]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Do not attempt to re-enable an unconnected primary plane
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57         int     min, max;
58 } intel_range_t;
59
60 typedef struct {
61         int     dot_limit;
62         int     p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
68         intel_p2_t          p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74         struct drm_i915_private *dev_priv = dev->dev_private;
75
76         WARN_ON(!HAS_PCH_SPLIT(dev));
77
78         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84         if (IS_GEN5(dev)) {
85                 struct drm_i915_private *dev_priv = dev->dev_private;
86                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87         } else
88                 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92         .dot = { .min = 25000, .max = 350000 },
93         .vco = { .min = 930000, .max = 1400000 },
94         .n = { .min = 3, .max = 16 },
95         .m = { .min = 96, .max = 140 },
96         .m1 = { .min = 18, .max = 26 },
97         .m2 = { .min = 6, .max = 16 },
98         .p = { .min = 4, .max = 128 },
99         .p1 = { .min = 2, .max = 33 },
100         .p2 = { .dot_limit = 165000,
101                 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105         .dot = { .min = 25000, .max = 350000 },
106         .vco = { .min = 930000, .max = 1400000 },
107         .n = { .min = 3, .max = 16 },
108         .m = { .min = 96, .max = 140 },
109         .m1 = { .min = 18, .max = 26 },
110         .m2 = { .min = 6, .max = 16 },
111         .p = { .min = 4, .max = 128 },
112         .p1 = { .min = 2, .max = 33 },
113         .p2 = { .dot_limit = 165000,
114                 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118         .dot = { .min = 25000, .max = 350000 },
119         .vco = { .min = 930000, .max = 1400000 },
120         .n = { .min = 3, .max = 16 },
121         .m = { .min = 96, .max = 140 },
122         .m1 = { .min = 18, .max = 26 },
123         .m2 = { .min = 6, .max = 16 },
124         .p = { .min = 4, .max = 128 },
125         .p1 = { .min = 1, .max = 6 },
126         .p2 = { .dot_limit = 165000,
127                 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131         .dot = { .min = 20000, .max = 400000 },
132         .vco = { .min = 1400000, .max = 2800000 },
133         .n = { .min = 1, .max = 6 },
134         .m = { .min = 70, .max = 120 },
135         .m1 = { .min = 8, .max = 18 },
136         .m2 = { .min = 3, .max = 7 },
137         .p = { .min = 5, .max = 80 },
138         .p1 = { .min = 1, .max = 8 },
139         .p2 = { .dot_limit = 200000,
140                 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144         .dot = { .min = 20000, .max = 400000 },
145         .vco = { .min = 1400000, .max = 2800000 },
146         .n = { .min = 1, .max = 6 },
147         .m = { .min = 70, .max = 120 },
148         .m1 = { .min = 8, .max = 18 },
149         .m2 = { .min = 3, .max = 7 },
150         .p = { .min = 7, .max = 98 },
151         .p1 = { .min = 1, .max = 8 },
152         .p2 = { .dot_limit = 112000,
153                 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158         .dot = { .min = 25000, .max = 270000 },
159         .vco = { .min = 1750000, .max = 3500000},
160         .n = { .min = 1, .max = 4 },
161         .m = { .min = 104, .max = 138 },
162         .m1 = { .min = 17, .max = 23 },
163         .m2 = { .min = 5, .max = 11 },
164         .p = { .min = 10, .max = 30 },
165         .p1 = { .min = 1, .max = 3},
166         .p2 = { .dot_limit = 270000,
167                 .p2_slow = 10,
168                 .p2_fast = 10
169         },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173         .dot = { .min = 22000, .max = 400000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 16, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 5, .max = 80 },
180         .p1 = { .min = 1, .max = 8},
181         .p2 = { .dot_limit = 165000,
182                 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186         .dot = { .min = 20000, .max = 115000 },
187         .vco = { .min = 1750000, .max = 3500000 },
188         .n = { .min = 1, .max = 3 },
189         .m = { .min = 104, .max = 138 },
190         .m1 = { .min = 17, .max = 23 },
191         .m2 = { .min = 5, .max = 11 },
192         .p = { .min = 28, .max = 112 },
193         .p1 = { .min = 2, .max = 8 },
194         .p2 = { .dot_limit = 0,
195                 .p2_slow = 14, .p2_fast = 14
196         },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200         .dot = { .min = 80000, .max = 224000 },
201         .vco = { .min = 1750000, .max = 3500000 },
202         .n = { .min = 1, .max = 3 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 17, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 14, .max = 42 },
207         .p1 = { .min = 2, .max = 6 },
208         .p2 = { .dot_limit = 0,
209                 .p2_slow = 7, .p2_fast = 7
210         },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214         .dot = { .min = 20000, .max = 400000},
215         .vco = { .min = 1700000, .max = 3500000 },
216         /* Pineview's Ncounter is a ring counter */
217         .n = { .min = 3, .max = 6 },
218         .m = { .min = 2, .max = 256 },
219         /* Pineview only has one combined m divider, which we treat as m2. */
220         .m1 = { .min = 0, .max = 0 },
221         .m2 = { .min = 0, .max = 254 },
222         .p = { .min = 5, .max = 80 },
223         .p1 = { .min = 1, .max = 8 },
224         .p2 = { .dot_limit = 200000,
225                 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229         .dot = { .min = 20000, .max = 400000 },
230         .vco = { .min = 1700000, .max = 3500000 },
231         .n = { .min = 3, .max = 6 },
232         .m = { .min = 2, .max = 256 },
233         .m1 = { .min = 0, .max = 0 },
234         .m2 = { .min = 0, .max = 254 },
235         .p = { .min = 7, .max = 112 },
236         .p1 = { .min = 1, .max = 8 },
237         .p2 = { .dot_limit = 112000,
238                 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242  *
243  * We calculate clock using (register_value + 2) for N/M1/M2, so here
244  * the range value for them is (actual_value - 2).
245  */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247         .dot = { .min = 25000, .max = 350000 },
248         .vco = { .min = 1760000, .max = 3510000 },
249         .n = { .min = 1, .max = 5 },
250         .m = { .min = 79, .max = 127 },
251         .m1 = { .min = 12, .max = 22 },
252         .m2 = { .min = 5, .max = 9 },
253         .p = { .min = 5, .max = 80 },
254         .p1 = { .min = 1, .max = 8 },
255         .p2 = { .dot_limit = 225000,
256                 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260         .dot = { .min = 25000, .max = 350000 },
261         .vco = { .min = 1760000, .max = 3510000 },
262         .n = { .min = 1, .max = 3 },
263         .m = { .min = 79, .max = 118 },
264         .m1 = { .min = 12, .max = 22 },
265         .m2 = { .min = 5, .max = 9 },
266         .p = { .min = 28, .max = 112 },
267         .p1 = { .min = 2, .max = 8 },
268         .p2 = { .dot_limit = 225000,
269                 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 3 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 14, .max = 56 },
280         .p1 = { .min = 2, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 2 },
290         .m = { .min = 79, .max = 126 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 126 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 42 },
307         .p1 = { .min = 2, .max = 6 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv = {
313          /*
314           * These are the data rate limits (measured in fast clocks)
315           * since those are the strictest limits we have. The fast
316           * clock and actual rate limits are more relaxed, so checking
317           * them would make no difference.
318           */
319         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320         .vco = { .min = 4000000, .max = 6000000 },
321         .n = { .min = 1, .max = 7 },
322         .m1 = { .min = 2, .max = 3 },
323         .m2 = { .min = 11, .max = 156 },
324         .p1 = { .min = 2, .max = 3 },
325         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326 };
327
328 static void vlv_clock(int refclk, intel_clock_t *clock)
329 {
330         clock->m = clock->m1 * clock->m2;
331         clock->p = clock->p1 * clock->p2;
332         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
333         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
334 }
335
336 /**
337  * Returns whether any output on the specified pipe is of the specified type
338  */
339 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
340 {
341         struct drm_device *dev = crtc->dev;
342         struct intel_encoder *encoder;
343
344         for_each_encoder_on_crtc(dev, crtc, encoder)
345                 if (encoder->type == type)
346                         return true;
347
348         return false;
349 }
350
351 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
352                                                 int refclk)
353 {
354         struct drm_device *dev = crtc->dev;
355         const intel_limit_t *limit;
356
357         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
358                 if (intel_is_dual_link_lvds(dev)) {
359                         if (refclk == 100000)
360                                 limit = &intel_limits_ironlake_dual_lvds_100m;
361                         else
362                                 limit = &intel_limits_ironlake_dual_lvds;
363                 } else {
364                         if (refclk == 100000)
365                                 limit = &intel_limits_ironlake_single_lvds_100m;
366                         else
367                                 limit = &intel_limits_ironlake_single_lvds;
368                 }
369         } else
370                 limit = &intel_limits_ironlake_dac;
371
372         return limit;
373 }
374
375 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
376 {
377         struct drm_device *dev = crtc->dev;
378         const intel_limit_t *limit;
379
380         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
381                 if (intel_is_dual_link_lvds(dev))
382                         limit = &intel_limits_g4x_dual_channel_lvds;
383                 else
384                         limit = &intel_limits_g4x_single_channel_lvds;
385         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
386                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
387                 limit = &intel_limits_g4x_hdmi;
388         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
389                 limit = &intel_limits_g4x_sdvo;
390         } else /* The option is for other outputs */
391                 limit = &intel_limits_i9xx_sdvo;
392
393         return limit;
394 }
395
396 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
397 {
398         struct drm_device *dev = crtc->dev;
399         const intel_limit_t *limit;
400
401         if (HAS_PCH_SPLIT(dev))
402                 limit = intel_ironlake_limit(crtc, refclk);
403         else if (IS_G4X(dev)) {
404                 limit = intel_g4x_limit(crtc);
405         } else if (IS_PINEVIEW(dev)) {
406                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407                         limit = &intel_limits_pineview_lvds;
408                 else
409                         limit = &intel_limits_pineview_sdvo;
410         } else if (IS_VALLEYVIEW(dev)) {
411                 limit = &intel_limits_vlv;
412         } else if (!IS_GEN2(dev)) {
413                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
414                         limit = &intel_limits_i9xx_lvds;
415                 else
416                         limit = &intel_limits_i9xx_sdvo;
417         } else {
418                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419                         limit = &intel_limits_i8xx_lvds;
420                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
421                         limit = &intel_limits_i8xx_dvo;
422                 else
423                         limit = &intel_limits_i8xx_dac;
424         }
425         return limit;
426 }
427
428 /* m1 is reserved as 0 in Pineview, n is a ring counter */
429 static void pineview_clock(int refclk, intel_clock_t *clock)
430 {
431         clock->m = clock->m2 + 2;
432         clock->p = clock->p1 * clock->p2;
433         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
434         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
435 }
436
437 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
438 {
439         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
440 }
441
442 static void i9xx_clock(int refclk, intel_clock_t *clock)
443 {
444         clock->m = i9xx_dpll_compute_m(clock);
445         clock->p = clock->p1 * clock->p2;
446         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
447         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
448 }
449
450 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
451 /**
452  * Returns whether the given set of divisors are valid for a given refclk with
453  * the given connectors.
454  */
455
456 static bool intel_PLL_is_valid(struct drm_device *dev,
457                                const intel_limit_t *limit,
458                                const intel_clock_t *clock)
459 {
460         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
461                 INTELPllInvalid("n out of range\n");
462         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
463                 INTELPllInvalid("p1 out of range\n");
464         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
465                 INTELPllInvalid("m2 out of range\n");
466         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
467                 INTELPllInvalid("m1 out of range\n");
468
469         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
470                 if (clock->m1 <= clock->m2)
471                         INTELPllInvalid("m1 <= m2\n");
472
473         if (!IS_VALLEYVIEW(dev)) {
474                 if (clock->p < limit->p.min || limit->p.max < clock->p)
475                         INTELPllInvalid("p out of range\n");
476                 if (clock->m < limit->m.min || limit->m.max < clock->m)
477                         INTELPllInvalid("m out of range\n");
478         }
479
480         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481                 INTELPllInvalid("vco out of range\n");
482         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483          * connector, etc., rather than just a single range.
484          */
485         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486                 INTELPllInvalid("dot out of range\n");
487
488         return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493                     int target, int refclk, intel_clock_t *match_clock,
494                     intel_clock_t *best_clock)
495 {
496         struct drm_device *dev = crtc->dev;
497         intel_clock_t clock;
498         int err = target;
499
500         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501                 /*
502                  * For LVDS just rely on its current settings for dual-channel.
503                  * We haven't figured out how to reliably set up different
504                  * single/dual channel state, if we even can.
505                  */
506                 if (intel_is_dual_link_lvds(dev))
507                         clock.p2 = limit->p2.p2_fast;
508                 else
509                         clock.p2 = limit->p2.p2_slow;
510         } else {
511                 if (target < limit->p2.dot_limit)
512                         clock.p2 = limit->p2.p2_slow;
513                 else
514                         clock.p2 = limit->p2.p2_fast;
515         }
516
517         memset(best_clock, 0, sizeof(*best_clock));
518
519         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520              clock.m1++) {
521                 for (clock.m2 = limit->m2.min;
522                      clock.m2 <= limit->m2.max; clock.m2++) {
523                         if (clock.m2 >= clock.m1)
524                                 break;
525                         for (clock.n = limit->n.min;
526                              clock.n <= limit->n.max; clock.n++) {
527                                 for (clock.p1 = limit->p1.min;
528                                         clock.p1 <= limit->p1.max; clock.p1++) {
529                                         int this_err;
530
531                                         i9xx_clock(refclk, &clock);
532                                         if (!intel_PLL_is_valid(dev, limit,
533                                                                 &clock))
534                                                 continue;
535                                         if (match_clock &&
536                                             clock.p != match_clock->p)
537                                                 continue;
538
539                                         this_err = abs(clock.dot - target);
540                                         if (this_err < err) {
541                                                 *best_clock = clock;
542                                                 err = this_err;
543                                         }
544                                 }
545                         }
546                 }
547         }
548
549         return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554                    int target, int refclk, intel_clock_t *match_clock,
555                    intel_clock_t *best_clock)
556 {
557         struct drm_device *dev = crtc->dev;
558         intel_clock_t clock;
559         int err = target;
560
561         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562                 /*
563                  * For LVDS just rely on its current settings for dual-channel.
564                  * We haven't figured out how to reliably set up different
565                  * single/dual channel state, if we even can.
566                  */
567                 if (intel_is_dual_link_lvds(dev))
568                         clock.p2 = limit->p2.p2_fast;
569                 else
570                         clock.p2 = limit->p2.p2_slow;
571         } else {
572                 if (target < limit->p2.dot_limit)
573                         clock.p2 = limit->p2.p2_slow;
574                 else
575                         clock.p2 = limit->p2.p2_fast;
576         }
577
578         memset(best_clock, 0, sizeof(*best_clock));
579
580         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581              clock.m1++) {
582                 for (clock.m2 = limit->m2.min;
583                      clock.m2 <= limit->m2.max; clock.m2++) {
584                         for (clock.n = limit->n.min;
585                              clock.n <= limit->n.max; clock.n++) {
586                                 for (clock.p1 = limit->p1.min;
587                                         clock.p1 <= limit->p1.max; clock.p1++) {
588                                         int this_err;
589
590                                         pineview_clock(refclk, &clock);
591                                         if (!intel_PLL_is_valid(dev, limit,
592                                                                 &clock))
593                                                 continue;
594                                         if (match_clock &&
595                                             clock.p != match_clock->p)
596                                                 continue;
597
598                                         this_err = abs(clock.dot - target);
599                                         if (this_err < err) {
600                                                 *best_clock = clock;
601                                                 err = this_err;
602                                         }
603                                 }
604                         }
605                 }
606         }
607
608         return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613                    int target, int refclk, intel_clock_t *match_clock,
614                    intel_clock_t *best_clock)
615 {
616         struct drm_device *dev = crtc->dev;
617         intel_clock_t clock;
618         int max_n;
619         bool found;
620         /* approximately equals target * 0.00585 */
621         int err_most = (target >> 8) + (target >> 9);
622         found = false;
623
624         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625                 if (intel_is_dual_link_lvds(dev))
626                         clock.p2 = limit->p2.p2_fast;
627                 else
628                         clock.p2 = limit->p2.p2_slow;
629         } else {
630                 if (target < limit->p2.dot_limit)
631                         clock.p2 = limit->p2.p2_slow;
632                 else
633                         clock.p2 = limit->p2.p2_fast;
634         }
635
636         memset(best_clock, 0, sizeof(*best_clock));
637         max_n = limit->n.max;
638         /* based on hardware requirement, prefer smaller n to precision */
639         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640                 /* based on hardware requirement, prefere larger m1,m2 */
641                 for (clock.m1 = limit->m1.max;
642                      clock.m1 >= limit->m1.min; clock.m1--) {
643                         for (clock.m2 = limit->m2.max;
644                              clock.m2 >= limit->m2.min; clock.m2--) {
645                                 for (clock.p1 = limit->p1.max;
646                                      clock.p1 >= limit->p1.min; clock.p1--) {
647                                         int this_err;
648
649                                         i9xx_clock(refclk, &clock);
650                                         if (!intel_PLL_is_valid(dev, limit,
651                                                                 &clock))
652                                                 continue;
653
654                                         this_err = abs(clock.dot - target);
655                                         if (this_err < err_most) {
656                                                 *best_clock = clock;
657                                                 err_most = this_err;
658                                                 max_n = clock.n;
659                                                 found = true;
660                                         }
661                                 }
662                         }
663                 }
664         }
665         return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670                    int target, int refclk, intel_clock_t *match_clock,
671                    intel_clock_t *best_clock)
672 {
673         struct drm_device *dev = crtc->dev;
674         intel_clock_t clock;
675         unsigned int bestppm = 1000000;
676         /* min update 19.2 MHz */
677         int max_n = min(limit->n.max, refclk / 19200);
678         bool found = false;
679
680         target *= 5; /* fast clock */
681
682         memset(best_clock, 0, sizeof(*best_clock));
683
684         /* based on hardware requirement, prefer smaller n to precision */
685         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
686                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
687                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
688                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
689                                 clock.p = clock.p1 * clock.p2;
690                                 /* based on hardware requirement, prefer bigger m1,m2 values */
691                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
692                                         unsigned int ppm, diff;
693
694                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
695                                                                      refclk * clock.m1);
696
697                                         vlv_clock(refclk, &clock);
698
699                                         if (!intel_PLL_is_valid(dev, limit,
700                                                                 &clock))
701                                                 continue;
702
703                                         diff = abs(clock.dot - target);
704                                         ppm = div_u64(1000000ULL * diff, target);
705
706                                         if (ppm < 100 && clock.p > best_clock->p) {
707                                                 bestppm = 0;
708                                                 *best_clock = clock;
709                                                 found = true;
710                                         }
711
712                                         if (bestppm >= 10 && ppm < bestppm - 10) {
713                                                 bestppm = ppm;
714                                                 *best_clock = clock;
715                                                 found = true;
716                                         }
717                                 }
718                         }
719                 }
720         }
721
722         return found;
723 }
724
725 bool intel_crtc_active(struct drm_crtc *crtc)
726 {
727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
728
729         /* Be paranoid as we can arrive here with only partial
730          * state retrieved from the hardware during setup.
731          *
732          * We can ditch the adjusted_mode.crtc_clock check as soon
733          * as Haswell has gained clock readout/fastboot support.
734          *
735          * We can ditch the crtc->fb check as soon as we can
736          * properly reconstruct framebuffers.
737          */
738         return intel_crtc->active && crtc->fb &&
739                 intel_crtc->config.adjusted_mode.crtc_clock;
740 }
741
742 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
743                                              enum pipe pipe)
744 {
745         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
747
748         return intel_crtc->config.cpu_transcoder;
749 }
750
751 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
752 {
753         struct drm_i915_private *dev_priv = dev->dev_private;
754         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
755
756         frame = I915_READ(frame_reg);
757
758         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
759                 DRM_DEBUG_KMS("vblank wait timed out\n");
760 }
761
762 /**
763  * intel_wait_for_vblank - wait for vblank on a given pipe
764  * @dev: drm device
765  * @pipe: pipe to wait for
766  *
767  * Wait for vblank to occur on a given pipe.  Needed for various bits of
768  * mode setting code.
769  */
770 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
771 {
772         struct drm_i915_private *dev_priv = dev->dev_private;
773         int pipestat_reg = PIPESTAT(pipe);
774
775         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
776                 g4x_wait_for_vblank(dev, pipe);
777                 return;
778         }
779
780         /* Clear existing vblank status. Note this will clear any other
781          * sticky status fields as well.
782          *
783          * This races with i915_driver_irq_handler() with the result
784          * that either function could miss a vblank event.  Here it is not
785          * fatal, as we will either wait upon the next vblank interrupt or
786          * timeout.  Generally speaking intel_wait_for_vblank() is only
787          * called during modeset at which time the GPU should be idle and
788          * should *not* be performing page flips and thus not waiting on
789          * vblanks...
790          * Currently, the result of us stealing a vblank from the irq
791          * handler is that a single frame will be skipped during swapbuffers.
792          */
793         I915_WRITE(pipestat_reg,
794                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
795
796         /* Wait for vblank interrupt bit to set */
797         if (wait_for(I915_READ(pipestat_reg) &
798                      PIPE_VBLANK_INTERRUPT_STATUS,
799                      50))
800                 DRM_DEBUG_KMS("vblank wait timed out\n");
801 }
802
803 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
804 {
805         struct drm_i915_private *dev_priv = dev->dev_private;
806         u32 reg = PIPEDSL(pipe);
807         u32 line1, line2;
808         u32 line_mask;
809
810         if (IS_GEN2(dev))
811                 line_mask = DSL_LINEMASK_GEN2;
812         else
813                 line_mask = DSL_LINEMASK_GEN3;
814
815         line1 = I915_READ(reg) & line_mask;
816         mdelay(5);
817         line2 = I915_READ(reg) & line_mask;
818
819         return line1 == line2;
820 }
821
822 /*
823  * intel_wait_for_pipe_off - wait for pipe to turn off
824  * @dev: drm device
825  * @pipe: pipe to wait for
826  *
827  * After disabling a pipe, we can't wait for vblank in the usual way,
828  * spinning on the vblank interrupt status bit, since we won't actually
829  * see an interrupt when the pipe is disabled.
830  *
831  * On Gen4 and above:
832  *   wait for the pipe register state bit to turn off
833  *
834  * Otherwise:
835  *   wait for the display line value to settle (it usually
836  *   ends up stopping at the start of the next frame).
837  *
838  */
839 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
840 {
841         struct drm_i915_private *dev_priv = dev->dev_private;
842         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
843                                                                       pipe);
844
845         if (INTEL_INFO(dev)->gen >= 4) {
846                 int reg = PIPECONF(cpu_transcoder);
847
848                 /* Wait for the Pipe State to go off */
849                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
850                              100))
851                         WARN(1, "pipe_off wait timed out\n");
852         } else {
853                 /* Wait for the display line to settle */
854                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
855                         WARN(1, "pipe_off wait timed out\n");
856         }
857 }
858
859 /*
860  * ibx_digital_port_connected - is the specified port connected?
861  * @dev_priv: i915 private structure
862  * @port: the port to test
863  *
864  * Returns true if @port is connected, false otherwise.
865  */
866 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
867                                 struct intel_digital_port *port)
868 {
869         u32 bit;
870
871         if (HAS_PCH_IBX(dev_priv->dev)) {
872                 switch(port->port) {
873                 case PORT_B:
874                         bit = SDE_PORTB_HOTPLUG;
875                         break;
876                 case PORT_C:
877                         bit = SDE_PORTC_HOTPLUG;
878                         break;
879                 case PORT_D:
880                         bit = SDE_PORTD_HOTPLUG;
881                         break;
882                 default:
883                         return true;
884                 }
885         } else {
886                 switch(port->port) {
887                 case PORT_B:
888                         bit = SDE_PORTB_HOTPLUG_CPT;
889                         break;
890                 case PORT_C:
891                         bit = SDE_PORTC_HOTPLUG_CPT;
892                         break;
893                 case PORT_D:
894                         bit = SDE_PORTD_HOTPLUG_CPT;
895                         break;
896                 default:
897                         return true;
898                 }
899         }
900
901         return I915_READ(SDEISR) & bit;
902 }
903
904 static const char *state_string(bool enabled)
905 {
906         return enabled ? "on" : "off";
907 }
908
909 /* Only for pre-ILK configs */
910 void assert_pll(struct drm_i915_private *dev_priv,
911                 enum pipe pipe, bool state)
912 {
913         int reg;
914         u32 val;
915         bool cur_state;
916
917         reg = DPLL(pipe);
918         val = I915_READ(reg);
919         cur_state = !!(val & DPLL_VCO_ENABLE);
920         WARN(cur_state != state,
921              "PLL state assertion failure (expected %s, current %s)\n",
922              state_string(state), state_string(cur_state));
923 }
924
925 /* XXX: the dsi pll is shared between MIPI DSI ports */
926 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
927 {
928         u32 val;
929         bool cur_state;
930
931         mutex_lock(&dev_priv->dpio_lock);
932         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
933         mutex_unlock(&dev_priv->dpio_lock);
934
935         cur_state = val & DSI_PLL_VCO_EN;
936         WARN(cur_state != state,
937              "DSI PLL state assertion failure (expected %s, current %s)\n",
938              state_string(state), state_string(cur_state));
939 }
940 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
941 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
942
943 struct intel_shared_dpll *
944 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
945 {
946         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
947
948         if (crtc->config.shared_dpll < 0)
949                 return NULL;
950
951         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
952 }
953
954 /* For ILK+ */
955 void assert_shared_dpll(struct drm_i915_private *dev_priv,
956                         struct intel_shared_dpll *pll,
957                         bool state)
958 {
959         bool cur_state;
960         struct intel_dpll_hw_state hw_state;
961
962         if (HAS_PCH_LPT(dev_priv->dev)) {
963                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
964                 return;
965         }
966
967         if (WARN (!pll,
968                   "asserting DPLL %s with no DPLL\n", state_string(state)))
969                 return;
970
971         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
972         WARN(cur_state != state,
973              "%s assertion failure (expected %s, current %s)\n",
974              pll->name, state_string(state), state_string(cur_state));
975 }
976
977 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
978                           enum pipe pipe, bool state)
979 {
980         int reg;
981         u32 val;
982         bool cur_state;
983         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
984                                                                       pipe);
985
986         if (HAS_DDI(dev_priv->dev)) {
987                 /* DDI does not have a specific FDI_TX register */
988                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
989                 val = I915_READ(reg);
990                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
991         } else {
992                 reg = FDI_TX_CTL(pipe);
993                 val = I915_READ(reg);
994                 cur_state = !!(val & FDI_TX_ENABLE);
995         }
996         WARN(cur_state != state,
997              "FDI TX state assertion failure (expected %s, current %s)\n",
998              state_string(state), state_string(cur_state));
999 }
1000 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1001 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1002
1003 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1004                           enum pipe pipe, bool state)
1005 {
1006         int reg;
1007         u32 val;
1008         bool cur_state;
1009
1010         reg = FDI_RX_CTL(pipe);
1011         val = I915_READ(reg);
1012         cur_state = !!(val & FDI_RX_ENABLE);
1013         WARN(cur_state != state,
1014              "FDI RX state assertion failure (expected %s, current %s)\n",
1015              state_string(state), state_string(cur_state));
1016 }
1017 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1018 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1019
1020 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1021                                       enum pipe pipe)
1022 {
1023         int reg;
1024         u32 val;
1025
1026         /* ILK FDI PLL is always enabled */
1027         if (dev_priv->info->gen == 5)
1028                 return;
1029
1030         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1031         if (HAS_DDI(dev_priv->dev))
1032                 return;
1033
1034         reg = FDI_TX_CTL(pipe);
1035         val = I915_READ(reg);
1036         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1037 }
1038
1039 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1040                        enum pipe pipe, bool state)
1041 {
1042         int reg;
1043         u32 val;
1044         bool cur_state;
1045
1046         reg = FDI_RX_CTL(pipe);
1047         val = I915_READ(reg);
1048         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1049         WARN(cur_state != state,
1050              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1051              state_string(state), state_string(cur_state));
1052 }
1053
1054 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1055                                   enum pipe pipe)
1056 {
1057         int pp_reg, lvds_reg;
1058         u32 val;
1059         enum pipe panel_pipe = PIPE_A;
1060         bool locked = true;
1061
1062         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1063                 pp_reg = PCH_PP_CONTROL;
1064                 lvds_reg = PCH_LVDS;
1065         } else {
1066                 pp_reg = PP_CONTROL;
1067                 lvds_reg = LVDS;
1068         }
1069
1070         val = I915_READ(pp_reg);
1071         if (!(val & PANEL_POWER_ON) ||
1072             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1073                 locked = false;
1074
1075         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1076                 panel_pipe = PIPE_B;
1077
1078         WARN(panel_pipe == pipe && locked,
1079              "panel assertion failure, pipe %c regs locked\n",
1080              pipe_name(pipe));
1081 }
1082
1083 static void assert_cursor(struct drm_i915_private *dev_priv,
1084                           enum pipe pipe, bool state)
1085 {
1086         struct drm_device *dev = dev_priv->dev;
1087         bool cur_state;
1088
1089         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1090                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1091         else if (IS_845G(dev) || IS_I865G(dev))
1092                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1093         else
1094                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1095
1096         WARN(cur_state != state,
1097              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1098              pipe_name(pipe), state_string(state), state_string(cur_state));
1099 }
1100 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1101 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1102
1103 void assert_pipe(struct drm_i915_private *dev_priv,
1104                  enum pipe pipe, bool state)
1105 {
1106         int reg;
1107         u32 val;
1108         bool cur_state;
1109         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1110                                                                       pipe);
1111
1112         /* if we need the pipe A quirk it must be always on */
1113         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1114                 state = true;
1115
1116         if (!intel_display_power_enabled(dev_priv->dev,
1117                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1118                 cur_state = false;
1119         } else {
1120                 reg = PIPECONF(cpu_transcoder);
1121                 val = I915_READ(reg);
1122                 cur_state = !!(val & PIPECONF_ENABLE);
1123         }
1124
1125         WARN(cur_state != state,
1126              "pipe %c assertion failure (expected %s, current %s)\n",
1127              pipe_name(pipe), state_string(state), state_string(cur_state));
1128 }
1129
1130 static void assert_plane(struct drm_i915_private *dev_priv,
1131                          enum plane plane, bool state)
1132 {
1133         int reg;
1134         u32 val;
1135         bool cur_state;
1136
1137         reg = DSPCNTR(plane);
1138         val = I915_READ(reg);
1139         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1140         WARN(cur_state != state,
1141              "plane %c assertion failure (expected %s, current %s)\n",
1142              plane_name(plane), state_string(state), state_string(cur_state));
1143 }
1144
1145 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1146 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1147
1148 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1149                                    enum pipe pipe)
1150 {
1151         struct drm_device *dev = dev_priv->dev;
1152         int reg, i;
1153         u32 val;
1154         int cur_pipe;
1155
1156         /* Primary planes are fixed to pipes on gen4+ */
1157         if (INTEL_INFO(dev)->gen >= 4) {
1158                 reg = DSPCNTR(pipe);
1159                 val = I915_READ(reg);
1160                 WARN((val & DISPLAY_PLANE_ENABLE),
1161                      "plane %c assertion failure, should be disabled but not\n",
1162                      plane_name(pipe));
1163                 return;
1164         }
1165
1166         /* Need to check both planes against the pipe */
1167         for_each_pipe(i) {
1168                 reg = DSPCNTR(i);
1169                 val = I915_READ(reg);
1170                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1171                         DISPPLANE_SEL_PIPE_SHIFT;
1172                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1173                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1174                      plane_name(i), pipe_name(pipe));
1175         }
1176 }
1177
1178 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1179                                     enum pipe pipe)
1180 {
1181         struct drm_device *dev = dev_priv->dev;
1182         int reg, i;
1183         u32 val;
1184
1185         if (IS_VALLEYVIEW(dev)) {
1186                 for (i = 0; i < dev_priv->num_plane; i++) {
1187                         reg = SPCNTR(pipe, i);
1188                         val = I915_READ(reg);
1189                         WARN((val & SP_ENABLE),
1190                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1191                              sprite_name(pipe, i), pipe_name(pipe));
1192                 }
1193         } else if (INTEL_INFO(dev)->gen >= 7) {
1194                 reg = SPRCTL(pipe);
1195                 val = I915_READ(reg);
1196                 WARN((val & SPRITE_ENABLE),
1197                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1198                      plane_name(pipe), pipe_name(pipe));
1199         } else if (INTEL_INFO(dev)->gen >= 5) {
1200                 reg = DVSCNTR(pipe);
1201                 val = I915_READ(reg);
1202                 WARN((val & DVS_ENABLE),
1203                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204                      plane_name(pipe), pipe_name(pipe));
1205         }
1206 }
1207
1208 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1209 {
1210         u32 val;
1211         bool enabled;
1212
1213         if (HAS_PCH_LPT(dev_priv->dev)) {
1214                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1215                 return;
1216         }
1217
1218         val = I915_READ(PCH_DREF_CONTROL);
1219         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1220                             DREF_SUPERSPREAD_SOURCE_MASK));
1221         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1222 }
1223
1224 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1225                                            enum pipe pipe)
1226 {
1227         int reg;
1228         u32 val;
1229         bool enabled;
1230
1231         reg = PCH_TRANSCONF(pipe);
1232         val = I915_READ(reg);
1233         enabled = !!(val & TRANS_ENABLE);
1234         WARN(enabled,
1235              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1236              pipe_name(pipe));
1237 }
1238
1239 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1240                             enum pipe pipe, u32 port_sel, u32 val)
1241 {
1242         if ((val & DP_PORT_EN) == 0)
1243                 return false;
1244
1245         if (HAS_PCH_CPT(dev_priv->dev)) {
1246                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1247                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1248                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1249                         return false;
1250         } else {
1251                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1252                         return false;
1253         }
1254         return true;
1255 }
1256
1257 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1258                               enum pipe pipe, u32 val)
1259 {
1260         if ((val & SDVO_ENABLE) == 0)
1261                 return false;
1262
1263         if (HAS_PCH_CPT(dev_priv->dev)) {
1264                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1265                         return false;
1266         } else {
1267                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1268                         return false;
1269         }
1270         return true;
1271 }
1272
1273 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1274                               enum pipe pipe, u32 val)
1275 {
1276         if ((val & LVDS_PORT_EN) == 0)
1277                 return false;
1278
1279         if (HAS_PCH_CPT(dev_priv->dev)) {
1280                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281                         return false;
1282         } else {
1283                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1284                         return false;
1285         }
1286         return true;
1287 }
1288
1289 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1290                               enum pipe pipe, u32 val)
1291 {
1292         if ((val & ADPA_DAC_ENABLE) == 0)
1293                 return false;
1294         if (HAS_PCH_CPT(dev_priv->dev)) {
1295                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1296                         return false;
1297         } else {
1298                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1299                         return false;
1300         }
1301         return true;
1302 }
1303
1304 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1305                                    enum pipe pipe, int reg, u32 port_sel)
1306 {
1307         u32 val = I915_READ(reg);
1308         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1309              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1310              reg, pipe_name(pipe));
1311
1312         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1313              && (val & DP_PIPEB_SELECT),
1314              "IBX PCH dp port still using transcoder B\n");
1315 }
1316
1317 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1318                                      enum pipe pipe, int reg)
1319 {
1320         u32 val = I915_READ(reg);
1321         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1322              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1323              reg, pipe_name(pipe));
1324
1325         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1326              && (val & SDVO_PIPE_B_SELECT),
1327              "IBX PCH hdmi port still using transcoder B\n");
1328 }
1329
1330 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1331                                       enum pipe pipe)
1332 {
1333         int reg;
1334         u32 val;
1335
1336         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1337         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1338         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1339
1340         reg = PCH_ADPA;
1341         val = I915_READ(reg);
1342         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1343              "PCH VGA enabled on transcoder %c, should be disabled\n",
1344              pipe_name(pipe));
1345
1346         reg = PCH_LVDS;
1347         val = I915_READ(reg);
1348         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1349              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1353         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1354         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1355 }
1356
1357 static void intel_init_dpio(struct drm_device *dev)
1358 {
1359         struct drm_i915_private *dev_priv = dev->dev_private;
1360
1361         if (!IS_VALLEYVIEW(dev))
1362                 return;
1363
1364         DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1365         /*
1366          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1367          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1368          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1369          *   b. The other bits such as sfr settings / modesel may all be set
1370          *      to 0.
1371          *
1372          * This should only be done on init and resume from S3 with both
1373          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1374          */
1375         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1376 }
1377
1378 static void vlv_enable_pll(struct intel_crtc *crtc)
1379 {
1380         struct drm_device *dev = crtc->base.dev;
1381         struct drm_i915_private *dev_priv = dev->dev_private;
1382         int reg = DPLL(crtc->pipe);
1383         u32 dpll = crtc->config.dpll_hw_state.dpll;
1384
1385         assert_pipe_disabled(dev_priv, crtc->pipe);
1386
1387         /* No really, not for ILK+ */
1388         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1389
1390         /* PLL is protected by panel, make sure we can write it */
1391         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1392                 assert_panel_unlocked(dev_priv, crtc->pipe);
1393
1394         I915_WRITE(reg, dpll);
1395         POSTING_READ(reg);
1396         udelay(150);
1397
1398         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1399                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1400
1401         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1402         POSTING_READ(DPLL_MD(crtc->pipe));
1403
1404         /* We do this three times for luck */
1405         I915_WRITE(reg, dpll);
1406         POSTING_READ(reg);
1407         udelay(150); /* wait for warmup */
1408         I915_WRITE(reg, dpll);
1409         POSTING_READ(reg);
1410         udelay(150); /* wait for warmup */
1411         I915_WRITE(reg, dpll);
1412         POSTING_READ(reg);
1413         udelay(150); /* wait for warmup */
1414 }
1415
1416 static void i9xx_enable_pll(struct intel_crtc *crtc)
1417 {
1418         struct drm_device *dev = crtc->base.dev;
1419         struct drm_i915_private *dev_priv = dev->dev_private;
1420         int reg = DPLL(crtc->pipe);
1421         u32 dpll = crtc->config.dpll_hw_state.dpll;
1422
1423         assert_pipe_disabled(dev_priv, crtc->pipe);
1424
1425         /* No really, not for ILK+ */
1426         BUG_ON(dev_priv->info->gen >= 5);
1427
1428         /* PLL is protected by panel, make sure we can write it */
1429         if (IS_MOBILE(dev) && !IS_I830(dev))
1430                 assert_panel_unlocked(dev_priv, crtc->pipe);
1431
1432         I915_WRITE(reg, dpll);
1433
1434         /* Wait for the clocks to stabilize. */
1435         POSTING_READ(reg);
1436         udelay(150);
1437
1438         if (INTEL_INFO(dev)->gen >= 4) {
1439                 I915_WRITE(DPLL_MD(crtc->pipe),
1440                            crtc->config.dpll_hw_state.dpll_md);
1441         } else {
1442                 /* The pixel multiplier can only be updated once the
1443                  * DPLL is enabled and the clocks are stable.
1444                  *
1445                  * So write it again.
1446                  */
1447                 I915_WRITE(reg, dpll);
1448         }
1449
1450         /* We do this three times for luck */
1451         I915_WRITE(reg, dpll);
1452         POSTING_READ(reg);
1453         udelay(150); /* wait for warmup */
1454         I915_WRITE(reg, dpll);
1455         POSTING_READ(reg);
1456         udelay(150); /* wait for warmup */
1457         I915_WRITE(reg, dpll);
1458         POSTING_READ(reg);
1459         udelay(150); /* wait for warmup */
1460 }
1461
1462 /**
1463  * i9xx_disable_pll - disable a PLL
1464  * @dev_priv: i915 private structure
1465  * @pipe: pipe PLL to disable
1466  *
1467  * Disable the PLL for @pipe, making sure the pipe is off first.
1468  *
1469  * Note!  This is for pre-ILK only.
1470  */
1471 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1472 {
1473         /* Don't disable pipe A or pipe A PLLs if needed */
1474         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1475                 return;
1476
1477         /* Make sure the pipe isn't still relying on us */
1478         assert_pipe_disabled(dev_priv, pipe);
1479
1480         I915_WRITE(DPLL(pipe), 0);
1481         POSTING_READ(DPLL(pipe));
1482 }
1483
1484 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1485 {
1486         u32 val = 0;
1487
1488         /* Make sure the pipe isn't still relying on us */
1489         assert_pipe_disabled(dev_priv, pipe);
1490
1491         /* Leave integrated clock source enabled */
1492         if (pipe == PIPE_B)
1493                 val = DPLL_INTEGRATED_CRI_CLK_VLV;
1494         I915_WRITE(DPLL(pipe), val);
1495         POSTING_READ(DPLL(pipe));
1496 }
1497
1498 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1499                 struct intel_digital_port *dport)
1500 {
1501         u32 port_mask;
1502
1503         switch (dport->port) {
1504         case PORT_B:
1505                 port_mask = DPLL_PORTB_READY_MASK;
1506                 break;
1507         case PORT_C:
1508                 port_mask = DPLL_PORTC_READY_MASK;
1509                 break;
1510         default:
1511                 BUG();
1512         }
1513
1514         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1515                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1516                      'B' + dport->port, I915_READ(DPLL(0)));
1517 }
1518
1519 /**
1520  * ironlake_enable_shared_dpll - enable PCH PLL
1521  * @dev_priv: i915 private structure
1522  * @pipe: pipe PLL to enable
1523  *
1524  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1525  * drives the transcoder clock.
1526  */
1527 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1528 {
1529         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1530         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1531
1532         /* PCH PLLs only available on ILK, SNB and IVB */
1533         BUG_ON(dev_priv->info->gen < 5);
1534         if (WARN_ON(pll == NULL))
1535                 return;
1536
1537         if (WARN_ON(pll->refcount == 0))
1538                 return;
1539
1540         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1541                       pll->name, pll->active, pll->on,
1542                       crtc->base.base.id);
1543
1544         if (pll->active++) {
1545                 WARN_ON(!pll->on);
1546                 assert_shared_dpll_enabled(dev_priv, pll);
1547                 return;
1548         }
1549         WARN_ON(pll->on);
1550
1551         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1552         pll->enable(dev_priv, pll);
1553         pll->on = true;
1554 }
1555
1556 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1557 {
1558         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1559         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1560
1561         /* PCH only available on ILK+ */
1562         BUG_ON(dev_priv->info->gen < 5);
1563         if (WARN_ON(pll == NULL))
1564                return;
1565
1566         if (WARN_ON(pll->refcount == 0))
1567                 return;
1568
1569         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1570                       pll->name, pll->active, pll->on,
1571                       crtc->base.base.id);
1572
1573         if (WARN_ON(pll->active == 0)) {
1574                 assert_shared_dpll_disabled(dev_priv, pll);
1575                 return;
1576         }
1577
1578         assert_shared_dpll_enabled(dev_priv, pll);
1579         WARN_ON(!pll->on);
1580         if (--pll->active)
1581                 return;
1582
1583         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1584         pll->disable(dev_priv, pll);
1585         pll->on = false;
1586 }
1587
1588 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1589                                            enum pipe pipe)
1590 {
1591         struct drm_device *dev = dev_priv->dev;
1592         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1594         uint32_t reg, val, pipeconf_val;
1595
1596         /* PCH only available on ILK+ */
1597         BUG_ON(dev_priv->info->gen < 5);
1598
1599         /* Make sure PCH DPLL is enabled */
1600         assert_shared_dpll_enabled(dev_priv,
1601                                    intel_crtc_to_shared_dpll(intel_crtc));
1602
1603         /* FDI must be feeding us bits for PCH ports */
1604         assert_fdi_tx_enabled(dev_priv, pipe);
1605         assert_fdi_rx_enabled(dev_priv, pipe);
1606
1607         if (HAS_PCH_CPT(dev)) {
1608                 /* Workaround: Set the timing override bit before enabling the
1609                  * pch transcoder. */
1610                 reg = TRANS_CHICKEN2(pipe);
1611                 val = I915_READ(reg);
1612                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1613                 I915_WRITE(reg, val);
1614         }
1615
1616         reg = PCH_TRANSCONF(pipe);
1617         val = I915_READ(reg);
1618         pipeconf_val = I915_READ(PIPECONF(pipe));
1619
1620         if (HAS_PCH_IBX(dev_priv->dev)) {
1621                 /*
1622                  * make the BPC in transcoder be consistent with
1623                  * that in pipeconf reg.
1624                  */
1625                 val &= ~PIPECONF_BPC_MASK;
1626                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1627         }
1628
1629         val &= ~TRANS_INTERLACE_MASK;
1630         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1631                 if (HAS_PCH_IBX(dev_priv->dev) &&
1632                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1633                         val |= TRANS_LEGACY_INTERLACED_ILK;
1634                 else
1635                         val |= TRANS_INTERLACED;
1636         else
1637                 val |= TRANS_PROGRESSIVE;
1638
1639         I915_WRITE(reg, val | TRANS_ENABLE);
1640         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1641                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1642 }
1643
1644 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1645                                       enum transcoder cpu_transcoder)
1646 {
1647         u32 val, pipeconf_val;
1648
1649         /* PCH only available on ILK+ */
1650         BUG_ON(dev_priv->info->gen < 5);
1651
1652         /* FDI must be feeding us bits for PCH ports */
1653         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1654         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1655
1656         /* Workaround: set timing override bit. */
1657         val = I915_READ(_TRANSA_CHICKEN2);
1658         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1659         I915_WRITE(_TRANSA_CHICKEN2, val);
1660
1661         val = TRANS_ENABLE;
1662         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1663
1664         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1665             PIPECONF_INTERLACED_ILK)
1666                 val |= TRANS_INTERLACED;
1667         else
1668                 val |= TRANS_PROGRESSIVE;
1669
1670         I915_WRITE(LPT_TRANSCONF, val);
1671         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1672                 DRM_ERROR("Failed to enable PCH transcoder\n");
1673 }
1674
1675 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1676                                             enum pipe pipe)
1677 {
1678         struct drm_device *dev = dev_priv->dev;
1679         uint32_t reg, val;
1680
1681         /* FDI relies on the transcoder */
1682         assert_fdi_tx_disabled(dev_priv, pipe);
1683         assert_fdi_rx_disabled(dev_priv, pipe);
1684
1685         /* Ports must be off as well */
1686         assert_pch_ports_disabled(dev_priv, pipe);
1687
1688         reg = PCH_TRANSCONF(pipe);
1689         val = I915_READ(reg);
1690         val &= ~TRANS_ENABLE;
1691         I915_WRITE(reg, val);
1692         /* wait for PCH transcoder off, transcoder state */
1693         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1694                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1695
1696         if (!HAS_PCH_IBX(dev)) {
1697                 /* Workaround: Clear the timing override chicken bit again. */
1698                 reg = TRANS_CHICKEN2(pipe);
1699                 val = I915_READ(reg);
1700                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1701                 I915_WRITE(reg, val);
1702         }
1703 }
1704
1705 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1706 {
1707         u32 val;
1708
1709         val = I915_READ(LPT_TRANSCONF);
1710         val &= ~TRANS_ENABLE;
1711         I915_WRITE(LPT_TRANSCONF, val);
1712         /* wait for PCH transcoder off, transcoder state */
1713         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1714                 DRM_ERROR("Failed to disable PCH transcoder\n");
1715
1716         /* Workaround: clear timing override bit. */
1717         val = I915_READ(_TRANSA_CHICKEN2);
1718         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1719         I915_WRITE(_TRANSA_CHICKEN2, val);
1720 }
1721
1722 /**
1723  * intel_enable_pipe - enable a pipe, asserting requirements
1724  * @dev_priv: i915 private structure
1725  * @pipe: pipe to enable
1726  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1727  *
1728  * Enable @pipe, making sure that various hardware specific requirements
1729  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1730  *
1731  * @pipe should be %PIPE_A or %PIPE_B.
1732  *
1733  * Will wait until the pipe is actually running (i.e. first vblank) before
1734  * returning.
1735  */
1736 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1737                               bool pch_port, bool dsi)
1738 {
1739         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1740                                                                       pipe);
1741         enum pipe pch_transcoder;
1742         int reg;
1743         u32 val;
1744
1745         assert_planes_disabled(dev_priv, pipe);
1746         assert_cursor_disabled(dev_priv, pipe);
1747         assert_sprites_disabled(dev_priv, pipe);
1748
1749         if (HAS_PCH_LPT(dev_priv->dev))
1750                 pch_transcoder = TRANSCODER_A;
1751         else
1752                 pch_transcoder = pipe;
1753
1754         /*
1755          * A pipe without a PLL won't actually be able to drive bits from
1756          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1757          * need the check.
1758          */
1759         if (!HAS_PCH_SPLIT(dev_priv->dev))
1760                 if (dsi)
1761                         assert_dsi_pll_enabled(dev_priv);
1762                 else
1763                         assert_pll_enabled(dev_priv, pipe);
1764         else {
1765                 if (pch_port) {
1766                         /* if driving the PCH, we need FDI enabled */
1767                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1768                         assert_fdi_tx_pll_enabled(dev_priv,
1769                                                   (enum pipe) cpu_transcoder);
1770                 }
1771                 /* FIXME: assert CPU port conditions for SNB+ */
1772         }
1773
1774         reg = PIPECONF(cpu_transcoder);
1775         val = I915_READ(reg);
1776         if (val & PIPECONF_ENABLE)
1777                 return;
1778
1779         I915_WRITE(reg, val | PIPECONF_ENABLE);
1780         intel_wait_for_vblank(dev_priv->dev, pipe);
1781 }
1782
1783 /**
1784  * intel_disable_pipe - disable a pipe, asserting requirements
1785  * @dev_priv: i915 private structure
1786  * @pipe: pipe to disable
1787  *
1788  * Disable @pipe, making sure that various hardware specific requirements
1789  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1790  *
1791  * @pipe should be %PIPE_A or %PIPE_B.
1792  *
1793  * Will wait until the pipe has shut down before returning.
1794  */
1795 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1796                                enum pipe pipe)
1797 {
1798         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1799                                                                       pipe);
1800         int reg;
1801         u32 val;
1802
1803         /*
1804          * Make sure planes won't keep trying to pump pixels to us,
1805          * or we might hang the display.
1806          */
1807         assert_planes_disabled(dev_priv, pipe);
1808         assert_cursor_disabled(dev_priv, pipe);
1809         assert_sprites_disabled(dev_priv, pipe);
1810
1811         /* Don't disable pipe A or pipe A PLLs if needed */
1812         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1813                 return;
1814
1815         reg = PIPECONF(cpu_transcoder);
1816         val = I915_READ(reg);
1817         if ((val & PIPECONF_ENABLE) == 0)
1818                 return;
1819
1820         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1821         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1822 }
1823
1824 /*
1825  * Plane regs are double buffered, going from enabled->disabled needs a
1826  * trigger in order to latch.  The display address reg provides this.
1827  */
1828 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1829                                enum plane plane)
1830 {
1831         u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1832
1833         I915_WRITE(reg, I915_READ(reg));
1834         POSTING_READ(reg);
1835 }
1836
1837 /**
1838  * intel_enable_primary_plane - enable the primary plane on a given pipe
1839  * @dev_priv: i915 private structure
1840  * @plane: plane to enable
1841  * @pipe: pipe being fed
1842  *
1843  * Enable @plane on @pipe, making sure that @pipe is running first.
1844  */
1845 static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1846                                        enum plane plane, enum pipe pipe)
1847 {
1848         struct intel_crtc *intel_crtc =
1849                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1850         int reg;
1851         u32 val;
1852
1853         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1854         assert_pipe_enabled(dev_priv, pipe);
1855
1856         WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1857
1858         intel_crtc->primary_enabled = true;
1859
1860         reg = DSPCNTR(plane);
1861         val = I915_READ(reg);
1862         if (val & DISPLAY_PLANE_ENABLE)
1863                 return;
1864
1865         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1866         intel_flush_primary_plane(dev_priv, plane);
1867         intel_wait_for_vblank(dev_priv->dev, pipe);
1868 }
1869
1870 /**
1871  * intel_disable_primary_plane - disable the primary plane
1872  * @dev_priv: i915 private structure
1873  * @plane: plane to disable
1874  * @pipe: pipe consuming the data
1875  *
1876  * Disable @plane; should be an independent operation.
1877  */
1878 static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1879                                         enum plane plane, enum pipe pipe)
1880 {
1881         struct intel_crtc *intel_crtc =
1882                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1883         int reg;
1884         u32 val;
1885
1886         WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1887
1888         intel_crtc->primary_enabled = false;
1889
1890         reg = DSPCNTR(plane);
1891         val = I915_READ(reg);
1892         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1893                 return;
1894
1895         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1896         intel_flush_primary_plane(dev_priv, plane);
1897         intel_wait_for_vblank(dev_priv->dev, pipe);
1898 }
1899
1900 static bool need_vtd_wa(struct drm_device *dev)
1901 {
1902 #ifdef CONFIG_INTEL_IOMMU
1903         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1904                 return true;
1905 #endif
1906         return false;
1907 }
1908
1909 int
1910 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1911                            struct drm_i915_gem_object *obj,
1912                            struct intel_ring_buffer *pipelined)
1913 {
1914         struct drm_i915_private *dev_priv = dev->dev_private;
1915         u32 alignment;
1916         int ret;
1917
1918         switch (obj->tiling_mode) {
1919         case I915_TILING_NONE:
1920                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1921                         alignment = 128 * 1024;
1922                 else if (INTEL_INFO(dev)->gen >= 4)
1923                         alignment = 4 * 1024;
1924                 else
1925                         alignment = 64 * 1024;
1926                 break;
1927         case I915_TILING_X:
1928                 /* pin() will align the object as required by fence */
1929                 alignment = 0;
1930                 break;
1931         case I915_TILING_Y:
1932                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1933                 return -EINVAL;
1934         default:
1935                 BUG();
1936         }
1937
1938         /* Note that the w/a also requires 64 PTE of padding following the
1939          * bo. We currently fill all unused PTE with the shadow page and so
1940          * we should always have valid PTE following the scanout preventing
1941          * the VT-d warning.
1942          */
1943         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1944                 alignment = 256 * 1024;
1945
1946         dev_priv->mm.interruptible = false;
1947         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1948         if (ret)
1949                 goto err_interruptible;
1950
1951         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1952          * fence, whereas 965+ only requires a fence if using
1953          * framebuffer compression.  For simplicity, we always install
1954          * a fence as the cost is not that onerous.
1955          */
1956         ret = i915_gem_object_get_fence(obj);
1957         if (ret)
1958                 goto err_unpin;
1959
1960         i915_gem_object_pin_fence(obj);
1961
1962         dev_priv->mm.interruptible = true;
1963         return 0;
1964
1965 err_unpin:
1966         i915_gem_object_unpin_from_display_plane(obj);
1967 err_interruptible:
1968         dev_priv->mm.interruptible = true;
1969         return ret;
1970 }
1971
1972 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1973 {
1974         i915_gem_object_unpin_fence(obj);
1975         i915_gem_object_unpin_from_display_plane(obj);
1976 }
1977
1978 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1979  * is assumed to be a power-of-two. */
1980 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1981                                              unsigned int tiling_mode,
1982                                              unsigned int cpp,
1983                                              unsigned int pitch)
1984 {
1985         if (tiling_mode != I915_TILING_NONE) {
1986                 unsigned int tile_rows, tiles;
1987
1988                 tile_rows = *y / 8;
1989                 *y %= 8;
1990
1991                 tiles = *x / (512/cpp);
1992                 *x %= 512/cpp;
1993
1994                 return tile_rows * pitch * 8 + tiles * 4096;
1995         } else {
1996                 unsigned int offset;
1997
1998                 offset = *y * pitch + *x * cpp;
1999                 *y = 0;
2000                 *x = (offset & 4095) / cpp;
2001                 return offset & -4096;
2002         }
2003 }
2004
2005 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2006                              int x, int y)
2007 {
2008         struct drm_device *dev = crtc->dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2011         struct intel_framebuffer *intel_fb;
2012         struct drm_i915_gem_object *obj;
2013         int plane = intel_crtc->plane;
2014         unsigned long linear_offset;
2015         u32 dspcntr;
2016         u32 reg;
2017
2018         switch (plane) {
2019         case 0:
2020         case 1:
2021                 break;
2022         default:
2023                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2024                 return -EINVAL;
2025         }
2026
2027         intel_fb = to_intel_framebuffer(fb);
2028         obj = intel_fb->obj;
2029
2030         reg = DSPCNTR(plane);
2031         dspcntr = I915_READ(reg);
2032         /* Mask out pixel format bits in case we change it */
2033         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2034         switch (fb->pixel_format) {
2035         case DRM_FORMAT_C8:
2036                 dspcntr |= DISPPLANE_8BPP;
2037                 break;
2038         case DRM_FORMAT_XRGB1555:
2039         case DRM_FORMAT_ARGB1555:
2040                 dspcntr |= DISPPLANE_BGRX555;
2041                 break;
2042         case DRM_FORMAT_RGB565:
2043                 dspcntr |= DISPPLANE_BGRX565;
2044                 break;
2045         case DRM_FORMAT_XRGB8888:
2046         case DRM_FORMAT_ARGB8888:
2047                 dspcntr |= DISPPLANE_BGRX888;
2048                 break;
2049         case DRM_FORMAT_XBGR8888:
2050         case DRM_FORMAT_ABGR8888:
2051                 dspcntr |= DISPPLANE_RGBX888;
2052                 break;
2053         case DRM_FORMAT_XRGB2101010:
2054         case DRM_FORMAT_ARGB2101010:
2055                 dspcntr |= DISPPLANE_BGRX101010;
2056                 break;
2057         case DRM_FORMAT_XBGR2101010:
2058         case DRM_FORMAT_ABGR2101010:
2059                 dspcntr |= DISPPLANE_RGBX101010;
2060                 break;
2061         default:
2062                 BUG();
2063         }
2064
2065         if (INTEL_INFO(dev)->gen >= 4) {
2066                 if (obj->tiling_mode != I915_TILING_NONE)
2067                         dspcntr |= DISPPLANE_TILED;
2068                 else
2069                         dspcntr &= ~DISPPLANE_TILED;
2070         }
2071
2072         if (IS_G4X(dev))
2073                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2074
2075         I915_WRITE(reg, dspcntr);
2076
2077         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2078
2079         if (INTEL_INFO(dev)->gen >= 4) {
2080                 intel_crtc->dspaddr_offset =
2081                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2082                                                        fb->bits_per_pixel / 8,
2083                                                        fb->pitches[0]);
2084                 linear_offset -= intel_crtc->dspaddr_offset;
2085         } else {
2086                 intel_crtc->dspaddr_offset = linear_offset;
2087         }
2088
2089         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2090                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2091                       fb->pitches[0]);
2092         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2093         if (INTEL_INFO(dev)->gen >= 4) {
2094                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2095                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2096                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2097                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2098         } else
2099                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2100         POSTING_READ(reg);
2101
2102         return 0;
2103 }
2104
2105 static int ironlake_update_plane(struct drm_crtc *crtc,
2106                                  struct drm_framebuffer *fb, int x, int y)
2107 {
2108         struct drm_device *dev = crtc->dev;
2109         struct drm_i915_private *dev_priv = dev->dev_private;
2110         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2111         struct intel_framebuffer *intel_fb;
2112         struct drm_i915_gem_object *obj;
2113         int plane = intel_crtc->plane;
2114         unsigned long linear_offset;
2115         u32 dspcntr;
2116         u32 reg;
2117
2118         switch (plane) {
2119         case 0:
2120         case 1:
2121         case 2:
2122                 break;
2123         default:
2124                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2125                 return -EINVAL;
2126         }
2127
2128         intel_fb = to_intel_framebuffer(fb);
2129         obj = intel_fb->obj;
2130
2131         reg = DSPCNTR(plane);
2132         dspcntr = I915_READ(reg);
2133         /* Mask out pixel format bits in case we change it */
2134         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2135         switch (fb->pixel_format) {
2136         case DRM_FORMAT_C8:
2137                 dspcntr |= DISPPLANE_8BPP;
2138                 break;
2139         case DRM_FORMAT_RGB565:
2140                 dspcntr |= DISPPLANE_BGRX565;
2141                 break;
2142         case DRM_FORMAT_XRGB8888:
2143         case DRM_FORMAT_ARGB8888:
2144                 dspcntr |= DISPPLANE_BGRX888;
2145                 break;
2146         case DRM_FORMAT_XBGR8888:
2147         case DRM_FORMAT_ABGR8888:
2148                 dspcntr |= DISPPLANE_RGBX888;
2149                 break;
2150         case DRM_FORMAT_XRGB2101010:
2151         case DRM_FORMAT_ARGB2101010:
2152                 dspcntr |= DISPPLANE_BGRX101010;
2153                 break;
2154         case DRM_FORMAT_XBGR2101010:
2155         case DRM_FORMAT_ABGR2101010:
2156                 dspcntr |= DISPPLANE_RGBX101010;
2157                 break;
2158         default:
2159                 BUG();
2160         }
2161
2162         if (obj->tiling_mode != I915_TILING_NONE)
2163                 dspcntr |= DISPPLANE_TILED;
2164         else
2165                 dspcntr &= ~DISPPLANE_TILED;
2166
2167         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2168                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2169         else
2170                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2171
2172         I915_WRITE(reg, dspcntr);
2173
2174         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2175         intel_crtc->dspaddr_offset =
2176                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2177                                                fb->bits_per_pixel / 8,
2178                                                fb->pitches[0]);
2179         linear_offset -= intel_crtc->dspaddr_offset;
2180
2181         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2182                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2183                       fb->pitches[0]);
2184         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2185         I915_MODIFY_DISPBASE(DSPSURF(plane),
2186                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2187         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2188                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2189         } else {
2190                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2191                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2192         }
2193         POSTING_READ(reg);
2194
2195         return 0;
2196 }
2197
2198 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2199 static int
2200 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2201                            int x, int y, enum mode_set_atomic state)
2202 {
2203         struct drm_device *dev = crtc->dev;
2204         struct drm_i915_private *dev_priv = dev->dev_private;
2205
2206         if (dev_priv->display.disable_fbc)
2207                 dev_priv->display.disable_fbc(dev);
2208         intel_increase_pllclock(crtc);
2209
2210         return dev_priv->display.update_plane(crtc, fb, x, y);
2211 }
2212
2213 void intel_display_handle_reset(struct drm_device *dev)
2214 {
2215         struct drm_i915_private *dev_priv = dev->dev_private;
2216         struct drm_crtc *crtc;
2217
2218         /*
2219          * Flips in the rings have been nuked by the reset,
2220          * so complete all pending flips so that user space
2221          * will get its events and not get stuck.
2222          *
2223          * Also update the base address of all primary
2224          * planes to the the last fb to make sure we're
2225          * showing the correct fb after a reset.
2226          *
2227          * Need to make two loops over the crtcs so that we
2228          * don't try to grab a crtc mutex before the
2229          * pending_flip_queue really got woken up.
2230          */
2231
2232         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2233                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234                 enum plane plane = intel_crtc->plane;
2235
2236                 intel_prepare_page_flip(dev, plane);
2237                 intel_finish_page_flip_plane(dev, plane);
2238         }
2239
2240         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2241                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2242
2243                 mutex_lock(&crtc->mutex);
2244                 /*
2245                  * FIXME: Once we have proper support for primary planes (and
2246                  * disabling them without disabling the entire crtc) allow again
2247                  * a NULL crtc->fb.
2248                  */
2249                 if (intel_crtc->active && crtc->fb)
2250                         dev_priv->display.update_plane(crtc, crtc->fb,
2251                                                        crtc->x, crtc->y);
2252                 mutex_unlock(&crtc->mutex);
2253         }
2254 }
2255
2256 static int
2257 intel_finish_fb(struct drm_framebuffer *old_fb)
2258 {
2259         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2260         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2261         bool was_interruptible = dev_priv->mm.interruptible;
2262         int ret;
2263
2264         /* Big Hammer, we also need to ensure that any pending
2265          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2266          * current scanout is retired before unpinning the old
2267          * framebuffer.
2268          *
2269          * This should only fail upon a hung GPU, in which case we
2270          * can safely continue.
2271          */
2272         dev_priv->mm.interruptible = false;
2273         ret = i915_gem_object_finish_gpu(obj);
2274         dev_priv->mm.interruptible = was_interruptible;
2275
2276         return ret;
2277 }
2278
2279 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2280 {
2281         struct drm_device *dev = crtc->dev;
2282         struct drm_i915_master_private *master_priv;
2283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2284
2285         if (!dev->primary->master)
2286                 return;
2287
2288         master_priv = dev->primary->master->driver_priv;
2289         if (!master_priv->sarea_priv)
2290                 return;
2291
2292         switch (intel_crtc->pipe) {
2293         case 0:
2294                 master_priv->sarea_priv->pipeA_x = x;
2295                 master_priv->sarea_priv->pipeA_y = y;
2296                 break;
2297         case 1:
2298                 master_priv->sarea_priv->pipeB_x = x;
2299                 master_priv->sarea_priv->pipeB_y = y;
2300                 break;
2301         default:
2302                 break;
2303         }
2304 }
2305
2306 static int
2307 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2308                     struct drm_framebuffer *fb)
2309 {
2310         struct drm_device *dev = crtc->dev;
2311         struct drm_i915_private *dev_priv = dev->dev_private;
2312         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2313         struct drm_framebuffer *old_fb;
2314         int ret;
2315
2316         /* no fb bound */
2317         if (!fb) {
2318                 DRM_ERROR("No FB bound\n");
2319                 return 0;
2320         }
2321
2322         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2323                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2324                           plane_name(intel_crtc->plane),
2325                           INTEL_INFO(dev)->num_pipes);
2326                 return -EINVAL;
2327         }
2328
2329         mutex_lock(&dev->struct_mutex);
2330         ret = intel_pin_and_fence_fb_obj(dev,
2331                                          to_intel_framebuffer(fb)->obj,
2332                                          NULL);
2333         if (ret != 0) {
2334                 mutex_unlock(&dev->struct_mutex);
2335                 DRM_ERROR("pin & fence failed\n");
2336                 return ret;
2337         }
2338
2339         /*
2340          * Update pipe size and adjust fitter if needed: the reason for this is
2341          * that in compute_mode_changes we check the native mode (not the pfit
2342          * mode) to see if we can flip rather than do a full mode set. In the
2343          * fastboot case, we'll flip, but if we don't update the pipesrc and
2344          * pfit state, we'll end up with a big fb scanned out into the wrong
2345          * sized surface.
2346          *
2347          * To fix this properly, we need to hoist the checks up into
2348          * compute_mode_changes (or above), check the actual pfit state and
2349          * whether the platform allows pfit disable with pipe active, and only
2350          * then update the pipesrc and pfit state, even on the flip path.
2351          */
2352         if (i915_fastboot) {
2353                 const struct drm_display_mode *adjusted_mode =
2354                         &intel_crtc->config.adjusted_mode;
2355
2356                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2357                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2358                            (adjusted_mode->crtc_vdisplay - 1));
2359                 if (!intel_crtc->config.pch_pfit.enabled &&
2360                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2361                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2362                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2363                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2364                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2365                 }
2366         }
2367
2368         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2369         if (ret) {
2370                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2371                 mutex_unlock(&dev->struct_mutex);
2372                 DRM_ERROR("failed to update base address\n");
2373                 return ret;
2374         }
2375
2376         old_fb = crtc->fb;
2377         crtc->fb = fb;
2378         crtc->x = x;
2379         crtc->y = y;
2380
2381         if (old_fb) {
2382                 if (intel_crtc->active && old_fb != fb)
2383                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2384                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2385         }
2386
2387         intel_update_fbc(dev);
2388         intel_edp_psr_update(dev);
2389         mutex_unlock(&dev->struct_mutex);
2390
2391         intel_crtc_update_sarea_pos(crtc, x, y);
2392
2393         return 0;
2394 }
2395
2396 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2397 {
2398         struct drm_device *dev = crtc->dev;
2399         struct drm_i915_private *dev_priv = dev->dev_private;
2400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2401         int pipe = intel_crtc->pipe;
2402         u32 reg, temp;
2403
2404         /* enable normal train */
2405         reg = FDI_TX_CTL(pipe);
2406         temp = I915_READ(reg);
2407         if (IS_IVYBRIDGE(dev)) {
2408                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2409                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2410         } else {
2411                 temp &= ~FDI_LINK_TRAIN_NONE;
2412                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2413         }
2414         I915_WRITE(reg, temp);
2415
2416         reg = FDI_RX_CTL(pipe);
2417         temp = I915_READ(reg);
2418         if (HAS_PCH_CPT(dev)) {
2419                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2420                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2421         } else {
2422                 temp &= ~FDI_LINK_TRAIN_NONE;
2423                 temp |= FDI_LINK_TRAIN_NONE;
2424         }
2425         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2426
2427         /* wait one idle pattern time */
2428         POSTING_READ(reg);
2429         udelay(1000);
2430
2431         /* IVB wants error correction enabled */
2432         if (IS_IVYBRIDGE(dev))
2433                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2434                            FDI_FE_ERRC_ENABLE);
2435 }
2436
2437 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2438 {
2439         return crtc->base.enabled && crtc->active &&
2440                 crtc->config.has_pch_encoder;
2441 }
2442
2443 static void ivb_modeset_global_resources(struct drm_device *dev)
2444 {
2445         struct drm_i915_private *dev_priv = dev->dev_private;
2446         struct intel_crtc *pipe_B_crtc =
2447                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2448         struct intel_crtc *pipe_C_crtc =
2449                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2450         uint32_t temp;
2451
2452         /*
2453          * When everything is off disable fdi C so that we could enable fdi B
2454          * with all lanes. Note that we don't care about enabled pipes without
2455          * an enabled pch encoder.
2456          */
2457         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2458             !pipe_has_enabled_pch(pipe_C_crtc)) {
2459                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2460                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2461
2462                 temp = I915_READ(SOUTH_CHICKEN1);
2463                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2464                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2465                 I915_WRITE(SOUTH_CHICKEN1, temp);
2466         }
2467 }
2468
2469 /* The FDI link training functions for ILK/Ibexpeak. */
2470 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2471 {
2472         struct drm_device *dev = crtc->dev;
2473         struct drm_i915_private *dev_priv = dev->dev_private;
2474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2475         int pipe = intel_crtc->pipe;
2476         int plane = intel_crtc->plane;
2477         u32 reg, temp, tries;
2478
2479         /* FDI needs bits from pipe & plane first */
2480         assert_pipe_enabled(dev_priv, pipe);
2481         assert_plane_enabled(dev_priv, plane);
2482
2483         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2484            for train result */
2485         reg = FDI_RX_IMR(pipe);
2486         temp = I915_READ(reg);
2487         temp &= ~FDI_RX_SYMBOL_LOCK;
2488         temp &= ~FDI_RX_BIT_LOCK;
2489         I915_WRITE(reg, temp);
2490         I915_READ(reg);
2491         udelay(150);
2492
2493         /* enable CPU FDI TX and PCH FDI RX */
2494         reg = FDI_TX_CTL(pipe);
2495         temp = I915_READ(reg);
2496         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2497         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2498         temp &= ~FDI_LINK_TRAIN_NONE;
2499         temp |= FDI_LINK_TRAIN_PATTERN_1;
2500         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2501
2502         reg = FDI_RX_CTL(pipe);
2503         temp = I915_READ(reg);
2504         temp &= ~FDI_LINK_TRAIN_NONE;
2505         temp |= FDI_LINK_TRAIN_PATTERN_1;
2506         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2507
2508         POSTING_READ(reg);
2509         udelay(150);
2510
2511         /* Ironlake workaround, enable clock pointer after FDI enable*/
2512         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2513         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2514                    FDI_RX_PHASE_SYNC_POINTER_EN);
2515
2516         reg = FDI_RX_IIR(pipe);
2517         for (tries = 0; tries < 5; tries++) {
2518                 temp = I915_READ(reg);
2519                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2520
2521                 if ((temp & FDI_RX_BIT_LOCK)) {
2522                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2523                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2524                         break;
2525                 }
2526         }
2527         if (tries == 5)
2528                 DRM_ERROR("FDI train 1 fail!\n");
2529
2530         /* Train 2 */
2531         reg = FDI_TX_CTL(pipe);
2532         temp = I915_READ(reg);
2533         temp &= ~FDI_LINK_TRAIN_NONE;
2534         temp |= FDI_LINK_TRAIN_PATTERN_2;
2535         I915_WRITE(reg, temp);
2536
2537         reg = FDI_RX_CTL(pipe);
2538         temp = I915_READ(reg);
2539         temp &= ~FDI_LINK_TRAIN_NONE;
2540         temp |= FDI_LINK_TRAIN_PATTERN_2;
2541         I915_WRITE(reg, temp);
2542
2543         POSTING_READ(reg);
2544         udelay(150);
2545
2546         reg = FDI_RX_IIR(pipe);
2547         for (tries = 0; tries < 5; tries++) {
2548                 temp = I915_READ(reg);
2549                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2550
2551                 if (temp & FDI_RX_SYMBOL_LOCK) {
2552                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2553                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2554                         break;
2555                 }
2556         }
2557         if (tries == 5)
2558                 DRM_ERROR("FDI train 2 fail!\n");
2559
2560         DRM_DEBUG_KMS("FDI train done\n");
2561
2562 }
2563
2564 static const int snb_b_fdi_train_param[] = {
2565         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2566         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2567         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2568         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2569 };
2570
2571 /* The FDI link training functions for SNB/Cougarpoint. */
2572 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2573 {
2574         struct drm_device *dev = crtc->dev;
2575         struct drm_i915_private *dev_priv = dev->dev_private;
2576         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2577         int pipe = intel_crtc->pipe;
2578         u32 reg, temp, i, retry;
2579
2580         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2581            for train result */
2582         reg = FDI_RX_IMR(pipe);
2583         temp = I915_READ(reg);
2584         temp &= ~FDI_RX_SYMBOL_LOCK;
2585         temp &= ~FDI_RX_BIT_LOCK;
2586         I915_WRITE(reg, temp);
2587
2588         POSTING_READ(reg);
2589         udelay(150);
2590
2591         /* enable CPU FDI TX and PCH FDI RX */
2592         reg = FDI_TX_CTL(pipe);
2593         temp = I915_READ(reg);
2594         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2595         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2596         temp &= ~FDI_LINK_TRAIN_NONE;
2597         temp |= FDI_LINK_TRAIN_PATTERN_1;
2598         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2599         /* SNB-B */
2600         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2601         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2602
2603         I915_WRITE(FDI_RX_MISC(pipe),
2604                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2605
2606         reg = FDI_RX_CTL(pipe);
2607         temp = I915_READ(reg);
2608         if (HAS_PCH_CPT(dev)) {
2609                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2610                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2611         } else {
2612                 temp &= ~FDI_LINK_TRAIN_NONE;
2613                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2614         }
2615         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2616
2617         POSTING_READ(reg);
2618         udelay(150);
2619
2620         for (i = 0; i < 4; i++) {
2621                 reg = FDI_TX_CTL(pipe);
2622                 temp = I915_READ(reg);
2623                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2624                 temp |= snb_b_fdi_train_param[i];
2625                 I915_WRITE(reg, temp);
2626
2627                 POSTING_READ(reg);
2628                 udelay(500);
2629
2630                 for (retry = 0; retry < 5; retry++) {
2631                         reg = FDI_RX_IIR(pipe);
2632                         temp = I915_READ(reg);
2633                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2634                         if (temp & FDI_RX_BIT_LOCK) {
2635                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2636                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2637                                 break;
2638                         }
2639                         udelay(50);
2640                 }
2641                 if (retry < 5)
2642                         break;
2643         }
2644         if (i == 4)
2645                 DRM_ERROR("FDI train 1 fail!\n");
2646
2647         /* Train 2 */
2648         reg = FDI_TX_CTL(pipe);
2649         temp = I915_READ(reg);
2650         temp &= ~FDI_LINK_TRAIN_NONE;
2651         temp |= FDI_LINK_TRAIN_PATTERN_2;
2652         if (IS_GEN6(dev)) {
2653                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2654                 /* SNB-B */
2655                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2656         }
2657         I915_WRITE(reg, temp);
2658
2659         reg = FDI_RX_CTL(pipe);
2660         temp = I915_READ(reg);
2661         if (HAS_PCH_CPT(dev)) {
2662                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2663                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2664         } else {
2665                 temp &= ~FDI_LINK_TRAIN_NONE;
2666                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2667         }
2668         I915_WRITE(reg, temp);
2669
2670         POSTING_READ(reg);
2671         udelay(150);
2672
2673         for (i = 0; i < 4; i++) {
2674                 reg = FDI_TX_CTL(pipe);
2675                 temp = I915_READ(reg);
2676                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2677                 temp |= snb_b_fdi_train_param[i];
2678                 I915_WRITE(reg, temp);
2679
2680                 POSTING_READ(reg);
2681                 udelay(500);
2682
2683                 for (retry = 0; retry < 5; retry++) {
2684                         reg = FDI_RX_IIR(pipe);
2685                         temp = I915_READ(reg);
2686                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2687                         if (temp & FDI_RX_SYMBOL_LOCK) {
2688                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2689                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2690                                 break;
2691                         }
2692                         udelay(50);
2693                 }
2694                 if (retry < 5)
2695                         break;
2696         }
2697         if (i == 4)
2698                 DRM_ERROR("FDI train 2 fail!\n");
2699
2700         DRM_DEBUG_KMS("FDI train done.\n");
2701 }
2702
2703 /* Manual link training for Ivy Bridge A0 parts */
2704 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2705 {
2706         struct drm_device *dev = crtc->dev;
2707         struct drm_i915_private *dev_priv = dev->dev_private;
2708         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2709         int pipe = intel_crtc->pipe;
2710         u32 reg, temp, i, j;
2711
2712         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2713            for train result */
2714         reg = FDI_RX_IMR(pipe);
2715         temp = I915_READ(reg);
2716         temp &= ~FDI_RX_SYMBOL_LOCK;
2717         temp &= ~FDI_RX_BIT_LOCK;
2718         I915_WRITE(reg, temp);
2719
2720         POSTING_READ(reg);
2721         udelay(150);
2722
2723         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2724                       I915_READ(FDI_RX_IIR(pipe)));
2725
2726         /* Try each vswing and preemphasis setting twice before moving on */
2727         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2728                 /* disable first in case we need to retry */
2729                 reg = FDI_TX_CTL(pipe);
2730                 temp = I915_READ(reg);
2731                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2732                 temp &= ~FDI_TX_ENABLE;
2733                 I915_WRITE(reg, temp);
2734
2735                 reg = FDI_RX_CTL(pipe);
2736                 temp = I915_READ(reg);
2737                 temp &= ~FDI_LINK_TRAIN_AUTO;
2738                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2739                 temp &= ~FDI_RX_ENABLE;
2740                 I915_WRITE(reg, temp);
2741
2742                 /* enable CPU FDI TX and PCH FDI RX */
2743                 reg = FDI_TX_CTL(pipe);
2744                 temp = I915_READ(reg);
2745                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2746                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2747                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2748                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2749                 temp |= snb_b_fdi_train_param[j/2];
2750                 temp |= FDI_COMPOSITE_SYNC;
2751                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2752
2753                 I915_WRITE(FDI_RX_MISC(pipe),
2754                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2755
2756                 reg = FDI_RX_CTL(pipe);
2757                 temp = I915_READ(reg);
2758                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2759                 temp |= FDI_COMPOSITE_SYNC;
2760                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2761
2762                 POSTING_READ(reg);
2763                 udelay(1); /* should be 0.5us */
2764
2765                 for (i = 0; i < 4; i++) {
2766                         reg = FDI_RX_IIR(pipe);
2767                         temp = I915_READ(reg);
2768                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2769
2770                         if (temp & FDI_RX_BIT_LOCK ||
2771                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2772                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2773                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2774                                               i);
2775                                 break;
2776                         }
2777                         udelay(1); /* should be 0.5us */
2778                 }
2779                 if (i == 4) {
2780                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2781                         continue;
2782                 }
2783
2784                 /* Train 2 */
2785                 reg = FDI_TX_CTL(pipe);
2786                 temp = I915_READ(reg);
2787                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2788                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2789                 I915_WRITE(reg, temp);
2790
2791                 reg = FDI_RX_CTL(pipe);
2792                 temp = I915_READ(reg);
2793                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2794                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2795                 I915_WRITE(reg, temp);
2796
2797                 POSTING_READ(reg);
2798                 udelay(2); /* should be 1.5us */
2799
2800                 for (i = 0; i < 4; i++) {
2801                         reg = FDI_RX_IIR(pipe);
2802                         temp = I915_READ(reg);
2803                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2804
2805                         if (temp & FDI_RX_SYMBOL_LOCK ||
2806                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2807                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2808                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2809                                               i);
2810                                 goto train_done;
2811                         }
2812                         udelay(2); /* should be 1.5us */
2813                 }
2814                 if (i == 4)
2815                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2816         }
2817
2818 train_done:
2819         DRM_DEBUG_KMS("FDI train done.\n");
2820 }
2821
2822 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2823 {
2824         struct drm_device *dev = intel_crtc->base.dev;
2825         struct drm_i915_private *dev_priv = dev->dev_private;
2826         int pipe = intel_crtc->pipe;
2827         u32 reg, temp;
2828
2829
2830         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2831         reg = FDI_RX_CTL(pipe);
2832         temp = I915_READ(reg);
2833         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2834         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2835         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2836         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2837
2838         POSTING_READ(reg);
2839         udelay(200);
2840
2841         /* Switch from Rawclk to PCDclk */
2842         temp = I915_READ(reg);
2843         I915_WRITE(reg, temp | FDI_PCDCLK);
2844
2845         POSTING_READ(reg);
2846         udelay(200);
2847
2848         /* Enable CPU FDI TX PLL, always on for Ironlake */
2849         reg = FDI_TX_CTL(pipe);
2850         temp = I915_READ(reg);
2851         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2852                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2853
2854                 POSTING_READ(reg);
2855                 udelay(100);
2856         }
2857 }
2858
2859 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2860 {
2861         struct drm_device *dev = intel_crtc->base.dev;
2862         struct drm_i915_private *dev_priv = dev->dev_private;
2863         int pipe = intel_crtc->pipe;
2864         u32 reg, temp;
2865
2866         /* Switch from PCDclk to Rawclk */
2867         reg = FDI_RX_CTL(pipe);
2868         temp = I915_READ(reg);
2869         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2870
2871         /* Disable CPU FDI TX PLL */
2872         reg = FDI_TX_CTL(pipe);
2873         temp = I915_READ(reg);
2874         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2875
2876         POSTING_READ(reg);
2877         udelay(100);
2878
2879         reg = FDI_RX_CTL(pipe);
2880         temp = I915_READ(reg);
2881         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2882
2883         /* Wait for the clocks to turn off. */
2884         POSTING_READ(reg);
2885         udelay(100);
2886 }
2887
2888 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2889 {
2890         struct drm_device *dev = crtc->dev;
2891         struct drm_i915_private *dev_priv = dev->dev_private;
2892         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2893         int pipe = intel_crtc->pipe;
2894         u32 reg, temp;
2895
2896         /* disable CPU FDI tx and PCH FDI rx */
2897         reg = FDI_TX_CTL(pipe);
2898         temp = I915_READ(reg);
2899         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2900         POSTING_READ(reg);
2901
2902         reg = FDI_RX_CTL(pipe);
2903         temp = I915_READ(reg);
2904         temp &= ~(0x7 << 16);
2905         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2906         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2907
2908         POSTING_READ(reg);
2909         udelay(100);
2910
2911         /* Ironlake workaround, disable clock pointer after downing FDI */
2912         if (HAS_PCH_IBX(dev)) {
2913                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2914         }
2915
2916         /* still set train pattern 1 */
2917         reg = FDI_TX_CTL(pipe);
2918         temp = I915_READ(reg);
2919         temp &= ~FDI_LINK_TRAIN_NONE;
2920         temp |= FDI_LINK_TRAIN_PATTERN_1;
2921         I915_WRITE(reg, temp);
2922
2923         reg = FDI_RX_CTL(pipe);
2924         temp = I915_READ(reg);
2925         if (HAS_PCH_CPT(dev)) {
2926                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2927                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2928         } else {
2929                 temp &= ~FDI_LINK_TRAIN_NONE;
2930                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2931         }
2932         /* BPC in FDI rx is consistent with that in PIPECONF */
2933         temp &= ~(0x07 << 16);
2934         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2935         I915_WRITE(reg, temp);
2936
2937         POSTING_READ(reg);
2938         udelay(100);
2939 }
2940
2941 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2942 {
2943         struct drm_device *dev = crtc->dev;
2944         struct drm_i915_private *dev_priv = dev->dev_private;
2945         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2946         unsigned long flags;
2947         bool pending;
2948
2949         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2950             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2951                 return false;
2952
2953         spin_lock_irqsave(&dev->event_lock, flags);
2954         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2955         spin_unlock_irqrestore(&dev->event_lock, flags);
2956
2957         return pending;
2958 }
2959
2960 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2961 {
2962         struct drm_device *dev = crtc->dev;
2963         struct drm_i915_private *dev_priv = dev->dev_private;
2964
2965         if (crtc->fb == NULL)
2966                 return;
2967
2968         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2969
2970         wait_event(dev_priv->pending_flip_queue,
2971                    !intel_crtc_has_pending_flip(crtc));
2972
2973         mutex_lock(&dev->struct_mutex);
2974         intel_finish_fb(crtc->fb);
2975         mutex_unlock(&dev->struct_mutex);
2976 }
2977
2978 /* Program iCLKIP clock to the desired frequency */
2979 static void lpt_program_iclkip(struct drm_crtc *crtc)
2980 {
2981         struct drm_device *dev = crtc->dev;
2982         struct drm_i915_private *dev_priv = dev->dev_private;
2983         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2984         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2985         u32 temp;
2986
2987         mutex_lock(&dev_priv->dpio_lock);
2988
2989         /* It is necessary to ungate the pixclk gate prior to programming
2990          * the divisors, and gate it back when it is done.
2991          */
2992         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2993
2994         /* Disable SSCCTL */
2995         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2996                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2997                                 SBI_SSCCTL_DISABLE,
2998                         SBI_ICLK);
2999
3000         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3001         if (clock == 20000) {
3002                 auxdiv = 1;
3003                 divsel = 0x41;
3004                 phaseinc = 0x20;
3005         } else {
3006                 /* The iCLK virtual clock root frequency is in MHz,
3007                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3008                  * divisors, it is necessary to divide one by another, so we
3009                  * convert the virtual clock precision to KHz here for higher
3010                  * precision.
3011                  */
3012                 u32 iclk_virtual_root_freq = 172800 * 1000;
3013                 u32 iclk_pi_range = 64;
3014                 u32 desired_divisor, msb_divisor_value, pi_value;
3015
3016                 desired_divisor = (iclk_virtual_root_freq / clock);
3017                 msb_divisor_value = desired_divisor / iclk_pi_range;
3018                 pi_value = desired_divisor % iclk_pi_range;
3019
3020                 auxdiv = 0;
3021                 divsel = msb_divisor_value - 2;
3022                 phaseinc = pi_value;
3023         }
3024
3025         /* This should not happen with any sane values */
3026         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3027                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3028         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3029                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3030
3031         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3032                         clock,
3033                         auxdiv,
3034                         divsel,
3035                         phasedir,
3036                         phaseinc);
3037
3038         /* Program SSCDIVINTPHASE6 */
3039         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3040         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3041         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3042         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3043         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3044         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3045         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3046         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3047
3048         /* Program SSCAUXDIV */
3049         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3050         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3051         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3052         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3053
3054         /* Enable modulator and associated divider */
3055         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3056         temp &= ~SBI_SSCCTL_DISABLE;
3057         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3058
3059         /* Wait for initialization time */
3060         udelay(24);
3061
3062         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3063
3064         mutex_unlock(&dev_priv->dpio_lock);
3065 }
3066
3067 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3068                                                 enum pipe pch_transcoder)
3069 {
3070         struct drm_device *dev = crtc->base.dev;
3071         struct drm_i915_private *dev_priv = dev->dev_private;
3072         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3073
3074         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3075                    I915_READ(HTOTAL(cpu_transcoder)));
3076         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3077                    I915_READ(HBLANK(cpu_transcoder)));
3078         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3079                    I915_READ(HSYNC(cpu_transcoder)));
3080
3081         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3082                    I915_READ(VTOTAL(cpu_transcoder)));
3083         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3084                    I915_READ(VBLANK(cpu_transcoder)));
3085         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3086                    I915_READ(VSYNC(cpu_transcoder)));
3087         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3088                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3089 }
3090
3091 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3092 {
3093         struct drm_i915_private *dev_priv = dev->dev_private;
3094         uint32_t temp;
3095
3096         temp = I915_READ(SOUTH_CHICKEN1);
3097         if (temp & FDI_BC_BIFURCATION_SELECT)
3098                 return;
3099
3100         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3101         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3102
3103         temp |= FDI_BC_BIFURCATION_SELECT;
3104         DRM_DEBUG_KMS("enabling fdi C rx\n");
3105         I915_WRITE(SOUTH_CHICKEN1, temp);
3106         POSTING_READ(SOUTH_CHICKEN1);
3107 }
3108
3109 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3110 {
3111         struct drm_device *dev = intel_crtc->base.dev;
3112         struct drm_i915_private *dev_priv = dev->dev_private;
3113
3114         switch (intel_crtc->pipe) {
3115         case PIPE_A:
3116                 break;
3117         case PIPE_B:
3118                 if (intel_crtc->config.fdi_lanes > 2)
3119                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3120                 else
3121                         cpt_enable_fdi_bc_bifurcation(dev);
3122
3123                 break;
3124         case PIPE_C:
3125                 cpt_enable_fdi_bc_bifurcation(dev);
3126
3127                 break;
3128         default:
3129                 BUG();
3130         }
3131 }
3132
3133 /*
3134  * Enable PCH resources required for PCH ports:
3135  *   - PCH PLLs
3136  *   - FDI training & RX/TX
3137  *   - update transcoder timings
3138  *   - DP transcoding bits
3139  *   - transcoder
3140  */
3141 static void ironlake_pch_enable(struct drm_crtc *crtc)
3142 {
3143         struct drm_device *dev = crtc->dev;
3144         struct drm_i915_private *dev_priv = dev->dev_private;
3145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3146         int pipe = intel_crtc->pipe;
3147         u32 reg, temp;
3148
3149         assert_pch_transcoder_disabled(dev_priv, pipe);
3150
3151         if (IS_IVYBRIDGE(dev))
3152                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3153
3154         /* Write the TU size bits before fdi link training, so that error
3155          * detection works. */
3156         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3157                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3158
3159         /* For PCH output, training FDI link */
3160         dev_priv->display.fdi_link_train(crtc);
3161
3162         /* We need to program the right clock selection before writing the pixel
3163          * mutliplier into the DPLL. */
3164         if (HAS_PCH_CPT(dev)) {
3165                 u32 sel;
3166
3167                 temp = I915_READ(PCH_DPLL_SEL);
3168                 temp |= TRANS_DPLL_ENABLE(pipe);
3169                 sel = TRANS_DPLLB_SEL(pipe);
3170                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3171                         temp |= sel;
3172                 else
3173                         temp &= ~sel;
3174                 I915_WRITE(PCH_DPLL_SEL, temp);
3175         }
3176
3177         /* XXX: pch pll's can be enabled any time before we enable the PCH
3178          * transcoder, and we actually should do this to not upset any PCH
3179          * transcoder that already use the clock when we share it.
3180          *
3181          * Note that enable_shared_dpll tries to do the right thing, but
3182          * get_shared_dpll unconditionally resets the pll - we need that to have
3183          * the right LVDS enable sequence. */
3184         ironlake_enable_shared_dpll(intel_crtc);
3185
3186         /* set transcoder timing, panel must allow it */
3187         assert_panel_unlocked(dev_priv, pipe);
3188         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3189
3190         intel_fdi_normal_train(crtc);
3191
3192         /* For PCH DP, enable TRANS_DP_CTL */
3193         if (HAS_PCH_CPT(dev) &&
3194             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3195              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3196                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3197                 reg = TRANS_DP_CTL(pipe);
3198                 temp = I915_READ(reg);
3199                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3200                           TRANS_DP_SYNC_MASK |
3201                           TRANS_DP_BPC_MASK);
3202                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3203                          TRANS_DP_ENH_FRAMING);
3204                 temp |= bpc << 9; /* same format but at 11:9 */
3205
3206                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3207                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3208                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3209                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3210
3211                 switch (intel_trans_dp_port_sel(crtc)) {
3212                 case PCH_DP_B:
3213                         temp |= TRANS_DP_PORT_SEL_B;
3214                         break;
3215                 case PCH_DP_C:
3216                         temp |= TRANS_DP_PORT_SEL_C;
3217                         break;
3218                 case PCH_DP_D:
3219                         temp |= TRANS_DP_PORT_SEL_D;
3220                         break;
3221                 default:
3222                         BUG();
3223                 }
3224
3225                 I915_WRITE(reg, temp);
3226         }
3227
3228         ironlake_enable_pch_transcoder(dev_priv, pipe);
3229 }
3230
3231 static void lpt_pch_enable(struct drm_crtc *crtc)
3232 {
3233         struct drm_device *dev = crtc->dev;
3234         struct drm_i915_private *dev_priv = dev->dev_private;
3235         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3236         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3237
3238         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3239
3240         lpt_program_iclkip(crtc);
3241
3242         /* Set transcoder timing. */
3243         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3244
3245         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3246 }
3247
3248 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3249 {
3250         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3251
3252         if (pll == NULL)
3253                 return;
3254
3255         if (pll->refcount == 0) {
3256                 WARN(1, "bad %s refcount\n", pll->name);
3257                 return;
3258         }
3259
3260         if (--pll->refcount == 0) {
3261                 WARN_ON(pll->on);
3262                 WARN_ON(pll->active);
3263         }
3264
3265         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3266 }
3267
3268 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3269 {
3270         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3271         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3272         enum intel_dpll_id i;
3273
3274         if (pll) {
3275                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3276                               crtc->base.base.id, pll->name);
3277                 intel_put_shared_dpll(crtc);
3278         }
3279
3280         if (HAS_PCH_IBX(dev_priv->dev)) {
3281                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3282                 i = (enum intel_dpll_id) crtc->pipe;
3283                 pll = &dev_priv->shared_dplls[i];
3284
3285                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3286                               crtc->base.base.id, pll->name);
3287
3288                 goto found;
3289         }
3290
3291         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3292                 pll = &dev_priv->shared_dplls[i];
3293
3294                 /* Only want to check enabled timings first */
3295                 if (pll->refcount == 0)
3296                         continue;
3297
3298                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3299                            sizeof(pll->hw_state)) == 0) {
3300                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3301                                       crtc->base.base.id,
3302                                       pll->name, pll->refcount, pll->active);
3303
3304                         goto found;
3305                 }
3306         }
3307
3308         /* Ok no matching timings, maybe there's a free one? */
3309         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3310                 pll = &dev_priv->shared_dplls[i];
3311                 if (pll->refcount == 0) {
3312                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3313                                       crtc->base.base.id, pll->name);
3314                         goto found;
3315                 }
3316         }
3317
3318         return NULL;
3319
3320 found:
3321         crtc->config.shared_dpll = i;
3322         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3323                          pipe_name(crtc->pipe));
3324
3325         if (pll->active == 0) {
3326                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3327                        sizeof(pll->hw_state));
3328
3329                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3330                 WARN_ON(pll->on);
3331                 assert_shared_dpll_disabled(dev_priv, pll);
3332
3333                 pll->mode_set(dev_priv, pll);
3334         }
3335         pll->refcount++;
3336
3337         return pll;
3338 }
3339
3340 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3341 {
3342         struct drm_i915_private *dev_priv = dev->dev_private;
3343         int dslreg = PIPEDSL(pipe);
3344         u32 temp;
3345
3346         temp = I915_READ(dslreg);
3347         udelay(500);
3348         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3349                 if (wait_for(I915_READ(dslreg) != temp, 5))
3350                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3351         }
3352 }
3353
3354 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3355 {
3356         struct drm_device *dev = crtc->base.dev;
3357         struct drm_i915_private *dev_priv = dev->dev_private;
3358         int pipe = crtc->pipe;
3359
3360         if (crtc->config.pch_pfit.enabled) {
3361                 /* Force use of hard-coded filter coefficients
3362                  * as some pre-programmed values are broken,
3363                  * e.g. x201.
3364                  */
3365                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3366                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3367                                                  PF_PIPE_SEL_IVB(pipe));
3368                 else
3369                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3370                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3371                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3372         }
3373 }
3374
3375 static void intel_enable_planes(struct drm_crtc *crtc)
3376 {
3377         struct drm_device *dev = crtc->dev;
3378         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3379         struct intel_plane *intel_plane;
3380
3381         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3382                 if (intel_plane->pipe == pipe)
3383                         intel_plane_restore(&intel_plane->base);
3384 }
3385
3386 static void intel_disable_planes(struct drm_crtc *crtc)
3387 {
3388         struct drm_device *dev = crtc->dev;
3389         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3390         struct intel_plane *intel_plane;
3391
3392         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3393                 if (intel_plane->pipe == pipe)
3394                         intel_plane_disable(&intel_plane->base);
3395 }
3396
3397 void hsw_enable_ips(struct intel_crtc *crtc)
3398 {
3399         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3400
3401         if (!crtc->config.ips_enabled)
3402                 return;
3403
3404         /* We can only enable IPS after we enable a plane and wait for a vblank.
3405          * We guarantee that the plane is enabled by calling intel_enable_ips
3406          * only after intel_enable_plane. And intel_enable_plane already waits
3407          * for a vblank, so all we need to do here is to enable the IPS bit. */
3408         assert_plane_enabled(dev_priv, crtc->plane);
3409         if (IS_BROADWELL(crtc->base.dev)) {
3410                 mutex_lock(&dev_priv->rps.hw_lock);
3411                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3412                 mutex_unlock(&dev_priv->rps.hw_lock);
3413                 /* Quoting Art Runyan: "its not safe to expect any particular
3414                  * value in IPS_CTL bit 31 after enabling IPS through the
3415                  * mailbox." Therefore we need to defer waiting on the state
3416                  * change.
3417                  * TODO: need to fix this for state checker
3418                  */
3419         } else {
3420                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3421                 /* The bit only becomes 1 in the next vblank, so this wait here
3422                  * is essentially intel_wait_for_vblank. If we don't have this
3423                  * and don't wait for vblanks until the end of crtc_enable, then
3424                  * the HW state readout code will complain that the expected
3425                  * IPS_CTL value is not the one we read. */
3426                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3427                         DRM_ERROR("Timed out waiting for IPS enable\n");
3428         }
3429 }
3430
3431 void hsw_disable_ips(struct intel_crtc *crtc)
3432 {
3433         struct drm_device *dev = crtc->base.dev;
3434         struct drm_i915_private *dev_priv = dev->dev_private;
3435
3436         if (!crtc->config.ips_enabled)
3437                 return;
3438
3439         assert_plane_enabled(dev_priv, crtc->plane);
3440         if (IS_BROADWELL(crtc->base.dev)) {
3441                 mutex_lock(&dev_priv->rps.hw_lock);
3442                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3443                 mutex_unlock(&dev_priv->rps.hw_lock);
3444         } else
3445                 I915_WRITE(IPS_CTL, 0);
3446         POSTING_READ(IPS_CTL);
3447
3448         /* We need to wait for a vblank before we can disable the plane. */
3449         intel_wait_for_vblank(dev, crtc->pipe);
3450 }
3451
3452 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3453 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3454 {
3455         struct drm_device *dev = crtc->dev;
3456         struct drm_i915_private *dev_priv = dev->dev_private;
3457         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3458         enum pipe pipe = intel_crtc->pipe;
3459         int palreg = PALETTE(pipe);
3460         int i;
3461         bool reenable_ips = false;
3462
3463         /* The clocks have to be on to load the palette. */
3464         if (!crtc->enabled || !intel_crtc->active)
3465                 return;
3466
3467         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3468                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3469                         assert_dsi_pll_enabled(dev_priv);
3470                 else
3471                         assert_pll_enabled(dev_priv, pipe);
3472         }
3473
3474         /* use legacy palette for Ironlake */
3475         if (HAS_PCH_SPLIT(dev))
3476                 palreg = LGC_PALETTE(pipe);
3477
3478         /* Workaround : Do not read or write the pipe palette/gamma data while
3479          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3480          */
3481         if (intel_crtc->config.ips_enabled &&
3482             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3483              GAMMA_MODE_MODE_SPLIT)) {
3484                 hsw_disable_ips(intel_crtc);
3485                 reenable_ips = true;
3486         }
3487
3488         for (i = 0; i < 256; i++) {
3489                 I915_WRITE(palreg + 4 * i,
3490                            (intel_crtc->lut_r[i] << 16) |
3491                            (intel_crtc->lut_g[i] << 8) |
3492                            intel_crtc->lut_b[i]);
3493         }
3494
3495         if (reenable_ips)
3496                 hsw_enable_ips(intel_crtc);
3497 }
3498
3499 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3500 {
3501         struct drm_device *dev = crtc->dev;
3502         struct drm_i915_private *dev_priv = dev->dev_private;
3503         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3504         struct intel_encoder *encoder;
3505         int pipe = intel_crtc->pipe;
3506         int plane = intel_crtc->plane;
3507
3508         WARN_ON(!crtc->enabled);
3509
3510         if (intel_crtc->active)
3511                 return;
3512
3513         intel_crtc->active = true;
3514
3515         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3516         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3517
3518         for_each_encoder_on_crtc(dev, crtc, encoder)
3519                 if (encoder->pre_enable)
3520                         encoder->pre_enable(encoder);
3521
3522         if (intel_crtc->config.has_pch_encoder) {
3523                 /* Note: FDI PLL enabling _must_ be done before we enable the
3524                  * cpu pipes, hence this is separate from all the other fdi/pch
3525                  * enabling. */
3526                 ironlake_fdi_pll_enable(intel_crtc);
3527         } else {
3528                 assert_fdi_tx_disabled(dev_priv, pipe);
3529                 assert_fdi_rx_disabled(dev_priv, pipe);
3530         }
3531
3532         ironlake_pfit_enable(intel_crtc);
3533
3534         /*
3535          * On ILK+ LUT must be loaded before the pipe is running but with
3536          * clocks enabled
3537          */
3538         intel_crtc_load_lut(crtc);
3539
3540         intel_update_watermarks(crtc);
3541         intel_enable_pipe(dev_priv, pipe,
3542                           intel_crtc->config.has_pch_encoder, false);
3543         intel_enable_primary_plane(dev_priv, plane, pipe);
3544         intel_enable_planes(crtc);
3545         intel_crtc_update_cursor(crtc, true);
3546
3547         if (intel_crtc->config.has_pch_encoder)
3548                 ironlake_pch_enable(crtc);
3549
3550         mutex_lock(&dev->struct_mutex);
3551         intel_update_fbc(dev);
3552         mutex_unlock(&dev->struct_mutex);
3553
3554         for_each_encoder_on_crtc(dev, crtc, encoder)
3555                 encoder->enable(encoder);
3556
3557         if (HAS_PCH_CPT(dev))
3558                 cpt_verify_modeset(dev, intel_crtc->pipe);
3559
3560         /*
3561          * There seems to be a race in PCH platform hw (at least on some
3562          * outputs) where an enabled pipe still completes any pageflip right
3563          * away (as if the pipe is off) instead of waiting for vblank. As soon
3564          * as the first vblank happend, everything works as expected. Hence just
3565          * wait for one vblank before returning to avoid strange things
3566          * happening.
3567          */
3568         intel_wait_for_vblank(dev, intel_crtc->pipe);
3569 }
3570
3571 /* IPS only exists on ULT machines and is tied to pipe A. */
3572 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3573 {
3574         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3575 }
3576
3577 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3578 {
3579         struct drm_device *dev = crtc->dev;
3580         struct drm_i915_private *dev_priv = dev->dev_private;
3581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3582         int pipe = intel_crtc->pipe;
3583         int plane = intel_crtc->plane;
3584
3585         intel_enable_primary_plane(dev_priv, plane, pipe);
3586         intel_enable_planes(crtc);
3587         intel_crtc_update_cursor(crtc, true);
3588
3589         hsw_enable_ips(intel_crtc);
3590
3591         mutex_lock(&dev->struct_mutex);
3592         intel_update_fbc(dev);
3593         mutex_unlock(&dev->struct_mutex);
3594 }
3595
3596 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3597 {
3598         struct drm_device *dev = crtc->dev;
3599         struct drm_i915_private *dev_priv = dev->dev_private;
3600         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3601         int pipe = intel_crtc->pipe;
3602         int plane = intel_crtc->plane;
3603
3604         intel_crtc_wait_for_pending_flips(crtc);
3605         drm_vblank_off(dev, pipe);
3606
3607         /* FBC must be disabled before disabling the plane on HSW. */
3608         if (dev_priv->fbc.plane == plane)
3609                 intel_disable_fbc(dev);
3610
3611         hsw_disable_ips(intel_crtc);
3612
3613         intel_crtc_update_cursor(crtc, false);
3614         intel_disable_planes(crtc);
3615         intel_disable_primary_plane(dev_priv, plane, pipe);
3616 }
3617
3618 /*
3619  * This implements the workaround described in the "notes" section of the mode
3620  * set sequence documentation. When going from no pipes or single pipe to
3621  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3622  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3623  */
3624 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3625 {
3626         struct drm_device *dev = crtc->base.dev;
3627         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3628
3629         /* We want to get the other_active_crtc only if there's only 1 other
3630          * active crtc. */
3631         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3632                 if (!crtc_it->active || crtc_it == crtc)
3633                         continue;
3634
3635                 if (other_active_crtc)
3636                         return;
3637
3638                 other_active_crtc = crtc_it;
3639         }
3640         if (!other_active_crtc)
3641                 return;
3642
3643         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3644         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3645 }
3646
3647 static void haswell_crtc_enable(struct drm_crtc *crtc)
3648 {
3649         struct drm_device *dev = crtc->dev;
3650         struct drm_i915_private *dev_priv = dev->dev_private;
3651         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3652         struct intel_encoder *encoder;
3653         int pipe = intel_crtc->pipe;
3654
3655         WARN_ON(!crtc->enabled);
3656
3657         if (intel_crtc->active)
3658                 return;
3659
3660         intel_crtc->active = true;
3661
3662         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3663         if (intel_crtc->config.has_pch_encoder)
3664                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3665
3666         if (intel_crtc->config.has_pch_encoder)
3667                 dev_priv->display.fdi_link_train(crtc);
3668
3669         for_each_encoder_on_crtc(dev, crtc, encoder)
3670                 if (encoder->pre_enable)
3671                         encoder->pre_enable(encoder);
3672
3673         intel_ddi_enable_pipe_clock(intel_crtc);
3674
3675         ironlake_pfit_enable(intel_crtc);
3676
3677         /*
3678          * On ILK+ LUT must be loaded before the pipe is running but with
3679          * clocks enabled
3680          */
3681         intel_crtc_load_lut(crtc);
3682
3683         intel_ddi_set_pipe_settings(crtc);
3684         intel_ddi_enable_transcoder_func(crtc);
3685
3686         intel_update_watermarks(crtc);
3687         intel_enable_pipe(dev_priv, pipe,
3688                           intel_crtc->config.has_pch_encoder, false);
3689
3690         if (intel_crtc->config.has_pch_encoder)
3691                 lpt_pch_enable(crtc);
3692
3693         for_each_encoder_on_crtc(dev, crtc, encoder) {
3694                 encoder->enable(encoder);
3695                 intel_opregion_notify_encoder(encoder, true);
3696         }
3697
3698         /* If we change the relative order between pipe/planes enabling, we need
3699          * to change the workaround. */
3700         haswell_mode_set_planes_workaround(intel_crtc);
3701         haswell_crtc_enable_planes(crtc);
3702
3703         /*
3704          * There seems to be a race in PCH platform hw (at least on some
3705          * outputs) where an enabled pipe still completes any pageflip right
3706          * away (as if the pipe is off) instead of waiting for vblank. As soon
3707          * as the first vblank happend, everything works as expected. Hence just
3708          * wait for one vblank before returning to avoid strange things
3709          * happening.
3710          */
3711         intel_wait_for_vblank(dev, intel_crtc->pipe);
3712 }
3713
3714 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3715 {
3716         struct drm_device *dev = crtc->base.dev;
3717         struct drm_i915_private *dev_priv = dev->dev_private;
3718         int pipe = crtc->pipe;
3719
3720         /* To avoid upsetting the power well on haswell only disable the pfit if
3721          * it's in use. The hw state code will make sure we get this right. */
3722         if (crtc->config.pch_pfit.enabled) {
3723                 I915_WRITE(PF_CTL(pipe), 0);
3724                 I915_WRITE(PF_WIN_POS(pipe), 0);
3725                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3726         }
3727 }
3728
3729 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3730 {
3731         struct drm_device *dev = crtc->dev;
3732         struct drm_i915_private *dev_priv = dev->dev_private;
3733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3734         struct intel_encoder *encoder;
3735         int pipe = intel_crtc->pipe;
3736         int plane = intel_crtc->plane;
3737         u32 reg, temp;
3738
3739
3740         if (!intel_crtc->active)
3741                 return;
3742
3743         for_each_encoder_on_crtc(dev, crtc, encoder)
3744                 encoder->disable(encoder);
3745
3746         intel_crtc_wait_for_pending_flips(crtc);
3747         drm_vblank_off(dev, pipe);
3748
3749         if (dev_priv->fbc.plane == plane)
3750                 intel_disable_fbc(dev);
3751
3752         intel_crtc_update_cursor(crtc, false);
3753         intel_disable_planes(crtc);
3754         intel_disable_primary_plane(dev_priv, plane, pipe);
3755
3756         if (intel_crtc->config.has_pch_encoder)
3757                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3758
3759         intel_disable_pipe(dev_priv, pipe);
3760
3761         ironlake_pfit_disable(intel_crtc);
3762
3763         for_each_encoder_on_crtc(dev, crtc, encoder)
3764                 if (encoder->post_disable)
3765                         encoder->post_disable(encoder);
3766
3767         if (intel_crtc->config.has_pch_encoder) {
3768                 ironlake_fdi_disable(crtc);
3769
3770                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3771                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3772
3773                 if (HAS_PCH_CPT(dev)) {
3774                         /* disable TRANS_DP_CTL */
3775                         reg = TRANS_DP_CTL(pipe);
3776                         temp = I915_READ(reg);
3777                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3778                                   TRANS_DP_PORT_SEL_MASK);
3779                         temp |= TRANS_DP_PORT_SEL_NONE;
3780                         I915_WRITE(reg, temp);
3781
3782                         /* disable DPLL_SEL */
3783                         temp = I915_READ(PCH_DPLL_SEL);
3784                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3785                         I915_WRITE(PCH_DPLL_SEL, temp);
3786                 }
3787
3788                 /* disable PCH DPLL */
3789                 intel_disable_shared_dpll(intel_crtc);
3790
3791                 ironlake_fdi_pll_disable(intel_crtc);
3792         }
3793
3794         intel_crtc->active = false;
3795         intel_update_watermarks(crtc);
3796
3797         mutex_lock(&dev->struct_mutex);
3798         intel_update_fbc(dev);
3799         mutex_unlock(&dev->struct_mutex);
3800 }
3801
3802 static void haswell_crtc_disable(struct drm_crtc *crtc)
3803 {
3804         struct drm_device *dev = crtc->dev;
3805         struct drm_i915_private *dev_priv = dev->dev_private;
3806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3807         struct intel_encoder *encoder;
3808         int pipe = intel_crtc->pipe;
3809         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3810
3811         if (!intel_crtc->active)
3812                 return;
3813
3814         haswell_crtc_disable_planes(crtc);
3815
3816         for_each_encoder_on_crtc(dev, crtc, encoder) {
3817                 intel_opregion_notify_encoder(encoder, false);
3818                 encoder->disable(encoder);
3819         }
3820
3821         if (intel_crtc->config.has_pch_encoder)
3822                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3823         intel_disable_pipe(dev_priv, pipe);
3824
3825         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3826
3827         ironlake_pfit_disable(intel_crtc);
3828
3829         intel_ddi_disable_pipe_clock(intel_crtc);
3830
3831         for_each_encoder_on_crtc(dev, crtc, encoder)
3832                 if (encoder->post_disable)
3833                         encoder->post_disable(encoder);
3834
3835         if (intel_crtc->config.has_pch_encoder) {
3836                 lpt_disable_pch_transcoder(dev_priv);
3837                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3838                 intel_ddi_fdi_disable(crtc);
3839         }
3840
3841         intel_crtc->active = false;
3842         intel_update_watermarks(crtc);
3843
3844         mutex_lock(&dev->struct_mutex);
3845         intel_update_fbc(dev);
3846         mutex_unlock(&dev->struct_mutex);
3847 }
3848
3849 static void ironlake_crtc_off(struct drm_crtc *crtc)
3850 {
3851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3852         intel_put_shared_dpll(intel_crtc);
3853 }
3854
3855 static void haswell_crtc_off(struct drm_crtc *crtc)
3856 {
3857         intel_ddi_put_crtc_pll(crtc);
3858 }
3859
3860 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3861 {
3862         if (!enable && intel_crtc->overlay) {
3863                 struct drm_device *dev = intel_crtc->base.dev;
3864                 struct drm_i915_private *dev_priv = dev->dev_private;
3865
3866                 mutex_lock(&dev->struct_mutex);
3867                 dev_priv->mm.interruptible = false;
3868                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3869                 dev_priv->mm.interruptible = true;
3870                 mutex_unlock(&dev->struct_mutex);
3871         }
3872
3873         /* Let userspace switch the overlay on again. In most cases userspace
3874          * has to recompute where to put it anyway.
3875          */
3876 }
3877
3878 /**
3879  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3880  * cursor plane briefly if not already running after enabling the display
3881  * plane.
3882  * This workaround avoids occasional blank screens when self refresh is
3883  * enabled.
3884  */
3885 static void
3886 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3887 {
3888         u32 cntl = I915_READ(CURCNTR(pipe));
3889
3890         if ((cntl & CURSOR_MODE) == 0) {
3891                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3892
3893                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3894                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3895                 intel_wait_for_vblank(dev_priv->dev, pipe);
3896                 I915_WRITE(CURCNTR(pipe), cntl);
3897                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3898                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3899         }
3900 }
3901
3902 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3903 {
3904         struct drm_device *dev = crtc->base.dev;
3905         struct drm_i915_private *dev_priv = dev->dev_private;
3906         struct intel_crtc_config *pipe_config = &crtc->config;
3907
3908         if (!crtc->config.gmch_pfit.control)
3909                 return;
3910
3911         /*
3912          * The panel fitter should only be adjusted whilst the pipe is disabled,
3913          * according to register description and PRM.
3914          */
3915         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3916         assert_pipe_disabled(dev_priv, crtc->pipe);
3917
3918         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3919         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3920
3921         /* Border color in case we don't scale up to the full screen. Black by
3922          * default, change to something else for debugging. */
3923         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3924 }
3925
3926 int valleyview_get_vco(struct drm_i915_private *dev_priv)
3927 {
3928         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
3929
3930         /* Obtain SKU information */
3931         mutex_lock(&dev_priv->dpio_lock);
3932         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
3933                 CCK_FUSE_HPLL_FREQ_MASK;
3934         mutex_unlock(&dev_priv->dpio_lock);
3935
3936         return vco_freq[hpll_freq];
3937 }
3938
3939 /* Adjust CDclk dividers to allow high res or save power if possible */
3940 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
3941 {
3942         struct drm_i915_private *dev_priv = dev->dev_private;
3943         u32 val, cmd;
3944
3945         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
3946                 cmd = 2;
3947         else if (cdclk == 266)
3948                 cmd = 1;
3949         else
3950                 cmd = 0;
3951
3952         mutex_lock(&dev_priv->rps.hw_lock);
3953         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3954         val &= ~DSPFREQGUAR_MASK;
3955         val |= (cmd << DSPFREQGUAR_SHIFT);
3956         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
3957         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
3958                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
3959                      50)) {
3960                 DRM_ERROR("timed out waiting for CDclk change\n");
3961         }
3962         mutex_unlock(&dev_priv->rps.hw_lock);
3963
3964         if (cdclk == 400) {
3965                 u32 divider, vco;
3966
3967                 vco = valleyview_get_vco(dev_priv);
3968                 divider = ((vco << 1) / cdclk) - 1;
3969
3970                 mutex_lock(&dev_priv->dpio_lock);
3971                 /* adjust cdclk divider */
3972                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
3973                 val &= ~0xf;
3974                 val |= divider;
3975                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
3976                 mutex_unlock(&dev_priv->dpio_lock);
3977         }
3978
3979         mutex_lock(&dev_priv->dpio_lock);
3980         /* adjust self-refresh exit latency value */
3981         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
3982         val &= ~0x7f;
3983
3984         /*
3985          * For high bandwidth configs, we set a higher latency in the bunit
3986          * so that the core display fetch happens in time to avoid underruns.
3987          */
3988         if (cdclk == 400)
3989                 val |= 4500 / 250; /* 4.5 usec */
3990         else
3991                 val |= 3000 / 250; /* 3.0 usec */
3992         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
3993         mutex_unlock(&dev_priv->dpio_lock);
3994
3995         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
3996         intel_i2c_reset(dev);
3997 }
3998
3999 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4000 {
4001         int cur_cdclk, vco;
4002         int divider;
4003
4004         vco = valleyview_get_vco(dev_priv);
4005
4006         mutex_lock(&dev_priv->dpio_lock);
4007         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4008         mutex_unlock(&dev_priv->dpio_lock);
4009
4010         divider &= 0xf;
4011
4012         cur_cdclk = (vco << 1) / (divider + 1);
4013
4014         return cur_cdclk;
4015 }
4016
4017 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4018                                  int max_pixclk)
4019 {
4020         int cur_cdclk;
4021
4022         cur_cdclk = valleyview_cur_cdclk(dev_priv);
4023
4024         /*
4025          * Really only a few cases to deal with, as only 4 CDclks are supported:
4026          *   200MHz
4027          *   267MHz
4028          *   320MHz
4029          *   400MHz
4030          * So we check to see whether we're above 90% of the lower bin and
4031          * adjust if needed.
4032          */
4033         if (max_pixclk > 288000) {
4034                 return 400;
4035         } else if (max_pixclk > 240000) {
4036                 return 320;
4037         } else
4038                 return 266;
4039         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4040 }
4041
4042 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv,
4043                                  unsigned modeset_pipes,
4044                                  struct intel_crtc_config *pipe_config)
4045 {
4046         struct drm_device *dev = dev_priv->dev;
4047         struct intel_crtc *intel_crtc;
4048         int max_pixclk = 0;
4049
4050         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4051                             base.head) {
4052                 if (modeset_pipes & (1 << intel_crtc->pipe))
4053                         max_pixclk = max(max_pixclk,
4054                                          pipe_config->adjusted_mode.crtc_clock);
4055                 else if (intel_crtc->base.enabled)
4056                         max_pixclk = max(max_pixclk,
4057                                          intel_crtc->config.adjusted_mode.crtc_clock);
4058         }
4059
4060         return max_pixclk;
4061 }
4062
4063 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4064                                             unsigned *prepare_pipes,
4065                                             unsigned modeset_pipes,
4066                                             struct intel_crtc_config *pipe_config)
4067 {
4068         struct drm_i915_private *dev_priv = dev->dev_private;
4069         struct intel_crtc *intel_crtc;
4070         int max_pixclk = intel_mode_max_pixclk(dev_priv, modeset_pipes,
4071                                                pipe_config);
4072         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4073
4074         if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4075                 return;
4076
4077         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4078                             base.head)
4079                 if (intel_crtc->base.enabled)
4080                         *prepare_pipes |= (1 << intel_crtc->pipe);
4081 }
4082
4083 static void valleyview_modeset_global_resources(struct drm_device *dev)
4084 {
4085         struct drm_i915_private *dev_priv = dev->dev_private;
4086         int max_pixclk = intel_mode_max_pixclk(dev_priv, 0, NULL);
4087         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4088         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4089
4090         if (req_cdclk != cur_cdclk)
4091                 valleyview_set_cdclk(dev, req_cdclk);
4092 }
4093
4094 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4095 {
4096         struct drm_device *dev = crtc->dev;
4097         struct drm_i915_private *dev_priv = dev->dev_private;
4098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4099         struct intel_encoder *encoder;
4100         int pipe = intel_crtc->pipe;
4101         int plane = intel_crtc->plane;
4102         bool is_dsi;
4103
4104         WARN_ON(!crtc->enabled);
4105
4106         if (intel_crtc->active)
4107                 return;
4108
4109         intel_crtc->active = true;
4110
4111         for_each_encoder_on_crtc(dev, crtc, encoder)
4112                 if (encoder->pre_pll_enable)
4113                         encoder->pre_pll_enable(encoder);
4114
4115         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4116
4117         if (!is_dsi)
4118                 vlv_enable_pll(intel_crtc);
4119
4120         for_each_encoder_on_crtc(dev, crtc, encoder)
4121                 if (encoder->pre_enable)
4122                         encoder->pre_enable(encoder);
4123
4124         i9xx_pfit_enable(intel_crtc);
4125
4126         intel_crtc_load_lut(crtc);
4127
4128         intel_update_watermarks(crtc);
4129         intel_enable_pipe(dev_priv, pipe, false, is_dsi);
4130         intel_enable_primary_plane(dev_priv, plane, pipe);
4131         intel_enable_planes(crtc);
4132         intel_crtc_update_cursor(crtc, true);
4133
4134         intel_update_fbc(dev);
4135
4136         for_each_encoder_on_crtc(dev, crtc, encoder)
4137                 encoder->enable(encoder);
4138 }
4139
4140 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4141 {
4142         struct drm_device *dev = crtc->dev;
4143         struct drm_i915_private *dev_priv = dev->dev_private;
4144         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4145         struct intel_encoder *encoder;
4146         int pipe = intel_crtc->pipe;
4147         int plane = intel_crtc->plane;
4148
4149         WARN_ON(!crtc->enabled);
4150
4151         if (intel_crtc->active)
4152                 return;
4153
4154         intel_crtc->active = true;
4155
4156         for_each_encoder_on_crtc(dev, crtc, encoder)
4157                 if (encoder->pre_enable)
4158                         encoder->pre_enable(encoder);
4159
4160         i9xx_enable_pll(intel_crtc);
4161
4162         i9xx_pfit_enable(intel_crtc);
4163
4164         intel_crtc_load_lut(crtc);
4165
4166         intel_update_watermarks(crtc);
4167         intel_enable_pipe(dev_priv, pipe, false, false);
4168         intel_enable_primary_plane(dev_priv, plane, pipe);
4169         intel_enable_planes(crtc);
4170         /* The fixup needs to happen before cursor is enabled */
4171         if (IS_G4X(dev))
4172                 g4x_fixup_plane(dev_priv, pipe);
4173         intel_crtc_update_cursor(crtc, true);
4174
4175         /* Give the overlay scaler a chance to enable if it's on this pipe */
4176         intel_crtc_dpms_overlay(intel_crtc, true);
4177
4178         intel_update_fbc(dev);
4179
4180         for_each_encoder_on_crtc(dev, crtc, encoder)
4181                 encoder->enable(encoder);
4182 }
4183
4184 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4185 {
4186         struct drm_device *dev = crtc->base.dev;
4187         struct drm_i915_private *dev_priv = dev->dev_private;
4188
4189         if (!crtc->config.gmch_pfit.control)
4190                 return;
4191
4192         assert_pipe_disabled(dev_priv, crtc->pipe);
4193
4194         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4195                          I915_READ(PFIT_CONTROL));
4196         I915_WRITE(PFIT_CONTROL, 0);
4197 }
4198
4199 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4200 {
4201         struct drm_device *dev = crtc->dev;
4202         struct drm_i915_private *dev_priv = dev->dev_private;
4203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4204         struct intel_encoder *encoder;
4205         int pipe = intel_crtc->pipe;
4206         int plane = intel_crtc->plane;
4207
4208         if (!intel_crtc->active)
4209                 return;
4210
4211         for_each_encoder_on_crtc(dev, crtc, encoder)
4212                 encoder->disable(encoder);
4213
4214         /* Give the overlay scaler a chance to disable if it's on this pipe */
4215         intel_crtc_wait_for_pending_flips(crtc);
4216         drm_vblank_off(dev, pipe);
4217
4218         if (dev_priv->fbc.plane == plane)
4219                 intel_disable_fbc(dev);
4220
4221         intel_crtc_dpms_overlay(intel_crtc, false);
4222         intel_crtc_update_cursor(crtc, false);
4223         intel_disable_planes(crtc);
4224         intel_disable_primary_plane(dev_priv, plane, pipe);
4225
4226         intel_disable_pipe(dev_priv, pipe);
4227
4228         i9xx_pfit_disable(intel_crtc);
4229
4230         for_each_encoder_on_crtc(dev, crtc, encoder)
4231                 if (encoder->post_disable)
4232                         encoder->post_disable(encoder);
4233
4234         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4235                 vlv_disable_pll(dev_priv, pipe);
4236         else if (!IS_VALLEYVIEW(dev))
4237                 i9xx_disable_pll(dev_priv, pipe);
4238
4239         intel_crtc->active = false;
4240         intel_update_watermarks(crtc);
4241
4242         intel_update_fbc(dev);
4243 }
4244
4245 static void i9xx_crtc_off(struct drm_crtc *crtc)
4246 {
4247 }
4248
4249 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4250                                     bool enabled)
4251 {
4252         struct drm_device *dev = crtc->dev;
4253         struct drm_i915_master_private *master_priv;
4254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4255         int pipe = intel_crtc->pipe;
4256
4257         if (!dev->primary->master)
4258                 return;
4259
4260         master_priv = dev->primary->master->driver_priv;
4261         if (!master_priv->sarea_priv)
4262                 return;
4263
4264         switch (pipe) {
4265         case 0:
4266                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4267                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4268                 break;
4269         case 1:
4270                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4271                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4272                 break;
4273         default:
4274                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4275                 break;
4276         }
4277 }
4278
4279 /**
4280  * Sets the power management mode of the pipe and plane.
4281  */
4282 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4283 {
4284         struct drm_device *dev = crtc->dev;
4285         struct drm_i915_private *dev_priv = dev->dev_private;
4286         struct intel_encoder *intel_encoder;
4287         bool enable = false;
4288
4289         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4290                 enable |= intel_encoder->connectors_active;
4291
4292         if (enable)
4293                 dev_priv->display.crtc_enable(crtc);
4294         else
4295                 dev_priv->display.crtc_disable(crtc);
4296
4297         intel_crtc_update_sarea(crtc, enable);
4298 }
4299
4300 static void intel_crtc_disable(struct drm_crtc *crtc)
4301 {
4302         struct drm_device *dev = crtc->dev;
4303         struct drm_connector *connector;
4304         struct drm_i915_private *dev_priv = dev->dev_private;
4305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4306
4307         /* crtc should still be enabled when we disable it. */
4308         WARN_ON(!crtc->enabled);
4309
4310         dev_priv->display.crtc_disable(crtc);
4311         intel_crtc->eld_vld = false;
4312         intel_crtc_update_sarea(crtc, false);
4313         dev_priv->display.off(crtc);
4314
4315         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4316         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4317         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4318
4319         if (crtc->fb) {
4320                 mutex_lock(&dev->struct_mutex);
4321                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4322                 mutex_unlock(&dev->struct_mutex);
4323                 crtc->fb = NULL;
4324         }
4325
4326         /* Update computed state. */
4327         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4328                 if (!connector->encoder || !connector->encoder->crtc)
4329                         continue;
4330
4331                 if (connector->encoder->crtc != crtc)
4332                         continue;
4333
4334                 connector->dpms = DRM_MODE_DPMS_OFF;
4335                 to_intel_encoder(connector->encoder)->connectors_active = false;
4336         }
4337 }
4338
4339 void intel_encoder_destroy(struct drm_encoder *encoder)
4340 {
4341         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4342
4343         drm_encoder_cleanup(encoder);
4344         kfree(intel_encoder);
4345 }
4346
4347 /* Simple dpms helper for encoders with just one connector, no cloning and only
4348  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4349  * state of the entire output pipe. */
4350 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4351 {
4352         if (mode == DRM_MODE_DPMS_ON) {
4353                 encoder->connectors_active = true;
4354
4355                 intel_crtc_update_dpms(encoder->base.crtc);
4356         } else {
4357                 encoder->connectors_active = false;
4358
4359                 intel_crtc_update_dpms(encoder->base.crtc);
4360         }
4361 }
4362
4363 /* Cross check the actual hw state with our own modeset state tracking (and it's
4364  * internal consistency). */
4365 static void intel_connector_check_state(struct intel_connector *connector)
4366 {
4367         if (connector->get_hw_state(connector)) {
4368                 struct intel_encoder *encoder = connector->encoder;
4369                 struct drm_crtc *crtc;
4370                 bool encoder_enabled;
4371                 enum pipe pipe;
4372
4373                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4374                               connector->base.base.id,
4375                               drm_get_connector_name(&connector->base));
4376
4377                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4378                      "wrong connector dpms state\n");
4379                 WARN(connector->base.encoder != &encoder->base,
4380                      "active connector not linked to encoder\n");
4381                 WARN(!encoder->connectors_active,
4382                      "encoder->connectors_active not set\n");
4383
4384                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4385                 WARN(!encoder_enabled, "encoder not enabled\n");
4386                 if (WARN_ON(!encoder->base.crtc))
4387                         return;
4388
4389                 crtc = encoder->base.crtc;
4390
4391                 WARN(!crtc->enabled, "crtc not enabled\n");
4392                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4393                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4394                      "encoder active on the wrong pipe\n");
4395         }
4396 }
4397
4398 /* Even simpler default implementation, if there's really no special case to
4399  * consider. */
4400 void intel_connector_dpms(struct drm_connector *connector, int mode)
4401 {
4402         /* All the simple cases only support two dpms states. */
4403         if (mode != DRM_MODE_DPMS_ON)
4404                 mode = DRM_MODE_DPMS_OFF;
4405
4406         if (mode == connector->dpms)
4407                 return;
4408
4409         connector->dpms = mode;
4410
4411         /* Only need to change hw state when actually enabled */
4412         if (connector->encoder)
4413                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4414
4415         intel_modeset_check_state(connector->dev);
4416 }
4417
4418 /* Simple connector->get_hw_state implementation for encoders that support only
4419  * one connector and no cloning and hence the encoder state determines the state
4420  * of the connector. */
4421 bool intel_connector_get_hw_state(struct intel_connector *connector)
4422 {
4423         enum pipe pipe = 0;
4424         struct intel_encoder *encoder = connector->encoder;
4425
4426         return encoder->get_hw_state(encoder, &pipe);
4427 }
4428
4429 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4430                                      struct intel_crtc_config *pipe_config)
4431 {
4432         struct drm_i915_private *dev_priv = dev->dev_private;
4433         struct intel_crtc *pipe_B_crtc =
4434                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4435
4436         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4437                       pipe_name(pipe), pipe_config->fdi_lanes);
4438         if (pipe_config->fdi_lanes > 4) {
4439                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4440                               pipe_name(pipe), pipe_config->fdi_lanes);
4441                 return false;
4442         }
4443
4444         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4445                 if (pipe_config->fdi_lanes > 2) {
4446                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4447                                       pipe_config->fdi_lanes);
4448                         return false;
4449                 } else {
4450                         return true;
4451                 }
4452         }
4453
4454         if (INTEL_INFO(dev)->num_pipes == 2)
4455                 return true;
4456
4457         /* Ivybridge 3 pipe is really complicated */
4458         switch (pipe) {
4459         case PIPE_A:
4460                 return true;
4461         case PIPE_B:
4462                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4463                     pipe_config->fdi_lanes > 2) {
4464                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4465                                       pipe_name(pipe), pipe_config->fdi_lanes);
4466                         return false;
4467                 }
4468                 return true;
4469         case PIPE_C:
4470                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4471                     pipe_B_crtc->config.fdi_lanes <= 2) {
4472                         if (pipe_config->fdi_lanes > 2) {
4473                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4474                                               pipe_name(pipe), pipe_config->fdi_lanes);
4475                                 return false;
4476                         }
4477                 } else {
4478                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4479                         return false;
4480                 }
4481                 return true;
4482         default:
4483                 BUG();
4484         }
4485 }
4486
4487 #define RETRY 1
4488 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4489                                        struct intel_crtc_config *pipe_config)
4490 {
4491         struct drm_device *dev = intel_crtc->base.dev;
4492         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4493         int lane, link_bw, fdi_dotclock;
4494         bool setup_ok, needs_recompute = false;
4495
4496 retry:
4497         /* FDI is a binary signal running at ~2.7GHz, encoding
4498          * each output octet as 10 bits. The actual frequency
4499          * is stored as a divider into a 100MHz clock, and the
4500          * mode pixel clock is stored in units of 1KHz.
4501          * Hence the bw of each lane in terms of the mode signal
4502          * is:
4503          */
4504         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4505
4506         fdi_dotclock = adjusted_mode->crtc_clock;
4507
4508         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4509                                            pipe_config->pipe_bpp);
4510
4511         pipe_config->fdi_lanes = lane;
4512
4513         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4514                                link_bw, &pipe_config->fdi_m_n);
4515
4516         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4517                                             intel_crtc->pipe, pipe_config);
4518         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4519                 pipe_config->pipe_bpp -= 2*3;
4520                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4521                               pipe_config->pipe_bpp);
4522                 needs_recompute = true;
4523                 pipe_config->bw_constrained = true;
4524
4525                 goto retry;
4526         }
4527
4528         if (needs_recompute)
4529                 return RETRY;
4530
4531         return setup_ok ? 0 : -EINVAL;
4532 }
4533
4534 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4535                                    struct intel_crtc_config *pipe_config)
4536 {
4537         pipe_config->ips_enabled = i915_enable_ips &&
4538                                    hsw_crtc_supports_ips(crtc) &&
4539                                    pipe_config->pipe_bpp <= 24;
4540 }
4541
4542 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4543                                      struct intel_crtc_config *pipe_config)
4544 {
4545         struct drm_device *dev = crtc->base.dev;
4546         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4547
4548         /* FIXME should check pixel clock limits on all platforms */
4549         if (INTEL_INFO(dev)->gen < 4) {
4550                 struct drm_i915_private *dev_priv = dev->dev_private;
4551                 int clock_limit =
4552                         dev_priv->display.get_display_clock_speed(dev);
4553
4554                 /*
4555                  * Enable pixel doubling when the dot clock
4556                  * is > 90% of the (display) core speed.
4557                  *
4558                  * GDG double wide on either pipe,
4559                  * otherwise pipe A only.
4560                  */
4561                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4562                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4563                         clock_limit *= 2;
4564                         pipe_config->double_wide = true;
4565                 }
4566
4567                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4568                         return -EINVAL;
4569         }
4570
4571         /*
4572          * Pipe horizontal size must be even in:
4573          * - DVO ganged mode
4574          * - LVDS dual channel mode
4575          * - Double wide pipe
4576          */
4577         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4578              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4579                 pipe_config->pipe_src_w &= ~1;
4580
4581         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4582          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4583          */
4584         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4585                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4586                 return -EINVAL;
4587
4588         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4589                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4590         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4591                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4592                  * for lvds. */
4593                 pipe_config->pipe_bpp = 8*3;
4594         }
4595
4596         if (HAS_IPS(dev))
4597                 hsw_compute_ips_config(crtc, pipe_config);
4598
4599         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4600          * clock survives for now. */
4601         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4602                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4603
4604         if (pipe_config->has_pch_encoder)
4605                 return ironlake_fdi_compute_config(crtc, pipe_config);
4606
4607         return 0;
4608 }
4609
4610 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4611 {
4612         return 400000; /* FIXME */
4613 }
4614
4615 static int i945_get_display_clock_speed(struct drm_device *dev)
4616 {
4617         return 400000;
4618 }
4619
4620 static int i915_get_display_clock_speed(struct drm_device *dev)
4621 {
4622         return 333000;
4623 }
4624
4625 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4626 {
4627         return 200000;
4628 }
4629
4630 static int pnv_get_display_clock_speed(struct drm_device *dev)
4631 {
4632         u16 gcfgc = 0;
4633
4634         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4635
4636         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4637         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4638                 return 267000;
4639         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4640                 return 333000;
4641         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4642                 return 444000;
4643         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4644                 return 200000;
4645         default:
4646                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4647         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4648                 return 133000;
4649         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4650                 return 167000;
4651         }
4652 }
4653
4654 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4655 {
4656         u16 gcfgc = 0;
4657
4658         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4659
4660         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4661                 return 133000;
4662         else {
4663                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4664                 case GC_DISPLAY_CLOCK_333_MHZ:
4665                         return 333000;
4666                 default:
4667                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4668                         return 190000;
4669                 }
4670         }
4671 }
4672
4673 static int i865_get_display_clock_speed(struct drm_device *dev)
4674 {
4675         return 266000;
4676 }
4677
4678 static int i855_get_display_clock_speed(struct drm_device *dev)
4679 {
4680         u16 hpllcc = 0;
4681         /* Assume that the hardware is in the high speed state.  This
4682          * should be the default.
4683          */
4684         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4685         case GC_CLOCK_133_200:
4686         case GC_CLOCK_100_200:
4687                 return 200000;
4688         case GC_CLOCK_166_250:
4689                 return 250000;
4690         case GC_CLOCK_100_133:
4691                 return 133000;
4692         }
4693
4694         /* Shouldn't happen */
4695         return 0;
4696 }
4697
4698 static int i830_get_display_clock_speed(struct drm_device *dev)
4699 {
4700         return 133000;
4701 }
4702
4703 static void
4704 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4705 {
4706         while (*num > DATA_LINK_M_N_MASK ||
4707                *den > DATA_LINK_M_N_MASK) {
4708                 *num >>= 1;
4709                 *den >>= 1;
4710         }
4711 }
4712
4713 static void compute_m_n(unsigned int m, unsigned int n,
4714                         uint32_t *ret_m, uint32_t *ret_n)
4715 {
4716         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4717         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4718         intel_reduce_m_n_ratio(ret_m, ret_n);
4719 }
4720
4721 void
4722 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4723                        int pixel_clock, int link_clock,
4724                        struct intel_link_m_n *m_n)
4725 {
4726         m_n->tu = 64;
4727
4728         compute_m_n(bits_per_pixel * pixel_clock,
4729                     link_clock * nlanes * 8,
4730                     &m_n->gmch_m, &m_n->gmch_n);
4731
4732         compute_m_n(pixel_clock, link_clock,
4733                     &m_n->link_m, &m_n->link_n);
4734 }
4735
4736 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4737 {
4738         if (i915_panel_use_ssc >= 0)
4739                 return i915_panel_use_ssc != 0;
4740         return dev_priv->vbt.lvds_use_ssc
4741                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4742 }
4743
4744 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4745 {
4746         struct drm_device *dev = crtc->dev;
4747         struct drm_i915_private *dev_priv = dev->dev_private;
4748         int refclk;
4749
4750         if (IS_VALLEYVIEW(dev)) {
4751                 refclk = 100000;
4752         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4753             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4754                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4755                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4756                               refclk / 1000);
4757         } else if (!IS_GEN2(dev)) {
4758                 refclk = 96000;
4759         } else {
4760                 refclk = 48000;
4761         }
4762
4763         return refclk;
4764 }
4765
4766 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4767 {
4768         return (1 << dpll->n) << 16 | dpll->m2;
4769 }
4770
4771 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4772 {
4773         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4774 }
4775
4776 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4777                                      intel_clock_t *reduced_clock)
4778 {
4779         struct drm_device *dev = crtc->base.dev;
4780         struct drm_i915_private *dev_priv = dev->dev_private;
4781         int pipe = crtc->pipe;
4782         u32 fp, fp2 = 0;
4783
4784         if (IS_PINEVIEW(dev)) {
4785                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4786                 if (reduced_clock)
4787                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4788         } else {
4789                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4790                 if (reduced_clock)
4791                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4792         }
4793
4794         I915_WRITE(FP0(pipe), fp);
4795         crtc->config.dpll_hw_state.fp0 = fp;
4796
4797         crtc->lowfreq_avail = false;
4798         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4799             reduced_clock && i915_powersave) {
4800                 I915_WRITE(FP1(pipe), fp2);
4801                 crtc->config.dpll_hw_state.fp1 = fp2;
4802                 crtc->lowfreq_avail = true;
4803         } else {
4804                 I915_WRITE(FP1(pipe), fp);
4805                 crtc->config.dpll_hw_state.fp1 = fp;
4806         }
4807 }
4808
4809 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4810                 pipe)
4811 {
4812         u32 reg_val;
4813
4814         /*
4815          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4816          * and set it to a reasonable value instead.
4817          */
4818         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4819         reg_val &= 0xffffff00;
4820         reg_val |= 0x00000030;
4821         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4822
4823         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4824         reg_val &= 0x8cffffff;
4825         reg_val = 0x8c000000;
4826         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4827
4828         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4829         reg_val &= 0xffffff00;
4830         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4831
4832         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4833         reg_val &= 0x00ffffff;
4834         reg_val |= 0xb0000000;
4835         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4836 }
4837
4838 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4839                                          struct intel_link_m_n *m_n)
4840 {
4841         struct drm_device *dev = crtc->base.dev;
4842         struct drm_i915_private *dev_priv = dev->dev_private;
4843         int pipe = crtc->pipe;
4844
4845         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4846         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4847         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4848         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4849 }
4850
4851 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4852                                          struct intel_link_m_n *m_n)
4853 {
4854         struct drm_device *dev = crtc->base.dev;
4855         struct drm_i915_private *dev_priv = dev->dev_private;
4856         int pipe = crtc->pipe;
4857         enum transcoder transcoder = crtc->config.cpu_transcoder;
4858
4859         if (INTEL_INFO(dev)->gen >= 5) {
4860                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4861                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4862                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4863                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4864         } else {
4865                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4866                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4867                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4868                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4869         }
4870 }
4871
4872 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4873 {
4874         if (crtc->config.has_pch_encoder)
4875                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4876         else
4877                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4878 }
4879
4880 static void vlv_update_pll(struct intel_crtc *crtc)
4881 {
4882         struct drm_device *dev = crtc->base.dev;
4883         struct drm_i915_private *dev_priv = dev->dev_private;
4884         int pipe = crtc->pipe;
4885         u32 dpll, mdiv;
4886         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4887         u32 coreclk, reg_val, dpll_md;
4888
4889         mutex_lock(&dev_priv->dpio_lock);
4890
4891         bestn = crtc->config.dpll.n;
4892         bestm1 = crtc->config.dpll.m1;
4893         bestm2 = crtc->config.dpll.m2;
4894         bestp1 = crtc->config.dpll.p1;
4895         bestp2 = crtc->config.dpll.p2;
4896
4897         /* See eDP HDMI DPIO driver vbios notes doc */
4898
4899         /* PLL B needs special handling */
4900         if (pipe)
4901                 vlv_pllb_recal_opamp(dev_priv, pipe);
4902
4903         /* Set up Tx target for periodic Rcomp update */
4904         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
4905
4906         /* Disable target IRef on PLL */
4907         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
4908         reg_val &= 0x00ffffff;
4909         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
4910
4911         /* Disable fast lock */
4912         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
4913
4914         /* Set idtafcrecal before PLL is enabled */
4915         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4916         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4917         mdiv |= ((bestn << DPIO_N_SHIFT));
4918         mdiv |= (1 << DPIO_K_SHIFT);
4919
4920         /*
4921          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4922          * but we don't support that).
4923          * Note: don't use the DAC post divider as it seems unstable.
4924          */
4925         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4926         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4927
4928         mdiv |= DPIO_ENABLE_CALIBRATION;
4929         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4930
4931         /* Set HBR and RBR LPF coefficients */
4932         if (crtc->config.port_clock == 162000 ||
4933             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4934             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4935                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4936                                  0x009f0003);
4937         else
4938                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4939                                  0x00d0000f);
4940
4941         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4942             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4943                 /* Use SSC source */
4944                 if (!pipe)
4945                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4946                                          0x0df40000);
4947                 else
4948                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4949                                          0x0df70000);
4950         } else { /* HDMI or VGA */
4951                 /* Use bend source */
4952                 if (!pipe)
4953                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4954                                          0x0df70000);
4955                 else
4956                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4957                                          0x0df40000);
4958         }
4959
4960         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
4961         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4962         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4963             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4964                 coreclk |= 0x01000000;
4965         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
4966
4967         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
4968
4969         /* Enable DPIO clock input */
4970         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4971                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4972         /* We should never disable this, set it here for state tracking */
4973         if (pipe == PIPE_B)
4974                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4975         dpll |= DPLL_VCO_ENABLE;
4976         crtc->config.dpll_hw_state.dpll = dpll;
4977
4978         dpll_md = (crtc->config.pixel_multiplier - 1)
4979                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4980         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4981
4982         if (crtc->config.has_dp_encoder)
4983                 intel_dp_set_m_n(crtc);
4984
4985         mutex_unlock(&dev_priv->dpio_lock);
4986 }
4987
4988 static void i9xx_update_pll(struct intel_crtc *crtc,
4989                             intel_clock_t *reduced_clock,
4990                             int num_connectors)
4991 {
4992         struct drm_device *dev = crtc->base.dev;
4993         struct drm_i915_private *dev_priv = dev->dev_private;
4994         u32 dpll;
4995         bool is_sdvo;
4996         struct dpll *clock = &crtc->config.dpll;
4997
4998         i9xx_update_pll_dividers(crtc, reduced_clock);
4999
5000         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5001                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5002
5003         dpll = DPLL_VGA_MODE_DIS;
5004
5005         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5006                 dpll |= DPLLB_MODE_LVDS;
5007         else
5008                 dpll |= DPLLB_MODE_DAC_SERIAL;
5009
5010         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5011                 dpll |= (crtc->config.pixel_multiplier - 1)
5012                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5013         }
5014
5015         if (is_sdvo)
5016                 dpll |= DPLL_SDVO_HIGH_SPEED;
5017
5018         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5019                 dpll |= DPLL_SDVO_HIGH_SPEED;
5020
5021         /* compute bitmask from p1 value */
5022         if (IS_PINEVIEW(dev))
5023                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5024         else {
5025                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5026                 if (IS_G4X(dev) && reduced_clock)
5027                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5028         }
5029         switch (clock->p2) {
5030         case 5:
5031                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5032                 break;
5033         case 7:
5034                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5035                 break;
5036         case 10:
5037                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5038                 break;
5039         case 14:
5040                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5041                 break;
5042         }
5043         if (INTEL_INFO(dev)->gen >= 4)
5044                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5045
5046         if (crtc->config.sdvo_tv_clock)
5047                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5048         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5049                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5050                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5051         else
5052                 dpll |= PLL_REF_INPUT_DREFCLK;
5053
5054         dpll |= DPLL_VCO_ENABLE;
5055         crtc->config.dpll_hw_state.dpll = dpll;
5056
5057         if (INTEL_INFO(dev)->gen >= 4) {
5058                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5059                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5060                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5061         }
5062
5063         if (crtc->config.has_dp_encoder)
5064                 intel_dp_set_m_n(crtc);
5065 }
5066
5067 static void i8xx_update_pll(struct intel_crtc *crtc,
5068                             intel_clock_t *reduced_clock,
5069                             int num_connectors)
5070 {
5071         struct drm_device *dev = crtc->base.dev;
5072         struct drm_i915_private *dev_priv = dev->dev_private;
5073         u32 dpll;
5074         struct dpll *clock = &crtc->config.dpll;
5075
5076         i9xx_update_pll_dividers(crtc, reduced_clock);
5077
5078         dpll = DPLL_VGA_MODE_DIS;
5079
5080         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5081                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5082         } else {
5083                 if (clock->p1 == 2)
5084                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5085                 else
5086                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5087                 if (clock->p2 == 4)
5088                         dpll |= PLL_P2_DIVIDE_BY_4;
5089         }
5090
5091         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5092                 dpll |= DPLL_DVO_2X_MODE;
5093
5094         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5095                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5096                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5097         else
5098                 dpll |= PLL_REF_INPUT_DREFCLK;
5099
5100         dpll |= DPLL_VCO_ENABLE;
5101         crtc->config.dpll_hw_state.dpll = dpll;
5102 }
5103
5104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5105 {
5106         struct drm_device *dev = intel_crtc->base.dev;
5107         struct drm_i915_private *dev_priv = dev->dev_private;
5108         enum pipe pipe = intel_crtc->pipe;
5109         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5110         struct drm_display_mode *adjusted_mode =
5111                 &intel_crtc->config.adjusted_mode;
5112         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
5113
5114         /* We need to be careful not to changed the adjusted mode, for otherwise
5115          * the hw state checker will get angry at the mismatch. */
5116         crtc_vtotal = adjusted_mode->crtc_vtotal;
5117         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5118
5119         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5120                 /* the chip adds 2 halflines automatically */
5121                 crtc_vtotal -= 1;
5122                 crtc_vblank_end -= 1;
5123                 vsyncshift = adjusted_mode->crtc_hsync_start
5124                              - adjusted_mode->crtc_htotal / 2;
5125         } else {
5126                 vsyncshift = 0;
5127         }
5128
5129         if (INTEL_INFO(dev)->gen > 3)
5130                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5131
5132         I915_WRITE(HTOTAL(cpu_transcoder),
5133                    (adjusted_mode->crtc_hdisplay - 1) |
5134                    ((adjusted_mode->crtc_htotal - 1) << 16));
5135         I915_WRITE(HBLANK(cpu_transcoder),
5136                    (adjusted_mode->crtc_hblank_start - 1) |
5137                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5138         I915_WRITE(HSYNC(cpu_transcoder),
5139                    (adjusted_mode->crtc_hsync_start - 1) |
5140                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5141
5142         I915_WRITE(VTOTAL(cpu_transcoder),
5143                    (adjusted_mode->crtc_vdisplay - 1) |
5144                    ((crtc_vtotal - 1) << 16));
5145         I915_WRITE(VBLANK(cpu_transcoder),
5146                    (adjusted_mode->crtc_vblank_start - 1) |
5147                    ((crtc_vblank_end - 1) << 16));
5148         I915_WRITE(VSYNC(cpu_transcoder),
5149                    (adjusted_mode->crtc_vsync_start - 1) |
5150                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5151
5152         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5153          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5154          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5155          * bits. */
5156         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5157             (pipe == PIPE_B || pipe == PIPE_C))
5158                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5159
5160         /* pipesrc controls the size that is scaled from, which should
5161          * always be the user's requested size.
5162          */
5163         I915_WRITE(PIPESRC(pipe),
5164                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5165                    (intel_crtc->config.pipe_src_h - 1));
5166 }
5167
5168 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5169                                    struct intel_crtc_config *pipe_config)
5170 {
5171         struct drm_device *dev = crtc->base.dev;
5172         struct drm_i915_private *dev_priv = dev->dev_private;
5173         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5174         uint32_t tmp;
5175
5176         tmp = I915_READ(HTOTAL(cpu_transcoder));
5177         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5178         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5179         tmp = I915_READ(HBLANK(cpu_transcoder));
5180         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5181         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5182         tmp = I915_READ(HSYNC(cpu_transcoder));
5183         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5184         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5185
5186         tmp = I915_READ(VTOTAL(cpu_transcoder));
5187         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5188         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5189         tmp = I915_READ(VBLANK(cpu_transcoder));
5190         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5191         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5192         tmp = I915_READ(VSYNC(cpu_transcoder));
5193         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5194         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5195
5196         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5197                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5198                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5199                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5200         }
5201
5202         tmp = I915_READ(PIPESRC(crtc->pipe));
5203         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5204         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5205
5206         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5207         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5208 }
5209
5210 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
5211                                              struct intel_crtc_config *pipe_config)
5212 {
5213         struct drm_crtc *crtc = &intel_crtc->base;
5214
5215         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5216         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
5217         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5218         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5219
5220         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5221         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5222         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5223         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5224
5225         crtc->mode.flags = pipe_config->adjusted_mode.flags;
5226
5227         crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
5228         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
5229 }
5230
5231 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5232 {
5233         struct drm_device *dev = intel_crtc->base.dev;
5234         struct drm_i915_private *dev_priv = dev->dev_private;
5235         uint32_t pipeconf;
5236
5237         pipeconf = 0;
5238
5239         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5240             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5241                 pipeconf |= PIPECONF_ENABLE;
5242
5243         if (intel_crtc->config.double_wide)
5244                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5245
5246         /* only g4x and later have fancy bpc/dither controls */
5247         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5248                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5249                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5250                         pipeconf |= PIPECONF_DITHER_EN |
5251                                     PIPECONF_DITHER_TYPE_SP;
5252
5253                 switch (intel_crtc->config.pipe_bpp) {
5254                 case 18:
5255                         pipeconf |= PIPECONF_6BPC;
5256                         break;
5257                 case 24:
5258                         pipeconf |= PIPECONF_8BPC;
5259                         break;
5260                 case 30:
5261                         pipeconf |= PIPECONF_10BPC;
5262                         break;
5263                 default:
5264                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5265                         BUG();
5266                 }
5267         }
5268
5269         if (HAS_PIPE_CXSR(dev)) {
5270                 if (intel_crtc->lowfreq_avail) {
5271                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5272                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5273                 } else {
5274                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5275                 }
5276         }
5277
5278         if (!IS_GEN2(dev) &&
5279             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5280                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5281         else
5282                 pipeconf |= PIPECONF_PROGRESSIVE;
5283
5284         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5285                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5286
5287         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5288         POSTING_READ(PIPECONF(intel_crtc->pipe));
5289 }
5290
5291 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5292                               int x, int y,
5293                               struct drm_framebuffer *fb)
5294 {
5295         struct drm_device *dev = crtc->dev;
5296         struct drm_i915_private *dev_priv = dev->dev_private;
5297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5298         int pipe = intel_crtc->pipe;
5299         int plane = intel_crtc->plane;
5300         int refclk, num_connectors = 0;
5301         intel_clock_t clock, reduced_clock;
5302         u32 dspcntr;
5303         bool ok, has_reduced_clock = false;
5304         bool is_lvds = false, is_dsi = false;
5305         struct intel_encoder *encoder;
5306         const intel_limit_t *limit;
5307         int ret;
5308
5309         for_each_encoder_on_crtc(dev, crtc, encoder) {
5310                 switch (encoder->type) {
5311                 case INTEL_OUTPUT_LVDS:
5312                         is_lvds = true;
5313                         break;
5314                 case INTEL_OUTPUT_DSI:
5315                         is_dsi = true;
5316                         break;
5317                 }
5318
5319                 num_connectors++;
5320         }
5321
5322         if (is_dsi)
5323                 goto skip_dpll;
5324
5325         if (!intel_crtc->config.clock_set) {
5326                 refclk = i9xx_get_refclk(crtc, num_connectors);
5327
5328                 /*
5329                  * Returns a set of divisors for the desired target clock with
5330                  * the given refclk, or FALSE.  The returned values represent
5331                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5332                  * 2) / p1 / p2.
5333                  */
5334                 limit = intel_limit(crtc, refclk);
5335                 ok = dev_priv->display.find_dpll(limit, crtc,
5336                                                  intel_crtc->config.port_clock,
5337                                                  refclk, NULL, &clock);
5338                 if (!ok) {
5339                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5340                         return -EINVAL;
5341                 }
5342
5343                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5344                         /*
5345                          * Ensure we match the reduced clock's P to the target
5346                          * clock.  If the clocks don't match, we can't switch
5347                          * the display clock by using the FP0/FP1. In such case
5348                          * we will disable the LVDS downclock feature.
5349                          */
5350                         has_reduced_clock =
5351                                 dev_priv->display.find_dpll(limit, crtc,
5352                                                             dev_priv->lvds_downclock,
5353                                                             refclk, &clock,
5354                                                             &reduced_clock);
5355                 }
5356                 /* Compat-code for transition, will disappear. */
5357                 intel_crtc->config.dpll.n = clock.n;
5358                 intel_crtc->config.dpll.m1 = clock.m1;
5359                 intel_crtc->config.dpll.m2 = clock.m2;
5360                 intel_crtc->config.dpll.p1 = clock.p1;
5361                 intel_crtc->config.dpll.p2 = clock.p2;
5362         }
5363
5364         if (IS_GEN2(dev)) {
5365                 i8xx_update_pll(intel_crtc,
5366                                 has_reduced_clock ? &reduced_clock : NULL,
5367                                 num_connectors);
5368         } else if (IS_VALLEYVIEW(dev)) {
5369                 vlv_update_pll(intel_crtc);
5370         } else {
5371                 i9xx_update_pll(intel_crtc,
5372                                 has_reduced_clock ? &reduced_clock : NULL,
5373                                 num_connectors);
5374         }
5375
5376 skip_dpll:
5377         /* Set up the display plane register */
5378         dspcntr = DISPPLANE_GAMMA_ENABLE;
5379
5380         if (!IS_VALLEYVIEW(dev)) {
5381                 if (pipe == 0)
5382                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5383                 else
5384                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5385         }
5386
5387         intel_set_pipe_timings(intel_crtc);
5388
5389         /* pipesrc and dspsize control the size that is scaled from,
5390          * which should always be the user's requested size.
5391          */
5392         I915_WRITE(DSPSIZE(plane),
5393                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5394                    (intel_crtc->config.pipe_src_w - 1));
5395         I915_WRITE(DSPPOS(plane), 0);
5396
5397         i9xx_set_pipeconf(intel_crtc);
5398
5399         I915_WRITE(DSPCNTR(plane), dspcntr);
5400         POSTING_READ(DSPCNTR(plane));
5401
5402         ret = intel_pipe_set_base(crtc, x, y, fb);
5403
5404         return ret;
5405 }
5406
5407 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5408                                  struct intel_crtc_config *pipe_config)
5409 {
5410         struct drm_device *dev = crtc->base.dev;
5411         struct drm_i915_private *dev_priv = dev->dev_private;
5412         uint32_t tmp;
5413
5414         tmp = I915_READ(PFIT_CONTROL);
5415         if (!(tmp & PFIT_ENABLE))
5416                 return;
5417
5418         /* Check whether the pfit is attached to our pipe. */
5419         if (INTEL_INFO(dev)->gen < 4) {
5420                 if (crtc->pipe != PIPE_B)
5421                         return;
5422         } else {
5423                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5424                         return;
5425         }
5426
5427         pipe_config->gmch_pfit.control = tmp;
5428         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5429         if (INTEL_INFO(dev)->gen < 5)
5430                 pipe_config->gmch_pfit.lvds_border_bits =
5431                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5432 }
5433
5434 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5435                                struct intel_crtc_config *pipe_config)
5436 {
5437         struct drm_device *dev = crtc->base.dev;
5438         struct drm_i915_private *dev_priv = dev->dev_private;
5439         int pipe = pipe_config->cpu_transcoder;
5440         intel_clock_t clock;
5441         u32 mdiv;
5442         int refclk = 100000;
5443
5444         mutex_lock(&dev_priv->dpio_lock);
5445         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5446         mutex_unlock(&dev_priv->dpio_lock);
5447
5448         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5449         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5450         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5451         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5452         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5453
5454         vlv_clock(refclk, &clock);
5455
5456         /* clock.dot is the fast clock */
5457         pipe_config->port_clock = clock.dot / 5;
5458 }
5459
5460 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5461                                  struct intel_crtc_config *pipe_config)
5462 {
5463         struct drm_device *dev = crtc->base.dev;
5464         struct drm_i915_private *dev_priv = dev->dev_private;
5465         uint32_t tmp;
5466
5467         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5468         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5469
5470         tmp = I915_READ(PIPECONF(crtc->pipe));
5471         if (!(tmp & PIPECONF_ENABLE))
5472                 return false;
5473
5474         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5475                 switch (tmp & PIPECONF_BPC_MASK) {
5476                 case PIPECONF_6BPC:
5477                         pipe_config->pipe_bpp = 18;
5478                         break;
5479                 case PIPECONF_8BPC:
5480                         pipe_config->pipe_bpp = 24;
5481                         break;
5482                 case PIPECONF_10BPC:
5483                         pipe_config->pipe_bpp = 30;
5484                         break;
5485                 default:
5486                         break;
5487                 }
5488         }
5489
5490         if (INTEL_INFO(dev)->gen < 4)
5491                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5492
5493         intel_get_pipe_timings(crtc, pipe_config);
5494
5495         i9xx_get_pfit_config(crtc, pipe_config);
5496
5497         if (INTEL_INFO(dev)->gen >= 4) {
5498                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5499                 pipe_config->pixel_multiplier =
5500                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5501                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5502                 pipe_config->dpll_hw_state.dpll_md = tmp;
5503         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5504                 tmp = I915_READ(DPLL(crtc->pipe));
5505                 pipe_config->pixel_multiplier =
5506                         ((tmp & SDVO_MULTIPLIER_MASK)
5507                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5508         } else {
5509                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5510                  * port and will be fixed up in the encoder->get_config
5511                  * function. */
5512                 pipe_config->pixel_multiplier = 1;
5513         }
5514         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5515         if (!IS_VALLEYVIEW(dev)) {
5516                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5517                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5518         } else {
5519                 /* Mask out read-only status bits. */
5520                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5521                                                      DPLL_PORTC_READY_MASK |
5522                                                      DPLL_PORTB_READY_MASK);
5523         }
5524
5525         if (IS_VALLEYVIEW(dev))
5526                 vlv_crtc_clock_get(crtc, pipe_config);
5527         else
5528                 i9xx_crtc_clock_get(crtc, pipe_config);
5529
5530         return true;
5531 }
5532
5533 static void ironlake_init_pch_refclk(struct drm_device *dev)
5534 {
5535         struct drm_i915_private *dev_priv = dev->dev_private;
5536         struct drm_mode_config *mode_config = &dev->mode_config;
5537         struct intel_encoder *encoder;
5538         u32 val, final;
5539         bool has_lvds = false;
5540         bool has_cpu_edp = false;
5541         bool has_panel = false;
5542         bool has_ck505 = false;
5543         bool can_ssc = false;
5544
5545         /* We need to take the global config into account */
5546         list_for_each_entry(encoder, &mode_config->encoder_list,
5547                             base.head) {
5548                 switch (encoder->type) {
5549                 case INTEL_OUTPUT_LVDS:
5550                         has_panel = true;
5551                         has_lvds = true;
5552                         break;
5553                 case INTEL_OUTPUT_EDP:
5554                         has_panel = true;
5555                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5556                                 has_cpu_edp = true;
5557                         break;
5558                 }
5559         }
5560
5561         if (HAS_PCH_IBX(dev)) {
5562                 has_ck505 = dev_priv->vbt.display_clock_mode;
5563                 can_ssc = has_ck505;
5564         } else {
5565                 has_ck505 = false;
5566                 can_ssc = true;
5567         }
5568
5569         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5570                       has_panel, has_lvds, has_ck505);
5571
5572         /* Ironlake: try to setup display ref clock before DPLL
5573          * enabling. This is only under driver's control after
5574          * PCH B stepping, previous chipset stepping should be
5575          * ignoring this setting.
5576          */
5577         val = I915_READ(PCH_DREF_CONTROL);
5578
5579         /* As we must carefully and slowly disable/enable each source in turn,
5580          * compute the final state we want first and check if we need to
5581          * make any changes at all.
5582          */
5583         final = val;
5584         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5585         if (has_ck505)
5586                 final |= DREF_NONSPREAD_CK505_ENABLE;
5587         else
5588                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5589
5590         final &= ~DREF_SSC_SOURCE_MASK;
5591         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5592         final &= ~DREF_SSC1_ENABLE;
5593
5594         if (has_panel) {
5595                 final |= DREF_SSC_SOURCE_ENABLE;
5596
5597                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5598                         final |= DREF_SSC1_ENABLE;
5599
5600                 if (has_cpu_edp) {
5601                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5602                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5603                         else
5604                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5605                 } else
5606                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5607         } else {
5608                 final |= DREF_SSC_SOURCE_DISABLE;
5609                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5610         }
5611
5612         if (final == val)
5613                 return;
5614
5615         /* Always enable nonspread source */
5616         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5617
5618         if (has_ck505)
5619                 val |= DREF_NONSPREAD_CK505_ENABLE;
5620         else
5621                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5622
5623         if (has_panel) {
5624                 val &= ~DREF_SSC_SOURCE_MASK;
5625                 val |= DREF_SSC_SOURCE_ENABLE;
5626
5627                 /* SSC must be turned on before enabling the CPU output  */
5628                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5629                         DRM_DEBUG_KMS("Using SSC on panel\n");
5630                         val |= DREF_SSC1_ENABLE;
5631                 } else
5632                         val &= ~DREF_SSC1_ENABLE;
5633
5634                 /* Get SSC going before enabling the outputs */
5635                 I915_WRITE(PCH_DREF_CONTROL, val);
5636                 POSTING_READ(PCH_DREF_CONTROL);
5637                 udelay(200);
5638
5639                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5640
5641                 /* Enable CPU source on CPU attached eDP */
5642                 if (has_cpu_edp) {
5643                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5644                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5645                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5646                         }
5647                         else
5648                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5649                 } else
5650                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5651
5652                 I915_WRITE(PCH_DREF_CONTROL, val);
5653                 POSTING_READ(PCH_DREF_CONTROL);
5654                 udelay(200);
5655         } else {
5656                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5657
5658                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5659
5660                 /* Turn off CPU output */
5661                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5662
5663                 I915_WRITE(PCH_DREF_CONTROL, val);
5664                 POSTING_READ(PCH_DREF_CONTROL);
5665                 udelay(200);
5666
5667                 /* Turn off the SSC source */
5668                 val &= ~DREF_SSC_SOURCE_MASK;
5669                 val |= DREF_SSC_SOURCE_DISABLE;
5670
5671                 /* Turn off SSC1 */
5672                 val &= ~DREF_SSC1_ENABLE;
5673
5674                 I915_WRITE(PCH_DREF_CONTROL, val);
5675                 POSTING_READ(PCH_DREF_CONTROL);
5676                 udelay(200);
5677         }
5678
5679         BUG_ON(val != final);
5680 }
5681
5682 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5683 {
5684         uint32_t tmp;
5685
5686         tmp = I915_READ(SOUTH_CHICKEN2);
5687         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5688         I915_WRITE(SOUTH_CHICKEN2, tmp);
5689
5690         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5691                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5692                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5693
5694         tmp = I915_READ(SOUTH_CHICKEN2);
5695         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5696         I915_WRITE(SOUTH_CHICKEN2, tmp);
5697
5698         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5699                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5700                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5701 }
5702
5703 /* WaMPhyProgramming:hsw */
5704 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5705 {
5706         uint32_t tmp;
5707
5708         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5709         tmp &= ~(0xFF << 24);
5710         tmp |= (0x12 << 24);
5711         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5712
5713         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5714         tmp |= (1 << 11);
5715         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5716
5717         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5718         tmp |= (1 << 11);
5719         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5720
5721         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5722         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5723         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5724
5725         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5726         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5727         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5728
5729         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5730         tmp &= ~(7 << 13);
5731         tmp |= (5 << 13);
5732         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5733
5734         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5735         tmp &= ~(7 << 13);
5736         tmp |= (5 << 13);
5737         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5738
5739         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5740         tmp &= ~0xFF;
5741         tmp |= 0x1C;
5742         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5743
5744         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5745         tmp &= ~0xFF;
5746         tmp |= 0x1C;
5747         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5748
5749         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5750         tmp &= ~(0xFF << 16);
5751         tmp |= (0x1C << 16);
5752         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5753
5754         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5755         tmp &= ~(0xFF << 16);
5756         tmp |= (0x1C << 16);
5757         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5758
5759         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5760         tmp |= (1 << 27);
5761         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5762
5763         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5764         tmp |= (1 << 27);
5765         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5766
5767         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5768         tmp &= ~(0xF << 28);
5769         tmp |= (4 << 28);
5770         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5771
5772         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5773         tmp &= ~(0xF << 28);
5774         tmp |= (4 << 28);
5775         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5776 }
5777
5778 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5779  * Programming" based on the parameters passed:
5780  * - Sequence to enable CLKOUT_DP
5781  * - Sequence to enable CLKOUT_DP without spread
5782  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5783  */
5784 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5785                                  bool with_fdi)
5786 {
5787         struct drm_i915_private *dev_priv = dev->dev_private;
5788         uint32_t reg, tmp;
5789
5790         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5791                 with_spread = true;
5792         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5793                  with_fdi, "LP PCH doesn't have FDI\n"))
5794                 with_fdi = false;
5795
5796         mutex_lock(&dev_priv->dpio_lock);
5797
5798         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5799         tmp &= ~SBI_SSCCTL_DISABLE;
5800         tmp |= SBI_SSCCTL_PATHALT;
5801         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5802
5803         udelay(24);
5804
5805         if (with_spread) {
5806                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5807                 tmp &= ~SBI_SSCCTL_PATHALT;
5808                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5809
5810                 if (with_fdi) {
5811                         lpt_reset_fdi_mphy(dev_priv);
5812                         lpt_program_fdi_mphy(dev_priv);
5813                 }
5814         }
5815
5816         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5817                SBI_GEN0 : SBI_DBUFF0;
5818         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5819         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5820         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5821
5822         mutex_unlock(&dev_priv->dpio_lock);
5823 }
5824
5825 /* Sequence to disable CLKOUT_DP */
5826 static void lpt_disable_clkout_dp(struct drm_device *dev)
5827 {
5828         struct drm_i915_private *dev_priv = dev->dev_private;
5829         uint32_t reg, tmp;
5830
5831         mutex_lock(&dev_priv->dpio_lock);
5832
5833         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5834                SBI_GEN0 : SBI_DBUFF0;
5835         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5836         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5837         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5838
5839         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5840         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5841                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5842                         tmp |= SBI_SSCCTL_PATHALT;
5843                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5844                         udelay(32);
5845                 }
5846                 tmp |= SBI_SSCCTL_DISABLE;
5847                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5848         }
5849
5850         mutex_unlock(&dev_priv->dpio_lock);
5851 }
5852
5853 static void lpt_init_pch_refclk(struct drm_device *dev)
5854 {
5855         struct drm_mode_config *mode_config = &dev->mode_config;
5856         struct intel_encoder *encoder;
5857         bool has_vga = false;
5858
5859         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5860                 switch (encoder->type) {
5861                 case INTEL_OUTPUT_ANALOG:
5862                         has_vga = true;
5863                         break;
5864                 }
5865         }
5866
5867         if (has_vga)
5868                 lpt_enable_clkout_dp(dev, true, true);
5869         else
5870                 lpt_disable_clkout_dp(dev);
5871 }
5872
5873 /*
5874  * Initialize reference clocks when the driver loads
5875  */
5876 void intel_init_pch_refclk(struct drm_device *dev)
5877 {
5878         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5879                 ironlake_init_pch_refclk(dev);
5880         else if (HAS_PCH_LPT(dev))
5881                 lpt_init_pch_refclk(dev);
5882 }
5883
5884 static int ironlake_get_refclk(struct drm_crtc *crtc)
5885 {
5886         struct drm_device *dev = crtc->dev;
5887         struct drm_i915_private *dev_priv = dev->dev_private;
5888         struct intel_encoder *encoder;
5889         int num_connectors = 0;
5890         bool is_lvds = false;
5891
5892         for_each_encoder_on_crtc(dev, crtc, encoder) {
5893                 switch (encoder->type) {
5894                 case INTEL_OUTPUT_LVDS:
5895                         is_lvds = true;
5896                         break;
5897                 }
5898                 num_connectors++;
5899         }
5900
5901         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5902                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5903                               dev_priv->vbt.lvds_ssc_freq);
5904                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5905         }
5906
5907         return 120000;
5908 }
5909
5910 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5911 {
5912         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5913         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5914         int pipe = intel_crtc->pipe;
5915         uint32_t val;
5916
5917         val = 0;
5918
5919         switch (intel_crtc->config.pipe_bpp) {
5920         case 18:
5921                 val |= PIPECONF_6BPC;
5922                 break;
5923         case 24:
5924                 val |= PIPECONF_8BPC;
5925                 break;
5926         case 30:
5927                 val |= PIPECONF_10BPC;
5928                 break;
5929         case 36:
5930                 val |= PIPECONF_12BPC;
5931                 break;
5932         default:
5933                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5934                 BUG();
5935         }
5936
5937         if (intel_crtc->config.dither)
5938                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5939
5940         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5941                 val |= PIPECONF_INTERLACED_ILK;
5942         else
5943                 val |= PIPECONF_PROGRESSIVE;
5944
5945         if (intel_crtc->config.limited_color_range)
5946                 val |= PIPECONF_COLOR_RANGE_SELECT;
5947
5948         I915_WRITE(PIPECONF(pipe), val);
5949         POSTING_READ(PIPECONF(pipe));
5950 }
5951
5952 /*
5953  * Set up the pipe CSC unit.
5954  *
5955  * Currently only full range RGB to limited range RGB conversion
5956  * is supported, but eventually this should handle various
5957  * RGB<->YCbCr scenarios as well.
5958  */
5959 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5960 {
5961         struct drm_device *dev = crtc->dev;
5962         struct drm_i915_private *dev_priv = dev->dev_private;
5963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5964         int pipe = intel_crtc->pipe;
5965         uint16_t coeff = 0x7800; /* 1.0 */
5966
5967         /*
5968          * TODO: Check what kind of values actually come out of the pipe
5969          * with these coeff/postoff values and adjust to get the best
5970          * accuracy. Perhaps we even need to take the bpc value into
5971          * consideration.
5972          */
5973
5974         if (intel_crtc->config.limited_color_range)
5975                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5976
5977         /*
5978          * GY/GU and RY/RU should be the other way around according
5979          * to BSpec, but reality doesn't agree. Just set them up in
5980          * a way that results in the correct picture.
5981          */
5982         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5983         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5984
5985         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5986         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5987
5988         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5989         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5990
5991         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5992         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5993         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5994
5995         if (INTEL_INFO(dev)->gen > 6) {
5996                 uint16_t postoff = 0;
5997
5998                 if (intel_crtc->config.limited_color_range)
5999                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
6000
6001                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6002                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6003                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6004
6005                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6006         } else {
6007                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6008
6009                 if (intel_crtc->config.limited_color_range)
6010                         mode |= CSC_BLACK_SCREEN_OFFSET;
6011
6012                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6013         }
6014 }
6015
6016 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6017 {
6018         struct drm_device *dev = crtc->dev;
6019         struct drm_i915_private *dev_priv = dev->dev_private;
6020         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6021         enum pipe pipe = intel_crtc->pipe;
6022         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6023         uint32_t val;
6024
6025         val = 0;
6026
6027         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6028                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6029
6030         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6031                 val |= PIPECONF_INTERLACED_ILK;
6032         else
6033                 val |= PIPECONF_PROGRESSIVE;
6034
6035         I915_WRITE(PIPECONF(cpu_transcoder), val);
6036         POSTING_READ(PIPECONF(cpu_transcoder));
6037
6038         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6039         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6040
6041         if (IS_BROADWELL(dev)) {
6042                 val = 0;
6043
6044                 switch (intel_crtc->config.pipe_bpp) {
6045                 case 18:
6046                         val |= PIPEMISC_DITHER_6_BPC;
6047                         break;
6048                 case 24:
6049                         val |= PIPEMISC_DITHER_8_BPC;
6050                         break;
6051                 case 30:
6052                         val |= PIPEMISC_DITHER_10_BPC;
6053                         break;
6054                 case 36:
6055                         val |= PIPEMISC_DITHER_12_BPC;
6056                         break;
6057                 default:
6058                         /* Case prevented by pipe_config_set_bpp. */
6059                         BUG();
6060                 }
6061
6062                 if (intel_crtc->config.dither)
6063                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6064
6065                 I915_WRITE(PIPEMISC(pipe), val);
6066         }
6067 }
6068
6069 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6070                                     intel_clock_t *clock,
6071                                     bool *has_reduced_clock,
6072                                     intel_clock_t *reduced_clock)
6073 {
6074         struct drm_device *dev = crtc->dev;
6075         struct drm_i915_private *dev_priv = dev->dev_private;
6076         struct intel_encoder *intel_encoder;
6077         int refclk;
6078         const intel_limit_t *limit;
6079         bool ret, is_lvds = false;
6080
6081         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6082                 switch (intel_encoder->type) {
6083                 case INTEL_OUTPUT_LVDS:
6084                         is_lvds = true;
6085                         break;
6086                 }
6087         }
6088
6089         refclk = ironlake_get_refclk(crtc);
6090
6091         /*
6092          * Returns a set of divisors for the desired target clock with the given
6093          * refclk, or FALSE.  The returned values represent the clock equation:
6094          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6095          */
6096         limit = intel_limit(crtc, refclk);
6097         ret = dev_priv->display.find_dpll(limit, crtc,
6098                                           to_intel_crtc(crtc)->config.port_clock,
6099                                           refclk, NULL, clock);
6100         if (!ret)
6101                 return false;
6102
6103         if (is_lvds && dev_priv->lvds_downclock_avail) {
6104                 /*
6105                  * Ensure we match the reduced clock's P to the target clock.
6106                  * If the clocks don't match, we can't switch the display clock
6107                  * by using the FP0/FP1. In such case we will disable the LVDS
6108                  * downclock feature.
6109                 */
6110                 *has_reduced_clock =
6111                         dev_priv->display.find_dpll(limit, crtc,
6112                                                     dev_priv->lvds_downclock,
6113                                                     refclk, clock,
6114                                                     reduced_clock);
6115         }
6116
6117         return true;
6118 }
6119
6120 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6121 {
6122         /*
6123          * Account for spread spectrum to avoid
6124          * oversubscribing the link. Max center spread
6125          * is 2.5%; use 5% for safety's sake.
6126          */
6127         u32 bps = target_clock * bpp * 21 / 20;
6128         return bps / (link_bw * 8) + 1;
6129 }
6130
6131 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6132 {
6133         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6134 }
6135
6136 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6137                                       u32 *fp,
6138                                       intel_clock_t *reduced_clock, u32 *fp2)
6139 {
6140         struct drm_crtc *crtc = &intel_crtc->base;
6141         struct drm_device *dev = crtc->dev;
6142         struct drm_i915_private *dev_priv = dev->dev_private;
6143         struct intel_encoder *intel_encoder;
6144         uint32_t dpll;
6145         int factor, num_connectors = 0;
6146         bool is_lvds = false, is_sdvo = false;
6147
6148         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6149                 switch (intel_encoder->type) {
6150                 case INTEL_OUTPUT_LVDS:
6151                         is_lvds = true;
6152                         break;
6153                 case INTEL_OUTPUT_SDVO:
6154                 case INTEL_OUTPUT_HDMI:
6155                         is_sdvo = true;
6156                         break;
6157                 }
6158
6159                 num_connectors++;
6160         }
6161
6162         /* Enable autotuning of the PLL clock (if permissible) */
6163         factor = 21;
6164         if (is_lvds) {
6165                 if ((intel_panel_use_ssc(dev_priv) &&
6166                      dev_priv->vbt.lvds_ssc_freq == 100) ||
6167                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6168                         factor = 25;
6169         } else if (intel_crtc->config.sdvo_tv_clock)
6170                 factor = 20;
6171
6172         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6173                 *fp |= FP_CB_TUNE;
6174
6175         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6176                 *fp2 |= FP_CB_TUNE;
6177
6178         dpll = 0;
6179
6180         if (is_lvds)
6181                 dpll |= DPLLB_MODE_LVDS;
6182         else
6183                 dpll |= DPLLB_MODE_DAC_SERIAL;
6184
6185         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6186                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6187
6188         if (is_sdvo)
6189                 dpll |= DPLL_SDVO_HIGH_SPEED;
6190         if (intel_crtc->config.has_dp_encoder)
6191                 dpll |= DPLL_SDVO_HIGH_SPEED;
6192
6193         /* compute bitmask from p1 value */
6194         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6195         /* also FPA1 */
6196         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6197
6198         switch (intel_crtc->config.dpll.p2) {
6199         case 5:
6200                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6201                 break;
6202         case 7:
6203                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6204                 break;
6205         case 10:
6206                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6207                 break;
6208         case 14:
6209                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6210                 break;
6211         }
6212
6213         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6214                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6215         else
6216                 dpll |= PLL_REF_INPUT_DREFCLK;
6217
6218         return dpll | DPLL_VCO_ENABLE;
6219 }
6220
6221 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6222                                   int x, int y,
6223                                   struct drm_framebuffer *fb)
6224 {
6225         struct drm_device *dev = crtc->dev;
6226         struct drm_i915_private *dev_priv = dev->dev_private;
6227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6228         int pipe = intel_crtc->pipe;
6229         int plane = intel_crtc->plane;
6230         int num_connectors = 0;
6231         intel_clock_t clock, reduced_clock;
6232         u32 dpll = 0, fp = 0, fp2 = 0;
6233         bool ok, has_reduced_clock = false;
6234         bool is_lvds = false;
6235         struct intel_encoder *encoder;
6236         struct intel_shared_dpll *pll;
6237         int ret;
6238
6239         for_each_encoder_on_crtc(dev, crtc, encoder) {
6240                 switch (encoder->type) {
6241                 case INTEL_OUTPUT_LVDS:
6242                         is_lvds = true;
6243                         break;
6244                 }
6245
6246                 num_connectors++;
6247         }
6248
6249         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6250              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6251
6252         ok = ironlake_compute_clocks(crtc, &clock,
6253                                      &has_reduced_clock, &reduced_clock);
6254         if (!ok && !intel_crtc->config.clock_set) {
6255                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6256                 return -EINVAL;
6257         }
6258         /* Compat-code for transition, will disappear. */
6259         if (!intel_crtc->config.clock_set) {
6260                 intel_crtc->config.dpll.n = clock.n;
6261                 intel_crtc->config.dpll.m1 = clock.m1;
6262                 intel_crtc->config.dpll.m2 = clock.m2;
6263                 intel_crtc->config.dpll.p1 = clock.p1;
6264                 intel_crtc->config.dpll.p2 = clock.p2;
6265         }
6266
6267         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6268         if (intel_crtc->config.has_pch_encoder) {
6269                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6270                 if (has_reduced_clock)
6271                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6272
6273                 dpll = ironlake_compute_dpll(intel_crtc,
6274                                              &fp, &reduced_clock,
6275                                              has_reduced_clock ? &fp2 : NULL);
6276
6277                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6278                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6279                 if (has_reduced_clock)
6280                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6281                 else
6282                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6283
6284                 pll = intel_get_shared_dpll(intel_crtc);
6285                 if (pll == NULL) {
6286                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6287                                          pipe_name(pipe));
6288                         return -EINVAL;
6289                 }
6290         } else
6291                 intel_put_shared_dpll(intel_crtc);
6292
6293         if (intel_crtc->config.has_dp_encoder)
6294                 intel_dp_set_m_n(intel_crtc);
6295
6296         if (is_lvds && has_reduced_clock && i915_powersave)
6297                 intel_crtc->lowfreq_avail = true;
6298         else
6299                 intel_crtc->lowfreq_avail = false;
6300
6301         intel_set_pipe_timings(intel_crtc);
6302
6303         if (intel_crtc->config.has_pch_encoder) {
6304                 intel_cpu_transcoder_set_m_n(intel_crtc,
6305                                              &intel_crtc->config.fdi_m_n);
6306         }
6307
6308         ironlake_set_pipeconf(crtc);
6309
6310         /* Set up the display plane register */
6311         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6312         POSTING_READ(DSPCNTR(plane));
6313
6314         ret = intel_pipe_set_base(crtc, x, y, fb);
6315
6316         return ret;
6317 }
6318
6319 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6320                                          struct intel_link_m_n *m_n)
6321 {
6322         struct drm_device *dev = crtc->base.dev;
6323         struct drm_i915_private *dev_priv = dev->dev_private;
6324         enum pipe pipe = crtc->pipe;
6325
6326         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6327         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6328         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6329                 & ~TU_SIZE_MASK;
6330         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6331         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6332                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6333 }
6334
6335 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6336                                          enum transcoder transcoder,
6337                                          struct intel_link_m_n *m_n)
6338 {
6339         struct drm_device *dev = crtc->base.dev;
6340         struct drm_i915_private *dev_priv = dev->dev_private;
6341         enum pipe pipe = crtc->pipe;
6342
6343         if (INTEL_INFO(dev)->gen >= 5) {
6344                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6345                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6346                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6347                         & ~TU_SIZE_MASK;
6348                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6349                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6350                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6351         } else {
6352                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6353                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6354                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6355                         & ~TU_SIZE_MASK;
6356                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6357                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6358                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6359         }
6360 }
6361
6362 void intel_dp_get_m_n(struct intel_crtc *crtc,
6363                       struct intel_crtc_config *pipe_config)
6364 {
6365         if (crtc->config.has_pch_encoder)
6366                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6367         else
6368                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6369                                              &pipe_config->dp_m_n);
6370 }
6371
6372 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6373                                         struct intel_crtc_config *pipe_config)
6374 {
6375         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6376                                      &pipe_config->fdi_m_n);
6377 }
6378
6379 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6380                                      struct intel_crtc_config *pipe_config)
6381 {
6382         struct drm_device *dev = crtc->base.dev;
6383         struct drm_i915_private *dev_priv = dev->dev_private;
6384         uint32_t tmp;
6385
6386         tmp = I915_READ(PF_CTL(crtc->pipe));
6387
6388         if (tmp & PF_ENABLE) {
6389                 pipe_config->pch_pfit.enabled = true;
6390                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6391                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6392
6393                 /* We currently do not free assignements of panel fitters on
6394                  * ivb/hsw (since we don't use the higher upscaling modes which
6395                  * differentiates them) so just WARN about this case for now. */
6396                 if (IS_GEN7(dev)) {
6397                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6398                                 PF_PIPE_SEL_IVB(crtc->pipe));
6399                 }
6400         }
6401 }
6402
6403 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6404                                      struct intel_crtc_config *pipe_config)
6405 {
6406         struct drm_device *dev = crtc->base.dev;
6407         struct drm_i915_private *dev_priv = dev->dev_private;
6408         uint32_t tmp;
6409
6410         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6411         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6412
6413         tmp = I915_READ(PIPECONF(crtc->pipe));
6414         if (!(tmp & PIPECONF_ENABLE))
6415                 return false;
6416
6417         switch (tmp & PIPECONF_BPC_MASK) {
6418         case PIPECONF_6BPC:
6419                 pipe_config->pipe_bpp = 18;
6420                 break;
6421         case PIPECONF_8BPC:
6422                 pipe_config->pipe_bpp = 24;
6423                 break;
6424         case PIPECONF_10BPC:
6425                 pipe_config->pipe_bpp = 30;
6426                 break;
6427         case PIPECONF_12BPC:
6428                 pipe_config->pipe_bpp = 36;
6429                 break;
6430         default:
6431                 break;
6432         }
6433
6434         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6435                 struct intel_shared_dpll *pll;
6436
6437                 pipe_config->has_pch_encoder = true;
6438
6439                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6440                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6441                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6442
6443                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6444
6445                 if (HAS_PCH_IBX(dev_priv->dev)) {
6446                         pipe_config->shared_dpll =
6447                                 (enum intel_dpll_id) crtc->pipe;
6448                 } else {
6449                         tmp = I915_READ(PCH_DPLL_SEL);
6450                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6451                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6452                         else
6453                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6454                 }
6455
6456                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6457
6458                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6459                                            &pipe_config->dpll_hw_state));
6460
6461                 tmp = pipe_config->dpll_hw_state.dpll;
6462                 pipe_config->pixel_multiplier =
6463                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6464                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6465
6466                 ironlake_pch_clock_get(crtc, pipe_config);
6467         } else {
6468                 pipe_config->pixel_multiplier = 1;
6469         }
6470
6471         intel_get_pipe_timings(crtc, pipe_config);
6472
6473         ironlake_get_pfit_config(crtc, pipe_config);
6474
6475         return true;
6476 }
6477
6478 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6479 {
6480         struct drm_device *dev = dev_priv->dev;
6481         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6482         struct intel_crtc *crtc;
6483         unsigned long irqflags;
6484         uint32_t val;
6485
6486         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6487                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6488                      pipe_name(crtc->pipe));
6489
6490         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6491         WARN(plls->spll_refcount, "SPLL enabled\n");
6492         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6493         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6494         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6495         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6496              "CPU PWM1 enabled\n");
6497         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6498              "CPU PWM2 enabled\n");
6499         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6500              "PCH PWM1 enabled\n");
6501         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6502              "Utility pin enabled\n");
6503         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6504
6505         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6506         val = I915_READ(DEIMR);
6507         WARN((val & ~DE_PCH_EVENT_IVB) != val,
6508              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6509         val = I915_READ(SDEIMR);
6510         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6511              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6512         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6513 }
6514
6515 /*
6516  * This function implements pieces of two sequences from BSpec:
6517  * - Sequence for display software to disable LCPLL
6518  * - Sequence for display software to allow package C8+
6519  * The steps implemented here are just the steps that actually touch the LCPLL
6520  * register. Callers should take care of disabling all the display engine
6521  * functions, doing the mode unset, fixing interrupts, etc.
6522  */
6523 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6524                               bool switch_to_fclk, bool allow_power_down)
6525 {
6526         uint32_t val;
6527
6528         assert_can_disable_lcpll(dev_priv);
6529
6530         val = I915_READ(LCPLL_CTL);
6531
6532         if (switch_to_fclk) {
6533                 val |= LCPLL_CD_SOURCE_FCLK;
6534                 I915_WRITE(LCPLL_CTL, val);
6535
6536                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6537                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6538                         DRM_ERROR("Switching to FCLK failed\n");
6539
6540                 val = I915_READ(LCPLL_CTL);
6541         }
6542
6543         val |= LCPLL_PLL_DISABLE;
6544         I915_WRITE(LCPLL_CTL, val);
6545         POSTING_READ(LCPLL_CTL);
6546
6547         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6548                 DRM_ERROR("LCPLL still locked\n");
6549
6550         val = I915_READ(D_COMP);
6551         val |= D_COMP_COMP_DISABLE;
6552         mutex_lock(&dev_priv->rps.hw_lock);
6553         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6554                 DRM_ERROR("Failed to disable D_COMP\n");
6555         mutex_unlock(&dev_priv->rps.hw_lock);
6556         POSTING_READ(D_COMP);
6557         ndelay(100);
6558
6559         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6560                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6561
6562         if (allow_power_down) {
6563                 val = I915_READ(LCPLL_CTL);
6564                 val |= LCPLL_POWER_DOWN_ALLOW;
6565                 I915_WRITE(LCPLL_CTL, val);
6566                 POSTING_READ(LCPLL_CTL);
6567         }
6568 }
6569
6570 /*
6571  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6572  * source.
6573  */
6574 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6575 {
6576         uint32_t val;
6577
6578         val = I915_READ(LCPLL_CTL);
6579
6580         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6581                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6582                 return;
6583
6584         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6585          * we'll hang the machine! */
6586         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6587
6588         if (val & LCPLL_POWER_DOWN_ALLOW) {
6589                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6590                 I915_WRITE(LCPLL_CTL, val);
6591                 POSTING_READ(LCPLL_CTL);
6592         }
6593
6594         val = I915_READ(D_COMP);
6595         val |= D_COMP_COMP_FORCE;
6596         val &= ~D_COMP_COMP_DISABLE;
6597         mutex_lock(&dev_priv->rps.hw_lock);
6598         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6599                 DRM_ERROR("Failed to enable D_COMP\n");
6600         mutex_unlock(&dev_priv->rps.hw_lock);
6601         POSTING_READ(D_COMP);
6602
6603         val = I915_READ(LCPLL_CTL);
6604         val &= ~LCPLL_PLL_DISABLE;
6605         I915_WRITE(LCPLL_CTL, val);
6606
6607         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6608                 DRM_ERROR("LCPLL not locked yet\n");
6609
6610         if (val & LCPLL_CD_SOURCE_FCLK) {
6611                 val = I915_READ(LCPLL_CTL);
6612                 val &= ~LCPLL_CD_SOURCE_FCLK;
6613                 I915_WRITE(LCPLL_CTL, val);
6614
6615                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6616                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6617                         DRM_ERROR("Switching back to LCPLL failed\n");
6618         }
6619
6620         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6621 }
6622
6623 void hsw_enable_pc8_work(struct work_struct *__work)
6624 {
6625         struct drm_i915_private *dev_priv =
6626                 container_of(to_delayed_work(__work), struct drm_i915_private,
6627                              pc8.enable_work);
6628         struct drm_device *dev = dev_priv->dev;
6629         uint32_t val;
6630
6631         if (dev_priv->pc8.enabled)
6632                 return;
6633
6634         DRM_DEBUG_KMS("Enabling package C8+\n");
6635
6636         dev_priv->pc8.enabled = true;
6637
6638         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6639                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6640                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6641                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6642         }
6643
6644         lpt_disable_clkout_dp(dev);
6645         hsw_pc8_disable_interrupts(dev);
6646         hsw_disable_lcpll(dev_priv, true, true);
6647 }
6648
6649 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6650 {
6651         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6652         WARN(dev_priv->pc8.disable_count < 1,
6653              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6654
6655         dev_priv->pc8.disable_count--;
6656         if (dev_priv->pc8.disable_count != 0)
6657                 return;
6658
6659         schedule_delayed_work(&dev_priv->pc8.enable_work,
6660                               msecs_to_jiffies(i915_pc8_timeout));
6661 }
6662
6663 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6664 {
6665         struct drm_device *dev = dev_priv->dev;
6666         uint32_t val;
6667
6668         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6669         WARN(dev_priv->pc8.disable_count < 0,
6670              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6671
6672         dev_priv->pc8.disable_count++;
6673         if (dev_priv->pc8.disable_count != 1)
6674                 return;
6675
6676         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6677         if (!dev_priv->pc8.enabled)
6678                 return;
6679
6680         DRM_DEBUG_KMS("Disabling package C8+\n");
6681
6682         hsw_restore_lcpll(dev_priv);
6683         hsw_pc8_restore_interrupts(dev);
6684         lpt_init_pch_refclk(dev);
6685
6686         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6687                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6688                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6689                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6690         }
6691
6692         intel_prepare_ddi(dev);
6693         i915_gem_init_swizzling(dev);
6694         mutex_lock(&dev_priv->rps.hw_lock);
6695         gen6_update_ring_freq(dev);
6696         mutex_unlock(&dev_priv->rps.hw_lock);
6697         dev_priv->pc8.enabled = false;
6698 }
6699
6700 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6701 {
6702         mutex_lock(&dev_priv->pc8.lock);
6703         __hsw_enable_package_c8(dev_priv);
6704         mutex_unlock(&dev_priv->pc8.lock);
6705 }
6706
6707 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6708 {
6709         mutex_lock(&dev_priv->pc8.lock);
6710         __hsw_disable_package_c8(dev_priv);
6711         mutex_unlock(&dev_priv->pc8.lock);
6712 }
6713
6714 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6715 {
6716         struct drm_device *dev = dev_priv->dev;
6717         struct intel_crtc *crtc;
6718         uint32_t val;
6719
6720         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6721                 if (crtc->base.enabled)
6722                         return false;
6723
6724         /* This case is still possible since we have the i915.disable_power_well
6725          * parameter and also the KVMr or something else might be requesting the
6726          * power well. */
6727         val = I915_READ(HSW_PWR_WELL_DRIVER);
6728         if (val != 0) {
6729                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6730                 return false;
6731         }
6732
6733         return true;
6734 }
6735
6736 /* Since we're called from modeset_global_resources there's no way to
6737  * symmetrically increase and decrease the refcount, so we use
6738  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6739  * or not.
6740  */
6741 static void hsw_update_package_c8(struct drm_device *dev)
6742 {
6743         struct drm_i915_private *dev_priv = dev->dev_private;
6744         bool allow;
6745
6746         if (!i915_enable_pc8)
6747                 return;
6748
6749         mutex_lock(&dev_priv->pc8.lock);
6750
6751         allow = hsw_can_enable_package_c8(dev_priv);
6752
6753         if (allow == dev_priv->pc8.requirements_met)
6754                 goto done;
6755
6756         dev_priv->pc8.requirements_met = allow;
6757
6758         if (allow)
6759                 __hsw_enable_package_c8(dev_priv);
6760         else
6761                 __hsw_disable_package_c8(dev_priv);
6762
6763 done:
6764         mutex_unlock(&dev_priv->pc8.lock);
6765 }
6766
6767 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6768 {
6769         mutex_lock(&dev_priv->pc8.lock);
6770         if (!dev_priv->pc8.gpu_idle) {
6771                 dev_priv->pc8.gpu_idle = true;
6772                 __hsw_enable_package_c8(dev_priv);
6773         }
6774         mutex_unlock(&dev_priv->pc8.lock);
6775 }
6776
6777 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6778 {
6779         mutex_lock(&dev_priv->pc8.lock);
6780         if (dev_priv->pc8.gpu_idle) {
6781                 dev_priv->pc8.gpu_idle = false;
6782                 __hsw_disable_package_c8(dev_priv);
6783         }
6784         mutex_unlock(&dev_priv->pc8.lock);
6785 }
6786
6787 #define for_each_power_domain(domain, mask)                             \
6788         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
6789                 if ((1 << (domain)) & (mask))
6790
6791 static unsigned long get_pipe_power_domains(struct drm_device *dev,
6792                                             enum pipe pipe, bool pfit_enabled)
6793 {
6794         unsigned long mask;
6795         enum transcoder transcoder;
6796
6797         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
6798
6799         mask = BIT(POWER_DOMAIN_PIPE(pipe));
6800         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6801         if (pfit_enabled)
6802                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6803
6804         return mask;
6805 }
6806
6807 void intel_display_set_init_power(struct drm_device *dev, bool enable)
6808 {
6809         struct drm_i915_private *dev_priv = dev->dev_private;
6810
6811         if (dev_priv->power_domains.init_power_on == enable)
6812                 return;
6813
6814         if (enable)
6815                 intel_display_power_get(dev, POWER_DOMAIN_INIT);
6816         else
6817                 intel_display_power_put(dev, POWER_DOMAIN_INIT);
6818
6819         dev_priv->power_domains.init_power_on = enable;
6820 }
6821
6822 static void modeset_update_power_wells(struct drm_device *dev)
6823 {
6824         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
6825         struct intel_crtc *crtc;
6826
6827         /*
6828          * First get all needed power domains, then put all unneeded, to avoid
6829          * any unnecessary toggling of the power wells.
6830          */
6831         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6832                 enum intel_display_power_domain domain;
6833
6834                 if (!crtc->base.enabled)
6835                         continue;
6836
6837                 pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
6838                                                 crtc->pipe,
6839                                                 crtc->config.pch_pfit.enabled);
6840
6841                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
6842                         intel_display_power_get(dev, domain);
6843         }
6844
6845         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6846                 enum intel_display_power_domain domain;
6847
6848                 for_each_power_domain(domain, crtc->enabled_power_domains)
6849                         intel_display_power_put(dev, domain);
6850
6851                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
6852         }
6853
6854         intel_display_set_init_power(dev, false);
6855 }
6856
6857 static void haswell_modeset_global_resources(struct drm_device *dev)
6858 {
6859         modeset_update_power_wells(dev);
6860         hsw_update_package_c8(dev);
6861 }
6862
6863 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6864                                  int x, int y,
6865                                  struct drm_framebuffer *fb)
6866 {
6867         struct drm_device *dev = crtc->dev;
6868         struct drm_i915_private *dev_priv = dev->dev_private;
6869         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6870         int plane = intel_crtc->plane;
6871         int ret;
6872
6873         if (!intel_ddi_pll_mode_set(crtc))
6874                 return -EINVAL;
6875
6876         if (intel_crtc->config.has_dp_encoder)
6877                 intel_dp_set_m_n(intel_crtc);
6878
6879         intel_crtc->lowfreq_avail = false;
6880
6881         intel_set_pipe_timings(intel_crtc);
6882
6883         if (intel_crtc->config.has_pch_encoder) {
6884                 intel_cpu_transcoder_set_m_n(intel_crtc,
6885                                              &intel_crtc->config.fdi_m_n);
6886         }
6887
6888         haswell_set_pipeconf(crtc);
6889
6890         intel_set_pipe_csc(crtc);
6891
6892         /* Set up the display plane register */
6893         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6894         POSTING_READ(DSPCNTR(plane));
6895
6896         ret = intel_pipe_set_base(crtc, x, y, fb);
6897
6898         return ret;
6899 }
6900
6901 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6902                                     struct intel_crtc_config *pipe_config)
6903 {
6904         struct drm_device *dev = crtc->base.dev;
6905         struct drm_i915_private *dev_priv = dev->dev_private;
6906         enum intel_display_power_domain pfit_domain;
6907         uint32_t tmp;
6908
6909         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6910         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6911
6912         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6913         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6914                 enum pipe trans_edp_pipe;
6915                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6916                 default:
6917                         WARN(1, "unknown pipe linked to edp transcoder\n");
6918                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6919                 case TRANS_DDI_EDP_INPUT_A_ON:
6920                         trans_edp_pipe = PIPE_A;
6921                         break;
6922                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6923                         trans_edp_pipe = PIPE_B;
6924                         break;
6925                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6926                         trans_edp_pipe = PIPE_C;
6927                         break;
6928                 }
6929
6930                 if (trans_edp_pipe == crtc->pipe)
6931                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6932         }
6933
6934         if (!intel_display_power_enabled(dev,
6935                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6936                 return false;
6937
6938         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6939         if (!(tmp & PIPECONF_ENABLE))
6940                 return false;
6941
6942         /*
6943          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6944          * DDI E. So just check whether this pipe is wired to DDI E and whether
6945          * the PCH transcoder is on.
6946          */
6947         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6948         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6949             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6950                 pipe_config->has_pch_encoder = true;
6951
6952                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6953                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6954                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6955
6956                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6957         }
6958
6959         intel_get_pipe_timings(crtc, pipe_config);
6960
6961         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6962         if (intel_display_power_enabled(dev, pfit_domain))
6963                 ironlake_get_pfit_config(crtc, pipe_config);
6964
6965         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6966                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6967
6968         pipe_config->pixel_multiplier = 1;
6969
6970         return true;
6971 }
6972
6973 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6974                                int x, int y,
6975                                struct drm_framebuffer *fb)
6976 {
6977         struct drm_device *dev = crtc->dev;
6978         struct drm_i915_private *dev_priv = dev->dev_private;
6979         struct intel_encoder *encoder;
6980         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6981         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6982         int pipe = intel_crtc->pipe;
6983         int ret;
6984
6985         drm_vblank_pre_modeset(dev, pipe);
6986
6987         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6988
6989         drm_vblank_post_modeset(dev, pipe);
6990
6991         if (ret != 0)
6992                 return ret;
6993
6994         for_each_encoder_on_crtc(dev, crtc, encoder) {
6995                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6996                         encoder->base.base.id,
6997                         drm_get_encoder_name(&encoder->base),
6998                         mode->base.id, mode->name);
6999                 encoder->mode_set(encoder);
7000         }
7001
7002         return 0;
7003 }
7004
7005 static struct {
7006         int clock;
7007         u32 config;
7008 } hdmi_audio_clock[] = {
7009         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7010         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7011         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7012         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7013         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7014         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7015         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7016         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7017         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7018         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7019 };
7020
7021 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7022 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7023 {
7024         int i;
7025
7026         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7027                 if (mode->clock == hdmi_audio_clock[i].clock)
7028                         break;
7029         }
7030
7031         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7032                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7033                 i = 1;
7034         }
7035
7036         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7037                       hdmi_audio_clock[i].clock,
7038                       hdmi_audio_clock[i].config);
7039
7040         return hdmi_audio_clock[i].config;
7041 }
7042
7043 static bool intel_eld_uptodate(struct drm_connector *connector,
7044                                int reg_eldv, uint32_t bits_eldv,
7045                                int reg_elda, uint32_t bits_elda,
7046                                int reg_edid)
7047 {
7048         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7049         uint8_t *eld = connector->eld;
7050         uint32_t i;
7051
7052         i = I915_READ(reg_eldv);
7053         i &= bits_eldv;
7054
7055         if (!eld[0])
7056                 return !i;
7057
7058         if (!i)
7059                 return false;
7060
7061         i = I915_READ(reg_elda);
7062         i &= ~bits_elda;
7063         I915_WRITE(reg_elda, i);
7064
7065         for (i = 0; i < eld[2]; i++)
7066                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7067                         return false;
7068
7069         return true;
7070 }
7071
7072 static void g4x_write_eld(struct drm_connector *connector,
7073                           struct drm_crtc *crtc,
7074                           struct drm_display_mode *mode)
7075 {
7076         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7077         uint8_t *eld = connector->eld;
7078         uint32_t eldv;
7079         uint32_t len;
7080         uint32_t i;
7081
7082         i = I915_READ(G4X_AUD_VID_DID);
7083
7084         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7085                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7086         else
7087                 eldv = G4X_ELDV_DEVCTG;
7088
7089         if (intel_eld_uptodate(connector,
7090                                G4X_AUD_CNTL_ST, eldv,
7091                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7092                                G4X_HDMIW_HDMIEDID))
7093                 return;
7094
7095         i = I915_READ(G4X_AUD_CNTL_ST);
7096         i &= ~(eldv | G4X_ELD_ADDR);
7097         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7098         I915_WRITE(G4X_AUD_CNTL_ST, i);
7099
7100         if (!eld[0])
7101                 return;
7102
7103         len = min_t(uint8_t, eld[2], len);
7104         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7105         for (i = 0; i < len; i++)
7106                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7107
7108         i = I915_READ(G4X_AUD_CNTL_ST);
7109         i |= eldv;
7110         I915_WRITE(G4X_AUD_CNTL_ST, i);
7111 }
7112
7113 static void haswell_write_eld(struct drm_connector *connector,
7114                               struct drm_crtc *crtc,
7115                               struct drm_display_mode *mode)
7116 {
7117         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7118         uint8_t *eld = connector->eld;
7119         struct drm_device *dev = crtc->dev;
7120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7121         uint32_t eldv;
7122         uint32_t i;
7123         int len;
7124         int pipe = to_intel_crtc(crtc)->pipe;
7125         int tmp;
7126
7127         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7128         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7129         int aud_config = HSW_AUD_CFG(pipe);
7130         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7131
7132
7133         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7134
7135         /* Audio output enable */
7136         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7137         tmp = I915_READ(aud_cntrl_st2);
7138         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7139         I915_WRITE(aud_cntrl_st2, tmp);
7140
7141         /* Wait for 1 vertical blank */
7142         intel_wait_for_vblank(dev, pipe);
7143
7144         /* Set ELD valid state */
7145         tmp = I915_READ(aud_cntrl_st2);
7146         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7147         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7148         I915_WRITE(aud_cntrl_st2, tmp);
7149         tmp = I915_READ(aud_cntrl_st2);
7150         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7151
7152         /* Enable HDMI mode */
7153         tmp = I915_READ(aud_config);
7154         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7155         /* clear N_programing_enable and N_value_index */
7156         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7157         I915_WRITE(aud_config, tmp);
7158
7159         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7160
7161         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7162         intel_crtc->eld_vld = true;
7163
7164         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7165                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7166                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7167                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7168         } else {
7169                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7170         }
7171
7172         if (intel_eld_uptodate(connector,
7173                                aud_cntrl_st2, eldv,
7174                                aud_cntl_st, IBX_ELD_ADDRESS,
7175                                hdmiw_hdmiedid))
7176                 return;
7177
7178         i = I915_READ(aud_cntrl_st2);
7179         i &= ~eldv;
7180         I915_WRITE(aud_cntrl_st2, i);
7181
7182         if (!eld[0])
7183                 return;
7184
7185         i = I915_READ(aud_cntl_st);
7186         i &= ~IBX_ELD_ADDRESS;
7187         I915_WRITE(aud_cntl_st, i);
7188         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7189         DRM_DEBUG_DRIVER("port num:%d\n", i);
7190
7191         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7192         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7193         for (i = 0; i < len; i++)
7194                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7195
7196         i = I915_READ(aud_cntrl_st2);
7197         i |= eldv;
7198         I915_WRITE(aud_cntrl_st2, i);
7199
7200 }
7201
7202 static void ironlake_write_eld(struct drm_connector *connector,
7203                                struct drm_crtc *crtc,
7204                                struct drm_display_mode *mode)
7205 {
7206         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7207         uint8_t *eld = connector->eld;
7208         uint32_t eldv;
7209         uint32_t i;
7210         int len;
7211         int hdmiw_hdmiedid;
7212         int aud_config;
7213         int aud_cntl_st;
7214         int aud_cntrl_st2;
7215         int pipe = to_intel_crtc(crtc)->pipe;
7216
7217         if (HAS_PCH_IBX(connector->dev)) {
7218                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7219                 aud_config = IBX_AUD_CFG(pipe);
7220                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7221                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7222         } else if (IS_VALLEYVIEW(connector->dev)) {
7223                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7224                 aud_config = VLV_AUD_CFG(pipe);
7225                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7226                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7227         } else {
7228                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7229                 aud_config = CPT_AUD_CFG(pipe);
7230                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7231                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7232         }
7233
7234         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7235
7236         if (IS_VALLEYVIEW(connector->dev))  {
7237                 struct intel_encoder *intel_encoder;
7238                 struct intel_digital_port *intel_dig_port;
7239
7240                 intel_encoder = intel_attached_encoder(connector);
7241                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7242                 i = intel_dig_port->port;
7243         } else {
7244                 i = I915_READ(aud_cntl_st);
7245                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7246                 /* DIP_Port_Select, 0x1 = PortB */
7247         }
7248
7249         if (!i) {
7250                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7251                 /* operate blindly on all ports */
7252                 eldv = IBX_ELD_VALIDB;
7253                 eldv |= IBX_ELD_VALIDB << 4;
7254                 eldv |= IBX_ELD_VALIDB << 8;
7255         } else {
7256                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7257                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7258         }
7259
7260         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7261                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7262                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7263                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7264         } else {
7265                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7266         }
7267
7268         if (intel_eld_uptodate(connector,
7269                                aud_cntrl_st2, eldv,
7270                                aud_cntl_st, IBX_ELD_ADDRESS,
7271                                hdmiw_hdmiedid))
7272                 return;
7273
7274         i = I915_READ(aud_cntrl_st2);
7275         i &= ~eldv;
7276         I915_WRITE(aud_cntrl_st2, i);
7277
7278         if (!eld[0])
7279                 return;
7280
7281         i = I915_READ(aud_cntl_st);
7282         i &= ~IBX_ELD_ADDRESS;
7283         I915_WRITE(aud_cntl_st, i);
7284
7285         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7286         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7287         for (i = 0; i < len; i++)
7288                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7289
7290         i = I915_READ(aud_cntrl_st2);
7291         i |= eldv;
7292         I915_WRITE(aud_cntrl_st2, i);
7293 }
7294
7295 void intel_write_eld(struct drm_encoder *encoder,
7296                      struct drm_display_mode *mode)
7297 {
7298         struct drm_crtc *crtc = encoder->crtc;
7299         struct drm_connector *connector;
7300         struct drm_device *dev = encoder->dev;
7301         struct drm_i915_private *dev_priv = dev->dev_private;
7302
7303         connector = drm_select_eld(encoder, mode);
7304         if (!connector)
7305                 return;
7306
7307         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7308                          connector->base.id,
7309                          drm_get_connector_name(connector),
7310                          connector->encoder->base.id,
7311                          drm_get_encoder_name(connector->encoder));
7312
7313         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7314
7315         if (dev_priv->display.write_eld)
7316                 dev_priv->display.write_eld(connector, crtc, mode);
7317 }
7318
7319 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7320 {
7321         struct drm_device *dev = crtc->dev;
7322         struct drm_i915_private *dev_priv = dev->dev_private;
7323         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7324         bool visible = base != 0;
7325         u32 cntl;
7326
7327         if (intel_crtc->cursor_visible == visible)
7328                 return;
7329
7330         cntl = I915_READ(_CURACNTR);
7331         if (visible) {
7332                 /* On these chipsets we can only modify the base whilst
7333                  * the cursor is disabled.
7334                  */
7335                 I915_WRITE(_CURABASE, base);
7336
7337                 cntl &= ~(CURSOR_FORMAT_MASK);
7338                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7339                 cntl |= CURSOR_ENABLE |
7340                         CURSOR_GAMMA_ENABLE |
7341                         CURSOR_FORMAT_ARGB;
7342         } else
7343                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7344         I915_WRITE(_CURACNTR, cntl);
7345
7346         intel_crtc->cursor_visible = visible;
7347 }
7348
7349 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7350 {
7351         struct drm_device *dev = crtc->dev;
7352         struct drm_i915_private *dev_priv = dev->dev_private;
7353         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7354         int pipe = intel_crtc->pipe;
7355         bool visible = base != 0;
7356
7357         if (intel_crtc->cursor_visible != visible) {
7358                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7359                 if (base) {
7360                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7361                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7362                         cntl |= pipe << 28; /* Connect to correct pipe */
7363                 } else {
7364                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7365                         cntl |= CURSOR_MODE_DISABLE;
7366                 }
7367                 I915_WRITE(CURCNTR(pipe), cntl);
7368
7369                 intel_crtc->cursor_visible = visible;
7370         }
7371         /* and commit changes on next vblank */
7372         I915_WRITE(CURBASE(pipe), base);
7373 }
7374
7375 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7376 {
7377         struct drm_device *dev = crtc->dev;
7378         struct drm_i915_private *dev_priv = dev->dev_private;
7379         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7380         int pipe = intel_crtc->pipe;
7381         bool visible = base != 0;
7382
7383         if (intel_crtc->cursor_visible != visible) {
7384                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7385                 if (base) {
7386                         cntl &= ~CURSOR_MODE;
7387                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7388                 } else {
7389                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7390                         cntl |= CURSOR_MODE_DISABLE;
7391                 }
7392                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7393                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7394                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7395                 }
7396                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7397
7398                 intel_crtc->cursor_visible = visible;
7399         }
7400         /* and commit changes on next vblank */
7401         I915_WRITE(CURBASE_IVB(pipe), base);
7402 }
7403
7404 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7405 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7406                                      bool on)
7407 {
7408         struct drm_device *dev = crtc->dev;
7409         struct drm_i915_private *dev_priv = dev->dev_private;
7410         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7411         int pipe = intel_crtc->pipe;
7412         int x = intel_crtc->cursor_x;
7413         int y = intel_crtc->cursor_y;
7414         u32 base = 0, pos = 0;
7415         bool visible;
7416
7417         if (on)
7418                 base = intel_crtc->cursor_addr;
7419
7420         if (x >= intel_crtc->config.pipe_src_w)
7421                 base = 0;
7422
7423         if (y >= intel_crtc->config.pipe_src_h)
7424                 base = 0;
7425
7426         if (x < 0) {
7427                 if (x + intel_crtc->cursor_width <= 0)
7428                         base = 0;
7429
7430                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7431                 x = -x;
7432         }
7433         pos |= x << CURSOR_X_SHIFT;
7434
7435         if (y < 0) {
7436                 if (y + intel_crtc->cursor_height <= 0)
7437                         base = 0;
7438
7439                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7440                 y = -y;
7441         }
7442         pos |= y << CURSOR_Y_SHIFT;
7443
7444         visible = base != 0;
7445         if (!visible && !intel_crtc->cursor_visible)
7446                 return;
7447
7448         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7449                 I915_WRITE(CURPOS_IVB(pipe), pos);
7450                 ivb_update_cursor(crtc, base);
7451         } else {
7452                 I915_WRITE(CURPOS(pipe), pos);
7453                 if (IS_845G(dev) || IS_I865G(dev))
7454                         i845_update_cursor(crtc, base);
7455                 else
7456                         i9xx_update_cursor(crtc, base);
7457         }
7458 }
7459
7460 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7461                                  struct drm_file *file,
7462                                  uint32_t handle,
7463                                  uint32_t width, uint32_t height)
7464 {
7465         struct drm_device *dev = crtc->dev;
7466         struct drm_i915_private *dev_priv = dev->dev_private;
7467         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7468         struct drm_i915_gem_object *obj;
7469         uint32_t addr;
7470         int ret;
7471
7472         /* if we want to turn off the cursor ignore width and height */
7473         if (!handle) {
7474                 DRM_DEBUG_KMS("cursor off\n");
7475                 addr = 0;
7476                 obj = NULL;
7477                 mutex_lock(&dev->struct_mutex);
7478                 goto finish;
7479         }
7480
7481         /* Currently we only support 64x64 cursors */
7482         if (width != 64 || height != 64) {
7483                 DRM_ERROR("we currently only support 64x64 cursors\n");
7484                 return -EINVAL;
7485         }
7486
7487         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7488         if (&obj->base == NULL)
7489                 return -ENOENT;
7490
7491         if (obj->base.size < width * height * 4) {
7492                 DRM_ERROR("buffer is to small\n");
7493                 ret = -ENOMEM;
7494                 goto fail;
7495         }
7496
7497         /* we only need to pin inside GTT if cursor is non-phy */
7498         mutex_lock(&dev->struct_mutex);
7499         if (!dev_priv->info->cursor_needs_physical) {
7500                 unsigned alignment;
7501
7502                 if (obj->tiling_mode) {
7503                         DRM_ERROR("cursor cannot be tiled\n");
7504                         ret = -EINVAL;
7505                         goto fail_locked;
7506                 }
7507
7508                 /* Note that the w/a also requires 2 PTE of padding following
7509                  * the bo. We currently fill all unused PTE with the shadow
7510                  * page and so we should always have valid PTE following the
7511                  * cursor preventing the VT-d warning.
7512                  */
7513                 alignment = 0;
7514                 if (need_vtd_wa(dev))
7515                         alignment = 64*1024;
7516
7517                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7518                 if (ret) {
7519                         DRM_ERROR("failed to move cursor bo into the GTT\n");
7520                         goto fail_locked;
7521                 }
7522
7523                 ret = i915_gem_object_put_fence(obj);
7524                 if (ret) {
7525                         DRM_ERROR("failed to release fence for cursor");
7526                         goto fail_unpin;
7527                 }
7528
7529                 addr = i915_gem_obj_ggtt_offset(obj);
7530         } else {
7531                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7532                 ret = i915_gem_attach_phys_object(dev, obj,
7533                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7534                                                   align);
7535                 if (ret) {
7536                         DRM_ERROR("failed to attach phys object\n");
7537                         goto fail_locked;
7538                 }
7539                 addr = obj->phys_obj->handle->busaddr;
7540         }
7541
7542         if (IS_GEN2(dev))
7543                 I915_WRITE(CURSIZE, (height << 12) | width);
7544
7545  finish:
7546         if (intel_crtc->cursor_bo) {
7547                 if (dev_priv->info->cursor_needs_physical) {
7548                         if (intel_crtc->cursor_bo != obj)
7549                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7550                 } else
7551                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7552                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7553         }
7554
7555         mutex_unlock(&dev->struct_mutex);
7556
7557         intel_crtc->cursor_addr = addr;
7558         intel_crtc->cursor_bo = obj;
7559         intel_crtc->cursor_width = width;
7560         intel_crtc->cursor_height = height;
7561
7562         if (intel_crtc->active)
7563                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7564
7565         return 0;
7566 fail_unpin:
7567         i915_gem_object_unpin_from_display_plane(obj);
7568 fail_locked:
7569         mutex_unlock(&dev->struct_mutex);
7570 fail:
7571         drm_gem_object_unreference_unlocked(&obj->base);
7572         return ret;
7573 }
7574
7575 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7576 {
7577         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7578
7579         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7580         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7581
7582         if (intel_crtc->active)
7583                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7584
7585         return 0;
7586 }
7587
7588 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7589                                  u16 *blue, uint32_t start, uint32_t size)
7590 {
7591         int end = (start + size > 256) ? 256 : start + size, i;
7592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7593
7594         for (i = start; i < end; i++) {
7595                 intel_crtc->lut_r[i] = red[i] >> 8;
7596                 intel_crtc->lut_g[i] = green[i] >> 8;
7597                 intel_crtc->lut_b[i] = blue[i] >> 8;
7598         }
7599
7600         intel_crtc_load_lut(crtc);
7601 }
7602
7603 /* VESA 640x480x72Hz mode to set on the pipe */
7604 static struct drm_display_mode load_detect_mode = {
7605         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7606                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7607 };
7608
7609 static struct drm_framebuffer *
7610 intel_framebuffer_create(struct drm_device *dev,
7611                          struct drm_mode_fb_cmd2 *mode_cmd,
7612                          struct drm_i915_gem_object *obj)
7613 {
7614         struct intel_framebuffer *intel_fb;
7615         int ret;
7616
7617         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7618         if (!intel_fb) {
7619                 drm_gem_object_unreference_unlocked(&obj->base);
7620                 return ERR_PTR(-ENOMEM);
7621         }
7622
7623         ret = i915_mutex_lock_interruptible(dev);
7624         if (ret)
7625                 goto err;
7626
7627         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7628         mutex_unlock(&dev->struct_mutex);
7629         if (ret)
7630                 goto err;
7631
7632         return &intel_fb->base;
7633 err:
7634         drm_gem_object_unreference_unlocked(&obj->base);
7635         kfree(intel_fb);
7636
7637         return ERR_PTR(ret);
7638 }
7639
7640 static u32
7641 intel_framebuffer_pitch_for_width(int width, int bpp)
7642 {
7643         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7644         return ALIGN(pitch, 64);
7645 }
7646
7647 static u32
7648 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7649 {
7650         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7651         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7652 }
7653
7654 static struct drm_framebuffer *
7655 intel_framebuffer_create_for_mode(struct drm_device *dev,
7656                                   struct drm_display_mode *mode,
7657                                   int depth, int bpp)
7658 {
7659         struct drm_i915_gem_object *obj;
7660         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7661
7662         obj = i915_gem_alloc_object(dev,
7663                                     intel_framebuffer_size_for_mode(mode, bpp));
7664         if (obj == NULL)
7665                 return ERR_PTR(-ENOMEM);
7666
7667         mode_cmd.width = mode->hdisplay;
7668         mode_cmd.height = mode->vdisplay;
7669         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7670                                                                 bpp);
7671         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7672
7673         return intel_framebuffer_create(dev, &mode_cmd, obj);
7674 }
7675
7676 static struct drm_framebuffer *
7677 mode_fits_in_fbdev(struct drm_device *dev,
7678                    struct drm_display_mode *mode)
7679 {
7680 #ifdef CONFIG_DRM_I915_FBDEV
7681         struct drm_i915_private *dev_priv = dev->dev_private;
7682         struct drm_i915_gem_object *obj;
7683         struct drm_framebuffer *fb;
7684
7685         if (dev_priv->fbdev == NULL)
7686                 return NULL;
7687
7688         obj = dev_priv->fbdev->ifb.obj;
7689         if (obj == NULL)
7690                 return NULL;
7691
7692         fb = &dev_priv->fbdev->ifb.base;
7693         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7694                                                                fb->bits_per_pixel))
7695                 return NULL;
7696
7697         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7698                 return NULL;
7699
7700         return fb;
7701 #else
7702         return NULL;
7703 #endif
7704 }
7705
7706 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7707                                 struct drm_display_mode *mode,
7708                                 struct intel_load_detect_pipe *old)
7709 {
7710         struct intel_crtc *intel_crtc;
7711         struct intel_encoder *intel_encoder =
7712                 intel_attached_encoder(connector);
7713         struct drm_crtc *possible_crtc;
7714         struct drm_encoder *encoder = &intel_encoder->base;
7715         struct drm_crtc *crtc = NULL;
7716         struct drm_device *dev = encoder->dev;
7717         struct drm_framebuffer *fb;
7718         int i = -1;
7719
7720         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7721                       connector->base.id, drm_get_connector_name(connector),
7722                       encoder->base.id, drm_get_encoder_name(encoder));
7723
7724         /*
7725          * Algorithm gets a little messy:
7726          *
7727          *   - if the connector already has an assigned crtc, use it (but make
7728          *     sure it's on first)
7729          *
7730          *   - try to find the first unused crtc that can drive this connector,
7731          *     and use that if we find one
7732          */
7733
7734         /* See if we already have a CRTC for this connector */
7735         if (encoder->crtc) {
7736                 crtc = encoder->crtc;
7737
7738                 mutex_lock(&crtc->mutex);
7739
7740                 old->dpms_mode = connector->dpms;
7741                 old->load_detect_temp = false;
7742
7743                 /* Make sure the crtc and connector are running */
7744                 if (connector->dpms != DRM_MODE_DPMS_ON)
7745                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7746
7747                 return true;
7748         }
7749
7750         /* Find an unused one (if possible) */
7751         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7752                 i++;
7753                 if (!(encoder->possible_crtcs & (1 << i)))
7754                         continue;
7755                 if (!possible_crtc->enabled) {
7756                         crtc = possible_crtc;
7757                         break;
7758                 }
7759         }
7760
7761         /*
7762          * If we didn't find an unused CRTC, don't use any.
7763          */
7764         if (!crtc) {
7765                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7766                 return false;
7767         }
7768
7769         mutex_lock(&crtc->mutex);
7770         intel_encoder->new_crtc = to_intel_crtc(crtc);
7771         to_intel_connector(connector)->new_encoder = intel_encoder;
7772
7773         intel_crtc = to_intel_crtc(crtc);
7774         old->dpms_mode = connector->dpms;
7775         old->load_detect_temp = true;
7776         old->release_fb = NULL;
7777
7778         if (!mode)
7779                 mode = &load_detect_mode;
7780
7781         /* We need a framebuffer large enough to accommodate all accesses
7782          * that the plane may generate whilst we perform load detection.
7783          * We can not rely on the fbcon either being present (we get called
7784          * during its initialisation to detect all boot displays, or it may
7785          * not even exist) or that it is large enough to satisfy the
7786          * requested mode.
7787          */
7788         fb = mode_fits_in_fbdev(dev, mode);
7789         if (fb == NULL) {
7790                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7791                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7792                 old->release_fb = fb;
7793         } else
7794                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7795         if (IS_ERR(fb)) {
7796                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7797                 mutex_unlock(&crtc->mutex);
7798                 return false;
7799         }
7800
7801         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7802                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7803                 if (old->release_fb)
7804                         old->release_fb->funcs->destroy(old->release_fb);
7805                 mutex_unlock(&crtc->mutex);
7806                 return false;
7807         }
7808
7809         /* let the connector get through one full cycle before testing */
7810         intel_wait_for_vblank(dev, intel_crtc->pipe);
7811         return true;
7812 }
7813
7814 void intel_release_load_detect_pipe(struct drm_connector *connector,
7815                                     struct intel_load_detect_pipe *old)
7816 {
7817         struct intel_encoder *intel_encoder =
7818                 intel_attached_encoder(connector);
7819         struct drm_encoder *encoder = &intel_encoder->base;
7820         struct drm_crtc *crtc = encoder->crtc;
7821
7822         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7823                       connector->base.id, drm_get_connector_name(connector),
7824                       encoder->base.id, drm_get_encoder_name(encoder));
7825
7826         if (old->load_detect_temp) {
7827                 to_intel_connector(connector)->new_encoder = NULL;
7828                 intel_encoder->new_crtc = NULL;
7829                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7830
7831                 if (old->release_fb) {
7832                         drm_framebuffer_unregister_private(old->release_fb);
7833                         drm_framebuffer_unreference(old->release_fb);
7834                 }
7835
7836                 mutex_unlock(&crtc->mutex);
7837                 return;
7838         }
7839
7840         /* Switch crtc and encoder back off if necessary */
7841         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7842                 connector->funcs->dpms(connector, old->dpms_mode);
7843
7844         mutex_unlock(&crtc->mutex);
7845 }
7846
7847 static int i9xx_pll_refclk(struct drm_device *dev,
7848                            const struct intel_crtc_config *pipe_config)
7849 {
7850         struct drm_i915_private *dev_priv = dev->dev_private;
7851         u32 dpll = pipe_config->dpll_hw_state.dpll;
7852
7853         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7854                 return dev_priv->vbt.lvds_ssc_freq * 1000;
7855         else if (HAS_PCH_SPLIT(dev))
7856                 return 120000;
7857         else if (!IS_GEN2(dev))
7858                 return 96000;
7859         else
7860                 return 48000;
7861 }
7862
7863 /* Returns the clock of the currently programmed mode of the given pipe. */
7864 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7865                                 struct intel_crtc_config *pipe_config)
7866 {
7867         struct drm_device *dev = crtc->base.dev;
7868         struct drm_i915_private *dev_priv = dev->dev_private;
7869         int pipe = pipe_config->cpu_transcoder;
7870         u32 dpll = pipe_config->dpll_hw_state.dpll;
7871         u32 fp;
7872         intel_clock_t clock;
7873         int refclk = i9xx_pll_refclk(dev, pipe_config);
7874
7875         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7876                 fp = pipe_config->dpll_hw_state.fp0;
7877         else
7878                 fp = pipe_config->dpll_hw_state.fp1;
7879
7880         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7881         if (IS_PINEVIEW(dev)) {
7882                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7883                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7884         } else {
7885                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7886                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7887         }
7888
7889         if (!IS_GEN2(dev)) {
7890                 if (IS_PINEVIEW(dev))
7891                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7892                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7893                 else
7894                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7895                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7896
7897                 switch (dpll & DPLL_MODE_MASK) {
7898                 case DPLLB_MODE_DAC_SERIAL:
7899                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7900                                 5 : 10;
7901                         break;
7902                 case DPLLB_MODE_LVDS:
7903                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7904                                 7 : 14;
7905                         break;
7906                 default:
7907                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7908                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7909                         return;
7910                 }
7911
7912                 if (IS_PINEVIEW(dev))
7913                         pineview_clock(refclk, &clock);
7914                 else
7915                         i9xx_clock(refclk, &clock);
7916         } else {
7917                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7918
7919                 if (is_lvds) {
7920                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7921                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7922                         clock.p2 = 14;
7923                 } else {
7924                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7925                                 clock.p1 = 2;
7926                         else {
7927                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7928                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7929                         }
7930                         if (dpll & PLL_P2_DIVIDE_BY_4)
7931                                 clock.p2 = 4;
7932                         else
7933                                 clock.p2 = 2;
7934                 }
7935
7936                 i9xx_clock(refclk, &clock);
7937         }
7938
7939         /*
7940          * This value includes pixel_multiplier. We will use
7941          * port_clock to compute adjusted_mode.crtc_clock in the
7942          * encoder's get_config() function.
7943          */
7944         pipe_config->port_clock = clock.dot;
7945 }
7946
7947 int intel_dotclock_calculate(int link_freq,
7948                              const struct intel_link_m_n *m_n)
7949 {
7950         /*
7951          * The calculation for the data clock is:
7952          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7953          * But we want to avoid losing precison if possible, so:
7954          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7955          *
7956          * and the link clock is simpler:
7957          * link_clock = (m * link_clock) / n
7958          */
7959
7960         if (!m_n->link_n)
7961                 return 0;
7962
7963         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7964 }
7965
7966 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7967                                    struct intel_crtc_config *pipe_config)
7968 {
7969         struct drm_device *dev = crtc->base.dev;
7970
7971         /* read out port_clock from the DPLL */
7972         i9xx_crtc_clock_get(crtc, pipe_config);
7973
7974         /*
7975          * This value does not include pixel_multiplier.
7976          * We will check that port_clock and adjusted_mode.crtc_clock
7977          * agree once we know their relationship in the encoder's
7978          * get_config() function.
7979          */
7980         pipe_config->adjusted_mode.crtc_clock =
7981                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7982                                          &pipe_config->fdi_m_n);
7983 }
7984
7985 /** Returns the currently programmed mode of the given pipe. */
7986 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7987                                              struct drm_crtc *crtc)
7988 {
7989         struct drm_i915_private *dev_priv = dev->dev_private;
7990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7991         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7992         struct drm_display_mode *mode;
7993         struct intel_crtc_config pipe_config;
7994         int htot = I915_READ(HTOTAL(cpu_transcoder));
7995         int hsync = I915_READ(HSYNC(cpu_transcoder));
7996         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7997         int vsync = I915_READ(VSYNC(cpu_transcoder));
7998         enum pipe pipe = intel_crtc->pipe;
7999
8000         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8001         if (!mode)
8002                 return NULL;
8003
8004         /*
8005          * Construct a pipe_config sufficient for getting the clock info
8006          * back out of crtc_clock_get.
8007          *
8008          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8009          * to use a real value here instead.
8010          */
8011         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8012         pipe_config.pixel_multiplier = 1;
8013         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8014         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8015         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8016         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8017
8018         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8019         mode->hdisplay = (htot & 0xffff) + 1;
8020         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8021         mode->hsync_start = (hsync & 0xffff) + 1;
8022         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8023         mode->vdisplay = (vtot & 0xffff) + 1;
8024         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8025         mode->vsync_start = (vsync & 0xffff) + 1;
8026         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8027
8028         drm_mode_set_name(mode);
8029
8030         return mode;
8031 }
8032
8033 static void intel_increase_pllclock(struct drm_crtc *crtc)
8034 {
8035         struct drm_device *dev = crtc->dev;
8036         drm_i915_private_t *dev_priv = dev->dev_private;
8037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8038         int pipe = intel_crtc->pipe;
8039         int dpll_reg = DPLL(pipe);
8040         int dpll;
8041
8042         if (HAS_PCH_SPLIT(dev))
8043                 return;
8044
8045         if (!dev_priv->lvds_downclock_avail)
8046                 return;
8047
8048         dpll = I915_READ(dpll_reg);
8049         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8050                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8051
8052                 assert_panel_unlocked(dev_priv, pipe);
8053
8054                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8055                 I915_WRITE(dpll_reg, dpll);
8056                 intel_wait_for_vblank(dev, pipe);
8057
8058                 dpll = I915_READ(dpll_reg);
8059                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8060                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8061         }
8062 }
8063
8064 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8065 {
8066         struct drm_device *dev = crtc->dev;
8067         drm_i915_private_t *dev_priv = dev->dev_private;
8068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8069
8070         if (HAS_PCH_SPLIT(dev))
8071                 return;
8072
8073         if (!dev_priv->lvds_downclock_avail)
8074                 return;
8075
8076         /*
8077          * Since this is called by a timer, we should never get here in
8078          * the manual case.
8079          */
8080         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8081                 int pipe = intel_crtc->pipe;
8082                 int dpll_reg = DPLL(pipe);
8083                 int dpll;
8084
8085                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8086
8087                 assert_panel_unlocked(dev_priv, pipe);
8088
8089                 dpll = I915_READ(dpll_reg);
8090                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8091                 I915_WRITE(dpll_reg, dpll);
8092                 intel_wait_for_vblank(dev, pipe);
8093                 dpll = I915_READ(dpll_reg);
8094                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8095                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8096         }
8097
8098 }
8099
8100 void intel_mark_busy(struct drm_device *dev)
8101 {
8102         struct drm_i915_private *dev_priv = dev->dev_private;
8103
8104         hsw_package_c8_gpu_busy(dev_priv);
8105         i915_update_gfx_val(dev_priv);
8106 }
8107
8108 void intel_mark_idle(struct drm_device *dev)
8109 {
8110         struct drm_i915_private *dev_priv = dev->dev_private;
8111         struct drm_crtc *crtc;
8112
8113         hsw_package_c8_gpu_idle(dev_priv);
8114
8115         if (!i915_powersave)
8116                 return;
8117
8118         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8119                 if (!crtc->fb)
8120                         continue;
8121
8122                 intel_decrease_pllclock(crtc);
8123         }
8124
8125         if (dev_priv->info->gen >= 6)
8126                 gen6_rps_idle(dev->dev_private);
8127 }
8128
8129 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8130                         struct intel_ring_buffer *ring)
8131 {
8132         struct drm_device *dev = obj->base.dev;
8133         struct drm_crtc *crtc;
8134
8135         if (!i915_powersave)
8136                 return;
8137
8138         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8139                 if (!crtc->fb)
8140                         continue;
8141
8142                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
8143                         continue;
8144
8145                 intel_increase_pllclock(crtc);
8146                 if (ring && intel_fbc_enabled(dev))
8147                         ring->fbc_dirty = true;
8148         }
8149 }
8150
8151 static void intel_crtc_destroy(struct drm_crtc *crtc)
8152 {
8153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8154         struct drm_device *dev = crtc->dev;
8155         struct intel_unpin_work *work;
8156         unsigned long flags;
8157
8158         spin_lock_irqsave(&dev->event_lock, flags);
8159         work = intel_crtc->unpin_work;
8160         intel_crtc->unpin_work = NULL;
8161         spin_unlock_irqrestore(&dev->event_lock, flags);
8162
8163         if (work) {
8164                 cancel_work_sync(&work->work);
8165                 kfree(work);
8166         }
8167
8168         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8169
8170         drm_crtc_cleanup(crtc);
8171
8172         kfree(intel_crtc);
8173 }
8174
8175 static void intel_unpin_work_fn(struct work_struct *__work)
8176 {
8177         struct intel_unpin_work *work =
8178                 container_of(__work, struct intel_unpin_work, work);
8179         struct drm_device *dev = work->crtc->dev;
8180
8181         mutex_lock(&dev->struct_mutex);
8182         intel_unpin_fb_obj(work->old_fb_obj);
8183         drm_gem_object_unreference(&work->pending_flip_obj->base);
8184         drm_gem_object_unreference(&work->old_fb_obj->base);
8185
8186         intel_update_fbc(dev);
8187         mutex_unlock(&dev->struct_mutex);
8188
8189         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8190         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8191
8192         kfree(work);
8193 }
8194
8195 static void do_intel_finish_page_flip(struct drm_device *dev,
8196                                       struct drm_crtc *crtc)
8197 {
8198         drm_i915_private_t *dev_priv = dev->dev_private;
8199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8200         struct intel_unpin_work *work;
8201         unsigned long flags;
8202
8203         /* Ignore early vblank irqs */
8204         if (intel_crtc == NULL)
8205                 return;
8206
8207         spin_lock_irqsave(&dev->event_lock, flags);
8208         work = intel_crtc->unpin_work;
8209
8210         /* Ensure we don't miss a work->pending update ... */
8211         smp_rmb();
8212
8213         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8214                 spin_unlock_irqrestore(&dev->event_lock, flags);
8215                 return;
8216         }
8217
8218         /* and that the unpin work is consistent wrt ->pending. */
8219         smp_rmb();
8220
8221         intel_crtc->unpin_work = NULL;
8222
8223         if (work->event)
8224                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8225
8226         drm_vblank_put(dev, intel_crtc->pipe);
8227
8228         spin_unlock_irqrestore(&dev->event_lock, flags);
8229
8230         wake_up_all(&dev_priv->pending_flip_queue);
8231
8232         queue_work(dev_priv->wq, &work->work);
8233
8234         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8235 }
8236
8237 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8238 {
8239         drm_i915_private_t *dev_priv = dev->dev_private;
8240         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8241
8242         do_intel_finish_page_flip(dev, crtc);
8243 }
8244
8245 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8246 {
8247         drm_i915_private_t *dev_priv = dev->dev_private;
8248         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8249
8250         do_intel_finish_page_flip(dev, crtc);
8251 }
8252
8253 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8254 {
8255         drm_i915_private_t *dev_priv = dev->dev_private;
8256         struct intel_crtc *intel_crtc =
8257                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8258         unsigned long flags;
8259
8260         /* NB: An MMIO update of the plane base pointer will also
8261          * generate a page-flip completion irq, i.e. every modeset
8262          * is also accompanied by a spurious intel_prepare_page_flip().
8263          */
8264         spin_lock_irqsave(&dev->event_lock, flags);
8265         if (intel_crtc->unpin_work)
8266                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8267         spin_unlock_irqrestore(&dev->event_lock, flags);
8268 }
8269
8270 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8271 {
8272         /* Ensure that the work item is consistent when activating it ... */
8273         smp_wmb();
8274         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8275         /* and that it is marked active as soon as the irq could fire. */
8276         smp_wmb();
8277 }
8278
8279 static int intel_gen2_queue_flip(struct drm_device *dev,
8280                                  struct drm_crtc *crtc,
8281                                  struct drm_framebuffer *fb,
8282                                  struct drm_i915_gem_object *obj,
8283                                  uint32_t flags)
8284 {
8285         struct drm_i915_private *dev_priv = dev->dev_private;
8286         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8287         u32 flip_mask;
8288         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8289         int ret;
8290
8291         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8292         if (ret)
8293                 goto err;
8294
8295         ret = intel_ring_begin(ring, 6);
8296         if (ret)
8297                 goto err_unpin;
8298
8299         /* Can't queue multiple flips, so wait for the previous
8300          * one to finish before executing the next.
8301          */
8302         if (intel_crtc->plane)
8303                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8304         else
8305                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8306         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8307         intel_ring_emit(ring, MI_NOOP);
8308         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8309                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8310         intel_ring_emit(ring, fb->pitches[0]);
8311         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8312         intel_ring_emit(ring, 0); /* aux display base address, unused */
8313
8314         intel_mark_page_flip_active(intel_crtc);
8315         __intel_ring_advance(ring);
8316         return 0;
8317
8318 err_unpin:
8319         intel_unpin_fb_obj(obj);
8320 err:
8321         return ret;
8322 }
8323
8324 static int intel_gen3_queue_flip(struct drm_device *dev,
8325                                  struct drm_crtc *crtc,
8326                                  struct drm_framebuffer *fb,
8327                                  struct drm_i915_gem_object *obj,
8328                                  uint32_t flags)
8329 {
8330         struct drm_i915_private *dev_priv = dev->dev_private;
8331         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8332         u32 flip_mask;
8333         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8334         int ret;
8335
8336         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8337         if (ret)
8338                 goto err;
8339
8340         ret = intel_ring_begin(ring, 6);
8341         if (ret)
8342                 goto err_unpin;
8343
8344         if (intel_crtc->plane)
8345                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8346         else
8347                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8348         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8349         intel_ring_emit(ring, MI_NOOP);
8350         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8351                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8352         intel_ring_emit(ring, fb->pitches[0]);
8353         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8354         intel_ring_emit(ring, MI_NOOP);
8355
8356         intel_mark_page_flip_active(intel_crtc);
8357         __intel_ring_advance(ring);
8358         return 0;
8359
8360 err_unpin:
8361         intel_unpin_fb_obj(obj);
8362 err:
8363         return ret;
8364 }
8365
8366 static int intel_gen4_queue_flip(struct drm_device *dev,
8367                                  struct drm_crtc *crtc,
8368                                  struct drm_framebuffer *fb,
8369                                  struct drm_i915_gem_object *obj,
8370                                  uint32_t flags)
8371 {
8372         struct drm_i915_private *dev_priv = dev->dev_private;
8373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8374         uint32_t pf, pipesrc;
8375         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8376         int ret;
8377
8378         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8379         if (ret)
8380                 goto err;
8381
8382         ret = intel_ring_begin(ring, 4);
8383         if (ret)
8384                 goto err_unpin;
8385
8386         /* i965+ uses the linear or tiled offsets from the
8387          * Display Registers (which do not change across a page-flip)
8388          * so we need only reprogram the base address.
8389          */
8390         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8391                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8392         intel_ring_emit(ring, fb->pitches[0]);
8393         intel_ring_emit(ring,
8394                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8395                         obj->tiling_mode);
8396
8397         /* XXX Enabling the panel-fitter across page-flip is so far
8398          * untested on non-native modes, so ignore it for now.
8399          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8400          */
8401         pf = 0;
8402         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8403         intel_ring_emit(ring, pf | pipesrc);
8404
8405         intel_mark_page_flip_active(intel_crtc);
8406         __intel_ring_advance(ring);
8407         return 0;
8408
8409 err_unpin:
8410         intel_unpin_fb_obj(obj);
8411 err:
8412         return ret;
8413 }
8414
8415 static int intel_gen6_queue_flip(struct drm_device *dev,
8416                                  struct drm_crtc *crtc,
8417                                  struct drm_framebuffer *fb,
8418                                  struct drm_i915_gem_object *obj,
8419                                  uint32_t flags)
8420 {
8421         struct drm_i915_private *dev_priv = dev->dev_private;
8422         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8423         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8424         uint32_t pf, pipesrc;
8425         int ret;
8426
8427         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8428         if (ret)
8429                 goto err;
8430
8431         ret = intel_ring_begin(ring, 4);
8432         if (ret)
8433                 goto err_unpin;
8434
8435         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8436                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8437         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8438         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8439
8440         /* Contrary to the suggestions in the documentation,
8441          * "Enable Panel Fitter" does not seem to be required when page
8442          * flipping with a non-native mode, and worse causes a normal
8443          * modeset to fail.
8444          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8445          */
8446         pf = 0;
8447         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8448         intel_ring_emit(ring, pf | pipesrc);
8449
8450         intel_mark_page_flip_active(intel_crtc);
8451         __intel_ring_advance(ring);
8452         return 0;
8453
8454 err_unpin:
8455         intel_unpin_fb_obj(obj);
8456 err:
8457         return ret;
8458 }
8459
8460 static int intel_gen7_queue_flip(struct drm_device *dev,
8461                                  struct drm_crtc *crtc,
8462                                  struct drm_framebuffer *fb,
8463                                  struct drm_i915_gem_object *obj,
8464                                  uint32_t flags)
8465 {
8466         struct drm_i915_private *dev_priv = dev->dev_private;
8467         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8468         struct intel_ring_buffer *ring;
8469         uint32_t plane_bit = 0;
8470         int len, ret;
8471
8472         ring = obj->ring;
8473         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8474                 ring = &dev_priv->ring[BCS];
8475
8476         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8477         if (ret)
8478                 goto err;
8479
8480         switch(intel_crtc->plane) {
8481         case PLANE_A:
8482                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8483                 break;
8484         case PLANE_B:
8485                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8486                 break;
8487         case PLANE_C:
8488                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8489                 break;
8490         default:
8491                 WARN_ONCE(1, "unknown plane in flip command\n");
8492                 ret = -ENODEV;
8493                 goto err_unpin;
8494         }
8495
8496         len = 4;
8497         if (ring->id == RCS)
8498                 len += 6;
8499
8500         ret = intel_ring_begin(ring, len);
8501         if (ret)
8502                 goto err_unpin;
8503
8504         /* Unmask the flip-done completion message. Note that the bspec says that
8505          * we should do this for both the BCS and RCS, and that we must not unmask
8506          * more than one flip event at any time (or ensure that one flip message
8507          * can be sent by waiting for flip-done prior to queueing new flips).
8508          * Experimentation says that BCS works despite DERRMR masking all
8509          * flip-done completion events and that unmasking all planes at once
8510          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8511          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8512          */
8513         if (ring->id == RCS) {
8514                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8515                 intel_ring_emit(ring, DERRMR);
8516                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8517                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8518                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8519                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8520                 intel_ring_emit(ring, DERRMR);
8521                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8522         }
8523
8524         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8525         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8526         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8527         intel_ring_emit(ring, (MI_NOOP));
8528
8529         intel_mark_page_flip_active(intel_crtc);
8530         __intel_ring_advance(ring);
8531         return 0;
8532
8533 err_unpin:
8534         intel_unpin_fb_obj(obj);
8535 err:
8536         return ret;
8537 }
8538
8539 static int intel_default_queue_flip(struct drm_device *dev,
8540                                     struct drm_crtc *crtc,
8541                                     struct drm_framebuffer *fb,
8542                                     struct drm_i915_gem_object *obj,
8543                                     uint32_t flags)
8544 {
8545         return -ENODEV;
8546 }
8547
8548 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8549                                 struct drm_framebuffer *fb,
8550                                 struct drm_pending_vblank_event *event,
8551                                 uint32_t page_flip_flags)
8552 {
8553         struct drm_device *dev = crtc->dev;
8554         struct drm_i915_private *dev_priv = dev->dev_private;
8555         struct drm_framebuffer *old_fb = crtc->fb;
8556         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8558         struct intel_unpin_work *work;
8559         unsigned long flags;
8560         int ret;
8561
8562         /* Can't change pixel format via MI display flips. */
8563         if (fb->pixel_format != crtc->fb->pixel_format)
8564                 return -EINVAL;
8565
8566         /*
8567          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8568          * Note that pitch changes could also affect these register.
8569          */
8570         if (INTEL_INFO(dev)->gen > 3 &&
8571             (fb->offsets[0] != crtc->fb->offsets[0] ||
8572              fb->pitches[0] != crtc->fb->pitches[0]))
8573                 return -EINVAL;
8574
8575         work = kzalloc(sizeof(*work), GFP_KERNEL);
8576         if (work == NULL)
8577                 return -ENOMEM;
8578
8579         work->event = event;
8580         work->crtc = crtc;
8581         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8582         INIT_WORK(&work->work, intel_unpin_work_fn);
8583
8584         ret = drm_vblank_get(dev, intel_crtc->pipe);
8585         if (ret)
8586                 goto free_work;
8587
8588         /* We borrow the event spin lock for protecting unpin_work */
8589         spin_lock_irqsave(&dev->event_lock, flags);
8590         if (intel_crtc->unpin_work) {
8591                 spin_unlock_irqrestore(&dev->event_lock, flags);
8592                 kfree(work);
8593                 drm_vblank_put(dev, intel_crtc->pipe);
8594
8595                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8596                 return -EBUSY;
8597         }
8598         intel_crtc->unpin_work = work;
8599         spin_unlock_irqrestore(&dev->event_lock, flags);
8600
8601         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8602                 flush_workqueue(dev_priv->wq);
8603
8604         ret = i915_mutex_lock_interruptible(dev);
8605         if (ret)
8606                 goto cleanup;
8607
8608         /* Reference the objects for the scheduled work. */
8609         drm_gem_object_reference(&work->old_fb_obj->base);
8610         drm_gem_object_reference(&obj->base);
8611
8612         crtc->fb = fb;
8613
8614         work->pending_flip_obj = obj;
8615
8616         work->enable_stall_check = true;
8617
8618         atomic_inc(&intel_crtc->unpin_work_count);
8619         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8620
8621         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8622         if (ret)
8623                 goto cleanup_pending;
8624
8625         intel_disable_fbc(dev);
8626         intel_mark_fb_busy(obj, NULL);
8627         mutex_unlock(&dev->struct_mutex);
8628
8629         trace_i915_flip_request(intel_crtc->plane, obj);
8630
8631         return 0;
8632
8633 cleanup_pending:
8634         atomic_dec(&intel_crtc->unpin_work_count);
8635         crtc->fb = old_fb;
8636         drm_gem_object_unreference(&work->old_fb_obj->base);
8637         drm_gem_object_unreference(&obj->base);
8638         mutex_unlock(&dev->struct_mutex);
8639
8640 cleanup:
8641         spin_lock_irqsave(&dev->event_lock, flags);
8642         intel_crtc->unpin_work = NULL;
8643         spin_unlock_irqrestore(&dev->event_lock, flags);
8644
8645         drm_vblank_put(dev, intel_crtc->pipe);
8646 free_work:
8647         kfree(work);
8648
8649         return ret;
8650 }
8651
8652 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8653         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8654         .load_lut = intel_crtc_load_lut,
8655 };
8656
8657 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8658                                   struct drm_crtc *crtc)
8659 {
8660         struct drm_device *dev;
8661         struct drm_crtc *tmp;
8662         int crtc_mask = 1;
8663
8664         WARN(!crtc, "checking null crtc?\n");
8665
8666         dev = crtc->dev;
8667
8668         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8669                 if (tmp == crtc)
8670                         break;
8671                 crtc_mask <<= 1;
8672         }
8673
8674         if (encoder->possible_crtcs & crtc_mask)
8675                 return true;
8676         return false;
8677 }
8678
8679 /**
8680  * intel_modeset_update_staged_output_state
8681  *
8682  * Updates the staged output configuration state, e.g. after we've read out the
8683  * current hw state.
8684  */
8685 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8686 {
8687         struct intel_encoder *encoder;
8688         struct intel_connector *connector;
8689
8690         list_for_each_entry(connector, &dev->mode_config.connector_list,
8691                             base.head) {
8692                 connector->new_encoder =
8693                         to_intel_encoder(connector->base.encoder);
8694         }
8695
8696         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8697                             base.head) {
8698                 encoder->new_crtc =
8699                         to_intel_crtc(encoder->base.crtc);
8700         }
8701 }
8702
8703 /**
8704  * intel_modeset_commit_output_state
8705  *
8706  * This function copies the stage display pipe configuration to the real one.
8707  */
8708 static void intel_modeset_commit_output_state(struct drm_device *dev)
8709 {
8710         struct intel_encoder *encoder;
8711         struct intel_connector *connector;
8712
8713         list_for_each_entry(connector, &dev->mode_config.connector_list,
8714                             base.head) {
8715                 connector->base.encoder = &connector->new_encoder->base;
8716         }
8717
8718         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8719                             base.head) {
8720                 encoder->base.crtc = &encoder->new_crtc->base;
8721         }
8722 }
8723
8724 static void
8725 connected_sink_compute_bpp(struct intel_connector * connector,
8726                            struct intel_crtc_config *pipe_config)
8727 {
8728         int bpp = pipe_config->pipe_bpp;
8729
8730         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8731                 connector->base.base.id,
8732                 drm_get_connector_name(&connector->base));
8733
8734         /* Don't use an invalid EDID bpc value */
8735         if (connector->base.display_info.bpc &&
8736             connector->base.display_info.bpc * 3 < bpp) {
8737                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8738                               bpp, connector->base.display_info.bpc*3);
8739                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8740         }
8741
8742         /* Clamp bpp to 8 on screens without EDID 1.4 */
8743         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8744                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8745                               bpp);
8746                 pipe_config->pipe_bpp = 24;
8747         }
8748 }
8749
8750 static int
8751 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8752                           struct drm_framebuffer *fb,
8753                           struct intel_crtc_config *pipe_config)
8754 {
8755         struct drm_device *dev = crtc->base.dev;
8756         struct intel_connector *connector;
8757         int bpp;
8758
8759         switch (fb->pixel_format) {
8760         case DRM_FORMAT_C8:
8761                 bpp = 8*3; /* since we go through a colormap */
8762                 break;
8763         case DRM_FORMAT_XRGB1555:
8764         case DRM_FORMAT_ARGB1555:
8765                 /* checked in intel_framebuffer_init already */
8766                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8767                         return -EINVAL;
8768         case DRM_FORMAT_RGB565:
8769                 bpp = 6*3; /* min is 18bpp */
8770                 break;
8771         case DRM_FORMAT_XBGR8888:
8772         case DRM_FORMAT_ABGR8888:
8773                 /* checked in intel_framebuffer_init already */
8774                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8775                         return -EINVAL;
8776         case DRM_FORMAT_XRGB8888:
8777         case DRM_FORMAT_ARGB8888:
8778                 bpp = 8*3;
8779                 break;
8780         case DRM_FORMAT_XRGB2101010:
8781         case DRM_FORMAT_ARGB2101010:
8782         case DRM_FORMAT_XBGR2101010:
8783         case DRM_FORMAT_ABGR2101010:
8784                 /* checked in intel_framebuffer_init already */
8785                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8786                         return -EINVAL;
8787                 bpp = 10*3;
8788                 break;
8789         /* TODO: gen4+ supports 16 bpc floating point, too. */
8790         default:
8791                 DRM_DEBUG_KMS("unsupported depth\n");
8792                 return -EINVAL;
8793         }
8794
8795         pipe_config->pipe_bpp = bpp;
8796
8797         /* Clamp display bpp to EDID value */
8798         list_for_each_entry(connector, &dev->mode_config.connector_list,
8799                             base.head) {
8800                 if (!connector->new_encoder ||
8801                     connector->new_encoder->new_crtc != crtc)
8802                         continue;
8803
8804                 connected_sink_compute_bpp(connector, pipe_config);
8805         }
8806
8807         return bpp;
8808 }
8809
8810 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8811 {
8812         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8813                         "type: 0x%x flags: 0x%x\n",
8814                 mode->crtc_clock,
8815                 mode->crtc_hdisplay, mode->crtc_hsync_start,
8816                 mode->crtc_hsync_end, mode->crtc_htotal,
8817                 mode->crtc_vdisplay, mode->crtc_vsync_start,
8818                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8819 }
8820
8821 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8822                                    struct intel_crtc_config *pipe_config,
8823                                    const char *context)
8824 {
8825         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8826                       context, pipe_name(crtc->pipe));
8827
8828         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8829         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8830                       pipe_config->pipe_bpp, pipe_config->dither);
8831         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8832                       pipe_config->has_pch_encoder,
8833                       pipe_config->fdi_lanes,
8834                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8835                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8836                       pipe_config->fdi_m_n.tu);
8837         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8838                       pipe_config->has_dp_encoder,
8839                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8840                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8841                       pipe_config->dp_m_n.tu);
8842         DRM_DEBUG_KMS("requested mode:\n");
8843         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8844         DRM_DEBUG_KMS("adjusted mode:\n");
8845         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8846         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8847         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8848         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8849                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8850         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8851                       pipe_config->gmch_pfit.control,
8852                       pipe_config->gmch_pfit.pgm_ratios,
8853                       pipe_config->gmch_pfit.lvds_border_bits);
8854         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8855                       pipe_config->pch_pfit.pos,
8856                       pipe_config->pch_pfit.size,
8857                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8858         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8859         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8860 }
8861
8862 static bool check_encoder_cloning(struct drm_crtc *crtc)
8863 {
8864         int num_encoders = 0;
8865         bool uncloneable_encoders = false;
8866         struct intel_encoder *encoder;
8867
8868         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8869                             base.head) {
8870                 if (&encoder->new_crtc->base != crtc)
8871                         continue;
8872
8873                 num_encoders++;
8874                 if (!encoder->cloneable)
8875                         uncloneable_encoders = true;
8876         }
8877
8878         return !(num_encoders > 1 && uncloneable_encoders);
8879 }
8880
8881 static struct intel_crtc_config *
8882 intel_modeset_pipe_config(struct drm_crtc *crtc,
8883                           struct drm_framebuffer *fb,
8884                           struct drm_display_mode *mode)
8885 {
8886         struct drm_device *dev = crtc->dev;
8887         struct intel_encoder *encoder;
8888         struct intel_crtc_config *pipe_config;
8889         int plane_bpp, ret = -EINVAL;
8890         bool retry = true;
8891
8892         if (!check_encoder_cloning(crtc)) {
8893                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8894                 return ERR_PTR(-EINVAL);
8895         }
8896
8897         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8898         if (!pipe_config)
8899                 return ERR_PTR(-ENOMEM);
8900
8901         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8902         drm_mode_copy(&pipe_config->requested_mode, mode);
8903
8904         pipe_config->cpu_transcoder =
8905                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8906         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8907
8908         /*
8909          * Sanitize sync polarity flags based on requested ones. If neither
8910          * positive or negative polarity is requested, treat this as meaning
8911          * negative polarity.
8912          */
8913         if (!(pipe_config->adjusted_mode.flags &
8914               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8915                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8916
8917         if (!(pipe_config->adjusted_mode.flags &
8918               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8919                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8920
8921         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8922          * plane pixel format and any sink constraints into account. Returns the
8923          * source plane bpp so that dithering can be selected on mismatches
8924          * after encoders and crtc also have had their say. */
8925         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8926                                               fb, pipe_config);
8927         if (plane_bpp < 0)
8928                 goto fail;
8929
8930         /*
8931          * Determine the real pipe dimensions. Note that stereo modes can
8932          * increase the actual pipe size due to the frame doubling and
8933          * insertion of additional space for blanks between the frame. This
8934          * is stored in the crtc timings. We use the requested mode to do this
8935          * computation to clearly distinguish it from the adjusted mode, which
8936          * can be changed by the connectors in the below retry loop.
8937          */
8938         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
8939         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
8940         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
8941
8942 encoder_retry:
8943         /* Ensure the port clock defaults are reset when retrying. */
8944         pipe_config->port_clock = 0;
8945         pipe_config->pixel_multiplier = 1;
8946
8947         /* Fill in default crtc timings, allow encoders to overwrite them. */
8948         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
8949
8950         /* Pass our mode to the connectors and the CRTC to give them a chance to
8951          * adjust it according to limitations or connector properties, and also
8952          * a chance to reject the mode entirely.
8953          */
8954         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8955                             base.head) {
8956
8957                 if (&encoder->new_crtc->base != crtc)
8958                         continue;
8959
8960                 if (!(encoder->compute_config(encoder, pipe_config))) {
8961                         DRM_DEBUG_KMS("Encoder config failure\n");
8962                         goto fail;
8963                 }
8964         }
8965
8966         /* Set default port clock if not overwritten by the encoder. Needs to be
8967          * done afterwards in case the encoder adjusts the mode. */
8968         if (!pipe_config->port_clock)
8969                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
8970                         * pipe_config->pixel_multiplier;
8971
8972         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8973         if (ret < 0) {
8974                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8975                 goto fail;
8976         }
8977
8978         if (ret == RETRY) {
8979                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8980                         ret = -EINVAL;
8981                         goto fail;
8982                 }
8983
8984                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8985                 retry = false;
8986                 goto encoder_retry;
8987         }
8988
8989         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8990         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8991                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8992
8993         return pipe_config;
8994 fail:
8995         kfree(pipe_config);
8996         return ERR_PTR(ret);
8997 }
8998
8999 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9000  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9001 static void
9002 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9003                              unsigned *prepare_pipes, unsigned *disable_pipes)
9004 {
9005         struct intel_crtc *intel_crtc;
9006         struct drm_device *dev = crtc->dev;
9007         struct intel_encoder *encoder;
9008         struct intel_connector *connector;
9009         struct drm_crtc *tmp_crtc;
9010
9011         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9012
9013         /* Check which crtcs have changed outputs connected to them, these need
9014          * to be part of the prepare_pipes mask. We don't (yet) support global
9015          * modeset across multiple crtcs, so modeset_pipes will only have one
9016          * bit set at most. */
9017         list_for_each_entry(connector, &dev->mode_config.connector_list,
9018                             base.head) {
9019                 if (connector->base.encoder == &connector->new_encoder->base)
9020                         continue;
9021
9022                 if (connector->base.encoder) {
9023                         tmp_crtc = connector->base.encoder->crtc;
9024
9025                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9026                 }
9027
9028                 if (connector->new_encoder)
9029                         *prepare_pipes |=
9030                                 1 << connector->new_encoder->new_crtc->pipe;
9031         }
9032
9033         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9034                             base.head) {
9035                 if (encoder->base.crtc == &encoder->new_crtc->base)
9036                         continue;
9037
9038                 if (encoder->base.crtc) {
9039                         tmp_crtc = encoder->base.crtc;
9040
9041                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9042                 }
9043
9044                 if (encoder->new_crtc)
9045                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9046         }
9047
9048         /* Check for any pipes that will be fully disabled ... */
9049         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9050                             base.head) {
9051                 bool used = false;
9052
9053                 /* Don't try to disable disabled crtcs. */
9054                 if (!intel_crtc->base.enabled)
9055                         continue;
9056
9057                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9058                                     base.head) {
9059                         if (encoder->new_crtc == intel_crtc)
9060                                 used = true;
9061                 }
9062
9063                 if (!used)
9064                         *disable_pipes |= 1 << intel_crtc->pipe;
9065         }
9066
9067
9068         /* set_mode is also used to update properties on life display pipes. */
9069         intel_crtc = to_intel_crtc(crtc);
9070         if (crtc->enabled)
9071                 *prepare_pipes |= 1 << intel_crtc->pipe;
9072
9073         /*
9074          * For simplicity do a full modeset on any pipe where the output routing
9075          * changed. We could be more clever, but that would require us to be
9076          * more careful with calling the relevant encoder->mode_set functions.
9077          */
9078         if (*prepare_pipes)
9079                 *modeset_pipes = *prepare_pipes;
9080
9081         /* ... and mask these out. */
9082         *modeset_pipes &= ~(*disable_pipes);
9083         *prepare_pipes &= ~(*disable_pipes);
9084
9085         /*
9086          * HACK: We don't (yet) fully support global modesets. intel_set_config
9087          * obies this rule, but the modeset restore mode of
9088          * intel_modeset_setup_hw_state does not.
9089          */
9090         *modeset_pipes &= 1 << intel_crtc->pipe;
9091         *prepare_pipes &= 1 << intel_crtc->pipe;
9092
9093         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9094                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9095 }
9096
9097 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9098 {
9099         struct drm_encoder *encoder;
9100         struct drm_device *dev = crtc->dev;
9101
9102         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9103                 if (encoder->crtc == crtc)
9104                         return true;
9105
9106         return false;
9107 }
9108
9109 static void
9110 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9111 {
9112         struct intel_encoder *intel_encoder;
9113         struct intel_crtc *intel_crtc;
9114         struct drm_connector *connector;
9115
9116         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9117                             base.head) {
9118                 if (!intel_encoder->base.crtc)
9119                         continue;
9120
9121                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9122
9123                 if (prepare_pipes & (1 << intel_crtc->pipe))
9124                         intel_encoder->connectors_active = false;
9125         }
9126
9127         intel_modeset_commit_output_state(dev);
9128
9129         /* Update computed state. */
9130         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9131                             base.head) {
9132                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
9133         }
9134
9135         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9136                 if (!connector->encoder || !connector->encoder->crtc)
9137                         continue;
9138
9139                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9140
9141                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9142                         struct drm_property *dpms_property =
9143                                 dev->mode_config.dpms_property;
9144
9145                         connector->dpms = DRM_MODE_DPMS_ON;
9146                         drm_object_property_set_value(&connector->base,
9147                                                          dpms_property,
9148                                                          DRM_MODE_DPMS_ON);
9149
9150                         intel_encoder = to_intel_encoder(connector->encoder);
9151                         intel_encoder->connectors_active = true;
9152                 }
9153         }
9154
9155 }
9156
9157 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9158 {
9159         int diff;
9160
9161         if (clock1 == clock2)
9162                 return true;
9163
9164         if (!clock1 || !clock2)
9165                 return false;
9166
9167         diff = abs(clock1 - clock2);
9168
9169         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9170                 return true;
9171
9172         return false;
9173 }
9174
9175 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9176         list_for_each_entry((intel_crtc), \
9177                             &(dev)->mode_config.crtc_list, \
9178                             base.head) \
9179                 if (mask & (1 <<(intel_crtc)->pipe))
9180
9181 static bool
9182 intel_pipe_config_compare(struct drm_device *dev,
9183                           struct intel_crtc_config *current_config,
9184                           struct intel_crtc_config *pipe_config)
9185 {
9186 #define PIPE_CONF_CHECK_X(name) \
9187         if (current_config->name != pipe_config->name) { \
9188                 DRM_ERROR("mismatch in " #name " " \
9189                           "(expected 0x%08x, found 0x%08x)\n", \
9190                           current_config->name, \
9191                           pipe_config->name); \
9192                 return false; \
9193         }
9194
9195 #define PIPE_CONF_CHECK_I(name) \
9196         if (current_config->name != pipe_config->name) { \
9197                 DRM_ERROR("mismatch in " #name " " \
9198                           "(expected %i, found %i)\n", \
9199                           current_config->name, \
9200                           pipe_config->name); \
9201                 return false; \
9202         }
9203
9204 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9205         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9206                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9207                           "(expected %i, found %i)\n", \
9208                           current_config->name & (mask), \
9209                           pipe_config->name & (mask)); \
9210                 return false; \
9211         }
9212
9213 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9214         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9215                 DRM_ERROR("mismatch in " #name " " \
9216                           "(expected %i, found %i)\n", \
9217                           current_config->name, \
9218                           pipe_config->name); \
9219                 return false; \
9220         }
9221
9222 #define PIPE_CONF_QUIRK(quirk)  \
9223         ((current_config->quirks | pipe_config->quirks) & (quirk))
9224
9225         PIPE_CONF_CHECK_I(cpu_transcoder);
9226
9227         PIPE_CONF_CHECK_I(has_pch_encoder);
9228         PIPE_CONF_CHECK_I(fdi_lanes);
9229         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9230         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9231         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9232         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9233         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9234
9235         PIPE_CONF_CHECK_I(has_dp_encoder);
9236         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9237         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9238         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9239         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9240         PIPE_CONF_CHECK_I(dp_m_n.tu);
9241
9242         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9243         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9244         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9245         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9246         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9247         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9248
9249         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9250         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9251         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9252         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9253         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9254         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9255
9256         PIPE_CONF_CHECK_I(pixel_multiplier);
9257
9258         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9259                               DRM_MODE_FLAG_INTERLACE);
9260
9261         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9262                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9263                                       DRM_MODE_FLAG_PHSYNC);
9264                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9265                                       DRM_MODE_FLAG_NHSYNC);
9266                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9267                                       DRM_MODE_FLAG_PVSYNC);
9268                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9269                                       DRM_MODE_FLAG_NVSYNC);
9270         }
9271
9272         PIPE_CONF_CHECK_I(pipe_src_w);
9273         PIPE_CONF_CHECK_I(pipe_src_h);
9274
9275         PIPE_CONF_CHECK_I(gmch_pfit.control);
9276         /* pfit ratios are autocomputed by the hw on gen4+ */
9277         if (INTEL_INFO(dev)->gen < 4)
9278                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9279         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9280         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9281         if (current_config->pch_pfit.enabled) {
9282                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9283                 PIPE_CONF_CHECK_I(pch_pfit.size);
9284         }
9285
9286         PIPE_CONF_CHECK_I(ips_enabled);
9287
9288         PIPE_CONF_CHECK_I(double_wide);
9289
9290         PIPE_CONF_CHECK_I(shared_dpll);
9291         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9292         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9293         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9294         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9295
9296         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9297                 PIPE_CONF_CHECK_I(pipe_bpp);
9298
9299         if (!IS_HASWELL(dev)) {
9300                 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9301                 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9302         }
9303
9304 #undef PIPE_CONF_CHECK_X
9305 #undef PIPE_CONF_CHECK_I
9306 #undef PIPE_CONF_CHECK_FLAGS
9307 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9308 #undef PIPE_CONF_QUIRK
9309
9310         return true;
9311 }
9312
9313 static void
9314 check_connector_state(struct drm_device *dev)
9315 {
9316         struct intel_connector *connector;
9317
9318         list_for_each_entry(connector, &dev->mode_config.connector_list,
9319                             base.head) {
9320                 /* This also checks the encoder/connector hw state with the
9321                  * ->get_hw_state callbacks. */
9322                 intel_connector_check_state(connector);
9323
9324                 WARN(&connector->new_encoder->base != connector->base.encoder,
9325                      "connector's staged encoder doesn't match current encoder\n");
9326         }
9327 }
9328
9329 static void
9330 check_encoder_state(struct drm_device *dev)
9331 {
9332         struct intel_encoder *encoder;
9333         struct intel_connector *connector;
9334
9335         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9336                             base.head) {
9337                 bool enabled = false;
9338                 bool active = false;
9339                 enum pipe pipe, tracked_pipe;
9340
9341                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9342                               encoder->base.base.id,
9343                               drm_get_encoder_name(&encoder->base));
9344
9345                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9346                      "encoder's stage crtc doesn't match current crtc\n");
9347                 WARN(encoder->connectors_active && !encoder->base.crtc,
9348                      "encoder's active_connectors set, but no crtc\n");
9349
9350                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9351                                     base.head) {
9352                         if (connector->base.encoder != &encoder->base)
9353                                 continue;
9354                         enabled = true;
9355                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9356                                 active = true;
9357                 }
9358                 WARN(!!encoder->base.crtc != enabled,
9359                      "encoder's enabled state mismatch "
9360                      "(expected %i, found %i)\n",
9361                      !!encoder->base.crtc, enabled);
9362                 WARN(active && !encoder->base.crtc,
9363                      "active encoder with no crtc\n");
9364
9365                 WARN(encoder->connectors_active != active,
9366                      "encoder's computed active state doesn't match tracked active state "
9367                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9368
9369                 active = encoder->get_hw_state(encoder, &pipe);
9370                 WARN(active != encoder->connectors_active,
9371                      "encoder's hw state doesn't match sw tracking "
9372                      "(expected %i, found %i)\n",
9373                      encoder->connectors_active, active);
9374
9375                 if (!encoder->base.crtc)
9376                         continue;
9377
9378                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9379                 WARN(active && pipe != tracked_pipe,
9380                      "active encoder's pipe doesn't match"
9381                      "(expected %i, found %i)\n",
9382                      tracked_pipe, pipe);
9383
9384         }
9385 }
9386
9387 static void
9388 check_crtc_state(struct drm_device *dev)
9389 {
9390         drm_i915_private_t *dev_priv = dev->dev_private;
9391         struct intel_crtc *crtc;
9392         struct intel_encoder *encoder;
9393         struct intel_crtc_config pipe_config;
9394
9395         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9396                             base.head) {
9397                 bool enabled = false;
9398                 bool active = false;
9399
9400                 memset(&pipe_config, 0, sizeof(pipe_config));
9401
9402                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9403                               crtc->base.base.id);
9404
9405                 WARN(crtc->active && !crtc->base.enabled,
9406                      "active crtc, but not enabled in sw tracking\n");
9407
9408                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9409                                     base.head) {
9410                         if (encoder->base.crtc != &crtc->base)
9411                                 continue;
9412                         enabled = true;
9413                         if (encoder->connectors_active)
9414                                 active = true;
9415                 }
9416
9417                 WARN(active != crtc->active,
9418                      "crtc's computed active state doesn't match tracked active state "
9419                      "(expected %i, found %i)\n", active, crtc->active);
9420                 WARN(enabled != crtc->base.enabled,
9421                      "crtc's computed enabled state doesn't match tracked enabled state "
9422                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9423
9424                 active = dev_priv->display.get_pipe_config(crtc,
9425                                                            &pipe_config);
9426
9427                 /* hw state is inconsistent with the pipe A quirk */
9428                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9429                         active = crtc->active;
9430
9431                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9432                                     base.head) {
9433                         enum pipe pipe;
9434                         if (encoder->base.crtc != &crtc->base)
9435                                 continue;
9436                         if (encoder->get_config &&
9437                             encoder->get_hw_state(encoder, &pipe))
9438                                 encoder->get_config(encoder, &pipe_config);
9439                 }
9440
9441                 WARN(crtc->active != active,
9442                      "crtc active state doesn't match with hw state "
9443                      "(expected %i, found %i)\n", crtc->active, active);
9444
9445                 if (active &&
9446                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9447                         WARN(1, "pipe state doesn't match!\n");
9448                         intel_dump_pipe_config(crtc, &pipe_config,
9449                                                "[hw state]");
9450                         intel_dump_pipe_config(crtc, &crtc->config,
9451                                                "[sw state]");
9452                 }
9453         }
9454 }
9455
9456 static void
9457 check_shared_dpll_state(struct drm_device *dev)
9458 {
9459         drm_i915_private_t *dev_priv = dev->dev_private;
9460         struct intel_crtc *crtc;
9461         struct intel_dpll_hw_state dpll_hw_state;
9462         int i;
9463
9464         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9465                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9466                 int enabled_crtcs = 0, active_crtcs = 0;
9467                 bool active;
9468
9469                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9470
9471                 DRM_DEBUG_KMS("%s\n", pll->name);
9472
9473                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9474
9475                 WARN(pll->active > pll->refcount,
9476                      "more active pll users than references: %i vs %i\n",
9477                      pll->active, pll->refcount);
9478                 WARN(pll->active && !pll->on,
9479                      "pll in active use but not on in sw tracking\n");
9480                 WARN(pll->on && !pll->active,
9481                      "pll in on but not on in use in sw tracking\n");
9482                 WARN(pll->on != active,
9483                      "pll on state mismatch (expected %i, found %i)\n",
9484                      pll->on, active);
9485
9486                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9487                                     base.head) {
9488                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9489                                 enabled_crtcs++;
9490                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9491                                 active_crtcs++;
9492                 }
9493                 WARN(pll->active != active_crtcs,
9494                      "pll active crtcs mismatch (expected %i, found %i)\n",
9495                      pll->active, active_crtcs);
9496                 WARN(pll->refcount != enabled_crtcs,
9497                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9498                      pll->refcount, enabled_crtcs);
9499
9500                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9501                                        sizeof(dpll_hw_state)),
9502                      "pll hw state mismatch\n");
9503         }
9504 }
9505
9506 void
9507 intel_modeset_check_state(struct drm_device *dev)
9508 {
9509         check_connector_state(dev);
9510         check_encoder_state(dev);
9511         check_crtc_state(dev);
9512         check_shared_dpll_state(dev);
9513 }
9514
9515 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9516                                      int dotclock)
9517 {
9518         /*
9519          * FDI already provided one idea for the dotclock.
9520          * Yell if the encoder disagrees.
9521          */
9522         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9523              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9524              pipe_config->adjusted_mode.crtc_clock, dotclock);
9525 }
9526
9527 static int __intel_set_mode(struct drm_crtc *crtc,
9528                             struct drm_display_mode *mode,
9529                             int x, int y, struct drm_framebuffer *fb)
9530 {
9531         struct drm_device *dev = crtc->dev;
9532         drm_i915_private_t *dev_priv = dev->dev_private;
9533         struct drm_display_mode *saved_mode, *saved_hwmode;
9534         struct intel_crtc_config *pipe_config = NULL;
9535         struct intel_crtc *intel_crtc;
9536         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9537         int ret = 0;
9538
9539         saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9540         if (!saved_mode)
9541                 return -ENOMEM;
9542         saved_hwmode = saved_mode + 1;
9543
9544         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9545                                      &prepare_pipes, &disable_pipes);
9546
9547         *saved_hwmode = crtc->hwmode;
9548         *saved_mode = crtc->mode;
9549
9550         /* Hack: Because we don't (yet) support global modeset on multiple
9551          * crtcs, we don't keep track of the new mode for more than one crtc.
9552          * Hence simply check whether any bit is set in modeset_pipes in all the
9553          * pieces of code that are not yet converted to deal with mutliple crtcs
9554          * changing their mode at the same time. */
9555         if (modeset_pipes) {
9556                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9557                 if (IS_ERR(pipe_config)) {
9558                         ret = PTR_ERR(pipe_config);
9559                         pipe_config = NULL;
9560
9561                         goto out;
9562                 }
9563                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9564                                        "[modeset]");
9565         }
9566
9567         /*
9568          * See if the config requires any additional preparation, e.g.
9569          * to adjust global state with pipes off.  We need to do this
9570          * here so we can get the modeset_pipe updated config for the new
9571          * mode set on this crtc.  For other crtcs we need to use the
9572          * adjusted_mode bits in the crtc directly.
9573          */
9574         if (IS_VALLEYVIEW(dev)) {
9575                 valleyview_modeset_global_pipes(dev, &prepare_pipes,
9576                                                 modeset_pipes, pipe_config);
9577
9578                 /* may have added more to prepare_pipes than we should */
9579                 prepare_pipes &= ~disable_pipes;
9580         }
9581
9582         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9583                 intel_crtc_disable(&intel_crtc->base);
9584
9585         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9586                 if (intel_crtc->base.enabled)
9587                         dev_priv->display.crtc_disable(&intel_crtc->base);
9588         }
9589
9590         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9591          * to set it here already despite that we pass it down the callchain.
9592          */
9593         if (modeset_pipes) {
9594                 crtc->mode = *mode;
9595                 /* mode_set/enable/disable functions rely on a correct pipe
9596                  * config. */
9597                 to_intel_crtc(crtc)->config = *pipe_config;
9598         }
9599
9600         /* Only after disabling all output pipelines that will be changed can we
9601          * update the the output configuration. */
9602         intel_modeset_update_state(dev, prepare_pipes);
9603
9604         if (dev_priv->display.modeset_global_resources)
9605                 dev_priv->display.modeset_global_resources(dev);
9606
9607         /* Set up the DPLL and any encoders state that needs to adjust or depend
9608          * on the DPLL.
9609          */
9610         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9611                 ret = intel_crtc_mode_set(&intel_crtc->base,
9612                                           x, y, fb);
9613                 if (ret)
9614                         goto done;
9615         }
9616
9617         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9618         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9619                 dev_priv->display.crtc_enable(&intel_crtc->base);
9620
9621         if (modeset_pipes) {
9622                 /* Store real post-adjustment hardware mode. */
9623                 crtc->hwmode = pipe_config->adjusted_mode;
9624
9625                 /* Calculate and store various constants which
9626                  * are later needed by vblank and swap-completion
9627                  * timestamping. They are derived from true hwmode.
9628                  */
9629                 drm_calc_timestamping_constants(crtc);
9630         }
9631
9632         /* FIXME: add subpixel order */
9633 done:
9634         if (ret && crtc->enabled) {
9635                 crtc->hwmode = *saved_hwmode;
9636                 crtc->mode = *saved_mode;
9637         }
9638
9639 out:
9640         kfree(pipe_config);
9641         kfree(saved_mode);
9642         return ret;
9643 }
9644
9645 static int intel_set_mode(struct drm_crtc *crtc,
9646                           struct drm_display_mode *mode,
9647                           int x, int y, struct drm_framebuffer *fb)
9648 {
9649         int ret;
9650
9651         ret = __intel_set_mode(crtc, mode, x, y, fb);
9652
9653         if (ret == 0)
9654                 intel_modeset_check_state(crtc->dev);
9655
9656         return ret;
9657 }
9658
9659 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9660 {
9661         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9662 }
9663
9664 #undef for_each_intel_crtc_masked
9665
9666 static void intel_set_config_free(struct intel_set_config *config)
9667 {
9668         if (!config)
9669                 return;
9670
9671         kfree(config->save_connector_encoders);
9672         kfree(config->save_encoder_crtcs);
9673         kfree(config);
9674 }
9675
9676 static int intel_set_config_save_state(struct drm_device *dev,
9677                                        struct intel_set_config *config)
9678 {
9679         struct drm_encoder *encoder;
9680         struct drm_connector *connector;
9681         int count;
9682
9683         config->save_encoder_crtcs =
9684                 kcalloc(dev->mode_config.num_encoder,
9685                         sizeof(struct drm_crtc *), GFP_KERNEL);
9686         if (!config->save_encoder_crtcs)
9687                 return -ENOMEM;
9688
9689         config->save_connector_encoders =
9690                 kcalloc(dev->mode_config.num_connector,
9691                         sizeof(struct drm_encoder *), GFP_KERNEL);
9692         if (!config->save_connector_encoders)
9693                 return -ENOMEM;
9694
9695         /* Copy data. Note that driver private data is not affected.
9696          * Should anything bad happen only the expected state is
9697          * restored, not the drivers personal bookkeeping.
9698          */
9699         count = 0;
9700         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9701                 config->save_encoder_crtcs[count++] = encoder->crtc;
9702         }
9703
9704         count = 0;
9705         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9706                 config->save_connector_encoders[count++] = connector->encoder;
9707         }
9708
9709         return 0;
9710 }
9711
9712 static void intel_set_config_restore_state(struct drm_device *dev,
9713                                            struct intel_set_config *config)
9714 {
9715         struct intel_encoder *encoder;
9716         struct intel_connector *connector;
9717         int count;
9718
9719         count = 0;
9720         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9721                 encoder->new_crtc =
9722                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9723         }
9724
9725         count = 0;
9726         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9727                 connector->new_encoder =
9728                         to_intel_encoder(config->save_connector_encoders[count++]);
9729         }
9730 }
9731
9732 static bool
9733 is_crtc_connector_off(struct drm_mode_set *set)
9734 {
9735         int i;
9736
9737         if (set->num_connectors == 0)
9738                 return false;
9739
9740         if (WARN_ON(set->connectors == NULL))
9741                 return false;
9742
9743         for (i = 0; i < set->num_connectors; i++)
9744                 if (set->connectors[i]->encoder &&
9745                     set->connectors[i]->encoder->crtc == set->crtc &&
9746                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9747                         return true;
9748
9749         return false;
9750 }
9751
9752 static void
9753 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9754                                       struct intel_set_config *config)
9755 {
9756
9757         /* We should be able to check here if the fb has the same properties
9758          * and then just flip_or_move it */
9759         if (is_crtc_connector_off(set)) {
9760                 config->mode_changed = true;
9761         } else if (set->crtc->fb != set->fb) {
9762                 /* If we have no fb then treat it as a full mode set */
9763                 if (set->crtc->fb == NULL) {
9764                         struct intel_crtc *intel_crtc =
9765                                 to_intel_crtc(set->crtc);
9766
9767                         if (intel_crtc->active && i915_fastboot) {
9768                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9769                                 config->fb_changed = true;
9770                         } else {
9771                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9772                                 config->mode_changed = true;
9773                         }
9774                 } else if (set->fb == NULL) {
9775                         config->mode_changed = true;
9776                 } else if (set->fb->pixel_format !=
9777                            set->crtc->fb->pixel_format) {
9778                         config->mode_changed = true;
9779                 } else {
9780                         config->fb_changed = true;
9781                 }
9782         }
9783
9784         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9785                 config->fb_changed = true;
9786
9787         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9788                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9789                 drm_mode_debug_printmodeline(&set->crtc->mode);
9790                 drm_mode_debug_printmodeline(set->mode);
9791                 config->mode_changed = true;
9792         }
9793
9794         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9795                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9796 }
9797
9798 static int
9799 intel_modeset_stage_output_state(struct drm_device *dev,
9800                                  struct drm_mode_set *set,
9801                                  struct intel_set_config *config)
9802 {
9803         struct drm_crtc *new_crtc;
9804         struct intel_connector *connector;
9805         struct intel_encoder *encoder;
9806         int ro;
9807
9808         /* The upper layers ensure that we either disable a crtc or have a list
9809          * of connectors. For paranoia, double-check this. */
9810         WARN_ON(!set->fb && (set->num_connectors != 0));
9811         WARN_ON(set->fb && (set->num_connectors == 0));
9812
9813         list_for_each_entry(connector, &dev->mode_config.connector_list,
9814                             base.head) {
9815                 /* Otherwise traverse passed in connector list and get encoders
9816                  * for them. */
9817                 for (ro = 0; ro < set->num_connectors; ro++) {
9818                         if (set->connectors[ro] == &connector->base) {
9819                                 connector->new_encoder = connector->encoder;
9820                                 break;
9821                         }
9822                 }
9823
9824                 /* If we disable the crtc, disable all its connectors. Also, if
9825                  * the connector is on the changing crtc but not on the new
9826                  * connector list, disable it. */
9827                 if ((!set->fb || ro == set->num_connectors) &&
9828                     connector->base.encoder &&
9829                     connector->base.encoder->crtc == set->crtc) {
9830                         connector->new_encoder = NULL;
9831
9832                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9833                                 connector->base.base.id,
9834                                 drm_get_connector_name(&connector->base));
9835                 }
9836
9837
9838                 if (&connector->new_encoder->base != connector->base.encoder) {
9839                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9840                         config->mode_changed = true;
9841                 }
9842         }
9843         /* connector->new_encoder is now updated for all connectors. */
9844
9845         /* Update crtc of enabled connectors. */
9846         list_for_each_entry(connector, &dev->mode_config.connector_list,
9847                             base.head) {
9848                 if (!connector->new_encoder)
9849                         continue;
9850
9851                 new_crtc = connector->new_encoder->base.crtc;
9852
9853                 for (ro = 0; ro < set->num_connectors; ro++) {
9854                         if (set->connectors[ro] == &connector->base)
9855                                 new_crtc = set->crtc;
9856                 }
9857
9858                 /* Make sure the new CRTC will work with the encoder */
9859                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9860                                            new_crtc)) {
9861                         return -EINVAL;
9862                 }
9863                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9864
9865                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9866                         connector->base.base.id,
9867                         drm_get_connector_name(&connector->base),
9868                         new_crtc->base.id);
9869         }
9870
9871         /* Check for any encoders that needs to be disabled. */
9872         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9873                             base.head) {
9874                 list_for_each_entry(connector,
9875                                     &dev->mode_config.connector_list,
9876                                     base.head) {
9877                         if (connector->new_encoder == encoder) {
9878                                 WARN_ON(!connector->new_encoder->new_crtc);
9879
9880                                 goto next_encoder;
9881                         }
9882                 }
9883                 encoder->new_crtc = NULL;
9884 next_encoder:
9885                 /* Only now check for crtc changes so we don't miss encoders
9886                  * that will be disabled. */
9887                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9888                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9889                         config->mode_changed = true;
9890                 }
9891         }
9892         /* Now we've also updated encoder->new_crtc for all encoders. */
9893
9894         return 0;
9895 }
9896
9897 static int intel_crtc_set_config(struct drm_mode_set *set)
9898 {
9899         struct drm_device *dev;
9900         struct drm_mode_set save_set;
9901         struct intel_set_config *config;
9902         int ret;
9903
9904         BUG_ON(!set);
9905         BUG_ON(!set->crtc);
9906         BUG_ON(!set->crtc->helper_private);
9907
9908         /* Enforce sane interface api - has been abused by the fb helper. */
9909         BUG_ON(!set->mode && set->fb);
9910         BUG_ON(set->fb && set->num_connectors == 0);
9911
9912         if (set->fb) {
9913                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9914                                 set->crtc->base.id, set->fb->base.id,
9915                                 (int)set->num_connectors, set->x, set->y);
9916         } else {
9917                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9918         }
9919
9920         dev = set->crtc->dev;
9921
9922         ret = -ENOMEM;
9923         config = kzalloc(sizeof(*config), GFP_KERNEL);
9924         if (!config)
9925                 goto out_config;
9926
9927         ret = intel_set_config_save_state(dev, config);
9928         if (ret)
9929                 goto out_config;
9930
9931         save_set.crtc = set->crtc;
9932         save_set.mode = &set->crtc->mode;
9933         save_set.x = set->crtc->x;
9934         save_set.y = set->crtc->y;
9935         save_set.fb = set->crtc->fb;
9936
9937         /* Compute whether we need a full modeset, only an fb base update or no
9938          * change at all. In the future we might also check whether only the
9939          * mode changed, e.g. for LVDS where we only change the panel fitter in
9940          * such cases. */
9941         intel_set_config_compute_mode_changes(set, config);
9942
9943         ret = intel_modeset_stage_output_state(dev, set, config);
9944         if (ret)
9945                 goto fail;
9946
9947         if (config->mode_changed) {
9948                 ret = intel_set_mode(set->crtc, set->mode,
9949                                      set->x, set->y, set->fb);
9950         } else if (config->fb_changed) {
9951                 intel_crtc_wait_for_pending_flips(set->crtc);
9952
9953                 ret = intel_pipe_set_base(set->crtc,
9954                                           set->x, set->y, set->fb);
9955         }
9956
9957         if (ret) {
9958                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9959                               set->crtc->base.id, ret);
9960 fail:
9961                 intel_set_config_restore_state(dev, config);
9962
9963                 /* Try to restore the config */
9964                 if (config->mode_changed &&
9965                     intel_set_mode(save_set.crtc, save_set.mode,
9966                                    save_set.x, save_set.y, save_set.fb))
9967                         DRM_ERROR("failed to restore config after modeset failure\n");
9968         }
9969
9970 out_config:
9971         intel_set_config_free(config);
9972         return ret;
9973 }
9974
9975 static const struct drm_crtc_funcs intel_crtc_funcs = {
9976         .cursor_set = intel_crtc_cursor_set,
9977         .cursor_move = intel_crtc_cursor_move,
9978         .gamma_set = intel_crtc_gamma_set,
9979         .set_config = intel_crtc_set_config,
9980         .destroy = intel_crtc_destroy,
9981         .page_flip = intel_crtc_page_flip,
9982 };
9983
9984 static void intel_cpu_pll_init(struct drm_device *dev)
9985 {
9986         if (HAS_DDI(dev))
9987                 intel_ddi_pll_init(dev);
9988 }
9989
9990 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9991                                       struct intel_shared_dpll *pll,
9992                                       struct intel_dpll_hw_state *hw_state)
9993 {
9994         uint32_t val;
9995
9996         val = I915_READ(PCH_DPLL(pll->id));
9997         hw_state->dpll = val;
9998         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9999         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10000
10001         return val & DPLL_VCO_ENABLE;
10002 }
10003
10004 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10005                                   struct intel_shared_dpll *pll)
10006 {
10007         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10008         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10009 }
10010
10011 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10012                                 struct intel_shared_dpll *pll)
10013 {
10014         /* PCH refclock must be enabled first */
10015         assert_pch_refclk_enabled(dev_priv);
10016
10017         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10018
10019         /* Wait for the clocks to stabilize. */
10020         POSTING_READ(PCH_DPLL(pll->id));
10021         udelay(150);
10022
10023         /* The pixel multiplier can only be updated once the
10024          * DPLL is enabled and the clocks are stable.
10025          *
10026          * So write it again.
10027          */
10028         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10029         POSTING_READ(PCH_DPLL(pll->id));
10030         udelay(200);
10031 }
10032
10033 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10034                                  struct intel_shared_dpll *pll)
10035 {
10036         struct drm_device *dev = dev_priv->dev;
10037         struct intel_crtc *crtc;
10038
10039         /* Make sure no transcoder isn't still depending on us. */
10040         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10041                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10042                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10043         }
10044
10045         I915_WRITE(PCH_DPLL(pll->id), 0);
10046         POSTING_READ(PCH_DPLL(pll->id));
10047         udelay(200);
10048 }
10049
10050 static char *ibx_pch_dpll_names[] = {
10051         "PCH DPLL A",
10052         "PCH DPLL B",
10053 };
10054
10055 static void ibx_pch_dpll_init(struct drm_device *dev)
10056 {
10057         struct drm_i915_private *dev_priv = dev->dev_private;
10058         int i;
10059
10060         dev_priv->num_shared_dpll = 2;
10061
10062         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10063                 dev_priv->shared_dplls[i].id = i;
10064                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10065                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10066                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10067                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10068                 dev_priv->shared_dplls[i].get_hw_state =
10069                         ibx_pch_dpll_get_hw_state;
10070         }
10071 }
10072
10073 static void intel_shared_dpll_init(struct drm_device *dev)
10074 {
10075         struct drm_i915_private *dev_priv = dev->dev_private;
10076
10077         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10078                 ibx_pch_dpll_init(dev);
10079         else
10080                 dev_priv->num_shared_dpll = 0;
10081
10082         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10083         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
10084                       dev_priv->num_shared_dpll);
10085 }
10086
10087 static void intel_crtc_init(struct drm_device *dev, int pipe)
10088 {
10089         drm_i915_private_t *dev_priv = dev->dev_private;
10090         struct intel_crtc *intel_crtc;
10091         int i;
10092
10093         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10094         if (intel_crtc == NULL)
10095                 return;
10096
10097         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10098
10099         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10100         for (i = 0; i < 256; i++) {
10101                 intel_crtc->lut_r[i] = i;
10102                 intel_crtc->lut_g[i] = i;
10103                 intel_crtc->lut_b[i] = i;
10104         }
10105
10106         /* Swap pipes & planes for FBC on pre-965 */
10107         intel_crtc->pipe = pipe;
10108         intel_crtc->plane = pipe;
10109         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
10110                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10111                 intel_crtc->plane = !pipe;
10112         }
10113
10114         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10115                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10116         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10117         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10118
10119         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10120 }
10121
10122 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10123 {
10124         struct drm_encoder *encoder = connector->base.encoder;
10125
10126         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10127
10128         if (!encoder)
10129                 return INVALID_PIPE;
10130
10131         return to_intel_crtc(encoder->crtc)->pipe;
10132 }
10133
10134 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10135                                 struct drm_file *file)
10136 {
10137         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10138         struct drm_mode_object *drmmode_obj;
10139         struct intel_crtc *crtc;
10140
10141         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10142                 return -ENODEV;
10143
10144         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10145                         DRM_MODE_OBJECT_CRTC);
10146
10147         if (!drmmode_obj) {
10148                 DRM_ERROR("no such CRTC id\n");
10149                 return -ENOENT;
10150         }
10151
10152         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10153         pipe_from_crtc_id->pipe = crtc->pipe;
10154
10155         return 0;
10156 }
10157
10158 static int intel_encoder_clones(struct intel_encoder *encoder)
10159 {
10160         struct drm_device *dev = encoder->base.dev;
10161         struct intel_encoder *source_encoder;
10162         int index_mask = 0;
10163         int entry = 0;
10164
10165         list_for_each_entry(source_encoder,
10166                             &dev->mode_config.encoder_list, base.head) {
10167
10168                 if (encoder == source_encoder)
10169                         index_mask |= (1 << entry);
10170
10171                 /* Intel hw has only one MUX where enocoders could be cloned. */
10172                 if (encoder->cloneable && source_encoder->cloneable)
10173                         index_mask |= (1 << entry);
10174
10175                 entry++;
10176         }
10177
10178         return index_mask;
10179 }
10180
10181 static bool has_edp_a(struct drm_device *dev)
10182 {
10183         struct drm_i915_private *dev_priv = dev->dev_private;
10184
10185         if (!IS_MOBILE(dev))
10186                 return false;
10187
10188         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10189                 return false;
10190
10191         if (IS_GEN5(dev) &&
10192             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
10193                 return false;
10194
10195         return true;
10196 }
10197
10198 static void intel_setup_outputs(struct drm_device *dev)
10199 {
10200         struct drm_i915_private *dev_priv = dev->dev_private;
10201         struct intel_encoder *encoder;
10202         bool dpd_is_edp = false;
10203
10204         intel_lvds_init(dev);
10205
10206         if (!IS_ULT(dev))
10207                 intel_crt_init(dev);
10208
10209         if (HAS_DDI(dev)) {
10210                 int found;
10211
10212                 /* Haswell uses DDI functions to detect digital outputs */
10213                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10214                 /* DDI A only supports eDP */
10215                 if (found)
10216                         intel_ddi_init(dev, PORT_A);
10217
10218                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10219                  * register */
10220                 found = I915_READ(SFUSE_STRAP);
10221
10222                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10223                         intel_ddi_init(dev, PORT_B);
10224                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10225                         intel_ddi_init(dev, PORT_C);
10226                 if (found & SFUSE_STRAP_DDID_DETECTED)
10227                         intel_ddi_init(dev, PORT_D);
10228         } else if (HAS_PCH_SPLIT(dev)) {
10229                 int found;
10230                 dpd_is_edp = intel_dpd_is_edp(dev);
10231
10232                 if (has_edp_a(dev))
10233                         intel_dp_init(dev, DP_A, PORT_A);
10234
10235                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10236                         /* PCH SDVOB multiplex with HDMIB */
10237                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10238                         if (!found)
10239                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10240                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10241                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10242                 }
10243
10244                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10245                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10246
10247                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10248                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10249
10250                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10251                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10252
10253                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10254                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10255         } else if (IS_VALLEYVIEW(dev)) {
10256                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10257                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10258                                         PORT_B);
10259                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10260                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10261                 }
10262
10263                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10264                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10265                                         PORT_C);
10266                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10267                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
10268                                               PORT_C);
10269                 }
10270
10271                 intel_dsi_init(dev);
10272         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10273                 bool found = false;
10274
10275                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10276                         DRM_DEBUG_KMS("probing SDVOB\n");
10277                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10278                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10279                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10280                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10281                         }
10282
10283                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10284                                 intel_dp_init(dev, DP_B, PORT_B);
10285                 }
10286
10287                 /* Before G4X SDVOC doesn't have its own detect register */
10288
10289                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10290                         DRM_DEBUG_KMS("probing SDVOC\n");
10291                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10292                 }
10293
10294                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10295
10296                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10297                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10298                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10299                         }
10300                         if (SUPPORTS_INTEGRATED_DP(dev))
10301                                 intel_dp_init(dev, DP_C, PORT_C);
10302                 }
10303
10304                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10305                     (I915_READ(DP_D) & DP_DETECTED))
10306                         intel_dp_init(dev, DP_D, PORT_D);
10307         } else if (IS_GEN2(dev))
10308                 intel_dvo_init(dev);
10309
10310         if (SUPPORTS_TV(dev))
10311                 intel_tv_init(dev);
10312
10313         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10314                 encoder->base.possible_crtcs = encoder->crtc_mask;
10315                 encoder->base.possible_clones =
10316                         intel_encoder_clones(encoder);
10317         }
10318
10319         intel_init_pch_refclk(dev);
10320
10321         drm_helper_move_panel_connectors_to_head(dev);
10322 }
10323
10324 void intel_framebuffer_fini(struct intel_framebuffer *fb)
10325 {
10326         drm_framebuffer_cleanup(&fb->base);
10327         WARN_ON(!fb->obj->framebuffer_references--);
10328         drm_gem_object_unreference_unlocked(&fb->obj->base);
10329 }
10330
10331 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10332 {
10333         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10334
10335         intel_framebuffer_fini(intel_fb);
10336         kfree(intel_fb);
10337 }
10338
10339 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10340                                                 struct drm_file *file,
10341                                                 unsigned int *handle)
10342 {
10343         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10344         struct drm_i915_gem_object *obj = intel_fb->obj;
10345
10346         return drm_gem_handle_create(file, &obj->base, handle);
10347 }
10348
10349 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10350         .destroy = intel_user_framebuffer_destroy,
10351         .create_handle = intel_user_framebuffer_create_handle,
10352 };
10353
10354 int intel_framebuffer_init(struct drm_device *dev,
10355                            struct intel_framebuffer *intel_fb,
10356                            struct drm_mode_fb_cmd2 *mode_cmd,
10357                            struct drm_i915_gem_object *obj)
10358 {
10359         int aligned_height, tile_height;
10360         int pitch_limit;
10361         int ret;
10362
10363         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10364
10365         if (obj->tiling_mode == I915_TILING_Y) {
10366                 DRM_DEBUG("hardware does not support tiling Y\n");
10367                 return -EINVAL;
10368         }
10369
10370         if (mode_cmd->pitches[0] & 63) {
10371                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10372                           mode_cmd->pitches[0]);
10373                 return -EINVAL;
10374         }
10375
10376         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10377                 pitch_limit = 32*1024;
10378         } else if (INTEL_INFO(dev)->gen >= 4) {
10379                 if (obj->tiling_mode)
10380                         pitch_limit = 16*1024;
10381                 else
10382                         pitch_limit = 32*1024;
10383         } else if (INTEL_INFO(dev)->gen >= 3) {
10384                 if (obj->tiling_mode)
10385                         pitch_limit = 8*1024;
10386                 else
10387                         pitch_limit = 16*1024;
10388         } else
10389                 /* XXX DSPC is limited to 4k tiled */
10390                 pitch_limit = 8*1024;
10391
10392         if (mode_cmd->pitches[0] > pitch_limit) {
10393                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10394                           obj->tiling_mode ? "tiled" : "linear",
10395                           mode_cmd->pitches[0], pitch_limit);
10396                 return -EINVAL;
10397         }
10398
10399         if (obj->tiling_mode != I915_TILING_NONE &&
10400             mode_cmd->pitches[0] != obj->stride) {
10401                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10402                           mode_cmd->pitches[0], obj->stride);
10403                 return -EINVAL;
10404         }
10405
10406         /* Reject formats not supported by any plane early. */
10407         switch (mode_cmd->pixel_format) {
10408         case DRM_FORMAT_C8:
10409         case DRM_FORMAT_RGB565:
10410         case DRM_FORMAT_XRGB8888:
10411         case DRM_FORMAT_ARGB8888:
10412                 break;
10413         case DRM_FORMAT_XRGB1555:
10414         case DRM_FORMAT_ARGB1555:
10415                 if (INTEL_INFO(dev)->gen > 3) {
10416                         DRM_DEBUG("unsupported pixel format: %s\n",
10417                                   drm_get_format_name(mode_cmd->pixel_format));
10418                         return -EINVAL;
10419                 }
10420                 break;
10421         case DRM_FORMAT_XBGR8888:
10422         case DRM_FORMAT_ABGR8888:
10423         case DRM_FORMAT_XRGB2101010:
10424         case DRM_FORMAT_ARGB2101010:
10425         case DRM_FORMAT_XBGR2101010:
10426         case DRM_FORMAT_ABGR2101010:
10427                 if (INTEL_INFO(dev)->gen < 4) {
10428                         DRM_DEBUG("unsupported pixel format: %s\n",
10429                                   drm_get_format_name(mode_cmd->pixel_format));
10430                         return -EINVAL;
10431                 }
10432                 break;
10433         case DRM_FORMAT_YUYV:
10434         case DRM_FORMAT_UYVY:
10435         case DRM_FORMAT_YVYU:
10436         case DRM_FORMAT_VYUY:
10437                 if (INTEL_INFO(dev)->gen < 5) {
10438                         DRM_DEBUG("unsupported pixel format: %s\n",
10439                                   drm_get_format_name(mode_cmd->pixel_format));
10440                         return -EINVAL;
10441                 }
10442                 break;
10443         default:
10444                 DRM_DEBUG("unsupported pixel format: %s\n",
10445                           drm_get_format_name(mode_cmd->pixel_format));
10446                 return -EINVAL;
10447         }
10448
10449         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10450         if (mode_cmd->offsets[0] != 0)
10451                 return -EINVAL;
10452
10453         tile_height = IS_GEN2(dev) ? 16 : 8;
10454         aligned_height = ALIGN(mode_cmd->height,
10455                                obj->tiling_mode ? tile_height : 1);
10456         /* FIXME drm helper for size checks (especially planar formats)? */
10457         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10458                 return -EINVAL;
10459
10460         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10461         intel_fb->obj = obj;
10462         intel_fb->obj->framebuffer_references++;
10463
10464         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10465         if (ret) {
10466                 DRM_ERROR("framebuffer init failed %d\n", ret);
10467                 return ret;
10468         }
10469
10470         return 0;
10471 }
10472
10473 static struct drm_framebuffer *
10474 intel_user_framebuffer_create(struct drm_device *dev,
10475                               struct drm_file *filp,
10476                               struct drm_mode_fb_cmd2 *mode_cmd)
10477 {
10478         struct drm_i915_gem_object *obj;
10479
10480         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10481                                                 mode_cmd->handles[0]));
10482         if (&obj->base == NULL)
10483                 return ERR_PTR(-ENOENT);
10484
10485         return intel_framebuffer_create(dev, mode_cmd, obj);
10486 }
10487
10488 #ifndef CONFIG_DRM_I915_FBDEV
10489 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10490 {
10491 }
10492 #endif
10493
10494 static const struct drm_mode_config_funcs intel_mode_funcs = {
10495         .fb_create = intel_user_framebuffer_create,
10496         .output_poll_changed = intel_fbdev_output_poll_changed,
10497 };
10498
10499 /* Set up chip specific display functions */
10500 static void intel_init_display(struct drm_device *dev)
10501 {
10502         struct drm_i915_private *dev_priv = dev->dev_private;
10503
10504         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10505                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10506         else if (IS_VALLEYVIEW(dev))
10507                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10508         else if (IS_PINEVIEW(dev))
10509                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10510         else
10511                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10512
10513         if (HAS_DDI(dev)) {
10514                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10515                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10516                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10517                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10518                 dev_priv->display.off = haswell_crtc_off;
10519                 dev_priv->display.update_plane = ironlake_update_plane;
10520         } else if (HAS_PCH_SPLIT(dev)) {
10521                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10522                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10523                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10524                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10525                 dev_priv->display.off = ironlake_crtc_off;
10526                 dev_priv->display.update_plane = ironlake_update_plane;
10527         } else if (IS_VALLEYVIEW(dev)) {
10528                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10529                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10530                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10531                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10532                 dev_priv->display.off = i9xx_crtc_off;
10533                 dev_priv->display.update_plane = i9xx_update_plane;
10534         } else {
10535                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10536                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10537                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10538                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10539                 dev_priv->display.off = i9xx_crtc_off;
10540                 dev_priv->display.update_plane = i9xx_update_plane;
10541         }
10542
10543         /* Returns the core display clock speed */
10544         if (IS_VALLEYVIEW(dev))
10545                 dev_priv->display.get_display_clock_speed =
10546                         valleyview_get_display_clock_speed;
10547         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10548                 dev_priv->display.get_display_clock_speed =
10549                         i945_get_display_clock_speed;
10550         else if (IS_I915G(dev))
10551                 dev_priv->display.get_display_clock_speed =
10552                         i915_get_display_clock_speed;
10553         else if (IS_I945GM(dev) || IS_845G(dev))
10554                 dev_priv->display.get_display_clock_speed =
10555                         i9xx_misc_get_display_clock_speed;
10556         else if (IS_PINEVIEW(dev))
10557                 dev_priv->display.get_display_clock_speed =
10558                         pnv_get_display_clock_speed;
10559         else if (IS_I915GM(dev))
10560                 dev_priv->display.get_display_clock_speed =
10561                         i915gm_get_display_clock_speed;
10562         else if (IS_I865G(dev))
10563                 dev_priv->display.get_display_clock_speed =
10564                         i865_get_display_clock_speed;
10565         else if (IS_I85X(dev))
10566                 dev_priv->display.get_display_clock_speed =
10567                         i855_get_display_clock_speed;
10568         else /* 852, 830 */
10569                 dev_priv->display.get_display_clock_speed =
10570                         i830_get_display_clock_speed;
10571
10572         if (HAS_PCH_SPLIT(dev)) {
10573                 if (IS_GEN5(dev)) {
10574                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10575                         dev_priv->display.write_eld = ironlake_write_eld;
10576                 } else if (IS_GEN6(dev)) {
10577                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10578                         dev_priv->display.write_eld = ironlake_write_eld;
10579                 } else if (IS_IVYBRIDGE(dev)) {
10580                         /* FIXME: detect B0+ stepping and use auto training */
10581                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10582                         dev_priv->display.write_eld = ironlake_write_eld;
10583                         dev_priv->display.modeset_global_resources =
10584                                 ivb_modeset_global_resources;
10585                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
10586                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10587                         dev_priv->display.write_eld = haswell_write_eld;
10588                         dev_priv->display.modeset_global_resources =
10589                                 haswell_modeset_global_resources;
10590                 }
10591         } else if (IS_G4X(dev)) {
10592                 dev_priv->display.write_eld = g4x_write_eld;
10593         } else if (IS_VALLEYVIEW(dev)) {
10594                 dev_priv->display.modeset_global_resources =
10595                         valleyview_modeset_global_resources;
10596                 dev_priv->display.write_eld = ironlake_write_eld;
10597         }
10598
10599         /* Default just returns -ENODEV to indicate unsupported */
10600         dev_priv->display.queue_flip = intel_default_queue_flip;
10601
10602         switch (INTEL_INFO(dev)->gen) {
10603         case 2:
10604                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10605                 break;
10606
10607         case 3:
10608                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10609                 break;
10610
10611         case 4:
10612         case 5:
10613                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10614                 break;
10615
10616         case 6:
10617                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10618                 break;
10619         case 7:
10620         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
10621                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10622                 break;
10623         }
10624
10625         intel_panel_init_backlight_funcs(dev);
10626 }
10627
10628 /*
10629  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10630  * resume, or other times.  This quirk makes sure that's the case for
10631  * affected systems.
10632  */
10633 static void quirk_pipea_force(struct drm_device *dev)
10634 {
10635         struct drm_i915_private *dev_priv = dev->dev_private;
10636
10637         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10638         DRM_INFO("applying pipe a force quirk\n");
10639 }
10640
10641 /*
10642  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10643  */
10644 static void quirk_ssc_force_disable(struct drm_device *dev)
10645 {
10646         struct drm_i915_private *dev_priv = dev->dev_private;
10647         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10648         DRM_INFO("applying lvds SSC disable quirk\n");
10649 }
10650
10651 /*
10652  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10653  * brightness value
10654  */
10655 static void quirk_invert_brightness(struct drm_device *dev)
10656 {
10657         struct drm_i915_private *dev_priv = dev->dev_private;
10658         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10659         DRM_INFO("applying inverted panel brightness quirk\n");
10660 }
10661
10662 struct intel_quirk {
10663         int device;
10664         int subsystem_vendor;
10665         int subsystem_device;
10666         void (*hook)(struct drm_device *dev);
10667 };
10668
10669 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10670 struct intel_dmi_quirk {
10671         void (*hook)(struct drm_device *dev);
10672         const struct dmi_system_id (*dmi_id_list)[];
10673 };
10674
10675 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10676 {
10677         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10678         return 1;
10679 }
10680
10681 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10682         {
10683                 .dmi_id_list = &(const struct dmi_system_id[]) {
10684                         {
10685                                 .callback = intel_dmi_reverse_brightness,
10686                                 .ident = "NCR Corporation",
10687                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10688                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
10689                                 },
10690                         },
10691                         { }  /* terminating entry */
10692                 },
10693                 .hook = quirk_invert_brightness,
10694         },
10695 };
10696
10697 static struct intel_quirk intel_quirks[] = {
10698         /* HP Mini needs pipe A force quirk (LP: #322104) */
10699         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10700
10701         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10702         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10703
10704         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10705         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10706
10707         /* 830 needs to leave pipe A & dpll A up */
10708         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10709
10710         /* Lenovo U160 cannot use SSC on LVDS */
10711         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10712
10713         /* Sony Vaio Y cannot use SSC on LVDS */
10714         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10715
10716         /*
10717          * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10718          * seem to use inverted backlight PWM.
10719          */
10720         { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10721 };
10722
10723 static void intel_init_quirks(struct drm_device *dev)
10724 {
10725         struct pci_dev *d = dev->pdev;
10726         int i;
10727
10728         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10729                 struct intel_quirk *q = &intel_quirks[i];
10730
10731                 if (d->device == q->device &&
10732                     (d->subsystem_vendor == q->subsystem_vendor ||
10733                      q->subsystem_vendor == PCI_ANY_ID) &&
10734                     (d->subsystem_device == q->subsystem_device ||
10735                      q->subsystem_device == PCI_ANY_ID))
10736                         q->hook(dev);
10737         }
10738         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10739                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10740                         intel_dmi_quirks[i].hook(dev);
10741         }
10742 }
10743
10744 /* Disable the VGA plane that we never use */
10745 static void i915_disable_vga(struct drm_device *dev)
10746 {
10747         struct drm_i915_private *dev_priv = dev->dev_private;
10748         u8 sr1;
10749         u32 vga_reg = i915_vgacntrl_reg(dev);
10750
10751         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10752         outb(SR01, VGA_SR_INDEX);
10753         sr1 = inb(VGA_SR_DATA);
10754         outb(sr1 | 1<<5, VGA_SR_DATA);
10755         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10756         udelay(300);
10757
10758         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10759         POSTING_READ(vga_reg);
10760 }
10761
10762 void intel_modeset_init_hw(struct drm_device *dev)
10763 {
10764         struct drm_i915_private *dev_priv = dev->dev_private;
10765
10766         intel_prepare_ddi(dev);
10767
10768         intel_init_clock_gating(dev);
10769
10770         /* Enable the CRI clock source so we can get at the display */
10771         if (IS_VALLEYVIEW(dev))
10772                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
10773                            DPLL_INTEGRATED_CRI_CLK_VLV);
10774
10775         intel_init_dpio(dev);
10776
10777         mutex_lock(&dev->struct_mutex);
10778         intel_enable_gt_powersave(dev);
10779         mutex_unlock(&dev->struct_mutex);
10780 }
10781
10782 void intel_modeset_suspend_hw(struct drm_device *dev)
10783 {
10784         intel_suspend_hw(dev);
10785 }
10786
10787 void intel_modeset_init(struct drm_device *dev)
10788 {
10789         struct drm_i915_private *dev_priv = dev->dev_private;
10790         int i, j, ret;
10791
10792         drm_mode_config_init(dev);
10793
10794         dev->mode_config.min_width = 0;
10795         dev->mode_config.min_height = 0;
10796
10797         dev->mode_config.preferred_depth = 24;
10798         dev->mode_config.prefer_shadow = 1;
10799
10800         dev->mode_config.funcs = &intel_mode_funcs;
10801
10802         intel_init_quirks(dev);
10803
10804         intel_init_pm(dev);
10805
10806         if (INTEL_INFO(dev)->num_pipes == 0)
10807                 return;
10808
10809         intel_init_display(dev);
10810
10811         if (IS_GEN2(dev)) {
10812                 dev->mode_config.max_width = 2048;
10813                 dev->mode_config.max_height = 2048;
10814         } else if (IS_GEN3(dev)) {
10815                 dev->mode_config.max_width = 4096;
10816                 dev->mode_config.max_height = 4096;
10817         } else {
10818                 dev->mode_config.max_width = 8192;
10819                 dev->mode_config.max_height = 8192;
10820         }
10821         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10822
10823         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10824                       INTEL_INFO(dev)->num_pipes,
10825                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10826
10827         for_each_pipe(i) {
10828                 intel_crtc_init(dev, i);
10829                 for (j = 0; j < dev_priv->num_plane; j++) {
10830                         ret = intel_plane_init(dev, i, j);
10831                         if (ret)
10832                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10833                                               pipe_name(i), sprite_name(i, j), ret);
10834                 }
10835         }
10836
10837         intel_cpu_pll_init(dev);
10838         intel_shared_dpll_init(dev);
10839
10840         /* Just disable it once at startup */
10841         i915_disable_vga(dev);
10842         intel_setup_outputs(dev);
10843
10844         /* Just in case the BIOS is doing something questionable. */
10845         intel_disable_fbc(dev);
10846 }
10847
10848 static void
10849 intel_connector_break_all_links(struct intel_connector *connector)
10850 {
10851         connector->base.dpms = DRM_MODE_DPMS_OFF;
10852         connector->base.encoder = NULL;
10853         connector->encoder->connectors_active = false;
10854         connector->encoder->base.crtc = NULL;
10855 }
10856
10857 static void intel_enable_pipe_a(struct drm_device *dev)
10858 {
10859         struct intel_connector *connector;
10860         struct drm_connector *crt = NULL;
10861         struct intel_load_detect_pipe load_detect_temp;
10862
10863         /* We can't just switch on the pipe A, we need to set things up with a
10864          * proper mode and output configuration. As a gross hack, enable pipe A
10865          * by enabling the load detect pipe once. */
10866         list_for_each_entry(connector,
10867                             &dev->mode_config.connector_list,
10868                             base.head) {
10869                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10870                         crt = &connector->base;
10871                         break;
10872                 }
10873         }
10874
10875         if (!crt)
10876                 return;
10877
10878         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10879                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10880
10881
10882 }
10883
10884 static bool
10885 intel_check_plane_mapping(struct intel_crtc *crtc)
10886 {
10887         struct drm_device *dev = crtc->base.dev;
10888         struct drm_i915_private *dev_priv = dev->dev_private;
10889         u32 reg, val;
10890
10891         if (INTEL_INFO(dev)->num_pipes == 1)
10892                 return true;
10893
10894         reg = DSPCNTR(!crtc->plane);
10895         val = I915_READ(reg);
10896
10897         if ((val & DISPLAY_PLANE_ENABLE) &&
10898             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10899                 return false;
10900
10901         return true;
10902 }
10903
10904 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10905 {
10906         struct drm_device *dev = crtc->base.dev;
10907         struct drm_i915_private *dev_priv = dev->dev_private;
10908         u32 reg;
10909
10910         /* Clear any frame start delays used for debugging left by the BIOS */
10911         reg = PIPECONF(crtc->config.cpu_transcoder);
10912         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10913
10914         /* We need to sanitize the plane -> pipe mapping first because this will
10915          * disable the crtc (and hence change the state) if it is wrong. Note
10916          * that gen4+ has a fixed plane -> pipe mapping.  */
10917         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10918                 struct intel_connector *connector;
10919                 bool plane;
10920
10921                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10922                               crtc->base.base.id);
10923
10924                 /* Pipe has the wrong plane attached and the plane is active.
10925                  * Temporarily change the plane mapping and disable everything
10926                  * ...  */
10927                 plane = crtc->plane;
10928                 crtc->plane = !plane;
10929                 dev_priv->display.crtc_disable(&crtc->base);
10930                 crtc->plane = plane;
10931
10932                 /* ... and break all links. */
10933                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10934                                     base.head) {
10935                         if (connector->encoder->base.crtc != &crtc->base)
10936                                 continue;
10937
10938                         intel_connector_break_all_links(connector);
10939                 }
10940
10941                 WARN_ON(crtc->active);
10942                 crtc->base.enabled = false;
10943         }
10944
10945         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10946             crtc->pipe == PIPE_A && !crtc->active) {
10947                 /* BIOS forgot to enable pipe A, this mostly happens after
10948                  * resume. Force-enable the pipe to fix this, the update_dpms
10949                  * call below we restore the pipe to the right state, but leave
10950                  * the required bits on. */
10951                 intel_enable_pipe_a(dev);
10952         }
10953
10954         /* Adjust the state of the output pipe according to whether we
10955          * have active connectors/encoders. */
10956         intel_crtc_update_dpms(&crtc->base);
10957
10958         if (crtc->active != crtc->base.enabled) {
10959                 struct intel_encoder *encoder;
10960
10961                 /* This can happen either due to bugs in the get_hw_state
10962                  * functions or because the pipe is force-enabled due to the
10963                  * pipe A quirk. */
10964                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10965                               crtc->base.base.id,
10966                               crtc->base.enabled ? "enabled" : "disabled",
10967                               crtc->active ? "enabled" : "disabled");
10968
10969                 crtc->base.enabled = crtc->active;
10970
10971                 /* Because we only establish the connector -> encoder ->
10972                  * crtc links if something is active, this means the
10973                  * crtc is now deactivated. Break the links. connector
10974                  * -> encoder links are only establish when things are
10975                  *  actually up, hence no need to break them. */
10976                 WARN_ON(crtc->active);
10977
10978                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10979                         WARN_ON(encoder->connectors_active);
10980                         encoder->base.crtc = NULL;
10981                 }
10982         }
10983 }
10984
10985 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10986 {
10987         struct intel_connector *connector;
10988         struct drm_device *dev = encoder->base.dev;
10989
10990         /* We need to check both for a crtc link (meaning that the
10991          * encoder is active and trying to read from a pipe) and the
10992          * pipe itself being active. */
10993         bool has_active_crtc = encoder->base.crtc &&
10994                 to_intel_crtc(encoder->base.crtc)->active;
10995
10996         if (encoder->connectors_active && !has_active_crtc) {
10997                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10998                               encoder->base.base.id,
10999                               drm_get_encoder_name(&encoder->base));
11000
11001                 /* Connector is active, but has no active pipe. This is
11002                  * fallout from our resume register restoring. Disable
11003                  * the encoder manually again. */
11004                 if (encoder->base.crtc) {
11005                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11006                                       encoder->base.base.id,
11007                                       drm_get_encoder_name(&encoder->base));
11008                         encoder->disable(encoder);
11009                 }
11010
11011                 /* Inconsistent output/port/pipe state happens presumably due to
11012                  * a bug in one of the get_hw_state functions. Or someplace else
11013                  * in our code, like the register restore mess on resume. Clamp
11014                  * things to off as a safer default. */
11015                 list_for_each_entry(connector,
11016                                     &dev->mode_config.connector_list,
11017                                     base.head) {
11018                         if (connector->encoder != encoder)
11019                                 continue;
11020
11021                         intel_connector_break_all_links(connector);
11022                 }
11023         }
11024         /* Enabled encoders without active connectors will be fixed in
11025          * the crtc fixup. */
11026 }
11027
11028 void i915_redisable_vga(struct drm_device *dev)
11029 {
11030         struct drm_i915_private *dev_priv = dev->dev_private;
11031         u32 vga_reg = i915_vgacntrl_reg(dev);
11032
11033         /* This function can be called both from intel_modeset_setup_hw_state or
11034          * at a very early point in our resume sequence, where the power well
11035          * structures are not yet restored. Since this function is at a very
11036          * paranoid "someone might have enabled VGA while we were not looking"
11037          * level, just check if the power well is enabled instead of trying to
11038          * follow the "don't touch the power well if we don't need it" policy
11039          * the rest of the driver uses. */
11040         if ((IS_HASWELL(dev) || IS_BROADWELL(dev)) &&
11041             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
11042                 return;
11043
11044         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11045                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11046                 i915_disable_vga(dev);
11047         }
11048 }
11049
11050 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11051 {
11052         struct drm_i915_private *dev_priv = dev->dev_private;
11053         enum pipe pipe;
11054         struct intel_crtc *crtc;
11055         struct intel_encoder *encoder;
11056         struct intel_connector *connector;
11057         int i;
11058
11059         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11060                             base.head) {
11061                 memset(&crtc->config, 0, sizeof(crtc->config));
11062
11063                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11064                                                                  &crtc->config);
11065
11066                 crtc->base.enabled = crtc->active;
11067                 crtc->primary_enabled = crtc->active;
11068
11069                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11070                               crtc->base.base.id,
11071                               crtc->active ? "enabled" : "disabled");
11072         }
11073
11074         /* FIXME: Smash this into the new shared dpll infrastructure. */
11075         if (HAS_DDI(dev))
11076                 intel_ddi_setup_hw_pll_state(dev);
11077
11078         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11079                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11080
11081                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11082                 pll->active = 0;
11083                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11084                                     base.head) {
11085                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11086                                 pll->active++;
11087                 }
11088                 pll->refcount = pll->active;
11089
11090                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11091                               pll->name, pll->refcount, pll->on);
11092         }
11093
11094         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11095                             base.head) {
11096                 pipe = 0;
11097
11098                 if (encoder->get_hw_state(encoder, &pipe)) {
11099                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11100                         encoder->base.crtc = &crtc->base;
11101                         if (encoder->get_config)
11102                                 encoder->get_config(encoder, &crtc->config);
11103                 } else {
11104                         encoder->base.crtc = NULL;
11105                 }
11106
11107                 encoder->connectors_active = false;
11108                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11109                               encoder->base.base.id,
11110                               drm_get_encoder_name(&encoder->base),
11111                               encoder->base.crtc ? "enabled" : "disabled",
11112                               pipe_name(pipe));
11113         }
11114
11115         list_for_each_entry(connector, &dev->mode_config.connector_list,
11116                             base.head) {
11117                 if (connector->get_hw_state(connector)) {
11118                         connector->base.dpms = DRM_MODE_DPMS_ON;
11119                         connector->encoder->connectors_active = true;
11120                         connector->base.encoder = &connector->encoder->base;
11121                 } else {
11122                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11123                         connector->base.encoder = NULL;
11124                 }
11125                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11126                               connector->base.base.id,
11127                               drm_get_connector_name(&connector->base),
11128                               connector->base.encoder ? "enabled" : "disabled");
11129         }
11130 }
11131
11132 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11133  * and i915 state tracking structures. */
11134 void intel_modeset_setup_hw_state(struct drm_device *dev,
11135                                   bool force_restore)
11136 {
11137         struct drm_i915_private *dev_priv = dev->dev_private;
11138         enum pipe pipe;
11139         struct intel_crtc *crtc;
11140         struct intel_encoder *encoder;
11141         int i;
11142
11143         intel_modeset_readout_hw_state(dev);
11144
11145         /*
11146          * Now that we have the config, copy it to each CRTC struct
11147          * Note that this could go away if we move to using crtc_config
11148          * checking everywhere.
11149          */
11150         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11151                             base.head) {
11152                 if (crtc->active && i915_fastboot) {
11153                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
11154
11155                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11156                                       crtc->base.base.id);
11157                         drm_mode_debug_printmodeline(&crtc->base.mode);
11158                 }
11159         }
11160
11161         /* HW state is read out, now we need to sanitize this mess. */
11162         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11163                             base.head) {
11164                 intel_sanitize_encoder(encoder);
11165         }
11166
11167         for_each_pipe(pipe) {
11168                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11169                 intel_sanitize_crtc(crtc);
11170                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11171         }
11172
11173         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11174                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11175
11176                 if (!pll->on || pll->active)
11177                         continue;
11178
11179                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11180
11181                 pll->disable(dev_priv, pll);
11182                 pll->on = false;
11183         }
11184
11185         if (IS_HASWELL(dev))
11186                 ilk_wm_get_hw_state(dev);
11187
11188         if (force_restore) {
11189                 i915_redisable_vga(dev);
11190
11191                 /*
11192                  * We need to use raw interfaces for restoring state to avoid
11193                  * checking (bogus) intermediate states.
11194                  */
11195                 for_each_pipe(pipe) {
11196                         struct drm_crtc *crtc =
11197                                 dev_priv->pipe_to_crtc_mapping[pipe];
11198
11199                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11200                                          crtc->fb);
11201                 }
11202         } else {
11203                 intel_modeset_update_staged_output_state(dev);
11204         }
11205
11206         intel_modeset_check_state(dev);
11207
11208         drm_mode_config_reset(dev);
11209 }
11210
11211 void intel_modeset_gem_init(struct drm_device *dev)
11212 {
11213         intel_modeset_init_hw(dev);
11214
11215         intel_setup_overlay(dev);
11216
11217         intel_modeset_setup_hw_state(dev, false);
11218 }
11219
11220 void intel_modeset_cleanup(struct drm_device *dev)
11221 {
11222         struct drm_i915_private *dev_priv = dev->dev_private;
11223         struct drm_crtc *crtc;
11224         struct drm_connector *connector;
11225
11226         /*
11227          * Interrupts and polling as the first thing to avoid creating havoc.
11228          * Too much stuff here (turning of rps, connectors, ...) would
11229          * experience fancy races otherwise.
11230          */
11231         drm_irq_uninstall(dev);
11232         cancel_work_sync(&dev_priv->hotplug_work);
11233         /*
11234          * Due to the hpd irq storm handling the hotplug work can re-arm the
11235          * poll handlers. Hence disable polling after hpd handling is shut down.
11236          */
11237         drm_kms_helper_poll_fini(dev);
11238
11239         mutex_lock(&dev->struct_mutex);
11240
11241         intel_unregister_dsm_handler();
11242
11243         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11244                 /* Skip inactive CRTCs */
11245                 if (!crtc->fb)
11246                         continue;
11247
11248                 intel_increase_pllclock(crtc);
11249         }
11250
11251         intel_disable_fbc(dev);
11252
11253         intel_disable_gt_powersave(dev);
11254
11255         ironlake_teardown_rc6(dev);
11256
11257         mutex_unlock(&dev->struct_mutex);
11258
11259         /* flush any delayed tasks or pending work */
11260         flush_scheduled_work();
11261
11262         /* destroy the backlight and sysfs files before encoders/connectors */
11263         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11264                 intel_panel_destroy_backlight(connector);
11265                 drm_sysfs_connector_remove(connector);
11266         }
11267
11268         drm_mode_config_cleanup(dev);
11269
11270         intel_cleanup_overlay(dev);
11271 }
11272
11273 /*
11274  * Return which encoder is currently attached for connector.
11275  */
11276 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11277 {
11278         return &intel_attached_encoder(connector)->base;
11279 }
11280
11281 void intel_connector_attach_encoder(struct intel_connector *connector,
11282                                     struct intel_encoder *encoder)
11283 {
11284         connector->encoder = encoder;
11285         drm_mode_connector_attach_encoder(&connector->base,
11286                                           &encoder->base);
11287 }
11288
11289 /*
11290  * set vga decode state - true == enable VGA decode
11291  */
11292 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11293 {
11294         struct drm_i915_private *dev_priv = dev->dev_private;
11295         u16 gmch_ctrl;
11296
11297         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
11298         if (state)
11299                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11300         else
11301                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11302         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
11303         return 0;
11304 }
11305
11306 struct intel_display_error_state {
11307
11308         u32 power_well_driver;
11309
11310         int num_transcoders;
11311
11312         struct intel_cursor_error_state {
11313                 u32 control;
11314                 u32 position;
11315                 u32 base;
11316                 u32 size;
11317         } cursor[I915_MAX_PIPES];
11318
11319         struct intel_pipe_error_state {
11320                 u32 source;
11321         } pipe[I915_MAX_PIPES];
11322
11323         struct intel_plane_error_state {
11324                 u32 control;
11325                 u32 stride;
11326                 u32 size;
11327                 u32 pos;
11328                 u32 addr;
11329                 u32 surface;
11330                 u32 tile_offset;
11331         } plane[I915_MAX_PIPES];
11332
11333         struct intel_transcoder_error_state {
11334                 enum transcoder cpu_transcoder;
11335
11336                 u32 conf;
11337
11338                 u32 htotal;
11339                 u32 hblank;
11340                 u32 hsync;
11341                 u32 vtotal;
11342                 u32 vblank;
11343                 u32 vsync;
11344         } transcoder[4];
11345 };
11346
11347 struct intel_display_error_state *
11348 intel_display_capture_error_state(struct drm_device *dev)
11349 {
11350         drm_i915_private_t *dev_priv = dev->dev_private;
11351         struct intel_display_error_state *error;
11352         int transcoders[] = {
11353                 TRANSCODER_A,
11354                 TRANSCODER_B,
11355                 TRANSCODER_C,
11356                 TRANSCODER_EDP,
11357         };
11358         int i;
11359
11360         if (INTEL_INFO(dev)->num_pipes == 0)
11361                 return NULL;
11362
11363         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11364         if (error == NULL)
11365                 return NULL;
11366
11367         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11368                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11369
11370         for_each_pipe(i) {
11371                 if (!intel_display_power_enabled(dev, POWER_DOMAIN_PIPE(i)))
11372                         continue;
11373
11374                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11375                         error->cursor[i].control = I915_READ(CURCNTR(i));
11376                         error->cursor[i].position = I915_READ(CURPOS(i));
11377                         error->cursor[i].base = I915_READ(CURBASE(i));
11378                 } else {
11379                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11380                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11381                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11382                 }
11383
11384                 error->plane[i].control = I915_READ(DSPCNTR(i));
11385                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11386                 if (INTEL_INFO(dev)->gen <= 3) {
11387                         error->plane[i].size = I915_READ(DSPSIZE(i));
11388                         error->plane[i].pos = I915_READ(DSPPOS(i));
11389                 }
11390                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11391                         error->plane[i].addr = I915_READ(DSPADDR(i));
11392                 if (INTEL_INFO(dev)->gen >= 4) {
11393                         error->plane[i].surface = I915_READ(DSPSURF(i));
11394                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11395                 }
11396
11397                 error->pipe[i].source = I915_READ(PIPESRC(i));
11398         }
11399
11400         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11401         if (HAS_DDI(dev_priv->dev))
11402                 error->num_transcoders++; /* Account for eDP. */
11403
11404         for (i = 0; i < error->num_transcoders; i++) {
11405                 enum transcoder cpu_transcoder = transcoders[i];
11406
11407                 if (!intel_display_power_enabled(dev,
11408                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
11409                         continue;
11410
11411                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11412
11413                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11414                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11415                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11416                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11417                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11418                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11419                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11420         }
11421
11422         return error;
11423 }
11424
11425 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11426
11427 void
11428 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11429                                 struct drm_device *dev,
11430                                 struct intel_display_error_state *error)
11431 {
11432         int i;
11433
11434         if (!error)
11435                 return;
11436
11437         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11438         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11439                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11440                            error->power_well_driver);
11441         for_each_pipe(i) {
11442                 err_printf(m, "Pipe [%d]:\n", i);
11443                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
11444
11445                 err_printf(m, "Plane [%d]:\n", i);
11446                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
11447                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
11448                 if (INTEL_INFO(dev)->gen <= 3) {
11449                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
11450                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
11451                 }
11452                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11453                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
11454                 if (INTEL_INFO(dev)->gen >= 4) {
11455                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
11456                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
11457                 }
11458
11459                 err_printf(m, "Cursor [%d]:\n", i);
11460                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
11461                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
11462                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
11463         }
11464
11465         for (i = 0; i < error->num_transcoders; i++) {
11466                 err_printf(m, "CPU transcoder: %c\n",
11467                            transcoder_name(error->transcoder[i].cpu_transcoder));
11468                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
11469                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
11470                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
11471                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
11472                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
11473                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
11474                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
11475         }
11476 }