]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: rip out intel_crtc->dpms_mode
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *match_clock,
86                     intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *match_clock,
90                         intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                       int target, int refclk, intel_clock_t *match_clock,
95                       intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98                            int target, int refclk, intel_clock_t *match_clock,
99                            intel_clock_t *best_clock);
100
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103                         int target, int refclk, intel_clock_t *match_clock,
104                         intel_clock_t *best_clock);
105
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
108 {
109         if (IS_GEN5(dev)) {
110                 struct drm_i915_private *dev_priv = dev->dev_private;
111                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112         } else
113                 return 27;
114 }
115
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117         .dot = { .min = 25000, .max = 350000 },
118         .vco = { .min = 930000, .max = 1400000 },
119         .n = { .min = 3, .max = 16 },
120         .m = { .min = 96, .max = 140 },
121         .m1 = { .min = 18, .max = 26 },
122         .m2 = { .min = 6, .max = 16 },
123         .p = { .min = 4, .max = 128 },
124         .p1 = { .min = 2, .max = 33 },
125         .p2 = { .dot_limit = 165000,
126                 .p2_slow = 4, .p2_fast = 2 },
127         .find_pll = intel_find_best_PLL,
128 };
129
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131         .dot = { .min = 25000, .max = 350000 },
132         .vco = { .min = 930000, .max = 1400000 },
133         .n = { .min = 3, .max = 16 },
134         .m = { .min = 96, .max = 140 },
135         .m1 = { .min = 18, .max = 26 },
136         .m2 = { .min = 6, .max = 16 },
137         .p = { .min = 4, .max = 128 },
138         .p1 = { .min = 1, .max = 6 },
139         .p2 = { .dot_limit = 165000,
140                 .p2_slow = 14, .p2_fast = 7 },
141         .find_pll = intel_find_best_PLL,
142 };
143
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145         .dot = { .min = 20000, .max = 400000 },
146         .vco = { .min = 1400000, .max = 2800000 },
147         .n = { .min = 1, .max = 6 },
148         .m = { .min = 70, .max = 120 },
149         .m1 = { .min = 10, .max = 22 },
150         .m2 = { .min = 5, .max = 9 },
151         .p = { .min = 5, .max = 80 },
152         .p1 = { .min = 1, .max = 8 },
153         .p2 = { .dot_limit = 200000,
154                 .p2_slow = 10, .p2_fast = 5 },
155         .find_pll = intel_find_best_PLL,
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159         .dot = { .min = 20000, .max = 400000 },
160         .vco = { .min = 1400000, .max = 2800000 },
161         .n = { .min = 1, .max = 6 },
162         .m = { .min = 70, .max = 120 },
163         .m1 = { .min = 10, .max = 22 },
164         .m2 = { .min = 5, .max = 9 },
165         .p = { .min = 7, .max = 98 },
166         .p1 = { .min = 1, .max = 8 },
167         .p2 = { .dot_limit = 112000,
168                 .p2_slow = 14, .p2_fast = 7 },
169         .find_pll = intel_find_best_PLL,
170 };
171
172
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174         .dot = { .min = 25000, .max = 270000 },
175         .vco = { .min = 1750000, .max = 3500000},
176         .n = { .min = 1, .max = 4 },
177         .m = { .min = 104, .max = 138 },
178         .m1 = { .min = 17, .max = 23 },
179         .m2 = { .min = 5, .max = 11 },
180         .p = { .min = 10, .max = 30 },
181         .p1 = { .min = 1, .max = 3},
182         .p2 = { .dot_limit = 270000,
183                 .p2_slow = 10,
184                 .p2_fast = 10
185         },
186         .find_pll = intel_g4x_find_best_PLL,
187 };
188
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190         .dot = { .min = 22000, .max = 400000 },
191         .vco = { .min = 1750000, .max = 3500000},
192         .n = { .min = 1, .max = 4 },
193         .m = { .min = 104, .max = 138 },
194         .m1 = { .min = 16, .max = 23 },
195         .m2 = { .min = 5, .max = 11 },
196         .p = { .min = 5, .max = 80 },
197         .p1 = { .min = 1, .max = 8},
198         .p2 = { .dot_limit = 165000,
199                 .p2_slow = 10, .p2_fast = 5 },
200         .find_pll = intel_g4x_find_best_PLL,
201 };
202
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204         .dot = { .min = 20000, .max = 115000 },
205         .vco = { .min = 1750000, .max = 3500000 },
206         .n = { .min = 1, .max = 3 },
207         .m = { .min = 104, .max = 138 },
208         .m1 = { .min = 17, .max = 23 },
209         .m2 = { .min = 5, .max = 11 },
210         .p = { .min = 28, .max = 112 },
211         .p1 = { .min = 2, .max = 8 },
212         .p2 = { .dot_limit = 0,
213                 .p2_slow = 14, .p2_fast = 14
214         },
215         .find_pll = intel_g4x_find_best_PLL,
216 };
217
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219         .dot = { .min = 80000, .max = 224000 },
220         .vco = { .min = 1750000, .max = 3500000 },
221         .n = { .min = 1, .max = 3 },
222         .m = { .min = 104, .max = 138 },
223         .m1 = { .min = 17, .max = 23 },
224         .m2 = { .min = 5, .max = 11 },
225         .p = { .min = 14, .max = 42 },
226         .p1 = { .min = 2, .max = 6 },
227         .p2 = { .dot_limit = 0,
228                 .p2_slow = 7, .p2_fast = 7
229         },
230         .find_pll = intel_g4x_find_best_PLL,
231 };
232
233 static const intel_limit_t intel_limits_g4x_display_port = {
234         .dot = { .min = 161670, .max = 227000 },
235         .vco = { .min = 1750000, .max = 3500000},
236         .n = { .min = 1, .max = 2 },
237         .m = { .min = 97, .max = 108 },
238         .m1 = { .min = 0x10, .max = 0x12 },
239         .m2 = { .min = 0x05, .max = 0x06 },
240         .p = { .min = 10, .max = 20 },
241         .p1 = { .min = 1, .max = 2},
242         .p2 = { .dot_limit = 0,
243                 .p2_slow = 10, .p2_fast = 10 },
244         .find_pll = intel_find_pll_g4x_dp,
245 };
246
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248         .dot = { .min = 20000, .max = 400000},
249         .vco = { .min = 1700000, .max = 3500000 },
250         /* Pineview's Ncounter is a ring counter */
251         .n = { .min = 3, .max = 6 },
252         .m = { .min = 2, .max = 256 },
253         /* Pineview only has one combined m divider, which we treat as m2. */
254         .m1 = { .min = 0, .max = 0 },
255         .m2 = { .min = 0, .max = 254 },
256         .p = { .min = 5, .max = 80 },
257         .p1 = { .min = 1, .max = 8 },
258         .p2 = { .dot_limit = 200000,
259                 .p2_slow = 10, .p2_fast = 5 },
260         .find_pll = intel_find_best_PLL,
261 };
262
263 static const intel_limit_t intel_limits_pineview_lvds = {
264         .dot = { .min = 20000, .max = 400000 },
265         .vco = { .min = 1700000, .max = 3500000 },
266         .n = { .min = 3, .max = 6 },
267         .m = { .min = 2, .max = 256 },
268         .m1 = { .min = 0, .max = 0 },
269         .m2 = { .min = 0, .max = 254 },
270         .p = { .min = 7, .max = 112 },
271         .p1 = { .min = 1, .max = 8 },
272         .p2 = { .dot_limit = 112000,
273                 .p2_slow = 14, .p2_fast = 14 },
274         .find_pll = intel_find_best_PLL,
275 };
276
277 /* Ironlake / Sandybridge
278  *
279  * We calculate clock using (register_value + 2) for N/M1/M2, so here
280  * the range value for them is (actual_value - 2).
281  */
282 static const intel_limit_t intel_limits_ironlake_dac = {
283         .dot = { .min = 25000, .max = 350000 },
284         .vco = { .min = 1760000, .max = 3510000 },
285         .n = { .min = 1, .max = 5 },
286         .m = { .min = 79, .max = 127 },
287         .m1 = { .min = 12, .max = 22 },
288         .m2 = { .min = 5, .max = 9 },
289         .p = { .min = 5, .max = 80 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 225000,
292                 .p2_slow = 10, .p2_fast = 5 },
293         .find_pll = intel_g4x_find_best_PLL,
294 };
295
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297         .dot = { .min = 25000, .max = 350000 },
298         .vco = { .min = 1760000, .max = 3510000 },
299         .n = { .min = 1, .max = 3 },
300         .m = { .min = 79, .max = 118 },
301         .m1 = { .min = 12, .max = 22 },
302         .m2 = { .min = 5, .max = 9 },
303         .p = { .min = 28, .max = 112 },
304         .p1 = { .min = 2, .max = 8 },
305         .p2 = { .dot_limit = 225000,
306                 .p2_slow = 14, .p2_fast = 14 },
307         .find_pll = intel_g4x_find_best_PLL,
308 };
309
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311         .dot = { .min = 25000, .max = 350000 },
312         .vco = { .min = 1760000, .max = 3510000 },
313         .n = { .min = 1, .max = 3 },
314         .m = { .min = 79, .max = 127 },
315         .m1 = { .min = 12, .max = 22 },
316         .m2 = { .min = 5, .max = 9 },
317         .p = { .min = 14, .max = 56 },
318         .p1 = { .min = 2, .max = 8 },
319         .p2 = { .dot_limit = 225000,
320                 .p2_slow = 7, .p2_fast = 7 },
321         .find_pll = intel_g4x_find_best_PLL,
322 };
323
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326         .dot = { .min = 25000, .max = 350000 },
327         .vco = { .min = 1760000, .max = 3510000 },
328         .n = { .min = 1, .max = 2 },
329         .m = { .min = 79, .max = 126 },
330         .m1 = { .min = 12, .max = 22 },
331         .m2 = { .min = 5, .max = 9 },
332         .p = { .min = 28, .max = 112 },
333         .p1 = { .min = 2, .max = 8 },
334         .p2 = { .dot_limit = 225000,
335                 .p2_slow = 14, .p2_fast = 14 },
336         .find_pll = intel_g4x_find_best_PLL,
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340         .dot = { .min = 25000, .max = 350000 },
341         .vco = { .min = 1760000, .max = 3510000 },
342         .n = { .min = 1, .max = 3 },
343         .m = { .min = 79, .max = 126 },
344         .m1 = { .min = 12, .max = 22 },
345         .m2 = { .min = 5, .max = 9 },
346         .p = { .min = 14, .max = 42 },
347         .p1 = { .min = 2, .max = 6 },
348         .p2 = { .dot_limit = 225000,
349                 .p2_slow = 7, .p2_fast = 7 },
350         .find_pll = intel_g4x_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000},
356         .n = { .min = 1, .max = 2 },
357         .m = { .min = 81, .max = 90 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 10, .max = 20 },
361         .p1 = { .min = 1, .max = 2},
362         .p2 = { .dot_limit = 0,
363                 .p2_slow = 10, .p2_fast = 10 },
364         .find_pll = intel_find_pll_ironlake_dp,
365 };
366
367 static const intel_limit_t intel_limits_vlv_dac = {
368         .dot = { .min = 25000, .max = 270000 },
369         .vco = { .min = 4000000, .max = 6000000 },
370         .n = { .min = 1, .max = 7 },
371         .m = { .min = 22, .max = 450 }, /* guess */
372         .m1 = { .min = 2, .max = 3 },
373         .m2 = { .min = 11, .max = 156 },
374         .p = { .min = 10, .max = 30 },
375         .p1 = { .min = 2, .max = 3 },
376         .p2 = { .dot_limit = 270000,
377                 .p2_slow = 2, .p2_fast = 20 },
378         .find_pll = intel_vlv_find_best_pll,
379 };
380
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382         .dot = { .min = 20000, .max = 165000 },
383         .vco = { .min = 5994000, .max = 4000000 },
384         .n = { .min = 1, .max = 7 },
385         .m = { .min = 60, .max = 300 }, /* guess */
386         .m1 = { .min = 2, .max = 3 },
387         .m2 = { .min = 11, .max = 156 },
388         .p = { .min = 10, .max = 30 },
389         .p1 = { .min = 2, .max = 3 },
390         .p2 = { .dot_limit = 270000,
391                 .p2_slow = 2, .p2_fast = 20 },
392         .find_pll = intel_vlv_find_best_pll,
393 };
394
395 static const intel_limit_t intel_limits_vlv_dp = {
396         .dot = { .min = 162000, .max = 270000 },
397         .vco = { .min = 5994000, .max = 4000000 },
398         .n = { .min = 1, .max = 7 },
399         .m = { .min = 60, .max = 300 }, /* guess */
400         .m1 = { .min = 2, .max = 3 },
401         .m2 = { .min = 11, .max = 156 },
402         .p = { .min = 10, .max = 30 },
403         .p1 = { .min = 2, .max = 3 },
404         .p2 = { .dot_limit = 270000,
405                 .p2_slow = 2, .p2_fast = 20 },
406         .find_pll = intel_vlv_find_best_pll,
407 };
408
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410 {
411         unsigned long flags;
412         u32 val = 0;
413
414         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416                 DRM_ERROR("DPIO idle wait timed out\n");
417                 goto out_unlock;
418         }
419
420         I915_WRITE(DPIO_REG, reg);
421         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422                    DPIO_BYTE);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO read wait timed out\n");
425                 goto out_unlock;
426         }
427         val = I915_READ(DPIO_DATA);
428
429 out_unlock:
430         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431         return val;
432 }
433
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435                              u32 val)
436 {
437         unsigned long flags;
438
439         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441                 DRM_ERROR("DPIO idle wait timed out\n");
442                 goto out_unlock;
443         }
444
445         I915_WRITE(DPIO_DATA, val);
446         I915_WRITE(DPIO_REG, reg);
447         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448                    DPIO_BYTE);
449         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450                 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458         struct drm_i915_private *dev_priv = dev->dev_private;
459
460         /* Reset the DPIO config */
461         I915_WRITE(DPIO_CTL, 0);
462         POSTING_READ(DPIO_CTL);
463         I915_WRITE(DPIO_CTL, 1);
464         POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470         return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474         {
475                 .callback = intel_dual_link_lvds_callback,
476                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477                 .matches = {
478                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480                 },
481         },
482         { }     /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486                               unsigned int reg)
487 {
488         unsigned int val;
489
490         /* use the module option value if specified */
491         if (i915_lvds_channel_mode > 0)
492                 return i915_lvds_channel_mode == 2;
493
494         if (dmi_check_system(intel_dual_link_lvds))
495                 return true;
496
497         if (dev_priv->lvds_val)
498                 val = dev_priv->lvds_val;
499         else {
500                 /* BIOS should set the proper LVDS register value at boot, but
501                  * in reality, it doesn't set the value when the lid is closed;
502                  * we need to check "the value to be set" in VBT when LVDS
503                  * register is uninitialized.
504                  */
505                 val = I915_READ(reg);
506                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507                         val = dev_priv->bios_lvds_val;
508                 dev_priv->lvds_val = val;
509         }
510         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514                                                 int refclk)
515 {
516         struct drm_device *dev = crtc->dev;
517         struct drm_i915_private *dev_priv = dev->dev_private;
518         const intel_limit_t *limit;
519
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522                         /* LVDS dual channel */
523                         if (refclk == 100000)
524                                 limit = &intel_limits_ironlake_dual_lvds_100m;
525                         else
526                                 limit = &intel_limits_ironlake_dual_lvds;
527                 } else {
528                         if (refclk == 100000)
529                                 limit = &intel_limits_ironlake_single_lvds_100m;
530                         else
531                                 limit = &intel_limits_ironlake_single_lvds;
532                 }
533         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534                         HAS_eDP)
535                 limit = &intel_limits_ironlake_display_port;
536         else
537                 limit = &intel_limits_ironlake_dac;
538
539         return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544         struct drm_device *dev = crtc->dev;
545         struct drm_i915_private *dev_priv = dev->dev_private;
546         const intel_limit_t *limit;
547
548         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549                 if (is_dual_link_lvds(dev_priv, LVDS))
550                         /* LVDS with dual channel */
551                         limit = &intel_limits_g4x_dual_channel_lvds;
552                 else
553                         /* LVDS with dual channel */
554                         limit = &intel_limits_g4x_single_channel_lvds;
555         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557                 limit = &intel_limits_g4x_hdmi;
558         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559                 limit = &intel_limits_g4x_sdvo;
560         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561                 limit = &intel_limits_g4x_display_port;
562         } else /* The option is for other outputs */
563                 limit = &intel_limits_i9xx_sdvo;
564
565         return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570         struct drm_device *dev = crtc->dev;
571         const intel_limit_t *limit;
572
573         if (HAS_PCH_SPLIT(dev))
574                 limit = intel_ironlake_limit(crtc, refclk);
575         else if (IS_G4X(dev)) {
576                 limit = intel_g4x_limit(crtc);
577         } else if (IS_PINEVIEW(dev)) {
578                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579                         limit = &intel_limits_pineview_lvds;
580                 else
581                         limit = &intel_limits_pineview_sdvo;
582         } else if (IS_VALLEYVIEW(dev)) {
583                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584                         limit = &intel_limits_vlv_dac;
585                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586                         limit = &intel_limits_vlv_hdmi;
587                 else
588                         limit = &intel_limits_vlv_dp;
589         } else if (!IS_GEN2(dev)) {
590                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591                         limit = &intel_limits_i9xx_lvds;
592                 else
593                         limit = &intel_limits_i9xx_sdvo;
594         } else {
595                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596                         limit = &intel_limits_i8xx_lvds;
597                 else
598                         limit = &intel_limits_i8xx_dvo;
599         }
600         return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606         clock->m = clock->m2 + 2;
607         clock->p = clock->p1 * clock->p2;
608         clock->vco = refclk * clock->m / clock->n;
609         clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614         if (IS_PINEVIEW(dev)) {
615                 pineview_clock(refclk, clock);
616                 return;
617         }
618         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619         clock->p = clock->p1 * clock->p2;
620         clock->vco = refclk * clock->m / (clock->n + 2);
621         clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625  * Returns whether any output on the specified pipe is of the specified type
626  */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629         struct drm_device *dev = crtc->dev;
630         struct intel_encoder *encoder;
631
632         for_each_encoder_on_crtc(dev, crtc, encoder)
633                 if (encoder->type == type)
634                         return true;
635
636         return false;
637 }
638
639 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641  * Returns whether the given set of divisors are valid for a given refclk with
642  * the given connectors.
643  */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646                                const intel_limit_t *limit,
647                                const intel_clock_t *clock)
648 {
649         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
650                 INTELPllInvalid("p1 out of range\n");
651         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
652                 INTELPllInvalid("p out of range\n");
653         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
654                 INTELPllInvalid("m2 out of range\n");
655         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
656                 INTELPllInvalid("m1 out of range\n");
657         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658                 INTELPllInvalid("m1 <= m2\n");
659         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
660                 INTELPllInvalid("m out of range\n");
661         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
662                 INTELPllInvalid("n out of range\n");
663         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664                 INTELPllInvalid("vco out of range\n");
665         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666          * connector, etc., rather than just a single range.
667          */
668         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669                 INTELPllInvalid("dot out of range\n");
670
671         return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676                     int target, int refclk, intel_clock_t *match_clock,
677                     intel_clock_t *best_clock)
678
679 {
680         struct drm_device *dev = crtc->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682         intel_clock_t clock;
683         int err = target;
684
685         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686             (I915_READ(LVDS)) != 0) {
687                 /*
688                  * For LVDS, if the panel is on, just rely on its current
689                  * settings for dual-channel.  We haven't figured out how to
690                  * reliably set up different single/dual channel state, if we
691                  * even can.
692                  */
693                 if (is_dual_link_lvds(dev_priv, LVDS))
694                         clock.p2 = limit->p2.p2_fast;
695                 else
696                         clock.p2 = limit->p2.p2_slow;
697         } else {
698                 if (target < limit->p2.dot_limit)
699                         clock.p2 = limit->p2.p2_slow;
700                 else
701                         clock.p2 = limit->p2.p2_fast;
702         }
703
704         memset(best_clock, 0, sizeof(*best_clock));
705
706         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707              clock.m1++) {
708                 for (clock.m2 = limit->m2.min;
709                      clock.m2 <= limit->m2.max; clock.m2++) {
710                         /* m1 is always 0 in Pineview */
711                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712                                 break;
713                         for (clock.n = limit->n.min;
714                              clock.n <= limit->n.max; clock.n++) {
715                                 for (clock.p1 = limit->p1.min;
716                                         clock.p1 <= limit->p1.max; clock.p1++) {
717                                         int this_err;
718
719                                         intel_clock(dev, refclk, &clock);
720                                         if (!intel_PLL_is_valid(dev, limit,
721                                                                 &clock))
722                                                 continue;
723                                         if (match_clock &&
724                                             clock.p != match_clock->p)
725                                                 continue;
726
727                                         this_err = abs(clock.dot - target);
728                                         if (this_err < err) {
729                                                 *best_clock = clock;
730                                                 err = this_err;
731                                         }
732                                 }
733                         }
734                 }
735         }
736
737         return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                         int target, int refclk, intel_clock_t *match_clock,
743                         intel_clock_t *best_clock)
744 {
745         struct drm_device *dev = crtc->dev;
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         intel_clock_t clock;
748         int max_n;
749         bool found;
750         /* approximately equals target * 0.00585 */
751         int err_most = (target >> 8) + (target >> 9);
752         found = false;
753
754         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755                 int lvds_reg;
756
757                 if (HAS_PCH_SPLIT(dev))
758                         lvds_reg = PCH_LVDS;
759                 else
760                         lvds_reg = LVDS;
761                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762                     LVDS_CLKB_POWER_UP)
763                         clock.p2 = limit->p2.p2_fast;
764                 else
765                         clock.p2 = limit->p2.p2_slow;
766         } else {
767                 if (target < limit->p2.dot_limit)
768                         clock.p2 = limit->p2.p2_slow;
769                 else
770                         clock.p2 = limit->p2.p2_fast;
771         }
772
773         memset(best_clock, 0, sizeof(*best_clock));
774         max_n = limit->n.max;
775         /* based on hardware requirement, prefer smaller n to precision */
776         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777                 /* based on hardware requirement, prefere larger m1,m2 */
778                 for (clock.m1 = limit->m1.max;
779                      clock.m1 >= limit->m1.min; clock.m1--) {
780                         for (clock.m2 = limit->m2.max;
781                              clock.m2 >= limit->m2.min; clock.m2--) {
782                                 for (clock.p1 = limit->p1.max;
783                                      clock.p1 >= limit->p1.min; clock.p1--) {
784                                         int this_err;
785
786                                         intel_clock(dev, refclk, &clock);
787                                         if (!intel_PLL_is_valid(dev, limit,
788                                                                 &clock))
789                                                 continue;
790                                         if (match_clock &&
791                                             clock.p != match_clock->p)
792                                                 continue;
793
794                                         this_err = abs(clock.dot - target);
795                                         if (this_err < err_most) {
796                                                 *best_clock = clock;
797                                                 err_most = this_err;
798                                                 max_n = clock.n;
799                                                 found = true;
800                                         }
801                                 }
802                         }
803                 }
804         }
805         return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810                            int target, int refclk, intel_clock_t *match_clock,
811                            intel_clock_t *best_clock)
812 {
813         struct drm_device *dev = crtc->dev;
814         intel_clock_t clock;
815
816         if (target < 200000) {
817                 clock.n = 1;
818                 clock.p1 = 2;
819                 clock.p2 = 10;
820                 clock.m1 = 12;
821                 clock.m2 = 9;
822         } else {
823                 clock.n = 2;
824                 clock.p1 = 1;
825                 clock.p2 = 10;
826                 clock.m1 = 14;
827                 clock.m2 = 8;
828         }
829         intel_clock(dev, refclk, &clock);
830         memcpy(best_clock, &clock, sizeof(intel_clock_t));
831         return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *match_clock,
838                       intel_clock_t *best_clock)
839 {
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.p1 = 2;
843                 clock.p2 = 10;
844                 clock.n = 2;
845                 clock.m1 = 23;
846                 clock.m2 = 8;
847         } else {
848                 clock.p1 = 1;
849                 clock.p2 = 10;
850                 clock.n = 1;
851                 clock.m1 = 14;
852                 clock.m2 = 2;
853         }
854         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855         clock.p = (clock.p1 * clock.p2);
856         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857         clock.vco = 0;
858         memcpy(best_clock, &clock, sizeof(intel_clock_t));
859         return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863                         int target, int refclk, intel_clock_t *match_clock,
864                         intel_clock_t *best_clock)
865 {
866         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867         u32 m, n, fastclk;
868         u32 updrate, minupdate, fracbits, p;
869         unsigned long bestppm, ppm, absppm;
870         int dotclk, flag;
871
872         flag = 0;
873         dotclk = target * 1000;
874         bestppm = 1000000;
875         ppm = absppm = 0;
876         fastclk = dotclk / (2*100);
877         updrate = 0;
878         minupdate = 19200;
879         fracbits = 1;
880         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881         bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883         /* based on hardware requirement, prefer smaller n to precision */
884         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885                 updrate = refclk / n;
886                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888                                 if (p2 > 10)
889                                         p2 = p2 - 1;
890                                 p = p1 * p2;
891                                 /* based on hardware requirement, prefer bigger m1,m2 values */
892                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893                                         m2 = (((2*(fastclk * p * n / m1 )) +
894                                                refclk) / (2*refclk));
895                                         m = m1 * m2;
896                                         vco = updrate * m;
897                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
898                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899                                                 absppm = (ppm > 0) ? ppm : (-ppm);
900                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901                                                         bestppm = 0;
902                                                         flag = 1;
903                                                 }
904                                                 if (absppm < bestppm - 10) {
905                                                         bestppm = absppm;
906                                                         flag = 1;
907                                                 }
908                                                 if (flag) {
909                                                         bestn = n;
910                                                         bestm1 = m1;
911                                                         bestm2 = m2;
912                                                         bestp1 = p1;
913                                                         bestp2 = p2;
914                                                         flag = 0;
915                                                 }
916                                         }
917                                 }
918                         }
919                 }
920         }
921         best_clock->n = bestn;
922         best_clock->m1 = bestm1;
923         best_clock->m2 = bestm2;
924         best_clock->p1 = bestp1;
925         best_clock->p2 = bestp2;
926
927         return true;
928 }
929
930 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931 {
932         struct drm_i915_private *dev_priv = dev->dev_private;
933         u32 frame, frame_reg = PIPEFRAME(pipe);
934
935         frame = I915_READ(frame_reg);
936
937         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938                 DRM_DEBUG_KMS("vblank wait timed out\n");
939 }
940
941 /**
942  * intel_wait_for_vblank - wait for vblank on a given pipe
943  * @dev: drm device
944  * @pipe: pipe to wait for
945  *
946  * Wait for vblank to occur on a given pipe.  Needed for various bits of
947  * mode setting code.
948  */
949 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         int pipestat_reg = PIPESTAT(pipe);
953
954         if (INTEL_INFO(dev)->gen >= 5) {
955                 ironlake_wait_for_vblank(dev, pipe);
956                 return;
957         }
958
959         /* Clear existing vblank status. Note this will clear any other
960          * sticky status fields as well.
961          *
962          * This races with i915_driver_irq_handler() with the result
963          * that either function could miss a vblank event.  Here it is not
964          * fatal, as we will either wait upon the next vblank interrupt or
965          * timeout.  Generally speaking intel_wait_for_vblank() is only
966          * called during modeset at which time the GPU should be idle and
967          * should *not* be performing page flips and thus not waiting on
968          * vblanks...
969          * Currently, the result of us stealing a vblank from the irq
970          * handler is that a single frame will be skipped during swapbuffers.
971          */
972         I915_WRITE(pipestat_reg,
973                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
975         /* Wait for vblank interrupt bit to set */
976         if (wait_for(I915_READ(pipestat_reg) &
977                      PIPE_VBLANK_INTERRUPT_STATUS,
978                      50))
979                 DRM_DEBUG_KMS("vblank wait timed out\n");
980 }
981
982 /*
983  * intel_wait_for_pipe_off - wait for pipe to turn off
984  * @dev: drm device
985  * @pipe: pipe to wait for
986  *
987  * After disabling a pipe, we can't wait for vblank in the usual way,
988  * spinning on the vblank interrupt status bit, since we won't actually
989  * see an interrupt when the pipe is disabled.
990  *
991  * On Gen4 and above:
992  *   wait for the pipe register state bit to turn off
993  *
994  * Otherwise:
995  *   wait for the display line value to settle (it usually
996  *   ends up stopping at the start of the next frame).
997  *
998  */
999 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1000 {
1001         struct drm_i915_private *dev_priv = dev->dev_private;
1002
1003         if (INTEL_INFO(dev)->gen >= 4) {
1004                 int reg = PIPECONF(pipe);
1005
1006                 /* Wait for the Pipe State to go off */
1007                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008                              100))
1009                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1010         } else {
1011                 u32 last_line, line_mask;
1012                 int reg = PIPEDSL(pipe);
1013                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
1015                 if (IS_GEN2(dev))
1016                         line_mask = DSL_LINEMASK_GEN2;
1017                 else
1018                         line_mask = DSL_LINEMASK_GEN3;
1019
1020                 /* Wait for the display line to settle */
1021                 do {
1022                         last_line = I915_READ(reg) & line_mask;
1023                         mdelay(5);
1024                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1025                          time_after(timeout, jiffies));
1026                 if (time_after(jiffies, timeout))
1027                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1028         }
1029 }
1030
1031 static const char *state_string(bool enabled)
1032 {
1033         return enabled ? "on" : "off";
1034 }
1035
1036 /* Only for pre-ILK configs */
1037 static void assert_pll(struct drm_i915_private *dev_priv,
1038                        enum pipe pipe, bool state)
1039 {
1040         int reg;
1041         u32 val;
1042         bool cur_state;
1043
1044         reg = DPLL(pipe);
1045         val = I915_READ(reg);
1046         cur_state = !!(val & DPLL_VCO_ENABLE);
1047         WARN(cur_state != state,
1048              "PLL state assertion failure (expected %s, current %s)\n",
1049              state_string(state), state_string(cur_state));
1050 }
1051 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
1054 /* For ILK+ */
1055 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1056                            struct intel_pch_pll *pll,
1057                            struct intel_crtc *crtc,
1058                            bool state)
1059 {
1060         u32 val;
1061         bool cur_state;
1062
1063         if (HAS_PCH_LPT(dev_priv->dev)) {
1064                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065                 return;
1066         }
1067
1068         if (WARN (!pll,
1069                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1070                 return;
1071
1072         val = I915_READ(pll->pll_reg);
1073         cur_state = !!(val & DPLL_VCO_ENABLE);
1074         WARN(cur_state != state,
1075              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076              pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078         /* Make sure the selected PLL is correctly attached to the transcoder */
1079         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1080                 u32 pch_dpll;
1081
1082                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1083                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1086                           cur_state, crtc->pipe, pch_dpll)) {
1087                         cur_state = !!(val >> (4*crtc->pipe + 3));
1088                         WARN(cur_state != state,
1089                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1090                              pll->pll_reg == _PCH_DPLL_B,
1091                              state_string(state),
1092                              crtc->pipe,
1093                              val);
1094                 }
1095         }
1096 }
1097 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1099
1100 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101                           enum pipe pipe, bool state)
1102 {
1103         int reg;
1104         u32 val;
1105         bool cur_state;
1106
1107         if (IS_HASWELL(dev_priv->dev)) {
1108                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109                 reg = DDI_FUNC_CTL(pipe);
1110                 val = I915_READ(reg);
1111                 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112         } else {
1113                 reg = FDI_TX_CTL(pipe);
1114                 val = I915_READ(reg);
1115                 cur_state = !!(val & FDI_TX_ENABLE);
1116         }
1117         WARN(cur_state != state,
1118              "FDI TX state assertion failure (expected %s, current %s)\n",
1119              state_string(state), state_string(cur_state));
1120 }
1121 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125                           enum pipe pipe, bool state)
1126 {
1127         int reg;
1128         u32 val;
1129         bool cur_state;
1130
1131         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133                         return;
1134         } else {
1135                 reg = FDI_RX_CTL(pipe);
1136                 val = I915_READ(reg);
1137                 cur_state = !!(val & FDI_RX_ENABLE);
1138         }
1139         WARN(cur_state != state,
1140              "FDI RX state assertion failure (expected %s, current %s)\n",
1141              state_string(state), state_string(cur_state));
1142 }
1143 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147                                       enum pipe pipe)
1148 {
1149         int reg;
1150         u32 val;
1151
1152         /* ILK FDI PLL is always enabled */
1153         if (dev_priv->info->gen == 5)
1154                 return;
1155
1156         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157         if (IS_HASWELL(dev_priv->dev))
1158                 return;
1159
1160         reg = FDI_TX_CTL(pipe);
1161         val = I915_READ(reg);
1162         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163 }
1164
1165 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166                                       enum pipe pipe)
1167 {
1168         int reg;
1169         u32 val;
1170
1171         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173                 return;
1174         }
1175         reg = FDI_RX_CTL(pipe);
1176         val = I915_READ(reg);
1177         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181                                   enum pipe pipe)
1182 {
1183         int pp_reg, lvds_reg;
1184         u32 val;
1185         enum pipe panel_pipe = PIPE_A;
1186         bool locked = true;
1187
1188         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189                 pp_reg = PCH_PP_CONTROL;
1190                 lvds_reg = PCH_LVDS;
1191         } else {
1192                 pp_reg = PP_CONTROL;
1193                 lvds_reg = LVDS;
1194         }
1195
1196         val = I915_READ(pp_reg);
1197         if (!(val & PANEL_POWER_ON) ||
1198             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199                 locked = false;
1200
1201         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202                 panel_pipe = PIPE_B;
1203
1204         WARN(panel_pipe == pipe && locked,
1205              "panel assertion failure, pipe %c regs locked\n",
1206              pipe_name(pipe));
1207 }
1208
1209 void assert_pipe(struct drm_i915_private *dev_priv,
1210                  enum pipe pipe, bool state)
1211 {
1212         int reg;
1213         u32 val;
1214         bool cur_state;
1215
1216         /* if we need the pipe A quirk it must be always on */
1217         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218                 state = true;
1219
1220         reg = PIPECONF(pipe);
1221         val = I915_READ(reg);
1222         cur_state = !!(val & PIPECONF_ENABLE);
1223         WARN(cur_state != state,
1224              "pipe %c assertion failure (expected %s, current %s)\n",
1225              pipe_name(pipe), state_string(state), state_string(cur_state));
1226 }
1227
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229                          enum plane plane, bool state)
1230 {
1231         int reg;
1232         u32 val;
1233         bool cur_state;
1234
1235         reg = DSPCNTR(plane);
1236         val = I915_READ(reg);
1237         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238         WARN(cur_state != state,
1239              "plane %c assertion failure (expected %s, current %s)\n",
1240              plane_name(plane), state_string(state), state_string(cur_state));
1241 }
1242
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247                                    enum pipe pipe)
1248 {
1249         int reg, i;
1250         u32 val;
1251         int cur_pipe;
1252
1253         /* Planes are fixed to pipes on ILK+ */
1254         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255                 reg = DSPCNTR(pipe);
1256                 val = I915_READ(reg);
1257                 WARN((val & DISPLAY_PLANE_ENABLE),
1258                      "plane %c assertion failure, should be disabled but not\n",
1259                      plane_name(pipe));
1260                 return;
1261         }
1262
1263         /* Need to check both planes against the pipe */
1264         for (i = 0; i < 2; i++) {
1265                 reg = DSPCNTR(i);
1266                 val = I915_READ(reg);
1267                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268                         DISPPLANE_SEL_PIPE_SHIFT;
1269                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271                      plane_name(i), pipe_name(pipe));
1272         }
1273 }
1274
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276 {
1277         u32 val;
1278         bool enabled;
1279
1280         if (HAS_PCH_LPT(dev_priv->dev)) {
1281                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282                 return;
1283         }
1284
1285         val = I915_READ(PCH_DREF_CONTROL);
1286         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287                             DREF_SUPERSPREAD_SOURCE_MASK));
1288         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289 }
1290
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292                                        enum pipe pipe)
1293 {
1294         int reg;
1295         u32 val;
1296         bool enabled;
1297
1298         reg = TRANSCONF(pipe);
1299         val = I915_READ(reg);
1300         enabled = !!(val & TRANS_ENABLE);
1301         WARN(enabled,
1302              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303              pipe_name(pipe));
1304 }
1305
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307                             enum pipe pipe, u32 port_sel, u32 val)
1308 {
1309         if ((val & DP_PORT_EN) == 0)
1310                 return false;
1311
1312         if (HAS_PCH_CPT(dev_priv->dev)) {
1313                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316                         return false;
1317         } else {
1318                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319                         return false;
1320         }
1321         return true;
1322 }
1323
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325                               enum pipe pipe, u32 val)
1326 {
1327         if ((val & PORT_ENABLE) == 0)
1328                 return false;
1329
1330         if (HAS_PCH_CPT(dev_priv->dev)) {
1331                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332                         return false;
1333         } else {
1334                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335                         return false;
1336         }
1337         return true;
1338 }
1339
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341                               enum pipe pipe, u32 val)
1342 {
1343         if ((val & LVDS_PORT_EN) == 0)
1344                 return false;
1345
1346         if (HAS_PCH_CPT(dev_priv->dev)) {
1347                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348                         return false;
1349         } else {
1350                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351                         return false;
1352         }
1353         return true;
1354 }
1355
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357                               enum pipe pipe, u32 val)
1358 {
1359         if ((val & ADPA_DAC_ENABLE) == 0)
1360                 return false;
1361         if (HAS_PCH_CPT(dev_priv->dev)) {
1362                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363                         return false;
1364         } else {
1365                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366                         return false;
1367         }
1368         return true;
1369 }
1370
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372                                    enum pipe pipe, int reg, u32 port_sel)
1373 {
1374         u32 val = I915_READ(reg);
1375         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377              reg, pipe_name(pipe));
1378
1379         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1380              "IBX PCH dp port still using transcoder B\n");
1381 }
1382
1383 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1384                                      enum pipe pipe, int reg)
1385 {
1386         u32 val = I915_READ(reg);
1387         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1388              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1389              reg, pipe_name(pipe));
1390
1391         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1392              "IBX PCH hdmi port still using transcoder B\n");
1393 }
1394
1395 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1396                                       enum pipe pipe)
1397 {
1398         int reg;
1399         u32 val;
1400
1401         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1402         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1403         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1404
1405         reg = PCH_ADPA;
1406         val = I915_READ(reg);
1407         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1408              "PCH VGA enabled on transcoder %c, should be disabled\n",
1409              pipe_name(pipe));
1410
1411         reg = PCH_LVDS;
1412         val = I915_READ(reg);
1413         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1414              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1415              pipe_name(pipe));
1416
1417         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1418         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1419         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1420 }
1421
1422 /**
1423  * intel_enable_pll - enable a PLL
1424  * @dev_priv: i915 private structure
1425  * @pipe: pipe PLL to enable
1426  *
1427  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1428  * make sure the PLL reg is writable first though, since the panel write
1429  * protect mechanism may be enabled.
1430  *
1431  * Note!  This is for pre-ILK only.
1432  *
1433  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1434  */
1435 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1436 {
1437         int reg;
1438         u32 val;
1439
1440         /* No really, not for ILK+ */
1441         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1442
1443         /* PLL is protected by panel, make sure we can write it */
1444         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1445                 assert_panel_unlocked(dev_priv, pipe);
1446
1447         reg = DPLL(pipe);
1448         val = I915_READ(reg);
1449         val |= DPLL_VCO_ENABLE;
1450
1451         /* We do this three times for luck */
1452         I915_WRITE(reg, val);
1453         POSTING_READ(reg);
1454         udelay(150); /* wait for warmup */
1455         I915_WRITE(reg, val);
1456         POSTING_READ(reg);
1457         udelay(150); /* wait for warmup */
1458         I915_WRITE(reg, val);
1459         POSTING_READ(reg);
1460         udelay(150); /* wait for warmup */
1461 }
1462
1463 /**
1464  * intel_disable_pll - disable a PLL
1465  * @dev_priv: i915 private structure
1466  * @pipe: pipe PLL to disable
1467  *
1468  * Disable the PLL for @pipe, making sure the pipe is off first.
1469  *
1470  * Note!  This is for pre-ILK only.
1471  */
1472 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1473 {
1474         int reg;
1475         u32 val;
1476
1477         /* Don't disable pipe A or pipe A PLLs if needed */
1478         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1479                 return;
1480
1481         /* Make sure the pipe isn't still relying on us */
1482         assert_pipe_disabled(dev_priv, pipe);
1483
1484         reg = DPLL(pipe);
1485         val = I915_READ(reg);
1486         val &= ~DPLL_VCO_ENABLE;
1487         I915_WRITE(reg, val);
1488         POSTING_READ(reg);
1489 }
1490
1491 /* SBI access */
1492 static void
1493 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1494 {
1495         unsigned long flags;
1496
1497         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1498         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1499                                 100)) {
1500                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1501                 goto out_unlock;
1502         }
1503
1504         I915_WRITE(SBI_ADDR,
1505                         (reg << 16));
1506         I915_WRITE(SBI_DATA,
1507                         value);
1508         I915_WRITE(SBI_CTL_STAT,
1509                         SBI_BUSY |
1510                         SBI_CTL_OP_CRWR);
1511
1512         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1513                                 100)) {
1514                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1515                 goto out_unlock;
1516         }
1517
1518 out_unlock:
1519         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1520 }
1521
1522 static u32
1523 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1524 {
1525         unsigned long flags;
1526         u32 value = 0;
1527
1528         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1529         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1530                                 100)) {
1531                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1532                 goto out_unlock;
1533         }
1534
1535         I915_WRITE(SBI_ADDR,
1536                         (reg << 16));
1537         I915_WRITE(SBI_CTL_STAT,
1538                         SBI_BUSY |
1539                         SBI_CTL_OP_CRRD);
1540
1541         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1542                                 100)) {
1543                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1544                 goto out_unlock;
1545         }
1546
1547         value = I915_READ(SBI_DATA);
1548
1549 out_unlock:
1550         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1551         return value;
1552 }
1553
1554 /**
1555  * intel_enable_pch_pll - enable PCH PLL
1556  * @dev_priv: i915 private structure
1557  * @pipe: pipe PLL to enable
1558  *
1559  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1560  * drives the transcoder clock.
1561  */
1562 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1563 {
1564         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1565         struct intel_pch_pll *pll;
1566         int reg;
1567         u32 val;
1568
1569         /* PCH PLLs only available on ILK, SNB and IVB */
1570         BUG_ON(dev_priv->info->gen < 5);
1571         pll = intel_crtc->pch_pll;
1572         if (pll == NULL)
1573                 return;
1574
1575         if (WARN_ON(pll->refcount == 0))
1576                 return;
1577
1578         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1579                       pll->pll_reg, pll->active, pll->on,
1580                       intel_crtc->base.base.id);
1581
1582         /* PCH refclock must be enabled first */
1583         assert_pch_refclk_enabled(dev_priv);
1584
1585         if (pll->active++ && pll->on) {
1586                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1587                 return;
1588         }
1589
1590         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1591
1592         reg = pll->pll_reg;
1593         val = I915_READ(reg);
1594         val |= DPLL_VCO_ENABLE;
1595         I915_WRITE(reg, val);
1596         POSTING_READ(reg);
1597         udelay(200);
1598
1599         pll->on = true;
1600 }
1601
1602 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1603 {
1604         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1605         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1606         int reg;
1607         u32 val;
1608
1609         /* PCH only available on ILK+ */
1610         BUG_ON(dev_priv->info->gen < 5);
1611         if (pll == NULL)
1612                return;
1613
1614         if (WARN_ON(pll->refcount == 0))
1615                 return;
1616
1617         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1618                       pll->pll_reg, pll->active, pll->on,
1619                       intel_crtc->base.base.id);
1620
1621         if (WARN_ON(pll->active == 0)) {
1622                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1623                 return;
1624         }
1625
1626         if (--pll->active) {
1627                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1628                 return;
1629         }
1630
1631         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1632
1633         /* Make sure transcoder isn't still depending on us */
1634         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1635
1636         reg = pll->pll_reg;
1637         val = I915_READ(reg);
1638         val &= ~DPLL_VCO_ENABLE;
1639         I915_WRITE(reg, val);
1640         POSTING_READ(reg);
1641         udelay(200);
1642
1643         pll->on = false;
1644 }
1645
1646 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1647                                     enum pipe pipe)
1648 {
1649         int reg;
1650         u32 val, pipeconf_val;
1651         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1652
1653         /* PCH only available on ILK+ */
1654         BUG_ON(dev_priv->info->gen < 5);
1655
1656         /* Make sure PCH DPLL is enabled */
1657         assert_pch_pll_enabled(dev_priv,
1658                                to_intel_crtc(crtc)->pch_pll,
1659                                to_intel_crtc(crtc));
1660
1661         /* FDI must be feeding us bits for PCH ports */
1662         assert_fdi_tx_enabled(dev_priv, pipe);
1663         assert_fdi_rx_enabled(dev_priv, pipe);
1664
1665         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1666                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1667                 return;
1668         }
1669         reg = TRANSCONF(pipe);
1670         val = I915_READ(reg);
1671         pipeconf_val = I915_READ(PIPECONF(pipe));
1672
1673         if (HAS_PCH_IBX(dev_priv->dev)) {
1674                 /*
1675                  * make the BPC in transcoder be consistent with
1676                  * that in pipeconf reg.
1677                  */
1678                 val &= ~PIPE_BPC_MASK;
1679                 val |= pipeconf_val & PIPE_BPC_MASK;
1680         }
1681
1682         val &= ~TRANS_INTERLACE_MASK;
1683         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1684                 if (HAS_PCH_IBX(dev_priv->dev) &&
1685                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1686                         val |= TRANS_LEGACY_INTERLACED_ILK;
1687                 else
1688                         val |= TRANS_INTERLACED;
1689         else
1690                 val |= TRANS_PROGRESSIVE;
1691
1692         I915_WRITE(reg, val | TRANS_ENABLE);
1693         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1694                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1695 }
1696
1697 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1698                                      enum pipe pipe)
1699 {
1700         int reg;
1701         u32 val;
1702
1703         /* FDI relies on the transcoder */
1704         assert_fdi_tx_disabled(dev_priv, pipe);
1705         assert_fdi_rx_disabled(dev_priv, pipe);
1706
1707         /* Ports must be off as well */
1708         assert_pch_ports_disabled(dev_priv, pipe);
1709
1710         reg = TRANSCONF(pipe);
1711         val = I915_READ(reg);
1712         val &= ~TRANS_ENABLE;
1713         I915_WRITE(reg, val);
1714         /* wait for PCH transcoder off, transcoder state */
1715         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1716                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1717 }
1718
1719 /**
1720  * intel_enable_pipe - enable a pipe, asserting requirements
1721  * @dev_priv: i915 private structure
1722  * @pipe: pipe to enable
1723  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1724  *
1725  * Enable @pipe, making sure that various hardware specific requirements
1726  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1727  *
1728  * @pipe should be %PIPE_A or %PIPE_B.
1729  *
1730  * Will wait until the pipe is actually running (i.e. first vblank) before
1731  * returning.
1732  */
1733 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1734                               bool pch_port)
1735 {
1736         int reg;
1737         u32 val;
1738
1739         /*
1740          * A pipe without a PLL won't actually be able to drive bits from
1741          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1742          * need the check.
1743          */
1744         if (!HAS_PCH_SPLIT(dev_priv->dev))
1745                 assert_pll_enabled(dev_priv, pipe);
1746         else {
1747                 if (pch_port) {
1748                         /* if driving the PCH, we need FDI enabled */
1749                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1750                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1751                 }
1752                 /* FIXME: assert CPU port conditions for SNB+ */
1753         }
1754
1755         reg = PIPECONF(pipe);
1756         val = I915_READ(reg);
1757         if (val & PIPECONF_ENABLE)
1758                 return;
1759
1760         I915_WRITE(reg, val | PIPECONF_ENABLE);
1761         intel_wait_for_vblank(dev_priv->dev, pipe);
1762 }
1763
1764 /**
1765  * intel_disable_pipe - disable a pipe, asserting requirements
1766  * @dev_priv: i915 private structure
1767  * @pipe: pipe to disable
1768  *
1769  * Disable @pipe, making sure that various hardware specific requirements
1770  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1771  *
1772  * @pipe should be %PIPE_A or %PIPE_B.
1773  *
1774  * Will wait until the pipe has shut down before returning.
1775  */
1776 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1777                                enum pipe pipe)
1778 {
1779         int reg;
1780         u32 val;
1781
1782         /*
1783          * Make sure planes won't keep trying to pump pixels to us,
1784          * or we might hang the display.
1785          */
1786         assert_planes_disabled(dev_priv, pipe);
1787
1788         /* Don't disable pipe A or pipe A PLLs if needed */
1789         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1790                 return;
1791
1792         reg = PIPECONF(pipe);
1793         val = I915_READ(reg);
1794         if ((val & PIPECONF_ENABLE) == 0)
1795                 return;
1796
1797         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1798         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1799 }
1800
1801 /*
1802  * Plane regs are double buffered, going from enabled->disabled needs a
1803  * trigger in order to latch.  The display address reg provides this.
1804  */
1805 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1806                                       enum plane plane)
1807 {
1808         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1809         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1810 }
1811
1812 /**
1813  * intel_enable_plane - enable a display plane on a given pipe
1814  * @dev_priv: i915 private structure
1815  * @plane: plane to enable
1816  * @pipe: pipe being fed
1817  *
1818  * Enable @plane on @pipe, making sure that @pipe is running first.
1819  */
1820 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1821                                enum plane plane, enum pipe pipe)
1822 {
1823         int reg;
1824         u32 val;
1825
1826         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1827         assert_pipe_enabled(dev_priv, pipe);
1828
1829         reg = DSPCNTR(plane);
1830         val = I915_READ(reg);
1831         if (val & DISPLAY_PLANE_ENABLE)
1832                 return;
1833
1834         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1835         intel_flush_display_plane(dev_priv, plane);
1836         intel_wait_for_vblank(dev_priv->dev, pipe);
1837 }
1838
1839 /**
1840  * intel_disable_plane - disable a display plane
1841  * @dev_priv: i915 private structure
1842  * @plane: plane to disable
1843  * @pipe: pipe consuming the data
1844  *
1845  * Disable @plane; should be an independent operation.
1846  */
1847 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1848                                 enum plane plane, enum pipe pipe)
1849 {
1850         int reg;
1851         u32 val;
1852
1853         reg = DSPCNTR(plane);
1854         val = I915_READ(reg);
1855         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1856                 return;
1857
1858         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1859         intel_flush_display_plane(dev_priv, plane);
1860         intel_wait_for_vblank(dev_priv->dev, pipe);
1861 }
1862
1863 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1864                            enum pipe pipe, int reg, u32 port_sel)
1865 {
1866         u32 val = I915_READ(reg);
1867         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1868                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1869                 I915_WRITE(reg, val & ~DP_PORT_EN);
1870         }
1871 }
1872
1873 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1874                              enum pipe pipe, int reg)
1875 {
1876         u32 val = I915_READ(reg);
1877         if (hdmi_pipe_enabled(dev_priv, pipe, val)) {
1878                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1879                               reg, pipe);
1880                 I915_WRITE(reg, val & ~PORT_ENABLE);
1881         }
1882 }
1883
1884 /* Disable any ports connected to this transcoder */
1885 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1886                                     enum pipe pipe)
1887 {
1888         u32 reg, val;
1889
1890         val = I915_READ(PCH_PP_CONTROL);
1891         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1892
1893         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1894         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1895         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1896
1897         reg = PCH_ADPA;
1898         val = I915_READ(reg);
1899         if (adpa_pipe_enabled(dev_priv, pipe, val))
1900                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1901
1902         reg = PCH_LVDS;
1903         val = I915_READ(reg);
1904         if (lvds_pipe_enabled(dev_priv, pipe, val)) {
1905                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1906                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1907                 POSTING_READ(reg);
1908                 udelay(100);
1909         }
1910
1911         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1912         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1913         disable_pch_hdmi(dev_priv, pipe, HDMID);
1914 }
1915
1916 int
1917 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1918                            struct drm_i915_gem_object *obj,
1919                            struct intel_ring_buffer *pipelined)
1920 {
1921         struct drm_i915_private *dev_priv = dev->dev_private;
1922         u32 alignment;
1923         int ret;
1924
1925         switch (obj->tiling_mode) {
1926         case I915_TILING_NONE:
1927                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1928                         alignment = 128 * 1024;
1929                 else if (INTEL_INFO(dev)->gen >= 4)
1930                         alignment = 4 * 1024;
1931                 else
1932                         alignment = 64 * 1024;
1933                 break;
1934         case I915_TILING_X:
1935                 /* pin() will align the object as required by fence */
1936                 alignment = 0;
1937                 break;
1938         case I915_TILING_Y:
1939                 /* FIXME: Is this true? */
1940                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1941                 return -EINVAL;
1942         default:
1943                 BUG();
1944         }
1945
1946         dev_priv->mm.interruptible = false;
1947         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1948         if (ret)
1949                 goto err_interruptible;
1950
1951         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1952          * fence, whereas 965+ only requires a fence if using
1953          * framebuffer compression.  For simplicity, we always install
1954          * a fence as the cost is not that onerous.
1955          */
1956         ret = i915_gem_object_get_fence(obj);
1957         if (ret)
1958                 goto err_unpin;
1959
1960         i915_gem_object_pin_fence(obj);
1961
1962         dev_priv->mm.interruptible = true;
1963         return 0;
1964
1965 err_unpin:
1966         i915_gem_object_unpin(obj);
1967 err_interruptible:
1968         dev_priv->mm.interruptible = true;
1969         return ret;
1970 }
1971
1972 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1973 {
1974         i915_gem_object_unpin_fence(obj);
1975         i915_gem_object_unpin(obj);
1976 }
1977
1978 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1979  * is assumed to be a power-of-two. */
1980 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1981                                                         unsigned int bpp,
1982                                                         unsigned int pitch)
1983 {
1984         int tile_rows, tiles;
1985
1986         tile_rows = *y / 8;
1987         *y %= 8;
1988         tiles = *x / (512/bpp);
1989         *x %= 512/bpp;
1990
1991         return tile_rows * pitch * 8 + tiles * 4096;
1992 }
1993
1994 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1995                              int x, int y)
1996 {
1997         struct drm_device *dev = crtc->dev;
1998         struct drm_i915_private *dev_priv = dev->dev_private;
1999         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2000         struct intel_framebuffer *intel_fb;
2001         struct drm_i915_gem_object *obj;
2002         int plane = intel_crtc->plane;
2003         unsigned long linear_offset;
2004         u32 dspcntr;
2005         u32 reg;
2006
2007         switch (plane) {
2008         case 0:
2009         case 1:
2010                 break;
2011         default:
2012                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2013                 return -EINVAL;
2014         }
2015
2016         intel_fb = to_intel_framebuffer(fb);
2017         obj = intel_fb->obj;
2018
2019         reg = DSPCNTR(plane);
2020         dspcntr = I915_READ(reg);
2021         /* Mask out pixel format bits in case we change it */
2022         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2023         switch (fb->bits_per_pixel) {
2024         case 8:
2025                 dspcntr |= DISPPLANE_8BPP;
2026                 break;
2027         case 16:
2028                 if (fb->depth == 15)
2029                         dspcntr |= DISPPLANE_15_16BPP;
2030                 else
2031                         dspcntr |= DISPPLANE_16BPP;
2032                 break;
2033         case 24:
2034         case 32:
2035                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2036                 break;
2037         default:
2038                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2039                 return -EINVAL;
2040         }
2041         if (INTEL_INFO(dev)->gen >= 4) {
2042                 if (obj->tiling_mode != I915_TILING_NONE)
2043                         dspcntr |= DISPPLANE_TILED;
2044                 else
2045                         dspcntr &= ~DISPPLANE_TILED;
2046         }
2047
2048         I915_WRITE(reg, dspcntr);
2049
2050         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2051
2052         if (INTEL_INFO(dev)->gen >= 4) {
2053                 intel_crtc->dspaddr_offset =
2054                         gen4_compute_dspaddr_offset_xtiled(&x, &y,
2055                                                            fb->bits_per_pixel / 8,
2056                                                            fb->pitches[0]);
2057                 linear_offset -= intel_crtc->dspaddr_offset;
2058         } else {
2059                 intel_crtc->dspaddr_offset = linear_offset;
2060         }
2061
2062         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2063                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2064         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2065         if (INTEL_INFO(dev)->gen >= 4) {
2066                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2067                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2068                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2069                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2070         } else
2071                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2072         POSTING_READ(reg);
2073
2074         return 0;
2075 }
2076
2077 static int ironlake_update_plane(struct drm_crtc *crtc,
2078                                  struct drm_framebuffer *fb, int x, int y)
2079 {
2080         struct drm_device *dev = crtc->dev;
2081         struct drm_i915_private *dev_priv = dev->dev_private;
2082         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2083         struct intel_framebuffer *intel_fb;
2084         struct drm_i915_gem_object *obj;
2085         int plane = intel_crtc->plane;
2086         unsigned long linear_offset;
2087         u32 dspcntr;
2088         u32 reg;
2089
2090         switch (plane) {
2091         case 0:
2092         case 1:
2093         case 2:
2094                 break;
2095         default:
2096                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2097                 return -EINVAL;
2098         }
2099
2100         intel_fb = to_intel_framebuffer(fb);
2101         obj = intel_fb->obj;
2102
2103         reg = DSPCNTR(plane);
2104         dspcntr = I915_READ(reg);
2105         /* Mask out pixel format bits in case we change it */
2106         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2107         switch (fb->bits_per_pixel) {
2108         case 8:
2109                 dspcntr |= DISPPLANE_8BPP;
2110                 break;
2111         case 16:
2112                 if (fb->depth != 16)
2113                         return -EINVAL;
2114
2115                 dspcntr |= DISPPLANE_16BPP;
2116                 break;
2117         case 24:
2118         case 32:
2119                 if (fb->depth == 24)
2120                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2121                 else if (fb->depth == 30)
2122                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2123                 else
2124                         return -EINVAL;
2125                 break;
2126         default:
2127                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2128                 return -EINVAL;
2129         }
2130
2131         if (obj->tiling_mode != I915_TILING_NONE)
2132                 dspcntr |= DISPPLANE_TILED;
2133         else
2134                 dspcntr &= ~DISPPLANE_TILED;
2135
2136         /* must disable */
2137         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2138
2139         I915_WRITE(reg, dspcntr);
2140
2141         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2142         intel_crtc->dspaddr_offset =
2143                 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2144                                                    fb->bits_per_pixel / 8,
2145                                                    fb->pitches[0]);
2146         linear_offset -= intel_crtc->dspaddr_offset;
2147
2148         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2149                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2150         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2151         I915_MODIFY_DISPBASE(DSPSURF(plane),
2152                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2153         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2154         I915_WRITE(DSPLINOFF(plane), linear_offset);
2155         POSTING_READ(reg);
2156
2157         return 0;
2158 }
2159
2160 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2161 static int
2162 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2163                            int x, int y, enum mode_set_atomic state)
2164 {
2165         struct drm_device *dev = crtc->dev;
2166         struct drm_i915_private *dev_priv = dev->dev_private;
2167
2168         if (dev_priv->display.disable_fbc)
2169                 dev_priv->display.disable_fbc(dev);
2170         intel_increase_pllclock(crtc);
2171
2172         return dev_priv->display.update_plane(crtc, fb, x, y);
2173 }
2174
2175 static int
2176 intel_finish_fb(struct drm_framebuffer *old_fb)
2177 {
2178         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2179         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2180         bool was_interruptible = dev_priv->mm.interruptible;
2181         int ret;
2182
2183         wait_event(dev_priv->pending_flip_queue,
2184                    atomic_read(&dev_priv->mm.wedged) ||
2185                    atomic_read(&obj->pending_flip) == 0);
2186
2187         /* Big Hammer, we also need to ensure that any pending
2188          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2189          * current scanout is retired before unpinning the old
2190          * framebuffer.
2191          *
2192          * This should only fail upon a hung GPU, in which case we
2193          * can safely continue.
2194          */
2195         dev_priv->mm.interruptible = false;
2196         ret = i915_gem_object_finish_gpu(obj);
2197         dev_priv->mm.interruptible = was_interruptible;
2198
2199         return ret;
2200 }
2201
2202 static int
2203 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2204                     struct drm_framebuffer *old_fb)
2205 {
2206         struct drm_device *dev = crtc->dev;
2207         struct drm_i915_private *dev_priv = dev->dev_private;
2208         struct drm_i915_master_private *master_priv;
2209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2210         int ret;
2211
2212         /* no fb bound */
2213         if (!crtc->fb) {
2214                 DRM_ERROR("No FB bound\n");
2215                 return 0;
2216         }
2217
2218         if(intel_crtc->plane > dev_priv->num_pipe) {
2219                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2220                                 intel_crtc->plane,
2221                                 dev_priv->num_pipe);
2222                 return -EINVAL;
2223         }
2224
2225         mutex_lock(&dev->struct_mutex);
2226         ret = intel_pin_and_fence_fb_obj(dev,
2227                                          to_intel_framebuffer(crtc->fb)->obj,
2228                                          NULL);
2229         if (ret != 0) {
2230                 mutex_unlock(&dev->struct_mutex);
2231                 DRM_ERROR("pin & fence failed\n");
2232                 return ret;
2233         }
2234
2235         if (old_fb)
2236                 intel_finish_fb(old_fb);
2237
2238         ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
2239         if (ret) {
2240                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2241                 mutex_unlock(&dev->struct_mutex);
2242                 DRM_ERROR("failed to update base address\n");
2243                 return ret;
2244         }
2245
2246         if (old_fb) {
2247                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2248                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2249         }
2250
2251         intel_update_fbc(dev);
2252         mutex_unlock(&dev->struct_mutex);
2253
2254         if (!dev->primary->master)
2255                 return 0;
2256
2257         master_priv = dev->primary->master->driver_priv;
2258         if (!master_priv->sarea_priv)
2259                 return 0;
2260
2261         if (intel_crtc->pipe) {
2262                 master_priv->sarea_priv->pipeB_x = x;
2263                 master_priv->sarea_priv->pipeB_y = y;
2264         } else {
2265                 master_priv->sarea_priv->pipeA_x = x;
2266                 master_priv->sarea_priv->pipeA_y = y;
2267         }
2268
2269         return 0;
2270 }
2271
2272 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2273 {
2274         struct drm_device *dev = crtc->dev;
2275         struct drm_i915_private *dev_priv = dev->dev_private;
2276         u32 dpa_ctl;
2277
2278         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2279         dpa_ctl = I915_READ(DP_A);
2280         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2281
2282         if (clock < 200000) {
2283                 u32 temp;
2284                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2285                 /* workaround for 160Mhz:
2286                    1) program 0x4600c bits 15:0 = 0x8124
2287                    2) program 0x46010 bit 0 = 1
2288                    3) program 0x46034 bit 24 = 1
2289                    4) program 0x64000 bit 14 = 1
2290                    */
2291                 temp = I915_READ(0x4600c);
2292                 temp &= 0xffff0000;
2293                 I915_WRITE(0x4600c, temp | 0x8124);
2294
2295                 temp = I915_READ(0x46010);
2296                 I915_WRITE(0x46010, temp | 1);
2297
2298                 temp = I915_READ(0x46034);
2299                 I915_WRITE(0x46034, temp | (1 << 24));
2300         } else {
2301                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2302         }
2303         I915_WRITE(DP_A, dpa_ctl);
2304
2305         POSTING_READ(DP_A);
2306         udelay(500);
2307 }
2308
2309 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2310 {
2311         struct drm_device *dev = crtc->dev;
2312         struct drm_i915_private *dev_priv = dev->dev_private;
2313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2314         int pipe = intel_crtc->pipe;
2315         u32 reg, temp;
2316
2317         /* enable normal train */
2318         reg = FDI_TX_CTL(pipe);
2319         temp = I915_READ(reg);
2320         if (IS_IVYBRIDGE(dev)) {
2321                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2322                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2323         } else {
2324                 temp &= ~FDI_LINK_TRAIN_NONE;
2325                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2326         }
2327         I915_WRITE(reg, temp);
2328
2329         reg = FDI_RX_CTL(pipe);
2330         temp = I915_READ(reg);
2331         if (HAS_PCH_CPT(dev)) {
2332                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2333                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2334         } else {
2335                 temp &= ~FDI_LINK_TRAIN_NONE;
2336                 temp |= FDI_LINK_TRAIN_NONE;
2337         }
2338         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2339
2340         /* wait one idle pattern time */
2341         POSTING_READ(reg);
2342         udelay(1000);
2343
2344         /* IVB wants error correction enabled */
2345         if (IS_IVYBRIDGE(dev))
2346                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2347                            FDI_FE_ERRC_ENABLE);
2348 }
2349
2350 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2351 {
2352         struct drm_i915_private *dev_priv = dev->dev_private;
2353         u32 flags = I915_READ(SOUTH_CHICKEN1);
2354
2355         flags |= FDI_PHASE_SYNC_OVR(pipe);
2356         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2357         flags |= FDI_PHASE_SYNC_EN(pipe);
2358         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2359         POSTING_READ(SOUTH_CHICKEN1);
2360 }
2361
2362 /* The FDI link training functions for ILK/Ibexpeak. */
2363 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2364 {
2365         struct drm_device *dev = crtc->dev;
2366         struct drm_i915_private *dev_priv = dev->dev_private;
2367         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2368         int pipe = intel_crtc->pipe;
2369         int plane = intel_crtc->plane;
2370         u32 reg, temp, tries;
2371
2372         /* FDI needs bits from pipe & plane first */
2373         assert_pipe_enabled(dev_priv, pipe);
2374         assert_plane_enabled(dev_priv, plane);
2375
2376         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2377            for train result */
2378         reg = FDI_RX_IMR(pipe);
2379         temp = I915_READ(reg);
2380         temp &= ~FDI_RX_SYMBOL_LOCK;
2381         temp &= ~FDI_RX_BIT_LOCK;
2382         I915_WRITE(reg, temp);
2383         I915_READ(reg);
2384         udelay(150);
2385
2386         /* enable CPU FDI TX and PCH FDI RX */
2387         reg = FDI_TX_CTL(pipe);
2388         temp = I915_READ(reg);
2389         temp &= ~(7 << 19);
2390         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2391         temp &= ~FDI_LINK_TRAIN_NONE;
2392         temp |= FDI_LINK_TRAIN_PATTERN_1;
2393         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2394
2395         reg = FDI_RX_CTL(pipe);
2396         temp = I915_READ(reg);
2397         temp &= ~FDI_LINK_TRAIN_NONE;
2398         temp |= FDI_LINK_TRAIN_PATTERN_1;
2399         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2400
2401         POSTING_READ(reg);
2402         udelay(150);
2403
2404         /* Ironlake workaround, enable clock pointer after FDI enable*/
2405         if (HAS_PCH_IBX(dev)) {
2406                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2407                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2408                            FDI_RX_PHASE_SYNC_POINTER_EN);
2409         }
2410
2411         reg = FDI_RX_IIR(pipe);
2412         for (tries = 0; tries < 5; tries++) {
2413                 temp = I915_READ(reg);
2414                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2415
2416                 if ((temp & FDI_RX_BIT_LOCK)) {
2417                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2418                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2419                         break;
2420                 }
2421         }
2422         if (tries == 5)
2423                 DRM_ERROR("FDI train 1 fail!\n");
2424
2425         /* Train 2 */
2426         reg = FDI_TX_CTL(pipe);
2427         temp = I915_READ(reg);
2428         temp &= ~FDI_LINK_TRAIN_NONE;
2429         temp |= FDI_LINK_TRAIN_PATTERN_2;
2430         I915_WRITE(reg, temp);
2431
2432         reg = FDI_RX_CTL(pipe);
2433         temp = I915_READ(reg);
2434         temp &= ~FDI_LINK_TRAIN_NONE;
2435         temp |= FDI_LINK_TRAIN_PATTERN_2;
2436         I915_WRITE(reg, temp);
2437
2438         POSTING_READ(reg);
2439         udelay(150);
2440
2441         reg = FDI_RX_IIR(pipe);
2442         for (tries = 0; tries < 5; tries++) {
2443                 temp = I915_READ(reg);
2444                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2445
2446                 if (temp & FDI_RX_SYMBOL_LOCK) {
2447                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2448                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2449                         break;
2450                 }
2451         }
2452         if (tries == 5)
2453                 DRM_ERROR("FDI train 2 fail!\n");
2454
2455         DRM_DEBUG_KMS("FDI train done\n");
2456
2457 }
2458
2459 static const int snb_b_fdi_train_param[] = {
2460         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2461         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2462         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2463         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2464 };
2465
2466 /* The FDI link training functions for SNB/Cougarpoint. */
2467 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2468 {
2469         struct drm_device *dev = crtc->dev;
2470         struct drm_i915_private *dev_priv = dev->dev_private;
2471         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2472         int pipe = intel_crtc->pipe;
2473         u32 reg, temp, i, retry;
2474
2475         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2476            for train result */
2477         reg = FDI_RX_IMR(pipe);
2478         temp = I915_READ(reg);
2479         temp &= ~FDI_RX_SYMBOL_LOCK;
2480         temp &= ~FDI_RX_BIT_LOCK;
2481         I915_WRITE(reg, temp);
2482
2483         POSTING_READ(reg);
2484         udelay(150);
2485
2486         /* enable CPU FDI TX and PCH FDI RX */
2487         reg = FDI_TX_CTL(pipe);
2488         temp = I915_READ(reg);
2489         temp &= ~(7 << 19);
2490         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2491         temp &= ~FDI_LINK_TRAIN_NONE;
2492         temp |= FDI_LINK_TRAIN_PATTERN_1;
2493         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2494         /* SNB-B */
2495         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2496         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2497
2498         reg = FDI_RX_CTL(pipe);
2499         temp = I915_READ(reg);
2500         if (HAS_PCH_CPT(dev)) {
2501                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2502                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2503         } else {
2504                 temp &= ~FDI_LINK_TRAIN_NONE;
2505                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2506         }
2507         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2508
2509         POSTING_READ(reg);
2510         udelay(150);
2511
2512         if (HAS_PCH_CPT(dev))
2513                 cpt_phase_pointer_enable(dev, pipe);
2514
2515         for (i = 0; i < 4; i++) {
2516                 reg = FDI_TX_CTL(pipe);
2517                 temp = I915_READ(reg);
2518                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2519                 temp |= snb_b_fdi_train_param[i];
2520                 I915_WRITE(reg, temp);
2521
2522                 POSTING_READ(reg);
2523                 udelay(500);
2524
2525                 for (retry = 0; retry < 5; retry++) {
2526                         reg = FDI_RX_IIR(pipe);
2527                         temp = I915_READ(reg);
2528                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2529                         if (temp & FDI_RX_BIT_LOCK) {
2530                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2531                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2532                                 break;
2533                         }
2534                         udelay(50);
2535                 }
2536                 if (retry < 5)
2537                         break;
2538         }
2539         if (i == 4)
2540                 DRM_ERROR("FDI train 1 fail!\n");
2541
2542         /* Train 2 */
2543         reg = FDI_TX_CTL(pipe);
2544         temp = I915_READ(reg);
2545         temp &= ~FDI_LINK_TRAIN_NONE;
2546         temp |= FDI_LINK_TRAIN_PATTERN_2;
2547         if (IS_GEN6(dev)) {
2548                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2549                 /* SNB-B */
2550                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2551         }
2552         I915_WRITE(reg, temp);
2553
2554         reg = FDI_RX_CTL(pipe);
2555         temp = I915_READ(reg);
2556         if (HAS_PCH_CPT(dev)) {
2557                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2558                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2559         } else {
2560                 temp &= ~FDI_LINK_TRAIN_NONE;
2561                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2562         }
2563         I915_WRITE(reg, temp);
2564
2565         POSTING_READ(reg);
2566         udelay(150);
2567
2568         for (i = 0; i < 4; i++) {
2569                 reg = FDI_TX_CTL(pipe);
2570                 temp = I915_READ(reg);
2571                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2572                 temp |= snb_b_fdi_train_param[i];
2573                 I915_WRITE(reg, temp);
2574
2575                 POSTING_READ(reg);
2576                 udelay(500);
2577
2578                 for (retry = 0; retry < 5; retry++) {
2579                         reg = FDI_RX_IIR(pipe);
2580                         temp = I915_READ(reg);
2581                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2582                         if (temp & FDI_RX_SYMBOL_LOCK) {
2583                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2584                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2585                                 break;
2586                         }
2587                         udelay(50);
2588                 }
2589                 if (retry < 5)
2590                         break;
2591         }
2592         if (i == 4)
2593                 DRM_ERROR("FDI train 2 fail!\n");
2594
2595         DRM_DEBUG_KMS("FDI train done.\n");
2596 }
2597
2598 /* Manual link training for Ivy Bridge A0 parts */
2599 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2600 {
2601         struct drm_device *dev = crtc->dev;
2602         struct drm_i915_private *dev_priv = dev->dev_private;
2603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2604         int pipe = intel_crtc->pipe;
2605         u32 reg, temp, i;
2606
2607         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2608            for train result */
2609         reg = FDI_RX_IMR(pipe);
2610         temp = I915_READ(reg);
2611         temp &= ~FDI_RX_SYMBOL_LOCK;
2612         temp &= ~FDI_RX_BIT_LOCK;
2613         I915_WRITE(reg, temp);
2614
2615         POSTING_READ(reg);
2616         udelay(150);
2617
2618         /* enable CPU FDI TX and PCH FDI RX */
2619         reg = FDI_TX_CTL(pipe);
2620         temp = I915_READ(reg);
2621         temp &= ~(7 << 19);
2622         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2623         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2624         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2625         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2626         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2627         temp |= FDI_COMPOSITE_SYNC;
2628         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2629
2630         reg = FDI_RX_CTL(pipe);
2631         temp = I915_READ(reg);
2632         temp &= ~FDI_LINK_TRAIN_AUTO;
2633         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2634         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2635         temp |= FDI_COMPOSITE_SYNC;
2636         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2637
2638         POSTING_READ(reg);
2639         udelay(150);
2640
2641         if (HAS_PCH_CPT(dev))
2642                 cpt_phase_pointer_enable(dev, pipe);
2643
2644         for (i = 0; i < 4; i++) {
2645                 reg = FDI_TX_CTL(pipe);
2646                 temp = I915_READ(reg);
2647                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2648                 temp |= snb_b_fdi_train_param[i];
2649                 I915_WRITE(reg, temp);
2650
2651                 POSTING_READ(reg);
2652                 udelay(500);
2653
2654                 reg = FDI_RX_IIR(pipe);
2655                 temp = I915_READ(reg);
2656                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2657
2658                 if (temp & FDI_RX_BIT_LOCK ||
2659                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2660                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2661                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2662                         break;
2663                 }
2664         }
2665         if (i == 4)
2666                 DRM_ERROR("FDI train 1 fail!\n");
2667
2668         /* Train 2 */
2669         reg = FDI_TX_CTL(pipe);
2670         temp = I915_READ(reg);
2671         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2672         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2673         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2674         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2675         I915_WRITE(reg, temp);
2676
2677         reg = FDI_RX_CTL(pipe);
2678         temp = I915_READ(reg);
2679         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2680         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2681         I915_WRITE(reg, temp);
2682
2683         POSTING_READ(reg);
2684         udelay(150);
2685
2686         for (i = 0; i < 4; i++) {
2687                 reg = FDI_TX_CTL(pipe);
2688                 temp = I915_READ(reg);
2689                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2690                 temp |= snb_b_fdi_train_param[i];
2691                 I915_WRITE(reg, temp);
2692
2693                 POSTING_READ(reg);
2694                 udelay(500);
2695
2696                 reg = FDI_RX_IIR(pipe);
2697                 temp = I915_READ(reg);
2698                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2699
2700                 if (temp & FDI_RX_SYMBOL_LOCK) {
2701                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2702                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2703                         break;
2704                 }
2705         }
2706         if (i == 4)
2707                 DRM_ERROR("FDI train 2 fail!\n");
2708
2709         DRM_DEBUG_KMS("FDI train done.\n");
2710 }
2711
2712 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2713 {
2714         struct drm_device *dev = intel_crtc->base.dev;
2715         struct drm_i915_private *dev_priv = dev->dev_private;
2716         int pipe = intel_crtc->pipe;
2717         u32 reg, temp;
2718
2719         /* Write the TU size bits so error detection works */
2720         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2721                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2722
2723         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2724         reg = FDI_RX_CTL(pipe);
2725         temp = I915_READ(reg);
2726         temp &= ~((0x7 << 19) | (0x7 << 16));
2727         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2728         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2729         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2730
2731         POSTING_READ(reg);
2732         udelay(200);
2733
2734         /* Switch from Rawclk to PCDclk */
2735         temp = I915_READ(reg);
2736         I915_WRITE(reg, temp | FDI_PCDCLK);
2737
2738         POSTING_READ(reg);
2739         udelay(200);
2740
2741         /* On Haswell, the PLL configuration for ports and pipes is handled
2742          * separately, as part of DDI setup */
2743         if (!IS_HASWELL(dev)) {
2744                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2745                 reg = FDI_TX_CTL(pipe);
2746                 temp = I915_READ(reg);
2747                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2748                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2749
2750                         POSTING_READ(reg);
2751                         udelay(100);
2752                 }
2753         }
2754 }
2755
2756 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2757 {
2758         struct drm_device *dev = intel_crtc->base.dev;
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         int pipe = intel_crtc->pipe;
2761         u32 reg, temp;
2762
2763         /* Switch from PCDclk to Rawclk */
2764         reg = FDI_RX_CTL(pipe);
2765         temp = I915_READ(reg);
2766         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2767
2768         /* Disable CPU FDI TX PLL */
2769         reg = FDI_TX_CTL(pipe);
2770         temp = I915_READ(reg);
2771         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2772
2773         POSTING_READ(reg);
2774         udelay(100);
2775
2776         reg = FDI_RX_CTL(pipe);
2777         temp = I915_READ(reg);
2778         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2779
2780         /* Wait for the clocks to turn off. */
2781         POSTING_READ(reg);
2782         udelay(100);
2783 }
2784
2785 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2786 {
2787         struct drm_i915_private *dev_priv = dev->dev_private;
2788         u32 flags = I915_READ(SOUTH_CHICKEN1);
2789
2790         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2791         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2792         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2793         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2794         POSTING_READ(SOUTH_CHICKEN1);
2795 }
2796 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2797 {
2798         struct drm_device *dev = crtc->dev;
2799         struct drm_i915_private *dev_priv = dev->dev_private;
2800         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2801         int pipe = intel_crtc->pipe;
2802         u32 reg, temp;
2803
2804         /* disable CPU FDI tx and PCH FDI rx */
2805         reg = FDI_TX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2808         POSTING_READ(reg);
2809
2810         reg = FDI_RX_CTL(pipe);
2811         temp = I915_READ(reg);
2812         temp &= ~(0x7 << 16);
2813         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2814         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2815
2816         POSTING_READ(reg);
2817         udelay(100);
2818
2819         /* Ironlake workaround, disable clock pointer after downing FDI */
2820         if (HAS_PCH_IBX(dev)) {
2821                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2822                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2823                            I915_READ(FDI_RX_CHICKEN(pipe) &
2824                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2825         } else if (HAS_PCH_CPT(dev)) {
2826                 cpt_phase_pointer_disable(dev, pipe);
2827         }
2828
2829         /* still set train pattern 1 */
2830         reg = FDI_TX_CTL(pipe);
2831         temp = I915_READ(reg);
2832         temp &= ~FDI_LINK_TRAIN_NONE;
2833         temp |= FDI_LINK_TRAIN_PATTERN_1;
2834         I915_WRITE(reg, temp);
2835
2836         reg = FDI_RX_CTL(pipe);
2837         temp = I915_READ(reg);
2838         if (HAS_PCH_CPT(dev)) {
2839                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2840                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2841         } else {
2842                 temp &= ~FDI_LINK_TRAIN_NONE;
2843                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2844         }
2845         /* BPC in FDI rx is consistent with that in PIPECONF */
2846         temp &= ~(0x07 << 16);
2847         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2848         I915_WRITE(reg, temp);
2849
2850         POSTING_READ(reg);
2851         udelay(100);
2852 }
2853
2854 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2855 {
2856         struct drm_device *dev = crtc->dev;
2857
2858         if (crtc->fb == NULL)
2859                 return;
2860
2861         mutex_lock(&dev->struct_mutex);
2862         intel_finish_fb(crtc->fb);
2863         mutex_unlock(&dev->struct_mutex);
2864 }
2865
2866 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2867 {
2868         struct drm_device *dev = crtc->dev;
2869         struct intel_encoder *intel_encoder;
2870
2871         /*
2872          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2873          * must be driven by its own crtc; no sharing is possible.
2874          */
2875         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2876
2877                 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2878                  * CPU handles all others */
2879                 if (IS_HASWELL(dev)) {
2880                         /* It is still unclear how this will work on PPT, so throw up a warning */
2881                         WARN_ON(!HAS_PCH_LPT(dev));
2882
2883                         if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
2884                                 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2885                                 return true;
2886                         } else {
2887                                 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2888                                               intel_encoder->type);
2889                                 return false;
2890                         }
2891                 }
2892
2893                 switch (intel_encoder->type) {
2894                 case INTEL_OUTPUT_EDP:
2895                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2896                                 return false;
2897                         continue;
2898                 }
2899         }
2900
2901         return true;
2902 }
2903
2904 /* Program iCLKIP clock to the desired frequency */
2905 static void lpt_program_iclkip(struct drm_crtc *crtc)
2906 {
2907         struct drm_device *dev = crtc->dev;
2908         struct drm_i915_private *dev_priv = dev->dev_private;
2909         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2910         u32 temp;
2911
2912         /* It is necessary to ungate the pixclk gate prior to programming
2913          * the divisors, and gate it back when it is done.
2914          */
2915         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2916
2917         /* Disable SSCCTL */
2918         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2919                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2920                                         SBI_SSCCTL_DISABLE);
2921
2922         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2923         if (crtc->mode.clock == 20000) {
2924                 auxdiv = 1;
2925                 divsel = 0x41;
2926                 phaseinc = 0x20;
2927         } else {
2928                 /* The iCLK virtual clock root frequency is in MHz,
2929                  * but the crtc->mode.clock in in KHz. To get the divisors,
2930                  * it is necessary to divide one by another, so we
2931                  * convert the virtual clock precision to KHz here for higher
2932                  * precision.
2933                  */
2934                 u32 iclk_virtual_root_freq = 172800 * 1000;
2935                 u32 iclk_pi_range = 64;
2936                 u32 desired_divisor, msb_divisor_value, pi_value;
2937
2938                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2939                 msb_divisor_value = desired_divisor / iclk_pi_range;
2940                 pi_value = desired_divisor % iclk_pi_range;
2941
2942                 auxdiv = 0;
2943                 divsel = msb_divisor_value - 2;
2944                 phaseinc = pi_value;
2945         }
2946
2947         /* This should not happen with any sane values */
2948         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2949                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2950         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2951                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2952
2953         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2954                         crtc->mode.clock,
2955                         auxdiv,
2956                         divsel,
2957                         phasedir,
2958                         phaseinc);
2959
2960         /* Program SSCDIVINTPHASE6 */
2961         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2962         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2963         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2964         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2965         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2966         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2967         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2968
2969         intel_sbi_write(dev_priv,
2970                         SBI_SSCDIVINTPHASE6,
2971                         temp);
2972
2973         /* Program SSCAUXDIV */
2974         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2975         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2976         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2977         intel_sbi_write(dev_priv,
2978                         SBI_SSCAUXDIV6,
2979                         temp);
2980
2981
2982         /* Enable modulator and associated divider */
2983         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2984         temp &= ~SBI_SSCCTL_DISABLE;
2985         intel_sbi_write(dev_priv,
2986                         SBI_SSCCTL6,
2987                         temp);
2988
2989         /* Wait for initialization time */
2990         udelay(24);
2991
2992         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2993 }
2994
2995 /*
2996  * Enable PCH resources required for PCH ports:
2997  *   - PCH PLLs
2998  *   - FDI training & RX/TX
2999  *   - update transcoder timings
3000  *   - DP transcoding bits
3001  *   - transcoder
3002  */
3003 static void ironlake_pch_enable(struct drm_crtc *crtc)
3004 {
3005         struct drm_device *dev = crtc->dev;
3006         struct drm_i915_private *dev_priv = dev->dev_private;
3007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3008         int pipe = intel_crtc->pipe;
3009         u32 reg, temp;
3010
3011         assert_transcoder_disabled(dev_priv, pipe);
3012
3013         /* For PCH output, training FDI link */
3014         dev_priv->display.fdi_link_train(crtc);
3015
3016         intel_enable_pch_pll(intel_crtc);
3017
3018         if (HAS_PCH_LPT(dev)) {
3019                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3020                 lpt_program_iclkip(crtc);
3021         } else if (HAS_PCH_CPT(dev)) {
3022                 u32 sel;
3023
3024                 temp = I915_READ(PCH_DPLL_SEL);
3025                 switch (pipe) {
3026                 default:
3027                 case 0:
3028                         temp |= TRANSA_DPLL_ENABLE;
3029                         sel = TRANSA_DPLLB_SEL;
3030                         break;
3031                 case 1:
3032                         temp |= TRANSB_DPLL_ENABLE;
3033                         sel = TRANSB_DPLLB_SEL;
3034                         break;
3035                 case 2:
3036                         temp |= TRANSC_DPLL_ENABLE;
3037                         sel = TRANSC_DPLLB_SEL;
3038                         break;
3039                 }
3040                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3041                         temp |= sel;
3042                 else
3043                         temp &= ~sel;
3044                 I915_WRITE(PCH_DPLL_SEL, temp);
3045         }
3046
3047         /* set transcoder timing, panel must allow it */
3048         assert_panel_unlocked(dev_priv, pipe);
3049         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3050         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3051         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3052
3053         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3054         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3055         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3056         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3057
3058         if (!IS_HASWELL(dev))
3059                 intel_fdi_normal_train(crtc);
3060
3061         /* For PCH DP, enable TRANS_DP_CTL */
3062         if (HAS_PCH_CPT(dev) &&
3063             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3064              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3065                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3066                 reg = TRANS_DP_CTL(pipe);
3067                 temp = I915_READ(reg);
3068                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3069                           TRANS_DP_SYNC_MASK |
3070                           TRANS_DP_BPC_MASK);
3071                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3072                          TRANS_DP_ENH_FRAMING);
3073                 temp |= bpc << 9; /* same format but at 11:9 */
3074
3075                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3076                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3077                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3078                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3079
3080                 switch (intel_trans_dp_port_sel(crtc)) {
3081                 case PCH_DP_B:
3082                         temp |= TRANS_DP_PORT_SEL_B;
3083                         break;
3084                 case PCH_DP_C:
3085                         temp |= TRANS_DP_PORT_SEL_C;
3086                         break;
3087                 case PCH_DP_D:
3088                         temp |= TRANS_DP_PORT_SEL_D;
3089                         break;
3090                 default:
3091                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3092                         temp |= TRANS_DP_PORT_SEL_B;
3093                         break;
3094                 }
3095
3096                 I915_WRITE(reg, temp);
3097         }
3098
3099         intel_enable_transcoder(dev_priv, pipe);
3100 }
3101
3102 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3103 {
3104         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3105
3106         if (pll == NULL)
3107                 return;
3108
3109         if (pll->refcount == 0) {
3110                 WARN(1, "bad PCH PLL refcount\n");
3111                 return;
3112         }
3113
3114         --pll->refcount;
3115         intel_crtc->pch_pll = NULL;
3116 }
3117
3118 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3119 {
3120         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3121         struct intel_pch_pll *pll;
3122         int i;
3123
3124         pll = intel_crtc->pch_pll;
3125         if (pll) {
3126                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3127                               intel_crtc->base.base.id, pll->pll_reg);
3128                 goto prepare;
3129         }
3130
3131         if (HAS_PCH_IBX(dev_priv->dev)) {
3132                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3133                 i = intel_crtc->pipe;
3134                 pll = &dev_priv->pch_plls[i];
3135
3136                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3137                               intel_crtc->base.base.id, pll->pll_reg);
3138
3139                 goto found;
3140         }
3141
3142         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3143                 pll = &dev_priv->pch_plls[i];
3144
3145                 /* Only want to check enabled timings first */
3146                 if (pll->refcount == 0)
3147                         continue;
3148
3149                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3150                     fp == I915_READ(pll->fp0_reg)) {
3151                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3152                                       intel_crtc->base.base.id,
3153                                       pll->pll_reg, pll->refcount, pll->active);
3154
3155                         goto found;
3156                 }
3157         }
3158
3159         /* Ok no matching timings, maybe there's a free one? */
3160         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3161                 pll = &dev_priv->pch_plls[i];
3162                 if (pll->refcount == 0) {
3163                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3164                                       intel_crtc->base.base.id, pll->pll_reg);
3165                         goto found;
3166                 }
3167         }
3168
3169         return NULL;
3170
3171 found:
3172         intel_crtc->pch_pll = pll;
3173         pll->refcount++;
3174         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3175 prepare: /* separate function? */
3176         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3177
3178         /* Wait for the clocks to stabilize before rewriting the regs */
3179         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3180         POSTING_READ(pll->pll_reg);
3181         udelay(150);
3182
3183         I915_WRITE(pll->fp0_reg, fp);
3184         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3185         pll->on = false;
3186         return pll;
3187 }
3188
3189 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3190 {
3191         struct drm_i915_private *dev_priv = dev->dev_private;
3192         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3193         u32 temp;
3194
3195         temp = I915_READ(dslreg);
3196         udelay(500);
3197         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3198                 /* Without this, mode sets may fail silently on FDI */
3199                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3200                 udelay(250);
3201                 I915_WRITE(tc2reg, 0);
3202                 if (wait_for(I915_READ(dslreg) != temp, 5))
3203                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3204         }
3205 }
3206
3207 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3208 {
3209         struct drm_device *dev = crtc->dev;
3210         struct drm_i915_private *dev_priv = dev->dev_private;
3211         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3212         struct intel_encoder *encoder;
3213         int pipe = intel_crtc->pipe;
3214         int plane = intel_crtc->plane;
3215         u32 temp;
3216         bool is_pch_port;
3217
3218         WARN_ON(!crtc->enabled);
3219
3220         /* XXX: For compatability with the crtc helper code, call the encoder's
3221          * enable function unconditionally for now. */
3222         if (intel_crtc->active)
3223                 goto encoders;
3224
3225         intel_crtc->active = true;
3226         intel_update_watermarks(dev);
3227
3228         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3229                 temp = I915_READ(PCH_LVDS);
3230                 if ((temp & LVDS_PORT_EN) == 0)
3231                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3232         }
3233
3234         is_pch_port = intel_crtc_driving_pch(crtc);
3235
3236         if (is_pch_port)
3237                 ironlake_fdi_pll_enable(intel_crtc);
3238         else
3239                 ironlake_fdi_disable(crtc);
3240
3241         /* Enable panel fitting for LVDS */
3242         if (dev_priv->pch_pf_size &&
3243             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3244                 /* Force use of hard-coded filter coefficients
3245                  * as some pre-programmed values are broken,
3246                  * e.g. x201.
3247                  */
3248                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3249                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3250                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3251         }
3252
3253         /*
3254          * On ILK+ LUT must be loaded before the pipe is running but with
3255          * clocks enabled
3256          */
3257         intel_crtc_load_lut(crtc);
3258
3259         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3260         intel_enable_plane(dev_priv, plane, pipe);
3261
3262         if (is_pch_port)
3263                 ironlake_pch_enable(crtc);
3264
3265         mutex_lock(&dev->struct_mutex);
3266         intel_update_fbc(dev);
3267         mutex_unlock(&dev->struct_mutex);
3268
3269         intel_crtc_update_cursor(crtc, true);
3270
3271 encoders:
3272         for_each_encoder_on_crtc(dev, crtc, encoder)
3273                 encoder->enable(encoder);
3274
3275         if (HAS_PCH_CPT(dev))
3276                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3277 }
3278
3279 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3280 {
3281         struct drm_device *dev = crtc->dev;
3282         struct drm_i915_private *dev_priv = dev->dev_private;
3283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284         struct intel_encoder *encoder;
3285         int pipe = intel_crtc->pipe;
3286         int plane = intel_crtc->plane;
3287         u32 reg, temp;
3288
3289         /* XXX: For compatability with the crtc helper code, call the encoder's
3290          * disable function unconditionally for now. */
3291         for_each_encoder_on_crtc(dev, crtc, encoder)
3292                 encoder->disable(encoder);
3293
3294         if (!intel_crtc->active)
3295                 return;
3296
3297         intel_crtc_wait_for_pending_flips(crtc);
3298         drm_vblank_off(dev, pipe);
3299         intel_crtc_update_cursor(crtc, false);
3300
3301         intel_disable_plane(dev_priv, plane, pipe);
3302
3303         if (dev_priv->cfb_plane == plane)
3304                 intel_disable_fbc(dev);
3305
3306         intel_disable_pipe(dev_priv, pipe);
3307
3308         /* Disable PF */
3309         I915_WRITE(PF_CTL(pipe), 0);
3310         I915_WRITE(PF_WIN_SZ(pipe), 0);
3311
3312         ironlake_fdi_disable(crtc);
3313
3314         /* This is a horrible layering violation; we should be doing this in
3315          * the connector/encoder ->prepare instead, but we don't always have
3316          * enough information there about the config to know whether it will
3317          * actually be necessary or just cause undesired flicker.
3318          */
3319         intel_disable_pch_ports(dev_priv, pipe);
3320
3321         intel_disable_transcoder(dev_priv, pipe);
3322
3323         if (HAS_PCH_CPT(dev)) {
3324                 /* disable TRANS_DP_CTL */
3325                 reg = TRANS_DP_CTL(pipe);
3326                 temp = I915_READ(reg);
3327                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3328                 temp |= TRANS_DP_PORT_SEL_NONE;
3329                 I915_WRITE(reg, temp);
3330
3331                 /* disable DPLL_SEL */
3332                 temp = I915_READ(PCH_DPLL_SEL);
3333                 switch (pipe) {
3334                 case 0:
3335                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3336                         break;
3337                 case 1:
3338                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3339                         break;
3340                 case 2:
3341                         /* C shares PLL A or B */
3342                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3343                         break;
3344                 default:
3345                         BUG(); /* wtf */
3346                 }
3347                 I915_WRITE(PCH_DPLL_SEL, temp);
3348         }
3349
3350         /* disable PCH DPLL */
3351         intel_disable_pch_pll(intel_crtc);
3352
3353         ironlake_fdi_pll_disable(intel_crtc);
3354
3355         intel_crtc->active = false;
3356         intel_update_watermarks(dev);
3357
3358         mutex_lock(&dev->struct_mutex);
3359         intel_update_fbc(dev);
3360         mutex_unlock(&dev->struct_mutex);
3361 }
3362
3363 static void ironlake_crtc_off(struct drm_crtc *crtc)
3364 {
3365         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3366         intel_put_pch_pll(intel_crtc);
3367 }
3368
3369 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3370 {
3371         if (!enable && intel_crtc->overlay) {
3372                 struct drm_device *dev = intel_crtc->base.dev;
3373                 struct drm_i915_private *dev_priv = dev->dev_private;
3374
3375                 mutex_lock(&dev->struct_mutex);
3376                 dev_priv->mm.interruptible = false;
3377                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3378                 dev_priv->mm.interruptible = true;
3379                 mutex_unlock(&dev->struct_mutex);
3380         }
3381
3382         /* Let userspace switch the overlay on again. In most cases userspace
3383          * has to recompute where to put it anyway.
3384          */
3385 }
3386
3387 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3388 {
3389         struct drm_device *dev = crtc->dev;
3390         struct drm_i915_private *dev_priv = dev->dev_private;
3391         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3392         struct intel_encoder *encoder;
3393         int pipe = intel_crtc->pipe;
3394         int plane = intel_crtc->plane;
3395
3396         WARN_ON(!crtc->enabled);
3397
3398         /* XXX: For compatability with the crtc helper code, call the encoder's
3399          * enable function unconditionally for now. */
3400         if (intel_crtc->active)
3401                 goto encoders;
3402
3403         intel_crtc->active = true;
3404         intel_update_watermarks(dev);
3405
3406         intel_enable_pll(dev_priv, pipe);
3407         intel_enable_pipe(dev_priv, pipe, false);
3408         intel_enable_plane(dev_priv, plane, pipe);
3409
3410         intel_crtc_load_lut(crtc);
3411         intel_update_fbc(dev);
3412
3413         /* Give the overlay scaler a chance to enable if it's on this pipe */
3414         intel_crtc_dpms_overlay(intel_crtc, true);
3415         intel_crtc_update_cursor(crtc, true);
3416
3417 encoders:
3418         for_each_encoder_on_crtc(dev, crtc, encoder)
3419                 encoder->enable(encoder);
3420 }
3421
3422 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3423 {
3424         struct drm_device *dev = crtc->dev;
3425         struct drm_i915_private *dev_priv = dev->dev_private;
3426         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3427         struct intel_encoder *encoder;
3428         int pipe = intel_crtc->pipe;
3429         int plane = intel_crtc->plane;
3430
3431         /* XXX: For compatability with the crtc helper code, call the encoder's
3432          * disable function unconditionally for now. */
3433         for_each_encoder_on_crtc(dev, crtc, encoder)
3434                 encoder->disable(encoder);
3435
3436         if (!intel_crtc->active)
3437                 return;
3438
3439         /* Give the overlay scaler a chance to disable if it's on this pipe */
3440         intel_crtc_wait_for_pending_flips(crtc);
3441         drm_vblank_off(dev, pipe);
3442         intel_crtc_dpms_overlay(intel_crtc, false);
3443         intel_crtc_update_cursor(crtc, false);
3444
3445         if (dev_priv->cfb_plane == plane)
3446                 intel_disable_fbc(dev);
3447
3448         intel_disable_plane(dev_priv, plane, pipe);
3449         intel_disable_pipe(dev_priv, pipe);
3450         intel_disable_pll(dev_priv, pipe);
3451
3452         intel_crtc->active = false;
3453         intel_update_fbc(dev);
3454         intel_update_watermarks(dev);
3455 }
3456
3457 static void i9xx_crtc_off(struct drm_crtc *crtc)
3458 {
3459 }
3460
3461 /**
3462  * Sets the power management mode of the pipe and plane.
3463  */
3464 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3465 {
3466         struct drm_device *dev = crtc->dev;
3467         struct drm_i915_private *dev_priv = dev->dev_private;
3468         struct drm_i915_master_private *master_priv;
3469         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3470         struct intel_encoder *intel_encoder;
3471         int pipe = intel_crtc->pipe;
3472         bool enabled, enable = false;
3473
3474         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3475                 enable |= intel_encoder->connectors_active;
3476
3477         if (enable)
3478                 dev_priv->display.crtc_enable(crtc);
3479         else
3480                 dev_priv->display.crtc_disable(crtc);
3481
3482         if (!dev->primary->master)
3483                 return;
3484
3485         master_priv = dev->primary->master->driver_priv;
3486         if (!master_priv->sarea_priv)
3487                 return;
3488
3489         enabled = crtc->enabled && enable;
3490
3491         switch (pipe) {
3492         case 0:
3493                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3494                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3495                 break;
3496         case 1:
3497                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3498                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3499                 break;
3500         default:
3501                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3502                 break;
3503         }
3504 }
3505
3506 static void intel_crtc_disable(struct drm_crtc *crtc)
3507 {
3508         struct drm_device *dev = crtc->dev;
3509         struct drm_i915_private *dev_priv = dev->dev_private;
3510
3511         /* crtc->disable is only called when we have no encoders, hence this
3512          * will disable the pipe. */
3513         intel_crtc_update_dpms(crtc);
3514         dev_priv->display.off(crtc);
3515
3516         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3517         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3518
3519         if (crtc->fb) {
3520                 mutex_lock(&dev->struct_mutex);
3521                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3522                 mutex_unlock(&dev->struct_mutex);
3523         }
3524 }
3525
3526 void intel_encoder_disable(struct drm_encoder *encoder)
3527 {
3528         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3529
3530         intel_encoder->disable(intel_encoder);
3531 }
3532
3533 void intel_encoder_destroy(struct drm_encoder *encoder)
3534 {
3535         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3536
3537         drm_encoder_cleanup(encoder);
3538         kfree(intel_encoder);
3539 }
3540
3541 /* Simple dpms helper for encodres with just one connector, no cloning and only
3542  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3543  * state of the entire output pipe. */
3544 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3545 {
3546         if (mode == DRM_MODE_DPMS_ON) {
3547                 encoder->connectors_active = true;
3548
3549                 intel_crtc_update_dpms(encoder->base.crtc);
3550         } else {
3551                 encoder->connectors_active = false;
3552
3553                 intel_crtc_update_dpms(encoder->base.crtc);
3554         }
3555 }
3556
3557 /* Cross check the actual hw state with our own modeset state tracking (and it's
3558  * internal consistency). */
3559 void intel_connector_check_state(struct intel_connector *connector)
3560 {
3561         if (connector->get_hw_state(connector)) {
3562                 struct intel_encoder *encoder = connector->encoder;
3563                 struct drm_crtc *crtc;
3564                 bool encoder_enabled;
3565                 enum pipe pipe;
3566
3567                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3568                               connector->base.base.id,
3569                               drm_get_connector_name(&connector->base));
3570
3571                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3572                      "wrong connector dpms state\n");
3573                 WARN(connector->base.encoder != &encoder->base,
3574                      "active connector not linked to encoder\n");
3575                 WARN(!encoder->connectors_active,
3576                      "encoder->connectors_active not set\n");
3577
3578                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3579                 WARN(!encoder_enabled, "encoder not enabled\n");
3580                 if (WARN_ON(!encoder->base.crtc))
3581                         return;
3582
3583                 crtc = encoder->base.crtc;
3584
3585                 WARN(!crtc->enabled, "crtc not enabled\n");
3586                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3587                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3588                      "encoder active on the wrong pipe\n");
3589         }
3590 }
3591
3592 /* Even simpler default implementation, if there's really no special case to
3593  * consider. */
3594 void intel_connector_dpms(struct drm_connector *connector, int mode)
3595 {
3596         struct intel_encoder *encoder = intel_attached_encoder(connector);
3597
3598         /* All the simple cases only support two dpms states. */
3599         if (mode != DRM_MODE_DPMS_ON)
3600                 mode = DRM_MODE_DPMS_OFF;
3601
3602         if (mode == connector->dpms)
3603                 return;
3604
3605         connector->dpms = mode;
3606
3607         /* Only need to change hw state when actually enabled */
3608         if (encoder->base.crtc)
3609                 intel_encoder_dpms(encoder, mode);
3610         else
3611                 encoder->connectors_active = false;
3612
3613         intel_connector_check_state(to_intel_connector(connector));
3614 }
3615
3616 /* Simple connector->get_hw_state implementation for encoders that support only
3617  * one connector and no cloning and hence the encoder state determines the state
3618  * of the connector. */
3619 bool intel_connector_get_hw_state(struct intel_connector *connector)
3620 {
3621         enum pipe pipe = 0;
3622         struct intel_encoder *encoder = connector->encoder;
3623
3624         return encoder->get_hw_state(encoder, &pipe);
3625 }
3626
3627 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3628                                   const struct drm_display_mode *mode,
3629                                   struct drm_display_mode *adjusted_mode)
3630 {
3631         struct drm_device *dev = crtc->dev;
3632
3633         if (HAS_PCH_SPLIT(dev)) {
3634                 /* FDI link clock is fixed at 2.7G */
3635                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3636                         return false;
3637         }
3638
3639         /* All interlaced capable intel hw wants timings in frames. Note though
3640          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3641          * timings, so we need to be careful not to clobber these.*/
3642         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3643                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3644
3645         return true;
3646 }
3647
3648 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3649 {
3650         return 400000; /* FIXME */
3651 }
3652
3653 static int i945_get_display_clock_speed(struct drm_device *dev)
3654 {
3655         return 400000;
3656 }
3657
3658 static int i915_get_display_clock_speed(struct drm_device *dev)
3659 {
3660         return 333000;
3661 }
3662
3663 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3664 {
3665         return 200000;
3666 }
3667
3668 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3669 {
3670         u16 gcfgc = 0;
3671
3672         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3673
3674         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3675                 return 133000;
3676         else {
3677                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3678                 case GC_DISPLAY_CLOCK_333_MHZ:
3679                         return 333000;
3680                 default:
3681                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3682                         return 190000;
3683                 }
3684         }
3685 }
3686
3687 static int i865_get_display_clock_speed(struct drm_device *dev)
3688 {
3689         return 266000;
3690 }
3691
3692 static int i855_get_display_clock_speed(struct drm_device *dev)
3693 {
3694         u16 hpllcc = 0;
3695         /* Assume that the hardware is in the high speed state.  This
3696          * should be the default.
3697          */
3698         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3699         case GC_CLOCK_133_200:
3700         case GC_CLOCK_100_200:
3701                 return 200000;
3702         case GC_CLOCK_166_250:
3703                 return 250000;
3704         case GC_CLOCK_100_133:
3705                 return 133000;
3706         }
3707
3708         /* Shouldn't happen */
3709         return 0;
3710 }
3711
3712 static int i830_get_display_clock_speed(struct drm_device *dev)
3713 {
3714         return 133000;
3715 }
3716
3717 struct fdi_m_n {
3718         u32        tu;
3719         u32        gmch_m;
3720         u32        gmch_n;
3721         u32        link_m;
3722         u32        link_n;
3723 };
3724
3725 static void
3726 fdi_reduce_ratio(u32 *num, u32 *den)
3727 {
3728         while (*num > 0xffffff || *den > 0xffffff) {
3729                 *num >>= 1;
3730                 *den >>= 1;
3731         }
3732 }
3733
3734 static void
3735 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3736                      int link_clock, struct fdi_m_n *m_n)
3737 {
3738         m_n->tu = 64; /* default size */
3739
3740         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3741         m_n->gmch_m = bits_per_pixel * pixel_clock;
3742         m_n->gmch_n = link_clock * nlanes * 8;
3743         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3744
3745         m_n->link_m = pixel_clock;
3746         m_n->link_n = link_clock;
3747         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3748 }
3749
3750 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3751 {
3752         if (i915_panel_use_ssc >= 0)
3753                 return i915_panel_use_ssc != 0;
3754         return dev_priv->lvds_use_ssc
3755                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3756 }
3757
3758 /**
3759  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3760  * @crtc: CRTC structure
3761  * @mode: requested mode
3762  *
3763  * A pipe may be connected to one or more outputs.  Based on the depth of the
3764  * attached framebuffer, choose a good color depth to use on the pipe.
3765  *
3766  * If possible, match the pipe depth to the fb depth.  In some cases, this
3767  * isn't ideal, because the connected output supports a lesser or restricted
3768  * set of depths.  Resolve that here:
3769  *    LVDS typically supports only 6bpc, so clamp down in that case
3770  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3771  *    Displays may support a restricted set as well, check EDID and clamp as
3772  *      appropriate.
3773  *    DP may want to dither down to 6bpc to fit larger modes
3774  *
3775  * RETURNS:
3776  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3777  * true if they don't match).
3778  */
3779 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3780                                          unsigned int *pipe_bpp,
3781                                          struct drm_display_mode *mode)
3782 {
3783         struct drm_device *dev = crtc->dev;
3784         struct drm_i915_private *dev_priv = dev->dev_private;
3785         struct drm_connector *connector;
3786         struct intel_encoder *intel_encoder;
3787         unsigned int display_bpc = UINT_MAX, bpc;
3788
3789         /* Walk the encoders & connectors on this crtc, get min bpc */
3790         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3791
3792                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3793                         unsigned int lvds_bpc;
3794
3795                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3796                             LVDS_A3_POWER_UP)
3797                                 lvds_bpc = 8;
3798                         else
3799                                 lvds_bpc = 6;
3800
3801                         if (lvds_bpc < display_bpc) {
3802                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3803                                 display_bpc = lvds_bpc;
3804                         }
3805                         continue;
3806                 }
3807
3808                 /* Not one of the known troublemakers, check the EDID */
3809                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3810                                     head) {
3811                         if (connector->encoder != &intel_encoder->base)
3812                                 continue;
3813
3814                         /* Don't use an invalid EDID bpc value */
3815                         if (connector->display_info.bpc &&
3816                             connector->display_info.bpc < display_bpc) {
3817                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3818                                 display_bpc = connector->display_info.bpc;
3819                         }
3820                 }
3821
3822                 /*
3823                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3824                  * through, clamp it down.  (Note: >12bpc will be caught below.)
3825                  */
3826                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3827                         if (display_bpc > 8 && display_bpc < 12) {
3828                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3829                                 display_bpc = 12;
3830                         } else {
3831                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3832                                 display_bpc = 8;
3833                         }
3834                 }
3835         }
3836
3837         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3838                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3839                 display_bpc = 6;
3840         }
3841
3842         /*
3843          * We could just drive the pipe at the highest bpc all the time and
3844          * enable dithering as needed, but that costs bandwidth.  So choose
3845          * the minimum value that expresses the full color range of the fb but
3846          * also stays within the max display bpc discovered above.
3847          */
3848
3849         switch (crtc->fb->depth) {
3850         case 8:
3851                 bpc = 8; /* since we go through a colormap */
3852                 break;
3853         case 15:
3854         case 16:
3855                 bpc = 6; /* min is 18bpp */
3856                 break;
3857         case 24:
3858                 bpc = 8;
3859                 break;
3860         case 30:
3861                 bpc = 10;
3862                 break;
3863         case 48:
3864                 bpc = 12;
3865                 break;
3866         default:
3867                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3868                 bpc = min((unsigned int)8, display_bpc);
3869                 break;
3870         }
3871
3872         display_bpc = min(display_bpc, bpc);
3873
3874         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3875                       bpc, display_bpc);
3876
3877         *pipe_bpp = display_bpc * 3;
3878
3879         return display_bpc != bpc;
3880 }
3881
3882 static int vlv_get_refclk(struct drm_crtc *crtc)
3883 {
3884         struct drm_device *dev = crtc->dev;
3885         struct drm_i915_private *dev_priv = dev->dev_private;
3886         int refclk = 27000; /* for DP & HDMI */
3887
3888         return 100000; /* only one validated so far */
3889
3890         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3891                 refclk = 96000;
3892         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3893                 if (intel_panel_use_ssc(dev_priv))
3894                         refclk = 100000;
3895                 else
3896                         refclk = 96000;
3897         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3898                 refclk = 100000;
3899         }
3900
3901         return refclk;
3902 }
3903
3904 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3905 {
3906         struct drm_device *dev = crtc->dev;
3907         struct drm_i915_private *dev_priv = dev->dev_private;
3908         int refclk;
3909
3910         if (IS_VALLEYVIEW(dev)) {
3911                 refclk = vlv_get_refclk(crtc);
3912         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3913             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3914                 refclk = dev_priv->lvds_ssc_freq * 1000;
3915                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3916                               refclk / 1000);
3917         } else if (!IS_GEN2(dev)) {
3918                 refclk = 96000;
3919         } else {
3920                 refclk = 48000;
3921         }
3922
3923         return refclk;
3924 }
3925
3926 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3927                                       intel_clock_t *clock)
3928 {
3929         /* SDVO TV has fixed PLL values depend on its clock range,
3930            this mirrors vbios setting. */
3931         if (adjusted_mode->clock >= 100000
3932             && adjusted_mode->clock < 140500) {
3933                 clock->p1 = 2;
3934                 clock->p2 = 10;
3935                 clock->n = 3;
3936                 clock->m1 = 16;
3937                 clock->m2 = 8;
3938         } else if (adjusted_mode->clock >= 140500
3939                    && adjusted_mode->clock <= 200000) {
3940                 clock->p1 = 1;
3941                 clock->p2 = 10;
3942                 clock->n = 6;
3943                 clock->m1 = 12;
3944                 clock->m2 = 8;
3945         }
3946 }
3947
3948 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3949                                      intel_clock_t *clock,
3950                                      intel_clock_t *reduced_clock)
3951 {
3952         struct drm_device *dev = crtc->dev;
3953         struct drm_i915_private *dev_priv = dev->dev_private;
3954         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3955         int pipe = intel_crtc->pipe;
3956         u32 fp, fp2 = 0;
3957
3958         if (IS_PINEVIEW(dev)) {
3959                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3960                 if (reduced_clock)
3961                         fp2 = (1 << reduced_clock->n) << 16 |
3962                                 reduced_clock->m1 << 8 | reduced_clock->m2;
3963         } else {
3964                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3965                 if (reduced_clock)
3966                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3967                                 reduced_clock->m2;
3968         }
3969
3970         I915_WRITE(FP0(pipe), fp);
3971
3972         intel_crtc->lowfreq_avail = false;
3973         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3974             reduced_clock && i915_powersave) {
3975                 I915_WRITE(FP1(pipe), fp2);
3976                 intel_crtc->lowfreq_avail = true;
3977         } else {
3978                 I915_WRITE(FP1(pipe), fp);
3979         }
3980 }
3981
3982 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3983                               struct drm_display_mode *adjusted_mode)
3984 {
3985         struct drm_device *dev = crtc->dev;
3986         struct drm_i915_private *dev_priv = dev->dev_private;
3987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3988         int pipe = intel_crtc->pipe;
3989         u32 temp;
3990
3991         temp = I915_READ(LVDS);
3992         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3993         if (pipe == 1) {
3994                 temp |= LVDS_PIPEB_SELECT;
3995         } else {
3996                 temp &= ~LVDS_PIPEB_SELECT;
3997         }
3998         /* set the corresponsding LVDS_BORDER bit */
3999         temp |= dev_priv->lvds_border_bits;
4000         /* Set the B0-B3 data pairs corresponding to whether we're going to
4001          * set the DPLLs for dual-channel mode or not.
4002          */
4003         if (clock->p2 == 7)
4004                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4005         else
4006                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4007
4008         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4009          * appropriately here, but we need to look more thoroughly into how
4010          * panels behave in the two modes.
4011          */
4012         /* set the dithering flag on LVDS as needed */
4013         if (INTEL_INFO(dev)->gen >= 4) {
4014                 if (dev_priv->lvds_dither)
4015                         temp |= LVDS_ENABLE_DITHER;
4016                 else
4017                         temp &= ~LVDS_ENABLE_DITHER;
4018         }
4019         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4020         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4021                 temp |= LVDS_HSYNC_POLARITY;
4022         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4023                 temp |= LVDS_VSYNC_POLARITY;
4024         I915_WRITE(LVDS, temp);
4025 }
4026
4027 static void vlv_update_pll(struct drm_crtc *crtc,
4028                            struct drm_display_mode *mode,
4029                            struct drm_display_mode *adjusted_mode,
4030                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4031                            int refclk, int num_connectors)
4032 {
4033         struct drm_device *dev = crtc->dev;
4034         struct drm_i915_private *dev_priv = dev->dev_private;
4035         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4036         int pipe = intel_crtc->pipe;
4037         u32 dpll, mdiv, pdiv;
4038         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4039         bool is_hdmi;
4040
4041         is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4042
4043         bestn = clock->n;
4044         bestm1 = clock->m1;
4045         bestm2 = clock->m2;
4046         bestp1 = clock->p1;
4047         bestp2 = clock->p2;
4048
4049         /* Enable DPIO clock input */
4050         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4051                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4052         I915_WRITE(DPLL(pipe), dpll);
4053         POSTING_READ(DPLL(pipe));
4054
4055         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4056         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4057         mdiv |= ((bestn << DPIO_N_SHIFT));
4058         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4059         mdiv |= (1 << DPIO_K_SHIFT);
4060         mdiv |= DPIO_ENABLE_CALIBRATION;
4061         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4062
4063         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4064
4065         pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4066                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4067                 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4068         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4069
4070         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4071
4072         dpll |= DPLL_VCO_ENABLE;
4073         I915_WRITE(DPLL(pipe), dpll);
4074         POSTING_READ(DPLL(pipe));
4075         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4076                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4077
4078         if (is_hdmi) {
4079                 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4080
4081                 if (temp > 1)
4082                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4083                 else
4084                         temp = 0;
4085
4086                 I915_WRITE(DPLL_MD(pipe), temp);
4087                 POSTING_READ(DPLL_MD(pipe));
4088         }
4089
4090         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4091 }
4092
4093 static void i9xx_update_pll(struct drm_crtc *crtc,
4094                             struct drm_display_mode *mode,
4095                             struct drm_display_mode *adjusted_mode,
4096                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4097                             int num_connectors)
4098 {
4099         struct drm_device *dev = crtc->dev;
4100         struct drm_i915_private *dev_priv = dev->dev_private;
4101         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4102         int pipe = intel_crtc->pipe;
4103         u32 dpll;
4104         bool is_sdvo;
4105
4106         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4107                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4108
4109         dpll = DPLL_VGA_MODE_DIS;
4110
4111         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4112                 dpll |= DPLLB_MODE_LVDS;
4113         else
4114                 dpll |= DPLLB_MODE_DAC_SERIAL;
4115         if (is_sdvo) {
4116                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4117                 if (pixel_multiplier > 1) {
4118                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4119                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4120                 }
4121                 dpll |= DPLL_DVO_HIGH_SPEED;
4122         }
4123         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4124                 dpll |= DPLL_DVO_HIGH_SPEED;
4125
4126         /* compute bitmask from p1 value */
4127         if (IS_PINEVIEW(dev))
4128                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4129         else {
4130                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4131                 if (IS_G4X(dev) && reduced_clock)
4132                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4133         }
4134         switch (clock->p2) {
4135         case 5:
4136                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4137                 break;
4138         case 7:
4139                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4140                 break;
4141         case 10:
4142                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4143                 break;
4144         case 14:
4145                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4146                 break;
4147         }
4148         if (INTEL_INFO(dev)->gen >= 4)
4149                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4150
4151         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4152                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4153         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4154                 /* XXX: just matching BIOS for now */
4155                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4156                 dpll |= 3;
4157         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4158                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4159                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4160         else
4161                 dpll |= PLL_REF_INPUT_DREFCLK;
4162
4163         dpll |= DPLL_VCO_ENABLE;
4164         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4165         POSTING_READ(DPLL(pipe));
4166         udelay(150);
4167
4168         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4169          * This is an exception to the general rule that mode_set doesn't turn
4170          * things on.
4171          */
4172         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4173                 intel_update_lvds(crtc, clock, adjusted_mode);
4174
4175         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4176                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4177
4178         I915_WRITE(DPLL(pipe), dpll);
4179
4180         /* Wait for the clocks to stabilize. */
4181         POSTING_READ(DPLL(pipe));
4182         udelay(150);
4183
4184         if (INTEL_INFO(dev)->gen >= 4) {
4185                 u32 temp = 0;
4186                 if (is_sdvo) {
4187                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4188                         if (temp > 1)
4189                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4190                         else
4191                                 temp = 0;
4192                 }
4193                 I915_WRITE(DPLL_MD(pipe), temp);
4194         } else {
4195                 /* The pixel multiplier can only be updated once the
4196                  * DPLL is enabled and the clocks are stable.
4197                  *
4198                  * So write it again.
4199                  */
4200                 I915_WRITE(DPLL(pipe), dpll);
4201         }
4202 }
4203
4204 static void i8xx_update_pll(struct drm_crtc *crtc,
4205                             struct drm_display_mode *adjusted_mode,
4206                             intel_clock_t *clock,
4207                             int num_connectors)
4208 {
4209         struct drm_device *dev = crtc->dev;
4210         struct drm_i915_private *dev_priv = dev->dev_private;
4211         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4212         int pipe = intel_crtc->pipe;
4213         u32 dpll;
4214
4215         dpll = DPLL_VGA_MODE_DIS;
4216
4217         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4218                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4219         } else {
4220                 if (clock->p1 == 2)
4221                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4222                 else
4223                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4224                 if (clock->p2 == 4)
4225                         dpll |= PLL_P2_DIVIDE_BY_4;
4226         }
4227
4228         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4229                 /* XXX: just matching BIOS for now */
4230                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4231                 dpll |= 3;
4232         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4233                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4234                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4235         else
4236                 dpll |= PLL_REF_INPUT_DREFCLK;
4237
4238         dpll |= DPLL_VCO_ENABLE;
4239         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4240         POSTING_READ(DPLL(pipe));
4241         udelay(150);
4242
4243         I915_WRITE(DPLL(pipe), dpll);
4244
4245         /* Wait for the clocks to stabilize. */
4246         POSTING_READ(DPLL(pipe));
4247         udelay(150);
4248
4249         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4250          * This is an exception to the general rule that mode_set doesn't turn
4251          * things on.
4252          */
4253         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4254                 intel_update_lvds(crtc, clock, adjusted_mode);
4255
4256         /* The pixel multiplier can only be updated once the
4257          * DPLL is enabled and the clocks are stable.
4258          *
4259          * So write it again.
4260          */
4261         I915_WRITE(DPLL(pipe), dpll);
4262 }
4263
4264 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4265                               struct drm_display_mode *mode,
4266                               struct drm_display_mode *adjusted_mode,
4267                               int x, int y,
4268                               struct drm_framebuffer *old_fb)
4269 {
4270         struct drm_device *dev = crtc->dev;
4271         struct drm_i915_private *dev_priv = dev->dev_private;
4272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4273         int pipe = intel_crtc->pipe;
4274         int plane = intel_crtc->plane;
4275         int refclk, num_connectors = 0;
4276         intel_clock_t clock, reduced_clock;
4277         u32 dspcntr, pipeconf, vsyncshift;
4278         bool ok, has_reduced_clock = false, is_sdvo = false;
4279         bool is_lvds = false, is_tv = false, is_dp = false;
4280         struct intel_encoder *encoder;
4281         const intel_limit_t *limit;
4282         int ret;
4283
4284         for_each_encoder_on_crtc(dev, crtc, encoder) {
4285                 switch (encoder->type) {
4286                 case INTEL_OUTPUT_LVDS:
4287                         is_lvds = true;
4288                         break;
4289                 case INTEL_OUTPUT_SDVO:
4290                 case INTEL_OUTPUT_HDMI:
4291                         is_sdvo = true;
4292                         if (encoder->needs_tv_clock)
4293                                 is_tv = true;
4294                         break;
4295                 case INTEL_OUTPUT_TVOUT:
4296                         is_tv = true;
4297                         break;
4298                 case INTEL_OUTPUT_DISPLAYPORT:
4299                         is_dp = true;
4300                         break;
4301                 }
4302
4303                 num_connectors++;
4304         }
4305
4306         refclk = i9xx_get_refclk(crtc, num_connectors);
4307
4308         /*
4309          * Returns a set of divisors for the desired target clock with the given
4310          * refclk, or FALSE.  The returned values represent the clock equation:
4311          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4312          */
4313         limit = intel_limit(crtc, refclk);
4314         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4315                              &clock);
4316         if (!ok) {
4317                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4318                 return -EINVAL;
4319         }
4320
4321         /* Ensure that the cursor is valid for the new mode before changing... */
4322         intel_crtc_update_cursor(crtc, true);
4323
4324         if (is_lvds && dev_priv->lvds_downclock_avail) {
4325                 /*
4326                  * Ensure we match the reduced clock's P to the target clock.
4327                  * If the clocks don't match, we can't switch the display clock
4328                  * by using the FP0/FP1. In such case we will disable the LVDS
4329                  * downclock feature.
4330                 */
4331                 has_reduced_clock = limit->find_pll(limit, crtc,
4332                                                     dev_priv->lvds_downclock,
4333                                                     refclk,
4334                                                     &clock,
4335                                                     &reduced_clock);
4336         }
4337
4338         if (is_sdvo && is_tv)
4339                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4340
4341         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4342                                  &reduced_clock : NULL);
4343
4344         if (IS_GEN2(dev))
4345                 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4346         else if (IS_VALLEYVIEW(dev))
4347                 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4348                                refclk, num_connectors);
4349         else
4350                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4351                                 has_reduced_clock ? &reduced_clock : NULL,
4352                                 num_connectors);
4353
4354         /* setup pipeconf */
4355         pipeconf = I915_READ(PIPECONF(pipe));
4356
4357         /* Set up the display plane register */
4358         dspcntr = DISPPLANE_GAMMA_ENABLE;
4359
4360         if (pipe == 0)
4361                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4362         else
4363                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4364
4365         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4366                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4367                  * core speed.
4368                  *
4369                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4370                  * pipe == 0 check?
4371                  */
4372                 if (mode->clock >
4373                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4374                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4375                 else
4376                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4377         }
4378
4379         /* default to 8bpc */
4380         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4381         if (is_dp) {
4382                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4383                         pipeconf |= PIPECONF_BPP_6 |
4384                                     PIPECONF_DITHER_EN |
4385                                     PIPECONF_DITHER_TYPE_SP;
4386                 }
4387         }
4388
4389         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4390         drm_mode_debug_printmodeline(mode);
4391
4392         if (HAS_PIPE_CXSR(dev)) {
4393                 if (intel_crtc->lowfreq_avail) {
4394                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4395                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4396                 } else {
4397                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4398                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4399                 }
4400         }
4401
4402         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4403         if (!IS_GEN2(dev) &&
4404             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4405                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4406                 /* the chip adds 2 halflines automatically */
4407                 adjusted_mode->crtc_vtotal -= 1;
4408                 adjusted_mode->crtc_vblank_end -= 1;
4409                 vsyncshift = adjusted_mode->crtc_hsync_start
4410                              - adjusted_mode->crtc_htotal/2;
4411         } else {
4412                 pipeconf |= PIPECONF_PROGRESSIVE;
4413                 vsyncshift = 0;
4414         }
4415
4416         if (!IS_GEN3(dev))
4417                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4418
4419         I915_WRITE(HTOTAL(pipe),
4420                    (adjusted_mode->crtc_hdisplay - 1) |
4421                    ((adjusted_mode->crtc_htotal - 1) << 16));
4422         I915_WRITE(HBLANK(pipe),
4423                    (adjusted_mode->crtc_hblank_start - 1) |
4424                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4425         I915_WRITE(HSYNC(pipe),
4426                    (adjusted_mode->crtc_hsync_start - 1) |
4427                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4428
4429         I915_WRITE(VTOTAL(pipe),
4430                    (adjusted_mode->crtc_vdisplay - 1) |
4431                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4432         I915_WRITE(VBLANK(pipe),
4433                    (adjusted_mode->crtc_vblank_start - 1) |
4434                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4435         I915_WRITE(VSYNC(pipe),
4436                    (adjusted_mode->crtc_vsync_start - 1) |
4437                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4438
4439         /* pipesrc and dspsize control the size that is scaled from,
4440          * which should always be the user's requested size.
4441          */
4442         I915_WRITE(DSPSIZE(plane),
4443                    ((mode->vdisplay - 1) << 16) |
4444                    (mode->hdisplay - 1));
4445         I915_WRITE(DSPPOS(plane), 0);
4446         I915_WRITE(PIPESRC(pipe),
4447                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4448
4449         I915_WRITE(PIPECONF(pipe), pipeconf);
4450         POSTING_READ(PIPECONF(pipe));
4451         intel_enable_pipe(dev_priv, pipe, false);
4452
4453         intel_wait_for_vblank(dev, pipe);
4454
4455         I915_WRITE(DSPCNTR(plane), dspcntr);
4456         POSTING_READ(DSPCNTR(plane));
4457
4458         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4459
4460         intel_update_watermarks(dev);
4461
4462         return ret;
4463 }
4464
4465 /*
4466  * Initialize reference clocks when the driver loads
4467  */
4468 void ironlake_init_pch_refclk(struct drm_device *dev)
4469 {
4470         struct drm_i915_private *dev_priv = dev->dev_private;
4471         struct drm_mode_config *mode_config = &dev->mode_config;
4472         struct intel_encoder *encoder;
4473         u32 temp;
4474         bool has_lvds = false;
4475         bool has_cpu_edp = false;
4476         bool has_pch_edp = false;
4477         bool has_panel = false;
4478         bool has_ck505 = false;
4479         bool can_ssc = false;
4480
4481         /* We need to take the global config into account */
4482         list_for_each_entry(encoder, &mode_config->encoder_list,
4483                             base.head) {
4484                 switch (encoder->type) {
4485                 case INTEL_OUTPUT_LVDS:
4486                         has_panel = true;
4487                         has_lvds = true;
4488                         break;
4489                 case INTEL_OUTPUT_EDP:
4490                         has_panel = true;
4491                         if (intel_encoder_is_pch_edp(&encoder->base))
4492                                 has_pch_edp = true;
4493                         else
4494                                 has_cpu_edp = true;
4495                         break;
4496                 }
4497         }
4498
4499         if (HAS_PCH_IBX(dev)) {
4500                 has_ck505 = dev_priv->display_clock_mode;
4501                 can_ssc = has_ck505;
4502         } else {
4503                 has_ck505 = false;
4504                 can_ssc = true;
4505         }
4506
4507         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4508                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4509                       has_ck505);
4510
4511         /* Ironlake: try to setup display ref clock before DPLL
4512          * enabling. This is only under driver's control after
4513          * PCH B stepping, previous chipset stepping should be
4514          * ignoring this setting.
4515          */
4516         temp = I915_READ(PCH_DREF_CONTROL);
4517         /* Always enable nonspread source */
4518         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4519
4520         if (has_ck505)
4521                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4522         else
4523                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4524
4525         if (has_panel) {
4526                 temp &= ~DREF_SSC_SOURCE_MASK;
4527                 temp |= DREF_SSC_SOURCE_ENABLE;
4528
4529                 /* SSC must be turned on before enabling the CPU output  */
4530                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4531                         DRM_DEBUG_KMS("Using SSC on panel\n");
4532                         temp |= DREF_SSC1_ENABLE;
4533                 } else
4534                         temp &= ~DREF_SSC1_ENABLE;
4535
4536                 /* Get SSC going before enabling the outputs */
4537                 I915_WRITE(PCH_DREF_CONTROL, temp);
4538                 POSTING_READ(PCH_DREF_CONTROL);
4539                 udelay(200);
4540
4541                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4542
4543                 /* Enable CPU source on CPU attached eDP */
4544                 if (has_cpu_edp) {
4545                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4546                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4547                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4548                         }
4549                         else
4550                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4551                 } else
4552                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4553
4554                 I915_WRITE(PCH_DREF_CONTROL, temp);
4555                 POSTING_READ(PCH_DREF_CONTROL);
4556                 udelay(200);
4557         } else {
4558                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4559
4560                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4561
4562                 /* Turn off CPU output */
4563                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4564
4565                 I915_WRITE(PCH_DREF_CONTROL, temp);
4566                 POSTING_READ(PCH_DREF_CONTROL);
4567                 udelay(200);
4568
4569                 /* Turn off the SSC source */
4570                 temp &= ~DREF_SSC_SOURCE_MASK;
4571                 temp |= DREF_SSC_SOURCE_DISABLE;
4572
4573                 /* Turn off SSC1 */
4574                 temp &= ~ DREF_SSC1_ENABLE;
4575
4576                 I915_WRITE(PCH_DREF_CONTROL, temp);
4577                 POSTING_READ(PCH_DREF_CONTROL);
4578                 udelay(200);
4579         }
4580 }
4581
4582 static int ironlake_get_refclk(struct drm_crtc *crtc)
4583 {
4584         struct drm_device *dev = crtc->dev;
4585         struct drm_i915_private *dev_priv = dev->dev_private;
4586         struct intel_encoder *encoder;
4587         struct intel_encoder *edp_encoder = NULL;
4588         int num_connectors = 0;
4589         bool is_lvds = false;
4590
4591         for_each_encoder_on_crtc(dev, crtc, encoder) {
4592                 switch (encoder->type) {
4593                 case INTEL_OUTPUT_LVDS:
4594                         is_lvds = true;
4595                         break;
4596                 case INTEL_OUTPUT_EDP:
4597                         edp_encoder = encoder;
4598                         break;
4599                 }
4600                 num_connectors++;
4601         }
4602
4603         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4604                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4605                               dev_priv->lvds_ssc_freq);
4606                 return dev_priv->lvds_ssc_freq * 1000;
4607         }
4608
4609         return 120000;
4610 }
4611
4612 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4613                                   struct drm_display_mode *mode,
4614                                   struct drm_display_mode *adjusted_mode,
4615                                   int x, int y,
4616                                   struct drm_framebuffer *old_fb)
4617 {
4618         struct drm_device *dev = crtc->dev;
4619         struct drm_i915_private *dev_priv = dev->dev_private;
4620         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4621         int pipe = intel_crtc->pipe;
4622         int plane = intel_crtc->plane;
4623         int refclk, num_connectors = 0;
4624         intel_clock_t clock, reduced_clock;
4625         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4626         bool ok, has_reduced_clock = false, is_sdvo = false;
4627         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4628         struct intel_encoder *encoder, *edp_encoder = NULL;
4629         const intel_limit_t *limit;
4630         int ret;
4631         struct fdi_m_n m_n = {0};
4632         u32 temp;
4633         int target_clock, pixel_multiplier, lane, link_bw, factor;
4634         unsigned int pipe_bpp;
4635         bool dither;
4636         bool is_cpu_edp = false, is_pch_edp = false;
4637
4638         for_each_encoder_on_crtc(dev, crtc, encoder) {
4639                 switch (encoder->type) {
4640                 case INTEL_OUTPUT_LVDS:
4641                         is_lvds = true;
4642                         break;
4643                 case INTEL_OUTPUT_SDVO:
4644                 case INTEL_OUTPUT_HDMI:
4645                         is_sdvo = true;
4646                         if (encoder->needs_tv_clock)
4647                                 is_tv = true;
4648                         break;
4649                 case INTEL_OUTPUT_TVOUT:
4650                         is_tv = true;
4651                         break;
4652                 case INTEL_OUTPUT_ANALOG:
4653                         is_crt = true;
4654                         break;
4655                 case INTEL_OUTPUT_DISPLAYPORT:
4656                         is_dp = true;
4657                         break;
4658                 case INTEL_OUTPUT_EDP:
4659                         is_dp = true;
4660                         if (intel_encoder_is_pch_edp(&encoder->base))
4661                                 is_pch_edp = true;
4662                         else
4663                                 is_cpu_edp = true;
4664                         edp_encoder = encoder;
4665                         break;
4666                 }
4667
4668                 num_connectors++;
4669         }
4670
4671         refclk = ironlake_get_refclk(crtc);
4672
4673         /*
4674          * Returns a set of divisors for the desired target clock with the given
4675          * refclk, or FALSE.  The returned values represent the clock equation:
4676          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4677          */
4678         limit = intel_limit(crtc, refclk);
4679         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4680                              &clock);
4681         if (!ok) {
4682                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4683                 return -EINVAL;
4684         }
4685
4686         /* Ensure that the cursor is valid for the new mode before changing... */
4687         intel_crtc_update_cursor(crtc, true);
4688
4689         if (is_lvds && dev_priv->lvds_downclock_avail) {
4690                 /*
4691                  * Ensure we match the reduced clock's P to the target clock.
4692                  * If the clocks don't match, we can't switch the display clock
4693                  * by using the FP0/FP1. In such case we will disable the LVDS
4694                  * downclock feature.
4695                 */
4696                 has_reduced_clock = limit->find_pll(limit, crtc,
4697                                                     dev_priv->lvds_downclock,
4698                                                     refclk,
4699                                                     &clock,
4700                                                     &reduced_clock);
4701         }
4702
4703         if (is_sdvo && is_tv)
4704                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4705
4706
4707         /* FDI link */
4708         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4709         lane = 0;
4710         /* CPU eDP doesn't require FDI link, so just set DP M/N
4711            according to current link config */
4712         if (is_cpu_edp) {
4713                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4714         } else {
4715                 /* FDI is a binary signal running at ~2.7GHz, encoding
4716                  * each output octet as 10 bits. The actual frequency
4717                  * is stored as a divider into a 100MHz clock, and the
4718                  * mode pixel clock is stored in units of 1KHz.
4719                  * Hence the bw of each lane in terms of the mode signal
4720                  * is:
4721                  */
4722                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4723         }
4724
4725         /* [e]DP over FDI requires target mode clock instead of link clock. */
4726         if (edp_encoder)
4727                 target_clock = intel_edp_target_clock(edp_encoder, mode);
4728         else if (is_dp)
4729                 target_clock = mode->clock;
4730         else
4731                 target_clock = adjusted_mode->clock;
4732
4733         /* determine panel color depth */
4734         temp = I915_READ(PIPECONF(pipe));
4735         temp &= ~PIPE_BPC_MASK;
4736         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4737         switch (pipe_bpp) {
4738         case 18:
4739                 temp |= PIPE_6BPC;
4740                 break;
4741         case 24:
4742                 temp |= PIPE_8BPC;
4743                 break;
4744         case 30:
4745                 temp |= PIPE_10BPC;
4746                 break;
4747         case 36:
4748                 temp |= PIPE_12BPC;
4749                 break;
4750         default:
4751                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4752                         pipe_bpp);
4753                 temp |= PIPE_8BPC;
4754                 pipe_bpp = 24;
4755                 break;
4756         }
4757
4758         intel_crtc->bpp = pipe_bpp;
4759         I915_WRITE(PIPECONF(pipe), temp);
4760
4761         if (!lane) {
4762                 /*
4763                  * Account for spread spectrum to avoid
4764                  * oversubscribing the link. Max center spread
4765                  * is 2.5%; use 5% for safety's sake.
4766                  */
4767                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4768                 lane = bps / (link_bw * 8) + 1;
4769         }
4770
4771         intel_crtc->fdi_lanes = lane;
4772
4773         if (pixel_multiplier > 1)
4774                 link_bw *= pixel_multiplier;
4775         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4776                              &m_n);
4777
4778         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4779         if (has_reduced_clock)
4780                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4781                         reduced_clock.m2;
4782
4783         /* Enable autotuning of the PLL clock (if permissible) */
4784         factor = 21;
4785         if (is_lvds) {
4786                 if ((intel_panel_use_ssc(dev_priv) &&
4787                      dev_priv->lvds_ssc_freq == 100) ||
4788                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4789                         factor = 25;
4790         } else if (is_sdvo && is_tv)
4791                 factor = 20;
4792
4793         if (clock.m < factor * clock.n)
4794                 fp |= FP_CB_TUNE;
4795
4796         dpll = 0;
4797
4798         if (is_lvds)
4799                 dpll |= DPLLB_MODE_LVDS;
4800         else
4801                 dpll |= DPLLB_MODE_DAC_SERIAL;
4802         if (is_sdvo) {
4803                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4804                 if (pixel_multiplier > 1) {
4805                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4806                 }
4807                 dpll |= DPLL_DVO_HIGH_SPEED;
4808         }
4809         if (is_dp && !is_cpu_edp)
4810                 dpll |= DPLL_DVO_HIGH_SPEED;
4811
4812         /* compute bitmask from p1 value */
4813         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4814         /* also FPA1 */
4815         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4816
4817         switch (clock.p2) {
4818         case 5:
4819                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4820                 break;
4821         case 7:
4822                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4823                 break;
4824         case 10:
4825                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4826                 break;
4827         case 14:
4828                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4829                 break;
4830         }
4831
4832         if (is_sdvo && is_tv)
4833                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4834         else if (is_tv)
4835                 /* XXX: just matching BIOS for now */
4836                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4837                 dpll |= 3;
4838         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4839                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4840         else
4841                 dpll |= PLL_REF_INPUT_DREFCLK;
4842
4843         /* setup pipeconf */
4844         pipeconf = I915_READ(PIPECONF(pipe));
4845
4846         /* Set up the display plane register */
4847         dspcntr = DISPPLANE_GAMMA_ENABLE;
4848
4849         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4850         drm_mode_debug_printmodeline(mode);
4851
4852         /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4853          * pre-Haswell/LPT generation */
4854         if (HAS_PCH_LPT(dev)) {
4855                 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4856                                 pipe);
4857         } else if (!is_cpu_edp) {
4858                 struct intel_pch_pll *pll;
4859
4860                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4861                 if (pll == NULL) {
4862                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4863                                          pipe);
4864                         return -EINVAL;
4865                 }
4866         } else
4867                 intel_put_pch_pll(intel_crtc);
4868
4869         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4870          * This is an exception to the general rule that mode_set doesn't turn
4871          * things on.
4872          */
4873         if (is_lvds) {
4874                 temp = I915_READ(PCH_LVDS);
4875                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4876                 if (HAS_PCH_CPT(dev)) {
4877                         temp &= ~PORT_TRANS_SEL_MASK;
4878                         temp |= PORT_TRANS_SEL_CPT(pipe);
4879                 } else {
4880                         if (pipe == 1)
4881                                 temp |= LVDS_PIPEB_SELECT;
4882                         else
4883                                 temp &= ~LVDS_PIPEB_SELECT;
4884                 }
4885
4886                 /* set the corresponsding LVDS_BORDER bit */
4887                 temp |= dev_priv->lvds_border_bits;
4888                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4889                  * set the DPLLs for dual-channel mode or not.
4890                  */
4891                 if (clock.p2 == 7)
4892                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4893                 else
4894                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4895
4896                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4897                  * appropriately here, but we need to look more thoroughly into how
4898                  * panels behave in the two modes.
4899                  */
4900                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4901                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4902                         temp |= LVDS_HSYNC_POLARITY;
4903                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4904                         temp |= LVDS_VSYNC_POLARITY;
4905                 I915_WRITE(PCH_LVDS, temp);
4906         }
4907
4908         pipeconf &= ~PIPECONF_DITHER_EN;
4909         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4910         if ((is_lvds && dev_priv->lvds_dither) || dither) {
4911                 pipeconf |= PIPECONF_DITHER_EN;
4912                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4913         }
4914         if (is_dp && !is_cpu_edp) {
4915                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4916         } else {
4917                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4918                 I915_WRITE(TRANSDATA_M1(pipe), 0);
4919                 I915_WRITE(TRANSDATA_N1(pipe), 0);
4920                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4921                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4922         }
4923
4924         if (intel_crtc->pch_pll) {
4925                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4926
4927                 /* Wait for the clocks to stabilize. */
4928                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4929                 udelay(150);
4930
4931                 /* The pixel multiplier can only be updated once the
4932                  * DPLL is enabled and the clocks are stable.
4933                  *
4934                  * So write it again.
4935                  */
4936                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4937         }
4938
4939         intel_crtc->lowfreq_avail = false;
4940         if (intel_crtc->pch_pll) {
4941                 if (is_lvds && has_reduced_clock && i915_powersave) {
4942                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4943                         intel_crtc->lowfreq_avail = true;
4944                 } else {
4945                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4946                 }
4947         }
4948
4949         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4950         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4951                 pipeconf |= PIPECONF_INTERLACED_ILK;
4952                 /* the chip adds 2 halflines automatically */
4953                 adjusted_mode->crtc_vtotal -= 1;
4954                 adjusted_mode->crtc_vblank_end -= 1;
4955                 I915_WRITE(VSYNCSHIFT(pipe),
4956                            adjusted_mode->crtc_hsync_start
4957                            - adjusted_mode->crtc_htotal/2);
4958         } else {
4959                 pipeconf |= PIPECONF_PROGRESSIVE;
4960                 I915_WRITE(VSYNCSHIFT(pipe), 0);
4961         }
4962
4963         I915_WRITE(HTOTAL(pipe),
4964                    (adjusted_mode->crtc_hdisplay - 1) |
4965                    ((adjusted_mode->crtc_htotal - 1) << 16));
4966         I915_WRITE(HBLANK(pipe),
4967                    (adjusted_mode->crtc_hblank_start - 1) |
4968                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4969         I915_WRITE(HSYNC(pipe),
4970                    (adjusted_mode->crtc_hsync_start - 1) |
4971                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4972
4973         I915_WRITE(VTOTAL(pipe),
4974                    (adjusted_mode->crtc_vdisplay - 1) |
4975                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4976         I915_WRITE(VBLANK(pipe),
4977                    (adjusted_mode->crtc_vblank_start - 1) |
4978                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4979         I915_WRITE(VSYNC(pipe),
4980                    (adjusted_mode->crtc_vsync_start - 1) |
4981                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4982
4983         /* pipesrc controls the size that is scaled from, which should
4984          * always be the user's requested size.
4985          */
4986         I915_WRITE(PIPESRC(pipe),
4987                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4988
4989         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4990         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4991         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4992         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4993
4994         if (is_cpu_edp)
4995                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4996
4997         I915_WRITE(PIPECONF(pipe), pipeconf);
4998         POSTING_READ(PIPECONF(pipe));
4999
5000         intel_wait_for_vblank(dev, pipe);
5001
5002         I915_WRITE(DSPCNTR(plane), dspcntr);
5003         POSTING_READ(DSPCNTR(plane));
5004
5005         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5006
5007         intel_update_watermarks(dev);
5008
5009         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5010
5011         return ret;
5012 }
5013
5014 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5015                                struct drm_display_mode *mode,
5016                                struct drm_display_mode *adjusted_mode,
5017                                int x, int y,
5018                                struct drm_framebuffer *old_fb)
5019 {
5020         struct drm_device *dev = crtc->dev;
5021         struct drm_i915_private *dev_priv = dev->dev_private;
5022         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5023         int pipe = intel_crtc->pipe;
5024         int ret;
5025
5026         drm_vblank_pre_modeset(dev, pipe);
5027
5028         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5029                                               x, y, old_fb);
5030         drm_vblank_post_modeset(dev, pipe);
5031
5032         return ret;
5033 }
5034
5035 static bool intel_eld_uptodate(struct drm_connector *connector,
5036                                int reg_eldv, uint32_t bits_eldv,
5037                                int reg_elda, uint32_t bits_elda,
5038                                int reg_edid)
5039 {
5040         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5041         uint8_t *eld = connector->eld;
5042         uint32_t i;
5043
5044         i = I915_READ(reg_eldv);
5045         i &= bits_eldv;
5046
5047         if (!eld[0])
5048                 return !i;
5049
5050         if (!i)
5051                 return false;
5052
5053         i = I915_READ(reg_elda);
5054         i &= ~bits_elda;
5055         I915_WRITE(reg_elda, i);
5056
5057         for (i = 0; i < eld[2]; i++)
5058                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5059                         return false;
5060
5061         return true;
5062 }
5063
5064 static void g4x_write_eld(struct drm_connector *connector,
5065                           struct drm_crtc *crtc)
5066 {
5067         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5068         uint8_t *eld = connector->eld;
5069         uint32_t eldv;
5070         uint32_t len;
5071         uint32_t i;
5072
5073         i = I915_READ(G4X_AUD_VID_DID);
5074
5075         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5076                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5077         else
5078                 eldv = G4X_ELDV_DEVCTG;
5079
5080         if (intel_eld_uptodate(connector,
5081                                G4X_AUD_CNTL_ST, eldv,
5082                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5083                                G4X_HDMIW_HDMIEDID))
5084                 return;
5085
5086         i = I915_READ(G4X_AUD_CNTL_ST);
5087         i &= ~(eldv | G4X_ELD_ADDR);
5088         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5089         I915_WRITE(G4X_AUD_CNTL_ST, i);
5090
5091         if (!eld[0])
5092                 return;
5093
5094         len = min_t(uint8_t, eld[2], len);
5095         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5096         for (i = 0; i < len; i++)
5097                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5098
5099         i = I915_READ(G4X_AUD_CNTL_ST);
5100         i |= eldv;
5101         I915_WRITE(G4X_AUD_CNTL_ST, i);
5102 }
5103
5104 static void haswell_write_eld(struct drm_connector *connector,
5105                                      struct drm_crtc *crtc)
5106 {
5107         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5108         uint8_t *eld = connector->eld;
5109         struct drm_device *dev = crtc->dev;
5110         uint32_t eldv;
5111         uint32_t i;
5112         int len;
5113         int pipe = to_intel_crtc(crtc)->pipe;
5114         int tmp;
5115
5116         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5117         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5118         int aud_config = HSW_AUD_CFG(pipe);
5119         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5120
5121
5122         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5123
5124         /* Audio output enable */
5125         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5126         tmp = I915_READ(aud_cntrl_st2);
5127         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5128         I915_WRITE(aud_cntrl_st2, tmp);
5129
5130         /* Wait for 1 vertical blank */
5131         intel_wait_for_vblank(dev, pipe);
5132
5133         /* Set ELD valid state */
5134         tmp = I915_READ(aud_cntrl_st2);
5135         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5136         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5137         I915_WRITE(aud_cntrl_st2, tmp);
5138         tmp = I915_READ(aud_cntrl_st2);
5139         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5140
5141         /* Enable HDMI mode */
5142         tmp = I915_READ(aud_config);
5143         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5144         /* clear N_programing_enable and N_value_index */
5145         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5146         I915_WRITE(aud_config, tmp);
5147
5148         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5149
5150         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5151
5152         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5153                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5154                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5155                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5156         } else
5157                 I915_WRITE(aud_config, 0);
5158
5159         if (intel_eld_uptodate(connector,
5160                                aud_cntrl_st2, eldv,
5161                                aud_cntl_st, IBX_ELD_ADDRESS,
5162                                hdmiw_hdmiedid))
5163                 return;
5164
5165         i = I915_READ(aud_cntrl_st2);
5166         i &= ~eldv;
5167         I915_WRITE(aud_cntrl_st2, i);
5168
5169         if (!eld[0])
5170                 return;
5171
5172         i = I915_READ(aud_cntl_st);
5173         i &= ~IBX_ELD_ADDRESS;
5174         I915_WRITE(aud_cntl_st, i);
5175         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5176         DRM_DEBUG_DRIVER("port num:%d\n", i);
5177
5178         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5179         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5180         for (i = 0; i < len; i++)
5181                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5182
5183         i = I915_READ(aud_cntrl_st2);
5184         i |= eldv;
5185         I915_WRITE(aud_cntrl_st2, i);
5186
5187 }
5188
5189 static void ironlake_write_eld(struct drm_connector *connector,
5190                                      struct drm_crtc *crtc)
5191 {
5192         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5193         uint8_t *eld = connector->eld;
5194         uint32_t eldv;
5195         uint32_t i;
5196         int len;
5197         int hdmiw_hdmiedid;
5198         int aud_config;
5199         int aud_cntl_st;
5200         int aud_cntrl_st2;
5201         int pipe = to_intel_crtc(crtc)->pipe;
5202
5203         if (HAS_PCH_IBX(connector->dev)) {
5204                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5205                 aud_config = IBX_AUD_CFG(pipe);
5206                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5207                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5208         } else {
5209                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5210                 aud_config = CPT_AUD_CFG(pipe);
5211                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5212                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5213         }
5214
5215         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5216
5217         i = I915_READ(aud_cntl_st);
5218         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5219         if (!i) {
5220                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5221                 /* operate blindly on all ports */
5222                 eldv = IBX_ELD_VALIDB;
5223                 eldv |= IBX_ELD_VALIDB << 4;
5224                 eldv |= IBX_ELD_VALIDB << 8;
5225         } else {
5226                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5227                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5228         }
5229
5230         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5231                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5232                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5233                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5234         } else
5235                 I915_WRITE(aud_config, 0);
5236
5237         if (intel_eld_uptodate(connector,
5238                                aud_cntrl_st2, eldv,
5239                                aud_cntl_st, IBX_ELD_ADDRESS,
5240                                hdmiw_hdmiedid))
5241                 return;
5242
5243         i = I915_READ(aud_cntrl_st2);
5244         i &= ~eldv;
5245         I915_WRITE(aud_cntrl_st2, i);
5246
5247         if (!eld[0])
5248                 return;
5249
5250         i = I915_READ(aud_cntl_st);
5251         i &= ~IBX_ELD_ADDRESS;
5252         I915_WRITE(aud_cntl_st, i);
5253
5254         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5255         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5256         for (i = 0; i < len; i++)
5257                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5258
5259         i = I915_READ(aud_cntrl_st2);
5260         i |= eldv;
5261         I915_WRITE(aud_cntrl_st2, i);
5262 }
5263
5264 void intel_write_eld(struct drm_encoder *encoder,
5265                      struct drm_display_mode *mode)
5266 {
5267         struct drm_crtc *crtc = encoder->crtc;
5268         struct drm_connector *connector;
5269         struct drm_device *dev = encoder->dev;
5270         struct drm_i915_private *dev_priv = dev->dev_private;
5271
5272         connector = drm_select_eld(encoder, mode);
5273         if (!connector)
5274                 return;
5275
5276         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5277                          connector->base.id,
5278                          drm_get_connector_name(connector),
5279                          connector->encoder->base.id,
5280                          drm_get_encoder_name(connector->encoder));
5281
5282         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5283
5284         if (dev_priv->display.write_eld)
5285                 dev_priv->display.write_eld(connector, crtc);
5286 }
5287
5288 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5289 void intel_crtc_load_lut(struct drm_crtc *crtc)
5290 {
5291         struct drm_device *dev = crtc->dev;
5292         struct drm_i915_private *dev_priv = dev->dev_private;
5293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5294         int palreg = PALETTE(intel_crtc->pipe);
5295         int i;
5296
5297         /* The clocks have to be on to load the palette. */
5298         if (!crtc->enabled || !intel_crtc->active)
5299                 return;
5300
5301         /* use legacy palette for Ironlake */
5302         if (HAS_PCH_SPLIT(dev))
5303                 palreg = LGC_PALETTE(intel_crtc->pipe);
5304
5305         for (i = 0; i < 256; i++) {
5306                 I915_WRITE(palreg + 4 * i,
5307                            (intel_crtc->lut_r[i] << 16) |
5308                            (intel_crtc->lut_g[i] << 8) |
5309                            intel_crtc->lut_b[i]);
5310         }
5311 }
5312
5313 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5314 {
5315         struct drm_device *dev = crtc->dev;
5316         struct drm_i915_private *dev_priv = dev->dev_private;
5317         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5318         bool visible = base != 0;
5319         u32 cntl;
5320
5321         if (intel_crtc->cursor_visible == visible)
5322                 return;
5323
5324         cntl = I915_READ(_CURACNTR);
5325         if (visible) {
5326                 /* On these chipsets we can only modify the base whilst
5327                  * the cursor is disabled.
5328                  */
5329                 I915_WRITE(_CURABASE, base);
5330
5331                 cntl &= ~(CURSOR_FORMAT_MASK);
5332                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5333                 cntl |= CURSOR_ENABLE |
5334                         CURSOR_GAMMA_ENABLE |
5335                         CURSOR_FORMAT_ARGB;
5336         } else
5337                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5338         I915_WRITE(_CURACNTR, cntl);
5339
5340         intel_crtc->cursor_visible = visible;
5341 }
5342
5343 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5344 {
5345         struct drm_device *dev = crtc->dev;
5346         struct drm_i915_private *dev_priv = dev->dev_private;
5347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5348         int pipe = intel_crtc->pipe;
5349         bool visible = base != 0;
5350
5351         if (intel_crtc->cursor_visible != visible) {
5352                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5353                 if (base) {
5354                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5355                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5356                         cntl |= pipe << 28; /* Connect to correct pipe */
5357                 } else {
5358                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5359                         cntl |= CURSOR_MODE_DISABLE;
5360                 }
5361                 I915_WRITE(CURCNTR(pipe), cntl);
5362
5363                 intel_crtc->cursor_visible = visible;
5364         }
5365         /* and commit changes on next vblank */
5366         I915_WRITE(CURBASE(pipe), base);
5367 }
5368
5369 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5370 {
5371         struct drm_device *dev = crtc->dev;
5372         struct drm_i915_private *dev_priv = dev->dev_private;
5373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5374         int pipe = intel_crtc->pipe;
5375         bool visible = base != 0;
5376
5377         if (intel_crtc->cursor_visible != visible) {
5378                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5379                 if (base) {
5380                         cntl &= ~CURSOR_MODE;
5381                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5382                 } else {
5383                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5384                         cntl |= CURSOR_MODE_DISABLE;
5385                 }
5386                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5387
5388                 intel_crtc->cursor_visible = visible;
5389         }
5390         /* and commit changes on next vblank */
5391         I915_WRITE(CURBASE_IVB(pipe), base);
5392 }
5393
5394 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5395 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5396                                      bool on)
5397 {
5398         struct drm_device *dev = crtc->dev;
5399         struct drm_i915_private *dev_priv = dev->dev_private;
5400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5401         int pipe = intel_crtc->pipe;
5402         int x = intel_crtc->cursor_x;
5403         int y = intel_crtc->cursor_y;
5404         u32 base, pos;
5405         bool visible;
5406
5407         pos = 0;
5408
5409         if (on && crtc->enabled && crtc->fb) {
5410                 base = intel_crtc->cursor_addr;
5411                 if (x > (int) crtc->fb->width)
5412                         base = 0;
5413
5414                 if (y > (int) crtc->fb->height)
5415                         base = 0;
5416         } else
5417                 base = 0;
5418
5419         if (x < 0) {
5420                 if (x + intel_crtc->cursor_width < 0)
5421                         base = 0;
5422
5423                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5424                 x = -x;
5425         }
5426         pos |= x << CURSOR_X_SHIFT;
5427
5428         if (y < 0) {
5429                 if (y + intel_crtc->cursor_height < 0)
5430                         base = 0;
5431
5432                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5433                 y = -y;
5434         }
5435         pos |= y << CURSOR_Y_SHIFT;
5436
5437         visible = base != 0;
5438         if (!visible && !intel_crtc->cursor_visible)
5439                 return;
5440
5441         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5442                 I915_WRITE(CURPOS_IVB(pipe), pos);
5443                 ivb_update_cursor(crtc, base);
5444         } else {
5445                 I915_WRITE(CURPOS(pipe), pos);
5446                 if (IS_845G(dev) || IS_I865G(dev))
5447                         i845_update_cursor(crtc, base);
5448                 else
5449                         i9xx_update_cursor(crtc, base);
5450         }
5451 }
5452
5453 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5454                                  struct drm_file *file,
5455                                  uint32_t handle,
5456                                  uint32_t width, uint32_t height)
5457 {
5458         struct drm_device *dev = crtc->dev;
5459         struct drm_i915_private *dev_priv = dev->dev_private;
5460         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5461         struct drm_i915_gem_object *obj;
5462         uint32_t addr;
5463         int ret;
5464
5465         DRM_DEBUG_KMS("\n");
5466
5467         /* if we want to turn off the cursor ignore width and height */
5468         if (!handle) {
5469                 DRM_DEBUG_KMS("cursor off\n");
5470                 addr = 0;
5471                 obj = NULL;
5472                 mutex_lock(&dev->struct_mutex);
5473                 goto finish;
5474         }
5475
5476         /* Currently we only support 64x64 cursors */
5477         if (width != 64 || height != 64) {
5478                 DRM_ERROR("we currently only support 64x64 cursors\n");
5479                 return -EINVAL;
5480         }
5481
5482         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5483         if (&obj->base == NULL)
5484                 return -ENOENT;
5485
5486         if (obj->base.size < width * height * 4) {
5487                 DRM_ERROR("buffer is to small\n");
5488                 ret = -ENOMEM;
5489                 goto fail;
5490         }
5491
5492         /* we only need to pin inside GTT if cursor is non-phy */
5493         mutex_lock(&dev->struct_mutex);
5494         if (!dev_priv->info->cursor_needs_physical) {
5495                 if (obj->tiling_mode) {
5496                         DRM_ERROR("cursor cannot be tiled\n");
5497                         ret = -EINVAL;
5498                         goto fail_locked;
5499                 }
5500
5501                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5502                 if (ret) {
5503                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5504                         goto fail_locked;
5505                 }
5506
5507                 ret = i915_gem_object_put_fence(obj);
5508                 if (ret) {
5509                         DRM_ERROR("failed to release fence for cursor");
5510                         goto fail_unpin;
5511                 }
5512
5513                 addr = obj->gtt_offset;
5514         } else {
5515                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5516                 ret = i915_gem_attach_phys_object(dev, obj,
5517                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5518                                                   align);
5519                 if (ret) {
5520                         DRM_ERROR("failed to attach phys object\n");
5521                         goto fail_locked;
5522                 }
5523                 addr = obj->phys_obj->handle->busaddr;
5524         }
5525
5526         if (IS_GEN2(dev))
5527                 I915_WRITE(CURSIZE, (height << 12) | width);
5528
5529  finish:
5530         if (intel_crtc->cursor_bo) {
5531                 if (dev_priv->info->cursor_needs_physical) {
5532                         if (intel_crtc->cursor_bo != obj)
5533                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5534                 } else
5535                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5536                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5537         }
5538
5539         mutex_unlock(&dev->struct_mutex);
5540
5541         intel_crtc->cursor_addr = addr;
5542         intel_crtc->cursor_bo = obj;
5543         intel_crtc->cursor_width = width;
5544         intel_crtc->cursor_height = height;
5545
5546         intel_crtc_update_cursor(crtc, true);
5547
5548         return 0;
5549 fail_unpin:
5550         i915_gem_object_unpin(obj);
5551 fail_locked:
5552         mutex_unlock(&dev->struct_mutex);
5553 fail:
5554         drm_gem_object_unreference_unlocked(&obj->base);
5555         return ret;
5556 }
5557
5558 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5559 {
5560         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5561
5562         intel_crtc->cursor_x = x;
5563         intel_crtc->cursor_y = y;
5564
5565         intel_crtc_update_cursor(crtc, true);
5566
5567         return 0;
5568 }
5569
5570 /** Sets the color ramps on behalf of RandR */
5571 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5572                                  u16 blue, int regno)
5573 {
5574         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5575
5576         intel_crtc->lut_r[regno] = red >> 8;
5577         intel_crtc->lut_g[regno] = green >> 8;
5578         intel_crtc->lut_b[regno] = blue >> 8;
5579 }
5580
5581 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5582                              u16 *blue, int regno)
5583 {
5584         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5585
5586         *red = intel_crtc->lut_r[regno] << 8;
5587         *green = intel_crtc->lut_g[regno] << 8;
5588         *blue = intel_crtc->lut_b[regno] << 8;
5589 }
5590
5591 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5592                                  u16 *blue, uint32_t start, uint32_t size)
5593 {
5594         int end = (start + size > 256) ? 256 : start + size, i;
5595         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5596
5597         for (i = start; i < end; i++) {
5598                 intel_crtc->lut_r[i] = red[i] >> 8;
5599                 intel_crtc->lut_g[i] = green[i] >> 8;
5600                 intel_crtc->lut_b[i] = blue[i] >> 8;
5601         }
5602
5603         intel_crtc_load_lut(crtc);
5604 }
5605
5606 /**
5607  * Get a pipe with a simple mode set on it for doing load-based monitor
5608  * detection.
5609  *
5610  * It will be up to the load-detect code to adjust the pipe as appropriate for
5611  * its requirements.  The pipe will be connected to no other encoders.
5612  *
5613  * Currently this code will only succeed if there is a pipe with no encoders
5614  * configured for it.  In the future, it could choose to temporarily disable
5615  * some outputs to free up a pipe for its use.
5616  *
5617  * \return crtc, or NULL if no pipes are available.
5618  */
5619
5620 /* VESA 640x480x72Hz mode to set on the pipe */
5621 static struct drm_display_mode load_detect_mode = {
5622         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5623                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5624 };
5625
5626 static struct drm_framebuffer *
5627 intel_framebuffer_create(struct drm_device *dev,
5628                          struct drm_mode_fb_cmd2 *mode_cmd,
5629                          struct drm_i915_gem_object *obj)
5630 {
5631         struct intel_framebuffer *intel_fb;
5632         int ret;
5633
5634         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5635         if (!intel_fb) {
5636                 drm_gem_object_unreference_unlocked(&obj->base);
5637                 return ERR_PTR(-ENOMEM);
5638         }
5639
5640         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5641         if (ret) {
5642                 drm_gem_object_unreference_unlocked(&obj->base);
5643                 kfree(intel_fb);
5644                 return ERR_PTR(ret);
5645         }
5646
5647         return &intel_fb->base;
5648 }
5649
5650 static u32
5651 intel_framebuffer_pitch_for_width(int width, int bpp)
5652 {
5653         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5654         return ALIGN(pitch, 64);
5655 }
5656
5657 static u32
5658 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5659 {
5660         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5661         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5662 }
5663
5664 static struct drm_framebuffer *
5665 intel_framebuffer_create_for_mode(struct drm_device *dev,
5666                                   struct drm_display_mode *mode,
5667                                   int depth, int bpp)
5668 {
5669         struct drm_i915_gem_object *obj;
5670         struct drm_mode_fb_cmd2 mode_cmd;
5671
5672         obj = i915_gem_alloc_object(dev,
5673                                     intel_framebuffer_size_for_mode(mode, bpp));
5674         if (obj == NULL)
5675                 return ERR_PTR(-ENOMEM);
5676
5677         mode_cmd.width = mode->hdisplay;
5678         mode_cmd.height = mode->vdisplay;
5679         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5680                                                                 bpp);
5681         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5682
5683         return intel_framebuffer_create(dev, &mode_cmd, obj);
5684 }
5685
5686 static struct drm_framebuffer *
5687 mode_fits_in_fbdev(struct drm_device *dev,
5688                    struct drm_display_mode *mode)
5689 {
5690         struct drm_i915_private *dev_priv = dev->dev_private;
5691         struct drm_i915_gem_object *obj;
5692         struct drm_framebuffer *fb;
5693
5694         if (dev_priv->fbdev == NULL)
5695                 return NULL;
5696
5697         obj = dev_priv->fbdev->ifb.obj;
5698         if (obj == NULL)
5699                 return NULL;
5700
5701         fb = &dev_priv->fbdev->ifb.base;
5702         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5703                                                                fb->bits_per_pixel))
5704                 return NULL;
5705
5706         if (obj->base.size < mode->vdisplay * fb->pitches[0])
5707                 return NULL;
5708
5709         return fb;
5710 }
5711
5712 bool intel_get_load_detect_pipe(struct drm_connector *connector,
5713                                 struct drm_display_mode *mode,
5714                                 struct intel_load_detect_pipe *old)
5715 {
5716         struct intel_crtc *intel_crtc;
5717         struct intel_encoder *intel_encoder =
5718                 intel_attached_encoder(connector);
5719         struct drm_crtc *possible_crtc;
5720         struct drm_encoder *encoder = &intel_encoder->base;
5721         struct drm_crtc *crtc = NULL;
5722         struct drm_device *dev = encoder->dev;
5723         struct drm_framebuffer *old_fb;
5724         int i = -1;
5725
5726         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5727                       connector->base.id, drm_get_connector_name(connector),
5728                       encoder->base.id, drm_get_encoder_name(encoder));
5729
5730         /*
5731          * Algorithm gets a little messy:
5732          *
5733          *   - if the connector already has an assigned crtc, use it (but make
5734          *     sure it's on first)
5735          *
5736          *   - try to find the first unused crtc that can drive this connector,
5737          *     and use that if we find one
5738          */
5739
5740         /* See if we already have a CRTC for this connector */
5741         if (encoder->crtc) {
5742                 crtc = encoder->crtc;
5743
5744                 old->dpms_mode = connector->dpms;
5745                 old->load_detect_temp = false;
5746
5747                 /* Make sure the crtc and connector are running */
5748                 if (connector->dpms != DRM_MODE_DPMS_ON)
5749                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
5750
5751                 return true;
5752         }
5753
5754         /* Find an unused one (if possible) */
5755         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5756                 i++;
5757                 if (!(encoder->possible_crtcs & (1 << i)))
5758                         continue;
5759                 if (!possible_crtc->enabled) {
5760                         crtc = possible_crtc;
5761                         break;
5762                 }
5763         }
5764
5765         /*
5766          * If we didn't find an unused CRTC, don't use any.
5767          */
5768         if (!crtc) {
5769                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5770                 return false;
5771         }
5772
5773         encoder->crtc = crtc;
5774         connector->encoder = encoder;
5775
5776         intel_crtc = to_intel_crtc(crtc);
5777         old->dpms_mode = connector->dpms;
5778         old->load_detect_temp = true;
5779         old->release_fb = NULL;
5780
5781         if (!mode)
5782                 mode = &load_detect_mode;
5783
5784         old_fb = crtc->fb;
5785
5786         /* We need a framebuffer large enough to accommodate all accesses
5787          * that the plane may generate whilst we perform load detection.
5788          * We can not rely on the fbcon either being present (we get called
5789          * during its initialisation to detect all boot displays, or it may
5790          * not even exist) or that it is large enough to satisfy the
5791          * requested mode.
5792          */
5793         crtc->fb = mode_fits_in_fbdev(dev, mode);
5794         if (crtc->fb == NULL) {
5795                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5796                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5797                 old->release_fb = crtc->fb;
5798         } else
5799                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5800         if (IS_ERR(crtc->fb)) {
5801                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5802                 goto fail;
5803         }
5804
5805         if (!intel_set_mode(crtc, mode, 0, 0, old_fb)) {
5806                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5807                 if (old->release_fb)
5808                         old->release_fb->funcs->destroy(old->release_fb);
5809                 goto fail;
5810         }
5811
5812         /* let the connector get through one full cycle before testing */
5813         intel_wait_for_vblank(dev, intel_crtc->pipe);
5814
5815         return true;
5816 fail:
5817         connector->encoder = NULL;
5818         encoder->crtc = NULL;
5819         crtc->fb = old_fb;
5820         return false;
5821 }
5822
5823 void intel_release_load_detect_pipe(struct drm_connector *connector,
5824                                     struct intel_load_detect_pipe *old)
5825 {
5826         struct intel_encoder *intel_encoder =
5827                 intel_attached_encoder(connector);
5828         struct drm_encoder *encoder = &intel_encoder->base;
5829         struct drm_device *dev = encoder->dev;
5830
5831         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5832                       connector->base.id, drm_get_connector_name(connector),
5833                       encoder->base.id, drm_get_encoder_name(encoder));
5834
5835         if (old->load_detect_temp) {
5836                 connector->encoder = NULL;
5837                 encoder->crtc = NULL;
5838                 drm_helper_disable_unused_functions(dev);
5839
5840                 if (old->release_fb)
5841                         old->release_fb->funcs->destroy(old->release_fb);
5842
5843                 return;
5844         }
5845
5846         /* Switch crtc and encoder back off if necessary */
5847         if (old->dpms_mode != DRM_MODE_DPMS_ON)
5848                 connector->funcs->dpms(connector, old->dpms_mode);
5849 }
5850
5851 /* Returns the clock of the currently programmed mode of the given pipe. */
5852 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5853 {
5854         struct drm_i915_private *dev_priv = dev->dev_private;
5855         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5856         int pipe = intel_crtc->pipe;
5857         u32 dpll = I915_READ(DPLL(pipe));
5858         u32 fp;
5859         intel_clock_t clock;
5860
5861         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5862                 fp = I915_READ(FP0(pipe));
5863         else
5864                 fp = I915_READ(FP1(pipe));
5865
5866         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5867         if (IS_PINEVIEW(dev)) {
5868                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5869                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5870         } else {
5871                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5872                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5873         }
5874
5875         if (!IS_GEN2(dev)) {
5876                 if (IS_PINEVIEW(dev))
5877                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5878                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5879                 else
5880                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5881                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5882
5883                 switch (dpll & DPLL_MODE_MASK) {
5884                 case DPLLB_MODE_DAC_SERIAL:
5885                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5886                                 5 : 10;
5887                         break;
5888                 case DPLLB_MODE_LVDS:
5889                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5890                                 7 : 14;
5891                         break;
5892                 default:
5893                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5894                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5895                         return 0;
5896                 }
5897
5898                 /* XXX: Handle the 100Mhz refclk */
5899                 intel_clock(dev, 96000, &clock);
5900         } else {
5901                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5902
5903                 if (is_lvds) {
5904                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5905                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5906                         clock.p2 = 14;
5907
5908                         if ((dpll & PLL_REF_INPUT_MASK) ==
5909                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5910                                 /* XXX: might not be 66MHz */
5911                                 intel_clock(dev, 66000, &clock);
5912                         } else
5913                                 intel_clock(dev, 48000, &clock);
5914                 } else {
5915                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5916                                 clock.p1 = 2;
5917                         else {
5918                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5919                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5920                         }
5921                         if (dpll & PLL_P2_DIVIDE_BY_4)
5922                                 clock.p2 = 4;
5923                         else
5924                                 clock.p2 = 2;
5925
5926                         intel_clock(dev, 48000, &clock);
5927                 }
5928         }
5929
5930         /* XXX: It would be nice to validate the clocks, but we can't reuse
5931          * i830PllIsValid() because it relies on the xf86_config connector
5932          * configuration being accurate, which it isn't necessarily.
5933          */
5934
5935         return clock.dot;
5936 }
5937
5938 /** Returns the currently programmed mode of the given pipe. */
5939 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5940                                              struct drm_crtc *crtc)
5941 {
5942         struct drm_i915_private *dev_priv = dev->dev_private;
5943         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5944         int pipe = intel_crtc->pipe;
5945         struct drm_display_mode *mode;
5946         int htot = I915_READ(HTOTAL(pipe));
5947         int hsync = I915_READ(HSYNC(pipe));
5948         int vtot = I915_READ(VTOTAL(pipe));
5949         int vsync = I915_READ(VSYNC(pipe));
5950
5951         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5952         if (!mode)
5953                 return NULL;
5954
5955         mode->clock = intel_crtc_clock_get(dev, crtc);
5956         mode->hdisplay = (htot & 0xffff) + 1;
5957         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5958         mode->hsync_start = (hsync & 0xffff) + 1;
5959         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5960         mode->vdisplay = (vtot & 0xffff) + 1;
5961         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5962         mode->vsync_start = (vsync & 0xffff) + 1;
5963         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5964
5965         drm_mode_set_name(mode);
5966
5967         return mode;
5968 }
5969
5970 static void intel_increase_pllclock(struct drm_crtc *crtc)
5971 {
5972         struct drm_device *dev = crtc->dev;
5973         drm_i915_private_t *dev_priv = dev->dev_private;
5974         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5975         int pipe = intel_crtc->pipe;
5976         int dpll_reg = DPLL(pipe);
5977         int dpll;
5978
5979         if (HAS_PCH_SPLIT(dev))
5980                 return;
5981
5982         if (!dev_priv->lvds_downclock_avail)
5983                 return;
5984
5985         dpll = I915_READ(dpll_reg);
5986         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5987                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5988
5989                 assert_panel_unlocked(dev_priv, pipe);
5990
5991                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5992                 I915_WRITE(dpll_reg, dpll);
5993                 intel_wait_for_vblank(dev, pipe);
5994
5995                 dpll = I915_READ(dpll_reg);
5996                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5997                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5998         }
5999 }
6000
6001 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6002 {
6003         struct drm_device *dev = crtc->dev;
6004         drm_i915_private_t *dev_priv = dev->dev_private;
6005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6006
6007         if (HAS_PCH_SPLIT(dev))
6008                 return;
6009
6010         if (!dev_priv->lvds_downclock_avail)
6011                 return;
6012
6013         /*
6014          * Since this is called by a timer, we should never get here in
6015          * the manual case.
6016          */
6017         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6018                 int pipe = intel_crtc->pipe;
6019                 int dpll_reg = DPLL(pipe);
6020                 int dpll;
6021
6022                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6023
6024                 assert_panel_unlocked(dev_priv, pipe);
6025
6026                 dpll = I915_READ(dpll_reg);
6027                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6028                 I915_WRITE(dpll_reg, dpll);
6029                 intel_wait_for_vblank(dev, pipe);
6030                 dpll = I915_READ(dpll_reg);
6031                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6032                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6033         }
6034
6035 }
6036
6037 void intel_mark_busy(struct drm_device *dev)
6038 {
6039         i915_update_gfx_val(dev->dev_private);
6040 }
6041
6042 void intel_mark_idle(struct drm_device *dev)
6043 {
6044 }
6045
6046 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6047 {
6048         struct drm_device *dev = obj->base.dev;
6049         struct drm_crtc *crtc;
6050
6051         if (!i915_powersave)
6052                 return;
6053
6054         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6055                 if (!crtc->fb)
6056                         continue;
6057
6058                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6059                         intel_increase_pllclock(crtc);
6060         }
6061 }
6062
6063 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6064 {
6065         struct drm_device *dev = obj->base.dev;
6066         struct drm_crtc *crtc;
6067
6068         if (!i915_powersave)
6069                 return;
6070
6071         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6072                 if (!crtc->fb)
6073                         continue;
6074
6075                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6076                         intel_decrease_pllclock(crtc);
6077         }
6078 }
6079
6080 static void intel_crtc_destroy(struct drm_crtc *crtc)
6081 {
6082         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6083         struct drm_device *dev = crtc->dev;
6084         struct intel_unpin_work *work;
6085         unsigned long flags;
6086
6087         spin_lock_irqsave(&dev->event_lock, flags);
6088         work = intel_crtc->unpin_work;
6089         intel_crtc->unpin_work = NULL;
6090         spin_unlock_irqrestore(&dev->event_lock, flags);
6091
6092         if (work) {
6093                 cancel_work_sync(&work->work);
6094                 kfree(work);
6095         }
6096
6097         drm_crtc_cleanup(crtc);
6098
6099         kfree(intel_crtc);
6100 }
6101
6102 static void intel_unpin_work_fn(struct work_struct *__work)
6103 {
6104         struct intel_unpin_work *work =
6105                 container_of(__work, struct intel_unpin_work, work);
6106
6107         mutex_lock(&work->dev->struct_mutex);
6108         intel_unpin_fb_obj(work->old_fb_obj);
6109         drm_gem_object_unreference(&work->pending_flip_obj->base);
6110         drm_gem_object_unreference(&work->old_fb_obj->base);
6111
6112         intel_update_fbc(work->dev);
6113         mutex_unlock(&work->dev->struct_mutex);
6114         kfree(work);
6115 }
6116
6117 static void do_intel_finish_page_flip(struct drm_device *dev,
6118                                       struct drm_crtc *crtc)
6119 {
6120         drm_i915_private_t *dev_priv = dev->dev_private;
6121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6122         struct intel_unpin_work *work;
6123         struct drm_i915_gem_object *obj;
6124         struct drm_pending_vblank_event *e;
6125         struct timeval tnow, tvbl;
6126         unsigned long flags;
6127
6128         /* Ignore early vblank irqs */
6129         if (intel_crtc == NULL)
6130                 return;
6131
6132         do_gettimeofday(&tnow);
6133
6134         spin_lock_irqsave(&dev->event_lock, flags);
6135         work = intel_crtc->unpin_work;
6136         if (work == NULL || !work->pending) {
6137                 spin_unlock_irqrestore(&dev->event_lock, flags);
6138                 return;
6139         }
6140
6141         intel_crtc->unpin_work = NULL;
6142
6143         if (work->event) {
6144                 e = work->event;
6145                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6146
6147                 /* Called before vblank count and timestamps have
6148                  * been updated for the vblank interval of flip
6149                  * completion? Need to increment vblank count and
6150                  * add one videorefresh duration to returned timestamp
6151                  * to account for this. We assume this happened if we
6152                  * get called over 0.9 frame durations after the last
6153                  * timestamped vblank.
6154                  *
6155                  * This calculation can not be used with vrefresh rates
6156                  * below 5Hz (10Hz to be on the safe side) without
6157                  * promoting to 64 integers.
6158                  */
6159                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6160                     9 * crtc->framedur_ns) {
6161                         e->event.sequence++;
6162                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6163                                              crtc->framedur_ns);
6164                 }
6165
6166                 e->event.tv_sec = tvbl.tv_sec;
6167                 e->event.tv_usec = tvbl.tv_usec;
6168
6169                 list_add_tail(&e->base.link,
6170                               &e->base.file_priv->event_list);
6171                 wake_up_interruptible(&e->base.file_priv->event_wait);
6172         }
6173
6174         drm_vblank_put(dev, intel_crtc->pipe);
6175
6176         spin_unlock_irqrestore(&dev->event_lock, flags);
6177
6178         obj = work->old_fb_obj;
6179
6180         atomic_clear_mask(1 << intel_crtc->plane,
6181                           &obj->pending_flip.counter);
6182         if (atomic_read(&obj->pending_flip) == 0)
6183                 wake_up(&dev_priv->pending_flip_queue);
6184
6185         schedule_work(&work->work);
6186
6187         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6188 }
6189
6190 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6191 {
6192         drm_i915_private_t *dev_priv = dev->dev_private;
6193         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6194
6195         do_intel_finish_page_flip(dev, crtc);
6196 }
6197
6198 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6199 {
6200         drm_i915_private_t *dev_priv = dev->dev_private;
6201         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6202
6203         do_intel_finish_page_flip(dev, crtc);
6204 }
6205
6206 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6207 {
6208         drm_i915_private_t *dev_priv = dev->dev_private;
6209         struct intel_crtc *intel_crtc =
6210                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6211         unsigned long flags;
6212
6213         spin_lock_irqsave(&dev->event_lock, flags);
6214         if (intel_crtc->unpin_work) {
6215                 if ((++intel_crtc->unpin_work->pending) > 1)
6216                         DRM_ERROR("Prepared flip multiple times\n");
6217         } else {
6218                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6219         }
6220         spin_unlock_irqrestore(&dev->event_lock, flags);
6221 }
6222
6223 static int intel_gen2_queue_flip(struct drm_device *dev,
6224                                  struct drm_crtc *crtc,
6225                                  struct drm_framebuffer *fb,
6226                                  struct drm_i915_gem_object *obj)
6227 {
6228         struct drm_i915_private *dev_priv = dev->dev_private;
6229         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6230         u32 flip_mask;
6231         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6232         int ret;
6233
6234         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6235         if (ret)
6236                 goto err;
6237
6238         ret = intel_ring_begin(ring, 6);
6239         if (ret)
6240                 goto err_unpin;
6241
6242         /* Can't queue multiple flips, so wait for the previous
6243          * one to finish before executing the next.
6244          */
6245         if (intel_crtc->plane)
6246                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6247         else
6248                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6249         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6250         intel_ring_emit(ring, MI_NOOP);
6251         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6252                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6253         intel_ring_emit(ring, fb->pitches[0]);
6254         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6255         intel_ring_emit(ring, 0); /* aux display base address, unused */
6256         intel_ring_advance(ring);
6257         return 0;
6258
6259 err_unpin:
6260         intel_unpin_fb_obj(obj);
6261 err:
6262         return ret;
6263 }
6264
6265 static int intel_gen3_queue_flip(struct drm_device *dev,
6266                                  struct drm_crtc *crtc,
6267                                  struct drm_framebuffer *fb,
6268                                  struct drm_i915_gem_object *obj)
6269 {
6270         struct drm_i915_private *dev_priv = dev->dev_private;
6271         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6272         u32 flip_mask;
6273         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6274         int ret;
6275
6276         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6277         if (ret)
6278                 goto err;
6279
6280         ret = intel_ring_begin(ring, 6);
6281         if (ret)
6282                 goto err_unpin;
6283
6284         if (intel_crtc->plane)
6285                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6286         else
6287                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6288         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6289         intel_ring_emit(ring, MI_NOOP);
6290         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6291                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6292         intel_ring_emit(ring, fb->pitches[0]);
6293         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6294         intel_ring_emit(ring, MI_NOOP);
6295
6296         intel_ring_advance(ring);
6297         return 0;
6298
6299 err_unpin:
6300         intel_unpin_fb_obj(obj);
6301 err:
6302         return ret;
6303 }
6304
6305 static int intel_gen4_queue_flip(struct drm_device *dev,
6306                                  struct drm_crtc *crtc,
6307                                  struct drm_framebuffer *fb,
6308                                  struct drm_i915_gem_object *obj)
6309 {
6310         struct drm_i915_private *dev_priv = dev->dev_private;
6311         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6312         uint32_t pf, pipesrc;
6313         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6314         int ret;
6315
6316         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6317         if (ret)
6318                 goto err;
6319
6320         ret = intel_ring_begin(ring, 4);
6321         if (ret)
6322                 goto err_unpin;
6323
6324         /* i965+ uses the linear or tiled offsets from the
6325          * Display Registers (which do not change across a page-flip)
6326          * so we need only reprogram the base address.
6327          */
6328         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6329                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6330         intel_ring_emit(ring, fb->pitches[0]);
6331         intel_ring_emit(ring,
6332                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6333                         obj->tiling_mode);
6334
6335         /* XXX Enabling the panel-fitter across page-flip is so far
6336          * untested on non-native modes, so ignore it for now.
6337          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6338          */
6339         pf = 0;
6340         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6341         intel_ring_emit(ring, pf | pipesrc);
6342         intel_ring_advance(ring);
6343         return 0;
6344
6345 err_unpin:
6346         intel_unpin_fb_obj(obj);
6347 err:
6348         return ret;
6349 }
6350
6351 static int intel_gen6_queue_flip(struct drm_device *dev,
6352                                  struct drm_crtc *crtc,
6353                                  struct drm_framebuffer *fb,
6354                                  struct drm_i915_gem_object *obj)
6355 {
6356         struct drm_i915_private *dev_priv = dev->dev_private;
6357         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6358         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6359         uint32_t pf, pipesrc;
6360         int ret;
6361
6362         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6363         if (ret)
6364                 goto err;
6365
6366         ret = intel_ring_begin(ring, 4);
6367         if (ret)
6368                 goto err_unpin;
6369
6370         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6371                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6372         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6373         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6374
6375         /* Contrary to the suggestions in the documentation,
6376          * "Enable Panel Fitter" does not seem to be required when page
6377          * flipping with a non-native mode, and worse causes a normal
6378          * modeset to fail.
6379          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6380          */
6381         pf = 0;
6382         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6383         intel_ring_emit(ring, pf | pipesrc);
6384         intel_ring_advance(ring);
6385         return 0;
6386
6387 err_unpin:
6388         intel_unpin_fb_obj(obj);
6389 err:
6390         return ret;
6391 }
6392
6393 /*
6394  * On gen7 we currently use the blit ring because (in early silicon at least)
6395  * the render ring doesn't give us interrpts for page flip completion, which
6396  * means clients will hang after the first flip is queued.  Fortunately the
6397  * blit ring generates interrupts properly, so use it instead.
6398  */
6399 static int intel_gen7_queue_flip(struct drm_device *dev,
6400                                  struct drm_crtc *crtc,
6401                                  struct drm_framebuffer *fb,
6402                                  struct drm_i915_gem_object *obj)
6403 {
6404         struct drm_i915_private *dev_priv = dev->dev_private;
6405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6406         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6407         uint32_t plane_bit = 0;
6408         int ret;
6409
6410         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6411         if (ret)
6412                 goto err;
6413
6414         switch(intel_crtc->plane) {
6415         case PLANE_A:
6416                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6417                 break;
6418         case PLANE_B:
6419                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6420                 break;
6421         case PLANE_C:
6422                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6423                 break;
6424         default:
6425                 WARN_ONCE(1, "unknown plane in flip command\n");
6426                 ret = -ENODEV;
6427                 goto err_unpin;
6428         }
6429
6430         ret = intel_ring_begin(ring, 4);
6431         if (ret)
6432                 goto err_unpin;
6433
6434         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6435         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6436         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6437         intel_ring_emit(ring, (MI_NOOP));
6438         intel_ring_advance(ring);
6439         return 0;
6440
6441 err_unpin:
6442         intel_unpin_fb_obj(obj);
6443 err:
6444         return ret;
6445 }
6446
6447 static int intel_default_queue_flip(struct drm_device *dev,
6448                                     struct drm_crtc *crtc,
6449                                     struct drm_framebuffer *fb,
6450                                     struct drm_i915_gem_object *obj)
6451 {
6452         return -ENODEV;
6453 }
6454
6455 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6456                                 struct drm_framebuffer *fb,
6457                                 struct drm_pending_vblank_event *event)
6458 {
6459         struct drm_device *dev = crtc->dev;
6460         struct drm_i915_private *dev_priv = dev->dev_private;
6461         struct intel_framebuffer *intel_fb;
6462         struct drm_i915_gem_object *obj;
6463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6464         struct intel_unpin_work *work;
6465         unsigned long flags;
6466         int ret;
6467
6468         /* Can't change pixel format via MI display flips. */
6469         if (fb->pixel_format != crtc->fb->pixel_format)
6470                 return -EINVAL;
6471
6472         /*
6473          * TILEOFF/LINOFF registers can't be changed via MI display flips.
6474          * Note that pitch changes could also affect these register.
6475          */
6476         if (INTEL_INFO(dev)->gen > 3 &&
6477             (fb->offsets[0] != crtc->fb->offsets[0] ||
6478              fb->pitches[0] != crtc->fb->pitches[0]))
6479                 return -EINVAL;
6480
6481         work = kzalloc(sizeof *work, GFP_KERNEL);
6482         if (work == NULL)
6483                 return -ENOMEM;
6484
6485         work->event = event;
6486         work->dev = crtc->dev;
6487         intel_fb = to_intel_framebuffer(crtc->fb);
6488         work->old_fb_obj = intel_fb->obj;
6489         INIT_WORK(&work->work, intel_unpin_work_fn);
6490
6491         ret = drm_vblank_get(dev, intel_crtc->pipe);
6492         if (ret)
6493                 goto free_work;
6494
6495         /* We borrow the event spin lock for protecting unpin_work */
6496         spin_lock_irqsave(&dev->event_lock, flags);
6497         if (intel_crtc->unpin_work) {
6498                 spin_unlock_irqrestore(&dev->event_lock, flags);
6499                 kfree(work);
6500                 drm_vblank_put(dev, intel_crtc->pipe);
6501
6502                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6503                 return -EBUSY;
6504         }
6505         intel_crtc->unpin_work = work;
6506         spin_unlock_irqrestore(&dev->event_lock, flags);
6507
6508         intel_fb = to_intel_framebuffer(fb);
6509         obj = intel_fb->obj;
6510
6511         ret = i915_mutex_lock_interruptible(dev);
6512         if (ret)
6513                 goto cleanup;
6514
6515         /* Reference the objects for the scheduled work. */
6516         drm_gem_object_reference(&work->old_fb_obj->base);
6517         drm_gem_object_reference(&obj->base);
6518
6519         crtc->fb = fb;
6520
6521         work->pending_flip_obj = obj;
6522
6523         work->enable_stall_check = true;
6524
6525         /* Block clients from rendering to the new back buffer until
6526          * the flip occurs and the object is no longer visible.
6527          */
6528         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6529
6530         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6531         if (ret)
6532                 goto cleanup_pending;
6533
6534         intel_disable_fbc(dev);
6535         intel_mark_fb_busy(obj);
6536         mutex_unlock(&dev->struct_mutex);
6537
6538         trace_i915_flip_request(intel_crtc->plane, obj);
6539
6540         return 0;
6541
6542 cleanup_pending:
6543         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6544         drm_gem_object_unreference(&work->old_fb_obj->base);
6545         drm_gem_object_unreference(&obj->base);
6546         mutex_unlock(&dev->struct_mutex);
6547
6548 cleanup:
6549         spin_lock_irqsave(&dev->event_lock, flags);
6550         intel_crtc->unpin_work = NULL;
6551         spin_unlock_irqrestore(&dev->event_lock, flags);
6552
6553         drm_vblank_put(dev, intel_crtc->pipe);
6554 free_work:
6555         kfree(work);
6556
6557         return ret;
6558 }
6559
6560 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6561         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6562         .load_lut = intel_crtc_load_lut,
6563         .disable = intel_crtc_disable,
6564 };
6565
6566 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6567                                   struct drm_crtc *crtc)
6568 {
6569         struct drm_device *dev;
6570         struct drm_crtc *tmp;
6571         int crtc_mask = 1;
6572
6573         WARN(!crtc, "checking null crtc?\n");
6574
6575         dev = crtc->dev;
6576
6577         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6578                 if (tmp == crtc)
6579                         break;
6580                 crtc_mask <<= 1;
6581         }
6582
6583         if (encoder->possible_crtcs & crtc_mask)
6584                 return true;
6585         return false;
6586 }
6587
6588 static int
6589 intel_crtc_helper_disable(struct drm_crtc *crtc)
6590 {
6591         struct drm_device *dev = crtc->dev;
6592         struct drm_connector *connector;
6593         struct drm_encoder *encoder;
6594
6595         /* Decouple all encoders and their attached connectors from this crtc */
6596         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
6597                 if (encoder->crtc != crtc)
6598                         continue;
6599
6600                 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6601                         if (connector->encoder != encoder)
6602                                 continue;
6603
6604                         connector->encoder = NULL;
6605                 }
6606         }
6607
6608         drm_helper_disable_unused_functions(dev);
6609         return 0;
6610 }
6611
6612 static void
6613 intel_crtc_prepare_encoders(struct drm_device *dev)
6614 {
6615         struct intel_encoder *encoder;
6616
6617         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6618                 /* Disable unused encoders */
6619                 if (encoder->base.crtc == NULL)
6620                         encoder->disable(encoder);
6621         }
6622 }
6623
6624 bool intel_set_mode(struct drm_crtc *crtc,
6625                     struct drm_display_mode *mode,
6626                     int x, int y, struct drm_framebuffer *old_fb)
6627 {
6628         struct drm_device *dev = crtc->dev;
6629         drm_i915_private_t *dev_priv = dev->dev_private;
6630         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
6631         struct drm_encoder_helper_funcs *encoder_funcs;
6632         int saved_x, saved_y;
6633         struct drm_encoder *encoder;
6634         bool ret = true;
6635
6636         crtc->enabled = drm_helper_crtc_in_use(crtc);
6637         if (!crtc->enabled)
6638                 return true;
6639
6640         adjusted_mode = drm_mode_duplicate(dev, mode);
6641         if (!adjusted_mode)
6642                 return false;
6643
6644         saved_hwmode = crtc->hwmode;
6645         saved_mode = crtc->mode;
6646         saved_x = crtc->x;
6647         saved_y = crtc->y;
6648
6649         /* Update crtc values up front so the driver can rely on them for mode
6650          * setting.
6651          */
6652         crtc->mode = *mode;
6653         crtc->x = x;
6654         crtc->y = y;
6655
6656         /* Pass our mode to the connectors and the CRTC to give them a chance to
6657          * adjust it according to limitations or connector properties, and also
6658          * a chance to reject the mode entirely.
6659          */
6660         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
6661
6662                 if (encoder->crtc != crtc)
6663                         continue;
6664                 encoder_funcs = encoder->helper_private;
6665                 if (!(ret = encoder_funcs->mode_fixup(encoder, mode,
6666                                                       adjusted_mode))) {
6667                         DRM_DEBUG_KMS("Encoder fixup failed\n");
6668                         goto done;
6669                 }
6670         }
6671
6672         if (!(ret = intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
6673                 DRM_DEBUG_KMS("CRTC fixup failed\n");
6674                 goto done;
6675         }
6676         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
6677
6678         intel_crtc_prepare_encoders(dev);
6679
6680         dev_priv->display.crtc_disable(crtc);
6681
6682         /* Set up the DPLL and any encoders state that needs to adjust or depend
6683          * on the DPLL.
6684          */
6685         ret = !intel_crtc_mode_set(crtc, mode, adjusted_mode, x, y, old_fb);
6686         if (!ret)
6687             goto done;
6688
6689         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
6690
6691                 if (encoder->crtc != crtc)
6692                         continue;
6693
6694                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6695                         encoder->base.id, drm_get_encoder_name(encoder),
6696                         mode->base.id, mode->name);
6697                 encoder_funcs = encoder->helper_private;
6698                 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
6699         }
6700
6701         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
6702         dev_priv->display.crtc_enable(crtc);
6703
6704         /* Store real post-adjustment hardware mode. */
6705         crtc->hwmode = *adjusted_mode;
6706
6707         /* Calculate and store various constants which
6708          * are later needed by vblank and swap-completion
6709          * timestamping. They are derived from true hwmode.
6710          */
6711         drm_calc_timestamping_constants(crtc);
6712
6713         /* FIXME: add subpixel order */
6714 done:
6715         drm_mode_destroy(dev, adjusted_mode);
6716         if (!ret) {
6717                 crtc->hwmode = saved_hwmode;
6718                 crtc->mode = saved_mode;
6719                 crtc->x = saved_x;
6720                 crtc->y = saved_y;
6721         }
6722
6723         return ret;
6724 }
6725
6726 static int intel_crtc_set_config(struct drm_mode_set *set)
6727 {
6728         struct drm_device *dev;
6729         struct drm_crtc *save_crtcs, *new_crtc, *crtc;
6730         struct drm_encoder *save_encoders, *new_encoder, *encoder;
6731         struct drm_framebuffer *old_fb = NULL;
6732         bool mode_changed = false; /* if true do a full mode set */
6733         bool fb_changed = false; /* if true and !mode_changed just do a flip */
6734         struct drm_connector *save_connectors, *connector;
6735         int count = 0, ro;
6736         struct drm_mode_set save_set;
6737         int ret;
6738         int i;
6739
6740         DRM_DEBUG_KMS("\n");
6741
6742         if (!set)
6743                 return -EINVAL;
6744
6745         if (!set->crtc)
6746                 return -EINVAL;
6747
6748         if (!set->crtc->helper_private)
6749                 return -EINVAL;
6750
6751         if (!set->mode)
6752                 set->fb = NULL;
6753
6754         if (set->fb) {
6755                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
6756                                 set->crtc->base.id, set->fb->base.id,
6757                                 (int)set->num_connectors, set->x, set->y);
6758         } else {
6759                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
6760                 return intel_crtc_helper_disable(set->crtc);
6761         }
6762
6763         dev = set->crtc->dev;
6764
6765         /* Allocate space for the backup of all (non-pointer) crtc, encoder and
6766          * connector data. */
6767         save_crtcs = kzalloc(dev->mode_config.num_crtc *
6768                              sizeof(struct drm_crtc), GFP_KERNEL);
6769         if (!save_crtcs)
6770                 return -ENOMEM;
6771
6772         save_encoders = kzalloc(dev->mode_config.num_encoder *
6773                                 sizeof(struct drm_encoder), GFP_KERNEL);
6774         if (!save_encoders) {
6775                 kfree(save_crtcs);
6776                 return -ENOMEM;
6777         }
6778
6779         save_connectors = kzalloc(dev->mode_config.num_connector *
6780                                 sizeof(struct drm_connector), GFP_KERNEL);
6781         if (!save_connectors) {
6782                 kfree(save_crtcs);
6783                 kfree(save_encoders);
6784                 return -ENOMEM;
6785         }
6786
6787         /* Copy data. Note that driver private data is not affected.
6788          * Should anything bad happen only the expected state is
6789          * restored, not the drivers personal bookkeeping.
6790          */
6791         count = 0;
6792         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6793                 save_crtcs[count++] = *crtc;
6794         }
6795
6796         count = 0;
6797         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
6798                 save_encoders[count++] = *encoder;
6799         }
6800
6801         count = 0;
6802         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6803                 save_connectors[count++] = *connector;
6804         }
6805
6806         save_set.crtc = set->crtc;
6807         save_set.mode = &set->crtc->mode;
6808         save_set.x = set->crtc->x;
6809         save_set.y = set->crtc->y;
6810         save_set.fb = set->crtc->fb;
6811
6812         /* We should be able to check here if the fb has the same properties
6813          * and then just flip_or_move it */
6814         if (set->crtc->fb != set->fb) {
6815                 /* If we have no fb then treat it as a full mode set */
6816                 if (set->crtc->fb == NULL) {
6817                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
6818                         mode_changed = true;
6819                 } else if (set->fb == NULL) {
6820                         mode_changed = true;
6821                 } else if (set->fb->depth != set->crtc->fb->depth) {
6822                         mode_changed = true;
6823                 } else if (set->fb->bits_per_pixel !=
6824                            set->crtc->fb->bits_per_pixel) {
6825                         mode_changed = true;
6826                 } else
6827                         fb_changed = true;
6828         }
6829
6830         if (set->x != set->crtc->x || set->y != set->crtc->y)
6831                 fb_changed = true;
6832
6833         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
6834                 DRM_DEBUG_KMS("modes are different, full mode set\n");
6835                 drm_mode_debug_printmodeline(&set->crtc->mode);
6836                 drm_mode_debug_printmodeline(set->mode);
6837                 mode_changed = true;
6838         }
6839
6840         /* a) traverse passed in connector list and get encoders for them */
6841         count = 0;
6842         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6843                 new_encoder = connector->encoder;
6844                 for (ro = 0; ro < set->num_connectors; ro++) {
6845                         if (set->connectors[ro] == connector) {
6846                                 new_encoder =
6847                                         &intel_attached_encoder(connector)->base;
6848                                 break;
6849                         }
6850                 }
6851
6852                 if (new_encoder != connector->encoder) {
6853                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
6854                         mode_changed = true;
6855                         /* If the encoder is reused for another connector, then
6856                          * the appropriate crtc will be set later.
6857                          */
6858                         if (connector->encoder)
6859                                 connector->encoder->crtc = NULL;
6860                         connector->encoder = new_encoder;
6861                 }
6862         }
6863
6864         count = 0;
6865         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6866                 if (!connector->encoder)
6867                         continue;
6868
6869                 if (connector->encoder->crtc == set->crtc)
6870                         new_crtc = NULL;
6871                 else
6872                         new_crtc = connector->encoder->crtc;
6873
6874                 for (ro = 0; ro < set->num_connectors; ro++) {
6875                         if (set->connectors[ro] == connector)
6876                                 new_crtc = set->crtc;
6877                 }
6878
6879                 /* Make sure the new CRTC will work with the encoder */
6880                 if (new_crtc &&
6881                     !intel_encoder_crtc_ok(connector->encoder, new_crtc)) {
6882                         ret = -EINVAL;
6883                         goto fail;
6884                 }
6885                 if (new_crtc != connector->encoder->crtc) {
6886                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
6887                         mode_changed = true;
6888                         connector->encoder->crtc = new_crtc;
6889                 }
6890                 if (new_crtc) {
6891                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
6892                                 connector->base.id, drm_get_connector_name(connector),
6893                                 new_crtc->base.id);
6894                 } else {
6895                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
6896                                 connector->base.id, drm_get_connector_name(connector));
6897                 }
6898         }
6899
6900         if (mode_changed) {
6901                 set->crtc->enabled = drm_helper_crtc_in_use(set->crtc);
6902                 if (set->crtc->enabled) {
6903                         DRM_DEBUG_KMS("attempting to set mode from"
6904                                         " userspace\n");
6905                         drm_mode_debug_printmodeline(set->mode);
6906                         old_fb = set->crtc->fb;
6907                         set->crtc->fb = set->fb;
6908                         if (!intel_set_mode(set->crtc, set->mode,
6909                                             set->x, set->y, old_fb)) {
6910                                 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
6911                                           set->crtc->base.id);
6912                                 set->crtc->fb = old_fb;
6913                                 ret = -EINVAL;
6914                                 goto fail;
6915                         }
6916                         DRM_DEBUG_KMS("Setting connector DPMS state to on\n");
6917                         for (i = 0; i < set->num_connectors; i++) {
6918                                 DRM_DEBUG_KMS("\t[CONNECTOR:%d:%s] set DPMS on\n", set->connectors[i]->base.id,
6919                                               drm_get_connector_name(set->connectors[i]));
6920                                 set->connectors[i]->funcs->dpms(set->connectors[i], DRM_MODE_DPMS_ON);
6921                         }
6922                 }
6923                 drm_helper_disable_unused_functions(dev);
6924         } else if (fb_changed) {
6925                 set->crtc->x = set->x;
6926                 set->crtc->y = set->y;
6927
6928                 old_fb = set->crtc->fb;
6929                 if (set->crtc->fb != set->fb)
6930                         set->crtc->fb = set->fb;
6931                 ret = intel_pipe_set_base(set->crtc,
6932                                           set->x, set->y, old_fb);
6933                 if (ret != 0) {
6934                         set->crtc->fb = old_fb;
6935                         goto fail;
6936                 }
6937         }
6938
6939         kfree(save_connectors);
6940         kfree(save_encoders);
6941         kfree(save_crtcs);
6942         return 0;
6943
6944 fail:
6945         /* Restore all previous data. */
6946         count = 0;
6947         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6948                 *crtc = save_crtcs[count++];
6949         }
6950
6951         count = 0;
6952         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
6953                 *encoder = save_encoders[count++];
6954         }
6955
6956         count = 0;
6957         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6958                 *connector = save_connectors[count++];
6959         }
6960
6961         /* Try to restore the config */
6962         if (mode_changed &&
6963             !intel_set_mode(save_set.crtc, save_set.mode,
6964                             save_set.x, save_set.y, save_set.fb))
6965                 DRM_ERROR("failed to restore config after modeset failure\n");
6966
6967         kfree(save_connectors);
6968         kfree(save_encoders);
6969         kfree(save_crtcs);
6970         return ret;
6971 }
6972
6973 static const struct drm_crtc_funcs intel_crtc_funcs = {
6974         .cursor_set = intel_crtc_cursor_set,
6975         .cursor_move = intel_crtc_cursor_move,
6976         .gamma_set = intel_crtc_gamma_set,
6977         .set_config = intel_crtc_set_config,
6978         .destroy = intel_crtc_destroy,
6979         .page_flip = intel_crtc_page_flip,
6980 };
6981
6982 static void intel_pch_pll_init(struct drm_device *dev)
6983 {
6984         drm_i915_private_t *dev_priv = dev->dev_private;
6985         int i;
6986
6987         if (dev_priv->num_pch_pll == 0) {
6988                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
6989                 return;
6990         }
6991
6992         for (i = 0; i < dev_priv->num_pch_pll; i++) {
6993                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
6994                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
6995                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
6996         }
6997 }
6998
6999 static void intel_crtc_init(struct drm_device *dev, int pipe)
7000 {
7001         drm_i915_private_t *dev_priv = dev->dev_private;
7002         struct intel_crtc *intel_crtc;
7003         int i;
7004
7005         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7006         if (intel_crtc == NULL)
7007                 return;
7008
7009         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7010
7011         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7012         for (i = 0; i < 256; i++) {
7013                 intel_crtc->lut_r[i] = i;
7014                 intel_crtc->lut_g[i] = i;
7015                 intel_crtc->lut_b[i] = i;
7016         }
7017
7018         /* Swap pipes & planes for FBC on pre-965 */
7019         intel_crtc->pipe = pipe;
7020         intel_crtc->plane = pipe;
7021         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7022                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7023                 intel_crtc->plane = !pipe;
7024         }
7025
7026         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7027                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7028         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7029         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7030
7031         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7032
7033         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7034 }
7035
7036 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7037                                 struct drm_file *file)
7038 {
7039         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7040         struct drm_mode_object *drmmode_obj;
7041         struct intel_crtc *crtc;
7042
7043         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7044                 return -ENODEV;
7045
7046         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7047                         DRM_MODE_OBJECT_CRTC);
7048
7049         if (!drmmode_obj) {
7050                 DRM_ERROR("no such CRTC id\n");
7051                 return -EINVAL;
7052         }
7053
7054         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7055         pipe_from_crtc_id->pipe = crtc->pipe;
7056
7057         return 0;
7058 }
7059
7060 static int intel_encoder_clones(struct intel_encoder *encoder)
7061 {
7062         struct drm_device *dev = encoder->base.dev;
7063         struct intel_encoder *source_encoder;
7064         int index_mask = 0;
7065         int entry = 0;
7066
7067         list_for_each_entry(source_encoder,
7068                             &dev->mode_config.encoder_list, base.head) {
7069
7070                 if (encoder == source_encoder)
7071                         index_mask |= (1 << entry);
7072
7073                 /* Intel hw has only one MUX where enocoders could be cloned. */
7074                 if (encoder->cloneable && source_encoder->cloneable)
7075                         index_mask |= (1 << entry);
7076
7077                 entry++;
7078         }
7079
7080         return index_mask;
7081 }
7082
7083 static bool has_edp_a(struct drm_device *dev)
7084 {
7085         struct drm_i915_private *dev_priv = dev->dev_private;
7086
7087         if (!IS_MOBILE(dev))
7088                 return false;
7089
7090         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7091                 return false;
7092
7093         if (IS_GEN5(dev) &&
7094             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7095                 return false;
7096
7097         return true;
7098 }
7099
7100 static void intel_setup_outputs(struct drm_device *dev)
7101 {
7102         struct drm_i915_private *dev_priv = dev->dev_private;
7103         struct intel_encoder *encoder;
7104         bool dpd_is_edp = false;
7105         bool has_lvds;
7106
7107         has_lvds = intel_lvds_init(dev);
7108         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7109                 /* disable the panel fitter on everything but LVDS */
7110                 I915_WRITE(PFIT_CONTROL, 0);
7111         }
7112
7113         if (HAS_PCH_SPLIT(dev)) {
7114                 dpd_is_edp = intel_dpd_is_edp(dev);
7115
7116                 if (has_edp_a(dev))
7117                         intel_dp_init(dev, DP_A, PORT_A);
7118
7119                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7120                         intel_dp_init(dev, PCH_DP_D, PORT_D);
7121         }
7122
7123         intel_crt_init(dev);
7124
7125         if (IS_HASWELL(dev)) {
7126                 int found;
7127
7128                 /* Haswell uses DDI functions to detect digital outputs */
7129                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7130                 /* DDI A only supports eDP */
7131                 if (found)
7132                         intel_ddi_init(dev, PORT_A);
7133
7134                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7135                  * register */
7136                 found = I915_READ(SFUSE_STRAP);
7137
7138                 if (found & SFUSE_STRAP_DDIB_DETECTED)
7139                         intel_ddi_init(dev, PORT_B);
7140                 if (found & SFUSE_STRAP_DDIC_DETECTED)
7141                         intel_ddi_init(dev, PORT_C);
7142                 if (found & SFUSE_STRAP_DDID_DETECTED)
7143                         intel_ddi_init(dev, PORT_D);
7144         } else if (HAS_PCH_SPLIT(dev)) {
7145                 int found;
7146
7147                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7148                         /* PCH SDVOB multiplex with HDMIB */
7149                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
7150                         if (!found)
7151                                 intel_hdmi_init(dev, HDMIB, PORT_B);
7152                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7153                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
7154                 }
7155
7156                 if (I915_READ(HDMIC) & PORT_DETECTED)
7157                         intel_hdmi_init(dev, HDMIC, PORT_C);
7158
7159                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
7160                         intel_hdmi_init(dev, HDMID, PORT_D);
7161
7162                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7163                         intel_dp_init(dev, PCH_DP_C, PORT_C);
7164
7165                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7166                         intel_dp_init(dev, PCH_DP_D, PORT_D);
7167         } else if (IS_VALLEYVIEW(dev)) {
7168                 int found;
7169
7170                 if (I915_READ(SDVOB) & PORT_DETECTED) {
7171                         /* SDVOB multiplex with HDMIB */
7172                         found = intel_sdvo_init(dev, SDVOB, true);
7173                         if (!found)
7174                                 intel_hdmi_init(dev, SDVOB, PORT_B);
7175                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
7176                                 intel_dp_init(dev, DP_B, PORT_B);
7177                 }
7178
7179                 if (I915_READ(SDVOC) & PORT_DETECTED)
7180                         intel_hdmi_init(dev, SDVOC, PORT_C);
7181
7182                 /* Shares lanes with HDMI on SDVOC */
7183                 if (I915_READ(DP_C) & DP_DETECTED)
7184                         intel_dp_init(dev, DP_C, PORT_C);
7185         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7186                 bool found = false;
7187
7188                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7189                         DRM_DEBUG_KMS("probing SDVOB\n");
7190                         found = intel_sdvo_init(dev, SDVOB, true);
7191                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7192                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7193                                 intel_hdmi_init(dev, SDVOB, PORT_B);
7194                         }
7195
7196                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7197                                 DRM_DEBUG_KMS("probing DP_B\n");
7198                                 intel_dp_init(dev, DP_B, PORT_B);
7199                         }
7200                 }
7201
7202                 /* Before G4X SDVOC doesn't have its own detect register */
7203
7204                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7205                         DRM_DEBUG_KMS("probing SDVOC\n");
7206                         found = intel_sdvo_init(dev, SDVOC, false);
7207                 }
7208
7209                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7210
7211                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7212                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7213                                 intel_hdmi_init(dev, SDVOC, PORT_C);
7214                         }
7215                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7216                                 DRM_DEBUG_KMS("probing DP_C\n");
7217                                 intel_dp_init(dev, DP_C, PORT_C);
7218                         }
7219                 }
7220
7221                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7222                     (I915_READ(DP_D) & DP_DETECTED)) {
7223                         DRM_DEBUG_KMS("probing DP_D\n");
7224                         intel_dp_init(dev, DP_D, PORT_D);
7225                 }
7226         } else if (IS_GEN2(dev))
7227                 intel_dvo_init(dev);
7228
7229         if (SUPPORTS_TV(dev))
7230                 intel_tv_init(dev);
7231
7232         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7233                 encoder->base.possible_crtcs = encoder->crtc_mask;
7234                 encoder->base.possible_clones =
7235                         intel_encoder_clones(encoder);
7236         }
7237
7238         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7239                 ironlake_init_pch_refclk(dev);
7240 }
7241
7242 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7243 {
7244         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7245
7246         drm_framebuffer_cleanup(fb);
7247         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7248
7249         kfree(intel_fb);
7250 }
7251
7252 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7253                                                 struct drm_file *file,
7254                                                 unsigned int *handle)
7255 {
7256         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7257         struct drm_i915_gem_object *obj = intel_fb->obj;
7258
7259         return drm_gem_handle_create(file, &obj->base, handle);
7260 }
7261
7262 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7263         .destroy = intel_user_framebuffer_destroy,
7264         .create_handle = intel_user_framebuffer_create_handle,
7265 };
7266
7267 int intel_framebuffer_init(struct drm_device *dev,
7268                            struct intel_framebuffer *intel_fb,
7269                            struct drm_mode_fb_cmd2 *mode_cmd,
7270                            struct drm_i915_gem_object *obj)
7271 {
7272         int ret;
7273
7274         if (obj->tiling_mode == I915_TILING_Y)
7275                 return -EINVAL;
7276
7277         if (mode_cmd->pitches[0] & 63)
7278                 return -EINVAL;
7279
7280         switch (mode_cmd->pixel_format) {
7281         case DRM_FORMAT_RGB332:
7282         case DRM_FORMAT_RGB565:
7283         case DRM_FORMAT_XRGB8888:
7284         case DRM_FORMAT_XBGR8888:
7285         case DRM_FORMAT_ARGB8888:
7286         case DRM_FORMAT_XRGB2101010:
7287         case DRM_FORMAT_ARGB2101010:
7288                 /* RGB formats are common across chipsets */
7289                 break;
7290         case DRM_FORMAT_YUYV:
7291         case DRM_FORMAT_UYVY:
7292         case DRM_FORMAT_YVYU:
7293         case DRM_FORMAT_VYUY:
7294                 break;
7295         default:
7296                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7297                                 mode_cmd->pixel_format);
7298                 return -EINVAL;
7299         }
7300
7301         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7302         if (ret) {
7303                 DRM_ERROR("framebuffer init failed %d\n", ret);
7304                 return ret;
7305         }
7306
7307         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7308         intel_fb->obj = obj;
7309         return 0;
7310 }
7311
7312 static struct drm_framebuffer *
7313 intel_user_framebuffer_create(struct drm_device *dev,
7314                               struct drm_file *filp,
7315                               struct drm_mode_fb_cmd2 *mode_cmd)
7316 {
7317         struct drm_i915_gem_object *obj;
7318
7319         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7320                                                 mode_cmd->handles[0]));
7321         if (&obj->base == NULL)
7322                 return ERR_PTR(-ENOENT);
7323
7324         return intel_framebuffer_create(dev, mode_cmd, obj);
7325 }
7326
7327 static const struct drm_mode_config_funcs intel_mode_funcs = {
7328         .fb_create = intel_user_framebuffer_create,
7329         .output_poll_changed = intel_fb_output_poll_changed,
7330 };
7331
7332 /* Set up chip specific display functions */
7333 static void intel_init_display(struct drm_device *dev)
7334 {
7335         struct drm_i915_private *dev_priv = dev->dev_private;
7336
7337         /* We always want a DPMS function */
7338         if (HAS_PCH_SPLIT(dev)) {
7339                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7340                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
7341                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
7342                 dev_priv->display.off = ironlake_crtc_off;
7343                 dev_priv->display.update_plane = ironlake_update_plane;
7344         } else {
7345                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7346                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
7347                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
7348                 dev_priv->display.off = i9xx_crtc_off;
7349                 dev_priv->display.update_plane = i9xx_update_plane;
7350         }
7351
7352         /* Returns the core display clock speed */
7353         if (IS_VALLEYVIEW(dev))
7354                 dev_priv->display.get_display_clock_speed =
7355                         valleyview_get_display_clock_speed;
7356         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
7357                 dev_priv->display.get_display_clock_speed =
7358                         i945_get_display_clock_speed;
7359         else if (IS_I915G(dev))
7360                 dev_priv->display.get_display_clock_speed =
7361                         i915_get_display_clock_speed;
7362         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7363                 dev_priv->display.get_display_clock_speed =
7364                         i9xx_misc_get_display_clock_speed;
7365         else if (IS_I915GM(dev))
7366                 dev_priv->display.get_display_clock_speed =
7367                         i915gm_get_display_clock_speed;
7368         else if (IS_I865G(dev))
7369                 dev_priv->display.get_display_clock_speed =
7370                         i865_get_display_clock_speed;
7371         else if (IS_I85X(dev))
7372                 dev_priv->display.get_display_clock_speed =
7373                         i855_get_display_clock_speed;
7374         else /* 852, 830 */
7375                 dev_priv->display.get_display_clock_speed =
7376                         i830_get_display_clock_speed;
7377
7378         if (HAS_PCH_SPLIT(dev)) {
7379                 if (IS_GEN5(dev)) {
7380                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7381                         dev_priv->display.write_eld = ironlake_write_eld;
7382                 } else if (IS_GEN6(dev)) {
7383                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7384                         dev_priv->display.write_eld = ironlake_write_eld;
7385                 } else if (IS_IVYBRIDGE(dev)) {
7386                         /* FIXME: detect B0+ stepping and use auto training */
7387                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7388                         dev_priv->display.write_eld = ironlake_write_eld;
7389                 } else if (IS_HASWELL(dev)) {
7390                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7391                         dev_priv->display.write_eld = haswell_write_eld;
7392                 } else
7393                         dev_priv->display.update_wm = NULL;
7394         } else if (IS_G4X(dev)) {
7395                 dev_priv->display.write_eld = g4x_write_eld;
7396         }
7397
7398         /* Default just returns -ENODEV to indicate unsupported */
7399         dev_priv->display.queue_flip = intel_default_queue_flip;
7400
7401         switch (INTEL_INFO(dev)->gen) {
7402         case 2:
7403                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7404                 break;
7405
7406         case 3:
7407                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7408                 break;
7409
7410         case 4:
7411         case 5:
7412                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7413                 break;
7414
7415         case 6:
7416                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7417                 break;
7418         case 7:
7419                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7420                 break;
7421         }
7422 }
7423
7424 /*
7425  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7426  * resume, or other times.  This quirk makes sure that's the case for
7427  * affected systems.
7428  */
7429 static void quirk_pipea_force(struct drm_device *dev)
7430 {
7431         struct drm_i915_private *dev_priv = dev->dev_private;
7432
7433         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7434         DRM_INFO("applying pipe a force quirk\n");
7435 }
7436
7437 /*
7438  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7439  */
7440 static void quirk_ssc_force_disable(struct drm_device *dev)
7441 {
7442         struct drm_i915_private *dev_priv = dev->dev_private;
7443         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7444         DRM_INFO("applying lvds SSC disable quirk\n");
7445 }
7446
7447 /*
7448  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7449  * brightness value
7450  */
7451 static void quirk_invert_brightness(struct drm_device *dev)
7452 {
7453         struct drm_i915_private *dev_priv = dev->dev_private;
7454         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7455         DRM_INFO("applying inverted panel brightness quirk\n");
7456 }
7457
7458 struct intel_quirk {
7459         int device;
7460         int subsystem_vendor;
7461         int subsystem_device;
7462         void (*hook)(struct drm_device *dev);
7463 };
7464
7465 static struct intel_quirk intel_quirks[] = {
7466         /* HP Mini needs pipe A force quirk (LP: #322104) */
7467         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7468
7469         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7470         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7471
7472         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7473         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7474
7475         /* 855 & before need to leave pipe A & dpll A up */
7476         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7477         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7478         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7479
7480         /* Lenovo U160 cannot use SSC on LVDS */
7481         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7482
7483         /* Sony Vaio Y cannot use SSC on LVDS */
7484         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7485
7486         /* Acer Aspire 5734Z must invert backlight brightness */
7487         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7488 };
7489
7490 static void intel_init_quirks(struct drm_device *dev)
7491 {
7492         struct pci_dev *d = dev->pdev;
7493         int i;
7494
7495         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7496                 struct intel_quirk *q = &intel_quirks[i];
7497
7498                 if (d->device == q->device &&
7499                     (d->subsystem_vendor == q->subsystem_vendor ||
7500                      q->subsystem_vendor == PCI_ANY_ID) &&
7501                     (d->subsystem_device == q->subsystem_device ||
7502                      q->subsystem_device == PCI_ANY_ID))
7503                         q->hook(dev);
7504         }
7505 }
7506
7507 /* Disable the VGA plane that we never use */
7508 static void i915_disable_vga(struct drm_device *dev)
7509 {
7510         struct drm_i915_private *dev_priv = dev->dev_private;
7511         u8 sr1;
7512         u32 vga_reg;
7513
7514         if (HAS_PCH_SPLIT(dev))
7515                 vga_reg = CPU_VGACNTRL;
7516         else
7517                 vga_reg = VGACNTRL;
7518
7519         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7520         outb(SR01, VGA_SR_INDEX);
7521         sr1 = inb(VGA_SR_DATA);
7522         outb(sr1 | 1<<5, VGA_SR_DATA);
7523         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7524         udelay(300);
7525
7526         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7527         POSTING_READ(vga_reg);
7528 }
7529
7530 void intel_modeset_init_hw(struct drm_device *dev)
7531 {
7532         /* We attempt to init the necessary power wells early in the initialization
7533          * time, so the subsystems that expect power to be enabled can work.
7534          */
7535         intel_init_power_wells(dev);
7536
7537         intel_prepare_ddi(dev);
7538
7539         intel_init_clock_gating(dev);
7540
7541         mutex_lock(&dev->struct_mutex);
7542         intel_enable_gt_powersave(dev);
7543         mutex_unlock(&dev->struct_mutex);
7544 }
7545
7546 void intel_modeset_init(struct drm_device *dev)
7547 {
7548         struct drm_i915_private *dev_priv = dev->dev_private;
7549         int i, ret;
7550
7551         drm_mode_config_init(dev);
7552
7553         dev->mode_config.min_width = 0;
7554         dev->mode_config.min_height = 0;
7555
7556         dev->mode_config.preferred_depth = 24;
7557         dev->mode_config.prefer_shadow = 1;
7558
7559         dev->mode_config.funcs = &intel_mode_funcs;
7560
7561         intel_init_quirks(dev);
7562
7563         intel_init_pm(dev);
7564
7565         intel_init_display(dev);
7566
7567         if (IS_GEN2(dev)) {
7568                 dev->mode_config.max_width = 2048;
7569                 dev->mode_config.max_height = 2048;
7570         } else if (IS_GEN3(dev)) {
7571                 dev->mode_config.max_width = 4096;
7572                 dev->mode_config.max_height = 4096;
7573         } else {
7574                 dev->mode_config.max_width = 8192;
7575                 dev->mode_config.max_height = 8192;
7576         }
7577         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
7578
7579         DRM_DEBUG_KMS("%d display pipe%s available.\n",
7580                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7581
7582         for (i = 0; i < dev_priv->num_pipe; i++) {
7583                 intel_crtc_init(dev, i);
7584                 ret = intel_plane_init(dev, i);
7585                 if (ret)
7586                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
7587         }
7588
7589         intel_pch_pll_init(dev);
7590
7591         /* Just disable it once at startup */
7592         i915_disable_vga(dev);
7593         intel_setup_outputs(dev);
7594 }
7595
7596 static void
7597 intel_connector_break_all_links(struct intel_connector *connector)
7598 {
7599         connector->base.dpms = DRM_MODE_DPMS_OFF;
7600         connector->base.encoder = NULL;
7601         connector->encoder->connectors_active = false;
7602         connector->encoder->base.crtc = NULL;
7603 }
7604
7605 static void intel_sanitize_crtc(struct intel_crtc *crtc)
7606 {
7607         struct drm_device *dev = crtc->base.dev;
7608         struct drm_i915_private *dev_priv = dev->dev_private;
7609         u32 reg, val;
7610
7611         /* Clear any frame start delays used for debugging left by the BIOS */
7612         reg = PIPECONF(crtc->pipe);
7613         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
7614
7615         /* We need to sanitize the plane -> pipe mapping first because this will
7616          * disable the crtc (and hence change the state) if it is wrong. */
7617         if (!HAS_PCH_SPLIT(dev)) {
7618                 struct intel_connector *connector;
7619                 bool plane;
7620
7621                 reg = DSPCNTR(crtc->plane);
7622                 val = I915_READ(reg);
7623
7624                 if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
7625                     (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
7626                         goto ok;
7627
7628                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
7629                               crtc->base.base.id);
7630
7631                 /* Pipe has the wrong plane attached and the plane is active.
7632                  * Temporarily change the plane mapping and disable everything
7633                  * ...  */
7634                 plane = crtc->plane;
7635                 crtc->plane = !plane;
7636                 dev_priv->display.crtc_disable(&crtc->base);
7637                 crtc->plane = plane;
7638
7639                 /* ... and break all links. */
7640                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7641                                     base.head) {
7642                         if (connector->encoder->base.crtc != &crtc->base)
7643                                 continue;
7644
7645                         intel_connector_break_all_links(connector);
7646                 }
7647
7648                 WARN_ON(crtc->active);
7649                 crtc->base.enabled = false;
7650         }
7651 ok:
7652
7653         /* Adjust the state of the output pipe according to whether we
7654          * have active connectors/encoders. */
7655         intel_crtc_update_dpms(&crtc->base);
7656
7657         if (crtc->active != crtc->base.enabled) {
7658                 struct intel_encoder *encoder;
7659
7660                 /* This can happen either due to bugs in the get_hw_state
7661                  * functions or because the pipe is force-enabled due to the
7662                  * pipe A quirk. */
7663                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
7664                               crtc->base.base.id,
7665                               crtc->base.enabled ? "enabled" : "disabled",
7666                               crtc->active ? "enabled" : "disabled");
7667
7668                 crtc->base.enabled = crtc->active;
7669
7670                 /* Because we only establish the connector -> encoder ->
7671                  * crtc links if something is active, this means the
7672                  * crtc is now deactivated. Break the links. connector
7673                  * -> encoder links are only establish when things are
7674                  *  actually up, hence no need to break them. */
7675                 WARN_ON(crtc->active);
7676
7677                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
7678                         WARN_ON(encoder->connectors_active);
7679                         encoder->base.crtc = NULL;
7680                 }
7681         }
7682 }
7683
7684 static void intel_sanitize_encoder(struct intel_encoder *encoder)
7685 {
7686         struct intel_connector *connector;
7687         struct drm_device *dev = encoder->base.dev;
7688
7689         /* We need to check both for a crtc link (meaning that the
7690          * encoder is active and trying to read from a pipe) and the
7691          * pipe itself being active. */
7692         bool has_active_crtc = encoder->base.crtc &&
7693                 to_intel_crtc(encoder->base.crtc)->active;
7694
7695         if (encoder->connectors_active && !has_active_crtc) {
7696                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
7697                               encoder->base.base.id,
7698                               drm_get_encoder_name(&encoder->base));
7699
7700                 /* Connector is active, but has no active pipe. This is
7701                  * fallout from our resume register restoring. Disable
7702                  * the encoder manually again. */
7703                 if (encoder->base.crtc) {
7704                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
7705                                       encoder->base.base.id,
7706                                       drm_get_encoder_name(&encoder->base));
7707                         encoder->disable(encoder);
7708                 }
7709
7710                 /* Inconsistent output/port/pipe state happens presumably due to
7711                  * a bug in one of the get_hw_state functions. Or someplace else
7712                  * in our code, like the register restore mess on resume. Clamp
7713                  * things to off as a safer default. */
7714                 list_for_each_entry(connector,
7715                                     &dev->mode_config.connector_list,
7716                                     base.head) {
7717                         if (connector->encoder != encoder)
7718                                 continue;
7719
7720                         intel_connector_break_all_links(connector);
7721                 }
7722         }
7723         /* Enabled encoders without active connectors will be fixed in
7724          * the crtc fixup. */
7725 }
7726
7727 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
7728  * and i915 state tracking structures. */
7729 void intel_modeset_setup_hw_state(struct drm_device *dev)
7730 {
7731         struct drm_i915_private *dev_priv = dev->dev_private;
7732         enum pipe pipe;
7733         u32 tmp;
7734         struct intel_crtc *crtc;
7735         struct intel_encoder *encoder;
7736         struct intel_connector *connector;
7737
7738         for_each_pipe(pipe) {
7739                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
7740
7741                 tmp = I915_READ(PIPECONF(pipe));
7742                 if (tmp & PIPECONF_ENABLE)
7743                         crtc->active = true;
7744                 else
7745                         crtc->active = false;
7746
7747                 crtc->base.enabled = crtc->active;
7748
7749                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
7750                               crtc->base.base.id,
7751                               crtc->active ? "enabled" : "disabled");
7752         }
7753
7754         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7755                             base.head) {
7756                 pipe = 0;
7757
7758                 if (encoder->get_hw_state(encoder, &pipe)) {
7759                         encoder->base.crtc =
7760                                 dev_priv->pipe_to_crtc_mapping[pipe];
7761                 } else {
7762                         encoder->base.crtc = NULL;
7763                 }
7764
7765                 encoder->connectors_active = false;
7766                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
7767                               encoder->base.base.id,
7768                               drm_get_encoder_name(&encoder->base),
7769                               encoder->base.crtc ? "enabled" : "disabled",
7770                               pipe);
7771         }
7772
7773         list_for_each_entry(connector, &dev->mode_config.connector_list,
7774                             base.head) {
7775                 if (connector->get_hw_state(connector)) {
7776                         connector->base.dpms = DRM_MODE_DPMS_ON;
7777                         connector->encoder->connectors_active = true;
7778                         connector->base.encoder = &connector->encoder->base;
7779                 } else {
7780                         connector->base.dpms = DRM_MODE_DPMS_OFF;
7781                         connector->base.encoder = NULL;
7782                 }
7783                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
7784                               connector->base.base.id,
7785                               drm_get_connector_name(&connector->base),
7786                               connector->base.encoder ? "enabled" : "disabled");
7787         }
7788
7789         /* HW state is read out, now we need to sanitize this mess. */
7790         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7791                             base.head) {
7792                 intel_sanitize_encoder(encoder);
7793         }
7794
7795         for_each_pipe(pipe) {
7796                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
7797                 intel_sanitize_crtc(crtc);
7798         }
7799 }
7800
7801 void intel_modeset_gem_init(struct drm_device *dev)
7802 {
7803         intel_modeset_init_hw(dev);
7804
7805         intel_setup_overlay(dev);
7806
7807         intel_modeset_setup_hw_state(dev);
7808 }
7809
7810 void intel_modeset_cleanup(struct drm_device *dev)
7811 {
7812         struct drm_i915_private *dev_priv = dev->dev_private;
7813         struct drm_crtc *crtc;
7814         struct intel_crtc *intel_crtc;
7815
7816         drm_kms_helper_poll_fini(dev);
7817         mutex_lock(&dev->struct_mutex);
7818
7819         intel_unregister_dsm_handler();
7820
7821
7822         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7823                 /* Skip inactive CRTCs */
7824                 if (!crtc->fb)
7825                         continue;
7826
7827                 intel_crtc = to_intel_crtc(crtc);
7828                 intel_increase_pllclock(crtc);
7829         }
7830
7831         intel_disable_fbc(dev);
7832
7833         intel_disable_gt_powersave(dev);
7834
7835         ironlake_teardown_rc6(dev);
7836
7837         if (IS_VALLEYVIEW(dev))
7838                 vlv_init_dpio(dev);
7839
7840         mutex_unlock(&dev->struct_mutex);
7841
7842         /* Disable the irq before mode object teardown, for the irq might
7843          * enqueue unpin/hotplug work. */
7844         drm_irq_uninstall(dev);
7845         cancel_work_sync(&dev_priv->hotplug_work);
7846         cancel_work_sync(&dev_priv->rps.work);
7847
7848         /* flush any delayed tasks or pending work */
7849         flush_scheduled_work();
7850
7851         drm_mode_config_cleanup(dev);
7852 }
7853
7854 /*
7855  * Return which encoder is currently attached for connector.
7856  */
7857 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7858 {
7859         return &intel_attached_encoder(connector)->base;
7860 }
7861
7862 void intel_connector_attach_encoder(struct intel_connector *connector,
7863                                     struct intel_encoder *encoder)
7864 {
7865         connector->encoder = encoder;
7866         drm_mode_connector_attach_encoder(&connector->base,
7867                                           &encoder->base);
7868 }
7869
7870 /*
7871  * set vga decode state - true == enable VGA decode
7872  */
7873 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7874 {
7875         struct drm_i915_private *dev_priv = dev->dev_private;
7876         u16 gmch_ctrl;
7877
7878         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7879         if (state)
7880                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7881         else
7882                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7883         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7884         return 0;
7885 }
7886
7887 #ifdef CONFIG_DEBUG_FS
7888 #include <linux/seq_file.h>
7889
7890 struct intel_display_error_state {
7891         struct intel_cursor_error_state {
7892                 u32 control;
7893                 u32 position;
7894                 u32 base;
7895                 u32 size;
7896         } cursor[I915_MAX_PIPES];
7897
7898         struct intel_pipe_error_state {
7899                 u32 conf;
7900                 u32 source;
7901
7902                 u32 htotal;
7903                 u32 hblank;
7904                 u32 hsync;
7905                 u32 vtotal;
7906                 u32 vblank;
7907                 u32 vsync;
7908         } pipe[I915_MAX_PIPES];
7909
7910         struct intel_plane_error_state {
7911                 u32 control;
7912                 u32 stride;
7913                 u32 size;
7914                 u32 pos;
7915                 u32 addr;
7916                 u32 surface;
7917                 u32 tile_offset;
7918         } plane[I915_MAX_PIPES];
7919 };
7920
7921 struct intel_display_error_state *
7922 intel_display_capture_error_state(struct drm_device *dev)
7923 {
7924         drm_i915_private_t *dev_priv = dev->dev_private;
7925         struct intel_display_error_state *error;
7926         int i;
7927
7928         error = kmalloc(sizeof(*error), GFP_ATOMIC);
7929         if (error == NULL)
7930                 return NULL;
7931
7932         for_each_pipe(i) {
7933                 error->cursor[i].control = I915_READ(CURCNTR(i));
7934                 error->cursor[i].position = I915_READ(CURPOS(i));
7935                 error->cursor[i].base = I915_READ(CURBASE(i));
7936
7937                 error->plane[i].control = I915_READ(DSPCNTR(i));
7938                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7939                 error->plane[i].size = I915_READ(DSPSIZE(i));
7940                 error->plane[i].pos = I915_READ(DSPPOS(i));
7941                 error->plane[i].addr = I915_READ(DSPADDR(i));
7942                 if (INTEL_INFO(dev)->gen >= 4) {
7943                         error->plane[i].surface = I915_READ(DSPSURF(i));
7944                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7945                 }
7946
7947                 error->pipe[i].conf = I915_READ(PIPECONF(i));
7948                 error->pipe[i].source = I915_READ(PIPESRC(i));
7949                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7950                 error->pipe[i].hblank = I915_READ(HBLANK(i));
7951                 error->pipe[i].hsync = I915_READ(HSYNC(i));
7952                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7953                 error->pipe[i].vblank = I915_READ(VBLANK(i));
7954                 error->pipe[i].vsync = I915_READ(VSYNC(i));
7955         }
7956
7957         return error;
7958 }
7959
7960 void
7961 intel_display_print_error_state(struct seq_file *m,
7962                                 struct drm_device *dev,
7963                                 struct intel_display_error_state *error)
7964 {
7965         drm_i915_private_t *dev_priv = dev->dev_private;
7966         int i;
7967
7968         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
7969         for_each_pipe(i) {
7970                 seq_printf(m, "Pipe [%d]:\n", i);
7971                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
7972                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
7973                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
7974                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
7975                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
7976                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
7977                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
7978                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
7979
7980                 seq_printf(m, "Plane [%d]:\n", i);
7981                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
7982                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
7983                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
7984                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
7985                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
7986                 if (INTEL_INFO(dev)->gen >= 4) {
7987                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
7988                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
7989                 }
7990
7991                 seq_printf(m, "Cursor [%d]:\n", i);
7992                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
7993                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
7994                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
7995         }
7996 }
7997 #endif