(struct drm_device *dev)
3840 {
3841         struct drm_crtc *crtc;
3842
3843         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3844                 if (crtc->enabled)
3845                         intel_crtc_disable(crtc);
3846         }
3847 }
3848
3849 void intel_encoder_noop(struct drm_encoder *encoder)
3850 {
3851 }
3852
3853 void intel_encoder_destroy(struct drm_encoder *encoder)
3854 {
3855         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3856
3857         drm_encoder_cleanup(encoder);
3858         kfree(intel_encoder);
3859 }
3860
3861 /* Simple dpms helper for encodres with just one connector, no cloning and only
3862  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3863  * state of the entire output pipe. */
3864 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3865 {
3866         if (mode == DRM_MODE_DPMS_ON) {
3867                 encoder->connectors_active = true;
3868
3869                 intel_crtc_update_dpms(encoder->base.crtc);
3870         } else {
3871                 encoder->connectors_active = false;
3872
3873                 intel_crtc_update_dpms(encoder->base.crtc);
3874         }
3875 }
3876
3877 /* Cross check the actual hw state with our own modeset state tracking (and it's
3878  * internal consistency). */
3879 static void intel_connector_check_state(struct intel_connector *connector)
3880 {
3881         if (connector->get_hw_state(connector)) {
3882                 struct intel_encoder *encoder = connector->encoder;
3883                 struct drm_crtc *crtc;
3884                 bool encoder_enabled;
3885                 enum pipe pipe;
3886
3887                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3888                               connector->base.base.id,
3889                               drm_get_connector_name(&connector->base));
3890
3891                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3892                      "wrong connector dpms state\n");
3893                 WARN(connector->base.encoder != &encoder->base,
3894                      "active connector not linked to encoder\n");
3895                 WARN(!encoder->connectors_active,
3896                      "encoder->connectors_active not set\n");
3897
3898                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3899                 WARN(!encoder_enabled, "encoder not enabled\n");
3900                 if (WARN_ON(!encoder->base.crtc))
3901                         return;
3902
3903                 crtc = encoder->base.crtc;
3904
3905                 WARN(!crtc->enabled, "crtc not enabled\n");
3906                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3907                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3908                      "encoder active on the wrong pipe\n");
3909         }
3910 }
3911
3912 /* Even simpler default implementation, if there's really no special case to
3913  * consider. */
3914 void intel_connector_dpms(struct drm_connector *connector, int mode)
3915 {
3916         struct intel_encoder *encoder = intel_attached_encoder(connector);
3917
3918         /* All the simple cases only support two dpms states. */
3919         if (mode != DRM_MODE_DPMS_ON)
3920                 mode = DRM_MODE_DPMS_OFF;
3921
3922         if (mode == connector->dpms)
3923                 return;
3924
3925         connector->dpms = mode;
3926
3927         /* Only need to change hw state when actually enabled */
3928         if (encoder->base.crtc)
3929                 intel_encoder_dpms(encoder, mode);
3930         else
3931                 WARN_ON(encoder->connectors_active != false);
3932
3933         intel_modeset_check_state(connector->dev);
3934 }
3935
3936 /* Simple connector->get_hw_state implementation for encoders that support only
3937  * one connector and no cloning and hence the encoder state determines the state
3938  * of the connector. */
3939 bool intel_connector_get_hw_state(struct intel_connector *connector)
3940 {
3941         enum pipe pipe = 0;
3942         struct intel_encoder *encoder = connector->encoder;
3943
3944         return encoder->get_hw_state(encoder, &pipe);
3945 }
3946
3947 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3948                                   const struct drm_display_mode *mode,
3949                                   struct drm_display_mode *adjusted_mode)
3950 {
3951         struct drm_device *dev = crtc->dev;
3952
3953         if (HAS_PCH_SPLIT(dev)) {
3954                 /* FDI link clock is fixed at 2.7G */
3955                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3956                         return false;
3957         }
3958
3959         /* All interlaced capable intel hw wants timings in frames. Note though
3960          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3961          * timings, so we need to be careful not to clobber these.*/
3962         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3963                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3964
3965         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3966          * with a hsync front porch of 0.
3967          */
3968         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3969                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3970                 return false;
3971
3972         return true;
3973 }
3974
3975 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3976 {
3977         return 400000; /* FIXME */
3978 }
3979
3980 static int i945_get_display_clock_speed(struct drm_device *dev)
3981 {
3982         return 400000;
3983 }
3984
3985 static int i915_get_display_clock_speed(struct drm_device *dev)
3986 {
3987         return 333000;
3988 }
3989
3990 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3991 {
3992         return 200000;
3993 }
3994
3995 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3996 {
3997         u16 gcfgc = 0;
3998
3999         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4000
4001         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4002                 return 133000;
4003         else {
4004                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4005                 case GC_DISPLAY_CLOCK_333_MHZ:
4006                         return 333000;
4007                 default:
4008                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4009                         return 190000;
4010                 }
4011         }
4012 }
4013
4014 static int i865_get_display_clock_speed(struct drm_device *dev)
4015 {
4016         return 266000;
4017 }
4018
4019 static int i855_get_display_clock_speed(struct drm_device *dev)
4020 {
4021         u16 hpllcc = 0;
4022         /* Assume that the hardware is in the high speed state.  This
4023          * should be the default.
4024          */
4025         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4026         case GC_CLOCK_133_200:
4027         case GC_CLOCK_100_200:
4028                 return 200000;
4029         case GC_CLOCK_166_250:
4030                 return 250000;
4031         case GC_CLOCK_100_133:
4032                 return 133000;
4033         }
4034
4035         /* Shouldn't happen */
4036         return 0;
4037 }
4038
4039 static int i830_get_display_clock_speed(struct drm_device *dev)
4040 {
4041         return 133000;
4042 }
4043
4044 struct fdi_m_n {
4045         u32        tu;
4046         u32        gmch_m;
4047         u32        gmch_n;
4048         u32        link_m;
4049         u32        link_n;
4050 };
4051
4052 static void
4053 fdi_reduce_ratio(u32 *num, u32 *den)
4054 {
4055         while (*num > 0xffffff || *den > 0xffffff) {
4056                 *num >>= 1;
4057                 *den >>= 1;
4058         }
4059 }
4060
4061 static void
4062 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4063                      int link_clock, struct fdi_m_n *m_n)
4064 {
4065         m_n->tu = 64; /* default size */
4066
4067         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4068         m_n->gmch_m = bits_per_pixel * pixel_clock;
4069         m_n->gmch_n = link_clock * nlanes * 8;
4070         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4071
4072         m_n->link_m = pixel_clock;
4073         m_n->link_n = link_clock;
4074         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4075 }
4076
4077 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4078 {
4079         if (i915_panel_use_ssc >= 0)
4080                 return i915_panel_use_ssc != 0;
4081         return dev_priv->lvds_use_ssc
4082                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4083 }
4084
4085 /**
4086  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4087  * @crtc: CRTC structure
4088  * @mode: requested mode
4089  *
4090  * A pipe may be connected to one or more outputs.  Based on the depth of the
4091  * attached framebuffer, choose a good color depth to use on the pipe.
4092  *
4093  * If possible, match the pipe depth to the fb depth.  In some cases, this
4094  * isn't ideal, because the connected output supports a lesser or restricted
4095  * set of depths.  Resolve that here:
4096  *    LVDS typically supports only 6bpc, so clamp down in that case
4097  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4098  *    Displays may support a restricted set as well, check EDID and clamp as
4099  *      appropriate.
4100  *    DP may want to dither down to 6bpc to fit larger modes
4101  *
4102  * RETURNS:
4103  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4104  * true if they don't match).
4105  */
4106 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4107                                          struct drm_framebuffer *fb,
4108                                          unsigned int *pipe_bpp,
4109                                          struct drm_display_mode *mode)
4110 {
4111         struct drm_device *dev = crtc->dev;
4112         struct drm_i915_private *dev_priv = dev->dev_private;
4113         struct drm_connector *connector;
4114         struct intel_encoder *intel_encoder;
4115         unsigned int display_bpc = UINT_MAX, bpc;
4116
4117         /* Walk the encoders & connectors on this crtc, get min bpc */
4118         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4119
4120                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4121                         unsigned int lvds_bpc;
4122
4123                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4124                             LVDS_A3_POWER_UP)
4125                                 lvds_bpc = 8;
4126                         else
4127                                 lvds_bpc = 6;
4128
4129                         if (lvds_bpc < display_bpc) {
4130                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4131                                 display_bpc = lvds_bpc;
4132                         }
4133                         continue;
4134                 }
4135
4136                 /* Not one of the known troublemakers, check the EDID */
4137                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4138                                     head) {
4139                         if (connector->encoder != &intel_encoder->base)
4140                                 continue;
4141
4142                         /* Don't use an invalid EDID bpc value */
4143                         if (connector->display_info.bpc &&
4144                             connector->display_info.bpc < display_bpc) {
4145                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4146                                 display_bpc = connector->display_info.bpc;
4147                         }
4148                 }
4149
4150                 /*
4151                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4152                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4153                  */
4154                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4155                         if (display_bpc > 8 && display_bpc < 12) {
4156                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4157                                 display_bpc = 12;
4158                         } else {
4159                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4160                                 display_bpc = 8;
4161                         }
4162                 }
4163         }
4164
4165         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4166                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4167                 display_bpc = 6;
4168         }
4169
4170         /*
4171          * We could just drive the pipe at the highest bpc all the time and
4172          * enable dithering as needed, but that costs bandwidth.  So choose
4173          * the minimum value that expresses the full color range of the fb but
4174          * also stays within the max display bpc discovered above.
4175          */
4176
4177         switch (fb->depth) {
4178         case 8:
4179                 bpc = 8; /* since we go through a colormap */
4180                 break;
4181         case 15:
4182         case 16:
4183                 bpc = 6; /* min is 18bpp */
4184                 break;
4185         case 24:
4186                 bpc = 8;
4187                 break;
4188         case 30:
4189                 bpc = 10;
4190                 break;
4191         case 48:
4192                 bpc = 12;
4193                 break;
4194         default:
4195                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4196                 bpc = min((unsigned int)8, display_bpc);
4197                 break;
4198         }
4199
4200         display_bpc = min(display_bpc, bpc);
4201
4202         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4203                       bpc, display_bpc);
4204
4205         *pipe_bpp = display_bpc * 3;
4206
4207         return display_bpc != bpc;
4208 }
4209
4210 static int vlv_get_refclk(struct drm_crtc *crtc)
4211 {
4212         struct drm_device *dev = crtc->dev;
4213         struct drm_i915_private *dev_priv = dev->dev_private;
4214         int refclk = 27000; /* for DP & HDMI */
4215
4216         return 100000; /* only one validated so far */
4217
4218         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4219                 refclk = 96000;
4220         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4221                 if (intel_panel_use_ssc(dev_priv))
4222                         refclk = 100000;
4223                 else
4224                         refclk = 96000;
4225         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4226                 refclk = 100000;
4227         }
4228
4229         return refclk;
4230 }
4231
4232 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4233 {
4234         struct drm_device *dev = crtc->dev;
4235         struct drm_i915_private *dev_priv = dev->dev_private;
4236         int refclk;
4237
4238         if (IS_VALLEYVIEW(dev)) {
4239                 refclk = vlv_get_refclk(crtc);
4240         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4241             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4242                 refclk = dev_priv->lvds_ssc_freq * 1000;
4243                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4244                               refclk / 1000);
4245         } else if (!IS_GEN2(dev)) {
4246                 refclk = 96000;
4247         } else {
4248                 refclk = 48000;
4249         }
4250
4251         return refclk;
4252 }
4253
4254 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4255                                       intel_clock_t *clock)
4256 {
4257         /* SDVO TV has fixed PLL values depend on its clock range,
4258            this mirrors vbios setting. */
4259         if (adjusted_mode->clock >= 100000
4260             && adjusted_mode->clock < 140500) {
4261                 clock->p1 = 2;
4262                 clock->p2 = 10;
4263                 clock->n = 3;
4264                 clock->m1 = 16;
4265                 clock->m2 = 8;
4266         } else if (adjusted_mode->clock >= 140500
4267                    && adjusted_mode->clock <= 200000) {
4268                 clock->p1 = 1;
4269                 clock->p2 = 10;
4270                 clock->n = 6;
4271                 clock->m1 = 12;
4272                 clock->m2 = 8;
4273         }
4274 }
4275
4276 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4277                                      intel_clock_t *clock,
4278                                      intel_clock_t *reduced_clock)
4279 {
4280         struct drm_device *dev = crtc->dev;
4281         struct drm_i915_private *dev_priv = dev->dev_private;
4282         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4283         int pipe = intel_crtc->pipe;
4284         u32 fp, fp2 = 0;
4285
4286         if (IS_PINEVIEW(dev)) {
4287                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4288                 if (reduced_clock)
4289                         fp2 = (1 << reduced_clock->n) << 16 |
4290                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4291         } else {
4292                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4293                 if (reduced_clock)
4294                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4295                                 reduced_clock->m2;
4296         }
4297
4298         I915_WRITE(FP0(pipe), fp);
4299
4300         intel_crtc->lowfreq_avail = false;
4301         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4302             reduced_clock && i915_powersave) {
4303                 I915_WRITE(FP1(pipe), fp2);
4304                 intel_crtc->lowfreq_avail = true;
4305         } else {
4306                 I915_WRITE(FP1(pipe), fp);
4307         }
4308 }
4309
4310 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4311                               struct drm_display_mode *adjusted_mode)
4312 {
4313         struct drm_device *dev = crtc->dev;
4314         struct drm_i915_private *dev_priv = dev->dev_private;
4315         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4316         int pipe = intel_crtc->pipe;
4317         u32 temp;
4318
4319         temp = I915_READ(LVDS);
4320         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4321         if (pipe == 1) {
4322                 temp |= LVDS_PIPEB_SELECT;
4323         } else {
4324                 temp &= ~LVDS_PIPEB_SELECT;
4325         }
4326         /* set the corresponsding LVDS_BORDER bit */
4327         temp |= dev_priv->lvds_border_bits;
4328         /* Set the B0-B3 data pairs corresponding to whether we're going to
4329          * set the DPLLs for dual-channel mode or not.
4330          */
4331         if (clock->p2 == 7)
4332                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4333         else
4334                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4335
4336         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4337          * appropriately here, but we need to look more thoroughly into how
4338          * panels behave in the two modes.
4339          */
4340         /* set the dithering flag on LVDS as needed */
4341         if (INTEL_INFO(dev)->gen >= 4) {
4342                 if (dev_priv->lvds_dither)
4343                         temp |= LVDS_ENABLE_DITHER;
4344                 else
4345                         temp &= ~LVDS_ENABLE_DITHER;
4346         }
4347         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4348         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4349                 temp |= LVDS_HSYNC_POLARITY;
4350         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4351                 temp |= LVDS_VSYNC_POLARITY;
4352         I915_WRITE(LVDS, temp);
4353 }
4354
4355 static void vlv_update_pll(struct drm_crtc *crtc,
4356                            struct drm_display_mode *mode,
4357                            struct drm_display_mode *adjusted_mode,
4358                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4359                            int num_connectors)
4360 {
4361         struct drm_device *dev = crtc->dev;
4362         struct drm_i915_private *dev_priv = dev->dev_private;
4363         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4364         int pipe = intel_crtc->pipe;
4365         u32 dpll, mdiv, pdiv;
4366         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4367         bool is_sdvo;
4368         u32 temp;
4369
4370         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4371                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4372
4373         dpll = DPLL_VGA_MODE_DIS;
4374         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4375         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4376         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4377
4378         I915_WRITE(DPLL(pipe), dpll);
4379         POSTING_READ(DPLL(pipe));
4380
4381         bestn = clock->n;
4382         bestm1 = clock->m1;
4383         bestm2 = clock->m2;
4384         bestp1 = clock->p1;
4385         bestp2 = clock->p2;
4386
4387         /*
4388          * In Valleyview PLL and program lane counter registers are exposed
4389          * through DPIO interface
4390          */
4391         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4392         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4393         mdiv |= ((bestn << DPIO_N_SHIFT));
4394         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4395         mdiv |= (1 << DPIO_K_SHIFT);
4396         mdiv |= DPIO_ENABLE_CALIBRATION;
4397         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4398
4399         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4400
4401         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4402                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4403                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4404                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4405         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4406
4407         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4408
4409         dpll |= DPLL_VCO_ENABLE;
4410         I915_WRITE(DPLL(pipe), dpll);
4411         POSTING_READ(DPLL(pipe));
4412         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4413                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4414
4415         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4416
4417         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4418                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4419
4420         I915_WRITE(DPLL(pipe), dpll);
4421
4422         /* Wait for the clocks to stabilize. */
4423         POSTING_READ(DPLL(pipe));
4424         udelay(150);
4425
4426         temp = 0;
4427         if (is_sdvo) {
4428                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4429                 if (temp > 1)
4430                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4431                 else
4432                         temp = 0;
4433         }
4434         I915_WRITE(DPLL_MD(pipe), temp);
4435         POSTING_READ(DPLL_MD(pipe));
4436
4437         /* Now program lane control registers */
4438         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4439                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4440         {
4441                 temp = 0x1000C4;
4442                 if(pipe == 1)
4443                         temp |= (1 << 21);
4444                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4445         }
4446         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4447         {
4448                 temp = 0x1000C4;
4449                 if(pipe == 1)
4450                         temp |= (1 << 21);
4451                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4452         }
4453 }
4454
4455 static void i9xx_update_pll(struct drm_crtc *crtc,
4456                             struct drm_display_mode *mode,
4457                             struct drm_display_mode *adjusted_mode,
4458                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4459                             int num_connectors)
4460 {
4461         struct drm_device *dev = crtc->dev;
4462         struct drm_i915_private *dev_priv = dev->dev_private;
4463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4464         struct intel_encoder *encoder;
4465         int pipe = intel_crtc->pipe;
4466         u32 dpll;
4467         bool is_sdvo;
4468
4469         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4470
4471         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4472                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4473
4474         dpll = DPLL_VGA_MODE_DIS;
4475
4476         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4477                 dpll |= DPLLB_MODE_LVDS;
4478         else
4479                 dpll |= DPLLB_MODE_DAC_SERIAL;
4480         if (is_sdvo) {
4481                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4482                 if (pixel_multiplier > 1) {
4483                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4484                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4485                 }
4486                 dpll |= DPLL_DVO_HIGH_SPEED;
4487         }
4488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4489                 dpll |= DPLL_DVO_HIGH_SPEED;
4490
4491         /* compute bitmask from p1 value */
4492         if (IS_PINEVIEW(dev))
4493                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4494         else {
4495                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4496                 if (IS_G4X(dev) && reduced_clock)
4497                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4498         }
4499         switch (clock->p2) {
4500         case 5:
4501                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4502                 break;
4503         case 7:
4504                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4505                 break;
4506         case 10:
4507                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4508                 break;
4509         case 14:
4510                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4511                 break;
4512         }
4513         if (INTEL_INFO(dev)->gen >= 4)
4514                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4515
4516         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4517                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4518         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4519                 /* XXX: just matching BIOS for now */
4520                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4521                 dpll |= 3;
4522         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4523                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4524                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4525         else
4526                 dpll |= PLL_REF_INPUT_DREFCLK;
4527
4528         dpll |= DPLL_VCO_ENABLE;
4529         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4530         POSTING_READ(DPLL(pipe));
4531         udelay(150);
4532
4533         for_each_encoder_on_crtc(dev, crtc, encoder)
4534                 if (encoder->pre_pll_enable)
4535                         encoder->pre_pll_enable(encoder);
4536
4537         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4538          * This is an exception to the general rule that mode_set doesn't turn
4539          * things on.
4540          */
4541         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4542                 intel_update_lvds(crtc, clock, adjusted_mode);
4543
4544         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4545                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4546
4547         I915_WRITE(DPLL(pipe), dpll);
4548
4549         /* Wait for the clocks to stabilize. */
4550         POSTING_READ(DPLL(pipe));
4551         udelay(150);
4552
4553         if (INTEL_INFO(dev)->gen >= 4) {
4554                 u32 temp = 0;
4555                 if (is_sdvo) {
4556                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4557                         if (temp > 1)
4558                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4559                         else
4560                                 temp = 0;
4561                 }
4562                 I915_WRITE(DPLL_MD(pipe), temp);
4563         } else {
4564                 /* The pixel multiplier can only be updated once the
4565                  * DPLL is enabled and the clocks are stable.
4566                  *
4567                  * So write it again.
4568                  */
4569                 I915_WRITE(DPLL(pipe), dpll);
4570         }
4571 }
4572
4573 static void i8xx_update_pll(struct drm_crtc *crtc,
4574                             struct drm_display_mode *adjusted_mode,
4575                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4576                             int num_connectors)
4577 {
4578         struct drm_device *dev = crtc->dev;
4579         struct drm_i915_private *dev_priv = dev->dev_private;
4580         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4581         struct intel_encoder *encoder;
4582         int pipe = intel_crtc->pipe;
4583         u32 dpll;
4584
4585         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4586
4587         dpll = DPLL_VGA_MODE_DIS;
4588
4589         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4590                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4591         } else {
4592                 if (clock->p1 == 2)
4593                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4594                 else
4595                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4596                 if (clock->p2 == 4)
4597                         dpll |= PLL_P2_DIVIDE_BY_4;
4598         }
4599
4600         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4601                 /* XXX: just matching BIOS for now */
4602                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4603                 dpll |= 3;
4604         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4605                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4606                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4607         else
4608                 dpll |= PLL_REF_INPUT_DREFCLK;
4609
4610         dpll |= DPLL_VCO_ENABLE;
4611         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4612         POSTING_READ(DPLL(pipe));
4613         udelay(150);
4614
4615         for_each_encoder_on_crtc(dev, crtc, encoder)
4616                 if (encoder->pre_pll_enable)
4617                         encoder->pre_pll_enable(encoder);
4618
4619         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4620          * This is an exception to the general rule that mode_set doesn't turn
4621          * things on.
4622          */
4623         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4624                 intel_update_lvds(crtc, clock, adjusted_mode);
4625
4626         I915_WRITE(DPLL(pipe), dpll);
4627
4628         /* Wait for the clocks to stabilize. */
4629         POSTING_READ(DPLL(pipe));
4630         udelay(150);
4631
4632         /* The pixel multiplier can only be updated once the
4633          * DPLL is enabled and the clocks are stable.
4634          *
4635          * So write it again.
4636          */
4637         I915_WRITE(DPLL(pipe), dpll);
4638 }
4639
4640 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4641                                    struct drm_display_mode *mode,
4642                                    struct drm_display_mode *adjusted_mode)
4643 {
4644         struct drm_device *dev = intel_crtc->base.dev;
4645         struct drm_i915_private *dev_priv = dev->dev_private;
4646         enum pipe pipe = intel_crtc->pipe;
4647         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4648         uint32_t vsyncshift;
4649
4650         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4651                 /* the chip adds 2 halflines automatically */
4652                 adjusted_mode->crtc_vtotal -= 1;
4653                 adjusted_mode->crtc_vblank_end -= 1;
4654                 vsyncshift = adjusted_mode->crtc_hsync_start
4655                              - adjusted_mode->crtc_htotal / 2;
4656         } else {
4657                 vsyncshift = 0;
4658         }
4659
4660         if (INTEL_INFO(dev)->gen > 3)
4661                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4662
4663         I915_WRITE(HTOTAL(cpu_transcoder),
4664                    (adjusted_mode->crtc_hdisplay - 1) |
4665                    ((adjusted_mode->crtc_htotal - 1) << 16));
4666         I915_WRITE(HBLANK(cpu_transcoder),
4667                    (adjusted_mode->crtc_hblank_start - 1) |
4668                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4669         I915_WRITE(HSYNC(cpu_transcoder),
4670                    (adjusted_mode->crtc_hsync_start - 1) |
4671                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4672
4673         I915_WRITE(VTOTAL(cpu_transcoder),
4674                    (adjusted_mode->crtc_vdisplay - 1) |
4675                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4676         I915_WRITE(VBLANK(cpu_transcoder),
4677                    (adjusted_mode->crtc_vblank_start - 1) |
4678                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4679         I915_WRITE(VSYNC(cpu_transcoder),
4680                    (adjusted_mode->crtc_vsync_start - 1) |
4681                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4682
4683         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4684          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4685          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4686          * bits. */
4687         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4688             (pipe == PIPE_B || pipe == PIPE_C))
4689                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4690
4691         /* pipesrc controls the size that is scaled from, which should
4692          * always be the user's requested size.
4693          */
4694         I915_WRITE(PIPESRC(pipe),
4695                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4696 }
4697
4698 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4699                               struct drm_display_mode *mode,
4700                               struct drm_display_mode *adjusted_mode,
4701                               int x, int y,
4702                               struct drm_framebuffer *fb)
4703 {
4704         struct drm_device *dev = crtc->dev;
4705         struct drm_i915_private *dev_priv = dev->dev_private;
4706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4707         int pipe = intel_crtc->pipe;
4708         int plane = intel_crtc->plane;
4709         int refclk, num_connectors = 0;
4710         intel_clock_t clock, reduced_clock;
4711         u32 dspcntr, pipeconf;
4712         bool ok, has_reduced_clock = false, is_sdvo = false;
4713         bool is_lvds = false, is_tv = false, is_dp = false;
4714         struct intel_encoder *encoder;
4715         const intel_limit_t *limit;
4716         int ret;
4717
4718         for_each_encoder_on_crtc(dev, crtc, encoder) {
4719                 switch (encoder->type) {
4720                 case INTEL_OUTPUT_LVDS:
4721                         is_lvds = true;
4722                         break;
4723                 case INTEL_OUTPUT_SDVO:
4724                 case INTEL_OUTPUT_HDMI:
4725                         is_sdvo = true;
4726                         if (encoder->needs_tv_clock)
4727                                 is_tv = true;
4728                         break;
4729                 case INTEL_OUTPUT_TVOUT:
4730                         is_tv = true;
4731                         break;
4732                 case INTEL_OUTPUT_DISPLAYPORT:
4733                         is_dp = true;
4734                         break;
4735                 }
4736
4737                 num_connectors++;
4738         }
4739
4740         refclk = i9xx_get_refclk(crtc, num_connectors);
4741
4742         /*
4743          * Returns a set of divisors for the desired target clock with the given
4744          * refclk, or FALSE.  The returned values represent the clock equation:
4745          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4746          */
4747         limit = intel_limit(crtc, refclk);
4748         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4749                              &clock);
4750         if (!ok) {
4751                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4752                 return -EINVAL;
4753         }
4754
4755         /* Ensure that the cursor is valid for the new mode before changing... */
4756         intel_crtc_update_cursor(crtc, true);
4757
4758         if (is_lvds && dev_priv->lvds_downclock_avail) {
4759                 /*
4760                  * Ensure we match the reduced clock's P to the target clock.
4761                  * If the clocks don't match, we can't switch the display clock
4762                  * by using the FP0/FP1. In such case we will disable the LVDS
4763                  * downclock feature.
4764                 */
4765                 has_reduced_clock = limit->find_pll(limit, crtc,
4766                                                     dev_priv->lvds_downclock,
4767                                                     refclk,
4768                                                     &clock,
4769                                                     &reduced_clock);
4770         }
4771
4772         if (is_sdvo && is_tv)
4773                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4774
4775         if (IS_GEN2(dev))
4776                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4777                                 has_reduced_clock ? &reduced_clock : NULL,
4778                                 num_connectors);
4779         else if (IS_VALLEYVIEW(dev))
4780                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4781                                 has_reduced_clock ? &reduced_clock : NULL,
4782                                 num_connectors);
4783         else
4784                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4785                                 has_reduced_clock ? &reduced_clock : NULL,
4786                                 num_connectors);
4787
4788         /* setup pipeconf */
4789         pipeconf = I915_READ(PIPECONF(pipe));
4790
4791         /* Set up the display plane register */
4792         dspcntr = DISPPLANE_GAMMA_ENABLE;
4793
4794         if (pipe == 0)
4795                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4796         else
4797                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4798
4799         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4800                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4801                  * core speed.
4802                  *
4803                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4804                  * pipe == 0 check?
4805                  */
4806                 if (mode->clock >
4807                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4808                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4809                 else
4810                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4811         }
4812
4813         /* default to 8bpc */
4814         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4815         if (is_dp) {
4816                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4817                         pipeconf |= PIPECONF_BPP_6 |
4818                                     PIPECONF_DITHER_EN |
4819                                     PIPECONF_DITHER_TYPE_SP;
4820                 }
4821         }
4822
4823         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4824                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4825                         pipeconf |= PIPECONF_BPP_6 |
4826                                         PIPECONF_ENABLE |
4827                                         I965_PIPECONF_ACTIVE;
4828                 }
4829         }
4830
4831         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4832         drm_mode_debug_printmodeline(mode);
4833
4834         if (HAS_PIPE_CXSR(dev)) {
4835                 if (intel_crtc->lowfreq_avail) {
4836                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4837                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4838                 } else {
4839                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4840                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4841                 }
4842         }
4843
4844         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4845         if (!IS_GEN2(dev) &&
4846             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4847                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4848         else
4849                 pipeconf |= PIPECONF_PROGRESSIVE;
4850
4851         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4852
4853         /* pipesrc and dspsize control the size that is scaled from,
4854          * which should always be the user's requested size.
4855          */
4856         I915_WRITE(DSPSIZE(plane),
4857                    ((mode->vdisplay - 1) << 16) |
4858                    (mode->hdisplay - 1));
4859         I915_WRITE(DSPPOS(plane), 0);
4860
4861         I915_WRITE(PIPECONF(pipe), pipeconf);
4862         POSTING_READ(PIPECONF(pipe));
4863         intel_enable_pipe(dev_priv, pipe, false);
4864
4865         intel_wait_for_vblank(dev, pipe);
4866
4867         I915_WRITE(DSPCNTR(plane), dspcntr);
4868         POSTING_READ(DSPCNTR(plane));
4869
4870         ret = intel_pipe_set_base(crtc, x, y, fb);
4871
4872         intel_update_watermarks(dev);
4873
4874         return ret;
4875 }
4876
4877 /*
4878  * Initialize reference clocks when the driver loads
4879  */
4880 void ironlake_init_pch_refclk(struct drm_device *dev)
4881 {
4882         struct drm_i915_private *dev_priv = dev->dev_private;
4883         struct drm_mode_config *mode_config = &dev->mode_config;
4884         struct intel_encoder *encoder;
4885         u32 temp;
4886         bool has_lvds = false;
4887         bool has_cpu_edp = false;
4888         bool has_pch_edp = false;
4889         bool has_panel = false;
4890         bool has_ck505 = false;
4891         bool can_ssc = false;
4892
4893         /* We need to take the global config into account */
4894         list_for_each_entry(encoder, &mode_config->encoder_list,
4895                             base.head) {
4896                 switch (encoder->type) {
4897                 case INTEL_OUTPUT_LVDS:
4898                         has_panel = true;
4899                         has_lvds = true;
4900                         break;
4901                 case INTEL_OUTPUT_EDP:
4902                         has_panel = true;
4903                         if (intel_encoder_is_pch_edp(&encoder->base))
4904                                 has_pch_edp = true;
4905                         else
4906                                 has_cpu_edp = true;
4907                         break;
4908                 }
4909         }
4910
4911         if (HAS_PCH_IBX(dev)) {
4912                 has_ck505 = dev_priv->display_clock_mode;
4913                 can_ssc = has_ck505;
4914         } else {
4915                 has_ck505 = false;
4916                 can_ssc = true;
4917         }
4918
4919         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4920                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4921                       has_ck505);
4922
4923         /* Ironlake: try to setup display ref clock before DPLL
4924          * enabling. This is only under driver's control after
4925          * PCH B stepping, previous chipset stepping should be
4926          * ignoring this setting.
4927          */
4928         temp = I915_READ(PCH_DREF_CONTROL);
4929         /* Always enable nonspread source */
4930         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4931
4932         if (has_ck505)
4933                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4934         else
4935                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4936
4937         if (has_panel) {
4938                 temp &= ~DREF_SSC_SOURCE_MASK;
4939                 temp |= DREF_SSC_SOURCE_ENABLE;
4940
4941                 /* SSC must be turned on before enabling the CPU output  */
4942                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4943                         DRM_DEBUG_KMS("Using SSC on panel\n");
4944                         temp |= DREF_SSC1_ENABLE;
4945                 } else
4946                         temp &= ~DREF_SSC1_ENABLE;
4947
4948                 /* Get SSC going before enabling the outputs */
4949                 I915_WRITE(PCH_DREF_CONTROL, temp);
4950                 POSTING_READ(PCH_DREF_CONTROL);
4951                 udelay(200);
4952
4953                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4954
4955                 /* Enable CPU source on CPU attached eDP */
4956                 if (has_cpu_edp) {
4957                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4958                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4959                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4960                         }
4961                         else
4962                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4963                 } else
4964                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4965
4966                 I915_WRITE(PCH_DREF_CONTROL, temp);
4967                 POSTING_READ(PCH_DREF_CONTROL);
4968                 udelay(200);
4969         } else {
4970                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4971
4972                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4973
4974                 /* Turn off CPU output */
4975                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4976
4977                 I915_WRITE(PCH_DREF_CONTROL, temp);
4978                 POSTING_READ(PCH_DREF_CONTROL);
4979                 udelay(200);
4980
4981                 /* Turn off the SSC source */
4982                 temp &= ~DREF_SSC_SOURCE_MASK;
4983                 temp |= DREF_SSC_SOURCE_DISABLE;
4984
4985                 /* Turn off SSC1 */
4986                 temp &= ~ DREF_SSC1_ENABLE;
4987
4988                 I915_WRITE(PCH_DREF_CONTROL, temp);
4989                 POSTING_READ(PCH_DREF_CONTROL);
4990                 udelay(200);
4991         }
4992 }
4993
4994 static int ironlake_get_refclk(struct drm_crtc *crtc)
4995 {
4996         struct drm_device *dev = crtc->dev;
4997         struct drm_i915_private *dev_priv = dev->dev_private;
4998         struct intel_encoder *encoder;
4999         struct intel_encoder *edp_encoder = NULL;
5000         int num_connectors = 0;
5001         bool is_lvds = false;
5002
5003         for_each_encoder_on_crtc(dev, crtc, encoder) {
5004                 switch (encoder->type) {
5005                 case INTEL_OUTPUT_LVDS:
5006                         is_lvds = true;
5007                         break;
5008                 case INTEL_OUTPUT_EDP:
5009                         edp_encoder = encoder;
5010                         break;
5011                 }
5012                 num_connectors++;
5013         }
5014
5015         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5016                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5017                               dev_priv->lvds_ssc_freq);
5018                 return dev_priv->lvds_ssc_freq * 1000;
5019         }
5020
5021         return 120000;
5022 }
5023
5024 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5025                                   struct drm_display_mode *adjusted_mode,
5026                                   bool dither)
5027 {
5028         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5030         int pipe = intel_crtc->pipe;
5031         uint32_t val;
5032
5033         val = I915_READ(PIPECONF(pipe));
5034
5035         val &= ~PIPE_BPC_MASK;
5036         switch (intel_crtc->bpp) {
5037         case 18:
5038                 val |= PIPE_6BPC;
5039                 break;
5040         case 24:
5041                 val |= PIPE_8BPC;
5042                 break;
5043         case 30:
5044                 val |= PIPE_10BPC;
5045                 break;
5046         case 36:
5047                 val |= PIPE_12BPC;
5048                 break;
5049         default:
5050                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5051                 BUG();
5052         }
5053
5054         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5055         if (dither)
5056                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5057
5058         val &= ~PIPECONF_INTERLACE_MASK;
5059         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5060                 val |= PIPECONF_INTERLACED_ILK;
5061         else
5062                 val |= PIPECONF_PROGRESSIVE;
5063
5064         I915_WRITE(PIPECONF(pipe), val);
5065         POSTING_READ(PIPECONF(pipe));
5066 }
5067
5068 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5069                                  struct drm_display_mode *adjusted_mode,
5070                                  bool dither)
5071 {
5072         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5074         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5075         uint32_t val;
5076
5077         val = I915_READ(PIPECONF(cpu_transcoder));
5078
5079         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5080         if (dither)
5081                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5082
5083         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5084         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5085                 val |= PIPECONF_INTERLACED_ILK;
5086         else
5087                 val |= PIPECONF_PROGRESSIVE;
5088
5089         I915_WRITE(PIPECONF(cpu_transcoder), val);
5090         POSTING_READ(PIPECONF(cpu_transcoder));
5091 }
5092
5093 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5094                                     struct drm_display_mode *adjusted_mode,
5095                                     intel_clock_t *clock,
5096                                     bool *has_reduced_clock,
5097                                     intel_clock_t *reduced_clock)
5098 {
5099         struct drm_device *dev = crtc->dev;
5100         struct drm_i915_private *dev_priv = dev->dev_private;
5101         struct intel_encoder *intel_encoder;
5102         int refclk;
5103         const intel_limit_t *limit;
5104         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5105
5106         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5107                 switch (intel_encoder->type) {
5108                 case INTEL_OUTPUT_LVDS:
5109                         is_lvds = true;
5110                         break;
5111                 case INTEL_OUTPUT_SDVO:
5112                 case INTEL_OUTPUT_HDMI:
5113                         is_sdvo = true;
5114                         if (intel_encoder->needs_tv_clock)
5115                                 is_tv = true;
5116                         break;
5117                 case INTEL_OUTPUT_TVOUT:
5118                         is_tv = true;
5119                         break;
5120                 }
5121         }
5122
5123         refclk = ironlake_get_refclk(crtc);
5124
5125         /*
5126          * Returns a set of divisors for the desired target clock with the given
5127          * refclk, or FALSE.  The returned values represent the clock equation:
5128          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5129          */
5130         limit = intel_limit(crtc, refclk);
5131         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5132                               clock);
5133         if (!ret)
5134                 return false;
5135
5136         if (is_lvds && dev_priv->lvds_downclock_avail) {
5137                 /*
5138                  * Ensure we match the reduced clock's P to the target clock.
5139                  * If the clocks don't match, we can't switch the display clock
5140                  * by using the FP0/FP1. In such case we will disable the LVDS
5141                  * downclock feature.
5142                 */
5143                 *has_reduced_clock = limit->find_pll(limit, crtc,
5144                                                      dev_priv->lvds_downclock,
5145                                                      refclk,
5146                                                      clock,
5147                                                      reduced_clock);
5148         }
5149
5150         if (is_sdvo && is_tv)
5151                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5152
5153         return true;
5154 }
5155
5156 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5157 {
5158         struct drm_i915_private *dev_priv = dev->dev_private;
5159         uint32_t temp;
5160
5161         temp = I915_READ(SOUTH_CHICKEN1);
5162         if (temp & FDI_BC_BIFURCATION_SELECT)
5163                 return;
5164
5165         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5166         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5167
5168         temp |= FDI_BC_BIFURCATION_SELECT;
5169         DRM_DEBUG_KMS("enabling fdi C rx\n");
5170         I915_WRITE(SOUTH_CHICKEN1, temp);
5171         POSTING_READ(SOUTH_CHICKEN1);
5172 }
5173
5174 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5175 {
5176         struct drm_device *dev = intel_crtc->base.dev;
5177         struct drm_i915_private *dev_priv = dev->dev_private;
5178         struct intel_crtc *pipe_B_crtc =
5179                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5180
5181         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5182                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5183         if (intel_crtc->fdi_lanes > 4) {
5184                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5185                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5186                 /* Clamp lanes to avoid programming the hw with bogus values. */
5187                 intel_crtc->fdi_lanes = 4;
5188
5189                 return false;
5190         }
5191
5192         if (dev_priv->num_pipe == 2)
5193                 return true;
5194
5195         switch (intel_crtc->pipe) {
5196         case PIPE_A:
5197                 return true;
5198         case PIPE_B:
5199                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5200                     intel_crtc->fdi_lanes > 2) {
5201                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5202                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5203                         /* Clamp lanes to avoid programming the hw with bogus values. */
5204                         intel_crtc->fdi_lanes = 2;
5205
5206                         return false;
5207                 }
5208
5209                 if (intel_crtc->fdi_lanes > 2)
5210                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5211                 else
5212                         cpt_enable_fdi_bc_bifurcation(dev);
5213
5214                 return true;
5215         case PIPE_C:
5216                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5217                         if (intel_crtc->fdi_lanes > 2) {
5218                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5219                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5220                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5221                                 intel_crtc->fdi_lanes = 2;
5222
5223                                 return false;
5224                         }
5225                 } else {
5226                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5227                         return false;
5228                 }
5229
5230                 cpt_enable_fdi_bc_bifurcation(dev);
5231
5232                 return true;
5233         default:
5234                 BUG();
5235         }
5236 }
5237
5238 static void ironlake_set_m_n(struct drm_crtc *crtc,
5239                              struct drm_display_mode *mode,
5240                              struct drm_display_mode *adjusted_mode)
5241 {
5242         struct drm_device *dev = crtc->dev;
5243         struct drm_i915_private *dev_priv = dev->dev_private;
5244         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5245         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5246         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5247         struct fdi_m_n m_n = {0};
5248         int target_clock, pixel_multiplier, lane, link_bw;
5249         bool is_dp = false, is_cpu_edp = false;
5250
5251         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5252                 switch (intel_encoder->type) {
5253                 case INTEL_OUTPUT_DISPLAYPORT:
5254                         is_dp = true;
5255                         break;
5256                 case INTEL_OUTPUT_EDP:
5257                         is_dp = true;
5258                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5259                                 is_cpu_edp = true;
5260                         edp_encoder = intel_encoder;
5261                         break;
5262                 }
5263         }
5264
5265         /* FDI link */
5266         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5267         lane = 0;
5268         /* CPU eDP doesn't require FDI link, so just set DP M/N
5269            according to current link config */
5270         if (is_cpu_edp) {
5271                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5272         } else {
5273                 /* FDI is a binary signal running at ~2.7GHz, encoding
5274                  * each output octet as 10 bits. The actual frequency
5275                  * is stored as a divider into a 100MHz clock, and the
5276                  * mode pixel clock is stored in units of 1KHz.
5277                  * Hence the bw of each lane in terms of the mode signal
5278                  * is:
5279                  */
5280                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5281         }
5282
5283         /* [e]DP over FDI requires target mode clock instead of link clock. */
5284         if (edp_encoder)
5285                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5286         else if (is_dp)
5287                 target_clock = mode->clock;
5288         else
5289                 target_clock = adjusted_mode->clock;
5290
5291         if (!lane) {
5292                 /*
5293                  * Account for spread spectrum to avoid
5294                  * oversubscribing the link. Max center spread
5295                  * is 2.5%; use 5% for safety's sake.
5296                  */
5297                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5298                 lane = bps / (link_bw * 8) + 1;
5299         }
5300
5301         intel_crtc->fdi_lanes = lane;
5302
5303         if (pixel_multiplier > 1)
5304                 link_bw *= pixel_multiplier;
5305         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5306                              &m_n);
5307
5308         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5309         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5310         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5311         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5312 }
5313
5314 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5315                                       struct drm_display_mode *adjusted_mode,
5316                                       intel_clock_t *clock, u32 fp)
5317 {
5318         struct drm_crtc *crtc = &intel_crtc->base;
5319         struct drm_device *dev = crtc->dev;
5320         struct drm_i915_private *dev_priv = dev->dev_private;
5321         struct intel_encoder *intel_encoder;
5322         uint32_t dpll;
5323         int factor, pixel_multiplier, num_connectors = 0;
5324         bool is_lvds = false, is_sdvo = false, is_tv = false;
5325         bool is_dp = false, is_cpu_edp = false;
5326
5327         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5328                 switch (intel_encoder->type) {
5329                 case INTEL_OUTPUT_LVDS:
5330                         is_lvds = true;
5331                         break;
5332                 case INTEL_OUTPUT_SDVO:
5333                 case INTEL_OUTPUT_HDMI:
5334                         is_sdvo = true;
5335                         if (intel_encoder->needs_tv_clock)
5336                                 is_tv = true;
5337                         break;
5338                 case INTEL_OUTPUT_TVOUT:
5339                         is_tv = true;
5340                         break;
5341                 case INTEL_OUTPUT_DISPLAYPORT:
5342                         is_dp = true;
5343                         break;
5344                 case INTEL_OUTPUT_EDP:
5345                         is_dp = true;
5346                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5347                                 is_cpu_edp = true;
5348                         break;
5349                 }
5350
5351                 num_connectors++;
5352         }
5353
5354         /* Enable autotuning of the PLL clock (if permissible) */
5355         factor = 21;
5356         if (is_lvds) {
5357                 if ((intel_panel_use_ssc(dev_priv) &&
5358                      dev_priv->lvds_ssc_freq == 100) ||
5359                     is_dual_link_lvds(dev_priv, PCH_LVDS))
5360                         factor = 25;
5361         } else if (is_sdvo && is_tv)
5362                 factor = 20;
5363
5364         if (clock->m < factor * clock->n)
5365                 fp |= FP_CB_TUNE;
5366
5367         dpll = 0;
5368
5369         if (is_lvds)
5370                 dpll |= DPLLB_MODE_LVDS;
5371         else
5372                 dpll |= DPLLB_MODE_DAC_SERIAL;
5373         if (is_sdvo) {
5374                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5375                 if (pixel_multiplier > 1) {
5376                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5377                 }
5378                 dpll |= DPLL_DVO_HIGH_SPEED;
5379         }
5380         if (is_dp && !is_cpu_edp)
5381                 dpll |= DPLL_DVO_HIGH_SPEED;
5382
5383         /* compute bitmask from p1 value */
5384         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5385         /* also FPA1 */
5386         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5387
5388         switch (clock->p2) {
5389         case 5:
5390                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5391                 break;
5392         case 7:
5393                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5394                 break;
5395         case 10:
5396                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5397                 break;
5398         case 14:
5399                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5400                 break;
5401         }
5402
5403         if (is_sdvo && is_tv)
5404                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5405         else if (is_tv)
5406                 /* XXX: just matching BIOS for now */
5407                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5408                 dpll |= 3;
5409         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5410                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5411         else
5412                 dpll |= PLL_REF_INPUT_DREFCLK;
5413
5414         return dpll;
5415 }
5416
5417 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5418                                   struct drm_display_mode *mode,
5419                                   struct drm_display_mode *adjusted_mode,
5420                                   int x, int y,
5421                                   struct drm_framebuffer *fb)
5422 {
5423         struct drm_device *dev = crtc->dev;
5424         struct drm_i915_private *dev_priv = dev->dev_private;
5425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5426         int pipe = intel_crtc->pipe;
5427         int plane = intel_crtc->plane;
5428         int num_connectors = 0;
5429         intel_clock_t clock, reduced_clock;
5430         u32 dpll, fp = 0, fp2 = 0;
5431         bool ok, has_reduced_clock = false;
5432         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5433         struct intel_encoder *encoder;
5434         u32 temp;
5435         int ret;
5436         bool dither, fdi_config_ok;
5437
5438         for_each_encoder_on_crtc(dev, crtc, encoder) {
5439                 switch (encoder->type) {
5440                 case INTEL_OUTPUT_LVDS:
5441                         is_lvds = true;
5442                         break;
5443                 case INTEL_OUTPUT_DISPLAYPORT:
5444                         is_dp = true;
5445                         break;
5446                 case INTEL_OUTPUT_EDP:
5447                         is_dp = true;
5448                         if (!intel_encoder_is_pch_edp(&encoder->base))
5449                                 is_cpu_edp = true;
5450                         break;
5451                 }
5452
5453                 num_connectors++;
5454         }
5455
5456         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5457              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5458
5459         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5460                                      &has_reduced_clock, &reduced_clock);
5461         if (!ok) {
5462                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5463                 return -EINVAL;
5464         }
5465
5466         /* Ensure that the cursor is valid for the new mode before changing... */
5467         intel_crtc_update_cursor(crtc, true);
5468
5469         /* determine panel color depth */
5470         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5471                                               adjusted_mode);
5472         if (is_lvds && dev_priv->lvds_dither)
5473                 dither = true;
5474
5475         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5476         if (has_reduced_clock)
5477                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5478                         reduced_clock.m2;
5479
5480         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5481
5482         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5483         drm_mode_debug_printmodeline(mode);
5484
5485         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5486         if (!is_cpu_edp) {
5487                 struct intel_pch_pll *pll;
5488
5489                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5490                 if (pll == NULL) {
5491                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5492                                          pipe);
5493                         return -EINVAL;
5494                 }
5495         } else
5496                 intel_put_pch_pll(intel_crtc);
5497
5498         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5499          * This is an exception to the general rule that mode_set doesn't turn
5500          * things on.
5501          */
5502         if (is_lvds) {
5503                 temp = I915_READ(PCH_LVDS);
5504                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5505                 if (HAS_PCH_CPT(dev)) {
5506                         temp &= ~PORT_TRANS_SEL_MASK;
5507                         temp |= PORT_TRANS_SEL_CPT(pipe);
5508                 } else {
5509                         if (pipe == 1)
5510                                 temp |= LVDS_PIPEB_SELECT;
5511                         else
5512                                 temp &= ~LVDS_PIPEB_SELECT;
5513                 }
5514
5515                 /* set the corresponsding LVDS_BORDER bit */
5516                 temp |= dev_priv->lvds_border_bits;
5517                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5518                  * set the DPLLs for dual-channel mode or not.
5519                  */
5520                 if (clock.p2 == 7)
5521                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5522                 else
5523                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5524
5525                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5526                  * appropriately here, but we need to look more thoroughly into how
5527                  * panels behave in the two modes.
5528                  */
5529                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5530                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5531                         temp |= LVDS_HSYNC_POLARITY;
5532                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5533                         temp |= LVDS_VSYNC_POLARITY;
5534                 I915_WRITE(PCH_LVDS, temp);
5535         }
5536
5537         if (is_dp && !is_cpu_edp) {
5538                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5539         } else {
5540                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5541                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5542                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5543                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5544                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5545         }
5546
5547         for_each_encoder_on_crtc(dev, crtc, encoder)
5548                 if (encoder->pre_pll_enable)
5549                         encoder->pre_pll_enable(encoder);
5550
5551         if (intel_crtc->pch_pll) {
5552                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5553
5554                 /* Wait for the clocks to stabilize. */
5555                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5556                 udelay(150);
5557
5558                 /* The pixel multiplier can only be updated once the
5559                  * DPLL is enabled and the clocks are stable.
5560                  *
5561                  * So write it again.
5562                  */
5563                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5564         }
5565
5566         intel_crtc->lowfreq_avail = false;
5567         if (intel_crtc->pch_pll) {
5568                 if (is_lvds && has_reduced_clock && i915_powersave) {
5569                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5570                         intel_crtc->lowfreq_avail = true;
5571                 } else {
5572                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5573                 }
5574         }
5575
5576         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5577
5578         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5579          * ironlake_check_fdi_lanes. */
5580         ironlake_set_m_n(crtc, mode, adjusted_mode);
5581
5582         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5583
5584         if (is_cpu_edp)
5585                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5586
5587         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5588
5589         intel_wait_for_vblank(dev, pipe);
5590
5591         /* Set up the display plane register */
5592         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5593         POSTING_READ(DSPCNTR(plane));
5594
5595         ret = intel_pipe_set_base(crtc, x, y, fb);
5596
5597         intel_update_watermarks(dev);
5598
5599         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5600
5601         return fdi_config_ok ? ret : -EINVAL;
5602 }
5603
5604 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5605                                  struct drm_display_mode *mode,
5606                                  struct drm_display_mode *adjusted_mode,
5607                                  int x, int y,
5608                                  struct drm_framebuffer *fb)
5609 {
5610         struct drm_device *dev = crtc->dev;
5611         struct drm_i915_private *dev_priv = dev->dev_private;
5612         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5613         int pipe = intel_crtc->pipe;
5614         int plane = intel_crtc->plane;
5615         int num_connectors = 0;
5616         intel_clock_t clock, reduced_clock;
5617         u32 dpll = 0, fp = 0, fp2 = 0;
5618         bool ok, has_reduced_clock = false;
5619         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5620         struct intel_encoder *encoder;
5621         u32 temp;
5622         int ret;
5623         bool dither;
5624
5625         for_each_encoder_on_crtc(dev, crtc, encoder) {
5626                 switch (encoder->type) {
5627                 case INTEL_OUTPUT_LVDS:
5628                         is_lvds = true;
5629                         break;
5630                 case INTEL_OUTPUT_DISPLAYPORT:
5631                         is_dp = true;
5632                         break;
5633                 case INTEL_OUTPUT_EDP:
5634                         is_dp = true;
5635                         if (!intel_encoder_is_pch_edp(&encoder->base))
5636                                 is_cpu_edp = true;
5637                         break;
5638                 }
5639
5640                 num_connectors++;
5641         }
5642
5643         if (is_cpu_edp)
5644                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5645         else
5646                 intel_crtc->cpu_transcoder = pipe;
5647
5648         /* We are not sure yet this won't happen. */
5649         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5650              INTEL_PCH_TYPE(dev));
5651
5652         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5653              num_connectors, pipe_name(pipe));
5654
5655         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5656                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5657
5658         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5659
5660         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5661                 return -EINVAL;
5662
5663         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5664                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5665                                              &has_reduced_clock,
5666                                              &reduced_clock);
5667                 if (!ok) {
5668                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5669                         return -EINVAL;
5670                 }
5671         }
5672
5673         /* Ensure that the cursor is valid for the new mode before changing... */
5674         intel_crtc_update_cursor(crtc, true);
5675
5676         /* determine panel color depth */
5677         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5678                                               adjusted_mode);
5679         if (is_lvds && dev_priv->lvds_dither)
5680                 dither = true;
5681
5682         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5683         drm_mode_debug_printmodeline(mode);
5684
5685         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5686                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5687                 if (has_reduced_clock)
5688                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5689                               reduced_clock.m2;
5690
5691                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5692                                              fp);
5693
5694                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5695                  * own on pre-Haswell/LPT generation */
5696                 if (!is_cpu_edp) {
5697                         struct intel_pch_pll *pll;
5698
5699                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5700                         if (pll == NULL) {
5701                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5702                                                  pipe);
5703                                 return -EINVAL;
5704                         }
5705                 } else
5706                         intel_put_pch_pll(intel_crtc);
5707
5708                 /* The LVDS pin pair needs to be on before the DPLLs are
5709                  * enabled.  This is an exception to the general rule that
5710                  * mode_set doesn't turn things on.
5711                  */
5712                 if (is_lvds) {
5713                         temp = I915_READ(PCH_LVDS);
5714                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5715                         if (HAS_PCH_CPT(dev)) {
5716                                 temp &= ~PORT_TRANS_SEL_MASK;
5717                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5718                         } else {
5719                                 if (pipe == 1)
5720                                         temp |= LVDS_PIPEB_SELECT;
5721                                 else
5722                                         temp &= ~LVDS_PIPEB_SELECT;
5723                         }
5724
5725                         /* set the corresponsding LVDS_BORDER bit */
5726                         temp |= dev_priv->lvds_border_bits;
5727                         /* Set the B0-B3 data pairs corresponding to whether
5728                          * we're going to set the DPLLs for dual-channel mode or
5729                          * not.
5730                          */
5731                         if (clock.p2 == 7)
5732                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5733                         else
5734                                 temp &= ~(LVDS_B0B3_POWER_UP |
5735                                           LVDS_CLKB_POWER_UP);
5736
5737                         /* It would be nice to set 24 vs 18-bit mode
5738                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5739                          * look more thoroughly into how panels behave in the
5740                          * two modes.
5741                          */
5742                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5743                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5744                                 temp |= LVDS_HSYNC_POLARITY;
5745                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5746                                 temp |= LVDS_VSYNC_POLARITY;
5747                         I915_WRITE(PCH_LVDS, temp);
5748                 }
5749         }
5750
5751         if (is_dp && !is_cpu_edp) {
5752                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5753         } else {
5754                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5755                         /* For non-DP output, clear any trans DP clock recovery
5756                          * setting.*/
5757                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5758                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5759                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5760                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5761                 }
5762         }
5763
5764         intel_crtc->lowfreq_avail = false;
5765         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5766                 if (intel_crtc->pch_pll) {
5767                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5768
5769                         /* Wait for the clocks to stabilize. */
5770                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5771                         udelay(150);
5772
5773                         /* The pixel multiplier can only be updated once the
5774                          * DPLL is enabled and the clocks are stable.
5775                          *
5776                          * So write it again.
5777                          */
5778                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5779                 }
5780
5781                 if (intel_crtc->pch_pll) {
5782                         if (is_lvds && has_reduced_clock && i915_powersave) {
5783                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5784                                 intel_crtc->lowfreq_avail = true;
5785                         } else {
5786                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5787                         }
5788                 }
5789         }
5790
5791         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5792
5793         if (!is_dp || is_cpu_edp)
5794                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5795
5796         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5797                 if (is_cpu_edp)
5798                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5799
5800         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5801
5802         /* Set up the display plane register */
5803         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5804         POSTING_READ(DSPCNTR(plane));
5805
5806         ret = intel_pipe_set_base(crtc, x, y, fb);
5807
5808         intel_update_watermarks(dev);
5809
5810         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5811
5812         return ret;
5813 }
5814
5815 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5816                                struct drm_display_mode *mode,
5817                                struct drm_display_mode *adjusted_mode,
5818                                int x, int y,
5819                                struct drm_framebuffer *fb)
5820 {
5821         struct drm_device *dev = crtc->dev;
5822         struct drm_i915_private *dev_priv = dev->dev_private;
5823         struct drm_encoder_helper_funcs *encoder_funcs;
5824         struct intel_encoder *encoder;
5825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5826         int pipe = intel_crtc->pipe;
5827         int ret;
5828
5829         drm_vblank_pre_modeset(dev, pipe);
5830
5831         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5832                                               x, y, fb);
5833         drm_vblank_post_modeset(dev, pipe);
5834
5835         if (ret != 0)
5836                 return ret;
5837
5838         for_each_encoder_on_crtc(dev, crtc, encoder) {
5839                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5840                         encoder->base.base.id,
5841                         drm_get_encoder_name(&encoder->base),
5842                         mode->base.id, mode->name);
5843                 encoder_funcs = encoder->base.helper_private;
5844                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5845         }
5846
5847         return 0;
5848 }
5849
5850 static bool intel_eld_uptodate(struct drm_connector *connector,
5851                                int reg_eldv, uint32_t bits_eldv,
5852                                int reg_elda, uint32_t bits_elda,
5853                                int reg_edid)
5854 {
5855         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5856         uint8_t *eld = connector->eld;
5857         uint32_t i;
5858
5859         i = I915_READ(reg_eldv);
5860         i &= bits_eldv;
5861
5862         if (!eld[0])
5863                 return !i;
5864
5865         if (!i)
5866                 return false;
5867
5868         i = I915_READ(reg_elda);
5869         i &= ~bits_elda;
5870         I915_WRITE(reg_elda, i);
5871
5872         for (i = 0; i < eld[2]; i++)
5873                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5874                         return false;
5875
5876         return true;
5877 }
5878
5879 static void g4x_write_eld(struct drm_connector *connector,
5880                           struct drm_crtc *crtc)
5881 {
5882         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5883         uint8_t *eld = connector->eld;
5884         uint32_t eldv;
5885         uint32_t len;
5886         uint32_t i;
5887
5888         i = I915_READ(G4X_AUD_VID_DID);
5889
5890         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5891                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5892         else
5893                 eldv = G4X_ELDV_DEVCTG;
5894
5895         if (intel_eld_uptodate(connector,
5896                                G4X_AUD_CNTL_ST, eldv,
5897                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5898                                G4X_HDMIW_HDMIEDID))
5899                 return;
5900
5901         i = I915_READ(G4X_AUD_CNTL_ST);
5902         i &= ~(eldv | G4X_ELD_ADDR);
5903         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5904         I915_WRITE(G4X_AUD_CNTL_ST, i);
5905
5906         if (!eld[0])
5907                 return;
5908
5909         len = min_t(uint8_t, eld[2], len);
5910         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5911         for (i = 0; i < len; i++)
5912                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5913
5914         i = I915_READ(G4X_AUD_CNTL_ST);
5915         i |= eldv;
5916         I915_WRITE(G4X_AUD_CNTL_ST, i);
5917 }
5918
5919 static void haswell_write_eld(struct drm_connector *connector,
5920                                      struct drm_crtc *crtc)
5921 {
5922         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5923         uint8_t *eld = connector->eld;
5924         struct drm_device *dev = crtc->dev;
5925         uint32_t eldv;
5926         uint32_t i;
5927         int len;
5928         int pipe = to_intel_crtc(crtc)->pipe;
5929         int tmp;
5930
5931         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5932         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5933         int aud_config = HSW_AUD_CFG(pipe);
5934         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5935
5936
5937         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5938
5939         /* Audio output enable */
5940         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5941         tmp = I915_READ(aud_cntrl_st2);
5942         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5943         I915_WRITE(aud_cntrl_st2, tmp);
5944
5945         /* Wait for 1 vertical blank */
5946         intel_wait_for_vblank(dev, pipe);
5947
5948         /* Set ELD valid state */
5949         tmp = I915_READ(aud_cntrl_st2);
5950         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5951         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5952         I915_WRITE(aud_cntrl_st2, tmp);
5953         tmp = I915_READ(aud_cntrl_st2);
5954         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5955
5956         /* Enable HDMI mode */
5957         tmp = I915_READ(aud_config);
5958         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5959         /* clear N_programing_enable and N_value_index */
5960         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5961         I915_WRITE(aud_config, tmp);
5962
5963         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5964
5965         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5966
5967         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5968                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5969                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5970                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5971         } else
5972                 I915_WRITE(aud_config, 0);
5973
5974         if (intel_eld_uptodate(connector,
5975                                aud_cntrl_st2, eldv,
5976                                aud_cntl_st, IBX_ELD_ADDRESS,
5977                                hdmiw_hdmiedid))
5978                 return;
5979
5980         i = I915_READ(aud_cntrl_st2);
5981         i &= ~eldv;
5982         I915_WRITE(aud_cntrl_st2, i);
5983
5984         if (!eld[0])
5985                 return;
5986
5987         i = I915_READ(aud_cntl_st);
5988         i &= ~IBX_ELD_ADDRESS;
5989         I915_WRITE(aud_cntl_st, i);
5990         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5991         DRM_DEBUG_DRIVER("port num:%d\n", i);
5992
5993         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5994         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5995         for (i = 0; i < len; i++)
5996                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5997
5998         i = I915_READ(aud_cntrl_st2);
5999         i |= eldv;
6000         I915_WRITE(aud_cntrl_st2, i);
6001
6002 }
6003
6004 static void ironlake_write_eld(struct drm_connector *connector,
6005                                      struct drm_crtc *crtc)
6006 {
6007         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6008         uint8_t *eld = connector->eld;
6009         uint32_t eldv;
6010         uint32_t i;
6011         int len;
6012         int hdmiw_hdmiedid;
6013         int aud_config;
6014         int aud_cntl_st;
6015         int aud_cntrl_st2;
6016         int pipe = to_intel_crtc(crtc)->pipe;
6017
6018         if (HAS_PCH_IBX(connector->dev)) {
6019                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6020                 aud_config = IBX_AUD_CFG(pipe);
6021                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6022                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6023         } else {
6024                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6025                 aud_config = CPT_AUD_CFG(pipe);
6026                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6027                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6028         }
6029
6030         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6031
6032         i = I915_READ(aud_cntl_st);
6033         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6034         if (!i) {
6035                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6036                 /* operate blindly on all ports */
6037                 eldv = IBX_ELD_VALIDB;
6038                 eldv |= IBX_ELD_VALIDB << 4;
6039                 eldv |= IBX_ELD_VALIDB << 8;
6040         } else {
6041                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6042                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6043         }
6044
6045         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6046                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6047                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6048                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6049         } else
6050                 I915_WRITE(aud_config, 0);
6051
6052         if (intel_eld_uptodate(connector,
6053                                aud_cntrl_st2, eldv,
6054                                aud_cntl_st, IBX_ELD_ADDRESS,
6055                                hdmiw_hdmiedid))
6056                 return;
6057
6058         i = I915_READ(aud_cntrl_st2);
6059         i &= ~eldv;
6060         I915_WRITE(aud_cntrl_st2, i);
6061
6062         if (!eld[0])
6063                 return;
6064
6065         i = I915_READ(aud_cntl_st);
6066         i &= ~IBX_ELD_ADDRESS;
6067         I915_WRITE(aud_cntl_st, i);
6068
6069         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6070         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6071         for (i = 0; i < len; i++)
6072                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6073
6074         i = I915_READ(aud_cntrl_st2);
6075         i |= eldv;
6076         I915_WRITE(aud_cntrl_st2, i);
6077 }
6078
6079 void intel_write_eld(struct drm_encoder *encoder,
6080                      struct drm_display_mode *mode)
6081 {
6082         struct drm_crtc *crtc = encoder->crtc;
6083         struct drm_connector *connector;
6084         struct drm_device *dev = encoder->dev;
6085         struct drm_i915_private *dev_priv = dev->dev_private;
6086
6087         connector = drm_select_eld(encoder, mode);
6088         if (!connector)
6089                 return;
6090
6091         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6092                          connector->base.id,
6093                          drm_get_connector_name(connector),
6094                          connector->encoder->base.id,
6095                          drm_get_encoder_name(connector->encoder));
6096
6097         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6098
6099         if (dev_priv->display.write_eld)
6100                 dev_priv->display.write_eld(connector, crtc);
6101 }
6102
6103 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6104 void intel_crtc_load_lut(struct drm_crtc *crtc)
6105 {
6106         struct drm_device *dev = crtc->dev;
6107         struct drm_i915_private *dev_priv = dev->dev_private;
6108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6109         int palreg = PALETTE(intel_crtc->pipe);
6110         int i;
6111
6112         /* The clocks have to be on to load the palette. */
6113         if (!crtc->enabled || !intel_crtc->active)
6114                 return;
6115
6116         /* use legacy palette for Ironlake */
6117         if (HAS_PCH_SPLIT(dev))
6118                 palreg = LGC_PALETTE(intel_crtc->pipe);
6119
6120         for (i = 0; i < 256; i++) {
6121                 I915_WRITE(palreg + 4 * i,
6122                            (intel_crtc->lut_r[i] << 16) |
6123                            (intel_crtc->lut_g[i] << 8) |
6124                            intel_crtc->lut_b[i]);
6125         }
6126 }
6127
6128 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6129 {
6130         struct drm_device *dev = crtc->dev;
6131         struct drm_i915_private *dev_priv = dev->dev_private;
6132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6133         bool visible = base != 0;
6134         u32 cntl;
6135
6136         if (intel_crtc->cursor_visible == visible)
6137                 return;
6138
6139         cntl = I915_READ(_CURACNTR);
6140         if (visible) {
6141                 /* On these chipsets we can only modify the base whilst
6142                  * the cursor is disabled.
6143                  */
6144                 I915_WRITE(_CURABASE, base);
6145
6146                 cntl &= ~(CURSOR_FORMAT_MASK);
6147                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6148                 cntl |= CURSOR_ENABLE |
6149                         CURSOR_GAMMA_ENABLE |
6150                         CURSOR_FORMAT_ARGB;
6151         } else
6152                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6153         I915_WRITE(_CURACNTR, cntl);
6154
6155         intel_crtc->cursor_visible = visible;
6156 }
6157
6158 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6159 {
6160         struct drm_device *dev = crtc->dev;
6161         struct drm_i915_private *dev_priv = dev->dev_private;
6162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6163         int pipe = intel_crtc->pipe;
6164         bool visible = base != 0;
6165
6166         if (intel_crtc->cursor_visible != visible) {
6167                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6168                 if (base) {
6169                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6170                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6171                         cntl |= pipe << 28; /* Connect to correct pipe */
6172                 } else {
6173                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6174                         cntl |= CURSOR_MODE_DISABLE;
6175                 }
6176                 I915_WRITE(CURCNTR(pipe), cntl);
6177
6178                 intel_crtc->cursor_visible = visible;
6179         }
6180         /* and commit changes on next vblank */
6181         I915_WRITE(CURBASE(pipe), base);
6182 }
6183
6184 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6185 {
6186         struct drm_device *dev = crtc->dev;
6187         struct drm_i915_private *dev_priv = dev->dev_private;
6188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6189         int pipe = intel_crtc->pipe;
6190         bool visible = base != 0;
6191
6192         if (intel_crtc->cursor_visible != visible) {
6193                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6194                 if (base) {
6195                         cntl &= ~CURSOR_MODE;
6196                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6197                 } else {
6198                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6199                         cntl |= CURSOR_MODE_DISABLE;
6200                 }
6201                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6202
6203                 intel_crtc->cursor_visible = visible;
6204         }
6205         /* and commit changes on next vblank */
6206         I915_WRITE(CURBASE_IVB(pipe), base);
6207 }
6208
6209 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6210 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6211                                      bool on)
6212 {
6213         struct drm_device *dev = crtc->dev;
6214         struct drm_i915_private *dev_priv = dev->dev_private;
6215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6216         int pipe = intel_crtc->pipe;
6217         int x = intel_crtc->cursor_x;
6218         int y = intel_crtc->cursor_y;
6219         u32 base, pos;
6220         bool visible;
6221
6222         pos = 0;
6223
6224         if (on && crtc->enabled && crtc->fb) {
6225                 base = intel_crtc->cursor_addr;
6226                 if (x > (int) crtc->fb->width)
6227                         base = 0;
6228
6229                 if (y > (int) crtc->fb->height)
6230                         base = 0;
6231         } else
6232                 base = 0;
6233
6234         if (x < 0) {
6235                 if (x + intel_crtc->cursor_width < 0)
6236                         base = 0;
6237
6238                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6239                 x = -x;
6240         }
6241         pos |= x << CURSOR_X_SHIFT;
6242
6243         if (y < 0) {
6244                 if (y + intel_crtc->cursor_height < 0)
6245                         base = 0;
6246
6247                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6248                 y = -y;
6249         }
6250         pos |= y << CURSOR_Y_SHIFT;
6251
6252         visible = base != 0;
6253         if (!visible && !intel_crtc->cursor_visible)
6254                 return;
6255
6256         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6257                 I915_WRITE(CURPOS_IVB(pipe), pos);
6258                 ivb_update_cursor(crtc, base);
6259         } else {
6260                 I915_WRITE(CURPOS(pipe), pos);
6261                 if (IS_845G(dev) || IS_I865G(dev))
6262                         i845_update_cursor(crtc, base);
6263                 else
6264                         i9xx_update_cursor(crtc, base);
6265         }
6266 }
6267
6268 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6269                                  struct drm_file *file,
6270                                  uint32_t handle,
6271                                  uint32_t width, uint32_t height)
6272 {
6273         struct drm_device *dev = crtc->dev;
6274         struct drm_i915_private *dev_priv = dev->dev_private;
6275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6276         struct drm_i915_gem_object *obj;
6277         uint32_t addr;
6278         int ret;
6279
6280         /* if we want to turn off the cursor ignore width and height */
6281         if (!handle) {
6282                 DRM_DEBUG_KMS("cursor off\n");
6283                 addr = 0;
6284                 obj = NULL;
6285                 mutex_lock(&dev->struct_mutex);
6286                 goto finish;
6287         }
6288
6289         /* Currently we only support 64x64 cursors */
6290         if (width != 64 || height != 64) {
6291                 DRM_ERROR("we currently only support 64x64 cursors\n");
6292                 return -EINVAL;
6293         }
6294
6295         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6296         if (&obj->base == NULL)
6297                 return -ENOENT;
6298
6299         if (obj->base.size < width * height * 4) {
6300                 DRM_ERROR("buffer is to small\n");
6301                 ret = -ENOMEM;
6302                 goto fail;
6303         }
6304
6305         /* we only need to pin inside GTT if cursor is non-phy */
6306         mutex_lock(&dev->struct_mutex);
6307         if (!dev_priv->info->cursor_needs_physical) {
6308                 if (obj->tiling_mode) {
6309                         DRM_ERROR("cursor cannot be tiled\n");
6310                         ret = -EINVAL;
6311                         goto fail_locked;
6312                 }
6313
6314                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6315                 if (ret) {
6316                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6317                         goto fail_locked;
6318                 }
6319
6320                 ret = i915_gem_object_put_fence(obj);
6321                 if (ret) {
6322                         DRM_ERROR("failed to release fence for cursor");
6323                         goto fail_unpin;
6324                 }
6325
6326                 addr = obj->gtt_offset;
6327         } else {
6328                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6329                 ret = i915_gem_attach_phys_object(dev, obj,
6330                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6331                                                   align);
6332                 if (ret) {
6333                         DRM_ERROR("failed to attach phys object\n");
6334                         goto fail_locked;
6335                 }
6336                 addr = obj->phys_obj->handle->busaddr;
6337         }
6338
6339         if (IS_GEN2(dev))
6340                 I915_WRITE(CURSIZE, (height << 12) | width);
6341
6342  finish:
6343         if (intel_crtc->cursor_bo) {
6344                 if (dev_priv->info->cursor_needs_physical) {
6345                         if (intel_crtc->cursor_bo != obj)
6346                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6347                 } else
6348                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6349                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6350         }
6351
6352         mutex_unlock(&dev->struct_mutex);
6353
6354         intel_crtc->cursor_addr = addr;
6355         intel_crtc->cursor_bo = obj;
6356         intel_crtc->cursor_width = width;
6357         intel_crtc->cursor_height = height;
6358
6359         intel_crtc_update_cursor(crtc, true);
6360
6361         return 0;
6362 fail_unpin:
6363         i915_gem_object_unpin(obj);
6364 fail_locked:
6365         mutex_unlock(&dev->struct_mutex);
6366 fail:
6367         drm_gem_object_unreference_unlocked(&obj->base);
6368         return ret;
6369 }
6370
6371 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6372 {
6373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6374
6375         intel_crtc->cursor_x = x;
6376         intel_crtc->cursor_y = y;
6377
6378         intel_crtc_update_cursor(crtc, true);
6379
6380         return 0;
6381 }
6382
6383 /** Sets the color ramps on behalf of RandR */
6384 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6385                                  u16 blue, int regno)
6386 {
6387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6388
6389         intel_crtc->lut_r[regno] = red >> 8;
6390         intel_crtc->lut_g[regno] = green >> 8;
6391         intel_crtc->lut_b[regno] = blue >> 8;
6392 }
6393
6394 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6395                              u16 *blue, int regno)
6396 {
6397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6398
6399         *red = intel_crtc->lut_r[regno] << 8;
6400         *green = intel_crtc->lut_g[regno] << 8;
6401         *blue = intel_crtc->lut_b[regno] << 8;
6402 }
6403
6404 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6405                                  u16 *blue, uint32_t start, uint32_t size)
6406 {
6407         int end = (start + size > 256) ? 256 : start + size, i;
6408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6409
6410         for (i = start; i < end; i++) {
6411                 intel_crtc->lut_r[i] = red[i] >> 8;
6412                 intel_crtc->lut_g[i] = green[i] >> 8;
6413                 intel_crtc->lut_b[i] = blue[i] >> 8;
6414         }
6415
6416         intel_crtc_load_lut(crtc);
6417 }
6418
6419 /**
6420  * Get a pipe with a simple mode set on it for doing load-based monitor
6421  * detection.
6422  *
6423  * It will be up to the load-detect code to adjust the pipe as appropriate for
6424  * its requirements.  The pipe will be connected to no other encoders.
6425  *
6426  * Currently this code will only succeed if there is a pipe with no encoders
6427  * configured for it.  In the future, it could choose to temporarily disable
6428  * some outputs to free up a pipe for its use.
6429  *
6430  * \return crtc, or NULL if no pipes are available.
6431  */
6432
6433 /* VESA 640x480x72Hz mode to set on the pipe */
6434 static struct drm_display_mode load_detect_mode = {
6435         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6436                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6437 };
6438
6439 static struct drm_framebuffer *
6440 intel_framebuffer_create(struct drm_device *dev,
6441                          struct drm_mode_fb_cmd2 *mode_cmd,
6442                          struct drm_i915_gem_object *obj)
6443 {
6444         struct intel_framebuffer *intel_fb;
6445         int ret;
6446
6447         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6448         if (!intel_fb) {
6449                 drm_gem_object_unreference_unlocked(&obj->base);
6450                 return ERR_PTR(-ENOMEM);
6451         }
6452
6453         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6454         if (ret) {
6455                 drm_gem_object_unreference_unlocked(&obj->base);
6456                 kfree(intel_fb);
6457                 return ERR_PTR(ret);
6458         }
6459
6460         return &intel_fb->base;
6461 }
6462
6463 static u32
6464 intel_framebuffer_pitch_for_width(int width, int bpp)
6465 {
6466         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6467         return ALIGN(pitch, 64);
6468 }
6469
6470 static u32
6471 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6472 {
6473         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6474         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6475 }
6476
6477 static struct drm_framebuffer *
6478 intel_framebuffer_create_for_mode(struct drm_device *dev,
6479                                   struct drm_display_mode *mode,
6480                                   int depth, int bpp)
6481 {
6482         struct drm_i915_gem_object *obj;
6483         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6484
6485         obj = i915_gem_alloc_object(dev,
6486                                     intel_framebuffer_size_for_mode(mode, bpp));
6487         if (obj == NULL)
6488                 return ERR_PTR(-ENOMEM);
6489
6490         mode_cmd.width = mode->hdisplay;
6491         mode_cmd.height = mode->vdisplay;
6492         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6493                                                                 bpp);
6494         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6495
6496         return intel_framebuffer_create(dev, &mode_cmd, obj);
6497 }
6498
6499 static struct drm_framebuffer *
6500 mode_fits_in_fbdev(struct drm_device *dev,
6501                    struct drm_display_mode *mode)
6502 {
6503         struct drm_i915_private *dev_priv = dev->dev_private;
6504         struct drm_i915_gem_object *obj;
6505         struct drm_framebuffer *fb;
6506
6507         if (dev_priv->fbdev == NULL)
6508                 return NULL;
6509
6510         obj = dev_priv->fbdev->ifb.obj;
6511         if (obj == NULL)
6512                 return NULL;
6513
6514         fb = &dev_priv->fbdev->ifb.base;
6515         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6516                                                                fb->bits_per_pixel))
6517                 return NULL;
6518
6519         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6520                 return NULL;
6521
6522         return fb;
6523 }
6524
6525 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6526                                 struct drm_display_mode *mode,
6527                                 struct intel_load_detect_pipe *old)
6528 {
6529         struct intel_crtc *intel_crtc;
6530         struct intel_encoder *intel_encoder =
6531                 intel_attached_encoder(connector);
6532         struct drm_crtc *possible_crtc;
6533         struct drm_encoder *encoder = &intel_encoder->base;
6534         struct drm_crtc *crtc = NULL;
6535         struct drm_device *dev = encoder->dev;
6536         struct drm_framebuffer *fb;
6537         int i = -1;
6538
6539         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6540                       connector->base.id, drm_get_connector_name(connector),
6541                       encoder->base.id, drm_get_encoder_name(encoder));
6542
6543         /*
6544          * Algorithm gets a little messy:
6545          *
6546          *   - if the connector already has an assigned crtc, use it (but make
6547          *     sure it's on first)
6548          *
6549          *   - try to find the first unused crtc that can drive this connector,
6550          *     and use that if we find one
6551          */
6552
6553         /* See if we already have a CRTC for this connector */
6554         if (encoder->crtc) {
6555                 crtc = encoder->crtc;
6556
6557                 old->dpms_mode = connector->dpms;
6558                 old->load_detect_temp = false;
6559
6560                 /* Make sure the crtc and connector are running */
6561                 if (connector->dpms != DRM_MODE_DPMS_ON)
6562                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6563
6564                 return true;
6565         }
6566
6567         /* Find an unused one (if possible) */
6568         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6569                 i++;
6570                 if (!(encoder->possible_crtcs & (1 << i)))
6571                         continue;
6572                 if (!possible_crtc->enabled) {
6573                         crtc = possible_crtc;
6574                         break;
6575                 }
6576         }
6577
6578         /*
6579          * If we didn't find an unused CRTC, don't use any.
6580          */
6581         if (!crtc) {
6582                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6583                 return false;
6584         }
6585
6586         intel_encoder->new_crtc = to_intel_crtc(crtc);
6587         to_intel_connector(connector)->new_encoder = intel_encoder;
6588
6589         intel_crtc = to_intel_crtc(crtc);
6590         old->dpms_mode = connector->dpms;
6591         old->load_detect_temp = true;
6592         old->release_fb = NULL;
6593
6594         if (!mode)
6595                 mode = &load_detect_mode;
6596
6597         /* We need a framebuffer large enough to accommodate all accesses
6598          * that the plane may generate whilst we perform load detection.
6599          * We can not rely on the fbcon either being present (we get called
6600          * during its initialisation to detect all boot displays, or it may
6601          * not even exist) or that it is large enough to satisfy the
6602          * requested mode.
6603          */
6604         fb = mode_fits_in_fbdev(dev, mode);
6605         if (fb == NULL) {
6606                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6607                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6608                 old->release_fb = fb;
6609         } else
6610                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6611         if (IS_ERR(fb)) {
6612                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6613                 return false;
6614         }
6615
6616         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6617                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6618                 if (old->release_fb)
6619                         old->release_fb->funcs->destroy(old->release_fb);
6620                 return false;
6621         }
6622
6623         /* let the connector get through one full cycle before testing */
6624         intel_wait_for_vblank(dev, intel_crtc->pipe);
6625         return true;
6626 }
6627
6628 void intel_release_load_detect_pipe(struct drm_connector *connector,
6629                                     struct intel_load_detect_pipe *old)
6630 {
6631         struct intel_encoder *intel_encoder =
6632                 intel_attached_encoder(connector);
6633         struct drm_encoder *encoder = &intel_encoder->base;
6634
6635         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6636                       connector->base.id, drm_get_connector_name(connector),
6637                       encoder->base.id, drm_get_encoder_name(encoder));
6638
6639         if (old->load_detect_temp) {
6640                 struct drm_crtc *crtc = encoder->crtc;
6641
6642                 to_intel_connector(connector)->new_encoder = NULL;
6643                 intel_encoder->new_crtc = NULL;
6644                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6645
6646                 if (old->release_fb)
6647                         old->release_fb->funcs->destroy(old->release_fb);
6648
6649                 return;
6650         }
6651
6652         /* Switch crtc and encoder back off if necessary */
6653         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6654                 connector->funcs->dpms(connector, old->dpms_mode);
6655 }
6656
6657 /* Returns the clock of the currently programmed mode of the given pipe. */
6658 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6659 {
6660         struct drm_i915_private *dev_priv = dev->dev_private;
6661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6662         int pipe = intel_crtc->pipe;
6663         u32 dpll = I915_READ(DPLL(pipe));
6664         u32 fp;
6665         intel_clock_t clock;
6666
6667         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6668                 fp = I915_READ(FP0(pipe));
6669         else
6670                 fp = I915_READ(FP1(pipe));
6671
6672         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6673         if (IS_PINEVIEW(dev)) {
6674                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6675                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6676         } else {
6677                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6678                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6679         }
6680
6681         if (!IS_GEN2(dev)) {
6682                 if (IS_PINEVIEW(dev))
6683                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6684                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6685                 else
6686                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6687                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6688
6689                 switch (dpll & DPLL_MODE_MASK) {
6690                 case DPLLB_MODE_DAC_SERIAL:
6691                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6692                                 5 : 10;
6693                         break;
6694                 case DPLLB_MODE_LVDS:
6695                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6696                                 7 : 14;
6697                         break;
6698                 default:
6699                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6700                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6701                         return 0;
6702                 }
6703
6704                 /* XXX: Handle the 100Mhz refclk */
6705                 intel_clock(dev, 96000, &clock);
6706         } else {
6707                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6708
6709                 if (is_lvds) {
6710                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6711                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6712                         clock.p2 = 14;
6713
6714                         if ((dpll & PLL_REF_INPUT_MASK) ==
6715                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6716                                 /* XXX: might not be 66MHz */
6717                                 intel_clock(dev, 66000, &clock);
6718                         } else
6719                                 intel_clock(dev, 48000, &clock);
6720                 } else {
6721                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6722                                 clock.p1 = 2;
6723                         else {
6724                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6725                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6726                         }
6727                         if (dpll & PLL_P2_DIVIDE_BY_4)
6728                                 clock.p2 = 4;
6729                         else
6730                                 clock.p2 = 2;
6731
6732                         intel_clock(dev, 48000, &clock);
6733                 }
6734         }
6735
6736         /* XXX: It would be nice to validate the clocks, but we can't reuse
6737          * i830PllIsValid() because it relies on the xf86_config connector
6738          * configuration being accurate, which it isn't necessarily.
6739          */
6740
6741         return clock.dot;
6742 }
6743
6744 /** Returns the currently programmed mode of the given pipe. */
6745 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6746                                              struct drm_crtc *crtc)
6747 {
6748         struct drm_i915_private *dev_priv = dev->dev_private;
6749         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6750         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6751         struct drm_display_mode *mode;
6752         int htot = I915_READ(HTOTAL(cpu_transcoder));
6753         int hsync = I915_READ(HSYNC(cpu_transcoder));
6754         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6755         int vsync = I915_READ(VSYNC(cpu_transcoder));
6756
6757         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6758         if (!mode)
6759                 return NULL;
6760
6761         mode->clock = intel_crtc_clock_get(dev, crtc);
6762         mode->hdisplay = (htot & 0xffff) + 1;
6763         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6764         mode->hsync_start = (hsync & 0xffff) + 1;
6765         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6766         mode->vdisplay = (vtot & 0xffff) + 1;
6767         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6768         mode->vsync_start = (vsync & 0xffff) + 1;
6769         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6770
6771         drm_mode_set_name(mode);
6772
6773         return mode;
6774 }
6775
6776 static void intel_increase_pllclock(struct drm_crtc *crtc)
6777 {
6778         struct drm_device *dev = crtc->dev;
6779         drm_i915_private_t *dev_priv = dev->dev_private;
6780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6781         int pipe = intel_crtc->pipe;
6782         int dpll_reg = DPLL(pipe);
6783         int dpll;
6784
6785         if (HAS_PCH_SPLIT(dev))
6786                 return;
6787
6788         if (!dev_priv->lvds_downclock_avail)
6789                 return;
6790
6791         dpll = I915_READ(dpll_reg);
6792         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6793                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6794
6795                 assert_panel_unlocked(dev_priv, pipe);
6796
6797                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6798                 I915_WRITE(dpll_reg, dpll);
6799                 intel_wait_for_vblank(dev, pipe);
6800
6801                 dpll = I915_READ(dpll_reg);
6802                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6803                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6804         }
6805 }
6806
6807 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6808 {
6809         struct drm_device *dev = crtc->dev;
6810         drm_i915_private_t *dev_priv = dev->dev_private;
6811         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6812
6813         if (HAS_PCH_SPLIT(dev))
6814                 return;
6815
6816         if (!dev_priv->lvds_downclock_avail)
6817                 return;
6818
6819         /*
6820          * Since this is called by a timer, we should never get here in
6821          * the manual case.
6822          */
6823         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6824                 int pipe = intel_crtc->pipe;
6825                 int dpll_reg = DPLL(pipe);
6826                 int dpll;
6827
6828                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6829
6830                 assert_panel_unlocked(dev_priv, pipe);
6831
6832                 dpll = I915_READ(dpll_reg);
6833                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6834                 I915_WRITE(dpll_reg, dpll);
6835                 intel_wait_for_vblank(dev, pipe);
6836                 dpll = I915_READ(dpll_reg);
6837                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6838                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6839         }
6840
6841 }
6842
6843 void intel_mark_busy(struct drm_device *dev)
6844 {
6845         i915_update_gfx_val(dev->dev_private);
6846 }
6847
6848 void intel_mark_idle(struct drm_device *dev)
6849 {
6850 }
6851
6852 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6853 {
6854         struct drm_device *dev = obj->base.dev;
6855         struct drm_crtc *crtc;
6856
6857         if (!i915_powersave)
6858                 return;
6859
6860         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6861                 if (!crtc->fb)
6862                         continue;
6863
6864                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6865                         intel_increase_pllclock(crtc);
6866         }
6867 }
6868
6869 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6870 {
6871         struct drm_device *dev = obj->base.dev;
6872         struct drm_crtc *crtc;
6873
6874         if (!i915_powersave)
6875                 return;
6876
6877         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6878                 if (!crtc->fb)
6879                         continue;
6880
6881                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6882                         intel_decrease_pllclock(crtc);
6883         }
6884 }
6885
6886 static void intel_crtc_destroy(struct drm_crtc *crtc)
6887 {
6888         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6889         struct drm_device *dev = crtc->dev;
6890         struct intel_unpin_work *work;
6891         unsigned long flags;
6892
6893         spin_lock_irqsave(&dev->event_lock, flags);
6894         work = intel_crtc->unpin_work;
6895         intel_crtc->unpin_work = NULL;
6896         spin_unlock_irqrestore(&dev->event_lock, flags);
6897
6898         if (work) {
6899                 cancel_work_sync(&work->work);
6900                 kfree(work);
6901         }
6902
6903         drm_crtc_cleanup(crtc);
6904
6905         kfree(intel_crtc);
6906 }
6907
6908 static void intel_unpin_work_fn(struct work_struct *__work)
6909 {
6910         struct intel_unpin_work *work =
6911                 container_of(__work, struct intel_unpin_work, work);
6912         struct drm_device *dev = work->crtc->dev;
6913
6914         mutex_lock(&dev->struct_mutex);
6915         intel_unpin_fb_obj(work->old_fb_obj);
6916         drm_gem_object_unreference(&work->pending_flip_obj->base);
6917         drm_gem_object_unreference(&work->old_fb_obj->base);
6918
6919         intel_update_fbc(dev);
6920         mutex_unlock(&dev->struct_mutex);
6921
6922         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6923         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6924
6925         kfree(work);
6926 }
6927
6928 static void do_intel_finish_page_flip(struct drm_device *dev,
6929                                       struct drm_crtc *crtc)
6930 {
6931         drm_i915_private_t *dev_priv = dev->dev_private;
6932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6933         struct intel_unpin_work *work;
6934         struct drm_i915_gem_object *obj;
6935         unsigned long flags;
6936
6937         /* Ignore early vblank irqs */
6938         if (intel_crtc == NULL)
6939                 return;
6940
6941         spin_lock_irqsave(&dev->event_lock, flags);
6942         work = intel_crtc->unpin_work;
6943         if (work == NULL || !work->pending) {
6944                 spin_unlock_irqrestore(&dev->event_lock, flags);
6945                 return;
6946         }
6947
6948         intel_crtc->unpin_work = NULL;
6949
6950         if (work->event)
6951                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6952
6953         drm_vblank_put(dev, intel_crtc->pipe);
6954
6955         spin_unlock_irqrestore(&dev->event_lock, flags);
6956
6957         obj = work->old_fb_obj;
6958
6959         wake_up(&dev_priv->pending_flip_queue);
6960
6961         queue_work(dev_priv->wq, &work->work);
6962
6963         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6964 }
6965
6966 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6967 {
6968         drm_i915_private_t *dev_priv = dev->dev_private;
6969         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6970
6971         do_intel_finish_page_flip(dev, crtc);
6972 }
6973
6974 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6975 {
6976         drm_i915_private_t *dev_priv = dev->dev_private;
6977         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6978
6979         do_intel_finish_page_flip(dev, crtc);
6980 }
6981
6982 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6983 {
6984         drm_i915_private_t *dev_priv = dev->dev_private;
6985         struct intel_crtc *intel_crtc =
6986                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6987         unsigned long flags;
6988
6989         spin_lock_irqsave(&dev->event_lock, flags);
6990         if (intel_crtc->unpin_work) {
6991                 if ((++intel_crtc->unpin_work->pending) > 1)
6992                         DRM_ERROR("Prepared flip multiple times\n");
6993         } else {
6994                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6995         }
6996         spin_unlock_irqrestore(&dev->event_lock, flags);
6997 }
6998
6999 static int intel_gen2_queue_flip(struct drm_device *dev,
7000                                  struct drm_crtc *crtc,
7001                                  struct drm_framebuffer *fb,
7002                                  struct drm_i915_gem_object *obj)
7003 {
7004         struct drm_i915_private *dev_priv = dev->dev_private;
7005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7006         u32 flip_mask;
7007         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7008         int ret;
7009
7010         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7011         if (ret)
7012                 goto err;
7013
7014         ret = intel_ring_begin(ring, 6);
7015         if (ret)
7016                 goto err_unpin;
7017
7018         /* Can't queue multiple flips, so wait for the previous
7019          * one to finish before executing the next.
7020          */
7021         if (intel_crtc->plane)
7022                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7023         else
7024                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7025         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7026         intel_ring_emit(ring, MI_NOOP);
7027         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7028                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7029         intel_ring_emit(ring, fb->pitches[0]);
7030         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7031         intel_ring_emit(ring, 0); /* aux display base address, unused */
7032         intel_ring_advance(ring);
7033         return 0;
7034
7035 err_unpin:
7036         intel_unpin_fb_obj(obj);
7037 err:
7038         return ret;
7039 }
7040
7041 static int intel_gen3_queue_flip(struct drm_device *dev,
7042                                  struct drm_crtc *crtc,
7043                                  struct drm_framebuffer *fb,
7044                                  struct drm_i915_gem_object *obj)
7045 {
7046         struct drm_i915_private *dev_priv = dev->dev_private;
7047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7048         u32 flip_mask;
7049         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7050         int ret;
7051
7052         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7053         if (ret)
7054                 goto err;
7055
7056         ret = intel_ring_begin(ring, 6);
7057         if (ret)
7058                 goto err_unpin;
7059
7060         if (intel_crtc->plane)
7061                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7062         else
7063                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7064         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7065         intel_ring_emit(ring, MI_NOOP);
7066         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7067                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7068         intel_ring_emit(ring, fb->pitches[0]);
7069         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7070         intel_ring_emit(ring, MI_NOOP);
7071
7072         intel_ring_advance(ring);
7073         return 0;
7074
7075 err_unpin:
7076         intel_unpin_fb_obj(obj);
7077 err:
7078         return ret;
7079 }
7080
7081 static int intel_gen4_queue_flip(struct drm_device *dev,
7082                                  struct drm_crtc *crtc,
7083                                  struct drm_framebuffer *fb,
7084                                  struct drm_i915_gem_object *obj)
7085 {
7086         struct drm_i915_private *dev_priv = dev->dev_private;
7087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7088         uint32_t pf, pipesrc;
7089         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7090         int ret;
7091
7092         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7093         if (ret)
7094                 goto err;
7095
7096         ret = intel_ring_begin(ring, 4);
7097         if (ret)
7098                 goto err_unpin;
7099
7100         /* i965+ uses the linear or tiled offsets from the
7101          * Display Registers (which do not change across a page-flip)
7102          * so we need only reprogram the base address.
7103          */
7104         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7105                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7106         intel_ring_emit(ring, fb->pitches[0]);
7107         intel_ring_emit(ring,
7108                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7109                         obj->tiling_mode);
7110
7111         /* XXX Enabling the panel-fitter across page-flip is so far
7112          * untested on non-native modes, so ignore it for now.
7113          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7114          */
7115         pf = 0;
7116         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7117         intel_ring_emit(ring, pf | pipesrc);
7118         intel_ring_advance(ring);
7119         return 0;
7120
7121 err_unpin:
7122         intel_unpin_fb_obj(obj);
7123 err:
7124         return ret;
7125 }
7126
7127 static int intel_gen6_queue_flip(struct drm_device *dev,
7128                                  struct drm_crtc *crtc,
7129                                  struct drm_framebuffer *fb,
7130                                  struct drm_i915_gem_object *obj)
7131 {
7132         struct drm_i915_private *dev_priv = dev->dev_private;
7133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7134         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7135         uint32_t pf, pipesrc;
7136         int ret;
7137
7138         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7139         if (ret)
7140                 goto err;
7141
7142         ret = intel_ring_begin(ring, 4);
7143         if (ret)
7144                 goto err_unpin;
7145
7146         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7147                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7148         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7149         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7150
7151         /* Contrary to the suggestions in the documentation,
7152          * "Enable Panel Fitter" does not seem to be required when page
7153          * flipping with a non-native mode, and worse causes a normal
7154          * modeset to fail.
7155          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7156          */
7157         pf = 0;
7158         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7159         intel_ring_emit(ring, pf | pipesrc);
7160         intel_ring_advance(ring);
7161         return 0;
7162
7163 err_unpin:
7164         intel_unpin_fb_obj(obj);
7165 err:
7166         return ret;
7167 }
7168
7169 /*
7170  * On gen7 we currently use the blit ring because (in early silicon at least)
7171  * the render ring doesn't give us interrpts for page flip completion, which
7172  * means clients will hang after the first flip is queued.  Fortunately the
7173  * blit ring generates interrupts properly, so use it instead.
7174  */
7175 static int intel_gen7_queue_flip(struct drm_device *dev,
7176                                  struct drm_crtc *crtc,
7177                                  struct drm_framebuffer *fb,
7178                                  struct drm_i915_gem_object *obj)
7179 {
7180         struct drm_i915_private *dev_priv = dev->dev_private;
7181         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7182         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7183         uint32_t plane_bit = 0;
7184         int ret;
7185
7186         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7187         if (ret)
7188                 goto err;
7189
7190         switch(intel_crtc->plane) {
7191         case PLANE_A:
7192                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7193                 break;
7194         case PLANE_B:
7195                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7196                 break;
7197         case PLANE_C:
7198                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7199                 break;
7200         default:
7201                 WARN_ONCE(1, "unknown plane in flip command\n");
7202                 ret = -ENODEV;
7203                 goto err_unpin;
7204         }
7205
7206         ret = intel_ring_begin(ring, 4);
7207         if (ret)
7208                 goto err_unpin;
7209
7210         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7211         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7212         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7213         intel_ring_emit(ring, (MI_NOOP));
7214         intel_ring_advance(ring);
7215         return 0;
7216
7217 err_unpin:
7218         intel_unpin_fb_obj(obj);
7219 err:
7220         return ret;
7221 }
7222
7223 static int intel_default_queue_flip(struct drm_device *dev,
7224                                     struct drm_crtc *crtc,
7225                                     struct drm_framebuffer *fb,
7226                                     struct drm_i915_gem_object *obj)
7227 {
7228         return -ENODEV;
7229 }
7230
7231 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7232                                 struct drm_framebuffer *fb,
7233                                 struct drm_pending_vblank_event *event)
7234 {
7235         struct drm_device *dev = crtc->dev;
7236         struct drm_i915_private *dev_priv = dev->dev_private;
7237         struct intel_framebuffer *intel_fb;
7238         struct drm_i915_gem_object *obj;
7239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7240         struct intel_unpin_work *work;
7241         unsigned long flags;
7242         int ret;
7243
7244         /* Can't change pixel format via MI display flips. */
7245         if (fb->pixel_format != crtc->fb->pixel_format)
7246                 return -EINVAL;
7247
7248         /*
7249          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7250          * Note that pitch changes could also affect these register.
7251          */
7252         if (INTEL_INFO(dev)->gen > 3 &&
7253             (fb->offsets[0] != crtc->fb->offsets[0] ||
7254              fb->pitches[0] != crtc->fb->pitches[0]))
7255                 return -EINVAL;
7256
7257         work = kzalloc(sizeof *work, GFP_KERNEL);
7258         if (work == NULL)
7259                 return -ENOMEM;
7260
7261         work->event = event;
7262         work->crtc = crtc;
7263         intel_fb = to_intel_framebuffer(crtc->fb);
7264         work->old_fb_obj = intel_fb->obj;
7265         INIT_WORK(&work->work, intel_unpin_work_fn);
7266
7267         ret = drm_vblank_get(dev, intel_crtc->pipe);
7268         if (ret)
7269                 goto free_work;
7270
7271         /* We borrow the event spin lock for protecting unpin_work */
7272         spin_lock_irqsave(&dev->event_lock, flags);
7273         if (intel_crtc->unpin_work) {
7274                 spin_unlock_irqrestore(&dev->event_lock, flags);
7275                 kfree(work);
7276                 drm_vblank_put(dev, intel_crtc->pipe);
7277
7278                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7279                 return -EBUSY;
7280         }
7281         intel_crtc->unpin_work = work;
7282         spin_unlock_irqrestore(&dev->event_lock, flags);
7283
7284         intel_fb = to_intel_framebuffer(fb);
7285         obj = intel_fb->obj;
7286
7287         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7288                 flush_workqueue(dev_priv->wq);
7289
7290         ret = i915_mutex_lock_interruptible(dev);
7291         if (ret)
7292                 goto cleanup;
7293
7294         /* Reference the objects for the scheduled work. */
7295         drm_gem_object_reference(&work->old_fb_obj->base);
7296         drm_gem_object_reference(&obj->base);
7297
7298         crtc->fb = fb;
7299
7300         work->pending_flip_obj = obj;
7301
7302         work->enable_stall_check = true;
7303
7304         atomic_inc(&intel_crtc->unpin_work_count);
7305
7306         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7307         if (ret)
7308                 goto cleanup_pending;
7309
7310         intel_disable_fbc(dev);
7311         intel_mark_fb_busy(obj);
7312         mutex_unlock(&dev->struct_mutex);
7313
7314         trace_i915_flip_request(intel_crtc->plane, obj);
7315
7316         return 0;
7317
7318 cleanup_pending:
7319         atomic_dec(&intel_crtc->unpin_work_count);
7320         drm_gem_object_unreference(&work->old_fb_obj->base);
7321         drm_gem_object_unreference(&obj->base);
7322         mutex_unlock(&dev->struct_mutex);
7323
7324 cleanup:
7325         spin_lock_irqsave(&dev->event_lock, flags);
7326         intel_crtc->unpin_work = NULL;
7327         spin_unlock_irqrestore(&dev->event_lock, flags);
7328
7329         drm_vblank_put(dev, intel_crtc->pipe);
7330 free_work:
7331         kfree(work);
7332
7333         return ret;
7334 }
7335
7336 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7337         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7338         .load_lut = intel_crtc_load_lut,
7339         .disable = intel_crtc_noop,
7340 };
7341
7342 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7343 {
7344         struct intel_encoder *other_encoder;
7345         struct drm_crtc *crtc = &encoder->new_crtc->base;
7346
7347         if (WARN_ON(!crtc))
7348                 return false;
7349
7350         list_for_each_entry(other_encoder,
7351                             &crtc->dev->mode_config.encoder_list,
7352                             base.head) {
7353
7354                 if (&other_encoder->new_crtc->base != crtc ||
7355                     encoder == other_encoder)
7356                         continue;
7357                 else
7358                         return true;
7359         }
7360
7361         return false;
7362 }
7363
7364 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7365                                   struct drm_crtc *crtc)
7366 {
7367         struct drm_device *dev;
7368         struct drm_crtc *tmp;
7369         int crtc_mask = 1;
7370
7371         WARN(!crtc, "checking null crtc?\n");
7372
7373         dev = crtc->dev;
7374
7375         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7376                 if (tmp == crtc)
7377                         break;
7378                 crtc_mask <<= 1;
7379         }
7380
7381         if (encoder->possible_crtcs & crtc_mask)
7382                 return true;
7383         return false;
7384 }
7385
7386 /**
7387  * intel_modeset_update_staged_output_state
7388  *
7389  * Updates the staged output configuration state, e.g. after we've read out the
7390  * current hw state.
7391  */
7392 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7393 {
7394         struct intel_encoder *encoder;
7395         struct intel_connector *connector;
7396
7397         list_for_each_entry(connector, &dev->mode_config.connector_list,
7398                             base.head) {
7399                 connector->new_encoder =
7400                         to_intel_encoder(connector->base.encoder);
7401         }
7402
7403         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7404                             base.head) {
7405                 encoder->new_crtc =
7406                         to_intel_crtc(encoder->base.crtc);
7407         }
7408 }
7409
7410 /**
7411  * intel_modeset_commit_output_state
7412  *
7413  * This function copies the stage display pipe configuration to the real one.
7414  */
7415 static void intel_modeset_commit_output_state(struct drm_device *dev)
7416 {
7417         struct intel_encoder *encoder;
7418         struct intel_connector *connector;
7419
7420         list_for_each_entry(connector, &dev->mode_config.connector_list,
7421                             base.head) {
7422                 connector->base.encoder = &connector->new_encoder->base;
7423         }
7424
7425         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7426                             base.head) {
7427                 encoder->base.crtc = &encoder->new_crtc->base;
7428         }
7429 }
7430
7431 static struct drm_display_mode *
7432 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7433                             struct drm_display_mode *mode)
7434 {
7435         struct drm_device *dev = crtc->dev;
7436         struct drm_display_mode *adjusted_mode;
7437         struct drm_encoder_helper_funcs *encoder_funcs;
7438         struct intel_encoder *encoder;
7439
7440         adjusted_mode = drm_mode_duplicate(dev, mode);
7441         if (!adjusted_mode)
7442                 return ERR_PTR(-ENOMEM);
7443
7444         /* Pass our mode to the connectors and the CRTC to give them a chance to
7445          * adjust it according to limitations or connector properties, and also
7446          * a chance to reject the mode entirely.
7447          */
7448         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7449                             base.head) {
7450
7451                 if (&encoder->new_crtc->base != crtc)
7452                         continue;
7453                 encoder_funcs = encoder->base.helper_private;
7454                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7455                                                 adjusted_mode))) {
7456                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7457                         goto fail;
7458                 }
7459         }
7460
7461         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7462                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7463                 goto fail;
7464         }
7465         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7466
7467         return adjusted_mode;
7468 fail:
7469         drm_mode_destroy(dev, adjusted_mode);
7470         return ERR_PTR(-EINVAL);
7471 }
7472
7473 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7474  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7475 static void
7476 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7477                              unsigned *prepare_pipes, unsigned *disable_pipes)
7478 {
7479         struct intel_crtc *intel_crtc;
7480         struct drm_device *dev = crtc->dev;
7481         struct intel_encoder *encoder;
7482         struct intel_connector *connector;
7483         struct drm_crtc *tmp_crtc;
7484
7485         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7486
7487         /* Check which crtcs have changed outputs connected to them, these need
7488          * to be part of the prepare_pipes mask. We don't (yet) support global
7489          * modeset across multiple crtcs, so modeset_pipes will only have one
7490          * bit set at most. */
7491         list_for_each_entry(connector, &dev->mode_config.connector_list,
7492                             base.head) {
7493                 if (connector->base.encoder == &connector->new_encoder->base)
7494                         continue;
7495
7496                 if (connector->base.encoder) {
7497                         tmp_crtc = connector->base.encoder->crtc;
7498
7499                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7500                 }
7501
7502                 if (connector->new_encoder)
7503                         *prepare_pipes |=
7504                                 1 << connector->new_encoder->new_crtc->pipe;
7505         }
7506
7507         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7508                             base.head) {
7509                 if (encoder->base.crtc == &encoder->new_crtc->base)
7510                         continue;
7511
7512                 if (encoder->base.crtc) {
7513                         tmp_crtc = encoder->base.crtc;
7514
7515                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7516                 }
7517
7518                 if (encoder->new_crtc)
7519                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7520         }
7521
7522         /* Check for any pipes that will be fully disabled ... */
7523         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7524                             base.head) {
7525                 bool used = false;
7526
7527                 /* Don't try to disable disabled crtcs. */
7528                 if (!intel_crtc->base.enabled)
7529                         continue;
7530
7531                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7532                                     base.head) {
7533                         if (encoder->new_crtc == intel_crtc)
7534                                 used = true;
7535                 }
7536
7537                 if (!used)
7538                         *disable_pipes |= 1 << intel_crtc->pipe;
7539         }
7540
7541
7542         /* set_mode is also used to update properties on life display pipes. */
7543         intel_crtc = to_intel_crtc(crtc);
7544         if (crtc->enabled)
7545                 *prepare_pipes |= 1 << intel_crtc->pipe;
7546
7547         /* We only support modeset on one single crtc, hence we need to do that
7548          * only for the passed in crtc iff we change anything else than just
7549          * disable crtcs.
7550          *
7551          * This is actually not true, to be fully compatible with the old crtc
7552          * helper we automatically disable _any_ output (i.e. doesn't need to be
7553          * connected to the crtc we're modesetting on) if it's disconnected.
7554          * Which is a rather nutty api (since changed the output configuration
7555          * without userspace's explicit request can lead to confusion), but
7556          * alas. Hence we currently need to modeset on all pipes we prepare. */
7557         if (*prepare_pipes)
7558                 *modeset_pipes = *prepare_pipes;
7559
7560         /* ... and mask these out. */
7561         *modeset_pipes &= ~(*disable_pipes);
7562         *prepare_pipes &= ~(*disable_pipes);
7563 }
7564
7565 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7566 {
7567         struct drm_encoder *encoder;
7568         struct drm_device *dev = crtc->dev;
7569
7570         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7571                 if (encoder->crtc == crtc)
7572                         return true;
7573
7574         return false;
7575 }
7576
7577 static void
7578 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7579 {
7580         struct intel_encoder *intel_encoder;
7581         struct intel_crtc *intel_crtc;
7582         struct drm_connector *connector;
7583
7584         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7585                             base.head) {
7586                 if (!intel_encoder->base.crtc)
7587                         continue;
7588
7589                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7590
7591                 if (prepare_pipes & (1 << intel_crtc->pipe))
7592                         intel_encoder->connectors_active = false;
7593         }
7594
7595         intel_modeset_commit_output_state(dev);
7596
7597         /* Update computed state. */
7598         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7599                             base.head) {
7600                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7601         }
7602
7603         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7604                 if (!connector->encoder || !connector->encoder->crtc)
7605                         continue;
7606
7607                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7608
7609                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7610                         struct drm_property *dpms_property =
7611                                 dev->mode_config.dpms_property;
7612
7613                         connector->dpms = DRM_MODE_DPMS_ON;
7614                         drm_object_property_set_value(&connector->base,
7615                                                          dpms_property,
7616                                                          DRM_MODE_DPMS_ON);
7617
7618                         intel_encoder = to_intel_encoder(connector->encoder);
7619                         intel_encoder->connectors_active = true;
7620                 }
7621         }
7622
7623 }
7624
7625 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7626         list_for_each_entry((intel_crtc), \
7627                             &(dev)->mode_config.crtc_list, \
7628                             base.head) \
7629                 if (mask & (1 <<(intel_crtc)->pipe)) \
7630
7631 void
7632 intel_modeset_check_state(struct drm_device *dev)
7633 {
7634         struct intel_crtc *crtc;
7635         struct intel_encoder *encoder;
7636         struct intel_connector *connector;
7637
7638         list_for_each_entry(connector, &dev->mode_config.connector_list,
7639                             base.head) {
7640                 /* This also checks the encoder/connector hw state with the
7641                  * ->get_hw_state callbacks. */
7642                 intel_connector_check_state(connector);
7643
7644                 WARN(&connector->new_encoder->base != connector->base.encoder,
7645                      "connector's staged encoder doesn't match current encoder\n");
7646         }
7647
7648         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7649                             base.head) {
7650                 bool enabled = false;
7651                 bool active = false;
7652                 enum pipe pipe, tracked_pipe;
7653
7654                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7655                               encoder->base.base.id,
7656                               drm_get_encoder_name(&encoder->base));
7657
7658                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7659                      "encoder's stage crtc doesn't match current crtc\n");
7660                 WARN(encoder->connectors_active && !encoder->base.crtc,
7661                      "encoder's active_connectors set, but no crtc\n");
7662
7663                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7664                                     base.head) {
7665                         if (connector->base.encoder != &encoder->base)
7666                                 continue;
7667                         enabled = true;
7668                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7669                                 active = true;
7670                 }
7671                 WARN(!!encoder->base.crtc != enabled,
7672                      "encoder's enabled state mismatch "
7673                      "(expected %i, found %i)\n",
7674                      !!encoder->base.crtc, enabled);
7675                 WARN(active && !encoder->base.crtc,
7676                      "active encoder with no crtc\n");
7677
7678                 WARN(encoder->connectors_active != active,
7679                      "encoder's computed active state doesn't match tracked active state "
7680                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7681
7682                 active = encoder->get_hw_state(encoder, &pipe);
7683                 WARN(active != encoder->connectors_active,
7684                      "encoder's hw state doesn't match sw tracking "
7685                      "(expected %i, found %i)\n",
7686                      encoder->connectors_active, active);
7687
7688                 if (!encoder->base.crtc)
7689                         continue;
7690
7691                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7692                 WARN(active && pipe != tracked_pipe,
7693                      "active encoder's pipe doesn't match"
7694                      "(expected %i, found %i)\n",
7695                      tracked_pipe, pipe);
7696
7697         }
7698
7699         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7700                             base.head) {
7701                 bool enabled = false;
7702                 bool active = false;
7703
7704                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7705                               crtc->base.base.id);
7706
7707                 WARN(crtc->active && !crtc->base.enabled,
7708                      "active crtc, but not enabled in sw tracking\n");
7709
7710                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7711                                     base.head) {
7712                         if (encoder->base.crtc != &crtc->base)
7713                                 continue;
7714                         enabled = true;
7715                         if (encoder->connectors_active)
7716                                 active = true;
7717                 }
7718                 WARN(active != crtc->active,
7719                      "crtc's computed active state doesn't match tracked active state "
7720                      "(expected %i, found %i)\n", active, crtc->active);
7721                 WARN(enabled != crtc->base.enabled,
7722                      "crtc's computed enabled state doesn't match tracked enabled state "
7723                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7724
7725                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7726         }
7727 }
7728
7729 bool intel_set_mode(struct drm_crtc *crtc,
7730                     struct drm_display_mode *mode,
7731                     int x, int y, struct drm_framebuffer *fb)
7732 {
7733         struct drm_device *dev = crtc->dev;
7734         drm_i915_private_t *dev_priv = dev->dev_private;
7735         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7736         struct intel_crtc *intel_crtc;
7737         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7738         bool ret = true;
7739
7740         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7741                                      &prepare_pipes, &disable_pipes);
7742
7743         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7744                       modeset_pipes, prepare_pipes, disable_pipes);
7745
7746         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7747                 intel_crtc_disable(&intel_crtc->base);
7748
7749         saved_hwmode = crtc->hwmode;
7750         saved_mode = crtc->mode;
7751
7752         /* Hack: Because we don't (yet) support global modeset on multiple
7753          * crtcs, we don't keep track of the new mode for more than one crtc.
7754          * Hence simply check whether any bit is set in modeset_pipes in all the
7755          * pieces of code that are not yet converted to deal with mutliple crtcs
7756          * changing their mode at the same time. */
7757         adjusted_mode = NULL;
7758         if (modeset_pipes) {
7759                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7760                 if (IS_ERR(adjusted_mode)) {
7761                         return false;
7762                 }
7763         }
7764
7765         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7766                 if (intel_crtc->base.enabled)
7767                         dev_priv->display.crtc_disable(&intel_crtc->base);
7768         }
7769
7770         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7771          * to set it here already despite that we pass it down the callchain.
7772          */
7773         if (modeset_pipes)
7774                 crtc->mode = *mode;
7775
7776         /* Only after disabling all output pipelines that will be changed can we
7777          * update the the output configuration. */
7778         intel_modeset_update_state(dev, prepare_pipes);
7779
7780         if (dev_priv->display.modeset_global_resources)
7781                 dev_priv->display.modeset_global_resources(dev);
7782
7783         /* Set up the DPLL and any encoders state that needs to adjust or depend
7784          * on the DPLL.
7785          */
7786         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7787                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7788                                            mode, adjusted_mode,
7789                                            x, y, fb);
7790                 if (!ret)
7791                     goto done;
7792         }
7793
7794         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7795         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7796                 dev_priv->display.crtc_enable(&intel_crtc->base);
7797
7798         if (modeset_pipes) {
7799                 /* Store real post-adjustment hardware mode. */
7800                 crtc->hwmode = *adjusted_mode;
7801
7802                 /* Calculate and store various constants which
7803                  * are later needed by vblank and swap-completion
7804                  * timestamping. They are derived from true hwmode.
7805                  */
7806                 drm_calc_timestamping_constants(crtc);
7807         }
7808
7809         /* FIXME: add subpixel order */
7810 done:
7811         drm_mode_destroy(dev, adjusted_mode);
7812         if (!ret && crtc->enabled) {
7813                 crtc->hwmode = saved_hwmode;
7814                 crtc->mode = saved_mode;
7815         } else {
7816                 intel_modeset_check_state(dev);
7817         }
7818
7819         return ret;
7820 }
7821
7822 #undef for_each_intel_crtc_masked
7823
7824 static void intel_set_config_free(struct intel_set_config *config)
7825 {
7826         if (!config)
7827                 return;
7828
7829         kfree(config->save_connector_encoders);
7830         kfree(config->save_encoder_crtcs);
7831         kfree(config);
7832 }
7833
7834 static int intel_set_config_save_state(struct drm_device *dev,
7835                                        struct intel_set_config *config)
7836 {
7837         struct drm_encoder *encoder;
7838         struct drm_connector *connector;
7839         int count;
7840
7841         config->save_encoder_crtcs =
7842                 kcalloc(dev->mode_config.num_encoder,
7843                         sizeof(struct drm_crtc *), GFP_KERNEL);
7844         if (!config->save_encoder_crtcs)
7845                 return -ENOMEM;
7846
7847         config->save_connector_encoders =
7848                 kcalloc(dev->mode_config.num_connector,
7849                         sizeof(struct drm_encoder *), GFP_KERNEL);
7850         if (!config->save_connector_encoders)
7851                 return -ENOMEM;
7852
7853         /* Copy data. Note that driver private data is not affected.
7854          * Should anything bad happen only the expected state is
7855          * restored, not the drivers personal bookkeeping.
7856          */
7857         count = 0;
7858         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7859                 config->save_encoder_crtcs[count++] = encoder->crtc;
7860         }
7861
7862         count = 0;
7863         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7864                 config->save_connector_encoders[count++] = connector->encoder;
7865         }
7866
7867         return 0;
7868 }
7869
7870 static void intel_set_config_restore_state(struct drm_device *dev,
7871                                            struct intel_set_config *config)
7872 {
7873         struct intel_encoder *encoder;
7874         struct intel_connector *connector;
7875         int count;
7876
7877         count = 0;
7878         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7879                 encoder->new_crtc =
7880                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7881         }
7882
7883         count = 0;
7884         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7885                 connector->new_encoder =
7886                         to_intel_encoder(config->save_connector_encoders[count++]);
7887         }
7888 }
7889
7890 static void
7891 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7892                                       struct intel_set_config *config)
7893 {
7894
7895         /* We should be able to check here if the fb has the same properties
7896          * and then just flip_or_move it */
7897         if (set->crtc->fb != set->fb) {
7898                 /* If we have no fb then treat it as a full mode set */
7899                 if (set->crtc->fb == NULL) {
7900                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7901                         config->mode_changed = true;
7902                 } else if (set->fb == NULL) {
7903                         config->mode_changed = true;
7904                 } else if (set->fb->depth != set->crtc->fb->depth) {
7905                         config->mode_changed = true;
7906                 } else if (set->fb->bits_per_pixel !=
7907                            set->crtc->fb->bits_per_pixel) {
7908                         config->mode_changed = true;
7909                 } else
7910                         config->fb_changed = true;
7911         }
7912
7913         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7914                 config->fb_changed = true;
7915
7916         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7917                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7918                 drm_mode_debug_printmodeline(&set->crtc->mode);
7919                 drm_mode_debug_printmodeline(set->mode);
7920                 config->mode_changed = true;
7921         }
7922 }
7923
7924 static int
7925 intel_modeset_stage_output_state(struct drm_device *dev,
7926                                  struct drm_mode_set *set,
7927                                  struct intel_set_config *config)
7928 {
7929         struct drm_crtc *new_crtc;
7930         struct intel_connector *connector;
7931         struct intel_encoder *encoder;
7932         int count, ro;
7933
7934         /* The upper layers ensure that we either disabl a crtc or have a list
7935          * of connectors. For paranoia, double-check this. */
7936         WARN_ON(!set->fb && (set->num_connectors != 0));
7937         WARN_ON(set->fb && (set->num_connectors == 0));
7938
7939         count = 0;
7940         list_for_each_entry(connector, &dev->mode_config.connector_list,
7941                             base.head) {
7942                 /* Otherwise traverse passed in connector list and get encoders
7943                  * for them. */
7944                 for (ro = 0; ro < set->num_connectors; ro++) {
7945                         if (set->connectors[ro] == &connector->base) {
7946                                 connector->new_encoder = connector->encoder;
7947                                 break;
7948                         }
7949                 }
7950
7951                 /* If we disable the crtc, disable all its connectors. Also, if
7952                  * the connector is on the changing crtc but not on the new
7953                  * connector list, disable it. */
7954                 if ((!set->fb || ro == set->num_connectors) &&
7955                     connector->base.encoder &&
7956                     connector->base.encoder->crtc == set->crtc) {
7957                         connector->new_encoder = NULL;
7958
7959                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7960                                 connector->base.base.id,
7961                                 drm_get_connector_name(&connector->base));
7962                 }
7963
7964
7965                 if (&connector->new_encoder->base != connector->base.encoder) {
7966                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7967                         config->mode_changed = true;
7968                 }
7969
7970                 /* Disable all disconnected encoders. */
7971                 if (connector->base.status == connector_status_disconnected)
7972                         connector->new_encoder = NULL;
7973         }
7974         /* connector->new_encoder is now updated for all connectors. */
7975
7976         /* Update crtc of enabled connectors. */
7977         count = 0;
7978         list_for_each_entry(connector, &dev->mode_config.connector_list,
7979                             base.head) {
7980                 if (!connector->new_encoder)
7981                         continue;
7982
7983                 new_crtc = connector->new_encoder->base.crtc;
7984
7985                 for (ro = 0; ro < set->num_connectors; ro++) {
7986                         if (set->connectors[ro] == &connector->base)
7987                                 new_crtc = set->crtc;
7988                 }
7989
7990                 /* Make sure the new CRTC will work with the encoder */
7991                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7992                                            new_crtc)) {
7993                         return -EINVAL;
7994                 }
7995                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7996
7997                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7998                         connector->base.base.id,
7999                         drm_get_connector_name(&connector->base),
8000                         new_crtc->base.id);
8001         }
8002
8003         /* Check for any encoders that needs to be disabled. */
8004         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8005                             base.head) {
8006                 list_for_each_entry(connector,
8007                                     &dev->mode_config.connector_list,
8008                                     base.head) {
8009                         if (connector->new_encoder == encoder) {
8010                                 WARN_ON(!connector->new_encoder->new_crtc);
8011
8012                                 goto next_encoder;
8013                         }
8014                 }
8015                 encoder->new_crtc = NULL;
8016 next_encoder:
8017                 /* Only now check for crtc changes so we don't miss encoders
8018                  * that will be disabled. */
8019                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8020                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8021                         config->mode_changed = true;
8022                 }
8023         }
8024         /* Now we've also updated encoder->new_crtc for all encoders. */
8025
8026         return 0;
8027 }
8028
8029 static int intel_crtc_set_config(struct drm_mode_set *set)
8030 {
8031         struct drm_device *dev;
8032         struct drm_mode_set save_set;
8033         struct intel_set_config *config;
8034         int ret;
8035
8036         BUG_ON(!set);
8037         BUG_ON(!set->crtc);
8038         BUG_ON(!set->crtc->helper_private);
8039
8040         if (!set->mode)
8041                 set->fb = NULL;
8042
8043         /* The fb helper likes to play gross jokes with ->mode_set_config.
8044          * Unfortunately the crtc helper doesn't do much at all for this case,
8045          * so we have to cope with this madness until the fb helper is fixed up. */
8046         if (set->fb && set->num_connectors == 0)
8047                 return 0;
8048
8049         if (set->fb) {
8050                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8051                                 set->crtc->base.id, set->fb->base.id,
8052                                 (int)set->num_connectors, set->x, set->y);
8053         } else {
8054                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8055         }
8056
8057         dev = set->crtc->dev;
8058
8059         ret = -ENOMEM;
8060         config = kzalloc(sizeof(*config), GFP_KERNEL);
8061         if (!config)
8062                 goto out_config;
8063
8064         ret = intel_set_config_save_state(dev, config);
8065         if (ret)
8066                 goto out_config;
8067
8068         save_set.crtc = set->crtc;
8069         save_set.mode = &set->crtc->mode;
8070         save_set.x = set->crtc->x;
8071         save_set.y = set->crtc->y;
8072         save_set.fb = set->crtc->fb;
8073
8074         /* Compute whether we need a full modeset, only an fb base update or no
8075          * change at all. In the future we might also check whether only the
8076          * mode changed, e.g. for LVDS where we only change the panel fitter in
8077          * such cases. */
8078         intel_set_config_compute_mode_changes(set, config);
8079
8080         ret = intel_modeset_stage_output_state(dev, set, config);
8081         if (ret)
8082                 goto fail;
8083
8084         if (config->mode_changed) {
8085                 if (set->mode) {
8086                         DRM_DEBUG_KMS("attempting to set mode from"
8087                                         " userspace\n");
8088                         drm_mode_debug_printmodeline(set->mode);
8089                 }
8090
8091                 if (!intel_set_mode(set->crtc, set->mode,
8092                                     set->x, set->y, set->fb)) {
8093                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8094                                   set->crtc->base.id);
8095                         ret = -EINVAL;
8096                         goto fail;
8097                 }
8098         } else if (config->fb_changed) {
8099                 ret = intel_pipe_set_base(set->crtc,
8100                                           set->x, set->y, set->fb);
8101         }
8102
8103         intel_set_config_free(config);
8104
8105         return 0;
8106
8107 fail:
8108         intel_set_config_restore_state(dev, config);
8109
8110         /* Try to restore the config */
8111         if (config->mode_changed &&
8112             !intel_set_mode(save_set.crtc, save_set.mode,
8113                             save_set.x, save_set.y, save_set.fb))
8114                 DRM_ERROR("failed to restore config after modeset failure\n");
8115
8116 out_config:
8117         intel_set_config_free(config);
8118         return ret;
8119 }
8120
8121 static const struct drm_crtc_funcs intel_crtc_funcs = {
8122         .cursor_set = intel_crtc_cursor_set,
8123         .cursor_move = intel_crtc_cursor_move,
8124         .gamma_set = intel_crtc_gamma_set,
8125         .set_config = intel_crtc_set_config,
8126         .destroy = intel_crtc_destroy,
8127         .page_flip = intel_crtc_page_flip,
8128 };
8129
8130 static void intel_cpu_pll_init(struct drm_device *dev)
8131 {
8132         if (IS_HASWELL(dev))
8133                 intel_ddi_pll_init(dev);
8134 }
8135
8136 static void intel_pch_pll_init(struct drm_device *dev)
8137 {
8138         drm_i915_private_t *dev_priv = dev->dev_private;
8139         int i;
8140
8141         if (dev_priv->num_pch_pll == 0) {
8142                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8143                 return;
8144         }
8145
8146         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8147                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8148                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8149                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8150         }
8151 }
8152
8153 static void intel_crtc_init(struct drm_device *dev, int pipe)
8154 {
8155         drm_i915_private_t *dev_priv = dev->dev_private;
8156         struct intel_crtc *intel_crtc;
8157         int i;
8158
8159         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8160         if (intel_crtc == NULL)
8161                 return;
8162
8163         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8164
8165         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8166         for (i = 0; i < 256; i++) {
8167                 intel_crtc->lut_r[i] = i;
8168                 intel_crtc->lut_g[i] = i;
8169                 intel_crtc->lut_b[i] = i;
8170         }
8171
8172         /* Swap pipes & planes for FBC on pre-965 */
8173         intel_crtc->pipe = pipe;
8174         intel_crtc->plane = pipe;
8175         intel_crtc->cpu_transcoder = pipe;
8176         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8177                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8178                 intel_crtc->plane = !pipe;
8179         }
8180
8181         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8182                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8183         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8184         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8185
8186         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8187
8188         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8189 }
8190
8191 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8192                                 struct drm_file *file)
8193 {
8194         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8195         struct drm_mode_object *drmmode_obj;
8196         struct intel_crtc *crtc;
8197
8198         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8199                 return -ENODEV;
8200
8201         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8202                         DRM_MODE_OBJECT_CRTC);
8203
8204         if (!drmmode_obj) {
8205                 DRM_ERROR("no such CRTC id\n");
8206                 return -EINVAL;
8207         }
8208
8209         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8210         pipe_from_crtc_id->pipe = crtc->pipe;
8211
8212         return 0;
8213 }
8214
8215 static int intel_encoder_clones(struct intel_encoder *encoder)
8216 {
8217         struct drm_device *dev = encoder->base.dev;
8218         struct intel_encoder *source_encoder;
8219         int index_mask = 0;
8220         int entry = 0;
8221
8222         list_for_each_entry(source_encoder,
8223                             &dev->mode_config.encoder_list, base.head) {
8224
8225                 if (encoder == source_encoder)
8226                         index_mask |= (1 << entry);
8227
8228                 /* Intel hw has only one MUX where enocoders could be cloned. */
8229                 if (encoder->cloneable && source_encoder->cloneable)
8230                         index_mask |= (1 << entry);
8231
8232                 entry++;
8233         }
8234
8235         return index_mask;
8236 }
8237
8238 static bool has_edp_a(struct drm_device *dev)
8239 {
8240         struct drm_i915_private *dev_priv = dev->dev_private;
8241
8242         if (!IS_MOBILE(dev))
8243                 return false;
8244
8245         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8246                 return false;
8247
8248         if (IS_GEN5(dev) &&
8249             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8250                 return false;
8251
8252         return true;
8253 }
8254
8255 static void intel_setup_outputs(struct drm_device *dev)
8256 {
8257         struct drm_i915_private *dev_priv = dev->dev_private;
8258         struct intel_encoder *encoder;
8259         bool dpd_is_edp = false;
8260         bool has_lvds;
8261
8262         has_lvds = intel_lvds_init(dev);
8263         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8264                 /* disable the panel fitter on everything but LVDS */
8265                 I915_WRITE(PFIT_CONTROL, 0);
8266         }
8267
8268         if (!(IS_HASWELL(dev) &&
8269               (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8270                 intel_crt_init(dev);
8271
8272         if (IS_HASWELL(dev)) {
8273                 int found;
8274
8275                 /* Haswell uses DDI functions to detect digital outputs */
8276                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8277                 /* DDI A only supports eDP */
8278                 if (found)
8279                         intel_ddi_init(dev, PORT_A);
8280
8281                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8282                  * register */
8283                 found = I915_READ(SFUSE_STRAP);
8284
8285                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8286                         intel_ddi_init(dev, PORT_B);
8287                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8288                         intel_ddi_init(dev, PORT_C);
8289                 if (found & SFUSE_STRAP_DDID_DETECTED)
8290                         intel_ddi_init(dev, PORT_D);
8291         } else if (HAS_PCH_SPLIT(dev)) {
8292                 int found;
8293                 dpd_is_edp = intel_dpd_is_edp(dev);
8294
8295                 if (has_edp_a(dev))
8296                         intel_dp_init(dev, DP_A, PORT_A);
8297
8298                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8299                         /* PCH SDVOB multiplex with HDMIB */
8300                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8301                         if (!found)
8302                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8303                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8304                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8305                 }
8306
8307                 if (I915_READ(HDMIC) & PORT_DETECTED)
8308                         intel_hdmi_init(dev, HDMIC, PORT_C);
8309
8310                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8311                         intel_hdmi_init(dev, HDMID, PORT_D);
8312
8313                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8314                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8315
8316                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8317                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8318         } else if (IS_VALLEYVIEW(dev)) {
8319                 int found;
8320
8321                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8322                 if (I915_READ(DP_C) & DP_DETECTED)
8323                         intel_dp_init(dev, DP_C, PORT_C);
8324
8325                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8326                         /* SDVOB multiplex with HDMIB */
8327                         found = intel_sdvo_init(dev, SDVOB, true);
8328                         if (!found)
8329                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8330                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8331                                 intel_dp_init(dev, DP_B, PORT_B);
8332                 }
8333
8334                 if (I915_READ(SDVOC) & PORT_DETECTED)
8335                         intel_hdmi_init(dev, SDVOC, PORT_C);
8336
8337         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8338                 bool found = false;
8339
8340                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8341                         DRM_DEBUG_KMS("probing SDVOB\n");
8342                         found = intel_sdvo_init(dev, SDVOB, true);
8343                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8344                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8345                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8346                         }
8347
8348                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8349                                 DRM_DEBUG_KMS("probing DP_B\n");
8350                                 intel_dp_init(dev, DP_B, PORT_B);
8351                         }
8352                 }
8353
8354                 /* Before G4X SDVOC doesn't have its own detect register */
8355
8356                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8357                         DRM_DEBUG_KMS("probing SDVOC\n");
8358                         found = intel_sdvo_init(dev, SDVOC, false);
8359                 }
8360
8361                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8362
8363                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8364                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8365                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8366                         }
8367                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8368                                 DRM_DEBUG_KMS("probing DP_C\n");
8369                                 intel_dp_init(dev, DP_C, PORT_C);
8370                         }
8371                 }
8372
8373                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8374                     (I915_READ(DP_D) & DP_DETECTED)) {
8375                         DRM_DEBUG_KMS("probing DP_D\n");
8376                         intel_dp_init(dev, DP_D, PORT_D);
8377                 }
8378         } else if (IS_GEN2(dev))
8379                 intel_dvo_init(dev);
8380
8381         if (SUPPORTS_TV(dev))
8382                 intel_tv_init(dev);
8383
8384         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8385                 encoder->base.possible_crtcs = encoder->crtc_mask;
8386                 encoder->base.possible_clones =
8387                         intel_encoder_clones(encoder);
8388         }
8389
8390         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8391                 ironlake_init_pch_refclk(dev);
8392
8393         drm_helper_move_panel_connectors_to_head(dev);
8394 }
8395
8396 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8397 {
8398         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8399
8400         drm_framebuffer_cleanup(fb);
8401         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8402
8403         kfree(intel_fb);
8404 }
8405
8406 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8407                                                 struct drm_file *file,
8408                                                 unsigned int *handle)
8409 {
8410         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8411         struct drm_i915_gem_object *obj = intel_fb->obj;
8412
8413         return drm_gem_handle_create(file, &obj->base, handle);
8414 }
8415
8416 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8417         .destroy = intel_user_framebuffer_destroy,
8418         .create_handle = intel_user_framebuffer_create_handle,
8419 };
8420
8421 int intel_framebuffer_init(struct drm_device *dev,
8422                            struct intel_framebuffer *intel_fb,
8423                            struct drm_mode_fb_cmd2 *mode_cmd,
8424                            struct drm_i915_gem_object *obj)
8425 {
8426         int ret;
8427
8428         if (obj->tiling_mode == I915_TILING_Y)
8429                 return -EINVAL;
8430
8431         if (mode_cmd->pitches[0] & 63)
8432                 return -EINVAL;
8433
8434         /* FIXME <= Gen4 stride limits are bit unclear */
8435         if (mode_cmd->pitches[0] > 32768)
8436                 return -EINVAL;
8437
8438         if (obj->tiling_mode != I915_TILING_NONE &&
8439             mode_cmd->pitches[0] != obj->stride)
8440                 return -EINVAL;
8441
8442         /* Reject formats not supported by any plane early. */
8443         switch (mode_cmd->pixel_format) {
8444         case DRM_FORMAT_C8:
8445         case DRM_FORMAT_RGB565:
8446         case DRM_FORMAT_XRGB8888:
8447         case DRM_FORMAT_ARGB8888:
8448                 break;
8449         case DRM_FORMAT_XRGB1555:
8450         case DRM_FORMAT_ARGB1555:
8451                 if (INTEL_INFO(dev)->gen > 3)
8452                         return -EINVAL;
8453                 break;
8454         case DRM_FORMAT_XBGR8888:
8455         case DRM_FORMAT_ABGR8888:
8456         case DRM_FORMAT_XRGB2101010:
8457         case DRM_FORMAT_ARGB2101010:
8458         case DRM_FORMAT_XBGR2101010:
8459         case DRM_FORMAT_ABGR2101010:
8460                 if (INTEL_INFO(dev)->gen < 4)
8461                         return -EINVAL;
8462                 break;
8463         case DRM_FORMAT_YUYV:
8464         case DRM_FORMAT_UYVY:
8465         case DRM_FORMAT_YVYU:
8466         case DRM_FORMAT_VYUY:
8467                 if (INTEL_INFO(dev)->gen < 6)
8468                         return -EINVAL;
8469                 break;
8470         default:
8471                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8472                 return -EINVAL;
8473         }
8474
8475         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8476         if (mode_cmd->offsets[0] != 0)
8477                 return -EINVAL;
8478
8479         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8480         if (ret) {
8481                 DRM_ERROR("framebuffer init failed %d\n", ret);
8482                 return ret;
8483         }
8484
8485         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8486         intel_fb->obj = obj;
8487         return 0;
8488 }
8489
8490 static struct drm_framebuffer *
8491 intel_user_framebuffer_create(struct drm_device *dev,
8492                               struct drm_file *filp,
8493                               struct drm_mode_fb_cmd2 *mode_cmd)
8494 {
8495         struct drm_i915_gem_object *obj;
8496
8497         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8498                                                 mode_cmd->handles[0]));
8499         if (&obj->base == NULL)
8500                 return ERR_PTR(-ENOENT);
8501
8502         return intel_framebuffer_create(dev, mode_cmd, obj);
8503 }
8504
8505 static const struct drm_mode_config_funcs intel_mode_funcs = {
8506         .fb_create = intel_user_framebuffer_create,
8507         .output_poll_changed = intel_fb_output_poll_changed,
8508 };
8509
8510 /* Set up chip specific display functions */
8511 static void intel_init_display(struct drm_device *dev)
8512 {
8513         struct drm_i915_private *dev_priv = dev->dev_private;
8514
8515         /* We always want a DPMS function */
8516         if (IS_HASWELL(dev)) {
8517                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8518                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8519                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8520                 dev_priv->display.off = haswell_crtc_off;
8521                 dev_priv->display.update_plane = ironlake_update_plane;
8522         } else if (HAS_PCH_SPLIT(dev)) {
8523                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8524                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8525                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8526                 dev_priv->display.off = ironlake_crtc_off;
8527                 dev_priv->display.update_plane = ironlake_update_plane;
8528         } else {
8529                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8530                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8531                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8532                 dev_priv->display.off = i9xx_crtc_off;
8533                 dev_priv->display.update_plane = i9xx_update_plane;
8534         }
8535
8536         /* Returns the core display clock speed */
8537         if (IS_VALLEYVIEW(dev))
8538                 dev_priv->display.get_display_clock_speed =
8539                         valleyview_get_display_clock_speed;
8540         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8541                 dev_priv->display.get_display_clock_speed =
8542                         i945_get_display_clock_speed;
8543         else if (IS_I915G(dev))
8544                 dev_priv->display.get_display_clock_speed =
8545                         i915_get_display_clock_speed;
8546         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8547                 dev_priv->display.get_display_clock_speed =
8548                         i9xx_misc_get_display_clock_speed;
8549         else if (IS_I915GM(dev))
8550                 dev_priv->display.get_display_clock_speed =
8551                         i915gm_get_display_clock_speed;
8552         else if (IS_I865G(dev))
8553                 dev_priv->display.get_display_clock_speed =
8554                         i865_get_display_clock_speed;
8555         else if (IS_I85X(dev))
8556                 dev_priv->display.get_display_clock_speed =
8557                         i855_get_display_clock_speed;
8558         else /* 852, 830 */
8559                 dev_priv->display.get_display_clock_speed =
8560                         i830_get_display_clock_speed;
8561
8562         if (HAS_PCH_SPLIT(dev)) {
8563                 if (IS_GEN5(dev)) {
8564                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8565                         dev_priv->display.write_eld = ironlake_write_eld;
8566                 } else if (IS_GEN6(dev)) {
8567                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8568                         dev_priv->display.write_eld = ironlake_write_eld;
8569                 } else if (IS_IVYBRIDGE(dev)) {
8570                         /* FIXME: detect B0+ stepping and use auto training */
8571                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8572                         dev_priv->display.write_eld = ironlake_write_eld;
8573                         dev_priv->display.modeset_global_resources =
8574                                 ivb_modeset_global_resources;
8575                 } else if (IS_HASWELL(dev)) {
8576                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8577                         dev_priv->display.write_eld = haswell_write_eld;
8578                 } else
8579                         dev_priv->display.update_wm = NULL;
8580         } else if (IS_G4X(dev)) {
8581                 dev_priv->display.write_eld = g4x_write_eld;
8582         }
8583
8584         /* Default just returns -ENODEV to indicate unsupported */
8585         dev_priv->display.queue_flip = intel_default_queue_flip;
8586
8587         switch (INTEL_INFO(dev)->gen) {
8588         case 2:
8589                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8590                 break;
8591
8592         case 3:
8593                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8594                 break;
8595
8596         case 4:
8597         case 5:
8598                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8599                 break;
8600
8601         case 6:
8602                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8603                 break;
8604         case 7:
8605                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8606                 break;
8607         }
8608 }
8609
8610 /*
8611  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8612  * resume, or other times.  This quirk makes sure that's the case for
8613  * affected systems.
8614  */
8615 static void quirk_pipea_force(struct drm_device *dev)
8616 {
8617         struct drm_i915_private *dev_priv = dev->dev_private;
8618
8619         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8620         DRM_INFO("applying pipe a force quirk\n");
8621 }
8622
8623 /*
8624  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8625  */
8626 static void quirk_ssc_force_disable(struct drm_device *dev)
8627 {
8628         struct drm_i915_private *dev_priv = dev->dev_private;
8629         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8630         DRM_INFO("applying lvds SSC disable quirk\n");
8631 }
8632
8633 /*
8634  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8635  * brightness value
8636  */
8637 static void quirk_invert_brightness(struct drm_device *dev)
8638 {
8639         struct drm_i915_private *dev_priv = dev->dev_private;
8640         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8641         DRM_INFO("applying inverted panel brightness quirk\n");
8642 }
8643
8644 struct intel_quirk {
8645         int device;
8646         int subsystem_vendor;
8647         int subsystem_device;
8648         void (*hook)(struct drm_device *dev);
8649 };
8650
8651 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8652 struct intel_dmi_quirk {
8653         void (*hook)(struct drm_device *dev);
8654         const struct dmi_system_id (*dmi_id_list)[];
8655 };
8656
8657 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8658 {
8659         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8660         return 1;
8661 }
8662
8663 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8664         {
8665                 .dmi_id_list = &(const struct dmi_system_id[]) {
8666                         {
8667                                 .callback = intel_dmi_reverse_brightness,
8668                                 .ident = "NCR Corporation",
8669                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8670                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8671                                 },
8672                         },
8673                         { }  /* terminating entry */
8674                 },
8675                 .hook = quirk_invert_brightness,
8676         },
8677 };
8678
8679 static struct intel_quirk intel_quirks[] = {
8680         /* HP Mini needs pipe A force quirk (LP: #322104) */
8681         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8682
8683         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8684         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8685
8686         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8687         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8688
8689         /* 830/845 need to leave pipe A & dpll A up */
8690         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8691         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8692
8693         /* Lenovo U160 cannot use SSC on LVDS */
8694         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8695
8696         /* Sony Vaio Y cannot use SSC on LVDS */
8697         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8698
8699         /* Acer Aspire 5734Z must invert backlight brightness */
8700         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8701 };
8702
8703 static void intel_init_quirks(struct drm_device *dev)
8704 {
8705         struct pci_dev *d = dev->pdev;
8706         int i;
8707
8708         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8709                 struct intel_quirk *q = &intel_quirks[i];
8710
8711                 if (d->device == q->device &&
8712                     (d->subsystem_vendor == q->subsystem_vendor ||
8713                      q->subsystem_vendor == PCI_ANY_ID) &&
8714                     (d->subsystem_device == q->subsystem_device ||
8715                      q->subsystem_device == PCI_ANY_ID))
8716                         q->hook(dev);
8717         }
8718         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8719                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8720                         intel_dmi_quirks[i].hook(dev);
8721         }
8722 }
8723
8724 /* Disable the VGA plane that we never use */
8725 static void i915_disable_vga(struct drm_device *dev)
8726 {
8727         struct drm_i915_private *dev_priv = dev->dev_private;
8728         u8 sr1;
8729         u32 vga_reg;
8730
8731         if (HAS_PCH_SPLIT(dev))
8732                 vga_reg = CPU_VGACNTRL;
8733         else
8734                 vga_reg = VGACNTRL;
8735
8736         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8737         outb(SR01, VGA_SR_INDEX);
8738         sr1 = inb(VGA_SR_DATA);
8739         outb(sr1 | 1<<5, VGA_SR_DATA);
8740         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8741         udelay(300);
8742
8743         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8744         POSTING_READ(vga_reg);
8745 }
8746
8747 void intel_modeset_init_hw(struct drm_device *dev)
8748 {
8749         /* We attempt to init the necessary power wells early in the initialization
8750          * time, so the subsystems that expect power to be enabled can work.
8751          */
8752         intel_init_power_wells(dev);
8753
8754         intel_prepare_ddi(dev);
8755
8756         intel_init_clock_gating(dev);
8757
8758         mutex_lock(&dev->struct_mutex);
8759         intel_enable_gt_powersave(dev);
8760         mutex_unlock(&dev->struct_mutex);
8761 }
8762
8763 void intel_modeset_init(struct drm_device *dev)
8764 {
8765         struct drm_i915_private *dev_priv = dev->dev_private;
8766         int i, ret;
8767
8768         drm_mode_config_init(dev);
8769
8770         dev->mode_config.min_width = 0;
8771         dev->mode_config.min_height = 0;
8772
8773         dev->mode_config.preferred_depth = 24;
8774         dev->mode_config.prefer_shadow = 1;
8775
8776         dev->mode_config.funcs = &intel_mode_funcs;
8777
8778         intel_init_quirks(dev);
8779
8780         intel_init_pm(dev);
8781
8782         intel_init_display(dev);
8783
8784         if (IS_GEN2(dev)) {
8785                 dev->mode_config.max_width = 2048;
8786                 dev->mode_config.max_height = 2048;
8787         } else if (IS_GEN3(dev)) {
8788                 dev->mode_config.max_width = 4096;
8789                 dev->mode_config.max_height = 4096;
8790         } else {
8791                 dev->mode_config.max_width = 8192;
8792                 dev->mode_config.max_height = 8192;
8793         }
8794         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8795
8796         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8797                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8798
8799         for (i = 0; i < dev_priv->num_pipe; i++) {
8800                 intel_crtc_init(dev, i);
8801                 ret = intel_plane_init(dev, i);
8802                 if (ret)
8803                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8804         }
8805
8806         intel_cpu_pll_init(dev);
8807         intel_pch_pll_init(dev);
8808
8809         /* Just disable it once at startup */
8810         i915_disable_vga(dev);
8811         intel_setup_outputs(dev);
8812 }
8813
8814 static void
8815 intel_connector_break_all_links(struct intel_connector *connector)
8816 {
8817         connector->base.dpms = DRM_MODE_DPMS_OFF;
8818         connector->base.encoder = NULL;
8819         connector->encoder->connectors_active = false;
8820         connector->encoder->base.crtc = NULL;
8821 }
8822
8823 static void intel_enable_pipe_a(struct drm_device *dev)
8824 {
8825         struct intel_connector *connector;
8826         struct drm_connector *crt = NULL;
8827         struct intel_load_detect_pipe load_detect_temp;
8828
8829         /* We can't just switch on the pipe A, we need to set things up with a
8830          * proper mode and output configuration. As a gross hack, enable pipe A
8831          * by enabling the load detect pipe once. */
8832         list_for_each_entry(connector,
8833                             &dev->mode_config.connector_list,
8834                             base.head) {
8835                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8836                         crt = &connector->base;
8837                         break;
8838                 }
8839         }
8840
8841         if (!crt)
8842                 return;
8843
8844         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8845                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8846
8847
8848 }
8849
8850 static bool
8851 intel_check_plane_mapping(struct intel_crtc *crtc)
8852 {
8853         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8854         u32 reg, val;
8855
8856         if (dev_priv->num_pipe == 1)
8857                 return true;
8858
8859         reg = DSPCNTR(!crtc->plane);
8860         val = I915_READ(reg);
8861
8862         if ((val & DISPLAY_PLANE_ENABLE) &&
8863             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8864                 return false;
8865
8866         return true;
8867 }
8868
8869 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8870 {
8871         struct drm_device *dev = crtc->base.dev;
8872         struct drm_i915_private *dev_priv = dev->dev_private;
8873         u32 reg;
8874
8875         /* Clear any frame start delays used for debugging left by the BIOS */
8876         reg = PIPECONF(crtc->cpu_transcoder);
8877         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8878
8879         /* We need to sanitize the plane -> pipe mapping first because this will
8880          * disable the crtc (and hence change the state) if it is wrong. Note
8881          * that gen4+ has a fixed plane -> pipe mapping.  */
8882         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8883                 struct intel_connector *connector;
8884                 bool plane;
8885
8886                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8887                               crtc->base.base.id);
8888
8889                 /* Pipe has the wrong plane attached and the plane is active.
8890                  * Temporarily change the plane mapping and disable everything
8891                  * ...  */
8892                 plane = crtc->plane;
8893                 crtc->plane = !plane;
8894                 dev_priv->display.crtc_disable(&crtc->base);
8895                 crtc->plane = plane;
8896
8897                 /* ... and break all links. */
8898                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8899                                     base.head) {
8900                         if (connector->encoder->base.crtc != &crtc->base)
8901                                 continue;
8902
8903                         intel_connector_break_all_links(connector);
8904                 }
8905
8906                 WARN_ON(crtc->active);
8907                 crtc->base.enabled = false;
8908         }
8909
8910         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8911             crtc->pipe == PIPE_A && !crtc->active) {
8912                 /* BIOS forgot to enable pipe A, this mostly happens after
8913                  * resume. Force-enable the pipe to fix this, the update_dpms
8914                  * call below we restore the pipe to the right state, but leave
8915                  * the required bits on. */
8916                 intel_enable_pipe_a(dev);
8917         }
8918
8919         /* Adjust the state of the output pipe according to whether we
8920          * have active connectors/encoders. */
8921         intel_crtc_update_dpms(&crtc->base);
8922
8923         if (crtc->active != crtc->base.enabled) {
8924                 struct intel_encoder *encoder;
8925
8926                 /* This can happen either due to bugs in the get_hw_state
8927                  * functions or because the pipe is force-enabled due to the
8928                  * pipe A quirk. */
8929                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8930                               crtc->base.base.id,
8931                               crtc->base.enabled ? "enabled" : "disabled",
8932                               crtc->active ? "enabled" : "disabled");
8933
8934                 crtc->base.enabled = crtc->active;
8935
8936                 /* Because we only establish the connector -> encoder ->
8937                  * crtc links if something is active, this means the
8938                  * crtc is now deactivated. Break the links. connector
8939                  * -> encoder links are only establish when things are
8940                  *  actually up, hence no need to break them. */
8941                 WARN_ON(crtc->active);
8942
8943                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8944                         WARN_ON(encoder->connectors_active);
8945                         encoder->base.crtc = NULL;
8946                 }
8947         }
8948 }
8949
8950 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8951 {
8952         struct intel_connector *connector;
8953         struct drm_device *dev = encoder->base.dev;
8954
8955         /* We need to check both for a crtc link (meaning that the
8956          * encoder is active and trying to read from a pipe) and the
8957          * pipe itself being active. */
8958         bool has_active_crtc = encoder->base.crtc &&
8959                 to_intel_crtc(encoder->base.crtc)->active;
8960
8961         if (encoder->connectors_active && !has_active_crtc) {
8962                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8963                               encoder->base.base.id,
8964                               drm_get_encoder_name(&encoder->base));
8965
8966                 /* Connector is active, but has no active pipe. This is
8967                  * fallout from our resume register restoring. Disable
8968                  * the encoder manually again. */
8969                 if (encoder->base.crtc) {
8970                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8971                                       encoder->base.base.id,
8972                                       drm_get_encoder_name(&encoder->base));
8973                         encoder->disable(encoder);
8974                 }
8975
8976                 /* Inconsistent output/port/pipe state happens presumably due to
8977                  * a bug in one of the get_hw_state functions. Or someplace else
8978                  * in our code, like the register restore mess on resume. Clamp
8979                  * things to off as a safer default. */
8980                 list_for_each_entry(connector,
8981                                     &dev->mode_config.connector_list,
8982                                     base.head) {
8983                         if (connector->encoder != encoder)
8984                                 continue;
8985
8986                         intel_connector_break_all_links(connector);
8987                 }
8988         }
8989         /* Enabled encoders without active connectors will be fixed in
8990          * the crtc fixup. */
8991 }
8992
8993 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8994  * and i915 state tracking structures. */
8995 void intel_modeset_setup_hw_state(struct drm_device *dev,
8996                                   bool force_restore)
8997 {
8998         struct drm_i915_private *dev_priv = dev->dev_private;
8999         enum pipe pipe;
9000         u32 tmp;
9001         struct intel_crtc *crtc;
9002         struct intel_encoder *encoder;
9003         struct intel_connector *connector;
9004
9005         if (IS_HASWELL(dev)) {
9006                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9007
9008                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9009                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9010                         case TRANS_DDI_EDP_INPUT_A_ON:
9011                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9012                                 pipe = PIPE_A;
9013                                 break;
9014                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9015                                 pipe = PIPE_B;
9016                                 break;
9017                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9018                                 pipe = PIPE_C;
9019                                 break;
9020                         }
9021
9022                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9023                         crtc->cpu_transcoder = TRANSCODER_EDP;
9024
9025                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9026                                       pipe_name(pipe));
9027                 }
9028         }
9029
9030         for_each_pipe(pipe) {
9031                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9032
9033                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9034                 if (tmp & PIPECONF_ENABLE)
9035                         crtc->active = true;
9036                 else
9037                         crtc->active = false;
9038
9039                 crtc->base.enabled = crtc->active;
9040
9041                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9042                               crtc->base.base.id,
9043                               crtc->active ? "enabled" : "disabled");
9044         }
9045
9046         if (IS_HASWELL(dev))
9047                 intel_ddi_setup_hw_pll_state(dev);
9048
9049         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9050                             base.head) {
9051                 pipe = 0;
9052
9053                 if (encoder->get_hw_state(encoder, &pipe)) {
9054                         encoder->base.crtc =
9055                                 dev_priv->pipe_to_crtc_mapping[pipe];
9056                 } else {
9057                         encoder->base.crtc = NULL;
9058                 }
9059
9060                 encoder->connectors_active = false;
9061                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9062                               encoder->base.base.id,
9063                               drm_get_encoder_name(&encoder->base),
9064                               encoder->base.crtc ? "enabled" : "disabled",
9065                               pipe);
9066         }
9067
9068         list_for_each_entry(connector, &dev->mode_config.connector_list,
9069                             base.head) {
9070                 if (connector->get_hw_state(connector)) {
9071                         connector->base.dpms = DRM_MODE_DPMS_ON;
9072                         connector->encoder->connectors_active = true;
9073                         connector->base.encoder = &connector->encoder->base;
9074                 } else {
9075                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9076                         connector->base.encoder = NULL;
9077                 }
9078                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9079                               connector->base.base.id,
9080                               drm_get_connector_name(&connector->base),
9081                               connector->base.encoder ? "enabled" : "disabled");
9082         }
9083
9084         /* HW state is read out, now we need to sanitize this mess. */
9085         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9086                             base.head) {
9087                 intel_sanitize_encoder(encoder);
9088         }
9089
9090         for_each_pipe(pipe) {
9091                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9092                 intel_sanitize_crtc(crtc);
9093         }
9094
9095         if (force_restore) {
9096                 for_each_pipe(pipe) {
9097                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9098                         intel_set_mode(&crtc->base, &crtc->base.mode,
9099                                        crtc->base.x, crtc->base.y, crtc->base.fb);
9100                 }
9101         } else {
9102                 intel_modeset_update_staged_output_state(dev);
9103         }
9104
9105         intel_modeset_check_state(dev);
9106
9107         drm_mode_config_reset(dev);
9108 }
9109
9110 void intel_modeset_gem_init(struct drm_device *dev)
9111 {
9112         intel_modeset_init_hw(dev);
9113
9114         intel_setup_overlay(dev);
9115
9116         intel_modeset_setup_hw_state(dev, false);
9117 }
9118
9119 void intel_modeset_cleanup(struct drm_device *dev)
9120 {
9121         struct drm_i915_private *dev_priv = dev->dev_private;
9122         struct drm_crtc *crtc;
9123         struct intel_crtc *intel_crtc;
9124
9125         drm_kms_helper_poll_fini(dev);
9126         mutex_lock(&dev->struct_mutex);
9127
9128         intel_unregister_dsm_handler();
9129
9130
9131         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9132                 /* Skip inactive CRTCs */
9133                 if (!crtc->fb)
9134                         continue;
9135
9136                 intel_crtc = to_intel_crtc(crtc);
9137                 intel_increase_pllclock(crtc);
9138         }
9139
9140         intel_disable_fbc(dev);
9141
9142         intel_disable_gt_powersave(dev);
9143
9144         ironlake_teardown_rc6(dev);
9145
9146         if (IS_VALLEYVIEW(dev))
9147                 vlv_init_dpio(dev);
9148
9149         mutex_unlock(&dev->struct_mutex);
9150
9151         /* Disable the irq before mode object teardown, for the irq might
9152          * enqueue unpin/hotplug work. */
9153         drm_irq_uninstall(dev);
9154         cancel_work_sync(&dev_priv->hotplug_work);
9155         cancel_work_sync(&dev_priv->rps.work);
9156
9157         /* flush any delayed tasks or pending work */
9158         flush_scheduled_work();
9159
9160         drm_mode_config_cleanup(dev);
9161 }
9162
9163 /*
9164  * Return which encoder is currently attached for connector.
9165  */
9166 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9167 {
9168         return &intel_attached_encoder(connector)->base;
9169 }
9170
9171 void intel_connector_attach_encoder(struct intel_connector *connector,
9172                                     struct intel_encoder *encoder)
9173 {
9174         connector->encoder = encoder;
9175         drm_mode_connector_attach_encoder(&connector->base,
9176                                           &encoder->base);
9177 }
9178
9179 /*
9180  * set vga decode state - true == enable VGA decode
9181  */
9182 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9183 {
9184         struct drm_i915_private *dev_priv = dev->dev_private;
9185         u16 gmch_ctrl;
9186
9187         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9188         if (state)
9189                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9190         else
9191                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9192         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9193         return 0;
9194 }
9195
9196 #ifdef CONFIG_DEBUG_FS
9197 #include <linux/seq_file.h>
9198
9199 struct intel_display_error_state {
9200         struct intel_cursor_error_state {
9201                 u32 control;
9202                 u32 position;
9203                 u32 base;
9204                 u32 size;
9205         } cursor[I915_MAX_PIPES];
9206
9207         struct intel_pipe_error_state {
9208                 u32 conf;
9209                 u32 source;
9210
9211                 u32 htotal;
9212                 u32 hblank;
9213                 u32 hsync;
9214                 u32 vtotal;
9215                 u32 vblank;
9216                 u32 vsync;
9217         } pipe[I915_MAX_PIPES];
9218
9219         struct intel_plane_error_state {
9220                 u32 control;
9221                 u32 stride;
9222                 u32 size;
9223                 u32 pos;
9224                 u32 addr;
9225                 u32 surface;
9226                 u32 tile_offset;
9227         } plane[I915_MAX_PIPES];
9228 };
9229
9230 struct intel_display_error_state *
9231 intel_display_capture_error_state(struct drm_device *dev)
9232 {
9233         drm_i915_private_t *dev_priv = dev->dev_private;
9234         struct intel_display_error_state *error;
9235         enum transcoder cpu_transcoder;
9236         int i;
9237
9238         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9239         if (error == NULL)
9240                 return NULL;
9241
9242         for_each_pipe(i) {
9243                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9244
9245                 error->cursor[i].control = I915_READ(CURCNTR(i));
9246                 error->cursor[i].position = I915_READ(CURPOS(i));
9247                 error->cursor[i].base = I915_READ(CURBASE(i));
9248
9249                 error->plane[i].control = I915_READ(DSPCNTR(i));
9250                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9251                 error->plane[i].size = I915_READ(DSPSIZE(i));
9252                 error->plane[i].pos = I915_READ(DSPPOS(i));
9253                 error->plane[i].addr = I915_READ(DSPADDR(i));
9254                 if (INTEL_INFO(dev)->gen >= 4) {
9255                         error->plane[i].surface = I915_READ(DSPSURF(i));
9256                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9257                 }
9258
9259                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9260                 error->pipe[i].source = I915_READ(PIPESRC(i));
9261                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9262                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9263                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9264                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9265                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9266                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9267         }
9268
9269         return error;
9270 }
9271
9272 void
9273 intel_display_print_error_state(struct seq_file *m,
9274                                 struct drm_device *dev,
9275                                 struct intel_display_error_state *error)
9276 {
9277         drm_i915_private_t *dev_priv = dev->dev_private;
9278         int i;
9279
9280         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9281         for_each_pipe(i) {
9282                 seq_printf(m, "Pipe [%d]:\n", i);
9283                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9284                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9285                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9286                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9287                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9288                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9289                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9290                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9291
9292                 seq_printf(m, "Plane [%d]:\n", i);
9293                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9294                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9295                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9296                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9297                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9298                 if (INTEL_INFO(dev)->gen >= 4) {
9299                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9300                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9301                 }
9302
9303                 seq_printf(m, "Cursor [%d]:\n", i);
9304                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9305                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9306                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9307         }
9308 }
9309 #endif