]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: check the power well when redisabling VGA
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49                                 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51                                     struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54                           int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58         int     min, max;
59 } intel_range_t;
60
61 typedef struct {
62         int     dot_limit;
63         int     p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
69         intel_p2_t          p2;
70 };
71
72 /* FDI */
73 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
74
75 int
76 intel_pch_rawclk(struct drm_device *dev)
77 {
78         struct drm_i915_private *dev_priv = dev->dev_private;
79
80         WARN_ON(!HAS_PCH_SPLIT(dev));
81
82         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
83 }
84
85 static inline u32 /* units of 100MHz */
86 intel_fdi_link_freq(struct drm_device *dev)
87 {
88         if (IS_GEN5(dev)) {
89                 struct drm_i915_private *dev_priv = dev->dev_private;
90                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
91         } else
92                 return 27;
93 }
94
95 static const intel_limit_t intel_limits_i8xx_dac = {
96         .dot = { .min = 25000, .max = 350000 },
97         .vco = { .min = 930000, .max = 1400000 },
98         .n = { .min = 3, .max = 16 },
99         .m = { .min = 96, .max = 140 },
100         .m1 = { .min = 18, .max = 26 },
101         .m2 = { .min = 6, .max = 16 },
102         .p = { .min = 4, .max = 128 },
103         .p1 = { .min = 2, .max = 33 },
104         .p2 = { .dot_limit = 165000,
105                 .p2_slow = 4, .p2_fast = 2 },
106 };
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109         .dot = { .min = 25000, .max = 350000 },
110         .vco = { .min = 930000, .max = 1400000 },
111         .n = { .min = 3, .max = 16 },
112         .m = { .min = 96, .max = 140 },
113         .m1 = { .min = 18, .max = 26 },
114         .m2 = { .min = 6, .max = 16 },
115         .p = { .min = 4, .max = 128 },
116         .p1 = { .min = 2, .max = 33 },
117         .p2 = { .dot_limit = 165000,
118                 .p2_slow = 4, .p2_fast = 4 },
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122         .dot = { .min = 25000, .max = 350000 },
123         .vco = { .min = 930000, .max = 1400000 },
124         .n = { .min = 3, .max = 16 },
125         .m = { .min = 96, .max = 140 },
126         .m1 = { .min = 18, .max = 26 },
127         .m2 = { .min = 6, .max = 16 },
128         .p = { .min = 4, .max = 128 },
129         .p1 = { .min = 1, .max = 6 },
130         .p2 = { .dot_limit = 165000,
131                 .p2_slow = 14, .p2_fast = 7 },
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135         .dot = { .min = 20000, .max = 400000 },
136         .vco = { .min = 1400000, .max = 2800000 },
137         .n = { .min = 1, .max = 6 },
138         .m = { .min = 70, .max = 120 },
139         .m1 = { .min = 8, .max = 18 },
140         .m2 = { .min = 3, .max = 7 },
141         .p = { .min = 5, .max = 80 },
142         .p1 = { .min = 1, .max = 8 },
143         .p2 = { .dot_limit = 200000,
144                 .p2_slow = 10, .p2_fast = 5 },
145 };
146
147 static const intel_limit_t intel_limits_i9xx_lvds = {
148         .dot = { .min = 20000, .max = 400000 },
149         .vco = { .min = 1400000, .max = 2800000 },
150         .n = { .min = 1, .max = 6 },
151         .m = { .min = 70, .max = 120 },
152         .m1 = { .min = 8, .max = 18 },
153         .m2 = { .min = 3, .max = 7 },
154         .p = { .min = 7, .max = 98 },
155         .p1 = { .min = 1, .max = 8 },
156         .p2 = { .dot_limit = 112000,
157                 .p2_slow = 14, .p2_fast = 7 },
158 };
159
160
161 static const intel_limit_t intel_limits_g4x_sdvo = {
162         .dot = { .min = 25000, .max = 270000 },
163         .vco = { .min = 1750000, .max = 3500000},
164         .n = { .min = 1, .max = 4 },
165         .m = { .min = 104, .max = 138 },
166         .m1 = { .min = 17, .max = 23 },
167         .m2 = { .min = 5, .max = 11 },
168         .p = { .min = 10, .max = 30 },
169         .p1 = { .min = 1, .max = 3},
170         .p2 = { .dot_limit = 270000,
171                 .p2_slow = 10,
172                 .p2_fast = 10
173         },
174 };
175
176 static const intel_limit_t intel_limits_g4x_hdmi = {
177         .dot = { .min = 22000, .max = 400000 },
178         .vco = { .min = 1750000, .max = 3500000},
179         .n = { .min = 1, .max = 4 },
180         .m = { .min = 104, .max = 138 },
181         .m1 = { .min = 16, .max = 23 },
182         .m2 = { .min = 5, .max = 11 },
183         .p = { .min = 5, .max = 80 },
184         .p1 = { .min = 1, .max = 8},
185         .p2 = { .dot_limit = 165000,
186                 .p2_slow = 10, .p2_fast = 5 },
187 };
188
189 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
190         .dot = { .min = 20000, .max = 115000 },
191         .vco = { .min = 1750000, .max = 3500000 },
192         .n = { .min = 1, .max = 3 },
193         .m = { .min = 104, .max = 138 },
194         .m1 = { .min = 17, .max = 23 },
195         .m2 = { .min = 5, .max = 11 },
196         .p = { .min = 28, .max = 112 },
197         .p1 = { .min = 2, .max = 8 },
198         .p2 = { .dot_limit = 0,
199                 .p2_slow = 14, .p2_fast = 14
200         },
201 };
202
203 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
204         .dot = { .min = 80000, .max = 224000 },
205         .vco = { .min = 1750000, .max = 3500000 },
206         .n = { .min = 1, .max = 3 },
207         .m = { .min = 104, .max = 138 },
208         .m1 = { .min = 17, .max = 23 },
209         .m2 = { .min = 5, .max = 11 },
210         .p = { .min = 14, .max = 42 },
211         .p1 = { .min = 2, .max = 6 },
212         .p2 = { .dot_limit = 0,
213                 .p2_slow = 7, .p2_fast = 7
214         },
215 };
216
217 static const intel_limit_t intel_limits_pineview_sdvo = {
218         .dot = { .min = 20000, .max = 400000},
219         .vco = { .min = 1700000, .max = 3500000 },
220         /* Pineview's Ncounter is a ring counter */
221         .n = { .min = 3, .max = 6 },
222         .m = { .min = 2, .max = 256 },
223         /* Pineview only has one combined m divider, which we treat as m2. */
224         .m1 = { .min = 0, .max = 0 },
225         .m2 = { .min = 0, .max = 254 },
226         .p = { .min = 5, .max = 80 },
227         .p1 = { .min = 1, .max = 8 },
228         .p2 = { .dot_limit = 200000,
229                 .p2_slow = 10, .p2_fast = 5 },
230 };
231
232 static const intel_limit_t intel_limits_pineview_lvds = {
233         .dot = { .min = 20000, .max = 400000 },
234         .vco = { .min = 1700000, .max = 3500000 },
235         .n = { .min = 3, .max = 6 },
236         .m = { .min = 2, .max = 256 },
237         .m1 = { .min = 0, .max = 0 },
238         .m2 = { .min = 0, .max = 254 },
239         .p = { .min = 7, .max = 112 },
240         .p1 = { .min = 1, .max = 8 },
241         .p2 = { .dot_limit = 112000,
242                 .p2_slow = 14, .p2_fast = 14 },
243 };
244
245 /* Ironlake / Sandybridge
246  *
247  * We calculate clock using (register_value + 2) for N/M1/M2, so here
248  * the range value for them is (actual_value - 2).
249  */
250 static const intel_limit_t intel_limits_ironlake_dac = {
251         .dot = { .min = 25000, .max = 350000 },
252         .vco = { .min = 1760000, .max = 3510000 },
253         .n = { .min = 1, .max = 5 },
254         .m = { .min = 79, .max = 127 },
255         .m1 = { .min = 12, .max = 22 },
256         .m2 = { .min = 5, .max = 9 },
257         .p = { .min = 5, .max = 80 },
258         .p1 = { .min = 1, .max = 8 },
259         .p2 = { .dot_limit = 225000,
260                 .p2_slow = 10, .p2_fast = 5 },
261 };
262
263 static const intel_limit_t intel_limits_ironlake_single_lvds = {
264         .dot = { .min = 25000, .max = 350000 },
265         .vco = { .min = 1760000, .max = 3510000 },
266         .n = { .min = 1, .max = 3 },
267         .m = { .min = 79, .max = 118 },
268         .m1 = { .min = 12, .max = 22 },
269         .m2 = { .min = 5, .max = 9 },
270         .p = { .min = 28, .max = 112 },
271         .p1 = { .min = 2, .max = 8 },
272         .p2 = { .dot_limit = 225000,
273                 .p2_slow = 14, .p2_fast = 14 },
274 };
275
276 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
277         .dot = { .min = 25000, .max = 350000 },
278         .vco = { .min = 1760000, .max = 3510000 },
279         .n = { .min = 1, .max = 3 },
280         .m = { .min = 79, .max = 127 },
281         .m1 = { .min = 12, .max = 22 },
282         .m2 = { .min = 5, .max = 9 },
283         .p = { .min = 14, .max = 56 },
284         .p1 = { .min = 2, .max = 8 },
285         .p2 = { .dot_limit = 225000,
286                 .p2_slow = 7, .p2_fast = 7 },
287 };
288
289 /* LVDS 100mhz refclk limits. */
290 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 2 },
294         .m = { .min = 79, .max = 126 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 28, .max = 112 },
298         .p1 = { .min = 2, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 14, .p2_fast = 14 },
301 };
302
303 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 3 },
307         .m = { .min = 79, .max = 126 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 14, .max = 42 },
311         .p1 = { .min = 2, .max = 6 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 7, .p2_fast = 7 },
314 };
315
316 static const intel_limit_t intel_limits_vlv_dac = {
317         .dot = { .min = 25000, .max = 270000 },
318         .vco = { .min = 4000000, .max = 6000000 },
319         .n = { .min = 1, .max = 7 },
320         .m = { .min = 22, .max = 450 }, /* guess */
321         .m1 = { .min = 2, .max = 3 },
322         .m2 = { .min = 11, .max = 156 },
323         .p = { .min = 10, .max = 30 },
324         .p1 = { .min = 1, .max = 3 },
325         .p2 = { .dot_limit = 270000,
326                 .p2_slow = 2, .p2_fast = 20 },
327 };
328
329 static const intel_limit_t intel_limits_vlv_hdmi = {
330         .dot = { .min = 25000, .max = 270000 },
331         .vco = { .min = 4000000, .max = 6000000 },
332         .n = { .min = 1, .max = 7 },
333         .m = { .min = 60, .max = 300 }, /* guess */
334         .m1 = { .min = 2, .max = 3 },
335         .m2 = { .min = 11, .max = 156 },
336         .p = { .min = 10, .max = 30 },
337         .p1 = { .min = 2, .max = 3 },
338         .p2 = { .dot_limit = 270000,
339                 .p2_slow = 2, .p2_fast = 20 },
340 };
341
342 static const intel_limit_t intel_limits_vlv_dp = {
343         .dot = { .min = 25000, .max = 270000 },
344         .vco = { .min = 4000000, .max = 6000000 },
345         .n = { .min = 1, .max = 7 },
346         .m = { .min = 22, .max = 450 },
347         .m1 = { .min = 2, .max = 3 },
348         .m2 = { .min = 11, .max = 156 },
349         .p = { .min = 10, .max = 30 },
350         .p1 = { .min = 1, .max = 3 },
351         .p2 = { .dot_limit = 270000,
352                 .p2_slow = 2, .p2_fast = 20 },
353 };
354
355 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
356                                                 int refclk)
357 {
358         struct drm_device *dev = crtc->dev;
359         const intel_limit_t *limit;
360
361         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
362                 if (intel_is_dual_link_lvds(dev)) {
363                         if (refclk == 100000)
364                                 limit = &intel_limits_ironlake_dual_lvds_100m;
365                         else
366                                 limit = &intel_limits_ironlake_dual_lvds;
367                 } else {
368                         if (refclk == 100000)
369                                 limit = &intel_limits_ironlake_single_lvds_100m;
370                         else
371                                 limit = &intel_limits_ironlake_single_lvds;
372                 }
373         } else
374                 limit = &intel_limits_ironlake_dac;
375
376         return limit;
377 }
378
379 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
380 {
381         struct drm_device *dev = crtc->dev;
382         const intel_limit_t *limit;
383
384         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
385                 if (intel_is_dual_link_lvds(dev))
386                         limit = &intel_limits_g4x_dual_channel_lvds;
387                 else
388                         limit = &intel_limits_g4x_single_channel_lvds;
389         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
390                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
391                 limit = &intel_limits_g4x_hdmi;
392         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
393                 limit = &intel_limits_g4x_sdvo;
394         } else /* The option is for other outputs */
395                 limit = &intel_limits_i9xx_sdvo;
396
397         return limit;
398 }
399
400 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
401 {
402         struct drm_device *dev = crtc->dev;
403         const intel_limit_t *limit;
404
405         if (HAS_PCH_SPLIT(dev))
406                 limit = intel_ironlake_limit(crtc, refclk);
407         else if (IS_G4X(dev)) {
408                 limit = intel_g4x_limit(crtc);
409         } else if (IS_PINEVIEW(dev)) {
410                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
411                         limit = &intel_limits_pineview_lvds;
412                 else
413                         limit = &intel_limits_pineview_sdvo;
414         } else if (IS_VALLEYVIEW(dev)) {
415                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
416                         limit = &intel_limits_vlv_dac;
417                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
418                         limit = &intel_limits_vlv_hdmi;
419                 else
420                         limit = &intel_limits_vlv_dp;
421         } else if (!IS_GEN2(dev)) {
422                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
423                         limit = &intel_limits_i9xx_lvds;
424                 else
425                         limit = &intel_limits_i9xx_sdvo;
426         } else {
427                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428                         limit = &intel_limits_i8xx_lvds;
429                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
430                         limit = &intel_limits_i8xx_dvo;
431                 else
432                         limit = &intel_limits_i8xx_dac;
433         }
434         return limit;
435 }
436
437 /* m1 is reserved as 0 in Pineview, n is a ring counter */
438 static void pineview_clock(int refclk, intel_clock_t *clock)
439 {
440         clock->m = clock->m2 + 2;
441         clock->p = clock->p1 * clock->p2;
442         clock->vco = refclk * clock->m / clock->n;
443         clock->dot = clock->vco / clock->p;
444 }
445
446 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
447 {
448         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
449 }
450
451 static void i9xx_clock(int refclk, intel_clock_t *clock)
452 {
453         clock->m = i9xx_dpll_compute_m(clock);
454         clock->p = clock->p1 * clock->p2;
455         clock->vco = refclk * clock->m / (clock->n + 2);
456         clock->dot = clock->vco / clock->p;
457 }
458
459 /**
460  * Returns whether any output on the specified pipe is of the specified type
461  */
462 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
463 {
464         struct drm_device *dev = crtc->dev;
465         struct intel_encoder *encoder;
466
467         for_each_encoder_on_crtc(dev, crtc, encoder)
468                 if (encoder->type == type)
469                         return true;
470
471         return false;
472 }
473
474 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
475 /**
476  * Returns whether the given set of divisors are valid for a given refclk with
477  * the given connectors.
478  */
479
480 static bool intel_PLL_is_valid(struct drm_device *dev,
481                                const intel_limit_t *limit,
482                                const intel_clock_t *clock)
483 {
484         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
485                 INTELPllInvalid("p1 out of range\n");
486         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
487                 INTELPllInvalid("p out of range\n");
488         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
489                 INTELPllInvalid("m2 out of range\n");
490         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
491                 INTELPllInvalid("m1 out of range\n");
492         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
493                 INTELPllInvalid("m1 <= m2\n");
494         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
495                 INTELPllInvalid("m out of range\n");
496         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
497                 INTELPllInvalid("n out of range\n");
498         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
499                 INTELPllInvalid("vco out of range\n");
500         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
501          * connector, etc., rather than just a single range.
502          */
503         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
504                 INTELPllInvalid("dot out of range\n");
505
506         return true;
507 }
508
509 static bool
510 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
511                     int target, int refclk, intel_clock_t *match_clock,
512                     intel_clock_t *best_clock)
513 {
514         struct drm_device *dev = crtc->dev;
515         intel_clock_t clock;
516         int err = target;
517
518         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
519                 /*
520                  * For LVDS just rely on its current settings for dual-channel.
521                  * We haven't figured out how to reliably set up different
522                  * single/dual channel state, if we even can.
523                  */
524                 if (intel_is_dual_link_lvds(dev))
525                         clock.p2 = limit->p2.p2_fast;
526                 else
527                         clock.p2 = limit->p2.p2_slow;
528         } else {
529                 if (target < limit->p2.dot_limit)
530                         clock.p2 = limit->p2.p2_slow;
531                 else
532                         clock.p2 = limit->p2.p2_fast;
533         }
534
535         memset(best_clock, 0, sizeof(*best_clock));
536
537         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
538              clock.m1++) {
539                 for (clock.m2 = limit->m2.min;
540                      clock.m2 <= limit->m2.max; clock.m2++) {
541                         if (clock.m2 >= clock.m1)
542                                 break;
543                         for (clock.n = limit->n.min;
544                              clock.n <= limit->n.max; clock.n++) {
545                                 for (clock.p1 = limit->p1.min;
546                                         clock.p1 <= limit->p1.max; clock.p1++) {
547                                         int this_err;
548
549                                         i9xx_clock(refclk, &clock);
550                                         if (!intel_PLL_is_valid(dev, limit,
551                                                                 &clock))
552                                                 continue;
553                                         if (match_clock &&
554                                             clock.p != match_clock->p)
555                                                 continue;
556
557                                         this_err = abs(clock.dot - target);
558                                         if (this_err < err) {
559                                                 *best_clock = clock;
560                                                 err = this_err;
561                                         }
562                                 }
563                         }
564                 }
565         }
566
567         return (err != target);
568 }
569
570 static bool
571 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
572                    int target, int refclk, intel_clock_t *match_clock,
573                    intel_clock_t *best_clock)
574 {
575         struct drm_device *dev = crtc->dev;
576         intel_clock_t clock;
577         int err = target;
578
579         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
580                 /*
581                  * For LVDS just rely on its current settings for dual-channel.
582                  * We haven't figured out how to reliably set up different
583                  * single/dual channel state, if we even can.
584                  */
585                 if (intel_is_dual_link_lvds(dev))
586                         clock.p2 = limit->p2.p2_fast;
587                 else
588                         clock.p2 = limit->p2.p2_slow;
589         } else {
590                 if (target < limit->p2.dot_limit)
591                         clock.p2 = limit->p2.p2_slow;
592                 else
593                         clock.p2 = limit->p2.p2_fast;
594         }
595
596         memset(best_clock, 0, sizeof(*best_clock));
597
598         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
599              clock.m1++) {
600                 for (clock.m2 = limit->m2.min;
601                      clock.m2 <= limit->m2.max; clock.m2++) {
602                         for (clock.n = limit->n.min;
603                              clock.n <= limit->n.max; clock.n++) {
604                                 for (clock.p1 = limit->p1.min;
605                                         clock.p1 <= limit->p1.max; clock.p1++) {
606                                         int this_err;
607
608                                         pineview_clock(refclk, &clock);
609                                         if (!intel_PLL_is_valid(dev, limit,
610                                                                 &clock))
611                                                 continue;
612                                         if (match_clock &&
613                                             clock.p != match_clock->p)
614                                                 continue;
615
616                                         this_err = abs(clock.dot - target);
617                                         if (this_err < err) {
618                                                 *best_clock = clock;
619                                                 err = this_err;
620                                         }
621                                 }
622                         }
623                 }
624         }
625
626         return (err != target);
627 }
628
629 static bool
630 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
631                    int target, int refclk, intel_clock_t *match_clock,
632                    intel_clock_t *best_clock)
633 {
634         struct drm_device *dev = crtc->dev;
635         intel_clock_t clock;
636         int max_n;
637         bool found;
638         /* approximately equals target * 0.00585 */
639         int err_most = (target >> 8) + (target >> 9);
640         found = false;
641
642         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643                 if (intel_is_dual_link_lvds(dev))
644                         clock.p2 = limit->p2.p2_fast;
645                 else
646                         clock.p2 = limit->p2.p2_slow;
647         } else {
648                 if (target < limit->p2.dot_limit)
649                         clock.p2 = limit->p2.p2_slow;
650                 else
651                         clock.p2 = limit->p2.p2_fast;
652         }
653
654         memset(best_clock, 0, sizeof(*best_clock));
655         max_n = limit->n.max;
656         /* based on hardware requirement, prefer smaller n to precision */
657         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
658                 /* based on hardware requirement, prefere larger m1,m2 */
659                 for (clock.m1 = limit->m1.max;
660                      clock.m1 >= limit->m1.min; clock.m1--) {
661                         for (clock.m2 = limit->m2.max;
662                              clock.m2 >= limit->m2.min; clock.m2--) {
663                                 for (clock.p1 = limit->p1.max;
664                                      clock.p1 >= limit->p1.min; clock.p1--) {
665                                         int this_err;
666
667                                         i9xx_clock(refclk, &clock);
668                                         if (!intel_PLL_is_valid(dev, limit,
669                                                                 &clock))
670                                                 continue;
671
672                                         this_err = abs(clock.dot - target);
673                                         if (this_err < err_most) {
674                                                 *best_clock = clock;
675                                                 err_most = this_err;
676                                                 max_n = clock.n;
677                                                 found = true;
678                                         }
679                                 }
680                         }
681                 }
682         }
683         return found;
684 }
685
686 static bool
687 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
688                    int target, int refclk, intel_clock_t *match_clock,
689                    intel_clock_t *best_clock)
690 {
691         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
692         u32 m, n, fastclk;
693         u32 updrate, minupdate, p;
694         unsigned long bestppm, ppm, absppm;
695         int dotclk, flag;
696
697         flag = 0;
698         dotclk = target * 1000;
699         bestppm = 1000000;
700         ppm = absppm = 0;
701         fastclk = dotclk / (2*100);
702         updrate = 0;
703         minupdate = 19200;
704         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
705         bestm1 = bestm2 = bestp1 = bestp2 = 0;
706
707         /* based on hardware requirement, prefer smaller n to precision */
708         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
709                 updrate = refclk / n;
710                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
711                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
712                                 if (p2 > 10)
713                                         p2 = p2 - 1;
714                                 p = p1 * p2;
715                                 /* based on hardware requirement, prefer bigger m1,m2 values */
716                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
717                                         m2 = (((2*(fastclk * p * n / m1 )) +
718                                                refclk) / (2*refclk));
719                                         m = m1 * m2;
720                                         vco = updrate * m;
721                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
722                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
723                                                 absppm = (ppm > 0) ? ppm : (-ppm);
724                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
725                                                         bestppm = 0;
726                                                         flag = 1;
727                                                 }
728                                                 if (absppm < bestppm - 10) {
729                                                         bestppm = absppm;
730                                                         flag = 1;
731                                                 }
732                                                 if (flag) {
733                                                         bestn = n;
734                                                         bestm1 = m1;
735                                                         bestm2 = m2;
736                                                         bestp1 = p1;
737                                                         bestp2 = p2;
738                                                         flag = 0;
739                                                 }
740                                         }
741                                 }
742                         }
743                 }
744         }
745         best_clock->n = bestn;
746         best_clock->m1 = bestm1;
747         best_clock->m2 = bestm2;
748         best_clock->p1 = bestp1;
749         best_clock->p2 = bestp2;
750
751         return true;
752 }
753
754 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
755                                              enum pipe pipe)
756 {
757         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
759
760         return intel_crtc->config.cpu_transcoder;
761 }
762
763 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
764 {
765         struct drm_i915_private *dev_priv = dev->dev_private;
766         u32 frame, frame_reg = PIPEFRAME(pipe);
767
768         frame = I915_READ(frame_reg);
769
770         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
771                 DRM_DEBUG_KMS("vblank wait timed out\n");
772 }
773
774 /**
775  * intel_wait_for_vblank - wait for vblank on a given pipe
776  * @dev: drm device
777  * @pipe: pipe to wait for
778  *
779  * Wait for vblank to occur on a given pipe.  Needed for various bits of
780  * mode setting code.
781  */
782 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
783 {
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         int pipestat_reg = PIPESTAT(pipe);
786
787         if (INTEL_INFO(dev)->gen >= 5) {
788                 ironlake_wait_for_vblank(dev, pipe);
789                 return;
790         }
791
792         /* Clear existing vblank status. Note this will clear any other
793          * sticky status fields as well.
794          *
795          * This races with i915_driver_irq_handler() with the result
796          * that either function could miss a vblank event.  Here it is not
797          * fatal, as we will either wait upon the next vblank interrupt or
798          * timeout.  Generally speaking intel_wait_for_vblank() is only
799          * called during modeset at which time the GPU should be idle and
800          * should *not* be performing page flips and thus not waiting on
801          * vblanks...
802          * Currently, the result of us stealing a vblank from the irq
803          * handler is that a single frame will be skipped during swapbuffers.
804          */
805         I915_WRITE(pipestat_reg,
806                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
807
808         /* Wait for vblank interrupt bit to set */
809         if (wait_for(I915_READ(pipestat_reg) &
810                      PIPE_VBLANK_INTERRUPT_STATUS,
811                      50))
812                 DRM_DEBUG_KMS("vblank wait timed out\n");
813 }
814
815 /*
816  * intel_wait_for_pipe_off - wait for pipe to turn off
817  * @dev: drm device
818  * @pipe: pipe to wait for
819  *
820  * After disabling a pipe, we can't wait for vblank in the usual way,
821  * spinning on the vblank interrupt status bit, since we won't actually
822  * see an interrupt when the pipe is disabled.
823  *
824  * On Gen4 and above:
825  *   wait for the pipe register state bit to turn off
826  *
827  * Otherwise:
828  *   wait for the display line value to settle (it usually
829  *   ends up stopping at the start of the next frame).
830  *
831  */
832 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
833 {
834         struct drm_i915_private *dev_priv = dev->dev_private;
835         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
836                                                                       pipe);
837
838         if (INTEL_INFO(dev)->gen >= 4) {
839                 int reg = PIPECONF(cpu_transcoder);
840
841                 /* Wait for the Pipe State to go off */
842                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
843                              100))
844                         WARN(1, "pipe_off wait timed out\n");
845         } else {
846                 u32 last_line, line_mask;
847                 int reg = PIPEDSL(pipe);
848                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
849
850                 if (IS_GEN2(dev))
851                         line_mask = DSL_LINEMASK_GEN2;
852                 else
853                         line_mask = DSL_LINEMASK_GEN3;
854
855                 /* Wait for the display line to settle */
856                 do {
857                         last_line = I915_READ(reg) & line_mask;
858                         mdelay(5);
859                 } while (((I915_READ(reg) & line_mask) != last_line) &&
860                          time_after(timeout, jiffies));
861                 if (time_after(jiffies, timeout))
862                         WARN(1, "pipe_off wait timed out\n");
863         }
864 }
865
866 /*
867  * ibx_digital_port_connected - is the specified port connected?
868  * @dev_priv: i915 private structure
869  * @port: the port to test
870  *
871  * Returns true if @port is connected, false otherwise.
872  */
873 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
874                                 struct intel_digital_port *port)
875 {
876         u32 bit;
877
878         if (HAS_PCH_IBX(dev_priv->dev)) {
879                 switch(port->port) {
880                 case PORT_B:
881                         bit = SDE_PORTB_HOTPLUG;
882                         break;
883                 case PORT_C:
884                         bit = SDE_PORTC_HOTPLUG;
885                         break;
886                 case PORT_D:
887                         bit = SDE_PORTD_HOTPLUG;
888                         break;
889                 default:
890                         return true;
891                 }
892         } else {
893                 switch(port->port) {
894                 case PORT_B:
895                         bit = SDE_PORTB_HOTPLUG_CPT;
896                         break;
897                 case PORT_C:
898                         bit = SDE_PORTC_HOTPLUG_CPT;
899                         break;
900                 case PORT_D:
901                         bit = SDE_PORTD_HOTPLUG_CPT;
902                         break;
903                 default:
904                         return true;
905                 }
906         }
907
908         return I915_READ(SDEISR) & bit;
909 }
910
911 static const char *state_string(bool enabled)
912 {
913         return enabled ? "on" : "off";
914 }
915
916 /* Only for pre-ILK configs */
917 void assert_pll(struct drm_i915_private *dev_priv,
918                 enum pipe pipe, bool state)
919 {
920         int reg;
921         u32 val;
922         bool cur_state;
923
924         reg = DPLL(pipe);
925         val = I915_READ(reg);
926         cur_state = !!(val & DPLL_VCO_ENABLE);
927         WARN(cur_state != state,
928              "PLL state assertion failure (expected %s, current %s)\n",
929              state_string(state), state_string(cur_state));
930 }
931
932 struct intel_shared_dpll *
933 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
934 {
935         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
936
937         if (crtc->config.shared_dpll < 0)
938                 return NULL;
939
940         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
941 }
942
943 /* For ILK+ */
944 void assert_shared_dpll(struct drm_i915_private *dev_priv,
945                         struct intel_shared_dpll *pll,
946                         bool state)
947 {
948         bool cur_state;
949         struct intel_dpll_hw_state hw_state;
950
951         if (HAS_PCH_LPT(dev_priv->dev)) {
952                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
953                 return;
954         }
955
956         if (WARN (!pll,
957                   "asserting DPLL %s with no DPLL\n", state_string(state)))
958                 return;
959
960         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
961         WARN(cur_state != state,
962              "%s assertion failure (expected %s, current %s)\n",
963              pll->name, state_string(state), state_string(cur_state));
964 }
965
966 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
967                           enum pipe pipe, bool state)
968 {
969         int reg;
970         u32 val;
971         bool cur_state;
972         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
973                                                                       pipe);
974
975         if (HAS_DDI(dev_priv->dev)) {
976                 /* DDI does not have a specific FDI_TX register */
977                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
978                 val = I915_READ(reg);
979                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
980         } else {
981                 reg = FDI_TX_CTL(pipe);
982                 val = I915_READ(reg);
983                 cur_state = !!(val & FDI_TX_ENABLE);
984         }
985         WARN(cur_state != state,
986              "FDI TX state assertion failure (expected %s, current %s)\n",
987              state_string(state), state_string(cur_state));
988 }
989 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
990 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
991
992 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
993                           enum pipe pipe, bool state)
994 {
995         int reg;
996         u32 val;
997         bool cur_state;
998
999         reg = FDI_RX_CTL(pipe);
1000         val = I915_READ(reg);
1001         cur_state = !!(val & FDI_RX_ENABLE);
1002         WARN(cur_state != state,
1003              "FDI RX state assertion failure (expected %s, current %s)\n",
1004              state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1007 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1008
1009 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1010                                       enum pipe pipe)
1011 {
1012         int reg;
1013         u32 val;
1014
1015         /* ILK FDI PLL is always enabled */
1016         if (dev_priv->info->gen == 5)
1017                 return;
1018
1019         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1020         if (HAS_DDI(dev_priv->dev))
1021                 return;
1022
1023         reg = FDI_TX_CTL(pipe);
1024         val = I915_READ(reg);
1025         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1026 }
1027
1028 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1029                        enum pipe pipe, bool state)
1030 {
1031         int reg;
1032         u32 val;
1033         bool cur_state;
1034
1035         reg = FDI_RX_CTL(pipe);
1036         val = I915_READ(reg);
1037         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1038         WARN(cur_state != state,
1039              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1040              state_string(state), state_string(cur_state));
1041 }
1042
1043 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1044                                   enum pipe pipe)
1045 {
1046         int pp_reg, lvds_reg;
1047         u32 val;
1048         enum pipe panel_pipe = PIPE_A;
1049         bool locked = true;
1050
1051         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1052                 pp_reg = PCH_PP_CONTROL;
1053                 lvds_reg = PCH_LVDS;
1054         } else {
1055                 pp_reg = PP_CONTROL;
1056                 lvds_reg = LVDS;
1057         }
1058
1059         val = I915_READ(pp_reg);
1060         if (!(val & PANEL_POWER_ON) ||
1061             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1062                 locked = false;
1063
1064         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1065                 panel_pipe = PIPE_B;
1066
1067         WARN(panel_pipe == pipe && locked,
1068              "panel assertion failure, pipe %c regs locked\n",
1069              pipe_name(pipe));
1070 }
1071
1072 void assert_pipe(struct drm_i915_private *dev_priv,
1073                  enum pipe pipe, bool state)
1074 {
1075         int reg;
1076         u32 val;
1077         bool cur_state;
1078         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1079                                                                       pipe);
1080
1081         /* if we need the pipe A quirk it must be always on */
1082         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1083                 state = true;
1084
1085         if (!intel_display_power_enabled(dev_priv->dev,
1086                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1087                 cur_state = false;
1088         } else {
1089                 reg = PIPECONF(cpu_transcoder);
1090                 val = I915_READ(reg);
1091                 cur_state = !!(val & PIPECONF_ENABLE);
1092         }
1093
1094         WARN(cur_state != state,
1095              "pipe %c assertion failure (expected %s, current %s)\n",
1096              pipe_name(pipe), state_string(state), state_string(cur_state));
1097 }
1098
1099 static void assert_plane(struct drm_i915_private *dev_priv,
1100                          enum plane plane, bool state)
1101 {
1102         int reg;
1103         u32 val;
1104         bool cur_state;
1105
1106         reg = DSPCNTR(plane);
1107         val = I915_READ(reg);
1108         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1109         WARN(cur_state != state,
1110              "plane %c assertion failure (expected %s, current %s)\n",
1111              plane_name(plane), state_string(state), state_string(cur_state));
1112 }
1113
1114 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1115 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1116
1117 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1118                                    enum pipe pipe)
1119 {
1120         struct drm_device *dev = dev_priv->dev;
1121         int reg, i;
1122         u32 val;
1123         int cur_pipe;
1124
1125         /* Primary planes are fixed to pipes on gen4+ */
1126         if (INTEL_INFO(dev)->gen >= 4) {
1127                 reg = DSPCNTR(pipe);
1128                 val = I915_READ(reg);
1129                 WARN((val & DISPLAY_PLANE_ENABLE),
1130                      "plane %c assertion failure, should be disabled but not\n",
1131                      plane_name(pipe));
1132                 return;
1133         }
1134
1135         /* Need to check both planes against the pipe */
1136         for_each_pipe(i) {
1137                 reg = DSPCNTR(i);
1138                 val = I915_READ(reg);
1139                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1140                         DISPPLANE_SEL_PIPE_SHIFT;
1141                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1142                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1143                      plane_name(i), pipe_name(pipe));
1144         }
1145 }
1146
1147 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1148                                     enum pipe pipe)
1149 {
1150         struct drm_device *dev = dev_priv->dev;
1151         int reg, i;
1152         u32 val;
1153
1154         if (IS_VALLEYVIEW(dev)) {
1155                 for (i = 0; i < dev_priv->num_plane; i++) {
1156                         reg = SPCNTR(pipe, i);
1157                         val = I915_READ(reg);
1158                         WARN((val & SP_ENABLE),
1159                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1160                              sprite_name(pipe, i), pipe_name(pipe));
1161                 }
1162         } else if (INTEL_INFO(dev)->gen >= 7) {
1163                 reg = SPRCTL(pipe);
1164                 val = I915_READ(reg);
1165                 WARN((val & SPRITE_ENABLE),
1166                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1167                      plane_name(pipe), pipe_name(pipe));
1168         } else if (INTEL_INFO(dev)->gen >= 5) {
1169                 reg = DVSCNTR(pipe);
1170                 val = I915_READ(reg);
1171                 WARN((val & DVS_ENABLE),
1172                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1173                      plane_name(pipe), pipe_name(pipe));
1174         }
1175 }
1176
1177 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1178 {
1179         u32 val;
1180         bool enabled;
1181
1182         if (HAS_PCH_LPT(dev_priv->dev)) {
1183                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1184                 return;
1185         }
1186
1187         val = I915_READ(PCH_DREF_CONTROL);
1188         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1189                             DREF_SUPERSPREAD_SOURCE_MASK));
1190         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1191 }
1192
1193 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1194                                            enum pipe pipe)
1195 {
1196         int reg;
1197         u32 val;
1198         bool enabled;
1199
1200         reg = PCH_TRANSCONF(pipe);
1201         val = I915_READ(reg);
1202         enabled = !!(val & TRANS_ENABLE);
1203         WARN(enabled,
1204              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1205              pipe_name(pipe));
1206 }
1207
1208 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1209                             enum pipe pipe, u32 port_sel, u32 val)
1210 {
1211         if ((val & DP_PORT_EN) == 0)
1212                 return false;
1213
1214         if (HAS_PCH_CPT(dev_priv->dev)) {
1215                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1216                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1217                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1218                         return false;
1219         } else {
1220                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1221                         return false;
1222         }
1223         return true;
1224 }
1225
1226 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1227                               enum pipe pipe, u32 val)
1228 {
1229         if ((val & SDVO_ENABLE) == 0)
1230                 return false;
1231
1232         if (HAS_PCH_CPT(dev_priv->dev)) {
1233                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1234                         return false;
1235         } else {
1236                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1237                         return false;
1238         }
1239         return true;
1240 }
1241
1242 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1243                               enum pipe pipe, u32 val)
1244 {
1245         if ((val & LVDS_PORT_EN) == 0)
1246                 return false;
1247
1248         if (HAS_PCH_CPT(dev_priv->dev)) {
1249                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1250                         return false;
1251         } else {
1252                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1253                         return false;
1254         }
1255         return true;
1256 }
1257
1258 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1259                               enum pipe pipe, u32 val)
1260 {
1261         if ((val & ADPA_DAC_ENABLE) == 0)
1262                 return false;
1263         if (HAS_PCH_CPT(dev_priv->dev)) {
1264                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1265                         return false;
1266         } else {
1267                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1268                         return false;
1269         }
1270         return true;
1271 }
1272
1273 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1274                                    enum pipe pipe, int reg, u32 port_sel)
1275 {
1276         u32 val = I915_READ(reg);
1277         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1278              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1279              reg, pipe_name(pipe));
1280
1281         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1282              && (val & DP_PIPEB_SELECT),
1283              "IBX PCH dp port still using transcoder B\n");
1284 }
1285
1286 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1287                                      enum pipe pipe, int reg)
1288 {
1289         u32 val = I915_READ(reg);
1290         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1291              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1292              reg, pipe_name(pipe));
1293
1294         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1295              && (val & SDVO_PIPE_B_SELECT),
1296              "IBX PCH hdmi port still using transcoder B\n");
1297 }
1298
1299 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1300                                       enum pipe pipe)
1301 {
1302         int reg;
1303         u32 val;
1304
1305         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1306         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1307         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1308
1309         reg = PCH_ADPA;
1310         val = I915_READ(reg);
1311         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1312              "PCH VGA enabled on transcoder %c, should be disabled\n",
1313              pipe_name(pipe));
1314
1315         reg = PCH_LVDS;
1316         val = I915_READ(reg);
1317         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1318              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1319              pipe_name(pipe));
1320
1321         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1322         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1323         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1324 }
1325
1326 static void vlv_enable_pll(struct intel_crtc *crtc)
1327 {
1328         struct drm_device *dev = crtc->base.dev;
1329         struct drm_i915_private *dev_priv = dev->dev_private;
1330         int reg = DPLL(crtc->pipe);
1331         u32 dpll = crtc->config.dpll_hw_state.dpll;
1332
1333         assert_pipe_disabled(dev_priv, crtc->pipe);
1334
1335         /* No really, not for ILK+ */
1336         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1337
1338         /* PLL is protected by panel, make sure we can write it */
1339         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1340                 assert_panel_unlocked(dev_priv, crtc->pipe);
1341
1342         I915_WRITE(reg, dpll);
1343         POSTING_READ(reg);
1344         udelay(150);
1345
1346         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1347                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1348
1349         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1350         POSTING_READ(DPLL_MD(crtc->pipe));
1351
1352         /* We do this three times for luck */
1353         I915_WRITE(reg, dpll);
1354         POSTING_READ(reg);
1355         udelay(150); /* wait for warmup */
1356         I915_WRITE(reg, dpll);
1357         POSTING_READ(reg);
1358         udelay(150); /* wait for warmup */
1359         I915_WRITE(reg, dpll);
1360         POSTING_READ(reg);
1361         udelay(150); /* wait for warmup */
1362 }
1363
1364 static void i9xx_enable_pll(struct intel_crtc *crtc)
1365 {
1366         struct drm_device *dev = crtc->base.dev;
1367         struct drm_i915_private *dev_priv = dev->dev_private;
1368         int reg = DPLL(crtc->pipe);
1369         u32 dpll = crtc->config.dpll_hw_state.dpll;
1370
1371         assert_pipe_disabled(dev_priv, crtc->pipe);
1372
1373         /* No really, not for ILK+ */
1374         BUG_ON(dev_priv->info->gen >= 5);
1375
1376         /* PLL is protected by panel, make sure we can write it */
1377         if (IS_MOBILE(dev) && !IS_I830(dev))
1378                 assert_panel_unlocked(dev_priv, crtc->pipe);
1379
1380         I915_WRITE(reg, dpll);
1381
1382         /* Wait for the clocks to stabilize. */
1383         POSTING_READ(reg);
1384         udelay(150);
1385
1386         if (INTEL_INFO(dev)->gen >= 4) {
1387                 I915_WRITE(DPLL_MD(crtc->pipe),
1388                            crtc->config.dpll_hw_state.dpll_md);
1389         } else {
1390                 /* The pixel multiplier can only be updated once the
1391                  * DPLL is enabled and the clocks are stable.
1392                  *
1393                  * So write it again.
1394                  */
1395                 I915_WRITE(reg, dpll);
1396         }
1397
1398         /* We do this three times for luck */
1399         I915_WRITE(reg, dpll);
1400         POSTING_READ(reg);
1401         udelay(150); /* wait for warmup */
1402         I915_WRITE(reg, dpll);
1403         POSTING_READ(reg);
1404         udelay(150); /* wait for warmup */
1405         I915_WRITE(reg, dpll);
1406         POSTING_READ(reg);
1407         udelay(150); /* wait for warmup */
1408 }
1409
1410 /**
1411  * i9xx_disable_pll - disable a PLL
1412  * @dev_priv: i915 private structure
1413  * @pipe: pipe PLL to disable
1414  *
1415  * Disable the PLL for @pipe, making sure the pipe is off first.
1416  *
1417  * Note!  This is for pre-ILK only.
1418  */
1419 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1420 {
1421         /* Don't disable pipe A or pipe A PLLs if needed */
1422         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1423                 return;
1424
1425         /* Make sure the pipe isn't still relying on us */
1426         assert_pipe_disabled(dev_priv, pipe);
1427
1428         I915_WRITE(DPLL(pipe), 0);
1429         POSTING_READ(DPLL(pipe));
1430 }
1431
1432 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1433 {
1434         u32 port_mask;
1435
1436         if (!port)
1437                 port_mask = DPLL_PORTB_READY_MASK;
1438         else
1439                 port_mask = DPLL_PORTC_READY_MASK;
1440
1441         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1442                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1443                      'B' + port, I915_READ(DPLL(0)));
1444 }
1445
1446 /**
1447  * ironlake_enable_shared_dpll - enable PCH PLL
1448  * @dev_priv: i915 private structure
1449  * @pipe: pipe PLL to enable
1450  *
1451  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1452  * drives the transcoder clock.
1453  */
1454 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1455 {
1456         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1457         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1458
1459         /* PCH PLLs only available on ILK, SNB and IVB */
1460         BUG_ON(dev_priv->info->gen < 5);
1461         if (WARN_ON(pll == NULL))
1462                 return;
1463
1464         if (WARN_ON(pll->refcount == 0))
1465                 return;
1466
1467         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1468                       pll->name, pll->active, pll->on,
1469                       crtc->base.base.id);
1470
1471         if (pll->active++) {
1472                 WARN_ON(!pll->on);
1473                 assert_shared_dpll_enabled(dev_priv, pll);
1474                 return;
1475         }
1476         WARN_ON(pll->on);
1477
1478         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1479         pll->enable(dev_priv, pll);
1480         pll->on = true;
1481 }
1482
1483 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1484 {
1485         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1486         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1487
1488         /* PCH only available on ILK+ */
1489         BUG_ON(dev_priv->info->gen < 5);
1490         if (WARN_ON(pll == NULL))
1491                return;
1492
1493         if (WARN_ON(pll->refcount == 0))
1494                 return;
1495
1496         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1497                       pll->name, pll->active, pll->on,
1498                       crtc->base.base.id);
1499
1500         if (WARN_ON(pll->active == 0)) {
1501                 assert_shared_dpll_disabled(dev_priv, pll);
1502                 return;
1503         }
1504
1505         assert_shared_dpll_enabled(dev_priv, pll);
1506         WARN_ON(!pll->on);
1507         if (--pll->active)
1508                 return;
1509
1510         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1511         pll->disable(dev_priv, pll);
1512         pll->on = false;
1513 }
1514
1515 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1516                                            enum pipe pipe)
1517 {
1518         struct drm_device *dev = dev_priv->dev;
1519         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1520         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1521         uint32_t reg, val, pipeconf_val;
1522
1523         /* PCH only available on ILK+ */
1524         BUG_ON(dev_priv->info->gen < 5);
1525
1526         /* Make sure PCH DPLL is enabled */
1527         assert_shared_dpll_enabled(dev_priv,
1528                                    intel_crtc_to_shared_dpll(intel_crtc));
1529
1530         /* FDI must be feeding us bits for PCH ports */
1531         assert_fdi_tx_enabled(dev_priv, pipe);
1532         assert_fdi_rx_enabled(dev_priv, pipe);
1533
1534         if (HAS_PCH_CPT(dev)) {
1535                 /* Workaround: Set the timing override bit before enabling the
1536                  * pch transcoder. */
1537                 reg = TRANS_CHICKEN2(pipe);
1538                 val = I915_READ(reg);
1539                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1540                 I915_WRITE(reg, val);
1541         }
1542
1543         reg = PCH_TRANSCONF(pipe);
1544         val = I915_READ(reg);
1545         pipeconf_val = I915_READ(PIPECONF(pipe));
1546
1547         if (HAS_PCH_IBX(dev_priv->dev)) {
1548                 /*
1549                  * make the BPC in transcoder be consistent with
1550                  * that in pipeconf reg.
1551                  */
1552                 val &= ~PIPECONF_BPC_MASK;
1553                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1554         }
1555
1556         val &= ~TRANS_INTERLACE_MASK;
1557         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1558                 if (HAS_PCH_IBX(dev_priv->dev) &&
1559                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1560                         val |= TRANS_LEGACY_INTERLACED_ILK;
1561                 else
1562                         val |= TRANS_INTERLACED;
1563         else
1564                 val |= TRANS_PROGRESSIVE;
1565
1566         I915_WRITE(reg, val | TRANS_ENABLE);
1567         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1568                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1569 }
1570
1571 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1572                                       enum transcoder cpu_transcoder)
1573 {
1574         u32 val, pipeconf_val;
1575
1576         /* PCH only available on ILK+ */
1577         BUG_ON(dev_priv->info->gen < 5);
1578
1579         /* FDI must be feeding us bits for PCH ports */
1580         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1581         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1582
1583         /* Workaround: set timing override bit. */
1584         val = I915_READ(_TRANSA_CHICKEN2);
1585         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1586         I915_WRITE(_TRANSA_CHICKEN2, val);
1587
1588         val = TRANS_ENABLE;
1589         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1590
1591         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1592             PIPECONF_INTERLACED_ILK)
1593                 val |= TRANS_INTERLACED;
1594         else
1595                 val |= TRANS_PROGRESSIVE;
1596
1597         I915_WRITE(LPT_TRANSCONF, val);
1598         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1599                 DRM_ERROR("Failed to enable PCH transcoder\n");
1600 }
1601
1602 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1603                                             enum pipe pipe)
1604 {
1605         struct drm_device *dev = dev_priv->dev;
1606         uint32_t reg, val;
1607
1608         /* FDI relies on the transcoder */
1609         assert_fdi_tx_disabled(dev_priv, pipe);
1610         assert_fdi_rx_disabled(dev_priv, pipe);
1611
1612         /* Ports must be off as well */
1613         assert_pch_ports_disabled(dev_priv, pipe);
1614
1615         reg = PCH_TRANSCONF(pipe);
1616         val = I915_READ(reg);
1617         val &= ~TRANS_ENABLE;
1618         I915_WRITE(reg, val);
1619         /* wait for PCH transcoder off, transcoder state */
1620         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1621                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1622
1623         if (!HAS_PCH_IBX(dev)) {
1624                 /* Workaround: Clear the timing override chicken bit again. */
1625                 reg = TRANS_CHICKEN2(pipe);
1626                 val = I915_READ(reg);
1627                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1628                 I915_WRITE(reg, val);
1629         }
1630 }
1631
1632 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1633 {
1634         u32 val;
1635
1636         val = I915_READ(LPT_TRANSCONF);
1637         val &= ~TRANS_ENABLE;
1638         I915_WRITE(LPT_TRANSCONF, val);
1639         /* wait for PCH transcoder off, transcoder state */
1640         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1641                 DRM_ERROR("Failed to disable PCH transcoder\n");
1642
1643         /* Workaround: clear timing override bit. */
1644         val = I915_READ(_TRANSA_CHICKEN2);
1645         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1646         I915_WRITE(_TRANSA_CHICKEN2, val);
1647 }
1648
1649 /**
1650  * intel_enable_pipe - enable a pipe, asserting requirements
1651  * @dev_priv: i915 private structure
1652  * @pipe: pipe to enable
1653  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1654  *
1655  * Enable @pipe, making sure that various hardware specific requirements
1656  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1657  *
1658  * @pipe should be %PIPE_A or %PIPE_B.
1659  *
1660  * Will wait until the pipe is actually running (i.e. first vblank) before
1661  * returning.
1662  */
1663 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1664                               bool pch_port)
1665 {
1666         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1667                                                                       pipe);
1668         enum pipe pch_transcoder;
1669         int reg;
1670         u32 val;
1671
1672         assert_planes_disabled(dev_priv, pipe);
1673         assert_sprites_disabled(dev_priv, pipe);
1674
1675         if (HAS_PCH_LPT(dev_priv->dev))
1676                 pch_transcoder = TRANSCODER_A;
1677         else
1678                 pch_transcoder = pipe;
1679
1680         /*
1681          * A pipe without a PLL won't actually be able to drive bits from
1682          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1683          * need the check.
1684          */
1685         if (!HAS_PCH_SPLIT(dev_priv->dev))
1686                 assert_pll_enabled(dev_priv, pipe);
1687         else {
1688                 if (pch_port) {
1689                         /* if driving the PCH, we need FDI enabled */
1690                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1691                         assert_fdi_tx_pll_enabled(dev_priv,
1692                                                   (enum pipe) cpu_transcoder);
1693                 }
1694                 /* FIXME: assert CPU port conditions for SNB+ */
1695         }
1696
1697         reg = PIPECONF(cpu_transcoder);
1698         val = I915_READ(reg);
1699         if (val & PIPECONF_ENABLE)
1700                 return;
1701
1702         I915_WRITE(reg, val | PIPECONF_ENABLE);
1703         intel_wait_for_vblank(dev_priv->dev, pipe);
1704 }
1705
1706 /**
1707  * intel_disable_pipe - disable a pipe, asserting requirements
1708  * @dev_priv: i915 private structure
1709  * @pipe: pipe to disable
1710  *
1711  * Disable @pipe, making sure that various hardware specific requirements
1712  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1713  *
1714  * @pipe should be %PIPE_A or %PIPE_B.
1715  *
1716  * Will wait until the pipe has shut down before returning.
1717  */
1718 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1719                                enum pipe pipe)
1720 {
1721         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1722                                                                       pipe);
1723         int reg;
1724         u32 val;
1725
1726         /*
1727          * Make sure planes won't keep trying to pump pixels to us,
1728          * or we might hang the display.
1729          */
1730         assert_planes_disabled(dev_priv, pipe);
1731         assert_sprites_disabled(dev_priv, pipe);
1732
1733         /* Don't disable pipe A or pipe A PLLs if needed */
1734         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1735                 return;
1736
1737         reg = PIPECONF(cpu_transcoder);
1738         val = I915_READ(reg);
1739         if ((val & PIPECONF_ENABLE) == 0)
1740                 return;
1741
1742         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1743         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1744 }
1745
1746 /*
1747  * Plane regs are double buffered, going from enabled->disabled needs a
1748  * trigger in order to latch.  The display address reg provides this.
1749  */
1750 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1751                                       enum plane plane)
1752 {
1753         if (dev_priv->info->gen >= 4)
1754                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1755         else
1756                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1757 }
1758
1759 /**
1760  * intel_enable_plane - enable a display plane on a given pipe
1761  * @dev_priv: i915 private structure
1762  * @plane: plane to enable
1763  * @pipe: pipe being fed
1764  *
1765  * Enable @plane on @pipe, making sure that @pipe is running first.
1766  */
1767 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1768                                enum plane plane, enum pipe pipe)
1769 {
1770         int reg;
1771         u32 val;
1772
1773         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1774         assert_pipe_enabled(dev_priv, pipe);
1775
1776         reg = DSPCNTR(plane);
1777         val = I915_READ(reg);
1778         if (val & DISPLAY_PLANE_ENABLE)
1779                 return;
1780
1781         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1782         intel_flush_display_plane(dev_priv, plane);
1783         intel_wait_for_vblank(dev_priv->dev, pipe);
1784 }
1785
1786 /**
1787  * intel_disable_plane - disable a display plane
1788  * @dev_priv: i915 private structure
1789  * @plane: plane to disable
1790  * @pipe: pipe consuming the data
1791  *
1792  * Disable @plane; should be an independent operation.
1793  */
1794 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1795                                 enum plane plane, enum pipe pipe)
1796 {
1797         int reg;
1798         u32 val;
1799
1800         reg = DSPCNTR(plane);
1801         val = I915_READ(reg);
1802         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1803                 return;
1804
1805         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1806         intel_flush_display_plane(dev_priv, plane);
1807         intel_wait_for_vblank(dev_priv->dev, pipe);
1808 }
1809
1810 static bool need_vtd_wa(struct drm_device *dev)
1811 {
1812 #ifdef CONFIG_INTEL_IOMMU
1813         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1814                 return true;
1815 #endif
1816         return false;
1817 }
1818
1819 int
1820 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1821                            struct drm_i915_gem_object *obj,
1822                            struct intel_ring_buffer *pipelined)
1823 {
1824         struct drm_i915_private *dev_priv = dev->dev_private;
1825         u32 alignment;
1826         int ret;
1827
1828         switch (obj->tiling_mode) {
1829         case I915_TILING_NONE:
1830                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1831                         alignment = 128 * 1024;
1832                 else if (INTEL_INFO(dev)->gen >= 4)
1833                         alignment = 4 * 1024;
1834                 else
1835                         alignment = 64 * 1024;
1836                 break;
1837         case I915_TILING_X:
1838                 /* pin() will align the object as required by fence */
1839                 alignment = 0;
1840                 break;
1841         case I915_TILING_Y:
1842                 /* Despite that we check this in framebuffer_init userspace can
1843                  * screw us over and change the tiling after the fact. Only
1844                  * pinned buffers can't change their tiling. */
1845                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1846                 return -EINVAL;
1847         default:
1848                 BUG();
1849         }
1850
1851         /* Note that the w/a also requires 64 PTE of padding following the
1852          * bo. We currently fill all unused PTE with the shadow page and so
1853          * we should always have valid PTE following the scanout preventing
1854          * the VT-d warning.
1855          */
1856         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1857                 alignment = 256 * 1024;
1858
1859         dev_priv->mm.interruptible = false;
1860         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1861         if (ret)
1862                 goto err_interruptible;
1863
1864         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1865          * fence, whereas 965+ only requires a fence if using
1866          * framebuffer compression.  For simplicity, we always install
1867          * a fence as the cost is not that onerous.
1868          */
1869         ret = i915_gem_object_get_fence(obj);
1870         if (ret)
1871                 goto err_unpin;
1872
1873         i915_gem_object_pin_fence(obj);
1874
1875         dev_priv->mm.interruptible = true;
1876         return 0;
1877
1878 err_unpin:
1879         i915_gem_object_unpin_from_display_plane(obj);
1880 err_interruptible:
1881         dev_priv->mm.interruptible = true;
1882         return ret;
1883 }
1884
1885 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1886 {
1887         i915_gem_object_unpin_fence(obj);
1888         i915_gem_object_unpin_from_display_plane(obj);
1889 }
1890
1891 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1892  * is assumed to be a power-of-two. */
1893 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1894                                              unsigned int tiling_mode,
1895                                              unsigned int cpp,
1896                                              unsigned int pitch)
1897 {
1898         if (tiling_mode != I915_TILING_NONE) {
1899                 unsigned int tile_rows, tiles;
1900
1901                 tile_rows = *y / 8;
1902                 *y %= 8;
1903
1904                 tiles = *x / (512/cpp);
1905                 *x %= 512/cpp;
1906
1907                 return tile_rows * pitch * 8 + tiles * 4096;
1908         } else {
1909                 unsigned int offset;
1910
1911                 offset = *y * pitch + *x * cpp;
1912                 *y = 0;
1913                 *x = (offset & 4095) / cpp;
1914                 return offset & -4096;
1915         }
1916 }
1917
1918 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1919                              int x, int y)
1920 {
1921         struct drm_device *dev = crtc->dev;
1922         struct drm_i915_private *dev_priv = dev->dev_private;
1923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1924         struct intel_framebuffer *intel_fb;
1925         struct drm_i915_gem_object *obj;
1926         int plane = intel_crtc->plane;
1927         unsigned long linear_offset;
1928         u32 dspcntr;
1929         u32 reg;
1930
1931         switch (plane) {
1932         case 0:
1933         case 1:
1934                 break;
1935         default:
1936                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1937                 return -EINVAL;
1938         }
1939
1940         intel_fb = to_intel_framebuffer(fb);
1941         obj = intel_fb->obj;
1942
1943         reg = DSPCNTR(plane);
1944         dspcntr = I915_READ(reg);
1945         /* Mask out pixel format bits in case we change it */
1946         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1947         switch (fb->pixel_format) {
1948         case DRM_FORMAT_C8:
1949                 dspcntr |= DISPPLANE_8BPP;
1950                 break;
1951         case DRM_FORMAT_XRGB1555:
1952         case DRM_FORMAT_ARGB1555:
1953                 dspcntr |= DISPPLANE_BGRX555;
1954                 break;
1955         case DRM_FORMAT_RGB565:
1956                 dspcntr |= DISPPLANE_BGRX565;
1957                 break;
1958         case DRM_FORMAT_XRGB8888:
1959         case DRM_FORMAT_ARGB8888:
1960                 dspcntr |= DISPPLANE_BGRX888;
1961                 break;
1962         case DRM_FORMAT_XBGR8888:
1963         case DRM_FORMAT_ABGR8888:
1964                 dspcntr |= DISPPLANE_RGBX888;
1965                 break;
1966         case DRM_FORMAT_XRGB2101010:
1967         case DRM_FORMAT_ARGB2101010:
1968                 dspcntr |= DISPPLANE_BGRX101010;
1969                 break;
1970         case DRM_FORMAT_XBGR2101010:
1971         case DRM_FORMAT_ABGR2101010:
1972                 dspcntr |= DISPPLANE_RGBX101010;
1973                 break;
1974         default:
1975                 BUG();
1976         }
1977
1978         if (INTEL_INFO(dev)->gen >= 4) {
1979                 if (obj->tiling_mode != I915_TILING_NONE)
1980                         dspcntr |= DISPPLANE_TILED;
1981                 else
1982                         dspcntr &= ~DISPPLANE_TILED;
1983         }
1984
1985         if (IS_G4X(dev))
1986                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1987
1988         I915_WRITE(reg, dspcntr);
1989
1990         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1991
1992         if (INTEL_INFO(dev)->gen >= 4) {
1993                 intel_crtc->dspaddr_offset =
1994                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1995                                                        fb->bits_per_pixel / 8,
1996                                                        fb->pitches[0]);
1997                 linear_offset -= intel_crtc->dspaddr_offset;
1998         } else {
1999                 intel_crtc->dspaddr_offset = linear_offset;
2000         }
2001
2002         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2003                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2004                       fb->pitches[0]);
2005         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2006         if (INTEL_INFO(dev)->gen >= 4) {
2007                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2008                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2009                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2010                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2011         } else
2012                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2013         POSTING_READ(reg);
2014
2015         return 0;
2016 }
2017
2018 static int ironlake_update_plane(struct drm_crtc *crtc,
2019                                  struct drm_framebuffer *fb, int x, int y)
2020 {
2021         struct drm_device *dev = crtc->dev;
2022         struct drm_i915_private *dev_priv = dev->dev_private;
2023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2024         struct intel_framebuffer *intel_fb;
2025         struct drm_i915_gem_object *obj;
2026         int plane = intel_crtc->plane;
2027         unsigned long linear_offset;
2028         u32 dspcntr;
2029         u32 reg;
2030
2031         switch (plane) {
2032         case 0:
2033         case 1:
2034         case 2:
2035                 break;
2036         default:
2037                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2038                 return -EINVAL;
2039         }
2040
2041         intel_fb = to_intel_framebuffer(fb);
2042         obj = intel_fb->obj;
2043
2044         reg = DSPCNTR(plane);
2045         dspcntr = I915_READ(reg);
2046         /* Mask out pixel format bits in case we change it */
2047         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048         switch (fb->pixel_format) {
2049         case DRM_FORMAT_C8:
2050                 dspcntr |= DISPPLANE_8BPP;
2051                 break;
2052         case DRM_FORMAT_RGB565:
2053                 dspcntr |= DISPPLANE_BGRX565;
2054                 break;
2055         case DRM_FORMAT_XRGB8888:
2056         case DRM_FORMAT_ARGB8888:
2057                 dspcntr |= DISPPLANE_BGRX888;
2058                 break;
2059         case DRM_FORMAT_XBGR8888:
2060         case DRM_FORMAT_ABGR8888:
2061                 dspcntr |= DISPPLANE_RGBX888;
2062                 break;
2063         case DRM_FORMAT_XRGB2101010:
2064         case DRM_FORMAT_ARGB2101010:
2065                 dspcntr |= DISPPLANE_BGRX101010;
2066                 break;
2067         case DRM_FORMAT_XBGR2101010:
2068         case DRM_FORMAT_ABGR2101010:
2069                 dspcntr |= DISPPLANE_RGBX101010;
2070                 break;
2071         default:
2072                 BUG();
2073         }
2074
2075         if (obj->tiling_mode != I915_TILING_NONE)
2076                 dspcntr |= DISPPLANE_TILED;
2077         else
2078                 dspcntr &= ~DISPPLANE_TILED;
2079
2080         /* must disable */
2081         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2082
2083         I915_WRITE(reg, dspcntr);
2084
2085         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2086         intel_crtc->dspaddr_offset =
2087                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2088                                                fb->bits_per_pixel / 8,
2089                                                fb->pitches[0]);
2090         linear_offset -= intel_crtc->dspaddr_offset;
2091
2092         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2093                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2094                       fb->pitches[0]);
2095         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2096         I915_MODIFY_DISPBASE(DSPSURF(plane),
2097                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2098         if (IS_HASWELL(dev)) {
2099                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2100         } else {
2101                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2102                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2103         }
2104         POSTING_READ(reg);
2105
2106         return 0;
2107 }
2108
2109 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2110 static int
2111 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2112                            int x, int y, enum mode_set_atomic state)
2113 {
2114         struct drm_device *dev = crtc->dev;
2115         struct drm_i915_private *dev_priv = dev->dev_private;
2116
2117         if (dev_priv->display.disable_fbc)
2118                 dev_priv->display.disable_fbc(dev);
2119         intel_increase_pllclock(crtc);
2120
2121         return dev_priv->display.update_plane(crtc, fb, x, y);
2122 }
2123
2124 void intel_display_handle_reset(struct drm_device *dev)
2125 {
2126         struct drm_i915_private *dev_priv = dev->dev_private;
2127         struct drm_crtc *crtc;
2128
2129         /*
2130          * Flips in the rings have been nuked by the reset,
2131          * so complete all pending flips so that user space
2132          * will get its events and not get stuck.
2133          *
2134          * Also update the base address of all primary
2135          * planes to the the last fb to make sure we're
2136          * showing the correct fb after a reset.
2137          *
2138          * Need to make two loops over the crtcs so that we
2139          * don't try to grab a crtc mutex before the
2140          * pending_flip_queue really got woken up.
2141          */
2142
2143         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2144                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2145                 enum plane plane = intel_crtc->plane;
2146
2147                 intel_prepare_page_flip(dev, plane);
2148                 intel_finish_page_flip_plane(dev, plane);
2149         }
2150
2151         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2152                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2153
2154                 mutex_lock(&crtc->mutex);
2155                 if (intel_crtc->active)
2156                         dev_priv->display.update_plane(crtc, crtc->fb,
2157                                                        crtc->x, crtc->y);
2158                 mutex_unlock(&crtc->mutex);
2159         }
2160 }
2161
2162 static int
2163 intel_finish_fb(struct drm_framebuffer *old_fb)
2164 {
2165         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2166         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2167         bool was_interruptible = dev_priv->mm.interruptible;
2168         int ret;
2169
2170         /* Big Hammer, we also need to ensure that any pending
2171          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2172          * current scanout is retired before unpinning the old
2173          * framebuffer.
2174          *
2175          * This should only fail upon a hung GPU, in which case we
2176          * can safely continue.
2177          */
2178         dev_priv->mm.interruptible = false;
2179         ret = i915_gem_object_finish_gpu(obj);
2180         dev_priv->mm.interruptible = was_interruptible;
2181
2182         return ret;
2183 }
2184
2185 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2186 {
2187         struct drm_device *dev = crtc->dev;
2188         struct drm_i915_master_private *master_priv;
2189         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2190
2191         if (!dev->primary->master)
2192                 return;
2193
2194         master_priv = dev->primary->master->driver_priv;
2195         if (!master_priv->sarea_priv)
2196                 return;
2197
2198         switch (intel_crtc->pipe) {
2199         case 0:
2200                 master_priv->sarea_priv->pipeA_x = x;
2201                 master_priv->sarea_priv->pipeA_y = y;
2202                 break;
2203         case 1:
2204                 master_priv->sarea_priv->pipeB_x = x;
2205                 master_priv->sarea_priv->pipeB_y = y;
2206                 break;
2207         default:
2208                 break;
2209         }
2210 }
2211
2212 static int
2213 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2214                     struct drm_framebuffer *fb)
2215 {
2216         struct drm_device *dev = crtc->dev;
2217         struct drm_i915_private *dev_priv = dev->dev_private;
2218         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2219         struct drm_framebuffer *old_fb;
2220         int ret;
2221
2222         /* no fb bound */
2223         if (!fb) {
2224                 DRM_ERROR("No FB bound\n");
2225                 return 0;
2226         }
2227
2228         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2229                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2230                           plane_name(intel_crtc->plane),
2231                           INTEL_INFO(dev)->num_pipes);
2232                 return -EINVAL;
2233         }
2234
2235         mutex_lock(&dev->struct_mutex);
2236         ret = intel_pin_and_fence_fb_obj(dev,
2237                                          to_intel_framebuffer(fb)->obj,
2238                                          NULL);
2239         if (ret != 0) {
2240                 mutex_unlock(&dev->struct_mutex);
2241                 DRM_ERROR("pin & fence failed\n");
2242                 return ret;
2243         }
2244
2245         /* Update pipe size and adjust fitter if needed */
2246         if (i915_fastboot) {
2247                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2248                            ((crtc->mode.hdisplay - 1) << 16) |
2249                            (crtc->mode.vdisplay - 1));
2250                 if (!intel_crtc->config.pch_pfit.size &&
2251                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2252                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2253                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2254                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2255                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2256                 }
2257         }
2258
2259         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2260         if (ret) {
2261                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2262                 mutex_unlock(&dev->struct_mutex);
2263                 DRM_ERROR("failed to update base address\n");
2264                 return ret;
2265         }
2266
2267         old_fb = crtc->fb;
2268         crtc->fb = fb;
2269         crtc->x = x;
2270         crtc->y = y;
2271
2272         if (old_fb) {
2273                 if (intel_crtc->active && old_fb != fb)
2274                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2275                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2276         }
2277
2278         intel_update_fbc(dev);
2279         intel_edp_psr_update(dev);
2280         mutex_unlock(&dev->struct_mutex);
2281
2282         intel_crtc_update_sarea_pos(crtc, x, y);
2283
2284         return 0;
2285 }
2286
2287 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2288 {
2289         struct drm_device *dev = crtc->dev;
2290         struct drm_i915_private *dev_priv = dev->dev_private;
2291         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2292         int pipe = intel_crtc->pipe;
2293         u32 reg, temp;
2294
2295         /* enable normal train */
2296         reg = FDI_TX_CTL(pipe);
2297         temp = I915_READ(reg);
2298         if (IS_IVYBRIDGE(dev)) {
2299                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2300                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2301         } else {
2302                 temp &= ~FDI_LINK_TRAIN_NONE;
2303                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2304         }
2305         I915_WRITE(reg, temp);
2306
2307         reg = FDI_RX_CTL(pipe);
2308         temp = I915_READ(reg);
2309         if (HAS_PCH_CPT(dev)) {
2310                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2311                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2312         } else {
2313                 temp &= ~FDI_LINK_TRAIN_NONE;
2314                 temp |= FDI_LINK_TRAIN_NONE;
2315         }
2316         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2317
2318         /* wait one idle pattern time */
2319         POSTING_READ(reg);
2320         udelay(1000);
2321
2322         /* IVB wants error correction enabled */
2323         if (IS_IVYBRIDGE(dev))
2324                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2325                            FDI_FE_ERRC_ENABLE);
2326 }
2327
2328 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2329 {
2330         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2331 }
2332
2333 static void ivb_modeset_global_resources(struct drm_device *dev)
2334 {
2335         struct drm_i915_private *dev_priv = dev->dev_private;
2336         struct intel_crtc *pipe_B_crtc =
2337                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2338         struct intel_crtc *pipe_C_crtc =
2339                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2340         uint32_t temp;
2341
2342         /*
2343          * When everything is off disable fdi C so that we could enable fdi B
2344          * with all lanes. Note that we don't care about enabled pipes without
2345          * an enabled pch encoder.
2346          */
2347         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2348             !pipe_has_enabled_pch(pipe_C_crtc)) {
2349                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2350                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2351
2352                 temp = I915_READ(SOUTH_CHICKEN1);
2353                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2354                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2355                 I915_WRITE(SOUTH_CHICKEN1, temp);
2356         }
2357 }
2358
2359 /* The FDI link training functions for ILK/Ibexpeak. */
2360 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2361 {
2362         struct drm_device *dev = crtc->dev;
2363         struct drm_i915_private *dev_priv = dev->dev_private;
2364         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2365         int pipe = intel_crtc->pipe;
2366         int plane = intel_crtc->plane;
2367         u32 reg, temp, tries;
2368
2369         /* FDI needs bits from pipe & plane first */
2370         assert_pipe_enabled(dev_priv, pipe);
2371         assert_plane_enabled(dev_priv, plane);
2372
2373         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2374            for train result */
2375         reg = FDI_RX_IMR(pipe);
2376         temp = I915_READ(reg);
2377         temp &= ~FDI_RX_SYMBOL_LOCK;
2378         temp &= ~FDI_RX_BIT_LOCK;
2379         I915_WRITE(reg, temp);
2380         I915_READ(reg);
2381         udelay(150);
2382
2383         /* enable CPU FDI TX and PCH FDI RX */
2384         reg = FDI_TX_CTL(pipe);
2385         temp = I915_READ(reg);
2386         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2387         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2388         temp &= ~FDI_LINK_TRAIN_NONE;
2389         temp |= FDI_LINK_TRAIN_PATTERN_1;
2390         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2391
2392         reg = FDI_RX_CTL(pipe);
2393         temp = I915_READ(reg);
2394         temp &= ~FDI_LINK_TRAIN_NONE;
2395         temp |= FDI_LINK_TRAIN_PATTERN_1;
2396         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2397
2398         POSTING_READ(reg);
2399         udelay(150);
2400
2401         /* Ironlake workaround, enable clock pointer after FDI enable*/
2402         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2403         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2404                    FDI_RX_PHASE_SYNC_POINTER_EN);
2405
2406         reg = FDI_RX_IIR(pipe);
2407         for (tries = 0; tries < 5; tries++) {
2408                 temp = I915_READ(reg);
2409                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2410
2411                 if ((temp & FDI_RX_BIT_LOCK)) {
2412                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2413                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2414                         break;
2415                 }
2416         }
2417         if (tries == 5)
2418                 DRM_ERROR("FDI train 1 fail!\n");
2419
2420         /* Train 2 */
2421         reg = FDI_TX_CTL(pipe);
2422         temp = I915_READ(reg);
2423         temp &= ~FDI_LINK_TRAIN_NONE;
2424         temp |= FDI_LINK_TRAIN_PATTERN_2;
2425         I915_WRITE(reg, temp);
2426
2427         reg = FDI_RX_CTL(pipe);
2428         temp = I915_READ(reg);
2429         temp &= ~FDI_LINK_TRAIN_NONE;
2430         temp |= FDI_LINK_TRAIN_PATTERN_2;
2431         I915_WRITE(reg, temp);
2432
2433         POSTING_READ(reg);
2434         udelay(150);
2435
2436         reg = FDI_RX_IIR(pipe);
2437         for (tries = 0; tries < 5; tries++) {
2438                 temp = I915_READ(reg);
2439                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2440
2441                 if (temp & FDI_RX_SYMBOL_LOCK) {
2442                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2443                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2444                         break;
2445                 }
2446         }
2447         if (tries == 5)
2448                 DRM_ERROR("FDI train 2 fail!\n");
2449
2450         DRM_DEBUG_KMS("FDI train done\n");
2451
2452 }
2453
2454 static const int snb_b_fdi_train_param[] = {
2455         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2456         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2457         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2458         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2459 };
2460
2461 /* The FDI link training functions for SNB/Cougarpoint. */
2462 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2463 {
2464         struct drm_device *dev = crtc->dev;
2465         struct drm_i915_private *dev_priv = dev->dev_private;
2466         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2467         int pipe = intel_crtc->pipe;
2468         u32 reg, temp, i, retry;
2469
2470         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2471            for train result */
2472         reg = FDI_RX_IMR(pipe);
2473         temp = I915_READ(reg);
2474         temp &= ~FDI_RX_SYMBOL_LOCK;
2475         temp &= ~FDI_RX_BIT_LOCK;
2476         I915_WRITE(reg, temp);
2477
2478         POSTING_READ(reg);
2479         udelay(150);
2480
2481         /* enable CPU FDI TX and PCH FDI RX */
2482         reg = FDI_TX_CTL(pipe);
2483         temp = I915_READ(reg);
2484         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2485         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2486         temp &= ~FDI_LINK_TRAIN_NONE;
2487         temp |= FDI_LINK_TRAIN_PATTERN_1;
2488         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2489         /* SNB-B */
2490         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2491         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2492
2493         I915_WRITE(FDI_RX_MISC(pipe),
2494                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2495
2496         reg = FDI_RX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         if (HAS_PCH_CPT(dev)) {
2499                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2500                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2501         } else {
2502                 temp &= ~FDI_LINK_TRAIN_NONE;
2503                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2504         }
2505         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2506
2507         POSTING_READ(reg);
2508         udelay(150);
2509
2510         for (i = 0; i < 4; i++) {
2511                 reg = FDI_TX_CTL(pipe);
2512                 temp = I915_READ(reg);
2513                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2514                 temp |= snb_b_fdi_train_param[i];
2515                 I915_WRITE(reg, temp);
2516
2517                 POSTING_READ(reg);
2518                 udelay(500);
2519
2520                 for (retry = 0; retry < 5; retry++) {
2521                         reg = FDI_RX_IIR(pipe);
2522                         temp = I915_READ(reg);
2523                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2524                         if (temp & FDI_RX_BIT_LOCK) {
2525                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2526                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2527                                 break;
2528                         }
2529                         udelay(50);
2530                 }
2531                 if (retry < 5)
2532                         break;
2533         }
2534         if (i == 4)
2535                 DRM_ERROR("FDI train 1 fail!\n");
2536
2537         /* Train 2 */
2538         reg = FDI_TX_CTL(pipe);
2539         temp = I915_READ(reg);
2540         temp &= ~FDI_LINK_TRAIN_NONE;
2541         temp |= FDI_LINK_TRAIN_PATTERN_2;
2542         if (IS_GEN6(dev)) {
2543                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2544                 /* SNB-B */
2545                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2546         }
2547         I915_WRITE(reg, temp);
2548
2549         reg = FDI_RX_CTL(pipe);
2550         temp = I915_READ(reg);
2551         if (HAS_PCH_CPT(dev)) {
2552                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2553                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2554         } else {
2555                 temp &= ~FDI_LINK_TRAIN_NONE;
2556                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2557         }
2558         I915_WRITE(reg, temp);
2559
2560         POSTING_READ(reg);
2561         udelay(150);
2562
2563         for (i = 0; i < 4; i++) {
2564                 reg = FDI_TX_CTL(pipe);
2565                 temp = I915_READ(reg);
2566                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2567                 temp |= snb_b_fdi_train_param[i];
2568                 I915_WRITE(reg, temp);
2569
2570                 POSTING_READ(reg);
2571                 udelay(500);
2572
2573                 for (retry = 0; retry < 5; retry++) {
2574                         reg = FDI_RX_IIR(pipe);
2575                         temp = I915_READ(reg);
2576                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2577                         if (temp & FDI_RX_SYMBOL_LOCK) {
2578                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2579                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2580                                 break;
2581                         }
2582                         udelay(50);
2583                 }
2584                 if (retry < 5)
2585                         break;
2586         }
2587         if (i == 4)
2588                 DRM_ERROR("FDI train 2 fail!\n");
2589
2590         DRM_DEBUG_KMS("FDI train done.\n");
2591 }
2592
2593 /* Manual link training for Ivy Bridge A0 parts */
2594 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2595 {
2596         struct drm_device *dev = crtc->dev;
2597         struct drm_i915_private *dev_priv = dev->dev_private;
2598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2599         int pipe = intel_crtc->pipe;
2600         u32 reg, temp, i;
2601
2602         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2603            for train result */
2604         reg = FDI_RX_IMR(pipe);
2605         temp = I915_READ(reg);
2606         temp &= ~FDI_RX_SYMBOL_LOCK;
2607         temp &= ~FDI_RX_BIT_LOCK;
2608         I915_WRITE(reg, temp);
2609
2610         POSTING_READ(reg);
2611         udelay(150);
2612
2613         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2614                       I915_READ(FDI_RX_IIR(pipe)));
2615
2616         /* enable CPU FDI TX and PCH FDI RX */
2617         reg = FDI_TX_CTL(pipe);
2618         temp = I915_READ(reg);
2619         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2620         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2621         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2622         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2623         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2624         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2625         temp |= FDI_COMPOSITE_SYNC;
2626         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2627
2628         I915_WRITE(FDI_RX_MISC(pipe),
2629                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2630
2631         reg = FDI_RX_CTL(pipe);
2632         temp = I915_READ(reg);
2633         temp &= ~FDI_LINK_TRAIN_AUTO;
2634         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2636         temp |= FDI_COMPOSITE_SYNC;
2637         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638
2639         POSTING_READ(reg);
2640         udelay(150);
2641
2642         for (i = 0; i < 4; i++) {
2643                 reg = FDI_TX_CTL(pipe);
2644                 temp = I915_READ(reg);
2645                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2646                 temp |= snb_b_fdi_train_param[i];
2647                 I915_WRITE(reg, temp);
2648
2649                 POSTING_READ(reg);
2650                 udelay(500);
2651
2652                 reg = FDI_RX_IIR(pipe);
2653                 temp = I915_READ(reg);
2654                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2655
2656                 if (temp & FDI_RX_BIT_LOCK ||
2657                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2658                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2659                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2660                         break;
2661                 }
2662         }
2663         if (i == 4)
2664                 DRM_ERROR("FDI train 1 fail!\n");
2665
2666         /* Train 2 */
2667         reg = FDI_TX_CTL(pipe);
2668         temp = I915_READ(reg);
2669         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2670         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2671         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2672         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2673         I915_WRITE(reg, temp);
2674
2675         reg = FDI_RX_CTL(pipe);
2676         temp = I915_READ(reg);
2677         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2678         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2679         I915_WRITE(reg, temp);
2680
2681         POSTING_READ(reg);
2682         udelay(150);
2683
2684         for (i = 0; i < 4; i++) {
2685                 reg = FDI_TX_CTL(pipe);
2686                 temp = I915_READ(reg);
2687                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2688                 temp |= snb_b_fdi_train_param[i];
2689                 I915_WRITE(reg, temp);
2690
2691                 POSTING_READ(reg);
2692                 udelay(500);
2693
2694                 reg = FDI_RX_IIR(pipe);
2695                 temp = I915_READ(reg);
2696                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2697
2698                 if (temp & FDI_RX_SYMBOL_LOCK) {
2699                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2700                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2701                         break;
2702                 }
2703         }
2704         if (i == 4)
2705                 DRM_ERROR("FDI train 2 fail!\n");
2706
2707         DRM_DEBUG_KMS("FDI train done.\n");
2708 }
2709
2710 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2711 {
2712         struct drm_device *dev = intel_crtc->base.dev;
2713         struct drm_i915_private *dev_priv = dev->dev_private;
2714         int pipe = intel_crtc->pipe;
2715         u32 reg, temp;
2716
2717
2718         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2719         reg = FDI_RX_CTL(pipe);
2720         temp = I915_READ(reg);
2721         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2722         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2723         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2724         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2725
2726         POSTING_READ(reg);
2727         udelay(200);
2728
2729         /* Switch from Rawclk to PCDclk */
2730         temp = I915_READ(reg);
2731         I915_WRITE(reg, temp | FDI_PCDCLK);
2732
2733         POSTING_READ(reg);
2734         udelay(200);
2735
2736         /* Enable CPU FDI TX PLL, always on for Ironlake */
2737         reg = FDI_TX_CTL(pipe);
2738         temp = I915_READ(reg);
2739         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2740                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2741
2742                 POSTING_READ(reg);
2743                 udelay(100);
2744         }
2745 }
2746
2747 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2748 {
2749         struct drm_device *dev = intel_crtc->base.dev;
2750         struct drm_i915_private *dev_priv = dev->dev_private;
2751         int pipe = intel_crtc->pipe;
2752         u32 reg, temp;
2753
2754         /* Switch from PCDclk to Rawclk */
2755         reg = FDI_RX_CTL(pipe);
2756         temp = I915_READ(reg);
2757         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2758
2759         /* Disable CPU FDI TX PLL */
2760         reg = FDI_TX_CTL(pipe);
2761         temp = I915_READ(reg);
2762         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2763
2764         POSTING_READ(reg);
2765         udelay(100);
2766
2767         reg = FDI_RX_CTL(pipe);
2768         temp = I915_READ(reg);
2769         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2770
2771         /* Wait for the clocks to turn off. */
2772         POSTING_READ(reg);
2773         udelay(100);
2774 }
2775
2776 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2777 {
2778         struct drm_device *dev = crtc->dev;
2779         struct drm_i915_private *dev_priv = dev->dev_private;
2780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2781         int pipe = intel_crtc->pipe;
2782         u32 reg, temp;
2783
2784         /* disable CPU FDI tx and PCH FDI rx */
2785         reg = FDI_TX_CTL(pipe);
2786         temp = I915_READ(reg);
2787         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2788         POSTING_READ(reg);
2789
2790         reg = FDI_RX_CTL(pipe);
2791         temp = I915_READ(reg);
2792         temp &= ~(0x7 << 16);
2793         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2794         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2795
2796         POSTING_READ(reg);
2797         udelay(100);
2798
2799         /* Ironlake workaround, disable clock pointer after downing FDI */
2800         if (HAS_PCH_IBX(dev)) {
2801                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2802         }
2803
2804         /* still set train pattern 1 */
2805         reg = FDI_TX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         temp &= ~FDI_LINK_TRAIN_NONE;
2808         temp |= FDI_LINK_TRAIN_PATTERN_1;
2809         I915_WRITE(reg, temp);
2810
2811         reg = FDI_RX_CTL(pipe);
2812         temp = I915_READ(reg);
2813         if (HAS_PCH_CPT(dev)) {
2814                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2815                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2816         } else {
2817                 temp &= ~FDI_LINK_TRAIN_NONE;
2818                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2819         }
2820         /* BPC in FDI rx is consistent with that in PIPECONF */
2821         temp &= ~(0x07 << 16);
2822         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2823         I915_WRITE(reg, temp);
2824
2825         POSTING_READ(reg);
2826         udelay(100);
2827 }
2828
2829 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2830 {
2831         struct drm_device *dev = crtc->dev;
2832         struct drm_i915_private *dev_priv = dev->dev_private;
2833         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2834         unsigned long flags;
2835         bool pending;
2836
2837         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2838             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2839                 return false;
2840
2841         spin_lock_irqsave(&dev->event_lock, flags);
2842         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2843         spin_unlock_irqrestore(&dev->event_lock, flags);
2844
2845         return pending;
2846 }
2847
2848 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2849 {
2850         struct drm_device *dev = crtc->dev;
2851         struct drm_i915_private *dev_priv = dev->dev_private;
2852
2853         if (crtc->fb == NULL)
2854                 return;
2855
2856         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2857
2858         wait_event(dev_priv->pending_flip_queue,
2859                    !intel_crtc_has_pending_flip(crtc));
2860
2861         mutex_lock(&dev->struct_mutex);
2862         intel_finish_fb(crtc->fb);
2863         mutex_unlock(&dev->struct_mutex);
2864 }
2865
2866 /* Program iCLKIP clock to the desired frequency */
2867 static void lpt_program_iclkip(struct drm_crtc *crtc)
2868 {
2869         struct drm_device *dev = crtc->dev;
2870         struct drm_i915_private *dev_priv = dev->dev_private;
2871         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2872         u32 temp;
2873
2874         mutex_lock(&dev_priv->dpio_lock);
2875
2876         /* It is necessary to ungate the pixclk gate prior to programming
2877          * the divisors, and gate it back when it is done.
2878          */
2879         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2880
2881         /* Disable SSCCTL */
2882         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2883                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2884                                 SBI_SSCCTL_DISABLE,
2885                         SBI_ICLK);
2886
2887         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2888         if (crtc->mode.clock == 20000) {
2889                 auxdiv = 1;
2890                 divsel = 0x41;
2891                 phaseinc = 0x20;
2892         } else {
2893                 /* The iCLK virtual clock root frequency is in MHz,
2894                  * but the crtc->mode.clock in in KHz. To get the divisors,
2895                  * it is necessary to divide one by another, so we
2896                  * convert the virtual clock precision to KHz here for higher
2897                  * precision.
2898                  */
2899                 u32 iclk_virtual_root_freq = 172800 * 1000;
2900                 u32 iclk_pi_range = 64;
2901                 u32 desired_divisor, msb_divisor_value, pi_value;
2902
2903                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2904                 msb_divisor_value = desired_divisor / iclk_pi_range;
2905                 pi_value = desired_divisor % iclk_pi_range;
2906
2907                 auxdiv = 0;
2908                 divsel = msb_divisor_value - 2;
2909                 phaseinc = pi_value;
2910         }
2911
2912         /* This should not happen with any sane values */
2913         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2914                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2915         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2916                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2917
2918         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2919                         crtc->mode.clock,
2920                         auxdiv,
2921                         divsel,
2922                         phasedir,
2923                         phaseinc);
2924
2925         /* Program SSCDIVINTPHASE6 */
2926         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2927         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2928         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2929         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2930         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2931         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2932         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2933         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2934
2935         /* Program SSCAUXDIV */
2936         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2937         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2938         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2939         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2940
2941         /* Enable modulator and associated divider */
2942         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2943         temp &= ~SBI_SSCCTL_DISABLE;
2944         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2945
2946         /* Wait for initialization time */
2947         udelay(24);
2948
2949         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2950
2951         mutex_unlock(&dev_priv->dpio_lock);
2952 }
2953
2954 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2955                                                 enum pipe pch_transcoder)
2956 {
2957         struct drm_device *dev = crtc->base.dev;
2958         struct drm_i915_private *dev_priv = dev->dev_private;
2959         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2960
2961         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2962                    I915_READ(HTOTAL(cpu_transcoder)));
2963         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2964                    I915_READ(HBLANK(cpu_transcoder)));
2965         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2966                    I915_READ(HSYNC(cpu_transcoder)));
2967
2968         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2969                    I915_READ(VTOTAL(cpu_transcoder)));
2970         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2971                    I915_READ(VBLANK(cpu_transcoder)));
2972         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2973                    I915_READ(VSYNC(cpu_transcoder)));
2974         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2975                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
2976 }
2977
2978 /*
2979  * Enable PCH resources required for PCH ports:
2980  *   - PCH PLLs
2981  *   - FDI training & RX/TX
2982  *   - update transcoder timings
2983  *   - DP transcoding bits
2984  *   - transcoder
2985  */
2986 static void ironlake_pch_enable(struct drm_crtc *crtc)
2987 {
2988         struct drm_device *dev = crtc->dev;
2989         struct drm_i915_private *dev_priv = dev->dev_private;
2990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2991         int pipe = intel_crtc->pipe;
2992         u32 reg, temp;
2993
2994         assert_pch_transcoder_disabled(dev_priv, pipe);
2995
2996         /* Write the TU size bits before fdi link training, so that error
2997          * detection works. */
2998         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2999                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3000
3001         /* For PCH output, training FDI link */
3002         dev_priv->display.fdi_link_train(crtc);
3003
3004         /* We need to program the right clock selection before writing the pixel
3005          * mutliplier into the DPLL. */
3006         if (HAS_PCH_CPT(dev)) {
3007                 u32 sel;
3008
3009                 temp = I915_READ(PCH_DPLL_SEL);
3010                 temp |= TRANS_DPLL_ENABLE(pipe);
3011                 sel = TRANS_DPLLB_SEL(pipe);
3012                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3013                         temp |= sel;
3014                 else
3015                         temp &= ~sel;
3016                 I915_WRITE(PCH_DPLL_SEL, temp);
3017         }
3018
3019         /* XXX: pch pll's can be enabled any time before we enable the PCH
3020          * transcoder, and we actually should do this to not upset any PCH
3021          * transcoder that already use the clock when we share it.
3022          *
3023          * Note that enable_shared_dpll tries to do the right thing, but
3024          * get_shared_dpll unconditionally resets the pll - we need that to have
3025          * the right LVDS enable sequence. */
3026         ironlake_enable_shared_dpll(intel_crtc);
3027
3028         /* set transcoder timing, panel must allow it */
3029         assert_panel_unlocked(dev_priv, pipe);
3030         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3031
3032         intel_fdi_normal_train(crtc);
3033
3034         /* For PCH DP, enable TRANS_DP_CTL */
3035         if (HAS_PCH_CPT(dev) &&
3036             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3037              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3038                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3039                 reg = TRANS_DP_CTL(pipe);
3040                 temp = I915_READ(reg);
3041                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3042                           TRANS_DP_SYNC_MASK |
3043                           TRANS_DP_BPC_MASK);
3044                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3045                          TRANS_DP_ENH_FRAMING);
3046                 temp |= bpc << 9; /* same format but at 11:9 */
3047
3048                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3049                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3050                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3051                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3052
3053                 switch (intel_trans_dp_port_sel(crtc)) {
3054                 case PCH_DP_B:
3055                         temp |= TRANS_DP_PORT_SEL_B;
3056                         break;
3057                 case PCH_DP_C:
3058                         temp |= TRANS_DP_PORT_SEL_C;
3059                         break;
3060                 case PCH_DP_D:
3061                         temp |= TRANS_DP_PORT_SEL_D;
3062                         break;
3063                 default:
3064                         BUG();
3065                 }
3066
3067                 I915_WRITE(reg, temp);
3068         }
3069
3070         ironlake_enable_pch_transcoder(dev_priv, pipe);
3071 }
3072
3073 static void lpt_pch_enable(struct drm_crtc *crtc)
3074 {
3075         struct drm_device *dev = crtc->dev;
3076         struct drm_i915_private *dev_priv = dev->dev_private;
3077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3078         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3079
3080         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3081
3082         lpt_program_iclkip(crtc);
3083
3084         /* Set transcoder timing. */
3085         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3086
3087         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3088 }
3089
3090 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3091 {
3092         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3093
3094         if (pll == NULL)
3095                 return;
3096
3097         if (pll->refcount == 0) {
3098                 WARN(1, "bad %s refcount\n", pll->name);
3099                 return;
3100         }
3101
3102         if (--pll->refcount == 0) {
3103                 WARN_ON(pll->on);
3104                 WARN_ON(pll->active);
3105         }
3106
3107         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3108 }
3109
3110 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3111 {
3112         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3113         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3114         enum intel_dpll_id i;
3115
3116         if (pll) {
3117                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3118                               crtc->base.base.id, pll->name);
3119                 intel_put_shared_dpll(crtc);
3120         }
3121
3122         if (HAS_PCH_IBX(dev_priv->dev)) {
3123                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3124                 i = (enum intel_dpll_id) crtc->pipe;
3125                 pll = &dev_priv->shared_dplls[i];
3126
3127                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3128                               crtc->base.base.id, pll->name);
3129
3130                 goto found;
3131         }
3132
3133         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3134                 pll = &dev_priv->shared_dplls[i];
3135
3136                 /* Only want to check enabled timings first */
3137                 if (pll->refcount == 0)
3138                         continue;
3139
3140                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3141                            sizeof(pll->hw_state)) == 0) {
3142                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3143                                       crtc->base.base.id,
3144                                       pll->name, pll->refcount, pll->active);
3145
3146                         goto found;
3147                 }
3148         }
3149
3150         /* Ok no matching timings, maybe there's a free one? */
3151         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3152                 pll = &dev_priv->shared_dplls[i];
3153                 if (pll->refcount == 0) {
3154                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3155                                       crtc->base.base.id, pll->name);
3156                         goto found;
3157                 }
3158         }
3159
3160         return NULL;
3161
3162 found:
3163         crtc->config.shared_dpll = i;
3164         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3165                          pipe_name(crtc->pipe));
3166
3167         if (pll->active == 0) {
3168                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3169                        sizeof(pll->hw_state));
3170
3171                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3172                 WARN_ON(pll->on);
3173                 assert_shared_dpll_disabled(dev_priv, pll);
3174
3175                 pll->mode_set(dev_priv, pll);
3176         }
3177         pll->refcount++;
3178
3179         return pll;
3180 }
3181
3182 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3183 {
3184         struct drm_i915_private *dev_priv = dev->dev_private;
3185         int dslreg = PIPEDSL(pipe);
3186         u32 temp;
3187
3188         temp = I915_READ(dslreg);
3189         udelay(500);
3190         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3191                 if (wait_for(I915_READ(dslreg) != temp, 5))
3192                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3193         }
3194 }
3195
3196 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3197 {
3198         struct drm_device *dev = crtc->base.dev;
3199         struct drm_i915_private *dev_priv = dev->dev_private;
3200         int pipe = crtc->pipe;
3201
3202         if (crtc->config.pch_pfit.size) {
3203                 /* Force use of hard-coded filter coefficients
3204                  * as some pre-programmed values are broken,
3205                  * e.g. x201.
3206                  */
3207                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3208                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3209                                                  PF_PIPE_SEL_IVB(pipe));
3210                 else
3211                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3212                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3213                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3214         }
3215 }
3216
3217 static void intel_enable_planes(struct drm_crtc *crtc)
3218 {
3219         struct drm_device *dev = crtc->dev;
3220         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3221         struct intel_plane *intel_plane;
3222
3223         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3224                 if (intel_plane->pipe == pipe)
3225                         intel_plane_restore(&intel_plane->base);
3226 }
3227
3228 static void intel_disable_planes(struct drm_crtc *crtc)
3229 {
3230         struct drm_device *dev = crtc->dev;
3231         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3232         struct intel_plane *intel_plane;
3233
3234         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3235                 if (intel_plane->pipe == pipe)
3236                         intel_plane_disable(&intel_plane->base);
3237 }
3238
3239 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3240 {
3241         struct drm_device *dev = crtc->dev;
3242         struct drm_i915_private *dev_priv = dev->dev_private;
3243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3244         struct intel_encoder *encoder;
3245         int pipe = intel_crtc->pipe;
3246         int plane = intel_crtc->plane;
3247
3248         WARN_ON(!crtc->enabled);
3249
3250         if (intel_crtc->active)
3251                 return;
3252
3253         intel_crtc->active = true;
3254
3255         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3256         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3257
3258         intel_update_watermarks(dev);
3259
3260         for_each_encoder_on_crtc(dev, crtc, encoder)
3261                 if (encoder->pre_enable)
3262                         encoder->pre_enable(encoder);
3263
3264         if (intel_crtc->config.has_pch_encoder) {
3265                 /* Note: FDI PLL enabling _must_ be done before we enable the
3266                  * cpu pipes, hence this is separate from all the other fdi/pch
3267                  * enabling. */
3268                 ironlake_fdi_pll_enable(intel_crtc);
3269         } else {
3270                 assert_fdi_tx_disabled(dev_priv, pipe);
3271                 assert_fdi_rx_disabled(dev_priv, pipe);
3272         }
3273
3274         ironlake_pfit_enable(intel_crtc);
3275
3276         /*
3277          * On ILK+ LUT must be loaded before the pipe is running but with
3278          * clocks enabled
3279          */
3280         intel_crtc_load_lut(crtc);
3281
3282         intel_enable_pipe(dev_priv, pipe,
3283                           intel_crtc->config.has_pch_encoder);
3284         intel_enable_plane(dev_priv, plane, pipe);
3285         intel_enable_planes(crtc);
3286         intel_crtc_update_cursor(crtc, true);
3287
3288         if (intel_crtc->config.has_pch_encoder)
3289                 ironlake_pch_enable(crtc);
3290
3291         mutex_lock(&dev->struct_mutex);
3292         intel_update_fbc(dev);
3293         mutex_unlock(&dev->struct_mutex);
3294
3295         for_each_encoder_on_crtc(dev, crtc, encoder)
3296                 encoder->enable(encoder);
3297
3298         if (HAS_PCH_CPT(dev))
3299                 cpt_verify_modeset(dev, intel_crtc->pipe);
3300
3301         /*
3302          * There seems to be a race in PCH platform hw (at least on some
3303          * outputs) where an enabled pipe still completes any pageflip right
3304          * away (as if the pipe is off) instead of waiting for vblank. As soon
3305          * as the first vblank happend, everything works as expected. Hence just
3306          * wait for one vblank before returning to avoid strange things
3307          * happening.
3308          */
3309         intel_wait_for_vblank(dev, intel_crtc->pipe);
3310 }
3311
3312 /* IPS only exists on ULT machines and is tied to pipe A. */
3313 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3314 {
3315         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3316 }
3317
3318 static void hsw_enable_ips(struct intel_crtc *crtc)
3319 {
3320         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3321
3322         if (!crtc->config.ips_enabled)
3323                 return;
3324
3325         /* We can only enable IPS after we enable a plane and wait for a vblank.
3326          * We guarantee that the plane is enabled by calling intel_enable_ips
3327          * only after intel_enable_plane. And intel_enable_plane already waits
3328          * for a vblank, so all we need to do here is to enable the IPS bit. */
3329         assert_plane_enabled(dev_priv, crtc->plane);
3330         I915_WRITE(IPS_CTL, IPS_ENABLE);
3331 }
3332
3333 static void hsw_disable_ips(struct intel_crtc *crtc)
3334 {
3335         struct drm_device *dev = crtc->base.dev;
3336         struct drm_i915_private *dev_priv = dev->dev_private;
3337
3338         if (!crtc->config.ips_enabled)
3339                 return;
3340
3341         assert_plane_enabled(dev_priv, crtc->plane);
3342         I915_WRITE(IPS_CTL, 0);
3343
3344         /* We need to wait for a vblank before we can disable the plane. */
3345         intel_wait_for_vblank(dev, crtc->pipe);
3346 }
3347
3348 static void haswell_crtc_enable(struct drm_crtc *crtc)
3349 {
3350         struct drm_device *dev = crtc->dev;
3351         struct drm_i915_private *dev_priv = dev->dev_private;
3352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3353         struct intel_encoder *encoder;
3354         int pipe = intel_crtc->pipe;
3355         int plane = intel_crtc->plane;
3356
3357         WARN_ON(!crtc->enabled);
3358
3359         if (intel_crtc->active)
3360                 return;
3361
3362         intel_crtc->active = true;
3363
3364         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3365         if (intel_crtc->config.has_pch_encoder)
3366                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3367
3368         intel_update_watermarks(dev);
3369
3370         if (intel_crtc->config.has_pch_encoder)
3371                 dev_priv->display.fdi_link_train(crtc);
3372
3373         for_each_encoder_on_crtc(dev, crtc, encoder)
3374                 if (encoder->pre_enable)
3375                         encoder->pre_enable(encoder);
3376
3377         intel_ddi_enable_pipe_clock(intel_crtc);
3378
3379         ironlake_pfit_enable(intel_crtc);
3380
3381         /*
3382          * On ILK+ LUT must be loaded before the pipe is running but with
3383          * clocks enabled
3384          */
3385         intel_crtc_load_lut(crtc);
3386
3387         intel_ddi_set_pipe_settings(crtc);
3388         intel_ddi_enable_transcoder_func(crtc);
3389
3390         intel_enable_pipe(dev_priv, pipe,
3391                           intel_crtc->config.has_pch_encoder);
3392         intel_enable_plane(dev_priv, plane, pipe);
3393         intel_enable_planes(crtc);
3394         intel_crtc_update_cursor(crtc, true);
3395
3396         hsw_enable_ips(intel_crtc);
3397
3398         if (intel_crtc->config.has_pch_encoder)
3399                 lpt_pch_enable(crtc);
3400
3401         mutex_lock(&dev->struct_mutex);
3402         intel_update_fbc(dev);
3403         mutex_unlock(&dev->struct_mutex);
3404
3405         for_each_encoder_on_crtc(dev, crtc, encoder)
3406                 encoder->enable(encoder);
3407
3408         /*
3409          * There seems to be a race in PCH platform hw (at least on some
3410          * outputs) where an enabled pipe still completes any pageflip right
3411          * away (as if the pipe is off) instead of waiting for vblank. As soon
3412          * as the first vblank happend, everything works as expected. Hence just
3413          * wait for one vblank before returning to avoid strange things
3414          * happening.
3415          */
3416         intel_wait_for_vblank(dev, intel_crtc->pipe);
3417 }
3418
3419 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3420 {
3421         struct drm_device *dev = crtc->base.dev;
3422         struct drm_i915_private *dev_priv = dev->dev_private;
3423         int pipe = crtc->pipe;
3424
3425         /* To avoid upsetting the power well on haswell only disable the pfit if
3426          * it's in use. The hw state code will make sure we get this right. */
3427         if (crtc->config.pch_pfit.size) {
3428                 I915_WRITE(PF_CTL(pipe), 0);
3429                 I915_WRITE(PF_WIN_POS(pipe), 0);
3430                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3431         }
3432 }
3433
3434 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3435 {
3436         struct drm_device *dev = crtc->dev;
3437         struct drm_i915_private *dev_priv = dev->dev_private;
3438         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3439         struct intel_encoder *encoder;
3440         int pipe = intel_crtc->pipe;
3441         int plane = intel_crtc->plane;
3442         u32 reg, temp;
3443
3444
3445         if (!intel_crtc->active)
3446                 return;
3447
3448         for_each_encoder_on_crtc(dev, crtc, encoder)
3449                 encoder->disable(encoder);
3450
3451         intel_crtc_wait_for_pending_flips(crtc);
3452         drm_vblank_off(dev, pipe);
3453
3454         if (dev_priv->fbc.plane == plane)
3455                 intel_disable_fbc(dev);
3456
3457         intel_crtc_update_cursor(crtc, false);
3458         intel_disable_planes(crtc);
3459         intel_disable_plane(dev_priv, plane, pipe);
3460
3461         if (intel_crtc->config.has_pch_encoder)
3462                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3463
3464         intel_disable_pipe(dev_priv, pipe);
3465
3466         ironlake_pfit_disable(intel_crtc);
3467
3468         for_each_encoder_on_crtc(dev, crtc, encoder)
3469                 if (encoder->post_disable)
3470                         encoder->post_disable(encoder);
3471
3472         if (intel_crtc->config.has_pch_encoder) {
3473                 ironlake_fdi_disable(crtc);
3474
3475                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3476                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3477
3478                 if (HAS_PCH_CPT(dev)) {
3479                         /* disable TRANS_DP_CTL */
3480                         reg = TRANS_DP_CTL(pipe);
3481                         temp = I915_READ(reg);
3482                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3483                                   TRANS_DP_PORT_SEL_MASK);
3484                         temp |= TRANS_DP_PORT_SEL_NONE;
3485                         I915_WRITE(reg, temp);
3486
3487                         /* disable DPLL_SEL */
3488                         temp = I915_READ(PCH_DPLL_SEL);
3489                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3490                         I915_WRITE(PCH_DPLL_SEL, temp);
3491                 }
3492
3493                 /* disable PCH DPLL */
3494                 intel_disable_shared_dpll(intel_crtc);
3495
3496                 ironlake_fdi_pll_disable(intel_crtc);
3497         }
3498
3499         intel_crtc->active = false;
3500         intel_update_watermarks(dev);
3501
3502         mutex_lock(&dev->struct_mutex);
3503         intel_update_fbc(dev);
3504         mutex_unlock(&dev->struct_mutex);
3505 }
3506
3507 static void haswell_crtc_disable(struct drm_crtc *crtc)
3508 {
3509         struct drm_device *dev = crtc->dev;
3510         struct drm_i915_private *dev_priv = dev->dev_private;
3511         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3512         struct intel_encoder *encoder;
3513         int pipe = intel_crtc->pipe;
3514         int plane = intel_crtc->plane;
3515         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3516
3517         if (!intel_crtc->active)
3518                 return;
3519
3520         for_each_encoder_on_crtc(dev, crtc, encoder)
3521                 encoder->disable(encoder);
3522
3523         intel_crtc_wait_for_pending_flips(crtc);
3524         drm_vblank_off(dev, pipe);
3525
3526         /* FBC must be disabled before disabling the plane on HSW. */
3527         if (dev_priv->fbc.plane == plane)
3528                 intel_disable_fbc(dev);
3529
3530         hsw_disable_ips(intel_crtc);
3531
3532         intel_crtc_update_cursor(crtc, false);
3533         intel_disable_planes(crtc);
3534         intel_disable_plane(dev_priv, plane, pipe);
3535
3536         if (intel_crtc->config.has_pch_encoder)
3537                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3538         intel_disable_pipe(dev_priv, pipe);
3539
3540         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3541
3542         ironlake_pfit_disable(intel_crtc);
3543
3544         intel_ddi_disable_pipe_clock(intel_crtc);
3545
3546         for_each_encoder_on_crtc(dev, crtc, encoder)
3547                 if (encoder->post_disable)
3548                         encoder->post_disable(encoder);
3549
3550         if (intel_crtc->config.has_pch_encoder) {
3551                 lpt_disable_pch_transcoder(dev_priv);
3552                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3553                 intel_ddi_fdi_disable(crtc);
3554         }
3555
3556         intel_crtc->active = false;
3557         intel_update_watermarks(dev);
3558
3559         mutex_lock(&dev->struct_mutex);
3560         intel_update_fbc(dev);
3561         mutex_unlock(&dev->struct_mutex);
3562 }
3563
3564 static void ironlake_crtc_off(struct drm_crtc *crtc)
3565 {
3566         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3567         intel_put_shared_dpll(intel_crtc);
3568 }
3569
3570 static void haswell_crtc_off(struct drm_crtc *crtc)
3571 {
3572         intel_ddi_put_crtc_pll(crtc);
3573 }
3574
3575 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3576 {
3577         if (!enable && intel_crtc->overlay) {
3578                 struct drm_device *dev = intel_crtc->base.dev;
3579                 struct drm_i915_private *dev_priv = dev->dev_private;
3580
3581                 mutex_lock(&dev->struct_mutex);
3582                 dev_priv->mm.interruptible = false;
3583                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3584                 dev_priv->mm.interruptible = true;
3585                 mutex_unlock(&dev->struct_mutex);
3586         }
3587
3588         /* Let userspace switch the overlay on again. In most cases userspace
3589          * has to recompute where to put it anyway.
3590          */
3591 }
3592
3593 /**
3594  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3595  * cursor plane briefly if not already running after enabling the display
3596  * plane.
3597  * This workaround avoids occasional blank screens when self refresh is
3598  * enabled.
3599  */
3600 static void
3601 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3602 {
3603         u32 cntl = I915_READ(CURCNTR(pipe));
3604
3605         if ((cntl & CURSOR_MODE) == 0) {
3606                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3607
3608                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3609                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3610                 intel_wait_for_vblank(dev_priv->dev, pipe);
3611                 I915_WRITE(CURCNTR(pipe), cntl);
3612                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3613                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3614         }
3615 }
3616
3617 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3618 {
3619         struct drm_device *dev = crtc->base.dev;
3620         struct drm_i915_private *dev_priv = dev->dev_private;
3621         struct intel_crtc_config *pipe_config = &crtc->config;
3622
3623         if (!crtc->config.gmch_pfit.control)
3624                 return;
3625
3626         /*
3627          * The panel fitter should only be adjusted whilst the pipe is disabled,
3628          * according to register description and PRM.
3629          */
3630         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3631         assert_pipe_disabled(dev_priv, crtc->pipe);
3632
3633         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3634         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3635
3636         /* Border color in case we don't scale up to the full screen. Black by
3637          * default, change to something else for debugging. */
3638         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3639 }
3640
3641 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3642 {
3643         struct drm_device *dev = crtc->dev;
3644         struct drm_i915_private *dev_priv = dev->dev_private;
3645         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3646         struct intel_encoder *encoder;
3647         int pipe = intel_crtc->pipe;
3648         int plane = intel_crtc->plane;
3649
3650         WARN_ON(!crtc->enabled);
3651
3652         if (intel_crtc->active)
3653                 return;
3654
3655         intel_crtc->active = true;
3656         intel_update_watermarks(dev);
3657
3658         for_each_encoder_on_crtc(dev, crtc, encoder)
3659                 if (encoder->pre_pll_enable)
3660                         encoder->pre_pll_enable(encoder);
3661
3662         vlv_enable_pll(intel_crtc);
3663
3664         for_each_encoder_on_crtc(dev, crtc, encoder)
3665                 if (encoder->pre_enable)
3666                         encoder->pre_enable(encoder);
3667
3668         i9xx_pfit_enable(intel_crtc);
3669
3670         intel_crtc_load_lut(crtc);
3671
3672         intel_enable_pipe(dev_priv, pipe, false);
3673         intel_enable_plane(dev_priv, plane, pipe);
3674         intel_enable_planes(crtc);
3675         intel_crtc_update_cursor(crtc, true);
3676
3677         intel_update_fbc(dev);
3678
3679         for_each_encoder_on_crtc(dev, crtc, encoder)
3680                 encoder->enable(encoder);
3681 }
3682
3683 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3684 {
3685         struct drm_device *dev = crtc->dev;
3686         struct drm_i915_private *dev_priv = dev->dev_private;
3687         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3688         struct intel_encoder *encoder;
3689         int pipe = intel_crtc->pipe;
3690         int plane = intel_crtc->plane;
3691
3692         WARN_ON(!crtc->enabled);
3693
3694         if (intel_crtc->active)
3695                 return;
3696
3697         intel_crtc->active = true;
3698         intel_update_watermarks(dev);
3699
3700         for_each_encoder_on_crtc(dev, crtc, encoder)
3701                 if (encoder->pre_enable)
3702                         encoder->pre_enable(encoder);
3703
3704         i9xx_enable_pll(intel_crtc);
3705
3706         i9xx_pfit_enable(intel_crtc);
3707
3708         intel_crtc_load_lut(crtc);
3709
3710         intel_enable_pipe(dev_priv, pipe, false);
3711         intel_enable_plane(dev_priv, plane, pipe);
3712         intel_enable_planes(crtc);
3713         /* The fixup needs to happen before cursor is enabled */
3714         if (IS_G4X(dev))
3715                 g4x_fixup_plane(dev_priv, pipe);
3716         intel_crtc_update_cursor(crtc, true);
3717
3718         /* Give the overlay scaler a chance to enable if it's on this pipe */
3719         intel_crtc_dpms_overlay(intel_crtc, true);
3720
3721         intel_update_fbc(dev);
3722
3723         for_each_encoder_on_crtc(dev, crtc, encoder)
3724                 encoder->enable(encoder);
3725 }
3726
3727 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3728 {
3729         struct drm_device *dev = crtc->base.dev;
3730         struct drm_i915_private *dev_priv = dev->dev_private;
3731
3732         if (!crtc->config.gmch_pfit.control)
3733                 return;
3734
3735         assert_pipe_disabled(dev_priv, crtc->pipe);
3736
3737         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3738                          I915_READ(PFIT_CONTROL));
3739         I915_WRITE(PFIT_CONTROL, 0);
3740 }
3741
3742 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3743 {
3744         struct drm_device *dev = crtc->dev;
3745         struct drm_i915_private *dev_priv = dev->dev_private;
3746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3747         struct intel_encoder *encoder;
3748         int pipe = intel_crtc->pipe;
3749         int plane = intel_crtc->plane;
3750
3751         if (!intel_crtc->active)
3752                 return;
3753
3754         for_each_encoder_on_crtc(dev, crtc, encoder)
3755                 encoder->disable(encoder);
3756
3757         /* Give the overlay scaler a chance to disable if it's on this pipe */
3758         intel_crtc_wait_for_pending_flips(crtc);
3759         drm_vblank_off(dev, pipe);
3760
3761         if (dev_priv->fbc.plane == plane)
3762                 intel_disable_fbc(dev);
3763
3764         intel_crtc_dpms_overlay(intel_crtc, false);
3765         intel_crtc_update_cursor(crtc, false);
3766         intel_disable_planes(crtc);
3767         intel_disable_plane(dev_priv, plane, pipe);
3768
3769         intel_disable_pipe(dev_priv, pipe);
3770
3771         i9xx_pfit_disable(intel_crtc);
3772
3773         for_each_encoder_on_crtc(dev, crtc, encoder)
3774                 if (encoder->post_disable)
3775                         encoder->post_disable(encoder);
3776
3777         i9xx_disable_pll(dev_priv, pipe);
3778
3779         intel_crtc->active = false;
3780         intel_update_fbc(dev);
3781         intel_update_watermarks(dev);
3782 }
3783
3784 static void i9xx_crtc_off(struct drm_crtc *crtc)
3785 {
3786 }
3787
3788 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3789                                     bool enabled)
3790 {
3791         struct drm_device *dev = crtc->dev;
3792         struct drm_i915_master_private *master_priv;
3793         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3794         int pipe = intel_crtc->pipe;
3795
3796         if (!dev->primary->master)
3797                 return;
3798
3799         master_priv = dev->primary->master->driver_priv;
3800         if (!master_priv->sarea_priv)
3801                 return;
3802
3803         switch (pipe) {
3804         case 0:
3805                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3806                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3807                 break;
3808         case 1:
3809                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3810                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3811                 break;
3812         default:
3813                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3814                 break;
3815         }
3816 }
3817
3818 /**
3819  * Sets the power management mode of the pipe and plane.
3820  */
3821 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3822 {
3823         struct drm_device *dev = crtc->dev;
3824         struct drm_i915_private *dev_priv = dev->dev_private;
3825         struct intel_encoder *intel_encoder;
3826         bool enable = false;
3827
3828         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3829                 enable |= intel_encoder->connectors_active;
3830
3831         if (enable)
3832                 dev_priv->display.crtc_enable(crtc);
3833         else
3834                 dev_priv->display.crtc_disable(crtc);
3835
3836         intel_crtc_update_sarea(crtc, enable);
3837 }
3838
3839 static void intel_crtc_disable(struct drm_crtc *crtc)
3840 {
3841         struct drm_device *dev = crtc->dev;
3842         struct drm_connector *connector;
3843         struct drm_i915_private *dev_priv = dev->dev_private;
3844         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3845
3846         /* crtc should still be enabled when we disable it. */
3847         WARN_ON(!crtc->enabled);
3848
3849         dev_priv->display.crtc_disable(crtc);
3850         intel_crtc->eld_vld = false;
3851         intel_crtc_update_sarea(crtc, false);
3852         dev_priv->display.off(crtc);
3853
3854         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3855         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3856
3857         if (crtc->fb) {
3858                 mutex_lock(&dev->struct_mutex);
3859                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3860                 mutex_unlock(&dev->struct_mutex);
3861                 crtc->fb = NULL;
3862         }
3863
3864         /* Update computed state. */
3865         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3866                 if (!connector->encoder || !connector->encoder->crtc)
3867                         continue;
3868
3869                 if (connector->encoder->crtc != crtc)
3870                         continue;
3871
3872                 connector->dpms = DRM_MODE_DPMS_OFF;
3873                 to_intel_encoder(connector->encoder)->connectors_active = false;
3874         }
3875 }
3876
3877 void intel_encoder_destroy(struct drm_encoder *encoder)
3878 {
3879         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3880
3881         drm_encoder_cleanup(encoder);
3882         kfree(intel_encoder);
3883 }
3884
3885 /* Simple dpms helper for encoders with just one connector, no cloning and only
3886  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3887  * state of the entire output pipe. */
3888 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3889 {
3890         if (mode == DRM_MODE_DPMS_ON) {
3891                 encoder->connectors_active = true;
3892
3893                 intel_crtc_update_dpms(encoder->base.crtc);
3894         } else {
3895                 encoder->connectors_active = false;
3896
3897                 intel_crtc_update_dpms(encoder->base.crtc);
3898         }
3899 }
3900
3901 /* Cross check the actual hw state with our own modeset state tracking (and it's
3902  * internal consistency). */
3903 static void intel_connector_check_state(struct intel_connector *connector)
3904 {
3905         if (connector->get_hw_state(connector)) {
3906                 struct intel_encoder *encoder = connector->encoder;
3907                 struct drm_crtc *crtc;
3908                 bool encoder_enabled;
3909                 enum pipe pipe;
3910
3911                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3912                               connector->base.base.id,
3913                               drm_get_connector_name(&connector->base));
3914
3915                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3916                      "wrong connector dpms state\n");
3917                 WARN(connector->base.encoder != &encoder->base,
3918                      "active connector not linked to encoder\n");
3919                 WARN(!encoder->connectors_active,
3920                      "encoder->connectors_active not set\n");
3921
3922                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3923                 WARN(!encoder_enabled, "encoder not enabled\n");
3924                 if (WARN_ON(!encoder->base.crtc))
3925                         return;
3926
3927                 crtc = encoder->base.crtc;
3928
3929                 WARN(!crtc->enabled, "crtc not enabled\n");
3930                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3931                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3932                      "encoder active on the wrong pipe\n");
3933         }
3934 }
3935
3936 /* Even simpler default implementation, if there's really no special case to
3937  * consider. */
3938 void intel_connector_dpms(struct drm_connector *connector, int mode)
3939 {
3940         struct intel_encoder *encoder = intel_attached_encoder(connector);
3941
3942         /* All the simple cases only support two dpms states. */
3943         if (mode != DRM_MODE_DPMS_ON)
3944                 mode = DRM_MODE_DPMS_OFF;
3945
3946         if (mode == connector->dpms)
3947                 return;
3948
3949         connector->dpms = mode;
3950
3951         /* Only need to change hw state when actually enabled */
3952         if (encoder->base.crtc)
3953                 intel_encoder_dpms(encoder, mode);
3954         else
3955                 WARN_ON(encoder->connectors_active != false);
3956
3957         intel_modeset_check_state(connector->dev);
3958 }
3959
3960 /* Simple connector->get_hw_state implementation for encoders that support only
3961  * one connector and no cloning and hence the encoder state determines the state
3962  * of the connector. */
3963 bool intel_connector_get_hw_state(struct intel_connector *connector)
3964 {
3965         enum pipe pipe = 0;
3966         struct intel_encoder *encoder = connector->encoder;
3967
3968         return encoder->get_hw_state(encoder, &pipe);
3969 }
3970
3971 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3972                                      struct intel_crtc_config *pipe_config)
3973 {
3974         struct drm_i915_private *dev_priv = dev->dev_private;
3975         struct intel_crtc *pipe_B_crtc =
3976                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3977
3978         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3979                       pipe_name(pipe), pipe_config->fdi_lanes);
3980         if (pipe_config->fdi_lanes > 4) {
3981                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3982                               pipe_name(pipe), pipe_config->fdi_lanes);
3983                 return false;
3984         }
3985
3986         if (IS_HASWELL(dev)) {
3987                 if (pipe_config->fdi_lanes > 2) {
3988                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3989                                       pipe_config->fdi_lanes);
3990                         return false;
3991                 } else {
3992                         return true;
3993                 }
3994         }
3995
3996         if (INTEL_INFO(dev)->num_pipes == 2)
3997                 return true;
3998
3999         /* Ivybridge 3 pipe is really complicated */
4000         switch (pipe) {
4001         case PIPE_A:
4002                 return true;
4003         case PIPE_B:
4004                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4005                     pipe_config->fdi_lanes > 2) {
4006                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4007                                       pipe_name(pipe), pipe_config->fdi_lanes);
4008                         return false;
4009                 }
4010                 return true;
4011         case PIPE_C:
4012                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4013                     pipe_B_crtc->config.fdi_lanes <= 2) {
4014                         if (pipe_config->fdi_lanes > 2) {
4015                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4016                                               pipe_name(pipe), pipe_config->fdi_lanes);
4017                                 return false;
4018                         }
4019                 } else {
4020                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4021                         return false;
4022                 }
4023                 return true;
4024         default:
4025                 BUG();
4026         }
4027 }
4028
4029 #define RETRY 1
4030 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4031                                        struct intel_crtc_config *pipe_config)
4032 {
4033         struct drm_device *dev = intel_crtc->base.dev;
4034         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4035         int lane, link_bw, fdi_dotclock;
4036         bool setup_ok, needs_recompute = false;
4037
4038 retry:
4039         /* FDI is a binary signal running at ~2.7GHz, encoding
4040          * each output octet as 10 bits. The actual frequency
4041          * is stored as a divider into a 100MHz clock, and the
4042          * mode pixel clock is stored in units of 1KHz.
4043          * Hence the bw of each lane in terms of the mode signal
4044          * is:
4045          */
4046         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4047
4048         fdi_dotclock = adjusted_mode->clock;
4049         fdi_dotclock /= pipe_config->pixel_multiplier;
4050
4051         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4052                                            pipe_config->pipe_bpp);
4053
4054         pipe_config->fdi_lanes = lane;
4055
4056         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4057                                link_bw, &pipe_config->fdi_m_n);
4058
4059         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4060                                             intel_crtc->pipe, pipe_config);
4061         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4062                 pipe_config->pipe_bpp -= 2*3;
4063                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4064                               pipe_config->pipe_bpp);
4065                 needs_recompute = true;
4066                 pipe_config->bw_constrained = true;
4067
4068                 goto retry;
4069         }
4070
4071         if (needs_recompute)
4072                 return RETRY;
4073
4074         return setup_ok ? 0 : -EINVAL;
4075 }
4076
4077 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4078                                    struct intel_crtc_config *pipe_config)
4079 {
4080         pipe_config->ips_enabled = i915_enable_ips &&
4081                                    hsw_crtc_supports_ips(crtc) &&
4082                                    pipe_config->pipe_bpp <= 24;
4083 }
4084
4085 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4086                                      struct intel_crtc_config *pipe_config)
4087 {
4088         struct drm_device *dev = crtc->base.dev;
4089         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4090
4091         if (HAS_PCH_SPLIT(dev)) {
4092                 /* FDI link clock is fixed at 2.7G */
4093                 if (pipe_config->requested_mode.clock * 3
4094                     > IRONLAKE_FDI_FREQ * 4)
4095                         return -EINVAL;
4096         }
4097
4098         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4099          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4100          */
4101         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4102                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4103                 return -EINVAL;
4104
4105         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4106                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4107         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4108                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4109                  * for lvds. */
4110                 pipe_config->pipe_bpp = 8*3;
4111         }
4112
4113         if (HAS_IPS(dev))
4114                 hsw_compute_ips_config(crtc, pipe_config);
4115
4116         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4117          * clock survives for now. */
4118         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4119                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4120
4121         if (pipe_config->has_pch_encoder)
4122                 return ironlake_fdi_compute_config(crtc, pipe_config);
4123
4124         return 0;
4125 }
4126
4127 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4128 {
4129         return 400000; /* FIXME */
4130 }
4131
4132 static int i945_get_display_clock_speed(struct drm_device *dev)
4133 {
4134         return 400000;
4135 }
4136
4137 static int i915_get_display_clock_speed(struct drm_device *dev)
4138 {
4139         return 333000;
4140 }
4141
4142 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4143 {
4144         return 200000;
4145 }
4146
4147 static int pnv_get_display_clock_speed(struct drm_device *dev)
4148 {
4149         u16 gcfgc = 0;
4150
4151         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4152
4153         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4154         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4155                 return 267000;
4156         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4157                 return 333000;
4158         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4159                 return 444000;
4160         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4161                 return 200000;
4162         default:
4163                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4164         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4165                 return 133000;
4166         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4167                 return 167000;
4168         }
4169 }
4170
4171 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4172 {
4173         u16 gcfgc = 0;
4174
4175         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4176
4177         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4178                 return 133000;
4179         else {
4180                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4181                 case GC_DISPLAY_CLOCK_333_MHZ:
4182                         return 333000;
4183                 default:
4184                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4185                         return 190000;
4186                 }
4187         }
4188 }
4189
4190 static int i865_get_display_clock_speed(struct drm_device *dev)
4191 {
4192         return 266000;
4193 }
4194
4195 static int i855_get_display_clock_speed(struct drm_device *dev)
4196 {
4197         u16 hpllcc = 0;
4198         /* Assume that the hardware is in the high speed state.  This
4199          * should be the default.
4200          */
4201         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4202         case GC_CLOCK_133_200:
4203         case GC_CLOCK_100_200:
4204                 return 200000;
4205         case GC_CLOCK_166_250:
4206                 return 250000;
4207         case GC_CLOCK_100_133:
4208                 return 133000;
4209         }
4210
4211         /* Shouldn't happen */
4212         return 0;
4213 }
4214
4215 static int i830_get_display_clock_speed(struct drm_device *dev)
4216 {
4217         return 133000;
4218 }
4219
4220 static void
4221 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4222 {
4223         while (*num > DATA_LINK_M_N_MASK ||
4224                *den > DATA_LINK_M_N_MASK) {
4225                 *num >>= 1;
4226                 *den >>= 1;
4227         }
4228 }
4229
4230 static void compute_m_n(unsigned int m, unsigned int n,
4231                         uint32_t *ret_m, uint32_t *ret_n)
4232 {
4233         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4234         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4235         intel_reduce_m_n_ratio(ret_m, ret_n);
4236 }
4237
4238 void
4239 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4240                        int pixel_clock, int link_clock,
4241                        struct intel_link_m_n *m_n)
4242 {
4243         m_n->tu = 64;
4244
4245         compute_m_n(bits_per_pixel * pixel_clock,
4246                     link_clock * nlanes * 8,
4247                     &m_n->gmch_m, &m_n->gmch_n);
4248
4249         compute_m_n(pixel_clock, link_clock,
4250                     &m_n->link_m, &m_n->link_n);
4251 }
4252
4253 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4254 {
4255         if (i915_panel_use_ssc >= 0)
4256                 return i915_panel_use_ssc != 0;
4257         return dev_priv->vbt.lvds_use_ssc
4258                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4259 }
4260
4261 static int vlv_get_refclk(struct drm_crtc *crtc)
4262 {
4263         struct drm_device *dev = crtc->dev;
4264         struct drm_i915_private *dev_priv = dev->dev_private;
4265         int refclk = 27000; /* for DP & HDMI */
4266
4267         return 100000; /* only one validated so far */
4268
4269         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4270                 refclk = 96000;
4271         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4272                 if (intel_panel_use_ssc(dev_priv))
4273                         refclk = 100000;
4274                 else
4275                         refclk = 96000;
4276         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4277                 refclk = 100000;
4278         }
4279
4280         return refclk;
4281 }
4282
4283 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4284 {
4285         struct drm_device *dev = crtc->dev;
4286         struct drm_i915_private *dev_priv = dev->dev_private;
4287         int refclk;
4288
4289         if (IS_VALLEYVIEW(dev)) {
4290                 refclk = vlv_get_refclk(crtc);
4291         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4292             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4293                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4294                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4295                               refclk / 1000);
4296         } else if (!IS_GEN2(dev)) {
4297                 refclk = 96000;
4298         } else {
4299                 refclk = 48000;
4300         }
4301
4302         return refclk;
4303 }
4304
4305 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4306 {
4307         return (1 << dpll->n) << 16 | dpll->m2;
4308 }
4309
4310 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4311 {
4312         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4313 }
4314
4315 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4316                                      intel_clock_t *reduced_clock)
4317 {
4318         struct drm_device *dev = crtc->base.dev;
4319         struct drm_i915_private *dev_priv = dev->dev_private;
4320         int pipe = crtc->pipe;
4321         u32 fp, fp2 = 0;
4322
4323         if (IS_PINEVIEW(dev)) {
4324                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4325                 if (reduced_clock)
4326                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4327         } else {
4328                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4329                 if (reduced_clock)
4330                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4331         }
4332
4333         I915_WRITE(FP0(pipe), fp);
4334         crtc->config.dpll_hw_state.fp0 = fp;
4335
4336         crtc->lowfreq_avail = false;
4337         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4338             reduced_clock && i915_powersave) {
4339                 I915_WRITE(FP1(pipe), fp2);
4340                 crtc->config.dpll_hw_state.fp1 = fp2;
4341                 crtc->lowfreq_avail = true;
4342         } else {
4343                 I915_WRITE(FP1(pipe), fp);
4344                 crtc->config.dpll_hw_state.fp1 = fp;
4345         }
4346 }
4347
4348 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4349 {
4350         u32 reg_val;
4351
4352         /*
4353          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4354          * and set it to a reasonable value instead.
4355          */
4356         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4357         reg_val &= 0xffffff00;
4358         reg_val |= 0x00000030;
4359         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4360
4361         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4362         reg_val &= 0x8cffffff;
4363         reg_val = 0x8c000000;
4364         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4365
4366         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4367         reg_val &= 0xffffff00;
4368         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4369
4370         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4371         reg_val &= 0x00ffffff;
4372         reg_val |= 0xb0000000;
4373         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4374 }
4375
4376 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4377                                          struct intel_link_m_n *m_n)
4378 {
4379         struct drm_device *dev = crtc->base.dev;
4380         struct drm_i915_private *dev_priv = dev->dev_private;
4381         int pipe = crtc->pipe;
4382
4383         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4384         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4385         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4386         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4387 }
4388
4389 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4390                                          struct intel_link_m_n *m_n)
4391 {
4392         struct drm_device *dev = crtc->base.dev;
4393         struct drm_i915_private *dev_priv = dev->dev_private;
4394         int pipe = crtc->pipe;
4395         enum transcoder transcoder = crtc->config.cpu_transcoder;
4396
4397         if (INTEL_INFO(dev)->gen >= 5) {
4398                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4399                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4400                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4401                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4402         } else {
4403                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4404                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4405                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4406                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4407         }
4408 }
4409
4410 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4411 {
4412         if (crtc->config.has_pch_encoder)
4413                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4414         else
4415                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4416 }
4417
4418 static void vlv_update_pll(struct intel_crtc *crtc)
4419 {
4420         struct drm_device *dev = crtc->base.dev;
4421         struct drm_i915_private *dev_priv = dev->dev_private;
4422         int pipe = crtc->pipe;
4423         u32 dpll, mdiv;
4424         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4425         u32 coreclk, reg_val, dpll_md;
4426
4427         mutex_lock(&dev_priv->dpio_lock);
4428
4429         bestn = crtc->config.dpll.n;
4430         bestm1 = crtc->config.dpll.m1;
4431         bestm2 = crtc->config.dpll.m2;
4432         bestp1 = crtc->config.dpll.p1;
4433         bestp2 = crtc->config.dpll.p2;
4434
4435         /* See eDP HDMI DPIO driver vbios notes doc */
4436
4437         /* PLL B needs special handling */
4438         if (pipe)
4439                 vlv_pllb_recal_opamp(dev_priv);
4440
4441         /* Set up Tx target for periodic Rcomp update */
4442         vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4443
4444         /* Disable target IRef on PLL */
4445         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4446         reg_val &= 0x00ffffff;
4447         vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4448
4449         /* Disable fast lock */
4450         vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4451
4452         /* Set idtafcrecal before PLL is enabled */
4453         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4454         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4455         mdiv |= ((bestn << DPIO_N_SHIFT));
4456         mdiv |= (1 << DPIO_K_SHIFT);
4457
4458         /*
4459          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4460          * but we don't support that).
4461          * Note: don't use the DAC post divider as it seems unstable.
4462          */
4463         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4464         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4465
4466         mdiv |= DPIO_ENABLE_CALIBRATION;
4467         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4468
4469         /* Set HBR and RBR LPF coefficients */
4470         if (crtc->config.port_clock == 162000 ||
4471             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4472             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4473                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4474                                  0x009f0003);
4475         else
4476                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4477                                  0x00d0000f);
4478
4479         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4480             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4481                 /* Use SSC source */
4482                 if (!pipe)
4483                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4484                                          0x0df40000);
4485                 else
4486                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4487                                          0x0df70000);
4488         } else { /* HDMI or VGA */
4489                 /* Use bend source */
4490                 if (!pipe)
4491                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4492                                          0x0df70000);
4493                 else
4494                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4495                                          0x0df40000);
4496         }
4497
4498         coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4499         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4500         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4501             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4502                 coreclk |= 0x01000000;
4503         vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4504
4505         vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4506
4507         /* Enable DPIO clock input */
4508         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4509                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4510         if (pipe)
4511                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4512
4513         dpll |= DPLL_VCO_ENABLE;
4514         crtc->config.dpll_hw_state.dpll = dpll;
4515
4516         dpll_md = (crtc->config.pixel_multiplier - 1)
4517                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4518         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4519
4520         if (crtc->config.has_dp_encoder)
4521                 intel_dp_set_m_n(crtc);
4522
4523         mutex_unlock(&dev_priv->dpio_lock);
4524 }
4525
4526 static void i9xx_update_pll(struct intel_crtc *crtc,
4527                             intel_clock_t *reduced_clock,
4528                             int num_connectors)
4529 {
4530         struct drm_device *dev = crtc->base.dev;
4531         struct drm_i915_private *dev_priv = dev->dev_private;
4532         u32 dpll;
4533         bool is_sdvo;
4534         struct dpll *clock = &crtc->config.dpll;
4535
4536         i9xx_update_pll_dividers(crtc, reduced_clock);
4537
4538         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4539                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4540
4541         dpll = DPLL_VGA_MODE_DIS;
4542
4543         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4544                 dpll |= DPLLB_MODE_LVDS;
4545         else
4546                 dpll |= DPLLB_MODE_DAC_SERIAL;
4547
4548         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4549                 dpll |= (crtc->config.pixel_multiplier - 1)
4550                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4551         }
4552
4553         if (is_sdvo)
4554                 dpll |= DPLL_SDVO_HIGH_SPEED;
4555
4556         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4557                 dpll |= DPLL_SDVO_HIGH_SPEED;
4558
4559         /* compute bitmask from p1 value */
4560         if (IS_PINEVIEW(dev))
4561                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4562         else {
4563                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4564                 if (IS_G4X(dev) && reduced_clock)
4565                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4566         }
4567         switch (clock->p2) {
4568         case 5:
4569                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4570                 break;
4571         case 7:
4572                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4573                 break;
4574         case 10:
4575                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4576                 break;
4577         case 14:
4578                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4579                 break;
4580         }
4581         if (INTEL_INFO(dev)->gen >= 4)
4582                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4583
4584         if (crtc->config.sdvo_tv_clock)
4585                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4586         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4587                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4588                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4589         else
4590                 dpll |= PLL_REF_INPUT_DREFCLK;
4591
4592         dpll |= DPLL_VCO_ENABLE;
4593         crtc->config.dpll_hw_state.dpll = dpll;
4594
4595         if (INTEL_INFO(dev)->gen >= 4) {
4596                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4597                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4598                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4599         }
4600
4601         if (crtc->config.has_dp_encoder)
4602                 intel_dp_set_m_n(crtc);
4603 }
4604
4605 static void i8xx_update_pll(struct intel_crtc *crtc,
4606                             intel_clock_t *reduced_clock,
4607                             int num_connectors)
4608 {
4609         struct drm_device *dev = crtc->base.dev;
4610         struct drm_i915_private *dev_priv = dev->dev_private;
4611         u32 dpll;
4612         struct dpll *clock = &crtc->config.dpll;
4613
4614         i9xx_update_pll_dividers(crtc, reduced_clock);
4615
4616         dpll = DPLL_VGA_MODE_DIS;
4617
4618         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4619                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4620         } else {
4621                 if (clock->p1 == 2)
4622                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4623                 else
4624                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4625                 if (clock->p2 == 4)
4626                         dpll |= PLL_P2_DIVIDE_BY_4;
4627         }
4628
4629         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4630                 dpll |= DPLL_DVO_2X_MODE;
4631
4632         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4633                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4634                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4635         else
4636                 dpll |= PLL_REF_INPUT_DREFCLK;
4637
4638         dpll |= DPLL_VCO_ENABLE;
4639         crtc->config.dpll_hw_state.dpll = dpll;
4640 }
4641
4642 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4643 {
4644         struct drm_device *dev = intel_crtc->base.dev;
4645         struct drm_i915_private *dev_priv = dev->dev_private;
4646         enum pipe pipe = intel_crtc->pipe;
4647         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4648         struct drm_display_mode *adjusted_mode =
4649                 &intel_crtc->config.adjusted_mode;
4650         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4651         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4652
4653         /* We need to be careful not to changed the adjusted mode, for otherwise
4654          * the hw state checker will get angry at the mismatch. */
4655         crtc_vtotal = adjusted_mode->crtc_vtotal;
4656         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4657
4658         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4659                 /* the chip adds 2 halflines automatically */
4660                 crtc_vtotal -= 1;
4661                 crtc_vblank_end -= 1;
4662                 vsyncshift = adjusted_mode->crtc_hsync_start
4663                              - adjusted_mode->crtc_htotal / 2;
4664         } else {
4665                 vsyncshift = 0;
4666         }
4667
4668         if (INTEL_INFO(dev)->gen > 3)
4669                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4670
4671         I915_WRITE(HTOTAL(cpu_transcoder),
4672                    (adjusted_mode->crtc_hdisplay - 1) |
4673                    ((adjusted_mode->crtc_htotal - 1) << 16));
4674         I915_WRITE(HBLANK(cpu_transcoder),
4675                    (adjusted_mode->crtc_hblank_start - 1) |
4676                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4677         I915_WRITE(HSYNC(cpu_transcoder),
4678                    (adjusted_mode->crtc_hsync_start - 1) |
4679                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4680
4681         I915_WRITE(VTOTAL(cpu_transcoder),
4682                    (adjusted_mode->crtc_vdisplay - 1) |
4683                    ((crtc_vtotal - 1) << 16));
4684         I915_WRITE(VBLANK(cpu_transcoder),
4685                    (adjusted_mode->crtc_vblank_start - 1) |
4686                    ((crtc_vblank_end - 1) << 16));
4687         I915_WRITE(VSYNC(cpu_transcoder),
4688                    (adjusted_mode->crtc_vsync_start - 1) |
4689                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4690
4691         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4692          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4693          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4694          * bits. */
4695         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4696             (pipe == PIPE_B || pipe == PIPE_C))
4697                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4698
4699         /* pipesrc controls the size that is scaled from, which should
4700          * always be the user's requested size.
4701          */
4702         I915_WRITE(PIPESRC(pipe),
4703                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4704 }
4705
4706 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4707                                    struct intel_crtc_config *pipe_config)
4708 {
4709         struct drm_device *dev = crtc->base.dev;
4710         struct drm_i915_private *dev_priv = dev->dev_private;
4711         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4712         uint32_t tmp;
4713
4714         tmp = I915_READ(HTOTAL(cpu_transcoder));
4715         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4716         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4717         tmp = I915_READ(HBLANK(cpu_transcoder));
4718         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4719         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4720         tmp = I915_READ(HSYNC(cpu_transcoder));
4721         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4722         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4723
4724         tmp = I915_READ(VTOTAL(cpu_transcoder));
4725         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4726         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4727         tmp = I915_READ(VBLANK(cpu_transcoder));
4728         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4729         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4730         tmp = I915_READ(VSYNC(cpu_transcoder));
4731         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4732         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4733
4734         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4735                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4736                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4737                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4738         }
4739
4740         tmp = I915_READ(PIPESRC(crtc->pipe));
4741         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4742         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4743 }
4744
4745 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4746                                              struct intel_crtc_config *pipe_config)
4747 {
4748         struct drm_crtc *crtc = &intel_crtc->base;
4749
4750         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4751         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4752         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4753         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4754
4755         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4756         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4757         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4758         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4759
4760         crtc->mode.flags = pipe_config->adjusted_mode.flags;
4761
4762         crtc->mode.clock = pipe_config->adjusted_mode.clock;
4763         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4764 }
4765
4766 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4767 {
4768         struct drm_device *dev = intel_crtc->base.dev;
4769         struct drm_i915_private *dev_priv = dev->dev_private;
4770         uint32_t pipeconf;
4771
4772         pipeconf = 0;
4773
4774         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4775                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4776                  * core speed.
4777                  *
4778                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4779                  * pipe == 0 check?
4780                  */
4781                 if (intel_crtc->config.requested_mode.clock >
4782                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4783                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4784         }
4785
4786         /* only g4x and later have fancy bpc/dither controls */
4787         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4788                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4789                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4790                         pipeconf |= PIPECONF_DITHER_EN |
4791                                     PIPECONF_DITHER_TYPE_SP;
4792
4793                 switch (intel_crtc->config.pipe_bpp) {
4794                 case 18:
4795                         pipeconf |= PIPECONF_6BPC;
4796                         break;
4797                 case 24:
4798                         pipeconf |= PIPECONF_8BPC;
4799                         break;
4800                 case 30:
4801                         pipeconf |= PIPECONF_10BPC;
4802                         break;
4803                 default:
4804                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4805                         BUG();
4806                 }
4807         }
4808
4809         if (HAS_PIPE_CXSR(dev)) {
4810                 if (intel_crtc->lowfreq_avail) {
4811                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4812                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4813                 } else {
4814                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4815                 }
4816         }
4817
4818         if (!IS_GEN2(dev) &&
4819             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4820                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4821         else
4822                 pipeconf |= PIPECONF_PROGRESSIVE;
4823
4824         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4825                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4826
4827         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4828         POSTING_READ(PIPECONF(intel_crtc->pipe));
4829 }
4830
4831 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4832                               int x, int y,
4833                               struct drm_framebuffer *fb)
4834 {
4835         struct drm_device *dev = crtc->dev;
4836         struct drm_i915_private *dev_priv = dev->dev_private;
4837         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4838         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4839         int pipe = intel_crtc->pipe;
4840         int plane = intel_crtc->plane;
4841         int refclk, num_connectors = 0;
4842         intel_clock_t clock, reduced_clock;
4843         u32 dspcntr;
4844         bool ok, has_reduced_clock = false;
4845         bool is_lvds = false;
4846         struct intel_encoder *encoder;
4847         const intel_limit_t *limit;
4848         int ret;
4849
4850         for_each_encoder_on_crtc(dev, crtc, encoder) {
4851                 switch (encoder->type) {
4852                 case INTEL_OUTPUT_LVDS:
4853                         is_lvds = true;
4854                         break;
4855                 }
4856
4857                 num_connectors++;
4858         }
4859
4860         refclk = i9xx_get_refclk(crtc, num_connectors);
4861
4862         /*
4863          * Returns a set of divisors for the desired target clock with the given
4864          * refclk, or FALSE.  The returned values represent the clock equation:
4865          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4866          */
4867         limit = intel_limit(crtc, refclk);
4868         ok = dev_priv->display.find_dpll(limit, crtc,
4869                                          intel_crtc->config.port_clock,
4870                                          refclk, NULL, &clock);
4871         if (!ok && !intel_crtc->config.clock_set) {
4872                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4873                 return -EINVAL;
4874         }
4875
4876         /* Ensure that the cursor is valid for the new mode before changing... */
4877         intel_crtc_update_cursor(crtc, true);
4878
4879         if (is_lvds && dev_priv->lvds_downclock_avail) {
4880                 /*
4881                  * Ensure we match the reduced clock's P to the target clock.
4882                  * If the clocks don't match, we can't switch the display clock
4883                  * by using the FP0/FP1. In such case we will disable the LVDS
4884                  * downclock feature.
4885                 */
4886                 has_reduced_clock =
4887                         dev_priv->display.find_dpll(limit, crtc,
4888                                                     dev_priv->lvds_downclock,
4889                                                     refclk, &clock,
4890                                                     &reduced_clock);
4891         }
4892         /* Compat-code for transition, will disappear. */
4893         if (!intel_crtc->config.clock_set) {
4894                 intel_crtc->config.dpll.n = clock.n;
4895                 intel_crtc->config.dpll.m1 = clock.m1;
4896                 intel_crtc->config.dpll.m2 = clock.m2;
4897                 intel_crtc->config.dpll.p1 = clock.p1;
4898                 intel_crtc->config.dpll.p2 = clock.p2;
4899         }
4900
4901         if (IS_GEN2(dev))
4902                 i8xx_update_pll(intel_crtc,
4903                                 has_reduced_clock ? &reduced_clock : NULL,
4904                                 num_connectors);
4905         else if (IS_VALLEYVIEW(dev))
4906                 vlv_update_pll(intel_crtc);
4907         else
4908                 i9xx_update_pll(intel_crtc,
4909                                 has_reduced_clock ? &reduced_clock : NULL,
4910                                 num_connectors);
4911
4912         /* Set up the display plane register */
4913         dspcntr = DISPPLANE_GAMMA_ENABLE;
4914
4915         if (!IS_VALLEYVIEW(dev)) {
4916                 if (pipe == 0)
4917                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4918                 else
4919                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4920         }
4921
4922         intel_set_pipe_timings(intel_crtc);
4923
4924         /* pipesrc and dspsize control the size that is scaled from,
4925          * which should always be the user's requested size.
4926          */
4927         I915_WRITE(DSPSIZE(plane),
4928                    ((mode->vdisplay - 1) << 16) |
4929                    (mode->hdisplay - 1));
4930         I915_WRITE(DSPPOS(plane), 0);
4931
4932         i9xx_set_pipeconf(intel_crtc);
4933
4934         I915_WRITE(DSPCNTR(plane), dspcntr);
4935         POSTING_READ(DSPCNTR(plane));
4936
4937         ret = intel_pipe_set_base(crtc, x, y, fb);
4938
4939         intel_update_watermarks(dev);
4940
4941         return ret;
4942 }
4943
4944 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4945                                  struct intel_crtc_config *pipe_config)
4946 {
4947         struct drm_device *dev = crtc->base.dev;
4948         struct drm_i915_private *dev_priv = dev->dev_private;
4949         uint32_t tmp;
4950
4951         tmp = I915_READ(PFIT_CONTROL);
4952         if (!(tmp & PFIT_ENABLE))
4953                 return;
4954
4955         /* Check whether the pfit is attached to our pipe. */
4956         if (INTEL_INFO(dev)->gen < 4) {
4957                 if (crtc->pipe != PIPE_B)
4958                         return;
4959         } else {
4960                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4961                         return;
4962         }
4963
4964         pipe_config->gmch_pfit.control = tmp;
4965         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4966         if (INTEL_INFO(dev)->gen < 5)
4967                 pipe_config->gmch_pfit.lvds_border_bits =
4968                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4969 }
4970
4971 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4972                                  struct intel_crtc_config *pipe_config)
4973 {
4974         struct drm_device *dev = crtc->base.dev;
4975         struct drm_i915_private *dev_priv = dev->dev_private;
4976         uint32_t tmp;
4977
4978         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
4979         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
4980
4981         tmp = I915_READ(PIPECONF(crtc->pipe));
4982         if (!(tmp & PIPECONF_ENABLE))
4983                 return false;
4984
4985         intel_get_pipe_timings(crtc, pipe_config);
4986
4987         i9xx_get_pfit_config(crtc, pipe_config);
4988
4989         if (INTEL_INFO(dev)->gen >= 4) {
4990                 tmp = I915_READ(DPLL_MD(crtc->pipe));
4991                 pipe_config->pixel_multiplier =
4992                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
4993                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
4994                 pipe_config->dpll_hw_state.dpll_md = tmp;
4995         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4996                 tmp = I915_READ(DPLL(crtc->pipe));
4997                 pipe_config->pixel_multiplier =
4998                         ((tmp & SDVO_MULTIPLIER_MASK)
4999                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5000         } else {
5001                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5002                  * port and will be fixed up in the encoder->get_config
5003                  * function. */
5004                 pipe_config->pixel_multiplier = 1;
5005         }
5006         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5007         if (!IS_VALLEYVIEW(dev)) {
5008                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5009                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5010         } else {
5011                 /* Mask out read-only status bits. */
5012                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5013                                                      DPLL_PORTC_READY_MASK |
5014                                                      DPLL_PORTB_READY_MASK);
5015         }
5016
5017         return true;
5018 }
5019
5020 static void ironlake_init_pch_refclk(struct drm_device *dev)
5021 {
5022         struct drm_i915_private *dev_priv = dev->dev_private;
5023         struct drm_mode_config *mode_config = &dev->mode_config;
5024         struct intel_encoder *encoder;
5025         u32 val, final;
5026         bool has_lvds = false;
5027         bool has_cpu_edp = false;
5028         bool has_panel = false;
5029         bool has_ck505 = false;
5030         bool can_ssc = false;
5031
5032         /* We need to take the global config into account */
5033         list_for_each_entry(encoder, &mode_config->encoder_list,
5034                             base.head) {
5035                 switch (encoder->type) {
5036                 case INTEL_OUTPUT_LVDS:
5037                         has_panel = true;
5038                         has_lvds = true;
5039                         break;
5040                 case INTEL_OUTPUT_EDP:
5041                         has_panel = true;
5042                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5043                                 has_cpu_edp = true;
5044                         break;
5045                 }
5046         }
5047
5048         if (HAS_PCH_IBX(dev)) {
5049                 has_ck505 = dev_priv->vbt.display_clock_mode;
5050                 can_ssc = has_ck505;
5051         } else {
5052                 has_ck505 = false;
5053                 can_ssc = true;
5054         }
5055
5056         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5057                       has_panel, has_lvds, has_ck505);
5058
5059         /* Ironlake: try to setup display ref clock before DPLL
5060          * enabling. This is only under driver's control after
5061          * PCH B stepping, previous chipset stepping should be
5062          * ignoring this setting.
5063          */
5064         val = I915_READ(PCH_DREF_CONTROL);
5065
5066         /* As we must carefully and slowly disable/enable each source in turn,
5067          * compute the final state we want first and check if we need to
5068          * make any changes at all.
5069          */
5070         final = val;
5071         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5072         if (has_ck505)
5073                 final |= DREF_NONSPREAD_CK505_ENABLE;
5074         else
5075                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5076
5077         final &= ~DREF_SSC_SOURCE_MASK;
5078         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5079         final &= ~DREF_SSC1_ENABLE;
5080
5081         if (has_panel) {
5082                 final |= DREF_SSC_SOURCE_ENABLE;
5083
5084                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5085                         final |= DREF_SSC1_ENABLE;
5086
5087                 if (has_cpu_edp) {
5088                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5089                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5090                         else
5091                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5092                 } else
5093                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5094         } else {
5095                 final |= DREF_SSC_SOURCE_DISABLE;
5096                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5097         }
5098
5099         if (final == val)
5100                 return;
5101
5102         /* Always enable nonspread source */
5103         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5104
5105         if (has_ck505)
5106                 val |= DREF_NONSPREAD_CK505_ENABLE;
5107         else
5108                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5109
5110         if (has_panel) {
5111                 val &= ~DREF_SSC_SOURCE_MASK;
5112                 val |= DREF_SSC_SOURCE_ENABLE;
5113
5114                 /* SSC must be turned on before enabling the CPU output  */
5115                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5116                         DRM_DEBUG_KMS("Using SSC on panel\n");
5117                         val |= DREF_SSC1_ENABLE;
5118                 } else
5119                         val &= ~DREF_SSC1_ENABLE;
5120
5121                 /* Get SSC going before enabling the outputs */
5122                 I915_WRITE(PCH_DREF_CONTROL, val);
5123                 POSTING_READ(PCH_DREF_CONTROL);
5124                 udelay(200);
5125
5126                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5127
5128                 /* Enable CPU source on CPU attached eDP */
5129                 if (has_cpu_edp) {
5130                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5131                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5132                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5133                         }
5134                         else
5135                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5136                 } else
5137                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5138
5139                 I915_WRITE(PCH_DREF_CONTROL, val);
5140                 POSTING_READ(PCH_DREF_CONTROL);
5141                 udelay(200);
5142         } else {
5143                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5144
5145                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5146
5147                 /* Turn off CPU output */
5148                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5149
5150                 I915_WRITE(PCH_DREF_CONTROL, val);
5151                 POSTING_READ(PCH_DREF_CONTROL);
5152                 udelay(200);
5153
5154                 /* Turn off the SSC source */
5155                 val &= ~DREF_SSC_SOURCE_MASK;
5156                 val |= DREF_SSC_SOURCE_DISABLE;
5157
5158                 /* Turn off SSC1 */
5159                 val &= ~DREF_SSC1_ENABLE;
5160
5161                 I915_WRITE(PCH_DREF_CONTROL, val);
5162                 POSTING_READ(PCH_DREF_CONTROL);
5163                 udelay(200);
5164         }
5165
5166         BUG_ON(val != final);
5167 }
5168
5169 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5170 {
5171         uint32_t tmp;
5172
5173         tmp = I915_READ(SOUTH_CHICKEN2);
5174         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5175         I915_WRITE(SOUTH_CHICKEN2, tmp);
5176
5177         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5178                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5179                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5180
5181         tmp = I915_READ(SOUTH_CHICKEN2);
5182         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5183         I915_WRITE(SOUTH_CHICKEN2, tmp);
5184
5185         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5186                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5187                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5188 }
5189
5190 /* WaMPhyProgramming:hsw */
5191 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5192 {
5193         uint32_t tmp;
5194
5195         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5196         tmp &= ~(0xFF << 24);
5197         tmp |= (0x12 << 24);
5198         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5199
5200         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5201         tmp |= (1 << 11);
5202         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5203
5204         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5205         tmp |= (1 << 11);
5206         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5207
5208         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5209         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5210         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5211
5212         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5213         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5214         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5215
5216         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5217         tmp &= ~(7 << 13);
5218         tmp |= (5 << 13);
5219         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5220
5221         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5222         tmp &= ~(7 << 13);
5223         tmp |= (5 << 13);
5224         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5225
5226         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5227         tmp &= ~0xFF;
5228         tmp |= 0x1C;
5229         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5230
5231         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5232         tmp &= ~0xFF;
5233         tmp |= 0x1C;
5234         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5235
5236         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5237         tmp &= ~(0xFF << 16);
5238         tmp |= (0x1C << 16);
5239         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5240
5241         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5242         tmp &= ~(0xFF << 16);
5243         tmp |= (0x1C << 16);
5244         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5245
5246         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5247         tmp |= (1 << 27);
5248         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5249
5250         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5251         tmp |= (1 << 27);
5252         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5253
5254         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5255         tmp &= ~(0xF << 28);
5256         tmp |= (4 << 28);
5257         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5258
5259         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5260         tmp &= ~(0xF << 28);
5261         tmp |= (4 << 28);
5262         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5263 }
5264
5265 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5266  * Programming" based on the parameters passed:
5267  * - Sequence to enable CLKOUT_DP
5268  * - Sequence to enable CLKOUT_DP without spread
5269  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5270  */
5271 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5272                                  bool with_fdi)
5273 {
5274         struct drm_i915_private *dev_priv = dev->dev_private;
5275         uint32_t reg, tmp;
5276
5277         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5278                 with_spread = true;
5279         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5280                  with_fdi, "LP PCH doesn't have FDI\n"))
5281                 with_fdi = false;
5282
5283         mutex_lock(&dev_priv->dpio_lock);
5284
5285         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5286         tmp &= ~SBI_SSCCTL_DISABLE;
5287         tmp |= SBI_SSCCTL_PATHALT;
5288         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5289
5290         udelay(24);
5291
5292         if (with_spread) {
5293                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5294                 tmp &= ~SBI_SSCCTL_PATHALT;
5295                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5296
5297                 if (with_fdi) {
5298                         lpt_reset_fdi_mphy(dev_priv);
5299                         lpt_program_fdi_mphy(dev_priv);
5300                 }
5301         }
5302
5303         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5304                SBI_GEN0 : SBI_DBUFF0;
5305         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5306         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5307         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5308
5309         mutex_unlock(&dev_priv->dpio_lock);
5310 }
5311
5312 /* Sequence to disable CLKOUT_DP */
5313 static void lpt_disable_clkout_dp(struct drm_device *dev)
5314 {
5315         struct drm_i915_private *dev_priv = dev->dev_private;
5316         uint32_t reg, tmp;
5317
5318         mutex_lock(&dev_priv->dpio_lock);
5319
5320         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5321                SBI_GEN0 : SBI_DBUFF0;
5322         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5323         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5324         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5325
5326         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5327         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5328                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5329                         tmp |= SBI_SSCCTL_PATHALT;
5330                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5331                         udelay(32);
5332                 }
5333                 tmp |= SBI_SSCCTL_DISABLE;
5334                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5335         }
5336
5337         mutex_unlock(&dev_priv->dpio_lock);
5338 }
5339
5340 static void lpt_init_pch_refclk(struct drm_device *dev)
5341 {
5342         struct drm_mode_config *mode_config = &dev->mode_config;
5343         struct intel_encoder *encoder;
5344         bool has_vga = false;
5345
5346         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5347                 switch (encoder->type) {
5348                 case INTEL_OUTPUT_ANALOG:
5349                         has_vga = true;
5350                         break;
5351                 }
5352         }
5353
5354         if (has_vga)
5355                 lpt_enable_clkout_dp(dev, true, true);
5356         else
5357                 lpt_disable_clkout_dp(dev);
5358 }
5359
5360 /*
5361  * Initialize reference clocks when the driver loads
5362  */
5363 void intel_init_pch_refclk(struct drm_device *dev)
5364 {
5365         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5366                 ironlake_init_pch_refclk(dev);
5367         else if (HAS_PCH_LPT(dev))
5368                 lpt_init_pch_refclk(dev);
5369 }
5370
5371 static int ironlake_get_refclk(struct drm_crtc *crtc)
5372 {
5373         struct drm_device *dev = crtc->dev;
5374         struct drm_i915_private *dev_priv = dev->dev_private;
5375         struct intel_encoder *encoder;
5376         int num_connectors = 0;
5377         bool is_lvds = false;
5378
5379         for_each_encoder_on_crtc(dev, crtc, encoder) {
5380                 switch (encoder->type) {
5381                 case INTEL_OUTPUT_LVDS:
5382                         is_lvds = true;
5383                         break;
5384                 }
5385                 num_connectors++;
5386         }
5387
5388         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5389                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5390                               dev_priv->vbt.lvds_ssc_freq);
5391                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5392         }
5393
5394         return 120000;
5395 }
5396
5397 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5398 {
5399         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5401         int pipe = intel_crtc->pipe;
5402         uint32_t val;
5403
5404         val = 0;
5405
5406         switch (intel_crtc->config.pipe_bpp) {
5407         case 18:
5408                 val |= PIPECONF_6BPC;
5409                 break;
5410         case 24:
5411                 val |= PIPECONF_8BPC;
5412                 break;
5413         case 30:
5414                 val |= PIPECONF_10BPC;
5415                 break;
5416         case 36:
5417                 val |= PIPECONF_12BPC;
5418                 break;
5419         default:
5420                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5421                 BUG();
5422         }
5423
5424         if (intel_crtc->config.dither)
5425                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5426
5427         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5428                 val |= PIPECONF_INTERLACED_ILK;
5429         else
5430                 val |= PIPECONF_PROGRESSIVE;
5431
5432         if (intel_crtc->config.limited_color_range)
5433                 val |= PIPECONF_COLOR_RANGE_SELECT;
5434
5435         I915_WRITE(PIPECONF(pipe), val);
5436         POSTING_READ(PIPECONF(pipe));
5437 }
5438
5439 /*
5440  * Set up the pipe CSC unit.
5441  *
5442  * Currently only full range RGB to limited range RGB conversion
5443  * is supported, but eventually this should handle various
5444  * RGB<->YCbCr scenarios as well.
5445  */
5446 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5447 {
5448         struct drm_device *dev = crtc->dev;
5449         struct drm_i915_private *dev_priv = dev->dev_private;
5450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5451         int pipe = intel_crtc->pipe;
5452         uint16_t coeff = 0x7800; /* 1.0 */
5453
5454         /*
5455          * TODO: Check what kind of values actually come out of the pipe
5456          * with these coeff/postoff values and adjust to get the best
5457          * accuracy. Perhaps we even need to take the bpc value into
5458          * consideration.
5459          */
5460
5461         if (intel_crtc->config.limited_color_range)
5462                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5463
5464         /*
5465          * GY/GU and RY/RU should be the other way around according
5466          * to BSpec, but reality doesn't agree. Just set them up in
5467          * a way that results in the correct picture.
5468          */
5469         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5470         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5471
5472         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5473         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5474
5475         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5476         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5477
5478         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5479         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5480         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5481
5482         if (INTEL_INFO(dev)->gen > 6) {
5483                 uint16_t postoff = 0;
5484
5485                 if (intel_crtc->config.limited_color_range)
5486                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5487
5488                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5489                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5490                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5491
5492                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5493         } else {
5494                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5495
5496                 if (intel_crtc->config.limited_color_range)
5497                         mode |= CSC_BLACK_SCREEN_OFFSET;
5498
5499                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5500         }
5501 }
5502
5503 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5504 {
5505         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5506         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5507         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5508         uint32_t val;
5509
5510         val = 0;
5511
5512         if (intel_crtc->config.dither)
5513                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5514
5515         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5516                 val |= PIPECONF_INTERLACED_ILK;
5517         else
5518                 val |= PIPECONF_PROGRESSIVE;
5519
5520         I915_WRITE(PIPECONF(cpu_transcoder), val);
5521         POSTING_READ(PIPECONF(cpu_transcoder));
5522
5523         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5524         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5525 }
5526
5527 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5528                                     intel_clock_t *clock,
5529                                     bool *has_reduced_clock,
5530                                     intel_clock_t *reduced_clock)
5531 {
5532         struct drm_device *dev = crtc->dev;
5533         struct drm_i915_private *dev_priv = dev->dev_private;
5534         struct intel_encoder *intel_encoder;
5535         int refclk;
5536         const intel_limit_t *limit;
5537         bool ret, is_lvds = false;
5538
5539         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5540                 switch (intel_encoder->type) {
5541                 case INTEL_OUTPUT_LVDS:
5542                         is_lvds = true;
5543                         break;
5544                 }
5545         }
5546
5547         refclk = ironlake_get_refclk(crtc);
5548
5549         /*
5550          * Returns a set of divisors for the desired target clock with the given
5551          * refclk, or FALSE.  The returned values represent the clock equation:
5552          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5553          */
5554         limit = intel_limit(crtc, refclk);
5555         ret = dev_priv->display.find_dpll(limit, crtc,
5556                                           to_intel_crtc(crtc)->config.port_clock,
5557                                           refclk, NULL, clock);
5558         if (!ret)
5559                 return false;
5560
5561         if (is_lvds && dev_priv->lvds_downclock_avail) {
5562                 /*
5563                  * Ensure we match the reduced clock's P to the target clock.
5564                  * If the clocks don't match, we can't switch the display clock
5565                  * by using the FP0/FP1. In such case we will disable the LVDS
5566                  * downclock feature.
5567                 */
5568                 *has_reduced_clock =
5569                         dev_priv->display.find_dpll(limit, crtc,
5570                                                     dev_priv->lvds_downclock,
5571                                                     refclk, clock,
5572                                                     reduced_clock);
5573         }
5574
5575         return true;
5576 }
5577
5578 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5579 {
5580         struct drm_i915_private *dev_priv = dev->dev_private;
5581         uint32_t temp;
5582
5583         temp = I915_READ(SOUTH_CHICKEN1);
5584         if (temp & FDI_BC_BIFURCATION_SELECT)
5585                 return;
5586
5587         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5588         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5589
5590         temp |= FDI_BC_BIFURCATION_SELECT;
5591         DRM_DEBUG_KMS("enabling fdi C rx\n");
5592         I915_WRITE(SOUTH_CHICKEN1, temp);
5593         POSTING_READ(SOUTH_CHICKEN1);
5594 }
5595
5596 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5597 {
5598         struct drm_device *dev = intel_crtc->base.dev;
5599         struct drm_i915_private *dev_priv = dev->dev_private;
5600
5601         switch (intel_crtc->pipe) {
5602         case PIPE_A:
5603                 break;
5604         case PIPE_B:
5605                 if (intel_crtc->config.fdi_lanes > 2)
5606                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5607                 else
5608                         cpt_enable_fdi_bc_bifurcation(dev);
5609
5610                 break;
5611         case PIPE_C:
5612                 cpt_enable_fdi_bc_bifurcation(dev);
5613
5614                 break;
5615         default:
5616                 BUG();
5617         }
5618 }
5619
5620 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5621 {
5622         /*
5623          * Account for spread spectrum to avoid
5624          * oversubscribing the link. Max center spread
5625          * is 2.5%; use 5% for safety's sake.
5626          */
5627         u32 bps = target_clock * bpp * 21 / 20;
5628         return bps / (link_bw * 8) + 1;
5629 }
5630
5631 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5632 {
5633         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5634 }
5635
5636 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5637                                       u32 *fp,
5638                                       intel_clock_t *reduced_clock, u32 *fp2)
5639 {
5640         struct drm_crtc *crtc = &intel_crtc->base;
5641         struct drm_device *dev = crtc->dev;
5642         struct drm_i915_private *dev_priv = dev->dev_private;
5643         struct intel_encoder *intel_encoder;
5644         uint32_t dpll;
5645         int factor, num_connectors = 0;
5646         bool is_lvds = false, is_sdvo = false;
5647
5648         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5649                 switch (intel_encoder->type) {
5650                 case INTEL_OUTPUT_LVDS:
5651                         is_lvds = true;
5652                         break;
5653                 case INTEL_OUTPUT_SDVO:
5654                 case INTEL_OUTPUT_HDMI:
5655                         is_sdvo = true;
5656                         break;
5657                 }
5658
5659                 num_connectors++;
5660         }
5661
5662         /* Enable autotuning of the PLL clock (if permissible) */
5663         factor = 21;
5664         if (is_lvds) {
5665                 if ((intel_panel_use_ssc(dev_priv) &&
5666                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5667                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5668                         factor = 25;
5669         } else if (intel_crtc->config.sdvo_tv_clock)
5670                 factor = 20;
5671
5672         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5673                 *fp |= FP_CB_TUNE;
5674
5675         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5676                 *fp2 |= FP_CB_TUNE;
5677
5678         dpll = 0;
5679
5680         if (is_lvds)
5681                 dpll |= DPLLB_MODE_LVDS;
5682         else
5683                 dpll |= DPLLB_MODE_DAC_SERIAL;
5684
5685         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5686                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5687
5688         if (is_sdvo)
5689                 dpll |= DPLL_SDVO_HIGH_SPEED;
5690         if (intel_crtc->config.has_dp_encoder)
5691                 dpll |= DPLL_SDVO_HIGH_SPEED;
5692
5693         /* compute bitmask from p1 value */
5694         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5695         /* also FPA1 */
5696         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5697
5698         switch (intel_crtc->config.dpll.p2) {
5699         case 5:
5700                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5701                 break;
5702         case 7:
5703                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5704                 break;
5705         case 10:
5706                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5707                 break;
5708         case 14:
5709                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5710                 break;
5711         }
5712
5713         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5714                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5715         else
5716                 dpll |= PLL_REF_INPUT_DREFCLK;
5717
5718         return dpll | DPLL_VCO_ENABLE;
5719 }
5720
5721 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5722                                   int x, int y,
5723                                   struct drm_framebuffer *fb)
5724 {
5725         struct drm_device *dev = crtc->dev;
5726         struct drm_i915_private *dev_priv = dev->dev_private;
5727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5728         int pipe = intel_crtc->pipe;
5729         int plane = intel_crtc->plane;
5730         int num_connectors = 0;
5731         intel_clock_t clock, reduced_clock;
5732         u32 dpll = 0, fp = 0, fp2 = 0;
5733         bool ok, has_reduced_clock = false;
5734         bool is_lvds = false;
5735         struct intel_encoder *encoder;
5736         struct intel_shared_dpll *pll;
5737         int ret;
5738
5739         for_each_encoder_on_crtc(dev, crtc, encoder) {
5740                 switch (encoder->type) {
5741                 case INTEL_OUTPUT_LVDS:
5742                         is_lvds = true;
5743                         break;
5744                 }
5745
5746                 num_connectors++;
5747         }
5748
5749         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5750              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5751
5752         ok = ironlake_compute_clocks(crtc, &clock,
5753                                      &has_reduced_clock, &reduced_clock);
5754         if (!ok && !intel_crtc->config.clock_set) {
5755                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5756                 return -EINVAL;
5757         }
5758         /* Compat-code for transition, will disappear. */
5759         if (!intel_crtc->config.clock_set) {
5760                 intel_crtc->config.dpll.n = clock.n;
5761                 intel_crtc->config.dpll.m1 = clock.m1;
5762                 intel_crtc->config.dpll.m2 = clock.m2;
5763                 intel_crtc->config.dpll.p1 = clock.p1;
5764                 intel_crtc->config.dpll.p2 = clock.p2;
5765         }
5766
5767         /* Ensure that the cursor is valid for the new mode before changing... */
5768         intel_crtc_update_cursor(crtc, true);
5769
5770         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5771         if (intel_crtc->config.has_pch_encoder) {
5772                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5773                 if (has_reduced_clock)
5774                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5775
5776                 dpll = ironlake_compute_dpll(intel_crtc,
5777                                              &fp, &reduced_clock,
5778                                              has_reduced_clock ? &fp2 : NULL);
5779
5780                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5781                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5782                 if (has_reduced_clock)
5783                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5784                 else
5785                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5786
5787                 pll = intel_get_shared_dpll(intel_crtc);
5788                 if (pll == NULL) {
5789                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5790                                          pipe_name(pipe));
5791                         return -EINVAL;
5792                 }
5793         } else
5794                 intel_put_shared_dpll(intel_crtc);
5795
5796         if (intel_crtc->config.has_dp_encoder)
5797                 intel_dp_set_m_n(intel_crtc);
5798
5799         if (is_lvds && has_reduced_clock && i915_powersave)
5800                 intel_crtc->lowfreq_avail = true;
5801         else
5802                 intel_crtc->lowfreq_avail = false;
5803
5804         if (intel_crtc->config.has_pch_encoder) {
5805                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5806
5807         }
5808
5809         intel_set_pipe_timings(intel_crtc);
5810
5811         if (intel_crtc->config.has_pch_encoder) {
5812                 intel_cpu_transcoder_set_m_n(intel_crtc,
5813                                              &intel_crtc->config.fdi_m_n);
5814         }
5815
5816         if (IS_IVYBRIDGE(dev))
5817                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5818
5819         ironlake_set_pipeconf(crtc);
5820
5821         /* Set up the display plane register */
5822         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5823         POSTING_READ(DSPCNTR(plane));
5824
5825         ret = intel_pipe_set_base(crtc, x, y, fb);
5826
5827         intel_update_watermarks(dev);
5828
5829         return ret;
5830 }
5831
5832 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5833                                         struct intel_crtc_config *pipe_config)
5834 {
5835         struct drm_device *dev = crtc->base.dev;
5836         struct drm_i915_private *dev_priv = dev->dev_private;
5837         enum transcoder transcoder = pipe_config->cpu_transcoder;
5838
5839         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5840         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5841         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5842                                         & ~TU_SIZE_MASK;
5843         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5844         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5845                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5846 }
5847
5848 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5849                                      struct intel_crtc_config *pipe_config)
5850 {
5851         struct drm_device *dev = crtc->base.dev;
5852         struct drm_i915_private *dev_priv = dev->dev_private;
5853         uint32_t tmp;
5854
5855         tmp = I915_READ(PF_CTL(crtc->pipe));
5856
5857         if (tmp & PF_ENABLE) {
5858                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5859                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5860
5861                 /* We currently do not free assignements of panel fitters on
5862                  * ivb/hsw (since we don't use the higher upscaling modes which
5863                  * differentiates them) so just WARN about this case for now. */
5864                 if (IS_GEN7(dev)) {
5865                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5866                                 PF_PIPE_SEL_IVB(crtc->pipe));
5867                 }
5868         }
5869 }
5870
5871 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5872                                      struct intel_crtc_config *pipe_config)
5873 {
5874         struct drm_device *dev = crtc->base.dev;
5875         struct drm_i915_private *dev_priv = dev->dev_private;
5876         uint32_t tmp;
5877
5878         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5879         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5880
5881         tmp = I915_READ(PIPECONF(crtc->pipe));
5882         if (!(tmp & PIPECONF_ENABLE))
5883                 return false;
5884
5885         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5886                 struct intel_shared_dpll *pll;
5887
5888                 pipe_config->has_pch_encoder = true;
5889
5890                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5891                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5892                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5893
5894                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5895
5896                 if (HAS_PCH_IBX(dev_priv->dev)) {
5897                         pipe_config->shared_dpll =
5898                                 (enum intel_dpll_id) crtc->pipe;
5899                 } else {
5900                         tmp = I915_READ(PCH_DPLL_SEL);
5901                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5902                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5903                         else
5904                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5905                 }
5906
5907                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5908
5909                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5910                                            &pipe_config->dpll_hw_state));
5911
5912                 tmp = pipe_config->dpll_hw_state.dpll;
5913                 pipe_config->pixel_multiplier =
5914                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5915                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5916         } else {
5917                 pipe_config->pixel_multiplier = 1;
5918         }
5919
5920         intel_get_pipe_timings(crtc, pipe_config);
5921
5922         ironlake_get_pfit_config(crtc, pipe_config);
5923
5924         return true;
5925 }
5926
5927 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5928 {
5929         struct drm_device *dev = dev_priv->dev;
5930         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5931         struct intel_crtc *crtc;
5932         unsigned long irqflags;
5933         uint32_t val, pch_hpd_mask;
5934
5935         pch_hpd_mask = SDE_PORTB_HOTPLUG_CPT | SDE_PORTC_HOTPLUG_CPT;
5936         if (!(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE))
5937                 pch_hpd_mask |= SDE_PORTD_HOTPLUG_CPT | SDE_CRT_HOTPLUG_CPT;
5938
5939         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5940                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5941                      pipe_name(crtc->pipe));
5942
5943         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5944         WARN(plls->spll_refcount, "SPLL enabled\n");
5945         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5946         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5947         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5948         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5949              "CPU PWM1 enabled\n");
5950         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5951              "CPU PWM2 enabled\n");
5952         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5953              "PCH PWM1 enabled\n");
5954         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5955              "Utility pin enabled\n");
5956         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5957
5958         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5959         val = I915_READ(DEIMR);
5960         WARN((val & ~DE_PCH_EVENT_IVB) != val,
5961              "Unexpected DEIMR bits enabled: 0x%x\n", val);
5962         val = I915_READ(SDEIMR);
5963         WARN((val & ~pch_hpd_mask) != val,
5964              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5965         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5966 }
5967
5968 /*
5969  * This function implements pieces of two sequences from BSpec:
5970  * - Sequence for display software to disable LCPLL
5971  * - Sequence for display software to allow package C8+
5972  * The steps implemented here are just the steps that actually touch the LCPLL
5973  * register. Callers should take care of disabling all the display engine
5974  * functions, doing the mode unset, fixing interrupts, etc.
5975  */
5976 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
5977                        bool switch_to_fclk, bool allow_power_down)
5978 {
5979         uint32_t val;
5980
5981         assert_can_disable_lcpll(dev_priv);
5982
5983         val = I915_READ(LCPLL_CTL);
5984
5985         if (switch_to_fclk) {
5986                 val |= LCPLL_CD_SOURCE_FCLK;
5987                 I915_WRITE(LCPLL_CTL, val);
5988
5989                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
5990                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
5991                         DRM_ERROR("Switching to FCLK failed\n");
5992
5993                 val = I915_READ(LCPLL_CTL);
5994         }
5995
5996         val |= LCPLL_PLL_DISABLE;
5997         I915_WRITE(LCPLL_CTL, val);
5998         POSTING_READ(LCPLL_CTL);
5999
6000         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6001                 DRM_ERROR("LCPLL still locked\n");
6002
6003         val = I915_READ(D_COMP);
6004         val |= D_COMP_COMP_DISABLE;
6005         I915_WRITE(D_COMP, val);
6006         POSTING_READ(D_COMP);
6007         ndelay(100);
6008
6009         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6010                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6011
6012         if (allow_power_down) {
6013                 val = I915_READ(LCPLL_CTL);
6014                 val |= LCPLL_POWER_DOWN_ALLOW;
6015                 I915_WRITE(LCPLL_CTL, val);
6016                 POSTING_READ(LCPLL_CTL);
6017         }
6018 }
6019
6020 /*
6021  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6022  * source.
6023  */
6024 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6025 {
6026         uint32_t val;
6027
6028         val = I915_READ(LCPLL_CTL);
6029
6030         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6031                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6032                 return;
6033
6034         if (val & LCPLL_POWER_DOWN_ALLOW) {
6035                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6036                 I915_WRITE(LCPLL_CTL, val);
6037         }
6038
6039         val = I915_READ(D_COMP);
6040         val |= D_COMP_COMP_FORCE;
6041         val &= ~D_COMP_COMP_DISABLE;
6042         I915_WRITE(D_COMP, val);
6043         I915_READ(D_COMP);
6044
6045         val = I915_READ(LCPLL_CTL);
6046         val &= ~LCPLL_PLL_DISABLE;
6047         I915_WRITE(LCPLL_CTL, val);
6048
6049         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6050                 DRM_ERROR("LCPLL not locked yet\n");
6051
6052         if (val & LCPLL_CD_SOURCE_FCLK) {
6053                 val = I915_READ(LCPLL_CTL);
6054                 val &= ~LCPLL_CD_SOURCE_FCLK;
6055                 I915_WRITE(LCPLL_CTL, val);
6056
6057                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6058                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6059                         DRM_ERROR("Switching back to LCPLL failed\n");
6060         }
6061 }
6062
6063 static void haswell_modeset_global_resources(struct drm_device *dev)
6064 {
6065         bool enable = false;
6066         struct intel_crtc *crtc;
6067
6068         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6069                 if (!crtc->base.enabled)
6070                         continue;
6071
6072                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6073                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
6074                         enable = true;
6075         }
6076
6077         intel_set_power_well(dev, enable);
6078 }
6079
6080 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6081                                  int x, int y,
6082                                  struct drm_framebuffer *fb)
6083 {
6084         struct drm_device *dev = crtc->dev;
6085         struct drm_i915_private *dev_priv = dev->dev_private;
6086         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6087         int plane = intel_crtc->plane;
6088         int ret;
6089
6090         if (!intel_ddi_pll_mode_set(crtc))
6091                 return -EINVAL;
6092
6093         /* Ensure that the cursor is valid for the new mode before changing... */
6094         intel_crtc_update_cursor(crtc, true);
6095
6096         if (intel_crtc->config.has_dp_encoder)
6097                 intel_dp_set_m_n(intel_crtc);
6098
6099         intel_crtc->lowfreq_avail = false;
6100
6101         intel_set_pipe_timings(intel_crtc);
6102
6103         if (intel_crtc->config.has_pch_encoder) {
6104                 intel_cpu_transcoder_set_m_n(intel_crtc,
6105                                              &intel_crtc->config.fdi_m_n);
6106         }
6107
6108         haswell_set_pipeconf(crtc);
6109
6110         intel_set_pipe_csc(crtc);
6111
6112         /* Set up the display plane register */
6113         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6114         POSTING_READ(DSPCNTR(plane));
6115
6116         ret = intel_pipe_set_base(crtc, x, y, fb);
6117
6118         intel_update_watermarks(dev);
6119
6120         return ret;
6121 }
6122
6123 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6124                                     struct intel_crtc_config *pipe_config)
6125 {
6126         struct drm_device *dev = crtc->base.dev;
6127         struct drm_i915_private *dev_priv = dev->dev_private;
6128         enum intel_display_power_domain pfit_domain;
6129         uint32_t tmp;
6130
6131         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6132         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6133
6134         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6135         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6136                 enum pipe trans_edp_pipe;
6137                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6138                 default:
6139                         WARN(1, "unknown pipe linked to edp transcoder\n");
6140                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6141                 case TRANS_DDI_EDP_INPUT_A_ON:
6142                         trans_edp_pipe = PIPE_A;
6143                         break;
6144                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6145                         trans_edp_pipe = PIPE_B;
6146                         break;
6147                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6148                         trans_edp_pipe = PIPE_C;
6149                         break;
6150                 }
6151
6152                 if (trans_edp_pipe == crtc->pipe)
6153                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6154         }
6155
6156         if (!intel_display_power_enabled(dev,
6157                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6158                 return false;
6159
6160         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6161         if (!(tmp & PIPECONF_ENABLE))
6162                 return false;
6163
6164         /*
6165          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6166          * DDI E. So just check whether this pipe is wired to DDI E and whether
6167          * the PCH transcoder is on.
6168          */
6169         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6170         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6171             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6172                 pipe_config->has_pch_encoder = true;
6173
6174                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6175                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6176                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6177
6178                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6179         }
6180
6181         intel_get_pipe_timings(crtc, pipe_config);
6182
6183         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6184         if (intel_display_power_enabled(dev, pfit_domain))
6185                 ironlake_get_pfit_config(crtc, pipe_config);
6186
6187         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6188                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6189
6190         pipe_config->pixel_multiplier = 1;
6191
6192         return true;
6193 }
6194
6195 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6196                                int x, int y,
6197                                struct drm_framebuffer *fb)
6198 {
6199         struct drm_device *dev = crtc->dev;
6200         struct drm_i915_private *dev_priv = dev->dev_private;
6201         struct intel_encoder *encoder;
6202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6203         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6204         int pipe = intel_crtc->pipe;
6205         int ret;
6206
6207         drm_vblank_pre_modeset(dev, pipe);
6208
6209         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6210
6211         drm_vblank_post_modeset(dev, pipe);
6212
6213         if (ret != 0)
6214                 return ret;
6215
6216         for_each_encoder_on_crtc(dev, crtc, encoder) {
6217                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6218                         encoder->base.base.id,
6219                         drm_get_encoder_name(&encoder->base),
6220                         mode->base.id, mode->name);
6221                 encoder->mode_set(encoder);
6222         }
6223
6224         return 0;
6225 }
6226
6227 static bool intel_eld_uptodate(struct drm_connector *connector,
6228                                int reg_eldv, uint32_t bits_eldv,
6229                                int reg_elda, uint32_t bits_elda,
6230                                int reg_edid)
6231 {
6232         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6233         uint8_t *eld = connector->eld;
6234         uint32_t i;
6235
6236         i = I915_READ(reg_eldv);
6237         i &= bits_eldv;
6238
6239         if (!eld[0])
6240                 return !i;
6241
6242         if (!i)
6243                 return false;
6244
6245         i = I915_READ(reg_elda);
6246         i &= ~bits_elda;
6247         I915_WRITE(reg_elda, i);
6248
6249         for (i = 0; i < eld[2]; i++)
6250                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6251                         return false;
6252
6253         return true;
6254 }
6255
6256 static void g4x_write_eld(struct drm_connector *connector,
6257                           struct drm_crtc *crtc)
6258 {
6259         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6260         uint8_t *eld = connector->eld;
6261         uint32_t eldv;
6262         uint32_t len;
6263         uint32_t i;
6264
6265         i = I915_READ(G4X_AUD_VID_DID);
6266
6267         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6268                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6269         else
6270                 eldv = G4X_ELDV_DEVCTG;
6271
6272         if (intel_eld_uptodate(connector,
6273                                G4X_AUD_CNTL_ST, eldv,
6274                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6275                                G4X_HDMIW_HDMIEDID))
6276                 return;
6277
6278         i = I915_READ(G4X_AUD_CNTL_ST);
6279         i &= ~(eldv | G4X_ELD_ADDR);
6280         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6281         I915_WRITE(G4X_AUD_CNTL_ST, i);
6282
6283         if (!eld[0])
6284                 return;
6285
6286         len = min_t(uint8_t, eld[2], len);
6287         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6288         for (i = 0; i < len; i++)
6289                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6290
6291         i = I915_READ(G4X_AUD_CNTL_ST);
6292         i |= eldv;
6293         I915_WRITE(G4X_AUD_CNTL_ST, i);
6294 }
6295
6296 static void haswell_write_eld(struct drm_connector *connector,
6297                                      struct drm_crtc *crtc)
6298 {
6299         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6300         uint8_t *eld = connector->eld;
6301         struct drm_device *dev = crtc->dev;
6302         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6303         uint32_t eldv;
6304         uint32_t i;
6305         int len;
6306         int pipe = to_intel_crtc(crtc)->pipe;
6307         int tmp;
6308
6309         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6310         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6311         int aud_config = HSW_AUD_CFG(pipe);
6312         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6313
6314
6315         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6316
6317         /* Audio output enable */
6318         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6319         tmp = I915_READ(aud_cntrl_st2);
6320         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6321         I915_WRITE(aud_cntrl_st2, tmp);
6322
6323         /* Wait for 1 vertical blank */
6324         intel_wait_for_vblank(dev, pipe);
6325
6326         /* Set ELD valid state */
6327         tmp = I915_READ(aud_cntrl_st2);
6328         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6329         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6330         I915_WRITE(aud_cntrl_st2, tmp);
6331         tmp = I915_READ(aud_cntrl_st2);
6332         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6333
6334         /* Enable HDMI mode */
6335         tmp = I915_READ(aud_config);
6336         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6337         /* clear N_programing_enable and N_value_index */
6338         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6339         I915_WRITE(aud_config, tmp);
6340
6341         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6342
6343         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6344         intel_crtc->eld_vld = true;
6345
6346         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6347                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6348                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6349                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6350         } else
6351                 I915_WRITE(aud_config, 0);
6352
6353         if (intel_eld_uptodate(connector,
6354                                aud_cntrl_st2, eldv,
6355                                aud_cntl_st, IBX_ELD_ADDRESS,
6356                                hdmiw_hdmiedid))
6357                 return;
6358
6359         i = I915_READ(aud_cntrl_st2);
6360         i &= ~eldv;
6361         I915_WRITE(aud_cntrl_st2, i);
6362
6363         if (!eld[0])
6364                 return;
6365
6366         i = I915_READ(aud_cntl_st);
6367         i &= ~IBX_ELD_ADDRESS;
6368         I915_WRITE(aud_cntl_st, i);
6369         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6370         DRM_DEBUG_DRIVER("port num:%d\n", i);
6371
6372         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6373         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6374         for (i = 0; i < len; i++)
6375                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6376
6377         i = I915_READ(aud_cntrl_st2);
6378         i |= eldv;
6379         I915_WRITE(aud_cntrl_st2, i);
6380
6381 }
6382
6383 static void ironlake_write_eld(struct drm_connector *connector,
6384                                      struct drm_crtc *crtc)
6385 {
6386         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6387         uint8_t *eld = connector->eld;
6388         uint32_t eldv;
6389         uint32_t i;
6390         int len;
6391         int hdmiw_hdmiedid;
6392         int aud_config;
6393         int aud_cntl_st;
6394         int aud_cntrl_st2;
6395         int pipe = to_intel_crtc(crtc)->pipe;
6396
6397         if (HAS_PCH_IBX(connector->dev)) {
6398                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6399                 aud_config = IBX_AUD_CFG(pipe);
6400                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6401                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6402         } else {
6403                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6404                 aud_config = CPT_AUD_CFG(pipe);
6405                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6406                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6407         }
6408
6409         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6410
6411         i = I915_READ(aud_cntl_st);
6412         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6413         if (!i) {
6414                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6415                 /* operate blindly on all ports */
6416                 eldv = IBX_ELD_VALIDB;
6417                 eldv |= IBX_ELD_VALIDB << 4;
6418                 eldv |= IBX_ELD_VALIDB << 8;
6419         } else {
6420                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6421                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6422         }
6423
6424         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6425                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6426                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6427                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6428         } else
6429                 I915_WRITE(aud_config, 0);
6430
6431         if (intel_eld_uptodate(connector,
6432                                aud_cntrl_st2, eldv,
6433                                aud_cntl_st, IBX_ELD_ADDRESS,
6434                                hdmiw_hdmiedid))
6435                 return;
6436
6437         i = I915_READ(aud_cntrl_st2);
6438         i &= ~eldv;
6439         I915_WRITE(aud_cntrl_st2, i);
6440
6441         if (!eld[0])
6442                 return;
6443
6444         i = I915_READ(aud_cntl_st);
6445         i &= ~IBX_ELD_ADDRESS;
6446         I915_WRITE(aud_cntl_st, i);
6447
6448         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6449         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6450         for (i = 0; i < len; i++)
6451                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6452
6453         i = I915_READ(aud_cntrl_st2);
6454         i |= eldv;
6455         I915_WRITE(aud_cntrl_st2, i);
6456 }
6457
6458 void intel_write_eld(struct drm_encoder *encoder,
6459                      struct drm_display_mode *mode)
6460 {
6461         struct drm_crtc *crtc = encoder->crtc;
6462         struct drm_connector *connector;
6463         struct drm_device *dev = encoder->dev;
6464         struct drm_i915_private *dev_priv = dev->dev_private;
6465
6466         connector = drm_select_eld(encoder, mode);
6467         if (!connector)
6468                 return;
6469
6470         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6471                          connector->base.id,
6472                          drm_get_connector_name(connector),
6473                          connector->encoder->base.id,
6474                          drm_get_encoder_name(connector->encoder));
6475
6476         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6477
6478         if (dev_priv->display.write_eld)
6479                 dev_priv->display.write_eld(connector, crtc);
6480 }
6481
6482 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6483 void intel_crtc_load_lut(struct drm_crtc *crtc)
6484 {
6485         struct drm_device *dev = crtc->dev;
6486         struct drm_i915_private *dev_priv = dev->dev_private;
6487         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6488         enum pipe pipe = intel_crtc->pipe;
6489         int palreg = PALETTE(pipe);
6490         int i;
6491         bool reenable_ips = false;
6492
6493         /* The clocks have to be on to load the palette. */
6494         if (!crtc->enabled || !intel_crtc->active)
6495                 return;
6496
6497         if (!HAS_PCH_SPLIT(dev_priv->dev))
6498                 assert_pll_enabled(dev_priv, pipe);
6499
6500         /* use legacy palette for Ironlake */
6501         if (HAS_PCH_SPLIT(dev))
6502                 palreg = LGC_PALETTE(pipe);
6503
6504         /* Workaround : Do not read or write the pipe palette/gamma data while
6505          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6506          */
6507         if (intel_crtc->config.ips_enabled &&
6508             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6509              GAMMA_MODE_MODE_SPLIT)) {
6510                 hsw_disable_ips(intel_crtc);
6511                 reenable_ips = true;
6512         }
6513
6514         for (i = 0; i < 256; i++) {
6515                 I915_WRITE(palreg + 4 * i,
6516                            (intel_crtc->lut_r[i] << 16) |
6517                            (intel_crtc->lut_g[i] << 8) |
6518                            intel_crtc->lut_b[i]);
6519         }
6520
6521         if (reenable_ips)
6522                 hsw_enable_ips(intel_crtc);
6523 }
6524
6525 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6526 {
6527         struct drm_device *dev = crtc->dev;
6528         struct drm_i915_private *dev_priv = dev->dev_private;
6529         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6530         bool visible = base != 0;
6531         u32 cntl;
6532
6533         if (intel_crtc->cursor_visible == visible)
6534                 return;
6535
6536         cntl = I915_READ(_CURACNTR);
6537         if (visible) {
6538                 /* On these chipsets we can only modify the base whilst
6539                  * the cursor is disabled.
6540                  */
6541                 I915_WRITE(_CURABASE, base);
6542
6543                 cntl &= ~(CURSOR_FORMAT_MASK);
6544                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6545                 cntl |= CURSOR_ENABLE |
6546                         CURSOR_GAMMA_ENABLE |
6547                         CURSOR_FORMAT_ARGB;
6548         } else
6549                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6550         I915_WRITE(_CURACNTR, cntl);
6551
6552         intel_crtc->cursor_visible = visible;
6553 }
6554
6555 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6556 {
6557         struct drm_device *dev = crtc->dev;
6558         struct drm_i915_private *dev_priv = dev->dev_private;
6559         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6560         int pipe = intel_crtc->pipe;
6561         bool visible = base != 0;
6562
6563         if (intel_crtc->cursor_visible != visible) {
6564                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6565                 if (base) {
6566                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6567                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6568                         cntl |= pipe << 28; /* Connect to correct pipe */
6569                 } else {
6570                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6571                         cntl |= CURSOR_MODE_DISABLE;
6572                 }
6573                 I915_WRITE(CURCNTR(pipe), cntl);
6574
6575                 intel_crtc->cursor_visible = visible;
6576         }
6577         /* and commit changes on next vblank */
6578         I915_WRITE(CURBASE(pipe), base);
6579 }
6580
6581 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6582 {
6583         struct drm_device *dev = crtc->dev;
6584         struct drm_i915_private *dev_priv = dev->dev_private;
6585         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6586         int pipe = intel_crtc->pipe;
6587         bool visible = base != 0;
6588
6589         if (intel_crtc->cursor_visible != visible) {
6590                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6591                 if (base) {
6592                         cntl &= ~CURSOR_MODE;
6593                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6594                 } else {
6595                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6596                         cntl |= CURSOR_MODE_DISABLE;
6597                 }
6598                 if (IS_HASWELL(dev))
6599                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6600                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6601
6602                 intel_crtc->cursor_visible = visible;
6603         }
6604         /* and commit changes on next vblank */
6605         I915_WRITE(CURBASE_IVB(pipe), base);
6606 }
6607
6608 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6609 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6610                                      bool on)
6611 {
6612         struct drm_device *dev = crtc->dev;
6613         struct drm_i915_private *dev_priv = dev->dev_private;
6614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6615         int pipe = intel_crtc->pipe;
6616         int x = intel_crtc->cursor_x;
6617         int y = intel_crtc->cursor_y;
6618         u32 base, pos;
6619         bool visible;
6620
6621         pos = 0;
6622
6623         if (on && crtc->enabled && crtc->fb) {
6624                 base = intel_crtc->cursor_addr;
6625                 if (x > (int) crtc->fb->width)
6626                         base = 0;
6627
6628                 if (y > (int) crtc->fb->height)
6629                         base = 0;
6630         } else
6631                 base = 0;
6632
6633         if (x < 0) {
6634                 if (x + intel_crtc->cursor_width < 0)
6635                         base = 0;
6636
6637                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6638                 x = -x;
6639         }
6640         pos |= x << CURSOR_X_SHIFT;
6641
6642         if (y < 0) {
6643                 if (y + intel_crtc->cursor_height < 0)
6644                         base = 0;
6645
6646                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6647                 y = -y;
6648         }
6649         pos |= y << CURSOR_Y_SHIFT;
6650
6651         visible = base != 0;
6652         if (!visible && !intel_crtc->cursor_visible)
6653                 return;
6654
6655         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6656                 I915_WRITE(CURPOS_IVB(pipe), pos);
6657                 ivb_update_cursor(crtc, base);
6658         } else {
6659                 I915_WRITE(CURPOS(pipe), pos);
6660                 if (IS_845G(dev) || IS_I865G(dev))
6661                         i845_update_cursor(crtc, base);
6662                 else
6663                         i9xx_update_cursor(crtc, base);
6664         }
6665 }
6666
6667 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6668                                  struct drm_file *file,
6669                                  uint32_t handle,
6670                                  uint32_t width, uint32_t height)
6671 {
6672         struct drm_device *dev = crtc->dev;
6673         struct drm_i915_private *dev_priv = dev->dev_private;
6674         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6675         struct drm_i915_gem_object *obj;
6676         uint32_t addr;
6677         int ret;
6678
6679         /* if we want to turn off the cursor ignore width and height */
6680         if (!handle) {
6681                 DRM_DEBUG_KMS("cursor off\n");
6682                 addr = 0;
6683                 obj = NULL;
6684                 mutex_lock(&dev->struct_mutex);
6685                 goto finish;
6686         }
6687
6688         /* Currently we only support 64x64 cursors */
6689         if (width != 64 || height != 64) {
6690                 DRM_ERROR("we currently only support 64x64 cursors\n");
6691                 return -EINVAL;
6692         }
6693
6694         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6695         if (&obj->base == NULL)
6696                 return -ENOENT;
6697
6698         if (obj->base.size < width * height * 4) {
6699                 DRM_ERROR("buffer is to small\n");
6700                 ret = -ENOMEM;
6701                 goto fail;
6702         }
6703
6704         /* we only need to pin inside GTT if cursor is non-phy */
6705         mutex_lock(&dev->struct_mutex);
6706         if (!dev_priv->info->cursor_needs_physical) {
6707                 unsigned alignment;
6708
6709                 if (obj->tiling_mode) {
6710                         DRM_ERROR("cursor cannot be tiled\n");
6711                         ret = -EINVAL;
6712                         goto fail_locked;
6713                 }
6714
6715                 /* Note that the w/a also requires 2 PTE of padding following
6716                  * the bo. We currently fill all unused PTE with the shadow
6717                  * page and so we should always have valid PTE following the
6718                  * cursor preventing the VT-d warning.
6719                  */
6720                 alignment = 0;
6721                 if (need_vtd_wa(dev))
6722                         alignment = 64*1024;
6723
6724                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6725                 if (ret) {
6726                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6727                         goto fail_locked;
6728                 }
6729
6730                 ret = i915_gem_object_put_fence(obj);
6731                 if (ret) {
6732                         DRM_ERROR("failed to release fence for cursor");
6733                         goto fail_unpin;
6734                 }
6735
6736                 addr = i915_gem_obj_ggtt_offset(obj);
6737         } else {
6738                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6739                 ret = i915_gem_attach_phys_object(dev, obj,
6740                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6741                                                   align);
6742                 if (ret) {
6743                         DRM_ERROR("failed to attach phys object\n");
6744                         goto fail_locked;
6745                 }
6746                 addr = obj->phys_obj->handle->busaddr;
6747         }
6748
6749         if (IS_GEN2(dev))
6750                 I915_WRITE(CURSIZE, (height << 12) | width);
6751
6752  finish:
6753         if (intel_crtc->cursor_bo) {
6754                 if (dev_priv->info->cursor_needs_physical) {
6755                         if (intel_crtc->cursor_bo != obj)
6756                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6757                 } else
6758                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
6759                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6760         }
6761
6762         mutex_unlock(&dev->struct_mutex);
6763
6764         intel_crtc->cursor_addr = addr;
6765         intel_crtc->cursor_bo = obj;
6766         intel_crtc->cursor_width = width;
6767         intel_crtc->cursor_height = height;
6768
6769         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6770
6771         return 0;
6772 fail_unpin:
6773         i915_gem_object_unpin_from_display_plane(obj);
6774 fail_locked:
6775         mutex_unlock(&dev->struct_mutex);
6776 fail:
6777         drm_gem_object_unreference_unlocked(&obj->base);
6778         return ret;
6779 }
6780
6781 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6782 {
6783         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6784
6785         intel_crtc->cursor_x = x;
6786         intel_crtc->cursor_y = y;
6787
6788         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6789
6790         return 0;
6791 }
6792
6793 /** Sets the color ramps on behalf of RandR */
6794 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6795                                  u16 blue, int regno)
6796 {
6797         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6798
6799         intel_crtc->lut_r[regno] = red >> 8;
6800         intel_crtc->lut_g[regno] = green >> 8;
6801         intel_crtc->lut_b[regno] = blue >> 8;
6802 }
6803
6804 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6805                              u16 *blue, int regno)
6806 {
6807         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6808
6809         *red = intel_crtc->lut_r[regno] << 8;
6810         *green = intel_crtc->lut_g[regno] << 8;
6811         *blue = intel_crtc->lut_b[regno] << 8;
6812 }
6813
6814 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6815                                  u16 *blue, uint32_t start, uint32_t size)
6816 {
6817         int end = (start + size > 256) ? 256 : start + size, i;
6818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6819
6820         for (i = start; i < end; i++) {
6821                 intel_crtc->lut_r[i] = red[i] >> 8;
6822                 intel_crtc->lut_g[i] = green[i] >> 8;
6823                 intel_crtc->lut_b[i] = blue[i] >> 8;
6824         }
6825
6826         intel_crtc_load_lut(crtc);
6827 }
6828
6829 /* VESA 640x480x72Hz mode to set on the pipe */
6830 static struct drm_display_mode load_detect_mode = {
6831         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6832                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6833 };
6834
6835 static struct drm_framebuffer *
6836 intel_framebuffer_create(struct drm_device *dev,
6837                          struct drm_mode_fb_cmd2 *mode_cmd,
6838                          struct drm_i915_gem_object *obj)
6839 {
6840         struct intel_framebuffer *intel_fb;
6841         int ret;
6842
6843         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6844         if (!intel_fb) {
6845                 drm_gem_object_unreference_unlocked(&obj->base);
6846                 return ERR_PTR(-ENOMEM);
6847         }
6848
6849         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6850         if (ret) {
6851                 drm_gem_object_unreference_unlocked(&obj->base);
6852                 kfree(intel_fb);
6853                 return ERR_PTR(ret);
6854         }
6855
6856         return &intel_fb->base;
6857 }
6858
6859 static u32
6860 intel_framebuffer_pitch_for_width(int width, int bpp)
6861 {
6862         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6863         return ALIGN(pitch, 64);
6864 }
6865
6866 static u32
6867 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6868 {
6869         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6870         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6871 }
6872
6873 static struct drm_framebuffer *
6874 intel_framebuffer_create_for_mode(struct drm_device *dev,
6875                                   struct drm_display_mode *mode,
6876                                   int depth, int bpp)
6877 {
6878         struct drm_i915_gem_object *obj;
6879         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6880
6881         obj = i915_gem_alloc_object(dev,
6882                                     intel_framebuffer_size_for_mode(mode, bpp));
6883         if (obj == NULL)
6884                 return ERR_PTR(-ENOMEM);
6885
6886         mode_cmd.width = mode->hdisplay;
6887         mode_cmd.height = mode->vdisplay;
6888         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6889                                                                 bpp);
6890         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6891
6892         return intel_framebuffer_create(dev, &mode_cmd, obj);
6893 }
6894
6895 static struct drm_framebuffer *
6896 mode_fits_in_fbdev(struct drm_device *dev,
6897                    struct drm_display_mode *mode)
6898 {
6899         struct drm_i915_private *dev_priv = dev->dev_private;
6900         struct drm_i915_gem_object *obj;
6901         struct drm_framebuffer *fb;
6902
6903         if (dev_priv->fbdev == NULL)
6904                 return NULL;
6905
6906         obj = dev_priv->fbdev->ifb.obj;
6907         if (obj == NULL)
6908                 return NULL;
6909
6910         fb = &dev_priv->fbdev->ifb.base;
6911         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6912                                                                fb->bits_per_pixel))
6913                 return NULL;
6914
6915         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6916                 return NULL;
6917
6918         return fb;
6919 }
6920
6921 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6922                                 struct drm_display_mode *mode,
6923                                 struct intel_load_detect_pipe *old)
6924 {
6925         struct intel_crtc *intel_crtc;
6926         struct intel_encoder *intel_encoder =
6927                 intel_attached_encoder(connector);
6928         struct drm_crtc *possible_crtc;
6929         struct drm_encoder *encoder = &intel_encoder->base;
6930         struct drm_crtc *crtc = NULL;
6931         struct drm_device *dev = encoder->dev;
6932         struct drm_framebuffer *fb;
6933         int i = -1;
6934
6935         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6936                       connector->base.id, drm_get_connector_name(connector),
6937                       encoder->base.id, drm_get_encoder_name(encoder));
6938
6939         /*
6940          * Algorithm gets a little messy:
6941          *
6942          *   - if the connector already has an assigned crtc, use it (but make
6943          *     sure it's on first)
6944          *
6945          *   - try to find the first unused crtc that can drive this connector,
6946          *     and use that if we find one
6947          */
6948
6949         /* See if we already have a CRTC for this connector */
6950         if (encoder->crtc) {
6951                 crtc = encoder->crtc;
6952
6953                 mutex_lock(&crtc->mutex);
6954
6955                 old->dpms_mode = connector->dpms;
6956                 old->load_detect_temp = false;
6957
6958                 /* Make sure the crtc and connector are running */
6959                 if (connector->dpms != DRM_MODE_DPMS_ON)
6960                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6961
6962                 return true;
6963         }
6964
6965         /* Find an unused one (if possible) */
6966         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6967                 i++;
6968                 if (!(encoder->possible_crtcs & (1 << i)))
6969                         continue;
6970                 if (!possible_crtc->enabled) {
6971                         crtc = possible_crtc;
6972                         break;
6973                 }
6974         }
6975
6976         /*
6977          * If we didn't find an unused CRTC, don't use any.
6978          */
6979         if (!crtc) {
6980                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6981                 return false;
6982         }
6983
6984         mutex_lock(&crtc->mutex);
6985         intel_encoder->new_crtc = to_intel_crtc(crtc);
6986         to_intel_connector(connector)->new_encoder = intel_encoder;
6987
6988         intel_crtc = to_intel_crtc(crtc);
6989         old->dpms_mode = connector->dpms;
6990         old->load_detect_temp = true;
6991         old->release_fb = NULL;
6992
6993         if (!mode)
6994                 mode = &load_detect_mode;
6995
6996         /* We need a framebuffer large enough to accommodate all accesses
6997          * that the plane may generate whilst we perform load detection.
6998          * We can not rely on the fbcon either being present (we get called
6999          * during its initialisation to detect all boot displays, or it may
7000          * not even exist) or that it is large enough to satisfy the
7001          * requested mode.
7002          */
7003         fb = mode_fits_in_fbdev(dev, mode);
7004         if (fb == NULL) {
7005                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7006                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7007                 old->release_fb = fb;
7008         } else
7009                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7010         if (IS_ERR(fb)) {
7011                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7012                 mutex_unlock(&crtc->mutex);
7013                 return false;
7014         }
7015
7016         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7017                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7018                 if (old->release_fb)
7019                         old->release_fb->funcs->destroy(old->release_fb);
7020                 mutex_unlock(&crtc->mutex);
7021                 return false;
7022         }
7023
7024         /* let the connector get through one full cycle before testing */
7025         intel_wait_for_vblank(dev, intel_crtc->pipe);
7026         return true;
7027 }
7028
7029 void intel_release_load_detect_pipe(struct drm_connector *connector,
7030                                     struct intel_load_detect_pipe *old)
7031 {
7032         struct intel_encoder *intel_encoder =
7033                 intel_attached_encoder(connector);
7034         struct drm_encoder *encoder = &intel_encoder->base;
7035         struct drm_crtc *crtc = encoder->crtc;
7036
7037         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7038                       connector->base.id, drm_get_connector_name(connector),
7039                       encoder->base.id, drm_get_encoder_name(encoder));
7040
7041         if (old->load_detect_temp) {
7042                 to_intel_connector(connector)->new_encoder = NULL;
7043                 intel_encoder->new_crtc = NULL;
7044                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7045
7046                 if (old->release_fb) {
7047                         drm_framebuffer_unregister_private(old->release_fb);
7048                         drm_framebuffer_unreference(old->release_fb);
7049                 }
7050
7051                 mutex_unlock(&crtc->mutex);
7052                 return;
7053         }
7054
7055         /* Switch crtc and encoder back off if necessary */
7056         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7057                 connector->funcs->dpms(connector, old->dpms_mode);
7058
7059         mutex_unlock(&crtc->mutex);
7060 }
7061
7062 /* Returns the clock of the currently programmed mode of the given pipe. */
7063 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7064                                 struct intel_crtc_config *pipe_config)
7065 {
7066         struct drm_device *dev = crtc->base.dev;
7067         struct drm_i915_private *dev_priv = dev->dev_private;
7068         int pipe = pipe_config->cpu_transcoder;
7069         u32 dpll = I915_READ(DPLL(pipe));
7070         u32 fp;
7071         intel_clock_t clock;
7072
7073         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7074                 fp = I915_READ(FP0(pipe));
7075         else
7076                 fp = I915_READ(FP1(pipe));
7077
7078         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7079         if (IS_PINEVIEW(dev)) {
7080                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7081                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7082         } else {
7083                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7084                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7085         }
7086
7087         if (!IS_GEN2(dev)) {
7088                 if (IS_PINEVIEW(dev))
7089                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7090                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7091                 else
7092                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7093                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7094
7095                 switch (dpll & DPLL_MODE_MASK) {
7096                 case DPLLB_MODE_DAC_SERIAL:
7097                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7098                                 5 : 10;
7099                         break;
7100                 case DPLLB_MODE_LVDS:
7101                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7102                                 7 : 14;
7103                         break;
7104                 default:
7105                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7106                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7107                         pipe_config->adjusted_mode.clock = 0;
7108                         return;
7109                 }
7110
7111                 if (IS_PINEVIEW(dev))
7112                         pineview_clock(96000, &clock);
7113                 else
7114                         i9xx_clock(96000, &clock);
7115         } else {
7116                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7117
7118                 if (is_lvds) {
7119                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7120                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7121                         clock.p2 = 14;
7122
7123                         if ((dpll & PLL_REF_INPUT_MASK) ==
7124                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7125                                 /* XXX: might not be 66MHz */
7126                                 i9xx_clock(66000, &clock);
7127                         } else
7128                                 i9xx_clock(48000, &clock);
7129                 } else {
7130                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7131                                 clock.p1 = 2;
7132                         else {
7133                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7134                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7135                         }
7136                         if (dpll & PLL_P2_DIVIDE_BY_4)
7137                                 clock.p2 = 4;
7138                         else
7139                                 clock.p2 = 2;
7140
7141                         i9xx_clock(48000, &clock);
7142                 }
7143         }
7144
7145         pipe_config->adjusted_mode.clock = clock.dot *
7146                 pipe_config->pixel_multiplier;
7147 }
7148
7149 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7150                                     struct intel_crtc_config *pipe_config)
7151 {
7152         struct drm_device *dev = crtc->base.dev;
7153         struct drm_i915_private *dev_priv = dev->dev_private;
7154         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7155         int link_freq, repeat;
7156         u64 clock;
7157         u32 link_m, link_n;
7158
7159         repeat = pipe_config->pixel_multiplier;
7160
7161         /*
7162          * The calculation for the data clock is:
7163          * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7164          * But we want to avoid losing precison if possible, so:
7165          * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7166          *
7167          * and the link clock is simpler:
7168          * link_clock = (m * link_clock * repeat) / n
7169          */
7170
7171         /*
7172          * We need to get the FDI or DP link clock here to derive
7173          * the M/N dividers.
7174          *
7175          * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7176          * For DP, it's either 1.62GHz or 2.7GHz.
7177          * We do our calculations in 10*MHz since we don't need much precison.
7178          */
7179         if (pipe_config->has_pch_encoder)
7180                 link_freq = intel_fdi_link_freq(dev) * 10000;
7181         else
7182                 link_freq = pipe_config->port_clock;
7183
7184         link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7185         link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7186
7187         if (!link_m || !link_n)
7188                 return;
7189
7190         clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7191         do_div(clock, link_n);
7192
7193         pipe_config->adjusted_mode.clock = clock;
7194 }
7195
7196 /** Returns the currently programmed mode of the given pipe. */
7197 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7198                                              struct drm_crtc *crtc)
7199 {
7200         struct drm_i915_private *dev_priv = dev->dev_private;
7201         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7202         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7203         struct drm_display_mode *mode;
7204         struct intel_crtc_config pipe_config;
7205         int htot = I915_READ(HTOTAL(cpu_transcoder));
7206         int hsync = I915_READ(HSYNC(cpu_transcoder));
7207         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7208         int vsync = I915_READ(VSYNC(cpu_transcoder));
7209
7210         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7211         if (!mode)
7212                 return NULL;
7213
7214         /*
7215          * Construct a pipe_config sufficient for getting the clock info
7216          * back out of crtc_clock_get.
7217          *
7218          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7219          * to use a real value here instead.
7220          */
7221         pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7222         pipe_config.pixel_multiplier = 1;
7223         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7224
7225         mode->clock = pipe_config.adjusted_mode.clock;
7226         mode->hdisplay = (htot & 0xffff) + 1;
7227         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7228         mode->hsync_start = (hsync & 0xffff) + 1;
7229         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7230         mode->vdisplay = (vtot & 0xffff) + 1;
7231         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7232         mode->vsync_start = (vsync & 0xffff) + 1;
7233         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7234
7235         drm_mode_set_name(mode);
7236
7237         return mode;
7238 }
7239
7240 static void intel_increase_pllclock(struct drm_crtc *crtc)
7241 {
7242         struct drm_device *dev = crtc->dev;
7243         drm_i915_private_t *dev_priv = dev->dev_private;
7244         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7245         int pipe = intel_crtc->pipe;
7246         int dpll_reg = DPLL(pipe);
7247         int dpll;
7248
7249         if (HAS_PCH_SPLIT(dev))
7250                 return;
7251
7252         if (!dev_priv->lvds_downclock_avail)
7253                 return;
7254
7255         dpll = I915_READ(dpll_reg);
7256         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7257                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7258
7259                 assert_panel_unlocked(dev_priv, pipe);
7260
7261                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7262                 I915_WRITE(dpll_reg, dpll);
7263                 intel_wait_for_vblank(dev, pipe);
7264
7265                 dpll = I915_READ(dpll_reg);
7266                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7267                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7268         }
7269 }
7270
7271 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7272 {
7273         struct drm_device *dev = crtc->dev;
7274         drm_i915_private_t *dev_priv = dev->dev_private;
7275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7276
7277         if (HAS_PCH_SPLIT(dev))
7278                 return;
7279
7280         if (!dev_priv->lvds_downclock_avail)
7281                 return;
7282
7283         /*
7284          * Since this is called by a timer, we should never get here in
7285          * the manual case.
7286          */
7287         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7288                 int pipe = intel_crtc->pipe;
7289                 int dpll_reg = DPLL(pipe);
7290                 int dpll;
7291
7292                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7293
7294                 assert_panel_unlocked(dev_priv, pipe);
7295
7296                 dpll = I915_READ(dpll_reg);
7297                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7298                 I915_WRITE(dpll_reg, dpll);
7299                 intel_wait_for_vblank(dev, pipe);
7300                 dpll = I915_READ(dpll_reg);
7301                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7302                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7303         }
7304
7305 }
7306
7307 void intel_mark_busy(struct drm_device *dev)
7308 {
7309         i915_update_gfx_val(dev->dev_private);
7310 }
7311
7312 void intel_mark_idle(struct drm_device *dev)
7313 {
7314         struct drm_crtc *crtc;
7315
7316         if (!i915_powersave)
7317                 return;
7318
7319         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7320                 if (!crtc->fb)
7321                         continue;
7322
7323                 intel_decrease_pllclock(crtc);
7324         }
7325 }
7326
7327 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7328                         struct intel_ring_buffer *ring)
7329 {
7330         struct drm_device *dev = obj->base.dev;
7331         struct drm_crtc *crtc;
7332
7333         if (!i915_powersave)
7334                 return;
7335
7336         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7337                 if (!crtc->fb)
7338                         continue;
7339
7340                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7341                         continue;
7342
7343                 intel_increase_pllclock(crtc);
7344                 if (ring && intel_fbc_enabled(dev))
7345                         ring->fbc_dirty = true;
7346         }
7347 }
7348
7349 static void intel_crtc_destroy(struct drm_crtc *crtc)
7350 {
7351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7352         struct drm_device *dev = crtc->dev;
7353         struct intel_unpin_work *work;
7354         unsigned long flags;
7355
7356         spin_lock_irqsave(&dev->event_lock, flags);
7357         work = intel_crtc->unpin_work;
7358         intel_crtc->unpin_work = NULL;
7359         spin_unlock_irqrestore(&dev->event_lock, flags);
7360
7361         if (work) {
7362                 cancel_work_sync(&work->work);
7363                 kfree(work);
7364         }
7365
7366         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7367
7368         drm_crtc_cleanup(crtc);
7369
7370         kfree(intel_crtc);
7371 }
7372
7373 static void intel_unpin_work_fn(struct work_struct *__work)
7374 {
7375         struct intel_unpin_work *work =
7376                 container_of(__work, struct intel_unpin_work, work);
7377         struct drm_device *dev = work->crtc->dev;
7378
7379         mutex_lock(&dev->struct_mutex);
7380         intel_unpin_fb_obj(work->old_fb_obj);
7381         drm_gem_object_unreference(&work->pending_flip_obj->base);
7382         drm_gem_object_unreference(&work->old_fb_obj->base);
7383
7384         intel_update_fbc(dev);
7385         mutex_unlock(&dev->struct_mutex);
7386
7387         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7388         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7389
7390         kfree(work);
7391 }
7392
7393 static void do_intel_finish_page_flip(struct drm_device *dev,
7394                                       struct drm_crtc *crtc)
7395 {
7396         drm_i915_private_t *dev_priv = dev->dev_private;
7397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7398         struct intel_unpin_work *work;
7399         unsigned long flags;
7400
7401         /* Ignore early vblank irqs */
7402         if (intel_crtc == NULL)
7403                 return;
7404
7405         spin_lock_irqsave(&dev->event_lock, flags);
7406         work = intel_crtc->unpin_work;
7407
7408         /* Ensure we don't miss a work->pending update ... */
7409         smp_rmb();
7410
7411         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7412                 spin_unlock_irqrestore(&dev->event_lock, flags);
7413                 return;
7414         }
7415
7416         /* and that the unpin work is consistent wrt ->pending. */
7417         smp_rmb();
7418
7419         intel_crtc->unpin_work = NULL;
7420
7421         if (work->event)
7422                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7423
7424         drm_vblank_put(dev, intel_crtc->pipe);
7425
7426         spin_unlock_irqrestore(&dev->event_lock, flags);
7427
7428         wake_up_all(&dev_priv->pending_flip_queue);
7429
7430         queue_work(dev_priv->wq, &work->work);
7431
7432         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7433 }
7434
7435 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7436 {
7437         drm_i915_private_t *dev_priv = dev->dev_private;
7438         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7439
7440         do_intel_finish_page_flip(dev, crtc);
7441 }
7442
7443 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7444 {
7445         drm_i915_private_t *dev_priv = dev->dev_private;
7446         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7447
7448         do_intel_finish_page_flip(dev, crtc);
7449 }
7450
7451 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7452 {
7453         drm_i915_private_t *dev_priv = dev->dev_private;
7454         struct intel_crtc *intel_crtc =
7455                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7456         unsigned long flags;
7457
7458         /* NB: An MMIO update of the plane base pointer will also
7459          * generate a page-flip completion irq, i.e. every modeset
7460          * is also accompanied by a spurious intel_prepare_page_flip().
7461          */
7462         spin_lock_irqsave(&dev->event_lock, flags);
7463         if (intel_crtc->unpin_work)
7464                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7465         spin_unlock_irqrestore(&dev->event_lock, flags);
7466 }
7467
7468 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7469 {
7470         /* Ensure that the work item is consistent when activating it ... */
7471         smp_wmb();
7472         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7473         /* and that it is marked active as soon as the irq could fire. */
7474         smp_wmb();
7475 }
7476
7477 static int intel_gen2_queue_flip(struct drm_device *dev,
7478                                  struct drm_crtc *crtc,
7479                                  struct drm_framebuffer *fb,
7480                                  struct drm_i915_gem_object *obj)
7481 {
7482         struct drm_i915_private *dev_priv = dev->dev_private;
7483         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7484         u32 flip_mask;
7485         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7486         int ret;
7487
7488         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7489         if (ret)
7490                 goto err;
7491
7492         ret = intel_ring_begin(ring, 6);
7493         if (ret)
7494                 goto err_unpin;
7495
7496         /* Can't queue multiple flips, so wait for the previous
7497          * one to finish before executing the next.
7498          */
7499         if (intel_crtc->plane)
7500                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7501         else
7502                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7503         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7504         intel_ring_emit(ring, MI_NOOP);
7505         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7506                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7507         intel_ring_emit(ring, fb->pitches[0]);
7508         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7509         intel_ring_emit(ring, 0); /* aux display base address, unused */
7510
7511         intel_mark_page_flip_active(intel_crtc);
7512         intel_ring_advance(ring);
7513         return 0;
7514
7515 err_unpin:
7516         intel_unpin_fb_obj(obj);
7517 err:
7518         return ret;
7519 }
7520
7521 static int intel_gen3_queue_flip(struct drm_device *dev,
7522                                  struct drm_crtc *crtc,
7523                                  struct drm_framebuffer *fb,
7524                                  struct drm_i915_gem_object *obj)
7525 {
7526         struct drm_i915_private *dev_priv = dev->dev_private;
7527         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7528         u32 flip_mask;
7529         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7530         int ret;
7531
7532         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7533         if (ret)
7534                 goto err;
7535
7536         ret = intel_ring_begin(ring, 6);
7537         if (ret)
7538                 goto err_unpin;
7539
7540         if (intel_crtc->plane)
7541                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7542         else
7543                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7544         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7545         intel_ring_emit(ring, MI_NOOP);
7546         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7547                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7548         intel_ring_emit(ring, fb->pitches[0]);
7549         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7550         intel_ring_emit(ring, MI_NOOP);
7551
7552         intel_mark_page_flip_active(intel_crtc);
7553         intel_ring_advance(ring);
7554         return 0;
7555
7556 err_unpin:
7557         intel_unpin_fb_obj(obj);
7558 err:
7559         return ret;
7560 }
7561
7562 static int intel_gen4_queue_flip(struct drm_device *dev,
7563                                  struct drm_crtc *crtc,
7564                                  struct drm_framebuffer *fb,
7565                                  struct drm_i915_gem_object *obj)
7566 {
7567         struct drm_i915_private *dev_priv = dev->dev_private;
7568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7569         uint32_t pf, pipesrc;
7570         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7571         int ret;
7572
7573         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7574         if (ret)
7575                 goto err;
7576
7577         ret = intel_ring_begin(ring, 4);
7578         if (ret)
7579                 goto err_unpin;
7580
7581         /* i965+ uses the linear or tiled offsets from the
7582          * Display Registers (which do not change across a page-flip)
7583          * so we need only reprogram the base address.
7584          */
7585         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7586                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7587         intel_ring_emit(ring, fb->pitches[0]);
7588         intel_ring_emit(ring,
7589                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7590                         obj->tiling_mode);
7591
7592         /* XXX Enabling the panel-fitter across page-flip is so far
7593          * untested on non-native modes, so ignore it for now.
7594          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7595          */
7596         pf = 0;
7597         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7598         intel_ring_emit(ring, pf | pipesrc);
7599
7600         intel_mark_page_flip_active(intel_crtc);
7601         intel_ring_advance(ring);
7602         return 0;
7603
7604 err_unpin:
7605         intel_unpin_fb_obj(obj);
7606 err:
7607         return ret;
7608 }
7609
7610 static int intel_gen6_queue_flip(struct drm_device *dev,
7611                                  struct drm_crtc *crtc,
7612                                  struct drm_framebuffer *fb,
7613                                  struct drm_i915_gem_object *obj)
7614 {
7615         struct drm_i915_private *dev_priv = dev->dev_private;
7616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7617         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7618         uint32_t pf, pipesrc;
7619         int ret;
7620
7621         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7622         if (ret)
7623                 goto err;
7624
7625         ret = intel_ring_begin(ring, 4);
7626         if (ret)
7627                 goto err_unpin;
7628
7629         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7630                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7631         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7632         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7633
7634         /* Contrary to the suggestions in the documentation,
7635          * "Enable Panel Fitter" does not seem to be required when page
7636          * flipping with a non-native mode, and worse causes a normal
7637          * modeset to fail.
7638          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7639          */
7640         pf = 0;
7641         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7642         intel_ring_emit(ring, pf | pipesrc);
7643
7644         intel_mark_page_flip_active(intel_crtc);
7645         intel_ring_advance(ring);
7646         return 0;
7647
7648 err_unpin:
7649         intel_unpin_fb_obj(obj);
7650 err:
7651         return ret;
7652 }
7653
7654 /*
7655  * On gen7 we currently use the blit ring because (in early silicon at least)
7656  * the render ring doesn't give us interrpts for page flip completion, which
7657  * means clients will hang after the first flip is queued.  Fortunately the
7658  * blit ring generates interrupts properly, so use it instead.
7659  */
7660 static int intel_gen7_queue_flip(struct drm_device *dev,
7661                                  struct drm_crtc *crtc,
7662                                  struct drm_framebuffer *fb,
7663                                  struct drm_i915_gem_object *obj)
7664 {
7665         struct drm_i915_private *dev_priv = dev->dev_private;
7666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7667         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7668         uint32_t plane_bit = 0;
7669         int ret;
7670
7671         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7672         if (ret)
7673                 goto err;
7674
7675         switch(intel_crtc->plane) {
7676         case PLANE_A:
7677                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7678                 break;
7679         case PLANE_B:
7680                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7681                 break;
7682         case PLANE_C:
7683                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7684                 break;
7685         default:
7686                 WARN_ONCE(1, "unknown plane in flip command\n");
7687                 ret = -ENODEV;
7688                 goto err_unpin;
7689         }
7690
7691         ret = intel_ring_begin(ring, 4);
7692         if (ret)
7693                 goto err_unpin;
7694
7695         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7696         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7697         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7698         intel_ring_emit(ring, (MI_NOOP));
7699
7700         intel_mark_page_flip_active(intel_crtc);
7701         intel_ring_advance(ring);
7702         return 0;
7703
7704 err_unpin:
7705         intel_unpin_fb_obj(obj);
7706 err:
7707         return ret;
7708 }
7709
7710 static int intel_default_queue_flip(struct drm_device *dev,
7711                                     struct drm_crtc *crtc,
7712                                     struct drm_framebuffer *fb,
7713                                     struct drm_i915_gem_object *obj)
7714 {
7715         return -ENODEV;
7716 }
7717
7718 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7719                                 struct drm_framebuffer *fb,
7720                                 struct drm_pending_vblank_event *event)
7721 {
7722         struct drm_device *dev = crtc->dev;
7723         struct drm_i915_private *dev_priv = dev->dev_private;
7724         struct drm_framebuffer *old_fb = crtc->fb;
7725         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7726         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7727         struct intel_unpin_work *work;
7728         unsigned long flags;
7729         int ret;
7730
7731         /* Can't change pixel format via MI display flips. */
7732         if (fb->pixel_format != crtc->fb->pixel_format)
7733                 return -EINVAL;
7734
7735         /*
7736          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7737          * Note that pitch changes could also affect these register.
7738          */
7739         if (INTEL_INFO(dev)->gen > 3 &&
7740             (fb->offsets[0] != crtc->fb->offsets[0] ||
7741              fb->pitches[0] != crtc->fb->pitches[0]))
7742                 return -EINVAL;
7743
7744         work = kzalloc(sizeof *work, GFP_KERNEL);
7745         if (work == NULL)
7746                 return -ENOMEM;
7747
7748         work->event = event;
7749         work->crtc = crtc;
7750         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7751         INIT_WORK(&work->work, intel_unpin_work_fn);
7752
7753         ret = drm_vblank_get(dev, intel_crtc->pipe);
7754         if (ret)
7755                 goto free_work;
7756
7757         /* We borrow the event spin lock for protecting unpin_work */
7758         spin_lock_irqsave(&dev->event_lock, flags);
7759         if (intel_crtc->unpin_work) {
7760                 spin_unlock_irqrestore(&dev->event_lock, flags);
7761                 kfree(work);
7762                 drm_vblank_put(dev, intel_crtc->pipe);
7763
7764                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7765                 return -EBUSY;
7766         }
7767         intel_crtc->unpin_work = work;
7768         spin_unlock_irqrestore(&dev->event_lock, flags);
7769
7770         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7771                 flush_workqueue(dev_priv->wq);
7772
7773         ret = i915_mutex_lock_interruptible(dev);
7774         if (ret)
7775                 goto cleanup;
7776
7777         /* Reference the objects for the scheduled work. */
7778         drm_gem_object_reference(&work->old_fb_obj->base);
7779         drm_gem_object_reference(&obj->base);
7780
7781         crtc->fb = fb;
7782
7783         work->pending_flip_obj = obj;
7784
7785         work->enable_stall_check = true;
7786
7787         atomic_inc(&intel_crtc->unpin_work_count);
7788         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7789
7790         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7791         if (ret)
7792                 goto cleanup_pending;
7793
7794         intel_disable_fbc(dev);
7795         intel_mark_fb_busy(obj, NULL);
7796         mutex_unlock(&dev->struct_mutex);
7797
7798         trace_i915_flip_request(intel_crtc->plane, obj);
7799
7800         return 0;
7801
7802 cleanup_pending:
7803         atomic_dec(&intel_crtc->unpin_work_count);
7804         crtc->fb = old_fb;
7805         drm_gem_object_unreference(&work->old_fb_obj->base);
7806         drm_gem_object_unreference(&obj->base);
7807         mutex_unlock(&dev->struct_mutex);
7808
7809 cleanup:
7810         spin_lock_irqsave(&dev->event_lock, flags);
7811         intel_crtc->unpin_work = NULL;
7812         spin_unlock_irqrestore(&dev->event_lock, flags);
7813
7814         drm_vblank_put(dev, intel_crtc->pipe);
7815 free_work:
7816         kfree(work);
7817
7818         return ret;
7819 }
7820
7821 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7822         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7823         .load_lut = intel_crtc_load_lut,
7824 };
7825
7826 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7827                                   struct drm_crtc *crtc)
7828 {
7829         struct drm_device *dev;
7830         struct drm_crtc *tmp;
7831         int crtc_mask = 1;
7832
7833         WARN(!crtc, "checking null crtc?\n");
7834
7835         dev = crtc->dev;
7836
7837         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7838                 if (tmp == crtc)
7839                         break;
7840                 crtc_mask <<= 1;
7841         }
7842
7843         if (encoder->possible_crtcs & crtc_mask)
7844                 return true;
7845         return false;
7846 }
7847
7848 /**
7849  * intel_modeset_update_staged_output_state
7850  *
7851  * Updates the staged output configuration state, e.g. after we've read out the
7852  * current hw state.
7853  */
7854 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7855 {
7856         struct intel_encoder *encoder;
7857         struct intel_connector *connector;
7858
7859         list_for_each_entry(connector, &dev->mode_config.connector_list,
7860                             base.head) {
7861                 connector->new_encoder =
7862                         to_intel_encoder(connector->base.encoder);
7863         }
7864
7865         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7866                             base.head) {
7867                 encoder->new_crtc =
7868                         to_intel_crtc(encoder->base.crtc);
7869         }
7870 }
7871
7872 /**
7873  * intel_modeset_commit_output_state
7874  *
7875  * This function copies the stage display pipe configuration to the real one.
7876  */
7877 static void intel_modeset_commit_output_state(struct drm_device *dev)
7878 {
7879         struct intel_encoder *encoder;
7880         struct intel_connector *connector;
7881
7882         list_for_each_entry(connector, &dev->mode_config.connector_list,
7883                             base.head) {
7884                 connector->base.encoder = &connector->new_encoder->base;
7885         }
7886
7887         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7888                             base.head) {
7889                 encoder->base.crtc = &encoder->new_crtc->base;
7890         }
7891 }
7892
7893 static void
7894 connected_sink_compute_bpp(struct intel_connector * connector,
7895                            struct intel_crtc_config *pipe_config)
7896 {
7897         int bpp = pipe_config->pipe_bpp;
7898
7899         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
7900                 connector->base.base.id,
7901                 drm_get_connector_name(&connector->base));
7902
7903         /* Don't use an invalid EDID bpc value */
7904         if (connector->base.display_info.bpc &&
7905             connector->base.display_info.bpc * 3 < bpp) {
7906                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7907                               bpp, connector->base.display_info.bpc*3);
7908                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
7909         }
7910
7911         /* Clamp bpp to 8 on screens without EDID 1.4 */
7912         if (connector->base.display_info.bpc == 0 && bpp > 24) {
7913                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7914                               bpp);
7915                 pipe_config->pipe_bpp = 24;
7916         }
7917 }
7918
7919 static int
7920 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
7921                           struct drm_framebuffer *fb,
7922                           struct intel_crtc_config *pipe_config)
7923 {
7924         struct drm_device *dev = crtc->base.dev;
7925         struct intel_connector *connector;
7926         int bpp;
7927
7928         switch (fb->pixel_format) {
7929         case DRM_FORMAT_C8:
7930                 bpp = 8*3; /* since we go through a colormap */
7931                 break;
7932         case DRM_FORMAT_XRGB1555:
7933         case DRM_FORMAT_ARGB1555:
7934                 /* checked in intel_framebuffer_init already */
7935                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7936                         return -EINVAL;
7937         case DRM_FORMAT_RGB565:
7938                 bpp = 6*3; /* min is 18bpp */
7939                 break;
7940         case DRM_FORMAT_XBGR8888:
7941         case DRM_FORMAT_ABGR8888:
7942                 /* checked in intel_framebuffer_init already */
7943                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7944                         return -EINVAL;
7945         case DRM_FORMAT_XRGB8888:
7946         case DRM_FORMAT_ARGB8888:
7947                 bpp = 8*3;
7948                 break;
7949         case DRM_FORMAT_XRGB2101010:
7950         case DRM_FORMAT_ARGB2101010:
7951         case DRM_FORMAT_XBGR2101010:
7952         case DRM_FORMAT_ABGR2101010:
7953                 /* checked in intel_framebuffer_init already */
7954                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7955                         return -EINVAL;
7956                 bpp = 10*3;
7957                 break;
7958         /* TODO: gen4+ supports 16 bpc floating point, too. */
7959         default:
7960                 DRM_DEBUG_KMS("unsupported depth\n");
7961                 return -EINVAL;
7962         }
7963
7964         pipe_config->pipe_bpp = bpp;
7965
7966         /* Clamp display bpp to EDID value */
7967         list_for_each_entry(connector, &dev->mode_config.connector_list,
7968                             base.head) {
7969                 if (!connector->new_encoder ||
7970                     connector->new_encoder->new_crtc != crtc)
7971                         continue;
7972
7973                 connected_sink_compute_bpp(connector, pipe_config);
7974         }
7975
7976         return bpp;
7977 }
7978
7979 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7980                                    struct intel_crtc_config *pipe_config,
7981                                    const char *context)
7982 {
7983         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7984                       context, pipe_name(crtc->pipe));
7985
7986         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7987         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7988                       pipe_config->pipe_bpp, pipe_config->dither);
7989         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7990                       pipe_config->has_pch_encoder,
7991                       pipe_config->fdi_lanes,
7992                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7993                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
7994                       pipe_config->fdi_m_n.tu);
7995         DRM_DEBUG_KMS("requested mode:\n");
7996         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
7997         DRM_DEBUG_KMS("adjusted mode:\n");
7998         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
7999         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8000                       pipe_config->gmch_pfit.control,
8001                       pipe_config->gmch_pfit.pgm_ratios,
8002                       pipe_config->gmch_pfit.lvds_border_bits);
8003         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8004                       pipe_config->pch_pfit.pos,
8005                       pipe_config->pch_pfit.size);
8006         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8007 }
8008
8009 static bool check_encoder_cloning(struct drm_crtc *crtc)
8010 {
8011         int num_encoders = 0;
8012         bool uncloneable_encoders = false;
8013         struct intel_encoder *encoder;
8014
8015         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8016                             base.head) {
8017                 if (&encoder->new_crtc->base != crtc)
8018                         continue;
8019
8020                 num_encoders++;
8021                 if (!encoder->cloneable)
8022                         uncloneable_encoders = true;
8023         }
8024
8025         return !(num_encoders > 1 && uncloneable_encoders);
8026 }
8027
8028 static struct intel_crtc_config *
8029 intel_modeset_pipe_config(struct drm_crtc *crtc,
8030                           struct drm_framebuffer *fb,
8031                           struct drm_display_mode *mode)
8032 {
8033         struct drm_device *dev = crtc->dev;
8034         struct intel_encoder *encoder;
8035         struct intel_crtc_config *pipe_config;
8036         int plane_bpp, ret = -EINVAL;
8037         bool retry = true;
8038
8039         if (!check_encoder_cloning(crtc)) {
8040                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8041                 return ERR_PTR(-EINVAL);
8042         }
8043
8044         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8045         if (!pipe_config)
8046                 return ERR_PTR(-ENOMEM);
8047
8048         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8049         drm_mode_copy(&pipe_config->requested_mode, mode);
8050         pipe_config->cpu_transcoder =
8051                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8052         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8053
8054         /*
8055          * Sanitize sync polarity flags based on requested ones. If neither
8056          * positive or negative polarity is requested, treat this as meaning
8057          * negative polarity.
8058          */
8059         if (!(pipe_config->adjusted_mode.flags &
8060               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8061                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8062
8063         if (!(pipe_config->adjusted_mode.flags &
8064               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8065                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8066
8067         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8068          * plane pixel format and any sink constraints into account. Returns the
8069          * source plane bpp so that dithering can be selected on mismatches
8070          * after encoders and crtc also have had their say. */
8071         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8072                                               fb, pipe_config);
8073         if (plane_bpp < 0)
8074                 goto fail;
8075
8076 encoder_retry:
8077         /* Ensure the port clock defaults are reset when retrying. */
8078         pipe_config->port_clock = 0;
8079         pipe_config->pixel_multiplier = 1;
8080
8081         /* Fill in default crtc timings, allow encoders to overwrite them. */
8082         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8083
8084         /* Pass our mode to the connectors and the CRTC to give them a chance to
8085          * adjust it according to limitations or connector properties, and also
8086          * a chance to reject the mode entirely.
8087          */
8088         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8089                             base.head) {
8090
8091                 if (&encoder->new_crtc->base != crtc)
8092                         continue;
8093
8094                 if (!(encoder->compute_config(encoder, pipe_config))) {
8095                         DRM_DEBUG_KMS("Encoder config failure\n");
8096                         goto fail;
8097                 }
8098         }
8099
8100         /* Set default port clock if not overwritten by the encoder. Needs to be
8101          * done afterwards in case the encoder adjusts the mode. */
8102         if (!pipe_config->port_clock)
8103                 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8104
8105         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8106         if (ret < 0) {
8107                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8108                 goto fail;
8109         }
8110
8111         if (ret == RETRY) {
8112                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8113                         ret = -EINVAL;
8114                         goto fail;
8115                 }
8116
8117                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8118                 retry = false;
8119                 goto encoder_retry;
8120         }
8121
8122         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8123         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8124                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8125
8126         return pipe_config;
8127 fail:
8128         kfree(pipe_config);
8129         return ERR_PTR(ret);
8130 }
8131
8132 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8133  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8134 static void
8135 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8136                              unsigned *prepare_pipes, unsigned *disable_pipes)
8137 {
8138         struct intel_crtc *intel_crtc;
8139         struct drm_device *dev = crtc->dev;
8140         struct intel_encoder *encoder;
8141         struct intel_connector *connector;
8142         struct drm_crtc *tmp_crtc;
8143
8144         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8145
8146         /* Check which crtcs have changed outputs connected to them, these need
8147          * to be part of the prepare_pipes mask. We don't (yet) support global
8148          * modeset across multiple crtcs, so modeset_pipes will only have one
8149          * bit set at most. */
8150         list_for_each_entry(connector, &dev->mode_config.connector_list,
8151                             base.head) {
8152                 if (connector->base.encoder == &connector->new_encoder->base)
8153                         continue;
8154
8155                 if (connector->base.encoder) {
8156                         tmp_crtc = connector->base.encoder->crtc;
8157
8158                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8159                 }
8160
8161                 if (connector->new_encoder)
8162                         *prepare_pipes |=
8163                                 1 << connector->new_encoder->new_crtc->pipe;
8164         }
8165
8166         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8167                             base.head) {
8168                 if (encoder->base.crtc == &encoder->new_crtc->base)
8169                         continue;
8170
8171                 if (encoder->base.crtc) {
8172                         tmp_crtc = encoder->base.crtc;
8173
8174                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8175                 }
8176
8177                 if (encoder->new_crtc)
8178                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8179         }
8180
8181         /* Check for any pipes that will be fully disabled ... */
8182         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8183                             base.head) {
8184                 bool used = false;
8185
8186                 /* Don't try to disable disabled crtcs. */
8187                 if (!intel_crtc->base.enabled)
8188                         continue;
8189
8190                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8191                                     base.head) {
8192                         if (encoder->new_crtc == intel_crtc)
8193                                 used = true;
8194                 }
8195
8196                 if (!used)
8197                         *disable_pipes |= 1 << intel_crtc->pipe;
8198         }
8199
8200
8201         /* set_mode is also used to update properties on life display pipes. */
8202         intel_crtc = to_intel_crtc(crtc);
8203         if (crtc->enabled)
8204                 *prepare_pipes |= 1 << intel_crtc->pipe;
8205
8206         /*
8207          * For simplicity do a full modeset on any pipe where the output routing
8208          * changed. We could be more clever, but that would require us to be
8209          * more careful with calling the relevant encoder->mode_set functions.
8210          */
8211         if (*prepare_pipes)
8212                 *modeset_pipes = *prepare_pipes;
8213
8214         /* ... and mask these out. */
8215         *modeset_pipes &= ~(*disable_pipes);
8216         *prepare_pipes &= ~(*disable_pipes);
8217
8218         /*
8219          * HACK: We don't (yet) fully support global modesets. intel_set_config
8220          * obies this rule, but the modeset restore mode of
8221          * intel_modeset_setup_hw_state does not.
8222          */
8223         *modeset_pipes &= 1 << intel_crtc->pipe;
8224         *prepare_pipes &= 1 << intel_crtc->pipe;
8225
8226         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8227                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8228 }
8229
8230 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8231 {
8232         struct drm_encoder *encoder;
8233         struct drm_device *dev = crtc->dev;
8234
8235         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8236                 if (encoder->crtc == crtc)
8237                         return true;
8238
8239         return false;
8240 }
8241
8242 static void
8243 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8244 {
8245         struct intel_encoder *intel_encoder;
8246         struct intel_crtc *intel_crtc;
8247         struct drm_connector *connector;
8248
8249         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8250                             base.head) {
8251                 if (!intel_encoder->base.crtc)
8252                         continue;
8253
8254                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8255
8256                 if (prepare_pipes & (1 << intel_crtc->pipe))
8257                         intel_encoder->connectors_active = false;
8258         }
8259
8260         intel_modeset_commit_output_state(dev);
8261
8262         /* Update computed state. */
8263         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8264                             base.head) {
8265                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8266         }
8267
8268         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8269                 if (!connector->encoder || !connector->encoder->crtc)
8270                         continue;
8271
8272                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8273
8274                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8275                         struct drm_property *dpms_property =
8276                                 dev->mode_config.dpms_property;
8277
8278                         connector->dpms = DRM_MODE_DPMS_ON;
8279                         drm_object_property_set_value(&connector->base,
8280                                                          dpms_property,
8281                                                          DRM_MODE_DPMS_ON);
8282
8283                         intel_encoder = to_intel_encoder(connector->encoder);
8284                         intel_encoder->connectors_active = true;
8285                 }
8286         }
8287
8288 }
8289
8290 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8291                                     struct intel_crtc_config *new)
8292 {
8293         int clock1, clock2, diff;
8294
8295         clock1 = cur->adjusted_mode.clock;
8296         clock2 = new->adjusted_mode.clock;
8297
8298         if (clock1 == clock2)
8299                 return true;
8300
8301         if (!clock1 || !clock2)
8302                 return false;
8303
8304         diff = abs(clock1 - clock2);
8305
8306         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8307                 return true;
8308
8309         return false;
8310 }
8311
8312 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8313         list_for_each_entry((intel_crtc), \
8314                             &(dev)->mode_config.crtc_list, \
8315                             base.head) \
8316                 if (mask & (1 <<(intel_crtc)->pipe))
8317
8318 static bool
8319 intel_pipe_config_compare(struct drm_device *dev,
8320                           struct intel_crtc_config *current_config,
8321                           struct intel_crtc_config *pipe_config)
8322 {
8323 #define PIPE_CONF_CHECK_X(name) \
8324         if (current_config->name != pipe_config->name) { \
8325                 DRM_ERROR("mismatch in " #name " " \
8326                           "(expected 0x%08x, found 0x%08x)\n", \
8327                           current_config->name, \
8328                           pipe_config->name); \
8329                 return false; \
8330         }
8331
8332 #define PIPE_CONF_CHECK_I(name) \
8333         if (current_config->name != pipe_config->name) { \
8334                 DRM_ERROR("mismatch in " #name " " \
8335                           "(expected %i, found %i)\n", \
8336                           current_config->name, \
8337                           pipe_config->name); \
8338                 return false; \
8339         }
8340
8341 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8342         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8343                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8344                           "(expected %i, found %i)\n", \
8345                           current_config->name & (mask), \
8346                           pipe_config->name & (mask)); \
8347                 return false; \
8348         }
8349
8350 #define PIPE_CONF_QUIRK(quirk)  \
8351         ((current_config->quirks | pipe_config->quirks) & (quirk))
8352
8353         PIPE_CONF_CHECK_I(cpu_transcoder);
8354
8355         PIPE_CONF_CHECK_I(has_pch_encoder);
8356         PIPE_CONF_CHECK_I(fdi_lanes);
8357         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8358         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8359         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8360         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8361         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8362
8363         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8364         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8365         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8366         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8367         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8368         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8369
8370         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8371         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8372         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8373         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8374         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8375         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8376
8377         PIPE_CONF_CHECK_I(pixel_multiplier);
8378
8379         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8380                               DRM_MODE_FLAG_INTERLACE);
8381
8382         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8383                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8384                                       DRM_MODE_FLAG_PHSYNC);
8385                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8386                                       DRM_MODE_FLAG_NHSYNC);
8387                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8388                                       DRM_MODE_FLAG_PVSYNC);
8389                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8390                                       DRM_MODE_FLAG_NVSYNC);
8391         }
8392
8393         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8394         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8395
8396         PIPE_CONF_CHECK_I(gmch_pfit.control);
8397         /* pfit ratios are autocomputed by the hw on gen4+ */
8398         if (INTEL_INFO(dev)->gen < 4)
8399                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8400         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8401         PIPE_CONF_CHECK_I(pch_pfit.pos);
8402         PIPE_CONF_CHECK_I(pch_pfit.size);
8403
8404         PIPE_CONF_CHECK_I(ips_enabled);
8405
8406         PIPE_CONF_CHECK_I(shared_dpll);
8407         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8408         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8409         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8410         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8411
8412 #undef PIPE_CONF_CHECK_X
8413 #undef PIPE_CONF_CHECK_I
8414 #undef PIPE_CONF_CHECK_FLAGS
8415 #undef PIPE_CONF_QUIRK
8416
8417         if (!IS_HASWELL(dev)) {
8418                 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8419                         DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8420                                   current_config->adjusted_mode.clock,
8421                                   pipe_config->adjusted_mode.clock);
8422                         return false;
8423                 }
8424         }
8425
8426         return true;
8427 }
8428
8429 static void
8430 check_connector_state(struct drm_device *dev)
8431 {
8432         struct intel_connector *connector;
8433
8434         list_for_each_entry(connector, &dev->mode_config.connector_list,
8435                             base.head) {
8436                 /* This also checks the encoder/connector hw state with the
8437                  * ->get_hw_state callbacks. */
8438                 intel_connector_check_state(connector);
8439
8440                 WARN(&connector->new_encoder->base != connector->base.encoder,
8441                      "connector's staged encoder doesn't match current encoder\n");
8442         }
8443 }
8444
8445 static void
8446 check_encoder_state(struct drm_device *dev)
8447 {
8448         struct intel_encoder *encoder;
8449         struct intel_connector *connector;
8450
8451         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8452                             base.head) {
8453                 bool enabled = false;
8454                 bool active = false;
8455                 enum pipe pipe, tracked_pipe;
8456
8457                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8458                               encoder->base.base.id,
8459                               drm_get_encoder_name(&encoder->base));
8460
8461                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8462                      "encoder's stage crtc doesn't match current crtc\n");
8463                 WARN(encoder->connectors_active && !encoder->base.crtc,
8464                      "encoder's active_connectors set, but no crtc\n");
8465
8466                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8467                                     base.head) {
8468                         if (connector->base.encoder != &encoder->base)
8469                                 continue;
8470                         enabled = true;
8471                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8472                                 active = true;
8473                 }
8474                 WARN(!!encoder->base.crtc != enabled,
8475                      "encoder's enabled state mismatch "
8476                      "(expected %i, found %i)\n",
8477                      !!encoder->base.crtc, enabled);
8478                 WARN(active && !encoder->base.crtc,
8479                      "active encoder with no crtc\n");
8480
8481                 WARN(encoder->connectors_active != active,
8482                      "encoder's computed active state doesn't match tracked active state "
8483                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8484
8485                 active = encoder->get_hw_state(encoder, &pipe);
8486                 WARN(active != encoder->connectors_active,
8487                      "encoder's hw state doesn't match sw tracking "
8488                      "(expected %i, found %i)\n",
8489                      encoder->connectors_active, active);
8490
8491                 if (!encoder->base.crtc)
8492                         continue;
8493
8494                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8495                 WARN(active && pipe != tracked_pipe,
8496                      "active encoder's pipe doesn't match"
8497                      "(expected %i, found %i)\n",
8498                      tracked_pipe, pipe);
8499
8500         }
8501 }
8502
8503 static void
8504 check_crtc_state(struct drm_device *dev)
8505 {
8506         drm_i915_private_t *dev_priv = dev->dev_private;
8507         struct intel_crtc *crtc;
8508         struct intel_encoder *encoder;
8509         struct intel_crtc_config pipe_config;
8510
8511         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8512                             base.head) {
8513                 bool enabled = false;
8514                 bool active = false;
8515
8516                 memset(&pipe_config, 0, sizeof(pipe_config));
8517
8518                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8519                               crtc->base.base.id);
8520
8521                 WARN(crtc->active && !crtc->base.enabled,
8522                      "active crtc, but not enabled in sw tracking\n");
8523
8524                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8525                                     base.head) {
8526                         if (encoder->base.crtc != &crtc->base)
8527                                 continue;
8528                         enabled = true;
8529                         if (encoder->connectors_active)
8530                                 active = true;
8531                 }
8532
8533                 WARN(active != crtc->active,
8534                      "crtc's computed active state doesn't match tracked active state "
8535                      "(expected %i, found %i)\n", active, crtc->active);
8536                 WARN(enabled != crtc->base.enabled,
8537                      "crtc's computed enabled state doesn't match tracked enabled state "
8538                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8539
8540                 active = dev_priv->display.get_pipe_config(crtc,
8541                                                            &pipe_config);
8542
8543                 /* hw state is inconsistent with the pipe A quirk */
8544                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8545                         active = crtc->active;
8546
8547                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8548                                     base.head) {
8549                         if (encoder->base.crtc != &crtc->base)
8550                                 continue;
8551                         if (encoder->get_config)
8552                                 encoder->get_config(encoder, &pipe_config);
8553                 }
8554
8555                 if (dev_priv->display.get_clock)
8556                         dev_priv->display.get_clock(crtc, &pipe_config);
8557
8558                 WARN(crtc->active != active,
8559                      "crtc active state doesn't match with hw state "
8560                      "(expected %i, found %i)\n", crtc->active, active);
8561
8562                 if (active &&
8563                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8564                         WARN(1, "pipe state doesn't match!\n");
8565                         intel_dump_pipe_config(crtc, &pipe_config,
8566                                                "[hw state]");
8567                         intel_dump_pipe_config(crtc, &crtc->config,
8568                                                "[sw state]");
8569                 }
8570         }
8571 }
8572
8573 static void
8574 check_shared_dpll_state(struct drm_device *dev)
8575 {
8576         drm_i915_private_t *dev_priv = dev->dev_private;
8577         struct intel_crtc *crtc;
8578         struct intel_dpll_hw_state dpll_hw_state;
8579         int i;
8580
8581         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8582                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8583                 int enabled_crtcs = 0, active_crtcs = 0;
8584                 bool active;
8585
8586                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8587
8588                 DRM_DEBUG_KMS("%s\n", pll->name);
8589
8590                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8591
8592                 WARN(pll->active > pll->refcount,
8593                      "more active pll users than references: %i vs %i\n",
8594                      pll->active, pll->refcount);
8595                 WARN(pll->active && !pll->on,
8596                      "pll in active use but not on in sw tracking\n");
8597                 WARN(pll->on && !pll->active,
8598                      "pll in on but not on in use in sw tracking\n");
8599                 WARN(pll->on != active,
8600                      "pll on state mismatch (expected %i, found %i)\n",
8601                      pll->on, active);
8602
8603                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8604                                     base.head) {
8605                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8606                                 enabled_crtcs++;
8607                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8608                                 active_crtcs++;
8609                 }
8610                 WARN(pll->active != active_crtcs,
8611                      "pll active crtcs mismatch (expected %i, found %i)\n",
8612                      pll->active, active_crtcs);
8613                 WARN(pll->refcount != enabled_crtcs,
8614                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
8615                      pll->refcount, enabled_crtcs);
8616
8617                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8618                                        sizeof(dpll_hw_state)),
8619                      "pll hw state mismatch\n");
8620         }
8621 }
8622
8623 void
8624 intel_modeset_check_state(struct drm_device *dev)
8625 {
8626         check_connector_state(dev);
8627         check_encoder_state(dev);
8628         check_crtc_state(dev);
8629         check_shared_dpll_state(dev);
8630 }
8631
8632 static int __intel_set_mode(struct drm_crtc *crtc,
8633                             struct drm_display_mode *mode,
8634                             int x, int y, struct drm_framebuffer *fb)
8635 {
8636         struct drm_device *dev = crtc->dev;
8637         drm_i915_private_t *dev_priv = dev->dev_private;
8638         struct drm_display_mode *saved_mode, *saved_hwmode;
8639         struct intel_crtc_config *pipe_config = NULL;
8640         struct intel_crtc *intel_crtc;
8641         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8642         int ret = 0;
8643
8644         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8645         if (!saved_mode)
8646                 return -ENOMEM;
8647         saved_hwmode = saved_mode + 1;
8648
8649         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8650                                      &prepare_pipes, &disable_pipes);
8651
8652         *saved_hwmode = crtc->hwmode;
8653         *saved_mode = crtc->mode;
8654
8655         /* Hack: Because we don't (yet) support global modeset on multiple
8656          * crtcs, we don't keep track of the new mode for more than one crtc.
8657          * Hence simply check whether any bit is set in modeset_pipes in all the
8658          * pieces of code that are not yet converted to deal with mutliple crtcs
8659          * changing their mode at the same time. */
8660         if (modeset_pipes) {
8661                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8662                 if (IS_ERR(pipe_config)) {
8663                         ret = PTR_ERR(pipe_config);
8664                         pipe_config = NULL;
8665
8666                         goto out;
8667                 }
8668                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8669                                        "[modeset]");
8670         }
8671
8672         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8673                 intel_crtc_disable(&intel_crtc->base);
8674
8675         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8676                 if (intel_crtc->base.enabled)
8677                         dev_priv->display.crtc_disable(&intel_crtc->base);
8678         }
8679
8680         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8681          * to set it here already despite that we pass it down the callchain.
8682          */
8683         if (modeset_pipes) {
8684                 crtc->mode = *mode;
8685                 /* mode_set/enable/disable functions rely on a correct pipe
8686                  * config. */
8687                 to_intel_crtc(crtc)->config = *pipe_config;
8688         }
8689
8690         /* Only after disabling all output pipelines that will be changed can we
8691          * update the the output configuration. */
8692         intel_modeset_update_state(dev, prepare_pipes);
8693
8694         if (dev_priv->display.modeset_global_resources)
8695                 dev_priv->display.modeset_global_resources(dev);
8696
8697         /* Set up the DPLL and any encoders state that needs to adjust or depend
8698          * on the DPLL.
8699          */
8700         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8701                 ret = intel_crtc_mode_set(&intel_crtc->base,
8702                                           x, y, fb);
8703                 if (ret)
8704                         goto done;
8705         }
8706
8707         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8708         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8709                 dev_priv->display.crtc_enable(&intel_crtc->base);
8710
8711         if (modeset_pipes) {
8712                 /* Store real post-adjustment hardware mode. */
8713                 crtc->hwmode = pipe_config->adjusted_mode;
8714
8715                 /* Calculate and store various constants which
8716                  * are later needed by vblank and swap-completion
8717                  * timestamping. They are derived from true hwmode.
8718                  */
8719                 drm_calc_timestamping_constants(crtc);
8720         }
8721
8722         /* FIXME: add subpixel order */
8723 done:
8724         if (ret && crtc->enabled) {
8725                 crtc->hwmode = *saved_hwmode;
8726                 crtc->mode = *saved_mode;
8727         }
8728
8729 out:
8730         kfree(pipe_config);
8731         kfree(saved_mode);
8732         return ret;
8733 }
8734
8735 static int intel_set_mode(struct drm_crtc *crtc,
8736                           struct drm_display_mode *mode,
8737                           int x, int y, struct drm_framebuffer *fb)
8738 {
8739         int ret;
8740
8741         ret = __intel_set_mode(crtc, mode, x, y, fb);
8742
8743         if (ret == 0)
8744                 intel_modeset_check_state(crtc->dev);
8745
8746         return ret;
8747 }
8748
8749 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8750 {
8751         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8752 }
8753
8754 #undef for_each_intel_crtc_masked
8755
8756 static void intel_set_config_free(struct intel_set_config *config)
8757 {
8758         if (!config)
8759                 return;
8760
8761         kfree(config->save_connector_encoders);
8762         kfree(config->save_encoder_crtcs);
8763         kfree(config);
8764 }
8765
8766 static int intel_set_config_save_state(struct drm_device *dev,
8767                                        struct intel_set_config *config)
8768 {
8769         struct drm_encoder *encoder;
8770         struct drm_connector *connector;
8771         int count;
8772
8773         config->save_encoder_crtcs =
8774                 kcalloc(dev->mode_config.num_encoder,
8775                         sizeof(struct drm_crtc *), GFP_KERNEL);
8776         if (!config->save_encoder_crtcs)
8777                 return -ENOMEM;
8778
8779         config->save_connector_encoders =
8780                 kcalloc(dev->mode_config.num_connector,
8781                         sizeof(struct drm_encoder *), GFP_KERNEL);
8782         if (!config->save_connector_encoders)
8783                 return -ENOMEM;
8784
8785         /* Copy data. Note that driver private data is not affected.
8786          * Should anything bad happen only the expected state is
8787          * restored, not the drivers personal bookkeeping.
8788          */
8789         count = 0;
8790         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8791                 config->save_encoder_crtcs[count++] = encoder->crtc;
8792         }
8793
8794         count = 0;
8795         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8796                 config->save_connector_encoders[count++] = connector->encoder;
8797         }
8798
8799         return 0;
8800 }
8801
8802 static void intel_set_config_restore_state(struct drm_device *dev,
8803                                            struct intel_set_config *config)
8804 {
8805         struct intel_encoder *encoder;
8806         struct intel_connector *connector;
8807         int count;
8808
8809         count = 0;
8810         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8811                 encoder->new_crtc =
8812                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8813         }
8814
8815         count = 0;
8816         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8817                 connector->new_encoder =
8818                         to_intel_encoder(config->save_connector_encoders[count++]);
8819         }
8820 }
8821
8822 static bool
8823 is_crtc_connector_off(struct drm_mode_set *set)
8824 {
8825         int i;
8826
8827         if (set->num_connectors == 0)
8828                 return false;
8829
8830         if (WARN_ON(set->connectors == NULL))
8831                 return false;
8832
8833         for (i = 0; i < set->num_connectors; i++)
8834                 if (set->connectors[i]->encoder &&
8835                     set->connectors[i]->encoder->crtc == set->crtc &&
8836                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
8837                         return true;
8838
8839         return false;
8840 }
8841
8842 static void
8843 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8844                                       struct intel_set_config *config)
8845 {
8846
8847         /* We should be able to check here if the fb has the same properties
8848          * and then just flip_or_move it */
8849         if (is_crtc_connector_off(set)) {
8850                 config->mode_changed = true;
8851         } else if (set->crtc->fb != set->fb) {
8852                 /* If we have no fb then treat it as a full mode set */
8853                 if (set->crtc->fb == NULL) {
8854                         struct intel_crtc *intel_crtc =
8855                                 to_intel_crtc(set->crtc);
8856
8857                         if (intel_crtc->active && i915_fastboot) {
8858                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
8859                                 config->fb_changed = true;
8860                         } else {
8861                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
8862                                 config->mode_changed = true;
8863                         }
8864                 } else if (set->fb == NULL) {
8865                         config->mode_changed = true;
8866                 } else if (set->fb->pixel_format !=
8867                            set->crtc->fb->pixel_format) {
8868                         config->mode_changed = true;
8869                 } else {
8870                         config->fb_changed = true;
8871                 }
8872         }
8873
8874         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8875                 config->fb_changed = true;
8876
8877         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8878                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8879                 drm_mode_debug_printmodeline(&set->crtc->mode);
8880                 drm_mode_debug_printmodeline(set->mode);
8881                 config->mode_changed = true;
8882         }
8883
8884         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
8885                         set->crtc->base.id, config->mode_changed, config->fb_changed);
8886 }
8887
8888 static int
8889 intel_modeset_stage_output_state(struct drm_device *dev,
8890                                  struct drm_mode_set *set,
8891                                  struct intel_set_config *config)
8892 {
8893         struct drm_crtc *new_crtc;
8894         struct intel_connector *connector;
8895         struct intel_encoder *encoder;
8896         int ro;
8897
8898         /* The upper layers ensure that we either disable a crtc or have a list
8899          * of connectors. For paranoia, double-check this. */
8900         WARN_ON(!set->fb && (set->num_connectors != 0));
8901         WARN_ON(set->fb && (set->num_connectors == 0));
8902
8903         list_for_each_entry(connector, &dev->mode_config.connector_list,
8904                             base.head) {
8905                 /* Otherwise traverse passed in connector list and get encoders
8906                  * for them. */
8907                 for (ro = 0; ro < set->num_connectors; ro++) {
8908                         if (set->connectors[ro] == &connector->base) {
8909                                 connector->new_encoder = connector->encoder;
8910                                 break;
8911                         }
8912                 }
8913
8914                 /* If we disable the crtc, disable all its connectors. Also, if
8915                  * the connector is on the changing crtc but not on the new
8916                  * connector list, disable it. */
8917                 if ((!set->fb || ro == set->num_connectors) &&
8918                     connector->base.encoder &&
8919                     connector->base.encoder->crtc == set->crtc) {
8920                         connector->new_encoder = NULL;
8921
8922                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8923                                 connector->base.base.id,
8924                                 drm_get_connector_name(&connector->base));
8925                 }
8926
8927
8928                 if (&connector->new_encoder->base != connector->base.encoder) {
8929                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8930                         config->mode_changed = true;
8931                 }
8932         }
8933         /* connector->new_encoder is now updated for all connectors. */
8934
8935         /* Update crtc of enabled connectors. */
8936         list_for_each_entry(connector, &dev->mode_config.connector_list,
8937                             base.head) {
8938                 if (!connector->new_encoder)
8939                         continue;
8940
8941                 new_crtc = connector->new_encoder->base.crtc;
8942
8943                 for (ro = 0; ro < set->num_connectors; ro++) {
8944                         if (set->connectors[ro] == &connector->base)
8945                                 new_crtc = set->crtc;
8946                 }
8947
8948                 /* Make sure the new CRTC will work with the encoder */
8949                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8950                                            new_crtc)) {
8951                         return -EINVAL;
8952                 }
8953                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8954
8955                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8956                         connector->base.base.id,
8957                         drm_get_connector_name(&connector->base),
8958                         new_crtc->base.id);
8959         }
8960
8961         /* Check for any encoders that needs to be disabled. */
8962         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8963                             base.head) {
8964                 list_for_each_entry(connector,
8965                                     &dev->mode_config.connector_list,
8966                                     base.head) {
8967                         if (connector->new_encoder == encoder) {
8968                                 WARN_ON(!connector->new_encoder->new_crtc);
8969
8970                                 goto next_encoder;
8971                         }
8972                 }
8973                 encoder->new_crtc = NULL;
8974 next_encoder:
8975                 /* Only now check for crtc changes so we don't miss encoders
8976                  * that will be disabled. */
8977                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8978                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8979                         config->mode_changed = true;
8980                 }
8981         }
8982         /* Now we've also updated encoder->new_crtc for all encoders. */
8983
8984         return 0;
8985 }
8986
8987 static int intel_crtc_set_config(struct drm_mode_set *set)
8988 {
8989         struct drm_device *dev;
8990         struct drm_mode_set save_set;
8991         struct intel_set_config *config;
8992         int ret;
8993
8994         BUG_ON(!set);
8995         BUG_ON(!set->crtc);
8996         BUG_ON(!set->crtc->helper_private);
8997
8998         /* Enforce sane interface api - has been abused by the fb helper. */
8999         BUG_ON(!set->mode && set->fb);
9000         BUG_ON(set->fb && set->num_connectors == 0);
9001
9002         if (set->fb) {
9003                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9004                                 set->crtc->base.id, set->fb->base.id,
9005                                 (int)set->num_connectors, set->x, set->y);
9006         } else {
9007                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9008         }
9009
9010         dev = set->crtc->dev;
9011
9012         ret = -ENOMEM;
9013         config = kzalloc(sizeof(*config), GFP_KERNEL);
9014         if (!config)
9015                 goto out_config;
9016
9017         ret = intel_set_config_save_state(dev, config);
9018         if (ret)
9019                 goto out_config;
9020
9021         save_set.crtc = set->crtc;
9022         save_set.mode = &set->crtc->mode;
9023         save_set.x = set->crtc->x;
9024         save_set.y = set->crtc->y;
9025         save_set.fb = set->crtc->fb;
9026
9027         /* Compute whether we need a full modeset, only an fb base update or no
9028          * change at all. In the future we might also check whether only the
9029          * mode changed, e.g. for LVDS where we only change the panel fitter in
9030          * such cases. */
9031         intel_set_config_compute_mode_changes(set, config);
9032
9033         ret = intel_modeset_stage_output_state(dev, set, config);
9034         if (ret)
9035                 goto fail;
9036
9037         if (config->mode_changed) {
9038                 ret = intel_set_mode(set->crtc, set->mode,
9039                                      set->x, set->y, set->fb);
9040         } else if (config->fb_changed) {
9041                 intel_crtc_wait_for_pending_flips(set->crtc);
9042
9043                 ret = intel_pipe_set_base(set->crtc,
9044                                           set->x, set->y, set->fb);
9045         }
9046
9047         if (ret) {
9048                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9049                               set->crtc->base.id, ret);
9050 fail:
9051                 intel_set_config_restore_state(dev, config);
9052
9053                 /* Try to restore the config */
9054                 if (config->mode_changed &&
9055                     intel_set_mode(save_set.crtc, save_set.mode,
9056                                    save_set.x, save_set.y, save_set.fb))
9057                         DRM_ERROR("failed to restore config after modeset failure\n");
9058         }
9059
9060 out_config:
9061         intel_set_config_free(config);
9062         return ret;
9063 }
9064
9065 static const struct drm_crtc_funcs intel_crtc_funcs = {
9066         .cursor_set = intel_crtc_cursor_set,
9067         .cursor_move = intel_crtc_cursor_move,
9068         .gamma_set = intel_crtc_gamma_set,
9069         .set_config = intel_crtc_set_config,
9070         .destroy = intel_crtc_destroy,
9071         .page_flip = intel_crtc_page_flip,
9072 };
9073
9074 static void intel_cpu_pll_init(struct drm_device *dev)
9075 {
9076         if (HAS_DDI(dev))
9077                 intel_ddi_pll_init(dev);
9078 }
9079
9080 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9081                                       struct intel_shared_dpll *pll,
9082                                       struct intel_dpll_hw_state *hw_state)
9083 {
9084         uint32_t val;
9085
9086         val = I915_READ(PCH_DPLL(pll->id));
9087         hw_state->dpll = val;
9088         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9089         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9090
9091         return val & DPLL_VCO_ENABLE;
9092 }
9093
9094 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9095                                   struct intel_shared_dpll *pll)
9096 {
9097         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9098         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9099 }
9100
9101 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9102                                 struct intel_shared_dpll *pll)
9103 {
9104         /* PCH refclock must be enabled first */
9105         assert_pch_refclk_enabled(dev_priv);
9106
9107         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9108
9109         /* Wait for the clocks to stabilize. */
9110         POSTING_READ(PCH_DPLL(pll->id));
9111         udelay(150);
9112
9113         /* The pixel multiplier can only be updated once the
9114          * DPLL is enabled and the clocks are stable.
9115          *
9116          * So write it again.
9117          */
9118         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9119         POSTING_READ(PCH_DPLL(pll->id));
9120         udelay(200);
9121 }
9122
9123 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9124                                  struct intel_shared_dpll *pll)
9125 {
9126         struct drm_device *dev = dev_priv->dev;
9127         struct intel_crtc *crtc;
9128
9129         /* Make sure no transcoder isn't still depending on us. */
9130         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9131                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9132                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9133         }
9134
9135         I915_WRITE(PCH_DPLL(pll->id), 0);
9136         POSTING_READ(PCH_DPLL(pll->id));
9137         udelay(200);
9138 }
9139
9140 static char *ibx_pch_dpll_names[] = {
9141         "PCH DPLL A",
9142         "PCH DPLL B",
9143 };
9144
9145 static void ibx_pch_dpll_init(struct drm_device *dev)
9146 {
9147         struct drm_i915_private *dev_priv = dev->dev_private;
9148         int i;
9149
9150         dev_priv->num_shared_dpll = 2;
9151
9152         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9153                 dev_priv->shared_dplls[i].id = i;
9154                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9155                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9156                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9157                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9158                 dev_priv->shared_dplls[i].get_hw_state =
9159                         ibx_pch_dpll_get_hw_state;
9160         }
9161 }
9162
9163 static void intel_shared_dpll_init(struct drm_device *dev)
9164 {
9165         struct drm_i915_private *dev_priv = dev->dev_private;
9166
9167         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9168                 ibx_pch_dpll_init(dev);
9169         else
9170                 dev_priv->num_shared_dpll = 0;
9171
9172         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9173         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9174                       dev_priv->num_shared_dpll);
9175 }
9176
9177 static void intel_crtc_init(struct drm_device *dev, int pipe)
9178 {
9179         drm_i915_private_t *dev_priv = dev->dev_private;
9180         struct intel_crtc *intel_crtc;
9181         int i;
9182
9183         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9184         if (intel_crtc == NULL)
9185                 return;
9186
9187         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9188
9189         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9190         for (i = 0; i < 256; i++) {
9191                 intel_crtc->lut_r[i] = i;
9192                 intel_crtc->lut_g[i] = i;
9193                 intel_crtc->lut_b[i] = i;
9194         }
9195
9196         /* Swap pipes & planes for FBC on pre-965 */
9197         intel_crtc->pipe = pipe;
9198         intel_crtc->plane = pipe;
9199         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9200                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9201                 intel_crtc->plane = !pipe;
9202         }
9203
9204         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9205                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9206         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9207         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9208
9209         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9210 }
9211
9212 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9213                                 struct drm_file *file)
9214 {
9215         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9216         struct drm_mode_object *drmmode_obj;
9217         struct intel_crtc *crtc;
9218
9219         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9220                 return -ENODEV;
9221
9222         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9223                         DRM_MODE_OBJECT_CRTC);
9224
9225         if (!drmmode_obj) {
9226                 DRM_ERROR("no such CRTC id\n");
9227                 return -EINVAL;
9228         }
9229
9230         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9231         pipe_from_crtc_id->pipe = crtc->pipe;
9232
9233         return 0;
9234 }
9235
9236 static int intel_encoder_clones(struct intel_encoder *encoder)
9237 {
9238         struct drm_device *dev = encoder->base.dev;
9239         struct intel_encoder *source_encoder;
9240         int index_mask = 0;
9241         int entry = 0;
9242
9243         list_for_each_entry(source_encoder,
9244                             &dev->mode_config.encoder_list, base.head) {
9245
9246                 if (encoder == source_encoder)
9247                         index_mask |= (1 << entry);
9248
9249                 /* Intel hw has only one MUX where enocoders could be cloned. */
9250                 if (encoder->cloneable && source_encoder->cloneable)
9251                         index_mask |= (1 << entry);
9252
9253                 entry++;
9254         }
9255
9256         return index_mask;
9257 }
9258
9259 static bool has_edp_a(struct drm_device *dev)
9260 {
9261         struct drm_i915_private *dev_priv = dev->dev_private;
9262
9263         if (!IS_MOBILE(dev))
9264                 return false;
9265
9266         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9267                 return false;
9268
9269         if (IS_GEN5(dev) &&
9270             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9271                 return false;
9272
9273         return true;
9274 }
9275
9276 static void intel_setup_outputs(struct drm_device *dev)
9277 {
9278         struct drm_i915_private *dev_priv = dev->dev_private;
9279         struct intel_encoder *encoder;
9280         bool dpd_is_edp = false;
9281
9282         intel_lvds_init(dev);
9283
9284         if (!IS_ULT(dev))
9285                 intel_crt_init(dev);
9286
9287         if (HAS_DDI(dev)) {
9288                 int found;
9289
9290                 /* Haswell uses DDI functions to detect digital outputs */
9291                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9292                 /* DDI A only supports eDP */
9293                 if (found)
9294                         intel_ddi_init(dev, PORT_A);
9295
9296                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9297                  * register */
9298                 found = I915_READ(SFUSE_STRAP);
9299
9300                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9301                         intel_ddi_init(dev, PORT_B);
9302                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9303                         intel_ddi_init(dev, PORT_C);
9304                 if (found & SFUSE_STRAP_DDID_DETECTED)
9305                         intel_ddi_init(dev, PORT_D);
9306         } else if (HAS_PCH_SPLIT(dev)) {
9307                 int found;
9308                 dpd_is_edp = intel_dpd_is_edp(dev);
9309
9310                 if (has_edp_a(dev))
9311                         intel_dp_init(dev, DP_A, PORT_A);
9312
9313                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9314                         /* PCH SDVOB multiplex with HDMIB */
9315                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9316                         if (!found)
9317                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9318                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9319                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9320                 }
9321
9322                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9323                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9324
9325                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9326                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9327
9328                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9329                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9330
9331                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9332                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9333         } else if (IS_VALLEYVIEW(dev)) {
9334                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9335                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9336                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9337                                         PORT_C);
9338                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9339                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9340                                               PORT_C);
9341                 }
9342
9343                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9344                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9345                                         PORT_B);
9346                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9347                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9348                 }
9349         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9350                 bool found = false;
9351
9352                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9353                         DRM_DEBUG_KMS("probing SDVOB\n");
9354                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9355                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9356                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9357                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9358                         }
9359
9360                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9361                                 intel_dp_init(dev, DP_B, PORT_B);
9362                 }
9363
9364                 /* Before G4X SDVOC doesn't have its own detect register */
9365
9366                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9367                         DRM_DEBUG_KMS("probing SDVOC\n");
9368                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9369                 }
9370
9371                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9372
9373                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9374                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9375                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9376                         }
9377                         if (SUPPORTS_INTEGRATED_DP(dev))
9378                                 intel_dp_init(dev, DP_C, PORT_C);
9379                 }
9380
9381                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9382                     (I915_READ(DP_D) & DP_DETECTED))
9383                         intel_dp_init(dev, DP_D, PORT_D);
9384         } else if (IS_GEN2(dev))
9385                 intel_dvo_init(dev);
9386
9387         if (SUPPORTS_TV(dev))
9388                 intel_tv_init(dev);
9389
9390         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9391                 encoder->base.possible_crtcs = encoder->crtc_mask;
9392                 encoder->base.possible_clones =
9393                         intel_encoder_clones(encoder);
9394         }
9395
9396         intel_init_pch_refclk(dev);
9397
9398         drm_helper_move_panel_connectors_to_head(dev);
9399 }
9400
9401 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9402 {
9403         drm_framebuffer_cleanup(&fb->base);
9404         drm_gem_object_unreference_unlocked(&fb->obj->base);
9405 }
9406
9407 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9408 {
9409         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9410
9411         intel_framebuffer_fini(intel_fb);
9412         kfree(intel_fb);
9413 }
9414
9415 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9416                                                 struct drm_file *file,
9417                                                 unsigned int *handle)
9418 {
9419         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9420         struct drm_i915_gem_object *obj = intel_fb->obj;
9421
9422         return drm_gem_handle_create(file, &obj->base, handle);
9423 }
9424
9425 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9426         .destroy = intel_user_framebuffer_destroy,
9427         .create_handle = intel_user_framebuffer_create_handle,
9428 };
9429
9430 int intel_framebuffer_init(struct drm_device *dev,
9431                            struct intel_framebuffer *intel_fb,
9432                            struct drm_mode_fb_cmd2 *mode_cmd,
9433                            struct drm_i915_gem_object *obj)
9434 {
9435         int pitch_limit;
9436         int ret;
9437
9438         if (obj->tiling_mode == I915_TILING_Y) {
9439                 DRM_DEBUG("hardware does not support tiling Y\n");
9440                 return -EINVAL;
9441         }
9442
9443         if (mode_cmd->pitches[0] & 63) {
9444                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9445                           mode_cmd->pitches[0]);
9446                 return -EINVAL;
9447         }
9448
9449         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9450                 pitch_limit = 32*1024;
9451         } else if (INTEL_INFO(dev)->gen >= 4) {
9452                 if (obj->tiling_mode)
9453                         pitch_limit = 16*1024;
9454                 else
9455                         pitch_limit = 32*1024;
9456         } else if (INTEL_INFO(dev)->gen >= 3) {
9457                 if (obj->tiling_mode)
9458                         pitch_limit = 8*1024;
9459                 else
9460                         pitch_limit = 16*1024;
9461         } else
9462                 /* XXX DSPC is limited to 4k tiled */
9463                 pitch_limit = 8*1024;
9464
9465         if (mode_cmd->pitches[0] > pitch_limit) {
9466                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9467                           obj->tiling_mode ? "tiled" : "linear",
9468                           mode_cmd->pitches[0], pitch_limit);
9469                 return -EINVAL;
9470         }
9471
9472         if (obj->tiling_mode != I915_TILING_NONE &&
9473             mode_cmd->pitches[0] != obj->stride) {
9474                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9475                           mode_cmd->pitches[0], obj->stride);
9476                 return -EINVAL;
9477         }
9478
9479         /* Reject formats not supported by any plane early. */
9480         switch (mode_cmd->pixel_format) {
9481         case DRM_FORMAT_C8:
9482         case DRM_FORMAT_RGB565:
9483         case DRM_FORMAT_XRGB8888:
9484         case DRM_FORMAT_ARGB8888:
9485                 break;
9486         case DRM_FORMAT_XRGB1555:
9487         case DRM_FORMAT_ARGB1555:
9488                 if (INTEL_INFO(dev)->gen > 3) {
9489                         DRM_DEBUG("unsupported pixel format: %s\n",
9490                                   drm_get_format_name(mode_cmd->pixel_format));
9491                         return -EINVAL;
9492                 }
9493                 break;
9494         case DRM_FORMAT_XBGR8888:
9495         case DRM_FORMAT_ABGR8888:
9496         case DRM_FORMAT_XRGB2101010:
9497         case DRM_FORMAT_ARGB2101010:
9498         case DRM_FORMAT_XBGR2101010:
9499         case DRM_FORMAT_ABGR2101010:
9500                 if (INTEL_INFO(dev)->gen < 4) {
9501                         DRM_DEBUG("unsupported pixel format: %s\n",
9502                                   drm_get_format_name(mode_cmd->pixel_format));
9503                         return -EINVAL;
9504                 }
9505                 break;
9506         case DRM_FORMAT_YUYV:
9507         case DRM_FORMAT_UYVY:
9508         case DRM_FORMAT_YVYU:
9509         case DRM_FORMAT_VYUY:
9510                 if (INTEL_INFO(dev)->gen < 5) {
9511                         DRM_DEBUG("unsupported pixel format: %s\n",
9512                                   drm_get_format_name(mode_cmd->pixel_format));
9513                         return -EINVAL;
9514                 }
9515                 break;
9516         default:
9517                 DRM_DEBUG("unsupported pixel format: %s\n",
9518                           drm_get_format_name(mode_cmd->pixel_format));
9519                 return -EINVAL;
9520         }
9521
9522         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9523         if (mode_cmd->offsets[0] != 0)
9524                 return -EINVAL;
9525
9526         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9527         intel_fb->obj = obj;
9528
9529         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9530         if (ret) {
9531                 DRM_ERROR("framebuffer init failed %d\n", ret);
9532                 return ret;
9533         }
9534
9535         return 0;
9536 }
9537
9538 static struct drm_framebuffer *
9539 intel_user_framebuffer_create(struct drm_device *dev,
9540                               struct drm_file *filp,
9541                               struct drm_mode_fb_cmd2 *mode_cmd)
9542 {
9543         struct drm_i915_gem_object *obj;
9544
9545         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9546                                                 mode_cmd->handles[0]));
9547         if (&obj->base == NULL)
9548                 return ERR_PTR(-ENOENT);
9549
9550         return intel_framebuffer_create(dev, mode_cmd, obj);
9551 }
9552
9553 static const struct drm_mode_config_funcs intel_mode_funcs = {
9554         .fb_create = intel_user_framebuffer_create,
9555         .output_poll_changed = intel_fb_output_poll_changed,
9556 };
9557
9558 /* Set up chip specific display functions */
9559 static void intel_init_display(struct drm_device *dev)
9560 {
9561         struct drm_i915_private *dev_priv = dev->dev_private;
9562
9563         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9564                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9565         else if (IS_VALLEYVIEW(dev))
9566                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9567         else if (IS_PINEVIEW(dev))
9568                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9569         else
9570                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9571
9572         if (HAS_DDI(dev)) {
9573                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9574                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9575                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9576                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9577                 dev_priv->display.off = haswell_crtc_off;
9578                 dev_priv->display.update_plane = ironlake_update_plane;
9579         } else if (HAS_PCH_SPLIT(dev)) {
9580                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9581                 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9582                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9583                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9584                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9585                 dev_priv->display.off = ironlake_crtc_off;
9586                 dev_priv->display.update_plane = ironlake_update_plane;
9587         } else if (IS_VALLEYVIEW(dev)) {
9588                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9589                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9590                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9591                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9592                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9593                 dev_priv->display.off = i9xx_crtc_off;
9594                 dev_priv->display.update_plane = i9xx_update_plane;
9595         } else {
9596                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9597                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9598                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9599                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9600                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9601                 dev_priv->display.off = i9xx_crtc_off;
9602                 dev_priv->display.update_plane = i9xx_update_plane;
9603         }
9604
9605         /* Returns the core display clock speed */
9606         if (IS_VALLEYVIEW(dev))
9607                 dev_priv->display.get_display_clock_speed =
9608                         valleyview_get_display_clock_speed;
9609         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9610                 dev_priv->display.get_display_clock_speed =
9611                         i945_get_display_clock_speed;
9612         else if (IS_I915G(dev))
9613                 dev_priv->display.get_display_clock_speed =
9614                         i915_get_display_clock_speed;
9615         else if (IS_I945GM(dev) || IS_845G(dev))
9616                 dev_priv->display.get_display_clock_speed =
9617                         i9xx_misc_get_display_clock_speed;
9618         else if (IS_PINEVIEW(dev))
9619                 dev_priv->display.get_display_clock_speed =
9620                         pnv_get_display_clock_speed;
9621         else if (IS_I915GM(dev))
9622                 dev_priv->display.get_display_clock_speed =
9623                         i915gm_get_display_clock_speed;
9624         else if (IS_I865G(dev))
9625                 dev_priv->display.get_display_clock_speed =
9626                         i865_get_display_clock_speed;
9627         else if (IS_I85X(dev))
9628                 dev_priv->display.get_display_clock_speed =
9629                         i855_get_display_clock_speed;
9630         else /* 852, 830 */
9631                 dev_priv->display.get_display_clock_speed =
9632                         i830_get_display_clock_speed;
9633
9634         if (HAS_PCH_SPLIT(dev)) {
9635                 if (IS_GEN5(dev)) {
9636                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9637                         dev_priv->display.write_eld = ironlake_write_eld;
9638                 } else if (IS_GEN6(dev)) {
9639                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9640                         dev_priv->display.write_eld = ironlake_write_eld;
9641                 } else if (IS_IVYBRIDGE(dev)) {
9642                         /* FIXME: detect B0+ stepping and use auto training */
9643                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9644                         dev_priv->display.write_eld = ironlake_write_eld;
9645                         dev_priv->display.modeset_global_resources =
9646                                 ivb_modeset_global_resources;
9647                 } else if (IS_HASWELL(dev)) {
9648                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9649                         dev_priv->display.write_eld = haswell_write_eld;
9650                         dev_priv->display.modeset_global_resources =
9651                                 haswell_modeset_global_resources;
9652                 }
9653         } else if (IS_G4X(dev)) {
9654                 dev_priv->display.write_eld = g4x_write_eld;
9655         }
9656
9657         /* Default just returns -ENODEV to indicate unsupported */
9658         dev_priv->display.queue_flip = intel_default_queue_flip;
9659
9660         switch (INTEL_INFO(dev)->gen) {
9661         case 2:
9662                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9663                 break;
9664
9665         case 3:
9666                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9667                 break;
9668
9669         case 4:
9670         case 5:
9671                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9672                 break;
9673
9674         case 6:
9675                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9676                 break;
9677         case 7:
9678                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9679                 break;
9680         }
9681 }
9682
9683 /*
9684  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9685  * resume, or other times.  This quirk makes sure that's the case for
9686  * affected systems.
9687  */
9688 static void quirk_pipea_force(struct drm_device *dev)
9689 {
9690         struct drm_i915_private *dev_priv = dev->dev_private;
9691
9692         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9693         DRM_INFO("applying pipe a force quirk\n");
9694 }
9695
9696 /*
9697  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9698  */
9699 static void quirk_ssc_force_disable(struct drm_device *dev)
9700 {
9701         struct drm_i915_private *dev_priv = dev->dev_private;
9702         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9703         DRM_INFO("applying lvds SSC disable quirk\n");
9704 }
9705
9706 /*
9707  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9708  * brightness value
9709  */
9710 static void quirk_invert_brightness(struct drm_device *dev)
9711 {
9712         struct drm_i915_private *dev_priv = dev->dev_private;
9713         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9714         DRM_INFO("applying inverted panel brightness quirk\n");
9715 }
9716
9717 /*
9718  * Some machines (Dell XPS13) suffer broken backlight controls if
9719  * BLM_PCH_PWM_ENABLE is set.
9720  */
9721 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9722 {
9723         struct drm_i915_private *dev_priv = dev->dev_private;
9724         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9725         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9726 }
9727
9728 struct intel_quirk {
9729         int device;
9730         int subsystem_vendor;
9731         int subsystem_device;
9732         void (*hook)(struct drm_device *dev);
9733 };
9734
9735 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9736 struct intel_dmi_quirk {
9737         void (*hook)(struct drm_device *dev);
9738         const struct dmi_system_id (*dmi_id_list)[];
9739 };
9740
9741 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9742 {
9743         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9744         return 1;
9745 }
9746
9747 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9748         {
9749                 .dmi_id_list = &(const struct dmi_system_id[]) {
9750                         {
9751                                 .callback = intel_dmi_reverse_brightness,
9752                                 .ident = "NCR Corporation",
9753                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9754                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9755                                 },
9756                         },
9757                         { }  /* terminating entry */
9758                 },
9759                 .hook = quirk_invert_brightness,
9760         },
9761 };
9762
9763 static struct intel_quirk intel_quirks[] = {
9764         /* HP Mini needs pipe A force quirk (LP: #322104) */
9765         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9766
9767         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9768         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9769
9770         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9771         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9772
9773         /* 830/845 need to leave pipe A & dpll A up */
9774         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9775         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9776
9777         /* Lenovo U160 cannot use SSC on LVDS */
9778         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9779
9780         /* Sony Vaio Y cannot use SSC on LVDS */
9781         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9782
9783         /* Acer Aspire 5734Z must invert backlight brightness */
9784         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9785
9786         /* Acer/eMachines G725 */
9787         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9788
9789         /* Acer/eMachines e725 */
9790         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9791
9792         /* Acer/Packard Bell NCL20 */
9793         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9794
9795         /* Acer Aspire 4736Z */
9796         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9797
9798         /* Dell XPS13 HD Sandy Bridge */
9799         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
9800         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
9801         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
9802 };
9803
9804 static void intel_init_quirks(struct drm_device *dev)
9805 {
9806         struct pci_dev *d = dev->pdev;
9807         int i;
9808
9809         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9810                 struct intel_quirk *q = &intel_quirks[i];
9811
9812                 if (d->device == q->device &&
9813                     (d->subsystem_vendor == q->subsystem_vendor ||
9814                      q->subsystem_vendor == PCI_ANY_ID) &&
9815                     (d->subsystem_device == q->subsystem_device ||
9816                      q->subsystem_device == PCI_ANY_ID))
9817                         q->hook(dev);
9818         }
9819         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9820                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9821                         intel_dmi_quirks[i].hook(dev);
9822         }
9823 }
9824
9825 /* Disable the VGA plane that we never use */
9826 static void i915_disable_vga(struct drm_device *dev)
9827 {
9828         struct drm_i915_private *dev_priv = dev->dev_private;
9829         u8 sr1;
9830         u32 vga_reg = i915_vgacntrl_reg(dev);
9831
9832         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9833         outb(SR01, VGA_SR_INDEX);
9834         sr1 = inb(VGA_SR_DATA);
9835         outb(sr1 | 1<<5, VGA_SR_DATA);
9836         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9837         udelay(300);
9838
9839         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9840         POSTING_READ(vga_reg);
9841 }
9842
9843 void intel_modeset_init_hw(struct drm_device *dev)
9844 {
9845         intel_init_power_well(dev);
9846
9847         intel_prepare_ddi(dev);
9848
9849         intel_init_clock_gating(dev);
9850
9851         mutex_lock(&dev->struct_mutex);
9852         intel_enable_gt_powersave(dev);
9853         mutex_unlock(&dev->struct_mutex);
9854 }
9855
9856 void intel_modeset_suspend_hw(struct drm_device *dev)
9857 {
9858         intel_suspend_hw(dev);
9859 }
9860
9861 void intel_modeset_init(struct drm_device *dev)
9862 {
9863         struct drm_i915_private *dev_priv = dev->dev_private;
9864         int i, j, ret;
9865
9866         drm_mode_config_init(dev);
9867
9868         dev->mode_config.min_width = 0;
9869         dev->mode_config.min_height = 0;
9870
9871         dev->mode_config.preferred_depth = 24;
9872         dev->mode_config.prefer_shadow = 1;
9873
9874         dev->mode_config.funcs = &intel_mode_funcs;
9875
9876         intel_init_quirks(dev);
9877
9878         intel_init_pm(dev);
9879
9880         if (INTEL_INFO(dev)->num_pipes == 0)
9881                 return;
9882
9883         intel_init_display(dev);
9884
9885         if (IS_GEN2(dev)) {
9886                 dev->mode_config.max_width = 2048;
9887                 dev->mode_config.max_height = 2048;
9888         } else if (IS_GEN3(dev)) {
9889                 dev->mode_config.max_width = 4096;
9890                 dev->mode_config.max_height = 4096;
9891         } else {
9892                 dev->mode_config.max_width = 8192;
9893                 dev->mode_config.max_height = 8192;
9894         }
9895         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9896
9897         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9898                       INTEL_INFO(dev)->num_pipes,
9899                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9900
9901         for_each_pipe(i) {
9902                 intel_crtc_init(dev, i);
9903                 for (j = 0; j < dev_priv->num_plane; j++) {
9904                         ret = intel_plane_init(dev, i, j);
9905                         if (ret)
9906                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9907                                               pipe_name(i), sprite_name(i, j), ret);
9908                 }
9909         }
9910
9911         intel_cpu_pll_init(dev);
9912         intel_shared_dpll_init(dev);
9913
9914         /* Just disable it once at startup */
9915         i915_disable_vga(dev);
9916         intel_setup_outputs(dev);
9917
9918         /* Just in case the BIOS is doing something questionable. */
9919         intel_disable_fbc(dev);
9920 }
9921
9922 static void
9923 intel_connector_break_all_links(struct intel_connector *connector)
9924 {
9925         connector->base.dpms = DRM_MODE_DPMS_OFF;
9926         connector->base.encoder = NULL;
9927         connector->encoder->connectors_active = false;
9928         connector->encoder->base.crtc = NULL;
9929 }
9930
9931 static void intel_enable_pipe_a(struct drm_device *dev)
9932 {
9933         struct intel_connector *connector;
9934         struct drm_connector *crt = NULL;
9935         struct intel_load_detect_pipe load_detect_temp;
9936
9937         /* We can't just switch on the pipe A, we need to set things up with a
9938          * proper mode and output configuration. As a gross hack, enable pipe A
9939          * by enabling the load detect pipe once. */
9940         list_for_each_entry(connector,
9941                             &dev->mode_config.connector_list,
9942                             base.head) {
9943                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9944                         crt = &connector->base;
9945                         break;
9946                 }
9947         }
9948
9949         if (!crt)
9950                 return;
9951
9952         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9953                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9954
9955
9956 }
9957
9958 static bool
9959 intel_check_plane_mapping(struct intel_crtc *crtc)
9960 {
9961         struct drm_device *dev = crtc->base.dev;
9962         struct drm_i915_private *dev_priv = dev->dev_private;
9963         u32 reg, val;
9964
9965         if (INTEL_INFO(dev)->num_pipes == 1)
9966                 return true;
9967
9968         reg = DSPCNTR(!crtc->plane);
9969         val = I915_READ(reg);
9970
9971         if ((val & DISPLAY_PLANE_ENABLE) &&
9972             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9973                 return false;
9974
9975         return true;
9976 }
9977
9978 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9979 {
9980         struct drm_device *dev = crtc->base.dev;
9981         struct drm_i915_private *dev_priv = dev->dev_private;
9982         u32 reg;
9983
9984         /* Clear any frame start delays used for debugging left by the BIOS */
9985         reg = PIPECONF(crtc->config.cpu_transcoder);
9986         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9987
9988         /* We need to sanitize the plane -> pipe mapping first because this will
9989          * disable the crtc (and hence change the state) if it is wrong. Note
9990          * that gen4+ has a fixed plane -> pipe mapping.  */
9991         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9992                 struct intel_connector *connector;
9993                 bool plane;
9994
9995                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9996                               crtc->base.base.id);
9997
9998                 /* Pipe has the wrong plane attached and the plane is active.
9999                  * Temporarily change the plane mapping and disable everything
10000                  * ...  */
10001                 plane = crtc->plane;
10002                 crtc->plane = !plane;
10003                 dev_priv->display.crtc_disable(&crtc->base);
10004                 crtc->plane = plane;
10005
10006                 /* ... and break all links. */
10007                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10008                                     base.head) {
10009                         if (connector->encoder->base.crtc != &crtc->base)
10010                                 continue;
10011
10012                         intel_connector_break_all_links(connector);
10013                 }
10014
10015                 WARN_ON(crtc->active);
10016                 crtc->base.enabled = false;
10017         }
10018
10019         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10020             crtc->pipe == PIPE_A && !crtc->active) {
10021                 /* BIOS forgot to enable pipe A, this mostly happens after
10022                  * resume. Force-enable the pipe to fix this, the update_dpms
10023                  * call below we restore the pipe to the right state, but leave
10024                  * the required bits on. */
10025                 intel_enable_pipe_a(dev);
10026         }
10027
10028         /* Adjust the state of the output pipe according to whether we
10029          * have active connectors/encoders. */
10030         intel_crtc_update_dpms(&crtc->base);
10031
10032         if (crtc->active != crtc->base.enabled) {
10033                 struct intel_encoder *encoder;
10034
10035                 /* This can happen either due to bugs in the get_hw_state
10036                  * functions or because the pipe is force-enabled due to the
10037                  * pipe A quirk. */
10038                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10039                               crtc->base.base.id,
10040                               crtc->base.enabled ? "enabled" : "disabled",
10041                               crtc->active ? "enabled" : "disabled");
10042
10043                 crtc->base.enabled = crtc->active;
10044
10045                 /* Because we only establish the connector -> encoder ->
10046                  * crtc links if something is active, this means the
10047                  * crtc is now deactivated. Break the links. connector
10048                  * -> encoder links are only establish when things are
10049                  *  actually up, hence no need to break them. */
10050                 WARN_ON(crtc->active);
10051
10052                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10053                         WARN_ON(encoder->connectors_active);
10054                         encoder->base.crtc = NULL;
10055                 }
10056         }
10057 }
10058
10059 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10060 {
10061         struct intel_connector *connector;
10062         struct drm_device *dev = encoder->base.dev;
10063
10064         /* We need to check both for a crtc link (meaning that the
10065          * encoder is active and trying to read from a pipe) and the
10066          * pipe itself being active. */
10067         bool has_active_crtc = encoder->base.crtc &&
10068                 to_intel_crtc(encoder->base.crtc)->active;
10069
10070         if (encoder->connectors_active && !has_active_crtc) {
10071                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10072                               encoder->base.base.id,
10073                               drm_get_encoder_name(&encoder->base));
10074
10075                 /* Connector is active, but has no active pipe. This is
10076                  * fallout from our resume register restoring. Disable
10077                  * the encoder manually again. */
10078                 if (encoder->base.crtc) {
10079                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10080                                       encoder->base.base.id,
10081                                       drm_get_encoder_name(&encoder->base));
10082                         encoder->disable(encoder);
10083                 }
10084
10085                 /* Inconsistent output/port/pipe state happens presumably due to
10086                  * a bug in one of the get_hw_state functions. Or someplace else
10087                  * in our code, like the register restore mess on resume. Clamp
10088                  * things to off as a safer default. */
10089                 list_for_each_entry(connector,
10090                                     &dev->mode_config.connector_list,
10091                                     base.head) {
10092                         if (connector->encoder != encoder)
10093                                 continue;
10094
10095                         intel_connector_break_all_links(connector);
10096                 }
10097         }
10098         /* Enabled encoders without active connectors will be fixed in
10099          * the crtc fixup. */
10100 }
10101
10102 void i915_redisable_vga(struct drm_device *dev)
10103 {
10104         struct drm_i915_private *dev_priv = dev->dev_private;
10105         u32 vga_reg = i915_vgacntrl_reg(dev);
10106
10107         /* This function can be called both from intel_modeset_setup_hw_state or
10108          * at a very early point in our resume sequence, where the power well
10109          * structures are not yet restored. Since this function is at a very
10110          * paranoid "someone might have enabled VGA while we were not looking"
10111          * level, just check if the power well is enabled instead of trying to
10112          * follow the "don't touch the power well if we don't need it" policy
10113          * the rest of the driver uses. */
10114         if (HAS_POWER_WELL(dev) &&
10115             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE) == 0)
10116                 return;
10117
10118         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10119                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10120                 i915_disable_vga(dev);
10121         }
10122 }
10123
10124 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10125 {
10126         struct drm_i915_private *dev_priv = dev->dev_private;
10127         enum pipe pipe;
10128         struct intel_crtc *crtc;
10129         struct intel_encoder *encoder;
10130         struct intel_connector *connector;
10131         int i;
10132
10133         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10134                             base.head) {
10135                 memset(&crtc->config, 0, sizeof(crtc->config));
10136
10137                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10138                                                                  &crtc->config);
10139
10140                 crtc->base.enabled = crtc->active;
10141
10142                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10143                               crtc->base.base.id,
10144                               crtc->active ? "enabled" : "disabled");
10145         }
10146
10147         /* FIXME: Smash this into the new shared dpll infrastructure. */
10148         if (HAS_DDI(dev))
10149                 intel_ddi_setup_hw_pll_state(dev);
10150
10151         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10152                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10153
10154                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10155                 pll->active = 0;
10156                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10157                                     base.head) {
10158                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10159                                 pll->active++;
10160                 }
10161                 pll->refcount = pll->active;
10162
10163                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10164                               pll->name, pll->refcount, pll->on);
10165         }
10166
10167         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10168                             base.head) {
10169                 pipe = 0;
10170
10171                 if (encoder->get_hw_state(encoder, &pipe)) {
10172                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10173                         encoder->base.crtc = &crtc->base;
10174                         if (encoder->get_config)
10175                                 encoder->get_config(encoder, &crtc->config);
10176                 } else {
10177                         encoder->base.crtc = NULL;
10178                 }
10179
10180                 encoder->connectors_active = false;
10181                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10182                               encoder->base.base.id,
10183                               drm_get_encoder_name(&encoder->base),
10184                               encoder->base.crtc ? "enabled" : "disabled",
10185                               pipe);
10186         }
10187
10188         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10189                             base.head) {
10190                 if (!crtc->active)
10191                         continue;
10192                 if (dev_priv->display.get_clock)
10193                         dev_priv->display.get_clock(crtc,
10194                                                     &crtc->config);
10195         }
10196
10197         list_for_each_entry(connector, &dev->mode_config.connector_list,
10198                             base.head) {
10199                 if (connector->get_hw_state(connector)) {
10200                         connector->base.dpms = DRM_MODE_DPMS_ON;
10201                         connector->encoder->connectors_active = true;
10202                         connector->base.encoder = &connector->encoder->base;
10203                 } else {
10204                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10205                         connector->base.encoder = NULL;
10206                 }
10207                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10208                               connector->base.base.id,
10209                               drm_get_connector_name(&connector->base),
10210                               connector->base.encoder ? "enabled" : "disabled");
10211         }
10212 }
10213
10214 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10215  * and i915 state tracking structures. */
10216 void intel_modeset_setup_hw_state(struct drm_device *dev,
10217                                   bool force_restore)
10218 {
10219         struct drm_i915_private *dev_priv = dev->dev_private;
10220         enum pipe pipe;
10221         struct drm_plane *plane;
10222         struct intel_crtc *crtc;
10223         struct intel_encoder *encoder;
10224         int i;
10225
10226         intel_modeset_readout_hw_state(dev);
10227
10228         /*
10229          * Now that we have the config, copy it to each CRTC struct
10230          * Note that this could go away if we move to using crtc_config
10231          * checking everywhere.
10232          */
10233         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10234                             base.head) {
10235                 if (crtc->active && i915_fastboot) {
10236                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10237
10238                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10239                                       crtc->base.base.id);
10240                         drm_mode_debug_printmodeline(&crtc->base.mode);
10241                 }
10242         }
10243
10244         /* HW state is read out, now we need to sanitize this mess. */
10245         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10246                             base.head) {
10247                 intel_sanitize_encoder(encoder);
10248         }
10249
10250         for_each_pipe(pipe) {
10251                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10252                 intel_sanitize_crtc(crtc);
10253                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10254         }
10255
10256         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10257                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10258
10259                 if (!pll->on || pll->active)
10260                         continue;
10261
10262                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10263
10264                 pll->disable(dev_priv, pll);
10265                 pll->on = false;
10266         }
10267
10268         if (force_restore) {
10269                 /*
10270                  * We need to use raw interfaces for restoring state to avoid
10271                  * checking (bogus) intermediate states.
10272                  */
10273                 for_each_pipe(pipe) {
10274                         struct drm_crtc *crtc =
10275                                 dev_priv->pipe_to_crtc_mapping[pipe];
10276
10277                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10278                                          crtc->fb);
10279                 }
10280                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10281                         intel_plane_restore(plane);
10282
10283                 i915_redisable_vga(dev);
10284         } else {
10285                 intel_modeset_update_staged_output_state(dev);
10286         }
10287
10288         intel_modeset_check_state(dev);
10289
10290         drm_mode_config_reset(dev);
10291 }
10292
10293 void intel_modeset_gem_init(struct drm_device *dev)
10294 {
10295         intel_modeset_init_hw(dev);
10296
10297         intel_setup_overlay(dev);
10298
10299         intel_modeset_setup_hw_state(dev, false);
10300 }
10301
10302 void intel_modeset_cleanup(struct drm_device *dev)
10303 {
10304         struct drm_i915_private *dev_priv = dev->dev_private;
10305         struct drm_crtc *crtc;
10306
10307         /*
10308          * Interrupts and polling as the first thing to avoid creating havoc.
10309          * Too much stuff here (turning of rps, connectors, ...) would
10310          * experience fancy races otherwise.
10311          */
10312         drm_irq_uninstall(dev);
10313         cancel_work_sync(&dev_priv->hotplug_work);
10314         /*
10315          * Due to the hpd irq storm handling the hotplug work can re-arm the
10316          * poll handlers. Hence disable polling after hpd handling is shut down.
10317          */
10318         drm_kms_helper_poll_fini(dev);
10319
10320         mutex_lock(&dev->struct_mutex);
10321
10322         intel_unregister_dsm_handler();
10323
10324         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10325                 /* Skip inactive CRTCs */
10326                 if (!crtc->fb)
10327                         continue;
10328
10329                 intel_increase_pllclock(crtc);
10330         }
10331
10332         intel_disable_fbc(dev);
10333
10334         intel_disable_gt_powersave(dev);
10335
10336         ironlake_teardown_rc6(dev);
10337
10338         mutex_unlock(&dev->struct_mutex);
10339
10340         /* flush any delayed tasks or pending work */
10341         flush_scheduled_work();
10342
10343         /* destroy backlight, if any, before the connectors */
10344         intel_panel_destroy_backlight(dev);
10345
10346         drm_mode_config_cleanup(dev);
10347
10348         intel_cleanup_overlay(dev);
10349 }
10350
10351 /*
10352  * Return which encoder is currently attached for connector.
10353  */
10354 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10355 {
10356         return &intel_attached_encoder(connector)->base;
10357 }
10358
10359 void intel_connector_attach_encoder(struct intel_connector *connector,
10360                                     struct intel_encoder *encoder)
10361 {
10362         connector->encoder = encoder;
10363         drm_mode_connector_attach_encoder(&connector->base,
10364                                           &encoder->base);
10365 }
10366
10367 /*
10368  * set vga decode state - true == enable VGA decode
10369  */
10370 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10371 {
10372         struct drm_i915_private *dev_priv = dev->dev_private;
10373         u16 gmch_ctrl;
10374
10375         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10376         if (state)
10377                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10378         else
10379                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10380         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10381         return 0;
10382 }
10383
10384 struct intel_display_error_state {
10385
10386         u32 power_well_driver;
10387
10388         struct intel_cursor_error_state {
10389                 u32 control;
10390                 u32 position;
10391                 u32 base;
10392                 u32 size;
10393         } cursor[I915_MAX_PIPES];
10394
10395         struct intel_pipe_error_state {
10396                 enum transcoder cpu_transcoder;
10397                 u32 conf;
10398                 u32 source;
10399
10400                 u32 htotal;
10401                 u32 hblank;
10402                 u32 hsync;
10403                 u32 vtotal;
10404                 u32 vblank;
10405                 u32 vsync;
10406         } pipe[I915_MAX_PIPES];
10407
10408         struct intel_plane_error_state {
10409                 u32 control;
10410                 u32 stride;
10411                 u32 size;
10412                 u32 pos;
10413                 u32 addr;
10414                 u32 surface;
10415                 u32 tile_offset;
10416         } plane[I915_MAX_PIPES];
10417 };
10418
10419 struct intel_display_error_state *
10420 intel_display_capture_error_state(struct drm_device *dev)
10421 {
10422         drm_i915_private_t *dev_priv = dev->dev_private;
10423         struct intel_display_error_state *error;
10424         enum transcoder cpu_transcoder;
10425         int i;
10426
10427         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10428         if (error == NULL)
10429                 return NULL;
10430
10431         if (HAS_POWER_WELL(dev))
10432                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10433
10434         for_each_pipe(i) {
10435                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
10436                 error->pipe[i].cpu_transcoder = cpu_transcoder;
10437
10438                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10439                         error->cursor[i].control = I915_READ(CURCNTR(i));
10440                         error->cursor[i].position = I915_READ(CURPOS(i));
10441                         error->cursor[i].base = I915_READ(CURBASE(i));
10442                 } else {
10443                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10444                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10445                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10446                 }
10447
10448                 error->plane[i].control = I915_READ(DSPCNTR(i));
10449                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10450                 if (INTEL_INFO(dev)->gen <= 3) {
10451                         error->plane[i].size = I915_READ(DSPSIZE(i));
10452                         error->plane[i].pos = I915_READ(DSPPOS(i));
10453                 }
10454                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10455                         error->plane[i].addr = I915_READ(DSPADDR(i));
10456                 if (INTEL_INFO(dev)->gen >= 4) {
10457                         error->plane[i].surface = I915_READ(DSPSURF(i));
10458                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10459                 }
10460
10461                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10462                 error->pipe[i].source = I915_READ(PIPESRC(i));
10463                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10464                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10465                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10466                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10467                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10468                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10469         }
10470
10471         /* In the code above we read the registers without checking if the power
10472          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10473          * prevent the next I915_WRITE from detecting it and printing an error
10474          * message. */
10475         intel_uncore_clear_errors(dev);
10476
10477         return error;
10478 }
10479
10480 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10481
10482 void
10483 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10484                                 struct drm_device *dev,
10485                                 struct intel_display_error_state *error)
10486 {
10487         int i;
10488
10489         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10490         if (HAS_POWER_WELL(dev))
10491                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10492                            error->power_well_driver);
10493         for_each_pipe(i) {
10494                 err_printf(m, "Pipe [%d]:\n", i);
10495                 err_printf(m, "  CPU transcoder: %c\n",
10496                            transcoder_name(error->pipe[i].cpu_transcoder));
10497                 err_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
10498                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10499                 err_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
10500                 err_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
10501                 err_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
10502                 err_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
10503                 err_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
10504                 err_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
10505
10506                 err_printf(m, "Plane [%d]:\n", i);
10507                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10508                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10509                 if (INTEL_INFO(dev)->gen <= 3) {
10510                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10511                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10512                 }
10513                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10514                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10515                 if (INTEL_INFO(dev)->gen >= 4) {
10516                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10517                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10518                 }
10519
10520                 err_printf(m, "Cursor [%d]:\n", i);
10521                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10522                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10523                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10524         }
10525 }