]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: don't assert_pch_pll_enabled on lpt_enable_pch_transcoder
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941                                              enum pipe pipe)
942 {
943         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946         return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 frame, frame_reg = PIPEFRAME(pipe);
953
954         frame = I915_READ(frame_reg);
955
956         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957                 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961  * intel_wait_for_vblank - wait for vblank on a given pipe
962  * @dev: drm device
963  * @pipe: pipe to wait for
964  *
965  * Wait for vblank to occur on a given pipe.  Needed for various bits of
966  * mode setting code.
967  */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         int pipestat_reg = PIPESTAT(pipe);
972
973         if (INTEL_INFO(dev)->gen >= 5) {
974                 ironlake_wait_for_vblank(dev, pipe);
975                 return;
976         }
977
978         /* Clear existing vblank status. Note this will clear any other
979          * sticky status fields as well.
980          *
981          * This races with i915_driver_irq_handler() with the result
982          * that either function could miss a vblank event.  Here it is not
983          * fatal, as we will either wait upon the next vblank interrupt or
984          * timeout.  Generally speaking intel_wait_for_vblank() is only
985          * called during modeset at which time the GPU should be idle and
986          * should *not* be performing page flips and thus not waiting on
987          * vblanks...
988          * Currently, the result of us stealing a vblank from the irq
989          * handler is that a single frame will be skipped during swapbuffers.
990          */
991         I915_WRITE(pipestat_reg,
992                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994         /* Wait for vblank interrupt bit to set */
995         if (wait_for(I915_READ(pipestat_reg) &
996                      PIPE_VBLANK_INTERRUPT_STATUS,
997                      50))
998                 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002  * intel_wait_for_pipe_off - wait for pipe to turn off
1003  * @dev: drm device
1004  * @pipe: pipe to wait for
1005  *
1006  * After disabling a pipe, we can't wait for vblank in the usual way,
1007  * spinning on the vblank interrupt status bit, since we won't actually
1008  * see an interrupt when the pipe is disabled.
1009  *
1010  * On Gen4 and above:
1011  *   wait for the pipe register state bit to turn off
1012  *
1013  * Otherwise:
1014  *   wait for the display line value to settle (it usually
1015  *   ends up stopping at the start of the next frame).
1016  *
1017  */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022                                                                       pipe);
1023
1024         if (INTEL_INFO(dev)->gen >= 4) {
1025                 int reg = PIPECONF(cpu_transcoder);
1026
1027                 /* Wait for the Pipe State to go off */
1028                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029                              100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         } else {
1032                 u32 last_line, line_mask;
1033                 int reg = PIPEDSL(pipe);
1034                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036                 if (IS_GEN2(dev))
1037                         line_mask = DSL_LINEMASK_GEN2;
1038                 else
1039                         line_mask = DSL_LINEMASK_GEN3;
1040
1041                 /* Wait for the display line to settle */
1042                 do {
1043                         last_line = I915_READ(reg) & line_mask;
1044                         mdelay(5);
1045                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046                          time_after(timeout, jiffies));
1047                 if (time_after(jiffies, timeout))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054         return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059                        enum pipe pipe, bool state)
1060 {
1061         int reg;
1062         u32 val;
1063         bool cur_state;
1064
1065         reg = DPLL(pipe);
1066         val = I915_READ(reg);
1067         cur_state = !!(val & DPLL_VCO_ENABLE);
1068         WARN(cur_state != state,
1069              "PLL state assertion failure (expected %s, current %s)\n",
1070              state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077                            struct intel_pch_pll *pll,
1078                            struct intel_crtc *crtc,
1079                            bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         if (HAS_PCH_LPT(dev_priv->dev)) {
1085                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086                 return;
1087         }
1088
1089         if (WARN (!pll,
1090                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091                 return;
1092
1093         val = I915_READ(pll->pll_reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097              pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099         /* Make sure the selected PLL is correctly attached to the transcoder */
1100         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101                 u32 pch_dpll;
1102
1103                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1107                           cur_state, crtc->pipe, pch_dpll)) {
1108                         cur_state = !!(val >> (4*crtc->pipe + 3));
1109                         WARN(cur_state != state,
1110                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1111                              pll->pll_reg == _PCH_DPLL_B,
1112                              state_string(state),
1113                              crtc->pipe,
1114                              val);
1115                 }
1116         }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122                           enum pipe pipe, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (IS_HASWELL(dev_priv->dev)) {
1131                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133                 val = I915_READ(reg);
1134                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135         } else {
1136                 reg = FDI_TX_CTL(pipe);
1137                 val = I915_READ(reg);
1138                 cur_state = !!(val & FDI_TX_ENABLE);
1139         }
1140         WARN(cur_state != state,
1141              "FDI TX state assertion failure (expected %s, current %s)\n",
1142              state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148                           enum pipe pipe, bool state)
1149 {
1150         int reg;
1151         u32 val;
1152         bool cur_state;
1153
1154         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156                         return;
1157         } else {
1158                 reg = FDI_RX_CTL(pipe);
1159                 val = I915_READ(reg);
1160                 cur_state = !!(val & FDI_RX_ENABLE);
1161         }
1162         WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (dev_priv->info->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (IS_HASWELL(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189                                       enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196                 return;
1197         }
1198         reg = FDI_RX_CTL(pipe);
1199         val = I915_READ(reg);
1200         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                                   enum pipe pipe)
1205 {
1206         int pp_reg, lvds_reg;
1207         u32 val;
1208         enum pipe panel_pipe = PIPE_A;
1209         bool locked = true;
1210
1211         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212                 pp_reg = PCH_PP_CONTROL;
1213                 lvds_reg = PCH_LVDS;
1214         } else {
1215                 pp_reg = PP_CONTROL;
1216                 lvds_reg = LVDS;
1217         }
1218
1219         val = I915_READ(pp_reg);
1220         if (!(val & PANEL_POWER_ON) ||
1221             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222                 locked = false;
1223
1224         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225                 panel_pipe = PIPE_B;
1226
1227         WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233                  enum pipe pipe, bool state)
1234 {
1235         int reg;
1236         u32 val;
1237         bool cur_state;
1238         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239                                                                       pipe);
1240
1241         /* if we need the pipe A quirk it must be always on */
1242         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243                 state = true;
1244
1245         reg = PIPECONF(cpu_transcoder);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & PIPECONF_ENABLE);
1248         WARN(cur_state != state,
1249              "pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254                          enum plane plane, bool state)
1255 {
1256         int reg;
1257         u32 val;
1258         bool cur_state;
1259
1260         reg = DSPCNTR(plane);
1261         val = I915_READ(reg);
1262         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263         WARN(cur_state != state,
1264              "plane %c assertion failure (expected %s, current %s)\n",
1265              plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe)
1273 {
1274         int reg, i;
1275         u32 val;
1276         int cur_pipe;
1277
1278         /* Planes are fixed to pipes on ILK+ */
1279         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280                 reg = DSPCNTR(pipe);
1281                 val = I915_READ(reg);
1282                 WARN((val & DISPLAY_PLANE_ENABLE),
1283                      "plane %c assertion failure, should be disabled but not\n",
1284                      plane_name(pipe));
1285                 return;
1286         }
1287
1288         /* Need to check both planes against the pipe */
1289         for (i = 0; i < 2; i++) {
1290                 reg = DSPCNTR(i);
1291                 val = I915_READ(reg);
1292                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293                         DISPPLANE_SEL_PIPE_SHIFT;
1294                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296                      plane_name(i), pipe_name(pipe));
1297         }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302         u32 val;
1303         bool enabled;
1304
1305         if (HAS_PCH_LPT(dev_priv->dev)) {
1306                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307                 return;
1308         }
1309
1310         val = I915_READ(PCH_DREF_CONTROL);
1311         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312                             DREF_SUPERSPREAD_SOURCE_MASK));
1313         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317                                        enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321         bool enabled;
1322
1323         reg = TRANSCONF(pipe);
1324         val = I915_READ(reg);
1325         enabled = !!(val & TRANS_ENABLE);
1326         WARN(enabled,
1327              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328              pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332                             enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334         if ((val & DP_PORT_EN) == 0)
1335                 return false;
1336
1337         if (HAS_PCH_CPT(dev_priv->dev)) {
1338                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341                         return false;
1342         } else {
1343                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344                         return false;
1345         }
1346         return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350                               enum pipe pipe, u32 val)
1351 {
1352         if ((val & PORT_ENABLE) == 0)
1353                 return false;
1354
1355         if (HAS_PCH_CPT(dev_priv->dev)) {
1356                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357                         return false;
1358         } else {
1359                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360                         return false;
1361         }
1362         return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366                               enum pipe pipe, u32 val)
1367 {
1368         if ((val & LVDS_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & ADPA_DAC_ENABLE) == 0)
1385                 return false;
1386         if (HAS_PCH_CPT(dev_priv->dev)) {
1387                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388                         return false;
1389         } else {
1390                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391                         return false;
1392         }
1393         return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397                                    enum pipe pipe, int reg, u32 port_sel)
1398 {
1399         u32 val = I915_READ(reg);
1400         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402              reg, pipe_name(pipe));
1403
1404         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405              && (val & DP_PIPEB_SELECT),
1406              "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410                                      enum pipe pipe, int reg)
1411 {
1412         u32 val = I915_READ(reg);
1413         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415              reg, pipe_name(pipe));
1416
1417         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418              && (val & SDVO_PIPE_B_SELECT),
1419              "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423                                       enum pipe pipe)
1424 {
1425         int reg;
1426         u32 val;
1427
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432         reg = PCH_ADPA;
1433         val = I915_READ(reg);
1434         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435              "PCH VGA enabled on transcoder %c, should be disabled\n",
1436              pipe_name(pipe));
1437
1438         reg = PCH_LVDS;
1439         val = I915_READ(reg);
1440         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442              pipe_name(pipe));
1443
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450  * intel_enable_pll - enable a PLL
1451  * @dev_priv: i915 private structure
1452  * @pipe: pipe PLL to enable
1453  *
1454  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1455  * make sure the PLL reg is writable first though, since the panel write
1456  * protect mechanism may be enabled.
1457  *
1458  * Note!  This is for pre-ILK only.
1459  *
1460  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461  */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464         int reg;
1465         u32 val;
1466
1467         /* No really, not for ILK+ */
1468         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472                 assert_panel_unlocked(dev_priv, pipe);
1473
1474         reg = DPLL(pipe);
1475         val = I915_READ(reg);
1476         val |= DPLL_VCO_ENABLE;
1477
1478         /* We do this three times for luck */
1479         I915_WRITE(reg, val);
1480         POSTING_READ(reg);
1481         udelay(150); /* wait for warmup */
1482         I915_WRITE(reg, val);
1483         POSTING_READ(reg);
1484         udelay(150); /* wait for warmup */
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487         udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491  * intel_disable_pll - disable a PLL
1492  * @dev_priv: i915 private structure
1493  * @pipe: pipe PLL to disable
1494  *
1495  * Disable the PLL for @pipe, making sure the pipe is off first.
1496  *
1497  * Note!  This is for pre-ILK only.
1498  */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501         int reg;
1502         u32 val;
1503
1504         /* Don't disable pipe A or pipe A PLLs if needed */
1505         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506                 return;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         reg = DPLL(pipe);
1512         val = I915_READ(reg);
1513         val &= ~DPLL_VCO_ENABLE;
1514         I915_WRITE(reg, val);
1515         POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522         unsigned long flags;
1523
1524         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528                 goto out_unlock;
1529         }
1530
1531         I915_WRITE(SBI_ADDR,
1532                         (reg << 16));
1533         I915_WRITE(SBI_DATA,
1534                         value);
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRWR);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545 out_unlock:
1546         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552         unsigned long flags;
1553         u32 value = 0;
1554
1555         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557                                 100)) {
1558                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559                 goto out_unlock;
1560         }
1561
1562         I915_WRITE(SBI_ADDR,
1563                         (reg << 16));
1564         I915_WRITE(SBI_CTL_STAT,
1565                         SBI_BUSY |
1566                         SBI_CTL_OP_CRRD);
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571                 goto out_unlock;
1572         }
1573
1574         value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578         return value;
1579 }
1580
1581 /**
1582  * ironlake_enable_pch_pll - enable PCH PLL
1583  * @dev_priv: i915 private structure
1584  * @pipe: pipe PLL to enable
1585  *
1586  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587  * drives the transcoder clock.
1588  */
1589 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592         struct intel_pch_pll *pll;
1593         int reg;
1594         u32 val;
1595
1596         /* PCH PLLs only available on ILK, SNB and IVB */
1597         BUG_ON(dev_priv->info->gen < 5);
1598         pll = intel_crtc->pch_pll;
1599         if (pll == NULL)
1600                 return;
1601
1602         if (WARN_ON(pll->refcount == 0))
1603                 return;
1604
1605         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606                       pll->pll_reg, pll->active, pll->on,
1607                       intel_crtc->base.base.id);
1608
1609         /* PCH refclock must be enabled first */
1610         assert_pch_refclk_enabled(dev_priv);
1611
1612         if (pll->active++ && pll->on) {
1613                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614                 return;
1615         }
1616
1617         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619         reg = pll->pll_reg;
1620         val = I915_READ(reg);
1621         val |= DPLL_VCO_ENABLE;
1622         I915_WRITE(reg, val);
1623         POSTING_READ(reg);
1624         udelay(200);
1625
1626         pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633         int reg;
1634         u32 val;
1635
1636         /* PCH only available on ILK+ */
1637         BUG_ON(dev_priv->info->gen < 5);
1638         if (pll == NULL)
1639                return;
1640
1641         if (WARN_ON(pll->refcount == 0))
1642                 return;
1643
1644         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645                       pll->pll_reg, pll->active, pll->on,
1646                       intel_crtc->base.base.id);
1647
1648         if (WARN_ON(pll->active == 0)) {
1649                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650                 return;
1651         }
1652
1653         if (--pll->active) {
1654                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655                 return;
1656         }
1657
1658         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660         /* Make sure transcoder isn't still depending on us */
1661         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663         reg = pll->pll_reg;
1664         val = I915_READ(reg);
1665         val &= ~DPLL_VCO_ENABLE;
1666         I915_WRITE(reg, val);
1667         POSTING_READ(reg);
1668         udelay(200);
1669
1670         pll->on = false;
1671 }
1672
1673 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1674                                            enum pipe pipe)
1675 {
1676         int reg;
1677         u32 val, pipeconf_val;
1678         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680         /* PCH only available on ILK+ */
1681         BUG_ON(dev_priv->info->gen < 5);
1682
1683         /* Make sure PCH DPLL is enabled */
1684         assert_pch_pll_enabled(dev_priv,
1685                                to_intel_crtc(crtc)->pch_pll,
1686                                to_intel_crtc(crtc));
1687
1688         /* FDI must be feeding us bits for PCH ports */
1689         assert_fdi_tx_enabled(dev_priv, pipe);
1690         assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692         reg = TRANSCONF(pipe);
1693         val = I915_READ(reg);
1694         pipeconf_val = I915_READ(PIPECONF(pipe));
1695
1696         if (HAS_PCH_IBX(dev_priv->dev)) {
1697                 /*
1698                  * make the BPC in transcoder be consistent with
1699                  * that in pipeconf reg.
1700                  */
1701                 val &= ~PIPE_BPC_MASK;
1702                 val |= pipeconf_val & PIPE_BPC_MASK;
1703         }
1704
1705         val &= ~TRANS_INTERLACE_MASK;
1706         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1707                 if (HAS_PCH_IBX(dev_priv->dev) &&
1708                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1709                         val |= TRANS_LEGACY_INTERLACED_ILK;
1710                 else
1711                         val |= TRANS_INTERLACED;
1712         else
1713                 val |= TRANS_PROGRESSIVE;
1714
1715         I915_WRITE(reg, val | TRANS_ENABLE);
1716         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1717                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1718 }
1719
1720 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1721                                       enum pipe pipe)
1722 {
1723         int reg;
1724         u32 val, pipeconf_val;
1725
1726         /* PCH only available on ILK+ */
1727         BUG_ON(dev_priv->info->gen < 5);
1728
1729         /* FDI must be feeding us bits for PCH ports */
1730         assert_fdi_tx_enabled(dev_priv, pipe);
1731         assert_fdi_rx_enabled(dev_priv, pipe);
1732
1733         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1734                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1735                 return;
1736         }
1737         reg = TRANSCONF(pipe);
1738         val = I915_READ(reg);
1739         pipeconf_val = I915_READ(PIPECONF(pipe));
1740
1741         val &= ~TRANS_INTERLACE_MASK;
1742         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1743                 val |= TRANS_INTERLACED;
1744         else
1745                 val |= TRANS_PROGRESSIVE;
1746
1747         I915_WRITE(reg, val | TRANS_ENABLE);
1748         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1749                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1750 }
1751
1752 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1753                                             enum pipe pipe)
1754 {
1755         int reg;
1756         u32 val;
1757
1758         /* FDI relies on the transcoder */
1759         assert_fdi_tx_disabled(dev_priv, pipe);
1760         assert_fdi_rx_disabled(dev_priv, pipe);
1761
1762         /* Ports must be off as well */
1763         assert_pch_ports_disabled(dev_priv, pipe);
1764
1765         reg = TRANSCONF(pipe);
1766         val = I915_READ(reg);
1767         val &= ~TRANS_ENABLE;
1768         I915_WRITE(reg, val);
1769         /* wait for PCH transcoder off, transcoder state */
1770         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1771                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1772 }
1773
1774 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1775                                        enum pipe pipe)
1776 {
1777         int reg;
1778         u32 val;
1779
1780         /* FDI relies on the transcoder */
1781         assert_fdi_tx_disabled(dev_priv, pipe);
1782         assert_fdi_rx_disabled(dev_priv, pipe);
1783
1784         /* Ports must be off as well */
1785         assert_pch_ports_disabled(dev_priv, pipe);
1786
1787         reg = TRANSCONF(pipe);
1788         val = I915_READ(reg);
1789         val &= ~TRANS_ENABLE;
1790         I915_WRITE(reg, val);
1791         /* wait for PCH transcoder off, transcoder state */
1792         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1793                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1794 }
1795
1796 /**
1797  * intel_enable_pipe - enable a pipe, asserting requirements
1798  * @dev_priv: i915 private structure
1799  * @pipe: pipe to enable
1800  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1801  *
1802  * Enable @pipe, making sure that various hardware specific requirements
1803  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1804  *
1805  * @pipe should be %PIPE_A or %PIPE_B.
1806  *
1807  * Will wait until the pipe is actually running (i.e. first vblank) before
1808  * returning.
1809  */
1810 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1811                               bool pch_port)
1812 {
1813         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1814                                                                       pipe);
1815         int reg;
1816         u32 val;
1817
1818         /*
1819          * A pipe without a PLL won't actually be able to drive bits from
1820          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1821          * need the check.
1822          */
1823         if (!HAS_PCH_SPLIT(dev_priv->dev))
1824                 assert_pll_enabled(dev_priv, pipe);
1825         else {
1826                 if (pch_port) {
1827                         /* if driving the PCH, we need FDI enabled */
1828                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1829                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1830                 }
1831                 /* FIXME: assert CPU port conditions for SNB+ */
1832         }
1833
1834         reg = PIPECONF(cpu_transcoder);
1835         val = I915_READ(reg);
1836         if (val & PIPECONF_ENABLE)
1837                 return;
1838
1839         I915_WRITE(reg, val | PIPECONF_ENABLE);
1840         intel_wait_for_vblank(dev_priv->dev, pipe);
1841 }
1842
1843 /**
1844  * intel_disable_pipe - disable a pipe, asserting requirements
1845  * @dev_priv: i915 private structure
1846  * @pipe: pipe to disable
1847  *
1848  * Disable @pipe, making sure that various hardware specific requirements
1849  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1850  *
1851  * @pipe should be %PIPE_A or %PIPE_B.
1852  *
1853  * Will wait until the pipe has shut down before returning.
1854  */
1855 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1856                                enum pipe pipe)
1857 {
1858         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1859                                                                       pipe);
1860         int reg;
1861         u32 val;
1862
1863         /*
1864          * Make sure planes won't keep trying to pump pixels to us,
1865          * or we might hang the display.
1866          */
1867         assert_planes_disabled(dev_priv, pipe);
1868
1869         /* Don't disable pipe A or pipe A PLLs if needed */
1870         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1871                 return;
1872
1873         reg = PIPECONF(cpu_transcoder);
1874         val = I915_READ(reg);
1875         if ((val & PIPECONF_ENABLE) == 0)
1876                 return;
1877
1878         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1879         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1880 }
1881
1882 /*
1883  * Plane regs are double buffered, going from enabled->disabled needs a
1884  * trigger in order to latch.  The display address reg provides this.
1885  */
1886 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1887                                       enum plane plane)
1888 {
1889         if (dev_priv->info->gen >= 4)
1890                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1891         else
1892                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1893 }
1894
1895 /**
1896  * intel_enable_plane - enable a display plane on a given pipe
1897  * @dev_priv: i915 private structure
1898  * @plane: plane to enable
1899  * @pipe: pipe being fed
1900  *
1901  * Enable @plane on @pipe, making sure that @pipe is running first.
1902  */
1903 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1904                                enum plane plane, enum pipe pipe)
1905 {
1906         int reg;
1907         u32 val;
1908
1909         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1910         assert_pipe_enabled(dev_priv, pipe);
1911
1912         reg = DSPCNTR(plane);
1913         val = I915_READ(reg);
1914         if (val & DISPLAY_PLANE_ENABLE)
1915                 return;
1916
1917         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1918         intel_flush_display_plane(dev_priv, plane);
1919         intel_wait_for_vblank(dev_priv->dev, pipe);
1920 }
1921
1922 /**
1923  * intel_disable_plane - disable a display plane
1924  * @dev_priv: i915 private structure
1925  * @plane: plane to disable
1926  * @pipe: pipe consuming the data
1927  *
1928  * Disable @plane; should be an independent operation.
1929  */
1930 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1931                                 enum plane plane, enum pipe pipe)
1932 {
1933         int reg;
1934         u32 val;
1935
1936         reg = DSPCNTR(plane);
1937         val = I915_READ(reg);
1938         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1939                 return;
1940
1941         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1942         intel_flush_display_plane(dev_priv, plane);
1943         intel_wait_for_vblank(dev_priv->dev, pipe);
1944 }
1945
1946 int
1947 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1948                            struct drm_i915_gem_object *obj,
1949                            struct intel_ring_buffer *pipelined)
1950 {
1951         struct drm_i915_private *dev_priv = dev->dev_private;
1952         u32 alignment;
1953         int ret;
1954
1955         switch (obj->tiling_mode) {
1956         case I915_TILING_NONE:
1957                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1958                         alignment = 128 * 1024;
1959                 else if (INTEL_INFO(dev)->gen >= 4)
1960                         alignment = 4 * 1024;
1961                 else
1962                         alignment = 64 * 1024;
1963                 break;
1964         case I915_TILING_X:
1965                 /* pin() will align the object as required by fence */
1966                 alignment = 0;
1967                 break;
1968         case I915_TILING_Y:
1969                 /* FIXME: Is this true? */
1970                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1971                 return -EINVAL;
1972         default:
1973                 BUG();
1974         }
1975
1976         dev_priv->mm.interruptible = false;
1977         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1978         if (ret)
1979                 goto err_interruptible;
1980
1981         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1982          * fence, whereas 965+ only requires a fence if using
1983          * framebuffer compression.  For simplicity, we always install
1984          * a fence as the cost is not that onerous.
1985          */
1986         ret = i915_gem_object_get_fence(obj);
1987         if (ret)
1988                 goto err_unpin;
1989
1990         i915_gem_object_pin_fence(obj);
1991
1992         dev_priv->mm.interruptible = true;
1993         return 0;
1994
1995 err_unpin:
1996         i915_gem_object_unpin(obj);
1997 err_interruptible:
1998         dev_priv->mm.interruptible = true;
1999         return ret;
2000 }
2001
2002 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2003 {
2004         i915_gem_object_unpin_fence(obj);
2005         i915_gem_object_unpin(obj);
2006 }
2007
2008 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2009  * is assumed to be a power-of-two. */
2010 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2011                                                unsigned int bpp,
2012                                                unsigned int pitch)
2013 {
2014         int tile_rows, tiles;
2015
2016         tile_rows = *y / 8;
2017         *y %= 8;
2018         tiles = *x / (512/bpp);
2019         *x %= 512/bpp;
2020
2021         return tile_rows * pitch * 8 + tiles * 4096;
2022 }
2023
2024 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2025                              int x, int y)
2026 {
2027         struct drm_device *dev = crtc->dev;
2028         struct drm_i915_private *dev_priv = dev->dev_private;
2029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2030         struct intel_framebuffer *intel_fb;
2031         struct drm_i915_gem_object *obj;
2032         int plane = intel_crtc->plane;
2033         unsigned long linear_offset;
2034         u32 dspcntr;
2035         u32 reg;
2036
2037         switch (plane) {
2038         case 0:
2039         case 1:
2040                 break;
2041         default:
2042                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2043                 return -EINVAL;
2044         }
2045
2046         intel_fb = to_intel_framebuffer(fb);
2047         obj = intel_fb->obj;
2048
2049         reg = DSPCNTR(plane);
2050         dspcntr = I915_READ(reg);
2051         /* Mask out pixel format bits in case we change it */
2052         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2053         switch (fb->pixel_format) {
2054         case DRM_FORMAT_C8:
2055                 dspcntr |= DISPPLANE_8BPP;
2056                 break;
2057         case DRM_FORMAT_XRGB1555:
2058         case DRM_FORMAT_ARGB1555:
2059                 dspcntr |= DISPPLANE_BGRX555;
2060                 break;
2061         case DRM_FORMAT_RGB565:
2062                 dspcntr |= DISPPLANE_BGRX565;
2063                 break;
2064         case DRM_FORMAT_XRGB8888:
2065         case DRM_FORMAT_ARGB8888:
2066                 dspcntr |= DISPPLANE_BGRX888;
2067                 break;
2068         case DRM_FORMAT_XBGR8888:
2069         case DRM_FORMAT_ABGR8888:
2070                 dspcntr |= DISPPLANE_RGBX888;
2071                 break;
2072         case DRM_FORMAT_XRGB2101010:
2073         case DRM_FORMAT_ARGB2101010:
2074                 dspcntr |= DISPPLANE_BGRX101010;
2075                 break;
2076         case DRM_FORMAT_XBGR2101010:
2077         case DRM_FORMAT_ABGR2101010:
2078                 dspcntr |= DISPPLANE_RGBX101010;
2079                 break;
2080         default:
2081                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2082                 return -EINVAL;
2083         }
2084
2085         if (INTEL_INFO(dev)->gen >= 4) {
2086                 if (obj->tiling_mode != I915_TILING_NONE)
2087                         dspcntr |= DISPPLANE_TILED;
2088                 else
2089                         dspcntr &= ~DISPPLANE_TILED;
2090         }
2091
2092         I915_WRITE(reg, dspcntr);
2093
2094         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2095
2096         if (INTEL_INFO(dev)->gen >= 4) {
2097                 intel_crtc->dspaddr_offset =
2098                         intel_gen4_compute_offset_xtiled(&x, &y,
2099                                                          fb->bits_per_pixel / 8,
2100                                                          fb->pitches[0]);
2101                 linear_offset -= intel_crtc->dspaddr_offset;
2102         } else {
2103                 intel_crtc->dspaddr_offset = linear_offset;
2104         }
2105
2106         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2107                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2108         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2109         if (INTEL_INFO(dev)->gen >= 4) {
2110                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2111                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2112                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2113                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2114         } else
2115                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2116         POSTING_READ(reg);
2117
2118         return 0;
2119 }
2120
2121 static int ironlake_update_plane(struct drm_crtc *crtc,
2122                                  struct drm_framebuffer *fb, int x, int y)
2123 {
2124         struct drm_device *dev = crtc->dev;
2125         struct drm_i915_private *dev_priv = dev->dev_private;
2126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2127         struct intel_framebuffer *intel_fb;
2128         struct drm_i915_gem_object *obj;
2129         int plane = intel_crtc->plane;
2130         unsigned long linear_offset;
2131         u32 dspcntr;
2132         u32 reg;
2133
2134         switch (plane) {
2135         case 0:
2136         case 1:
2137         case 2:
2138                 break;
2139         default:
2140                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2141                 return -EINVAL;
2142         }
2143
2144         intel_fb = to_intel_framebuffer(fb);
2145         obj = intel_fb->obj;
2146
2147         reg = DSPCNTR(plane);
2148         dspcntr = I915_READ(reg);
2149         /* Mask out pixel format bits in case we change it */
2150         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2151         switch (fb->pixel_format) {
2152         case DRM_FORMAT_C8:
2153                 dspcntr |= DISPPLANE_8BPP;
2154                 break;
2155         case DRM_FORMAT_RGB565:
2156                 dspcntr |= DISPPLANE_BGRX565;
2157                 break;
2158         case DRM_FORMAT_XRGB8888:
2159         case DRM_FORMAT_ARGB8888:
2160                 dspcntr |= DISPPLANE_BGRX888;
2161                 break;
2162         case DRM_FORMAT_XBGR8888:
2163         case DRM_FORMAT_ABGR8888:
2164                 dspcntr |= DISPPLANE_RGBX888;
2165                 break;
2166         case DRM_FORMAT_XRGB2101010:
2167         case DRM_FORMAT_ARGB2101010:
2168                 dspcntr |= DISPPLANE_BGRX101010;
2169                 break;
2170         case DRM_FORMAT_XBGR2101010:
2171         case DRM_FORMAT_ABGR2101010:
2172                 dspcntr |= DISPPLANE_RGBX101010;
2173                 break;
2174         default:
2175                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2176                 return -EINVAL;
2177         }
2178
2179         if (obj->tiling_mode != I915_TILING_NONE)
2180                 dspcntr |= DISPPLANE_TILED;
2181         else
2182                 dspcntr &= ~DISPPLANE_TILED;
2183
2184         /* must disable */
2185         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2186
2187         I915_WRITE(reg, dspcntr);
2188
2189         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2190         intel_crtc->dspaddr_offset =
2191                 intel_gen4_compute_offset_xtiled(&x, &y,
2192                                                  fb->bits_per_pixel / 8,
2193                                                  fb->pitches[0]);
2194         linear_offset -= intel_crtc->dspaddr_offset;
2195
2196         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2197                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2198         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2199         I915_MODIFY_DISPBASE(DSPSURF(plane),
2200                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2201         if (IS_HASWELL(dev)) {
2202                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2203         } else {
2204                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2205                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2206         }
2207         POSTING_READ(reg);
2208
2209         return 0;
2210 }
2211
2212 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2213 static int
2214 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2215                            int x, int y, enum mode_set_atomic state)
2216 {
2217         struct drm_device *dev = crtc->dev;
2218         struct drm_i915_private *dev_priv = dev->dev_private;
2219
2220         if (dev_priv->display.disable_fbc)
2221                 dev_priv->display.disable_fbc(dev);
2222         intel_increase_pllclock(crtc);
2223
2224         return dev_priv->display.update_plane(crtc, fb, x, y);
2225 }
2226
2227 static int
2228 intel_finish_fb(struct drm_framebuffer *old_fb)
2229 {
2230         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2231         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2232         bool was_interruptible = dev_priv->mm.interruptible;
2233         int ret;
2234
2235         wait_event(dev_priv->pending_flip_queue,
2236                    atomic_read(&dev_priv->mm.wedged) ||
2237                    atomic_read(&obj->pending_flip) == 0);
2238
2239         /* Big Hammer, we also need to ensure that any pending
2240          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2241          * current scanout is retired before unpinning the old
2242          * framebuffer.
2243          *
2244          * This should only fail upon a hung GPU, in which case we
2245          * can safely continue.
2246          */
2247         dev_priv->mm.interruptible = false;
2248         ret = i915_gem_object_finish_gpu(obj);
2249         dev_priv->mm.interruptible = was_interruptible;
2250
2251         return ret;
2252 }
2253
2254 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2255 {
2256         struct drm_device *dev = crtc->dev;
2257         struct drm_i915_master_private *master_priv;
2258         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2259
2260         if (!dev->primary->master)
2261                 return;
2262
2263         master_priv = dev->primary->master->driver_priv;
2264         if (!master_priv->sarea_priv)
2265                 return;
2266
2267         switch (intel_crtc->pipe) {
2268         case 0:
2269                 master_priv->sarea_priv->pipeA_x = x;
2270                 master_priv->sarea_priv->pipeA_y = y;
2271                 break;
2272         case 1:
2273                 master_priv->sarea_priv->pipeB_x = x;
2274                 master_priv->sarea_priv->pipeB_y = y;
2275                 break;
2276         default:
2277                 break;
2278         }
2279 }
2280
2281 static int
2282 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2283                     struct drm_framebuffer *fb)
2284 {
2285         struct drm_device *dev = crtc->dev;
2286         struct drm_i915_private *dev_priv = dev->dev_private;
2287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2288         struct drm_framebuffer *old_fb;
2289         int ret;
2290
2291         /* no fb bound */
2292         if (!fb) {
2293                 DRM_ERROR("No FB bound\n");
2294                 return 0;
2295         }
2296
2297         if(intel_crtc->plane > dev_priv->num_pipe) {
2298                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2299                                 intel_crtc->plane,
2300                                 dev_priv->num_pipe);
2301                 return -EINVAL;
2302         }
2303
2304         mutex_lock(&dev->struct_mutex);
2305         ret = intel_pin_and_fence_fb_obj(dev,
2306                                          to_intel_framebuffer(fb)->obj,
2307                                          NULL);
2308         if (ret != 0) {
2309                 mutex_unlock(&dev->struct_mutex);
2310                 DRM_ERROR("pin & fence failed\n");
2311                 return ret;
2312         }
2313
2314         if (crtc->fb)
2315                 intel_finish_fb(crtc->fb);
2316
2317         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2318         if (ret) {
2319                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2320                 mutex_unlock(&dev->struct_mutex);
2321                 DRM_ERROR("failed to update base address\n");
2322                 return ret;
2323         }
2324
2325         old_fb = crtc->fb;
2326         crtc->fb = fb;
2327         crtc->x = x;
2328         crtc->y = y;
2329
2330         if (old_fb) {
2331                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2332                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2333         }
2334
2335         intel_update_fbc(dev);
2336         mutex_unlock(&dev->struct_mutex);
2337
2338         intel_crtc_update_sarea_pos(crtc, x, y);
2339
2340         return 0;
2341 }
2342
2343 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2344 {
2345         struct drm_device *dev = crtc->dev;
2346         struct drm_i915_private *dev_priv = dev->dev_private;
2347         u32 dpa_ctl;
2348
2349         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2350         dpa_ctl = I915_READ(DP_A);
2351         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2352
2353         if (clock < 200000) {
2354                 u32 temp;
2355                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2356                 /* workaround for 160Mhz:
2357                    1) program 0x4600c bits 15:0 = 0x8124
2358                    2) program 0x46010 bit 0 = 1
2359                    3) program 0x46034 bit 24 = 1
2360                    4) program 0x64000 bit 14 = 1
2361                    */
2362                 temp = I915_READ(0x4600c);
2363                 temp &= 0xffff0000;
2364                 I915_WRITE(0x4600c, temp | 0x8124);
2365
2366                 temp = I915_READ(0x46010);
2367                 I915_WRITE(0x46010, temp | 1);
2368
2369                 temp = I915_READ(0x46034);
2370                 I915_WRITE(0x46034, temp | (1 << 24));
2371         } else {
2372                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2373         }
2374         I915_WRITE(DP_A, dpa_ctl);
2375
2376         POSTING_READ(DP_A);
2377         udelay(500);
2378 }
2379
2380 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2381 {
2382         struct drm_device *dev = crtc->dev;
2383         struct drm_i915_private *dev_priv = dev->dev_private;
2384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2385         int pipe = intel_crtc->pipe;
2386         u32 reg, temp;
2387
2388         /* enable normal train */
2389         reg = FDI_TX_CTL(pipe);
2390         temp = I915_READ(reg);
2391         if (IS_IVYBRIDGE(dev)) {
2392                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2393                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2394         } else {
2395                 temp &= ~FDI_LINK_TRAIN_NONE;
2396                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2397         }
2398         I915_WRITE(reg, temp);
2399
2400         reg = FDI_RX_CTL(pipe);
2401         temp = I915_READ(reg);
2402         if (HAS_PCH_CPT(dev)) {
2403                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2404                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2405         } else {
2406                 temp &= ~FDI_LINK_TRAIN_NONE;
2407                 temp |= FDI_LINK_TRAIN_NONE;
2408         }
2409         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2410
2411         /* wait one idle pattern time */
2412         POSTING_READ(reg);
2413         udelay(1000);
2414
2415         /* IVB wants error correction enabled */
2416         if (IS_IVYBRIDGE(dev))
2417                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2418                            FDI_FE_ERRC_ENABLE);
2419 }
2420
2421 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2422 {
2423         struct drm_i915_private *dev_priv = dev->dev_private;
2424         u32 flags = I915_READ(SOUTH_CHICKEN1);
2425
2426         flags |= FDI_PHASE_SYNC_OVR(pipe);
2427         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2428         flags |= FDI_PHASE_SYNC_EN(pipe);
2429         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2430         POSTING_READ(SOUTH_CHICKEN1);
2431 }
2432
2433 static void ivb_modeset_global_resources(struct drm_device *dev)
2434 {
2435         struct drm_i915_private *dev_priv = dev->dev_private;
2436         struct intel_crtc *pipe_B_crtc =
2437                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2438         struct intel_crtc *pipe_C_crtc =
2439                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2440         uint32_t temp;
2441
2442         /* When everything is off disable fdi C so that we could enable fdi B
2443          * with all lanes. XXX: This misses the case where a pipe is not using
2444          * any pch resources and so doesn't need any fdi lanes. */
2445         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2446                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2447                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2448
2449                 temp = I915_READ(SOUTH_CHICKEN1);
2450                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2451                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2452                 I915_WRITE(SOUTH_CHICKEN1, temp);
2453         }
2454 }
2455
2456 /* The FDI link training functions for ILK/Ibexpeak. */
2457 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2458 {
2459         struct drm_device *dev = crtc->dev;
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2462         int pipe = intel_crtc->pipe;
2463         int plane = intel_crtc->plane;
2464         u32 reg, temp, tries;
2465
2466         /* FDI needs bits from pipe & plane first */
2467         assert_pipe_enabled(dev_priv, pipe);
2468         assert_plane_enabled(dev_priv, plane);
2469
2470         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2471            for train result */
2472         reg = FDI_RX_IMR(pipe);
2473         temp = I915_READ(reg);
2474         temp &= ~FDI_RX_SYMBOL_LOCK;
2475         temp &= ~FDI_RX_BIT_LOCK;
2476         I915_WRITE(reg, temp);
2477         I915_READ(reg);
2478         udelay(150);
2479
2480         /* enable CPU FDI TX and PCH FDI RX */
2481         reg = FDI_TX_CTL(pipe);
2482         temp = I915_READ(reg);
2483         temp &= ~(7 << 19);
2484         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2485         temp &= ~FDI_LINK_TRAIN_NONE;
2486         temp |= FDI_LINK_TRAIN_PATTERN_1;
2487         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2488
2489         reg = FDI_RX_CTL(pipe);
2490         temp = I915_READ(reg);
2491         temp &= ~FDI_LINK_TRAIN_NONE;
2492         temp |= FDI_LINK_TRAIN_PATTERN_1;
2493         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2494
2495         POSTING_READ(reg);
2496         udelay(150);
2497
2498         /* Ironlake workaround, enable clock pointer after FDI enable*/
2499         if (HAS_PCH_IBX(dev)) {
2500                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2501                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2502                            FDI_RX_PHASE_SYNC_POINTER_EN);
2503         }
2504
2505         reg = FDI_RX_IIR(pipe);
2506         for (tries = 0; tries < 5; tries++) {
2507                 temp = I915_READ(reg);
2508                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2509
2510                 if ((temp & FDI_RX_BIT_LOCK)) {
2511                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2512                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2513                         break;
2514                 }
2515         }
2516         if (tries == 5)
2517                 DRM_ERROR("FDI train 1 fail!\n");
2518
2519         /* Train 2 */
2520         reg = FDI_TX_CTL(pipe);
2521         temp = I915_READ(reg);
2522         temp &= ~FDI_LINK_TRAIN_NONE;
2523         temp |= FDI_LINK_TRAIN_PATTERN_2;
2524         I915_WRITE(reg, temp);
2525
2526         reg = FDI_RX_CTL(pipe);
2527         temp = I915_READ(reg);
2528         temp &= ~FDI_LINK_TRAIN_NONE;
2529         temp |= FDI_LINK_TRAIN_PATTERN_2;
2530         I915_WRITE(reg, temp);
2531
2532         POSTING_READ(reg);
2533         udelay(150);
2534
2535         reg = FDI_RX_IIR(pipe);
2536         for (tries = 0; tries < 5; tries++) {
2537                 temp = I915_READ(reg);
2538                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2539
2540                 if (temp & FDI_RX_SYMBOL_LOCK) {
2541                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2542                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2543                         break;
2544                 }
2545         }
2546         if (tries == 5)
2547                 DRM_ERROR("FDI train 2 fail!\n");
2548
2549         DRM_DEBUG_KMS("FDI train done\n");
2550
2551 }
2552
2553 static const int snb_b_fdi_train_param[] = {
2554         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2555         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2556         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2557         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2558 };
2559
2560 /* The FDI link training functions for SNB/Cougarpoint. */
2561 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2562 {
2563         struct drm_device *dev = crtc->dev;
2564         struct drm_i915_private *dev_priv = dev->dev_private;
2565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2566         int pipe = intel_crtc->pipe;
2567         u32 reg, temp, i, retry;
2568
2569         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2570            for train result */
2571         reg = FDI_RX_IMR(pipe);
2572         temp = I915_READ(reg);
2573         temp &= ~FDI_RX_SYMBOL_LOCK;
2574         temp &= ~FDI_RX_BIT_LOCK;
2575         I915_WRITE(reg, temp);
2576
2577         POSTING_READ(reg);
2578         udelay(150);
2579
2580         /* enable CPU FDI TX and PCH FDI RX */
2581         reg = FDI_TX_CTL(pipe);
2582         temp = I915_READ(reg);
2583         temp &= ~(7 << 19);
2584         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2585         temp &= ~FDI_LINK_TRAIN_NONE;
2586         temp |= FDI_LINK_TRAIN_PATTERN_1;
2587         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2588         /* SNB-B */
2589         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2590         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2591
2592         I915_WRITE(FDI_RX_MISC(pipe),
2593                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2594
2595         reg = FDI_RX_CTL(pipe);
2596         temp = I915_READ(reg);
2597         if (HAS_PCH_CPT(dev)) {
2598                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2599                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2600         } else {
2601                 temp &= ~FDI_LINK_TRAIN_NONE;
2602                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2603         }
2604         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2605
2606         POSTING_READ(reg);
2607         udelay(150);
2608
2609         if (HAS_PCH_CPT(dev))
2610                 cpt_phase_pointer_enable(dev, pipe);
2611
2612         for (i = 0; i < 4; i++) {
2613                 reg = FDI_TX_CTL(pipe);
2614                 temp = I915_READ(reg);
2615                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2616                 temp |= snb_b_fdi_train_param[i];
2617                 I915_WRITE(reg, temp);
2618
2619                 POSTING_READ(reg);
2620                 udelay(500);
2621
2622                 for (retry = 0; retry < 5; retry++) {
2623                         reg = FDI_RX_IIR(pipe);
2624                         temp = I915_READ(reg);
2625                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2626                         if (temp & FDI_RX_BIT_LOCK) {
2627                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2628                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2629                                 break;
2630                         }
2631                         udelay(50);
2632                 }
2633                 if (retry < 5)
2634                         break;
2635         }
2636         if (i == 4)
2637                 DRM_ERROR("FDI train 1 fail!\n");
2638
2639         /* Train 2 */
2640         reg = FDI_TX_CTL(pipe);
2641         temp = I915_READ(reg);
2642         temp &= ~FDI_LINK_TRAIN_NONE;
2643         temp |= FDI_LINK_TRAIN_PATTERN_2;
2644         if (IS_GEN6(dev)) {
2645                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2646                 /* SNB-B */
2647                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2648         }
2649         I915_WRITE(reg, temp);
2650
2651         reg = FDI_RX_CTL(pipe);
2652         temp = I915_READ(reg);
2653         if (HAS_PCH_CPT(dev)) {
2654                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2655                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2656         } else {
2657                 temp &= ~FDI_LINK_TRAIN_NONE;
2658                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2659         }
2660         I915_WRITE(reg, temp);
2661
2662         POSTING_READ(reg);
2663         udelay(150);
2664
2665         for (i = 0; i < 4; i++) {
2666                 reg = FDI_TX_CTL(pipe);
2667                 temp = I915_READ(reg);
2668                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2669                 temp |= snb_b_fdi_train_param[i];
2670                 I915_WRITE(reg, temp);
2671
2672                 POSTING_READ(reg);
2673                 udelay(500);
2674
2675                 for (retry = 0; retry < 5; retry++) {
2676                         reg = FDI_RX_IIR(pipe);
2677                         temp = I915_READ(reg);
2678                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2679                         if (temp & FDI_RX_SYMBOL_LOCK) {
2680                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2681                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2682                                 break;
2683                         }
2684                         udelay(50);
2685                 }
2686                 if (retry < 5)
2687                         break;
2688         }
2689         if (i == 4)
2690                 DRM_ERROR("FDI train 2 fail!\n");
2691
2692         DRM_DEBUG_KMS("FDI train done.\n");
2693 }
2694
2695 /* Manual link training for Ivy Bridge A0 parts */
2696 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2697 {
2698         struct drm_device *dev = crtc->dev;
2699         struct drm_i915_private *dev_priv = dev->dev_private;
2700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2701         int pipe = intel_crtc->pipe;
2702         u32 reg, temp, i;
2703
2704         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2705            for train result */
2706         reg = FDI_RX_IMR(pipe);
2707         temp = I915_READ(reg);
2708         temp &= ~FDI_RX_SYMBOL_LOCK;
2709         temp &= ~FDI_RX_BIT_LOCK;
2710         I915_WRITE(reg, temp);
2711
2712         POSTING_READ(reg);
2713         udelay(150);
2714
2715         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2716                       I915_READ(FDI_RX_IIR(pipe)));
2717
2718         /* enable CPU FDI TX and PCH FDI RX */
2719         reg = FDI_TX_CTL(pipe);
2720         temp = I915_READ(reg);
2721         temp &= ~(7 << 19);
2722         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2723         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2724         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2725         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2726         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2727         temp |= FDI_COMPOSITE_SYNC;
2728         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2729
2730         I915_WRITE(FDI_RX_MISC(pipe),
2731                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2732
2733         reg = FDI_RX_CTL(pipe);
2734         temp = I915_READ(reg);
2735         temp &= ~FDI_LINK_TRAIN_AUTO;
2736         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2737         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2738         temp |= FDI_COMPOSITE_SYNC;
2739         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2740
2741         POSTING_READ(reg);
2742         udelay(150);
2743
2744         if (HAS_PCH_CPT(dev))
2745                 cpt_phase_pointer_enable(dev, pipe);
2746
2747         for (i = 0; i < 4; i++) {
2748                 reg = FDI_TX_CTL(pipe);
2749                 temp = I915_READ(reg);
2750                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2751                 temp |= snb_b_fdi_train_param[i];
2752                 I915_WRITE(reg, temp);
2753
2754                 POSTING_READ(reg);
2755                 udelay(500);
2756
2757                 reg = FDI_RX_IIR(pipe);
2758                 temp = I915_READ(reg);
2759                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2760
2761                 if (temp & FDI_RX_BIT_LOCK ||
2762                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2763                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2764                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2765                         break;
2766                 }
2767         }
2768         if (i == 4)
2769                 DRM_ERROR("FDI train 1 fail!\n");
2770
2771         /* Train 2 */
2772         reg = FDI_TX_CTL(pipe);
2773         temp = I915_READ(reg);
2774         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2775         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2776         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2777         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2778         I915_WRITE(reg, temp);
2779
2780         reg = FDI_RX_CTL(pipe);
2781         temp = I915_READ(reg);
2782         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2783         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2784         I915_WRITE(reg, temp);
2785
2786         POSTING_READ(reg);
2787         udelay(150);
2788
2789         for (i = 0; i < 4; i++) {
2790                 reg = FDI_TX_CTL(pipe);
2791                 temp = I915_READ(reg);
2792                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2793                 temp |= snb_b_fdi_train_param[i];
2794                 I915_WRITE(reg, temp);
2795
2796                 POSTING_READ(reg);
2797                 udelay(500);
2798
2799                 reg = FDI_RX_IIR(pipe);
2800                 temp = I915_READ(reg);
2801                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2802
2803                 if (temp & FDI_RX_SYMBOL_LOCK) {
2804                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2805                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2806                         break;
2807                 }
2808         }
2809         if (i == 4)
2810                 DRM_ERROR("FDI train 2 fail!\n");
2811
2812         DRM_DEBUG_KMS("FDI train done.\n");
2813 }
2814
2815 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2816 {
2817         struct drm_device *dev = intel_crtc->base.dev;
2818         struct drm_i915_private *dev_priv = dev->dev_private;
2819         int pipe = intel_crtc->pipe;
2820         u32 reg, temp;
2821
2822
2823         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2824         reg = FDI_RX_CTL(pipe);
2825         temp = I915_READ(reg);
2826         temp &= ~((0x7 << 19) | (0x7 << 16));
2827         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2828         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2829         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2830
2831         POSTING_READ(reg);
2832         udelay(200);
2833
2834         /* Switch from Rawclk to PCDclk */
2835         temp = I915_READ(reg);
2836         I915_WRITE(reg, temp | FDI_PCDCLK);
2837
2838         POSTING_READ(reg);
2839         udelay(200);
2840
2841         /* On Haswell, the PLL configuration for ports and pipes is handled
2842          * separately, as part of DDI setup */
2843         if (!IS_HASWELL(dev)) {
2844                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2845                 reg = FDI_TX_CTL(pipe);
2846                 temp = I915_READ(reg);
2847                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2848                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2849
2850                         POSTING_READ(reg);
2851                         udelay(100);
2852                 }
2853         }
2854 }
2855
2856 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2857 {
2858         struct drm_device *dev = intel_crtc->base.dev;
2859         struct drm_i915_private *dev_priv = dev->dev_private;
2860         int pipe = intel_crtc->pipe;
2861         u32 reg, temp;
2862
2863         /* Switch from PCDclk to Rawclk */
2864         reg = FDI_RX_CTL(pipe);
2865         temp = I915_READ(reg);
2866         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2867
2868         /* Disable CPU FDI TX PLL */
2869         reg = FDI_TX_CTL(pipe);
2870         temp = I915_READ(reg);
2871         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2872
2873         POSTING_READ(reg);
2874         udelay(100);
2875
2876         reg = FDI_RX_CTL(pipe);
2877         temp = I915_READ(reg);
2878         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2879
2880         /* Wait for the clocks to turn off. */
2881         POSTING_READ(reg);
2882         udelay(100);
2883 }
2884
2885 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2886 {
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888         u32 flags = I915_READ(SOUTH_CHICKEN1);
2889
2890         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2891         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2892         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2893         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2894         POSTING_READ(SOUTH_CHICKEN1);
2895 }
2896 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2897 {
2898         struct drm_device *dev = crtc->dev;
2899         struct drm_i915_private *dev_priv = dev->dev_private;
2900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2901         int pipe = intel_crtc->pipe;
2902         u32 reg, temp;
2903
2904         /* disable CPU FDI tx and PCH FDI rx */
2905         reg = FDI_TX_CTL(pipe);
2906         temp = I915_READ(reg);
2907         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2908         POSTING_READ(reg);
2909
2910         reg = FDI_RX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         temp &= ~(0x7 << 16);
2913         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2914         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2915
2916         POSTING_READ(reg);
2917         udelay(100);
2918
2919         /* Ironlake workaround, disable clock pointer after downing FDI */
2920         if (HAS_PCH_IBX(dev)) {
2921                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2922                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2923                            I915_READ(FDI_RX_CHICKEN(pipe) &
2924                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2925         } else if (HAS_PCH_CPT(dev)) {
2926                 cpt_phase_pointer_disable(dev, pipe);
2927         }
2928
2929         /* still set train pattern 1 */
2930         reg = FDI_TX_CTL(pipe);
2931         temp = I915_READ(reg);
2932         temp &= ~FDI_LINK_TRAIN_NONE;
2933         temp |= FDI_LINK_TRAIN_PATTERN_1;
2934         I915_WRITE(reg, temp);
2935
2936         reg = FDI_RX_CTL(pipe);
2937         temp = I915_READ(reg);
2938         if (HAS_PCH_CPT(dev)) {
2939                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2940                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2941         } else {
2942                 temp &= ~FDI_LINK_TRAIN_NONE;
2943                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2944         }
2945         /* BPC in FDI rx is consistent with that in PIPECONF */
2946         temp &= ~(0x07 << 16);
2947         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2948         I915_WRITE(reg, temp);
2949
2950         POSTING_READ(reg);
2951         udelay(100);
2952 }
2953
2954 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2955 {
2956         struct drm_device *dev = crtc->dev;
2957         struct drm_i915_private *dev_priv = dev->dev_private;
2958         unsigned long flags;
2959         bool pending;
2960
2961         if (atomic_read(&dev_priv->mm.wedged))
2962                 return false;
2963
2964         spin_lock_irqsave(&dev->event_lock, flags);
2965         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2966         spin_unlock_irqrestore(&dev->event_lock, flags);
2967
2968         return pending;
2969 }
2970
2971 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2972 {
2973         struct drm_device *dev = crtc->dev;
2974         struct drm_i915_private *dev_priv = dev->dev_private;
2975
2976         if (crtc->fb == NULL)
2977                 return;
2978
2979         wait_event(dev_priv->pending_flip_queue,
2980                    !intel_crtc_has_pending_flip(crtc));
2981
2982         mutex_lock(&dev->struct_mutex);
2983         intel_finish_fb(crtc->fb);
2984         mutex_unlock(&dev->struct_mutex);
2985 }
2986
2987 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2988 {
2989         struct drm_device *dev = crtc->dev;
2990         struct intel_encoder *intel_encoder;
2991
2992         /*
2993          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2994          * must be driven by its own crtc; no sharing is possible.
2995          */
2996         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2997                 switch (intel_encoder->type) {
2998                 case INTEL_OUTPUT_EDP:
2999                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
3000                                 return false;
3001                         continue;
3002                 }
3003         }
3004
3005         return true;
3006 }
3007
3008 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3009 {
3010         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3011 }
3012
3013 /* Program iCLKIP clock to the desired frequency */
3014 static void lpt_program_iclkip(struct drm_crtc *crtc)
3015 {
3016         struct drm_device *dev = crtc->dev;
3017         struct drm_i915_private *dev_priv = dev->dev_private;
3018         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3019         u32 temp;
3020
3021         /* It is necessary to ungate the pixclk gate prior to programming
3022          * the divisors, and gate it back when it is done.
3023          */
3024         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3025
3026         /* Disable SSCCTL */
3027         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3028                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3029                                         SBI_SSCCTL_DISABLE);
3030
3031         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3032         if (crtc->mode.clock == 20000) {
3033                 auxdiv = 1;
3034                 divsel = 0x41;
3035                 phaseinc = 0x20;
3036         } else {
3037                 /* The iCLK virtual clock root frequency is in MHz,
3038                  * but the crtc->mode.clock in in KHz. To get the divisors,
3039                  * it is necessary to divide one by another, so we
3040                  * convert the virtual clock precision to KHz here for higher
3041                  * precision.
3042                  */
3043                 u32 iclk_virtual_root_freq = 172800 * 1000;
3044                 u32 iclk_pi_range = 64;
3045                 u32 desired_divisor, msb_divisor_value, pi_value;
3046
3047                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3048                 msb_divisor_value = desired_divisor / iclk_pi_range;
3049                 pi_value = desired_divisor % iclk_pi_range;
3050
3051                 auxdiv = 0;
3052                 divsel = msb_divisor_value - 2;
3053                 phaseinc = pi_value;
3054         }
3055
3056         /* This should not happen with any sane values */
3057         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3058                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3059         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3060                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3061
3062         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3063                         crtc->mode.clock,
3064                         auxdiv,
3065                         divsel,
3066                         phasedir,
3067                         phaseinc);
3068
3069         /* Program SSCDIVINTPHASE6 */
3070         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3071         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3072         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3073         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3074         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3075         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3076         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3077
3078         intel_sbi_write(dev_priv,
3079                         SBI_SSCDIVINTPHASE6,
3080                         temp);
3081
3082         /* Program SSCAUXDIV */
3083         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3084         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3085         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3086         intel_sbi_write(dev_priv,
3087                         SBI_SSCAUXDIV6,
3088                         temp);
3089
3090
3091         /* Enable modulator and associated divider */
3092         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3093         temp &= ~SBI_SSCCTL_DISABLE;
3094         intel_sbi_write(dev_priv,
3095                         SBI_SSCCTL6,
3096                         temp);
3097
3098         /* Wait for initialization time */
3099         udelay(24);
3100
3101         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3102 }
3103
3104 /*
3105  * Enable PCH resources required for PCH ports:
3106  *   - PCH PLLs
3107  *   - FDI training & RX/TX
3108  *   - update transcoder timings
3109  *   - DP transcoding bits
3110  *   - transcoder
3111  */
3112 static void ironlake_pch_enable(struct drm_crtc *crtc)
3113 {
3114         struct drm_device *dev = crtc->dev;
3115         struct drm_i915_private *dev_priv = dev->dev_private;
3116         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3117         int pipe = intel_crtc->pipe;
3118         u32 reg, temp;
3119
3120         assert_transcoder_disabled(dev_priv, pipe);
3121
3122         /* Write the TU size bits before fdi link training, so that error
3123          * detection works. */
3124         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3125                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3126
3127         /* For PCH output, training FDI link */
3128         dev_priv->display.fdi_link_train(crtc);
3129
3130         /* XXX: pch pll's can be enabled any time before we enable the PCH
3131          * transcoder, and we actually should do this to not upset any PCH
3132          * transcoder that already use the clock when we share it.
3133          *
3134          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3135          * unconditionally resets the pll - we need that to have the right LVDS
3136          * enable sequence. */
3137         ironlake_enable_pch_pll(intel_crtc);
3138
3139         if (HAS_PCH_CPT(dev)) {
3140                 u32 sel;
3141
3142                 temp = I915_READ(PCH_DPLL_SEL);
3143                 switch (pipe) {
3144                 default:
3145                 case 0:
3146                         temp |= TRANSA_DPLL_ENABLE;
3147                         sel = TRANSA_DPLLB_SEL;
3148                         break;
3149                 case 1:
3150                         temp |= TRANSB_DPLL_ENABLE;
3151                         sel = TRANSB_DPLLB_SEL;
3152                         break;
3153                 case 2:
3154                         temp |= TRANSC_DPLL_ENABLE;
3155                         sel = TRANSC_DPLLB_SEL;
3156                         break;
3157                 }
3158                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3159                         temp |= sel;
3160                 else
3161                         temp &= ~sel;
3162                 I915_WRITE(PCH_DPLL_SEL, temp);
3163         }
3164
3165         /* set transcoder timing, panel must allow it */
3166         assert_panel_unlocked(dev_priv, pipe);
3167         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3168         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3169         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3170
3171         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3172         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3173         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3174         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3175
3176         intel_fdi_normal_train(crtc);
3177
3178         /* For PCH DP, enable TRANS_DP_CTL */
3179         if (HAS_PCH_CPT(dev) &&
3180             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3181              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3182                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3183                 reg = TRANS_DP_CTL(pipe);
3184                 temp = I915_READ(reg);
3185                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3186                           TRANS_DP_SYNC_MASK |
3187                           TRANS_DP_BPC_MASK);
3188                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3189                          TRANS_DP_ENH_FRAMING);
3190                 temp |= bpc << 9; /* same format but at 11:9 */
3191
3192                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3193                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3194                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3195                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3196
3197                 switch (intel_trans_dp_port_sel(crtc)) {
3198                 case PCH_DP_B:
3199                         temp |= TRANS_DP_PORT_SEL_B;
3200                         break;
3201                 case PCH_DP_C:
3202                         temp |= TRANS_DP_PORT_SEL_C;
3203                         break;
3204                 case PCH_DP_D:
3205                         temp |= TRANS_DP_PORT_SEL_D;
3206                         break;
3207                 default:
3208                         BUG();
3209                 }
3210
3211                 I915_WRITE(reg, temp);
3212         }
3213
3214         ironlake_enable_pch_transcoder(dev_priv, pipe);
3215 }
3216
3217 static void lpt_pch_enable(struct drm_crtc *crtc)
3218 {
3219         struct drm_device *dev = crtc->dev;
3220         struct drm_i915_private *dev_priv = dev->dev_private;
3221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3222         int pipe = intel_crtc->pipe;
3223         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3224
3225         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3226
3227         /* Write the TU size bits before fdi link training, so that error
3228          * detection works. */
3229         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3230                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3231
3232         /* For PCH output, training FDI link */
3233         dev_priv->display.fdi_link_train(crtc);
3234
3235         lpt_program_iclkip(crtc);
3236
3237         /* Set transcoder timing. */
3238         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3239         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3240         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3241
3242         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3243         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3244         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3245         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3246
3247         lpt_enable_pch_transcoder(dev_priv, intel_crtc->pipe);
3248 }
3249
3250 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3251 {
3252         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3253
3254         if (pll == NULL)
3255                 return;
3256
3257         if (pll->refcount == 0) {
3258                 WARN(1, "bad PCH PLL refcount\n");
3259                 return;
3260         }
3261
3262         --pll->refcount;
3263         intel_crtc->pch_pll = NULL;
3264 }
3265
3266 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3267 {
3268         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3269         struct intel_pch_pll *pll;
3270         int i;
3271
3272         pll = intel_crtc->pch_pll;
3273         if (pll) {
3274                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3275                               intel_crtc->base.base.id, pll->pll_reg);
3276                 goto prepare;
3277         }
3278
3279         if (HAS_PCH_IBX(dev_priv->dev)) {
3280                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3281                 i = intel_crtc->pipe;
3282                 pll = &dev_priv->pch_plls[i];
3283
3284                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3285                               intel_crtc->base.base.id, pll->pll_reg);
3286
3287                 goto found;
3288         }
3289
3290         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3291                 pll = &dev_priv->pch_plls[i];
3292
3293                 /* Only want to check enabled timings first */
3294                 if (pll->refcount == 0)
3295                         continue;
3296
3297                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3298                     fp == I915_READ(pll->fp0_reg)) {
3299                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3300                                       intel_crtc->base.base.id,
3301                                       pll->pll_reg, pll->refcount, pll->active);
3302
3303                         goto found;
3304                 }
3305         }
3306
3307         /* Ok no matching timings, maybe there's a free one? */
3308         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3309                 pll = &dev_priv->pch_plls[i];
3310                 if (pll->refcount == 0) {
3311                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3312                                       intel_crtc->base.base.id, pll->pll_reg);
3313                         goto found;
3314                 }
3315         }
3316
3317         return NULL;
3318
3319 found:
3320         intel_crtc->pch_pll = pll;
3321         pll->refcount++;
3322         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3323 prepare: /* separate function? */
3324         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3325
3326         /* Wait for the clocks to stabilize before rewriting the regs */
3327         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3328         POSTING_READ(pll->pll_reg);
3329         udelay(150);
3330
3331         I915_WRITE(pll->fp0_reg, fp);
3332         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3333         pll->on = false;
3334         return pll;
3335 }
3336
3337 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3338 {
3339         struct drm_i915_private *dev_priv = dev->dev_private;
3340         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3341         u32 temp;
3342
3343         temp = I915_READ(dslreg);
3344         udelay(500);
3345         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3346                 /* Without this, mode sets may fail silently on FDI */
3347                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3348                 udelay(250);
3349                 I915_WRITE(tc2reg, 0);
3350                 if (wait_for(I915_READ(dslreg) != temp, 5))
3351                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3352         }
3353 }
3354
3355 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3356 {
3357         struct drm_device *dev = crtc->dev;
3358         struct drm_i915_private *dev_priv = dev->dev_private;
3359         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3360         struct intel_encoder *encoder;
3361         int pipe = intel_crtc->pipe;
3362         int plane = intel_crtc->plane;
3363         u32 temp;
3364         bool is_pch_port;
3365
3366         WARN_ON(!crtc->enabled);
3367
3368         if (intel_crtc->active)
3369                 return;
3370
3371         intel_crtc->active = true;
3372         intel_update_watermarks(dev);
3373
3374         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3375                 temp = I915_READ(PCH_LVDS);
3376                 if ((temp & LVDS_PORT_EN) == 0)
3377                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3378         }
3379
3380         is_pch_port = ironlake_crtc_driving_pch(crtc);
3381
3382         if (is_pch_port) {
3383                 /* Note: FDI PLL enabling _must_ be done before we enable the
3384                  * cpu pipes, hence this is separate from all the other fdi/pch
3385                  * enabling. */
3386                 ironlake_fdi_pll_enable(intel_crtc);
3387         } else {
3388                 assert_fdi_tx_disabled(dev_priv, pipe);
3389                 assert_fdi_rx_disabled(dev_priv, pipe);
3390         }
3391
3392         for_each_encoder_on_crtc(dev, crtc, encoder)
3393                 if (encoder->pre_enable)
3394                         encoder->pre_enable(encoder);
3395
3396         /* Enable panel fitting for LVDS */
3397         if (dev_priv->pch_pf_size &&
3398             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3399                 /* Force use of hard-coded filter coefficients
3400                  * as some pre-programmed values are broken,
3401                  * e.g. x201.
3402                  */
3403                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3404                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3405                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3406         }
3407
3408         /*
3409          * On ILK+ LUT must be loaded before the pipe is running but with
3410          * clocks enabled
3411          */
3412         intel_crtc_load_lut(crtc);
3413
3414         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3415         intel_enable_plane(dev_priv, plane, pipe);
3416
3417         if (is_pch_port)
3418                 ironlake_pch_enable(crtc);
3419
3420         mutex_lock(&dev->struct_mutex);
3421         intel_update_fbc(dev);
3422         mutex_unlock(&dev->struct_mutex);
3423
3424         intel_crtc_update_cursor(crtc, true);
3425
3426         for_each_encoder_on_crtc(dev, crtc, encoder)
3427                 encoder->enable(encoder);
3428
3429         if (HAS_PCH_CPT(dev))
3430                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3431
3432         /*
3433          * There seems to be a race in PCH platform hw (at least on some
3434          * outputs) where an enabled pipe still completes any pageflip right
3435          * away (as if the pipe is off) instead of waiting for vblank. As soon
3436          * as the first vblank happend, everything works as expected. Hence just
3437          * wait for one vblank before returning to avoid strange things
3438          * happening.
3439          */
3440         intel_wait_for_vblank(dev, intel_crtc->pipe);
3441 }
3442
3443 static void haswell_crtc_enable(struct drm_crtc *crtc)
3444 {
3445         struct drm_device *dev = crtc->dev;
3446         struct drm_i915_private *dev_priv = dev->dev_private;
3447         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3448         struct intel_encoder *encoder;
3449         int pipe = intel_crtc->pipe;
3450         int plane = intel_crtc->plane;
3451         bool is_pch_port;
3452
3453         WARN_ON(!crtc->enabled);
3454
3455         if (intel_crtc->active)
3456                 return;
3457
3458         intel_crtc->active = true;
3459         intel_update_watermarks(dev);
3460
3461         is_pch_port = haswell_crtc_driving_pch(crtc);
3462
3463         if (is_pch_port)
3464                 ironlake_fdi_pll_enable(intel_crtc);
3465
3466         for_each_encoder_on_crtc(dev, crtc, encoder)
3467                 if (encoder->pre_enable)
3468                         encoder->pre_enable(encoder);
3469
3470         intel_ddi_enable_pipe_clock(intel_crtc);
3471
3472         /* Enable panel fitting for eDP */
3473         if (dev_priv->pch_pf_size && HAS_eDP) {
3474                 /* Force use of hard-coded filter coefficients
3475                  * as some pre-programmed values are broken,
3476                  * e.g. x201.
3477                  */
3478                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3479                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3480                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3481         }
3482
3483         /*
3484          * On ILK+ LUT must be loaded before the pipe is running but with
3485          * clocks enabled
3486          */
3487         intel_crtc_load_lut(crtc);
3488
3489         intel_ddi_set_pipe_settings(crtc);
3490         intel_ddi_enable_pipe_func(crtc);
3491
3492         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3493         intel_enable_plane(dev_priv, plane, pipe);
3494
3495         if (is_pch_port)
3496                 lpt_pch_enable(crtc);
3497
3498         mutex_lock(&dev->struct_mutex);
3499         intel_update_fbc(dev);
3500         mutex_unlock(&dev->struct_mutex);
3501
3502         intel_crtc_update_cursor(crtc, true);
3503
3504         for_each_encoder_on_crtc(dev, crtc, encoder)
3505                 encoder->enable(encoder);
3506
3507         /*
3508          * There seems to be a race in PCH platform hw (at least on some
3509          * outputs) where an enabled pipe still completes any pageflip right
3510          * away (as if the pipe is off) instead of waiting for vblank. As soon
3511          * as the first vblank happend, everything works as expected. Hence just
3512          * wait for one vblank before returning to avoid strange things
3513          * happening.
3514          */
3515         intel_wait_for_vblank(dev, intel_crtc->pipe);
3516 }
3517
3518 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3519 {
3520         struct drm_device *dev = crtc->dev;
3521         struct drm_i915_private *dev_priv = dev->dev_private;
3522         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3523         struct intel_encoder *encoder;
3524         int pipe = intel_crtc->pipe;
3525         int plane = intel_crtc->plane;
3526         u32 reg, temp;
3527
3528
3529         if (!intel_crtc->active)
3530                 return;
3531
3532         for_each_encoder_on_crtc(dev, crtc, encoder)
3533                 encoder->disable(encoder);
3534
3535         intel_crtc_wait_for_pending_flips(crtc);
3536         drm_vblank_off(dev, pipe);
3537         intel_crtc_update_cursor(crtc, false);
3538
3539         intel_disable_plane(dev_priv, plane, pipe);
3540
3541         if (dev_priv->cfb_plane == plane)
3542                 intel_disable_fbc(dev);
3543
3544         intel_disable_pipe(dev_priv, pipe);
3545
3546         /* Disable PF */
3547         I915_WRITE(PF_CTL(pipe), 0);
3548         I915_WRITE(PF_WIN_SZ(pipe), 0);
3549
3550         for_each_encoder_on_crtc(dev, crtc, encoder)
3551                 if (encoder->post_disable)
3552                         encoder->post_disable(encoder);
3553
3554         ironlake_fdi_disable(crtc);
3555
3556         ironlake_disable_pch_transcoder(dev_priv, pipe);
3557
3558         if (HAS_PCH_CPT(dev)) {
3559                 /* disable TRANS_DP_CTL */
3560                 reg = TRANS_DP_CTL(pipe);
3561                 temp = I915_READ(reg);
3562                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3563                 temp |= TRANS_DP_PORT_SEL_NONE;
3564                 I915_WRITE(reg, temp);
3565
3566                 /* disable DPLL_SEL */
3567                 temp = I915_READ(PCH_DPLL_SEL);
3568                 switch (pipe) {
3569                 case 0:
3570                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3571                         break;
3572                 case 1:
3573                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3574                         break;
3575                 case 2:
3576                         /* C shares PLL A or B */
3577                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3578                         break;
3579                 default:
3580                         BUG(); /* wtf */
3581                 }
3582                 I915_WRITE(PCH_DPLL_SEL, temp);
3583         }
3584
3585         /* disable PCH DPLL */
3586         intel_disable_pch_pll(intel_crtc);
3587
3588         ironlake_fdi_pll_disable(intel_crtc);
3589
3590         intel_crtc->active = false;
3591         intel_update_watermarks(dev);
3592
3593         mutex_lock(&dev->struct_mutex);
3594         intel_update_fbc(dev);
3595         mutex_unlock(&dev->struct_mutex);
3596 }
3597
3598 static void haswell_crtc_disable(struct drm_crtc *crtc)
3599 {
3600         struct drm_device *dev = crtc->dev;
3601         struct drm_i915_private *dev_priv = dev->dev_private;
3602         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3603         struct intel_encoder *encoder;
3604         int pipe = intel_crtc->pipe;
3605         int plane = intel_crtc->plane;
3606         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3607         bool is_pch_port;
3608
3609         if (!intel_crtc->active)
3610                 return;
3611
3612         is_pch_port = haswell_crtc_driving_pch(crtc);
3613
3614         for_each_encoder_on_crtc(dev, crtc, encoder)
3615                 encoder->disable(encoder);
3616
3617         intel_crtc_wait_for_pending_flips(crtc);
3618         drm_vblank_off(dev, pipe);
3619         intel_crtc_update_cursor(crtc, false);
3620
3621         intel_disable_plane(dev_priv, plane, pipe);
3622
3623         if (dev_priv->cfb_plane == plane)
3624                 intel_disable_fbc(dev);
3625
3626         intel_disable_pipe(dev_priv, pipe);
3627
3628         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3629
3630         /* Disable PF */
3631         I915_WRITE(PF_CTL(pipe), 0);
3632         I915_WRITE(PF_WIN_SZ(pipe), 0);
3633
3634         intel_ddi_disable_pipe_clock(intel_crtc);
3635
3636         for_each_encoder_on_crtc(dev, crtc, encoder)
3637                 if (encoder->post_disable)
3638                         encoder->post_disable(encoder);
3639
3640         if (is_pch_port) {
3641                 ironlake_fdi_disable(crtc);
3642                 lpt_disable_pch_transcoder(dev_priv, pipe);
3643                 intel_disable_pch_pll(intel_crtc);
3644                 ironlake_fdi_pll_disable(intel_crtc);
3645         }
3646
3647         intel_crtc->active = false;
3648         intel_update_watermarks(dev);
3649
3650         mutex_lock(&dev->struct_mutex);
3651         intel_update_fbc(dev);
3652         mutex_unlock(&dev->struct_mutex);
3653 }
3654
3655 static void ironlake_crtc_off(struct drm_crtc *crtc)
3656 {
3657         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3658         intel_put_pch_pll(intel_crtc);
3659 }
3660
3661 static void haswell_crtc_off(struct drm_crtc *crtc)
3662 {
3663         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3664
3665         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3666          * start using it. */
3667         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3668
3669         intel_ddi_put_crtc_pll(crtc);
3670 }
3671
3672 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3673 {
3674         if (!enable && intel_crtc->overlay) {
3675                 struct drm_device *dev = intel_crtc->base.dev;
3676                 struct drm_i915_private *dev_priv = dev->dev_private;
3677
3678                 mutex_lock(&dev->struct_mutex);
3679                 dev_priv->mm.interruptible = false;
3680                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3681                 dev_priv->mm.interruptible = true;
3682                 mutex_unlock(&dev->struct_mutex);
3683         }
3684
3685         /* Let userspace switch the overlay on again. In most cases userspace
3686          * has to recompute where to put it anyway.
3687          */
3688 }
3689
3690 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3691 {
3692         struct drm_device *dev = crtc->dev;
3693         struct drm_i915_private *dev_priv = dev->dev_private;
3694         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3695         struct intel_encoder *encoder;
3696         int pipe = intel_crtc->pipe;
3697         int plane = intel_crtc->plane;
3698
3699         WARN_ON(!crtc->enabled);
3700
3701         if (intel_crtc->active)
3702                 return;
3703
3704         intel_crtc->active = true;
3705         intel_update_watermarks(dev);
3706
3707         intel_enable_pll(dev_priv, pipe);
3708         intel_enable_pipe(dev_priv, pipe, false);
3709         intel_enable_plane(dev_priv, plane, pipe);
3710
3711         intel_crtc_load_lut(crtc);
3712         intel_update_fbc(dev);
3713
3714         /* Give the overlay scaler a chance to enable if it's on this pipe */
3715         intel_crtc_dpms_overlay(intel_crtc, true);
3716         intel_crtc_update_cursor(crtc, true);
3717
3718         for_each_encoder_on_crtc(dev, crtc, encoder)
3719                 encoder->enable(encoder);
3720 }
3721
3722 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3723 {
3724         struct drm_device *dev = crtc->dev;
3725         struct drm_i915_private *dev_priv = dev->dev_private;
3726         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3727         struct intel_encoder *encoder;
3728         int pipe = intel_crtc->pipe;
3729         int plane = intel_crtc->plane;
3730
3731
3732         if (!intel_crtc->active)
3733                 return;
3734
3735         for_each_encoder_on_crtc(dev, crtc, encoder)
3736                 encoder->disable(encoder);
3737
3738         /* Give the overlay scaler a chance to disable if it's on this pipe */
3739         intel_crtc_wait_for_pending_flips(crtc);
3740         drm_vblank_off(dev, pipe);
3741         intel_crtc_dpms_overlay(intel_crtc, false);
3742         intel_crtc_update_cursor(crtc, false);
3743
3744         if (dev_priv->cfb_plane == plane)
3745                 intel_disable_fbc(dev);
3746
3747         intel_disable_plane(dev_priv, plane, pipe);
3748         intel_disable_pipe(dev_priv, pipe);
3749         intel_disable_pll(dev_priv, pipe);
3750
3751         intel_crtc->active = false;
3752         intel_update_fbc(dev);
3753         intel_update_watermarks(dev);
3754 }
3755
3756 static void i9xx_crtc_off(struct drm_crtc *crtc)
3757 {
3758 }
3759
3760 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3761                                     bool enabled)
3762 {
3763         struct drm_device *dev = crtc->dev;
3764         struct drm_i915_master_private *master_priv;
3765         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3766         int pipe = intel_crtc->pipe;
3767
3768         if (!dev->primary->master)
3769                 return;
3770
3771         master_priv = dev->primary->master->driver_priv;
3772         if (!master_priv->sarea_priv)
3773                 return;
3774
3775         switch (pipe) {
3776         case 0:
3777                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3778                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3779                 break;
3780         case 1:
3781                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3782                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3783                 break;
3784         default:
3785                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3786                 break;
3787         }
3788 }
3789
3790 /**
3791  * Sets the power management mode of the pipe and plane.
3792  */
3793 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3794 {
3795         struct drm_device *dev = crtc->dev;
3796         struct drm_i915_private *dev_priv = dev->dev_private;
3797         struct intel_encoder *intel_encoder;
3798         bool enable = false;
3799
3800         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3801                 enable |= intel_encoder->connectors_active;
3802
3803         if (enable)
3804                 dev_priv->display.crtc_enable(crtc);
3805         else
3806                 dev_priv->display.crtc_disable(crtc);
3807
3808         intel_crtc_update_sarea(crtc, enable);
3809 }
3810
3811 static void intel_crtc_noop(struct drm_crtc *crtc)
3812 {
3813 }
3814
3815 static void intel_crtc_disable(struct drm_crtc *crtc)
3816 {
3817         struct drm_device *dev = crtc->dev;
3818         struct drm_connector *connector;
3819         struct drm_i915_private *dev_priv = dev->dev_private;
3820
3821         /* crtc should still be enabled when we disable it. */
3822         WARN_ON(!crtc->enabled);
3823
3824         dev_priv->display.crtc_disable(crtc);
3825         intel_crtc_update_sarea(crtc, false);
3826         dev_priv->display.off(crtc);
3827
3828         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3829         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3830
3831         if (crtc->fb) {
3832                 mutex_lock(&dev->struct_mutex);
3833                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3834                 mutex_unlock(&dev->struct_mutex);
3835                 crtc->fb = NULL;
3836         }
3837
3838         /* Update computed state. */
3839         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3840                 if (!connector->encoder || !connector->encoder->crtc)
3841                         continue;
3842
3843                 if (connector->encoder->crtc != crtc)
3844                         continue;
3845
3846                 connector->dpms = DRM_MODE_DPMS_OFF;
3847                 to_intel_encoder(connector->encoder)->connectors_active = false;
3848         }
3849 }
3850
3851 void intel_modeset_disable(struct drm_device *dev)
3852 {
3853         struct drm_crtc *crtc;
3854
3855         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3856                 if (crtc->enabled)
3857                         intel_crtc_disable(crtc);
3858         }
3859 }
3860
3861 void intel_encoder_noop(struct drm_encoder *encoder)
3862 {
3863 }
3864
3865 void intel_encoder_destroy(struct drm_encoder *encoder)
3866 {
3867         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3868
3869         drm_encoder_cleanup(encoder);
3870         kfree(intel_encoder);
3871 }
3872
3873 /* Simple dpms helper for encodres with just one connector, no cloning and only
3874  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3875  * state of the entire output pipe. */
3876 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3877 {
3878         if (mode == DRM_MODE_DPMS_ON) {
3879                 encoder->connectors_active = true;
3880
3881                 intel_crtc_update_dpms(encoder->base.crtc);
3882         } else {
3883                 encoder->connectors_active = false;
3884
3885                 intel_crtc_update_dpms(encoder->base.crtc);
3886         }
3887 }
3888
3889 /* Cross check the actual hw state with our own modeset state tracking (and it's
3890  * internal consistency). */
3891 static void intel_connector_check_state(struct intel_connector *connector)
3892 {
3893         if (connector->get_hw_state(connector)) {
3894                 struct intel_encoder *encoder = connector->encoder;
3895                 struct drm_crtc *crtc;
3896                 bool encoder_enabled;
3897                 enum pipe pipe;
3898
3899                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3900                               connector->base.base.id,
3901                               drm_get_connector_name(&connector->base));
3902
3903                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3904                      "wrong connector dpms state\n");
3905                 WARN(connector->base.encoder != &encoder->base,
3906                      "active connector not linked to encoder\n");
3907                 WARN(!encoder->connectors_active,
3908                      "encoder->connectors_active not set\n");
3909
3910                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3911                 WARN(!encoder_enabled, "encoder not enabled\n");
3912                 if (WARN_ON(!encoder->base.crtc))
3913                         return;
3914
3915                 crtc = encoder->base.crtc;
3916
3917                 WARN(!crtc->enabled, "crtc not enabled\n");
3918                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3919                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3920                      "encoder active on the wrong pipe\n");
3921         }
3922 }
3923
3924 /* Even simpler default implementation, if there's really no special case to
3925  * consider. */
3926 void intel_connector_dpms(struct drm_connector *connector, int mode)
3927 {
3928         struct intel_encoder *encoder = intel_attached_encoder(connector);
3929
3930         /* All the simple cases only support two dpms states. */
3931         if (mode != DRM_MODE_DPMS_ON)
3932                 mode = DRM_MODE_DPMS_OFF;
3933
3934         if (mode == connector->dpms)
3935                 return;
3936
3937         connector->dpms = mode;
3938
3939         /* Only need to change hw state when actually enabled */
3940         if (encoder->base.crtc)
3941                 intel_encoder_dpms(encoder, mode);
3942         else
3943                 WARN_ON(encoder->connectors_active != false);
3944
3945         intel_modeset_check_state(connector->dev);
3946 }
3947
3948 /* Simple connector->get_hw_state implementation for encoders that support only
3949  * one connector and no cloning and hence the encoder state determines the state
3950  * of the connector. */
3951 bool intel_connector_get_hw_state(struct intel_connector *connector)
3952 {
3953         enum pipe pipe = 0;
3954         struct intel_encoder *encoder = connector->encoder;
3955
3956         return encoder->get_hw_state(encoder, &pipe);
3957 }
3958
3959 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3960                                   const struct drm_display_mode *mode,
3961                                   struct drm_display_mode *adjusted_mode)
3962 {
3963         struct drm_device *dev = crtc->dev;
3964
3965         if (HAS_PCH_SPLIT(dev)) {
3966                 /* FDI link clock is fixed at 2.7G */
3967                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3968                         return false;
3969         }
3970
3971         /* All interlaced capable intel hw wants timings in frames. Note though
3972          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3973          * timings, so we need to be careful not to clobber these.*/
3974         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3975                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3976
3977         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3978          * with a hsync front porch of 0.
3979          */
3980         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3981                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3982                 return false;
3983
3984         return true;
3985 }
3986
3987 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3988 {
3989         return 400000; /* FIXME */
3990 }
3991
3992 static int i945_get_display_clock_speed(struct drm_device *dev)
3993 {
3994         return 400000;
3995 }
3996
3997 static int i915_get_display_clock_speed(struct drm_device *dev)
3998 {
3999         return 333000;
4000 }
4001
4002 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4003 {
4004         return 200000;
4005 }
4006
4007 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4008 {
4009         u16 gcfgc = 0;
4010
4011         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4012
4013         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4014                 return 133000;
4015         else {
4016                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4017                 case GC_DISPLAY_CLOCK_333_MHZ:
4018                         return 333000;
4019                 default:
4020                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4021                         return 190000;
4022                 }
4023         }
4024 }
4025
4026 static int i865_get_display_clock_speed(struct drm_device *dev)
4027 {
4028         return 266000;
4029 }
4030
4031 static int i855_get_display_clock_speed(struct drm_device *dev)
4032 {
4033         u16 hpllcc = 0;
4034         /* Assume that the hardware is in the high speed state.  This
4035          * should be the default.
4036          */
4037         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4038         case GC_CLOCK_133_200:
4039         case GC_CLOCK_100_200:
4040                 return 200000;
4041         case GC_CLOCK_166_250:
4042                 return 250000;
4043         case GC_CLOCK_100_133:
4044                 return 133000;
4045         }
4046
4047         /* Shouldn't happen */
4048         return 0;
4049 }
4050
4051 static int i830_get_display_clock_speed(struct drm_device *dev)
4052 {
4053         return 133000;
4054 }
4055
4056 struct fdi_m_n {
4057         u32        tu;
4058         u32        gmch_m;
4059         u32        gmch_n;
4060         u32        link_m;
4061         u32        link_n;
4062 };
4063
4064 static void
4065 fdi_reduce_ratio(u32 *num, u32 *den)
4066 {
4067         while (*num > 0xffffff || *den > 0xffffff) {
4068                 *num >>= 1;
4069                 *den >>= 1;
4070         }
4071 }
4072
4073 static void
4074 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4075                      int link_clock, struct fdi_m_n *m_n)
4076 {
4077         m_n->tu = 64; /* default size */
4078
4079         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4080         m_n->gmch_m = bits_per_pixel * pixel_clock;
4081         m_n->gmch_n = link_clock * nlanes * 8;
4082         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4083
4084         m_n->link_m = pixel_clock;
4085         m_n->link_n = link_clock;
4086         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4087 }
4088
4089 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4090 {
4091         if (i915_panel_use_ssc >= 0)
4092                 return i915_panel_use_ssc != 0;
4093         return dev_priv->lvds_use_ssc
4094                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4095 }
4096
4097 /**
4098  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4099  * @crtc: CRTC structure
4100  * @mode: requested mode
4101  *
4102  * A pipe may be connected to one or more outputs.  Based on the depth of the
4103  * attached framebuffer, choose a good color depth to use on the pipe.
4104  *
4105  * If possible, match the pipe depth to the fb depth.  In some cases, this
4106  * isn't ideal, because the connected output supports a lesser or restricted
4107  * set of depths.  Resolve that here:
4108  *    LVDS typically supports only 6bpc, so clamp down in that case
4109  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4110  *    Displays may support a restricted set as well, check EDID and clamp as
4111  *      appropriate.
4112  *    DP may want to dither down to 6bpc to fit larger modes
4113  *
4114  * RETURNS:
4115  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4116  * true if they don't match).
4117  */
4118 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4119                                          struct drm_framebuffer *fb,
4120                                          unsigned int *pipe_bpp,
4121                                          struct drm_display_mode *mode)
4122 {
4123         struct drm_device *dev = crtc->dev;
4124         struct drm_i915_private *dev_priv = dev->dev_private;
4125         struct drm_connector *connector;
4126         struct intel_encoder *intel_encoder;
4127         unsigned int display_bpc = UINT_MAX, bpc;
4128
4129         /* Walk the encoders & connectors on this crtc, get min bpc */
4130         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4131
4132                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4133                         unsigned int lvds_bpc;
4134
4135                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4136                             LVDS_A3_POWER_UP)
4137                                 lvds_bpc = 8;
4138                         else
4139                                 lvds_bpc = 6;
4140
4141                         if (lvds_bpc < display_bpc) {
4142                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4143                                 display_bpc = lvds_bpc;
4144                         }
4145                         continue;
4146                 }
4147
4148                 /* Not one of the known troublemakers, check the EDID */
4149                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4150                                     head) {
4151                         if (connector->encoder != &intel_encoder->base)
4152                                 continue;
4153
4154                         /* Don't use an invalid EDID bpc value */
4155                         if (connector->display_info.bpc &&
4156                             connector->display_info.bpc < display_bpc) {
4157                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4158                                 display_bpc = connector->display_info.bpc;
4159                         }
4160                 }
4161
4162                 /*
4163                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4164                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4165                  */
4166                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4167                         if (display_bpc > 8 && display_bpc < 12) {
4168                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4169                                 display_bpc = 12;
4170                         } else {
4171                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4172                                 display_bpc = 8;
4173                         }
4174                 }
4175         }
4176
4177         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4178                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4179                 display_bpc = 6;
4180         }
4181
4182         /*
4183          * We could just drive the pipe at the highest bpc all the time and
4184          * enable dithering as needed, but that costs bandwidth.  So choose
4185          * the minimum value that expresses the full color range of the fb but
4186          * also stays within the max display bpc discovered above.
4187          */
4188
4189         switch (fb->depth) {
4190         case 8:
4191                 bpc = 8; /* since we go through a colormap */
4192                 break;
4193         case 15:
4194         case 16:
4195                 bpc = 6; /* min is 18bpp */
4196                 break;
4197         case 24:
4198                 bpc = 8;
4199                 break;
4200         case 30:
4201                 bpc = 10;
4202                 break;
4203         case 48:
4204                 bpc = 12;
4205                 break;
4206         default:
4207                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4208                 bpc = min((unsigned int)8, display_bpc);
4209                 break;
4210         }
4211
4212         display_bpc = min(display_bpc, bpc);
4213
4214         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4215                       bpc, display_bpc);
4216
4217         *pipe_bpp = display_bpc * 3;
4218
4219         return display_bpc != bpc;
4220 }
4221
4222 static int vlv_get_refclk(struct drm_crtc *crtc)
4223 {
4224         struct drm_device *dev = crtc->dev;
4225         struct drm_i915_private *dev_priv = dev->dev_private;
4226         int refclk = 27000; /* for DP & HDMI */
4227
4228         return 100000; /* only one validated so far */
4229
4230         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4231                 refclk = 96000;
4232         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4233                 if (intel_panel_use_ssc(dev_priv))
4234                         refclk = 100000;
4235                 else
4236                         refclk = 96000;
4237         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4238                 refclk = 100000;
4239         }
4240
4241         return refclk;
4242 }
4243
4244 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4245 {
4246         struct drm_device *dev = crtc->dev;
4247         struct drm_i915_private *dev_priv = dev->dev_private;
4248         int refclk;
4249
4250         if (IS_VALLEYVIEW(dev)) {
4251                 refclk = vlv_get_refclk(crtc);
4252         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4253             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4254                 refclk = dev_priv->lvds_ssc_freq * 1000;
4255                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4256                               refclk / 1000);
4257         } else if (!IS_GEN2(dev)) {
4258                 refclk = 96000;
4259         } else {
4260                 refclk = 48000;
4261         }
4262
4263         return refclk;
4264 }
4265
4266 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4267                                       intel_clock_t *clock)
4268 {
4269         /* SDVO TV has fixed PLL values depend on its clock range,
4270            this mirrors vbios setting. */
4271         if (adjusted_mode->clock >= 100000
4272             && adjusted_mode->clock < 140500) {
4273                 clock->p1 = 2;
4274                 clock->p2 = 10;
4275                 clock->n = 3;
4276                 clock->m1 = 16;
4277                 clock->m2 = 8;
4278         } else if (adjusted_mode->clock >= 140500
4279                    && adjusted_mode->clock <= 200000) {
4280                 clock->p1 = 1;
4281                 clock->p2 = 10;
4282                 clock->n = 6;
4283                 clock->m1 = 12;
4284                 clock->m2 = 8;
4285         }
4286 }
4287
4288 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4289                                      intel_clock_t *clock,
4290                                      intel_clock_t *reduced_clock)
4291 {
4292         struct drm_device *dev = crtc->dev;
4293         struct drm_i915_private *dev_priv = dev->dev_private;
4294         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4295         int pipe = intel_crtc->pipe;
4296         u32 fp, fp2 = 0;
4297
4298         if (IS_PINEVIEW(dev)) {
4299                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4300                 if (reduced_clock)
4301                         fp2 = (1 << reduced_clock->n) << 16 |
4302                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4303         } else {
4304                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4305                 if (reduced_clock)
4306                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4307                                 reduced_clock->m2;
4308         }
4309
4310         I915_WRITE(FP0(pipe), fp);
4311
4312         intel_crtc->lowfreq_avail = false;
4313         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4314             reduced_clock && i915_powersave) {
4315                 I915_WRITE(FP1(pipe), fp2);
4316                 intel_crtc->lowfreq_avail = true;
4317         } else {
4318                 I915_WRITE(FP1(pipe), fp);
4319         }
4320 }
4321
4322 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4323                               struct drm_display_mode *adjusted_mode)
4324 {
4325         struct drm_device *dev = crtc->dev;
4326         struct drm_i915_private *dev_priv = dev->dev_private;
4327         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4328         int pipe = intel_crtc->pipe;
4329         u32 temp;
4330
4331         temp = I915_READ(LVDS);
4332         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4333         if (pipe == 1) {
4334                 temp |= LVDS_PIPEB_SELECT;
4335         } else {
4336                 temp &= ~LVDS_PIPEB_SELECT;
4337         }
4338         /* set the corresponsding LVDS_BORDER bit */
4339         temp |= dev_priv->lvds_border_bits;
4340         /* Set the B0-B3 data pairs corresponding to whether we're going to
4341          * set the DPLLs for dual-channel mode or not.
4342          */
4343         if (clock->p2 == 7)
4344                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4345         else
4346                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4347
4348         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4349          * appropriately here, but we need to look more thoroughly into how
4350          * panels behave in the two modes.
4351          */
4352         /* set the dithering flag on LVDS as needed */
4353         if (INTEL_INFO(dev)->gen >= 4) {
4354                 if (dev_priv->lvds_dither)
4355                         temp |= LVDS_ENABLE_DITHER;
4356                 else
4357                         temp &= ~LVDS_ENABLE_DITHER;
4358         }
4359         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4360         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4361                 temp |= LVDS_HSYNC_POLARITY;
4362         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4363                 temp |= LVDS_VSYNC_POLARITY;
4364         I915_WRITE(LVDS, temp);
4365 }
4366
4367 static void vlv_update_pll(struct drm_crtc *crtc,
4368                            struct drm_display_mode *mode,
4369                            struct drm_display_mode *adjusted_mode,
4370                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4371                            int num_connectors)
4372 {
4373         struct drm_device *dev = crtc->dev;
4374         struct drm_i915_private *dev_priv = dev->dev_private;
4375         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4376         int pipe = intel_crtc->pipe;
4377         u32 dpll, mdiv, pdiv;
4378         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4379         bool is_sdvo;
4380         u32 temp;
4381
4382         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4383                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4384
4385         dpll = DPLL_VGA_MODE_DIS;
4386         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4387         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4388         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4389
4390         I915_WRITE(DPLL(pipe), dpll);
4391         POSTING_READ(DPLL(pipe));
4392
4393         bestn = clock->n;
4394         bestm1 = clock->m1;
4395         bestm2 = clock->m2;
4396         bestp1 = clock->p1;
4397         bestp2 = clock->p2;
4398
4399         /*
4400          * In Valleyview PLL and program lane counter registers are exposed
4401          * through DPIO interface
4402          */
4403         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4404         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4405         mdiv |= ((bestn << DPIO_N_SHIFT));
4406         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4407         mdiv |= (1 << DPIO_K_SHIFT);
4408         mdiv |= DPIO_ENABLE_CALIBRATION;
4409         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4410
4411         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4412
4413         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4414                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4415                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4416                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4417         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4418
4419         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4420
4421         dpll |= DPLL_VCO_ENABLE;
4422         I915_WRITE(DPLL(pipe), dpll);
4423         POSTING_READ(DPLL(pipe));
4424         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4425                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4426
4427         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4428
4429         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4430                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4431
4432         I915_WRITE(DPLL(pipe), dpll);
4433
4434         /* Wait for the clocks to stabilize. */
4435         POSTING_READ(DPLL(pipe));
4436         udelay(150);
4437
4438         temp = 0;
4439         if (is_sdvo) {
4440                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4441                 if (temp > 1)
4442                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4443                 else
4444                         temp = 0;
4445         }
4446         I915_WRITE(DPLL_MD(pipe), temp);
4447         POSTING_READ(DPLL_MD(pipe));
4448
4449         /* Now program lane control registers */
4450         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4451                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4452         {
4453                 temp = 0x1000C4;
4454                 if(pipe == 1)
4455                         temp |= (1 << 21);
4456                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4457         }
4458         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4459         {
4460                 temp = 0x1000C4;
4461                 if(pipe == 1)
4462                         temp |= (1 << 21);
4463                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4464         }
4465 }
4466
4467 static void i9xx_update_pll(struct drm_crtc *crtc,
4468                             struct drm_display_mode *mode,
4469                             struct drm_display_mode *adjusted_mode,
4470                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4471                             int num_connectors)
4472 {
4473         struct drm_device *dev = crtc->dev;
4474         struct drm_i915_private *dev_priv = dev->dev_private;
4475         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4476         int pipe = intel_crtc->pipe;
4477         u32 dpll;
4478         bool is_sdvo;
4479
4480         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4481
4482         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4483                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4484
4485         dpll = DPLL_VGA_MODE_DIS;
4486
4487         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4488                 dpll |= DPLLB_MODE_LVDS;
4489         else
4490                 dpll |= DPLLB_MODE_DAC_SERIAL;
4491         if (is_sdvo) {
4492                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4493                 if (pixel_multiplier > 1) {
4494                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4495                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4496                 }
4497                 dpll |= DPLL_DVO_HIGH_SPEED;
4498         }
4499         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4500                 dpll |= DPLL_DVO_HIGH_SPEED;
4501
4502         /* compute bitmask from p1 value */
4503         if (IS_PINEVIEW(dev))
4504                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4505         else {
4506                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4507                 if (IS_G4X(dev) && reduced_clock)
4508                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4509         }
4510         switch (clock->p2) {
4511         case 5:
4512                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4513                 break;
4514         case 7:
4515                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4516                 break;
4517         case 10:
4518                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4519                 break;
4520         case 14:
4521                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4522                 break;
4523         }
4524         if (INTEL_INFO(dev)->gen >= 4)
4525                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4526
4527         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4528                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4529         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4530                 /* XXX: just matching BIOS for now */
4531                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4532                 dpll |= 3;
4533         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4534                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4535                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4536         else
4537                 dpll |= PLL_REF_INPUT_DREFCLK;
4538
4539         dpll |= DPLL_VCO_ENABLE;
4540         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4541         POSTING_READ(DPLL(pipe));
4542         udelay(150);
4543
4544         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4545          * This is an exception to the general rule that mode_set doesn't turn
4546          * things on.
4547          */
4548         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4549                 intel_update_lvds(crtc, clock, adjusted_mode);
4550
4551         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4552                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4553
4554         I915_WRITE(DPLL(pipe), dpll);
4555
4556         /* Wait for the clocks to stabilize. */
4557         POSTING_READ(DPLL(pipe));
4558         udelay(150);
4559
4560         if (INTEL_INFO(dev)->gen >= 4) {
4561                 u32 temp = 0;
4562                 if (is_sdvo) {
4563                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4564                         if (temp > 1)
4565                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4566                         else
4567                                 temp = 0;
4568                 }
4569                 I915_WRITE(DPLL_MD(pipe), temp);
4570         } else {
4571                 /* The pixel multiplier can only be updated once the
4572                  * DPLL is enabled and the clocks are stable.
4573                  *
4574                  * So write it again.
4575                  */
4576                 I915_WRITE(DPLL(pipe), dpll);
4577         }
4578 }
4579
4580 static void i8xx_update_pll(struct drm_crtc *crtc,
4581                             struct drm_display_mode *adjusted_mode,
4582                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4583                             int num_connectors)
4584 {
4585         struct drm_device *dev = crtc->dev;
4586         struct drm_i915_private *dev_priv = dev->dev_private;
4587         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4588         int pipe = intel_crtc->pipe;
4589         u32 dpll;
4590
4591         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4592
4593         dpll = DPLL_VGA_MODE_DIS;
4594
4595         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4596                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4597         } else {
4598                 if (clock->p1 == 2)
4599                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4600                 else
4601                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4602                 if (clock->p2 == 4)
4603                         dpll |= PLL_P2_DIVIDE_BY_4;
4604         }
4605
4606         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4607                 /* XXX: just matching BIOS for now */
4608                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4609                 dpll |= 3;
4610         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4611                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4612                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4613         else
4614                 dpll |= PLL_REF_INPUT_DREFCLK;
4615
4616         dpll |= DPLL_VCO_ENABLE;
4617         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4618         POSTING_READ(DPLL(pipe));
4619         udelay(150);
4620
4621         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4622          * This is an exception to the general rule that mode_set doesn't turn
4623          * things on.
4624          */
4625         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4626                 intel_update_lvds(crtc, clock, adjusted_mode);
4627
4628         I915_WRITE(DPLL(pipe), dpll);
4629
4630         /* Wait for the clocks to stabilize. */
4631         POSTING_READ(DPLL(pipe));
4632         udelay(150);
4633
4634         /* The pixel multiplier can only be updated once the
4635          * DPLL is enabled and the clocks are stable.
4636          *
4637          * So write it again.
4638          */
4639         I915_WRITE(DPLL(pipe), dpll);
4640 }
4641
4642 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4643                                    struct drm_display_mode *mode,
4644                                    struct drm_display_mode *adjusted_mode)
4645 {
4646         struct drm_device *dev = intel_crtc->base.dev;
4647         struct drm_i915_private *dev_priv = dev->dev_private;
4648         enum pipe pipe = intel_crtc->pipe;
4649         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4650         uint32_t vsyncshift;
4651
4652         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4653                 /* the chip adds 2 halflines automatically */
4654                 adjusted_mode->crtc_vtotal -= 1;
4655                 adjusted_mode->crtc_vblank_end -= 1;
4656                 vsyncshift = adjusted_mode->crtc_hsync_start
4657                              - adjusted_mode->crtc_htotal / 2;
4658         } else {
4659                 vsyncshift = 0;
4660         }
4661
4662         if (INTEL_INFO(dev)->gen > 3)
4663                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4664
4665         I915_WRITE(HTOTAL(cpu_transcoder),
4666                    (adjusted_mode->crtc_hdisplay - 1) |
4667                    ((adjusted_mode->crtc_htotal - 1) << 16));
4668         I915_WRITE(HBLANK(cpu_transcoder),
4669                    (adjusted_mode->crtc_hblank_start - 1) |
4670                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4671         I915_WRITE(HSYNC(cpu_transcoder),
4672                    (adjusted_mode->crtc_hsync_start - 1) |
4673                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4674
4675         I915_WRITE(VTOTAL(cpu_transcoder),
4676                    (adjusted_mode->crtc_vdisplay - 1) |
4677                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4678         I915_WRITE(VBLANK(cpu_transcoder),
4679                    (adjusted_mode->crtc_vblank_start - 1) |
4680                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4681         I915_WRITE(VSYNC(cpu_transcoder),
4682                    (adjusted_mode->crtc_vsync_start - 1) |
4683                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4684
4685         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4686          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4687          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4688          * bits. */
4689         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4690             (pipe == PIPE_B || pipe == PIPE_C))
4691                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4692
4693         /* pipesrc controls the size that is scaled from, which should
4694          * always be the user's requested size.
4695          */
4696         I915_WRITE(PIPESRC(pipe),
4697                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4698 }
4699
4700 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4701                               struct drm_display_mode *mode,
4702                               struct drm_display_mode *adjusted_mode,
4703                               int x, int y,
4704                               struct drm_framebuffer *fb)
4705 {
4706         struct drm_device *dev = crtc->dev;
4707         struct drm_i915_private *dev_priv = dev->dev_private;
4708         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4709         int pipe = intel_crtc->pipe;
4710         int plane = intel_crtc->plane;
4711         int refclk, num_connectors = 0;
4712         intel_clock_t clock, reduced_clock;
4713         u32 dspcntr, pipeconf;
4714         bool ok, has_reduced_clock = false, is_sdvo = false;
4715         bool is_lvds = false, is_tv = false, is_dp = false;
4716         struct intel_encoder *encoder;
4717         const intel_limit_t *limit;
4718         int ret;
4719
4720         for_each_encoder_on_crtc(dev, crtc, encoder) {
4721                 switch (encoder->type) {
4722                 case INTEL_OUTPUT_LVDS:
4723                         is_lvds = true;
4724                         break;
4725                 case INTEL_OUTPUT_SDVO:
4726                 case INTEL_OUTPUT_HDMI:
4727                         is_sdvo = true;
4728                         if (encoder->needs_tv_clock)
4729                                 is_tv = true;
4730                         break;
4731                 case INTEL_OUTPUT_TVOUT:
4732                         is_tv = true;
4733                         break;
4734                 case INTEL_OUTPUT_DISPLAYPORT:
4735                         is_dp = true;
4736                         break;
4737                 }
4738
4739                 num_connectors++;
4740         }
4741
4742         refclk = i9xx_get_refclk(crtc, num_connectors);
4743
4744         /*
4745          * Returns a set of divisors for the desired target clock with the given
4746          * refclk, or FALSE.  The returned values represent the clock equation:
4747          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4748          */
4749         limit = intel_limit(crtc, refclk);
4750         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4751                              &clock);
4752         if (!ok) {
4753                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4754                 return -EINVAL;
4755         }
4756
4757         /* Ensure that the cursor is valid for the new mode before changing... */
4758         intel_crtc_update_cursor(crtc, true);
4759
4760         if (is_lvds && dev_priv->lvds_downclock_avail) {
4761                 /*
4762                  * Ensure we match the reduced clock's P to the target clock.
4763                  * If the clocks don't match, we can't switch the display clock
4764                  * by using the FP0/FP1. In such case we will disable the LVDS
4765                  * downclock feature.
4766                 */
4767                 has_reduced_clock = limit->find_pll(limit, crtc,
4768                                                     dev_priv->lvds_downclock,
4769                                                     refclk,
4770                                                     &clock,
4771                                                     &reduced_clock);
4772         }
4773
4774         if (is_sdvo && is_tv)
4775                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4776
4777         if (IS_GEN2(dev))
4778                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4779                                 has_reduced_clock ? &reduced_clock : NULL,
4780                                 num_connectors);
4781         else if (IS_VALLEYVIEW(dev))
4782                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4783                                 has_reduced_clock ? &reduced_clock : NULL,
4784                                 num_connectors);
4785         else
4786                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4787                                 has_reduced_clock ? &reduced_clock : NULL,
4788                                 num_connectors);
4789
4790         /* setup pipeconf */
4791         pipeconf = I915_READ(PIPECONF(pipe));
4792
4793         /* Set up the display plane register */
4794         dspcntr = DISPPLANE_GAMMA_ENABLE;
4795
4796         if (pipe == 0)
4797                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4798         else
4799                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4800
4801         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4802                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4803                  * core speed.
4804                  *
4805                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4806                  * pipe == 0 check?
4807                  */
4808                 if (mode->clock >
4809                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4810                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4811                 else
4812                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4813         }
4814
4815         /* default to 8bpc */
4816         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4817         if (is_dp) {
4818                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4819                         pipeconf |= PIPECONF_BPP_6 |
4820                                     PIPECONF_DITHER_EN |
4821                                     PIPECONF_DITHER_TYPE_SP;
4822                 }
4823         }
4824
4825         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4826                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4827                         pipeconf |= PIPECONF_BPP_6 |
4828                                         PIPECONF_ENABLE |
4829                                         I965_PIPECONF_ACTIVE;
4830                 }
4831         }
4832
4833         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4834         drm_mode_debug_printmodeline(mode);
4835
4836         if (HAS_PIPE_CXSR(dev)) {
4837                 if (intel_crtc->lowfreq_avail) {
4838                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4839                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4840                 } else {
4841                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4842                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4843                 }
4844         }
4845
4846         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4847         if (!IS_GEN2(dev) &&
4848             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4849                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4850         else
4851                 pipeconf |= PIPECONF_PROGRESSIVE;
4852
4853         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4854
4855         /* pipesrc and dspsize control the size that is scaled from,
4856          * which should always be the user's requested size.
4857          */
4858         I915_WRITE(DSPSIZE(plane),
4859                    ((mode->vdisplay - 1) << 16) |
4860                    (mode->hdisplay - 1));
4861         I915_WRITE(DSPPOS(plane), 0);
4862
4863         I915_WRITE(PIPECONF(pipe), pipeconf);
4864         POSTING_READ(PIPECONF(pipe));
4865         intel_enable_pipe(dev_priv, pipe, false);
4866
4867         intel_wait_for_vblank(dev, pipe);
4868
4869         I915_WRITE(DSPCNTR(plane), dspcntr);
4870         POSTING_READ(DSPCNTR(plane));
4871
4872         ret = intel_pipe_set_base(crtc, x, y, fb);
4873
4874         intel_update_watermarks(dev);
4875
4876         return ret;
4877 }
4878
4879 /*
4880  * Initialize reference clocks when the driver loads
4881  */
4882 void ironlake_init_pch_refclk(struct drm_device *dev)
4883 {
4884         struct drm_i915_private *dev_priv = dev->dev_private;
4885         struct drm_mode_config *mode_config = &dev->mode_config;
4886         struct intel_encoder *encoder;
4887         u32 temp;
4888         bool has_lvds = false;
4889         bool has_cpu_edp = false;
4890         bool has_pch_edp = false;
4891         bool has_panel = false;
4892         bool has_ck505 = false;
4893         bool can_ssc = false;
4894
4895         /* We need to take the global config into account */
4896         list_for_each_entry(encoder, &mode_config->encoder_list,
4897                             base.head) {
4898                 switch (encoder->type) {
4899                 case INTEL_OUTPUT_LVDS:
4900                         has_panel = true;
4901                         has_lvds = true;
4902                         break;
4903                 case INTEL_OUTPUT_EDP:
4904                         has_panel = true;
4905                         if (intel_encoder_is_pch_edp(&encoder->base))
4906                                 has_pch_edp = true;
4907                         else
4908                                 has_cpu_edp = true;
4909                         break;
4910                 }
4911         }
4912
4913         if (HAS_PCH_IBX(dev)) {
4914                 has_ck505 = dev_priv->display_clock_mode;
4915                 can_ssc = has_ck505;
4916         } else {
4917                 has_ck505 = false;
4918                 can_ssc = true;
4919         }
4920
4921         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4922                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4923                       has_ck505);
4924
4925         /* Ironlake: try to setup display ref clock before DPLL
4926          * enabling. This is only under driver's control after
4927          * PCH B stepping, previous chipset stepping should be
4928          * ignoring this setting.
4929          */
4930         temp = I915_READ(PCH_DREF_CONTROL);
4931         /* Always enable nonspread source */
4932         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4933
4934         if (has_ck505)
4935                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4936         else
4937                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4938
4939         if (has_panel) {
4940                 temp &= ~DREF_SSC_SOURCE_MASK;
4941                 temp |= DREF_SSC_SOURCE_ENABLE;
4942
4943                 /* SSC must be turned on before enabling the CPU output  */
4944                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4945                         DRM_DEBUG_KMS("Using SSC on panel\n");
4946                         temp |= DREF_SSC1_ENABLE;
4947                 } else
4948                         temp &= ~DREF_SSC1_ENABLE;
4949
4950                 /* Get SSC going before enabling the outputs */
4951                 I915_WRITE(PCH_DREF_CONTROL, temp);
4952                 POSTING_READ(PCH_DREF_CONTROL);
4953                 udelay(200);
4954
4955                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4956
4957                 /* Enable CPU source on CPU attached eDP */
4958                 if (has_cpu_edp) {
4959                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4960                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4961                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4962                         }
4963                         else
4964                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4965                 } else
4966                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4967
4968                 I915_WRITE(PCH_DREF_CONTROL, temp);
4969                 POSTING_READ(PCH_DREF_CONTROL);
4970                 udelay(200);
4971         } else {
4972                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4973
4974                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4975
4976                 /* Turn off CPU output */
4977                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4978
4979                 I915_WRITE(PCH_DREF_CONTROL, temp);
4980                 POSTING_READ(PCH_DREF_CONTROL);
4981                 udelay(200);
4982
4983                 /* Turn off the SSC source */
4984                 temp &= ~DREF_SSC_SOURCE_MASK;
4985                 temp |= DREF_SSC_SOURCE_DISABLE;
4986
4987                 /* Turn off SSC1 */
4988                 temp &= ~ DREF_SSC1_ENABLE;
4989
4990                 I915_WRITE(PCH_DREF_CONTROL, temp);
4991                 POSTING_READ(PCH_DREF_CONTROL);
4992                 udelay(200);
4993         }
4994 }
4995
4996 static int ironlake_get_refclk(struct drm_crtc *crtc)
4997 {
4998         struct drm_device *dev = crtc->dev;
4999         struct drm_i915_private *dev_priv = dev->dev_private;
5000         struct intel_encoder *encoder;
5001         struct intel_encoder *edp_encoder = NULL;
5002         int num_connectors = 0;
5003         bool is_lvds = false;
5004
5005         for_each_encoder_on_crtc(dev, crtc, encoder) {
5006                 switch (encoder->type) {
5007                 case INTEL_OUTPUT_LVDS:
5008                         is_lvds = true;
5009                         break;
5010                 case INTEL_OUTPUT_EDP:
5011                         edp_encoder = encoder;
5012                         break;
5013                 }
5014                 num_connectors++;
5015         }
5016
5017         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5018                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5019                               dev_priv->lvds_ssc_freq);
5020                 return dev_priv->lvds_ssc_freq * 1000;
5021         }
5022
5023         return 120000;
5024 }
5025
5026 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5027                                   struct drm_display_mode *adjusted_mode,
5028                                   bool dither)
5029 {
5030         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5031         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5032         int pipe = intel_crtc->pipe;
5033         uint32_t val;
5034
5035         val = I915_READ(PIPECONF(pipe));
5036
5037         val &= ~PIPE_BPC_MASK;
5038         switch (intel_crtc->bpp) {
5039         case 18:
5040                 val |= PIPE_6BPC;
5041                 break;
5042         case 24:
5043                 val |= PIPE_8BPC;
5044                 break;
5045         case 30:
5046                 val |= PIPE_10BPC;
5047                 break;
5048         case 36:
5049                 val |= PIPE_12BPC;
5050                 break;
5051         default:
5052                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5053                 BUG();
5054         }
5055
5056         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5057         if (dither)
5058                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5059
5060         val &= ~PIPECONF_INTERLACE_MASK;
5061         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5062                 val |= PIPECONF_INTERLACED_ILK;
5063         else
5064                 val |= PIPECONF_PROGRESSIVE;
5065
5066         I915_WRITE(PIPECONF(pipe), val);
5067         POSTING_READ(PIPECONF(pipe));
5068 }
5069
5070 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5071                                  struct drm_display_mode *adjusted_mode,
5072                                  bool dither)
5073 {
5074         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5076         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5077         uint32_t val;
5078
5079         val = I915_READ(PIPECONF(cpu_transcoder));
5080
5081         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5082         if (dither)
5083                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5084
5085         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5086         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5087                 val |= PIPECONF_INTERLACED_ILK;
5088         else
5089                 val |= PIPECONF_PROGRESSIVE;
5090
5091         I915_WRITE(PIPECONF(cpu_transcoder), val);
5092         POSTING_READ(PIPECONF(cpu_transcoder));
5093 }
5094
5095 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5096                                     struct drm_display_mode *adjusted_mode,
5097                                     intel_clock_t *clock,
5098                                     bool *has_reduced_clock,
5099                                     intel_clock_t *reduced_clock)
5100 {
5101         struct drm_device *dev = crtc->dev;
5102         struct drm_i915_private *dev_priv = dev->dev_private;
5103         struct intel_encoder *intel_encoder;
5104         int refclk;
5105         const intel_limit_t *limit;
5106         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5107
5108         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5109                 switch (intel_encoder->type) {
5110                 case INTEL_OUTPUT_LVDS:
5111                         is_lvds = true;
5112                         break;
5113                 case INTEL_OUTPUT_SDVO:
5114                 case INTEL_OUTPUT_HDMI:
5115                         is_sdvo = true;
5116                         if (intel_encoder->needs_tv_clock)
5117                                 is_tv = true;
5118                         break;
5119                 case INTEL_OUTPUT_TVOUT:
5120                         is_tv = true;
5121                         break;
5122                 }
5123         }
5124
5125         refclk = ironlake_get_refclk(crtc);
5126
5127         /*
5128          * Returns a set of divisors for the desired target clock with the given
5129          * refclk, or FALSE.  The returned values represent the clock equation:
5130          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5131          */
5132         limit = intel_limit(crtc, refclk);
5133         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5134                               clock);
5135         if (!ret)
5136                 return false;
5137
5138         if (is_lvds && dev_priv->lvds_downclock_avail) {
5139                 /*
5140                  * Ensure we match the reduced clock's P to the target clock.
5141                  * If the clocks don't match, we can't switch the display clock
5142                  * by using the FP0/FP1. In such case we will disable the LVDS
5143                  * downclock feature.
5144                 */
5145                 *has_reduced_clock = limit->find_pll(limit, crtc,
5146                                                      dev_priv->lvds_downclock,
5147                                                      refclk,
5148                                                      clock,
5149                                                      reduced_clock);
5150         }
5151
5152         if (is_sdvo && is_tv)
5153                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5154
5155         return true;
5156 }
5157
5158 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5159 {
5160         struct drm_i915_private *dev_priv = dev->dev_private;
5161         uint32_t temp;
5162
5163         temp = I915_READ(SOUTH_CHICKEN1);
5164         if (temp & FDI_BC_BIFURCATION_SELECT)
5165                 return;
5166
5167         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5168         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5169
5170         temp |= FDI_BC_BIFURCATION_SELECT;
5171         DRM_DEBUG_KMS("enabling fdi C rx\n");
5172         I915_WRITE(SOUTH_CHICKEN1, temp);
5173         POSTING_READ(SOUTH_CHICKEN1);
5174 }
5175
5176 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5177 {
5178         struct drm_device *dev = intel_crtc->base.dev;
5179         struct drm_i915_private *dev_priv = dev->dev_private;
5180         struct intel_crtc *pipe_B_crtc =
5181                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5182
5183         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5184                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5185         if (intel_crtc->fdi_lanes > 4) {
5186                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5187                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5188                 /* Clamp lanes to avoid programming the hw with bogus values. */
5189                 intel_crtc->fdi_lanes = 4;
5190
5191                 return false;
5192         }
5193
5194         if (dev_priv->num_pipe == 2)
5195                 return true;
5196
5197         switch (intel_crtc->pipe) {
5198         case PIPE_A:
5199                 return true;
5200         case PIPE_B:
5201                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5202                     intel_crtc->fdi_lanes > 2) {
5203                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5204                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5205                         /* Clamp lanes to avoid programming the hw with bogus values. */
5206                         intel_crtc->fdi_lanes = 2;
5207
5208                         return false;
5209                 }
5210
5211                 if (intel_crtc->fdi_lanes > 2)
5212                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5213                 else
5214                         cpt_enable_fdi_bc_bifurcation(dev);
5215
5216                 return true;
5217         case PIPE_C:
5218                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5219                         if (intel_crtc->fdi_lanes > 2) {
5220                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5221                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5222                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5223                                 intel_crtc->fdi_lanes = 2;
5224
5225                                 return false;
5226                         }
5227                 } else {
5228                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5229                         return false;
5230                 }
5231
5232                 cpt_enable_fdi_bc_bifurcation(dev);
5233
5234                 return true;
5235         default:
5236                 BUG();
5237         }
5238 }
5239
5240 static void ironlake_set_m_n(struct drm_crtc *crtc,
5241                              struct drm_display_mode *mode,
5242                              struct drm_display_mode *adjusted_mode)
5243 {
5244         struct drm_device *dev = crtc->dev;
5245         struct drm_i915_private *dev_priv = dev->dev_private;
5246         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5247         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5248         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5249         struct fdi_m_n m_n = {0};
5250         int target_clock, pixel_multiplier, lane, link_bw;
5251         bool is_dp = false, is_cpu_edp = false;
5252
5253         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5254                 switch (intel_encoder->type) {
5255                 case INTEL_OUTPUT_DISPLAYPORT:
5256                         is_dp = true;
5257                         break;
5258                 case INTEL_OUTPUT_EDP:
5259                         is_dp = true;
5260                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5261                                 is_cpu_edp = true;
5262                         edp_encoder = intel_encoder;
5263                         break;
5264                 }
5265         }
5266
5267         /* FDI link */
5268         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5269         lane = 0;
5270         /* CPU eDP doesn't require FDI link, so just set DP M/N
5271            according to current link config */
5272         if (is_cpu_edp) {
5273                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5274         } else {
5275                 /* FDI is a binary signal running at ~2.7GHz, encoding
5276                  * each output octet as 10 bits. The actual frequency
5277                  * is stored as a divider into a 100MHz clock, and the
5278                  * mode pixel clock is stored in units of 1KHz.
5279                  * Hence the bw of each lane in terms of the mode signal
5280                  * is:
5281                  */
5282                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5283         }
5284
5285         /* [e]DP over FDI requires target mode clock instead of link clock. */
5286         if (edp_encoder)
5287                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5288         else if (is_dp)
5289                 target_clock = mode->clock;
5290         else
5291                 target_clock = adjusted_mode->clock;
5292
5293         if (!lane) {
5294                 /*
5295                  * Account for spread spectrum to avoid
5296                  * oversubscribing the link. Max center spread
5297                  * is 2.5%; use 5% for safety's sake.
5298                  */
5299                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5300                 lane = bps / (link_bw * 8) + 1;
5301         }
5302
5303         intel_crtc->fdi_lanes = lane;
5304
5305         if (pixel_multiplier > 1)
5306                 link_bw *= pixel_multiplier;
5307         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5308                              &m_n);
5309
5310         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5311         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5312         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5313         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5314 }
5315
5316 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5317                                       struct drm_display_mode *adjusted_mode,
5318                                       intel_clock_t *clock, u32 fp)
5319 {
5320         struct drm_crtc *crtc = &intel_crtc->base;
5321         struct drm_device *dev = crtc->dev;
5322         struct drm_i915_private *dev_priv = dev->dev_private;
5323         struct intel_encoder *intel_encoder;
5324         uint32_t dpll;
5325         int factor, pixel_multiplier, num_connectors = 0;
5326         bool is_lvds = false, is_sdvo = false, is_tv = false;
5327         bool is_dp = false, is_cpu_edp = false;
5328
5329         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5330                 switch (intel_encoder->type) {
5331                 case INTEL_OUTPUT_LVDS:
5332                         is_lvds = true;
5333                         break;
5334                 case INTEL_OUTPUT_SDVO:
5335                 case INTEL_OUTPUT_HDMI:
5336                         is_sdvo = true;
5337                         if (intel_encoder->needs_tv_clock)
5338                                 is_tv = true;
5339                         break;
5340                 case INTEL_OUTPUT_TVOUT:
5341                         is_tv = true;
5342                         break;
5343                 case INTEL_OUTPUT_DISPLAYPORT:
5344                         is_dp = true;
5345                         break;
5346                 case INTEL_OUTPUT_EDP:
5347                         is_dp = true;
5348                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5349                                 is_cpu_edp = true;
5350                         break;
5351                 }
5352
5353                 num_connectors++;
5354         }
5355
5356         /* Enable autotuning of the PLL clock (if permissible) */
5357         factor = 21;
5358         if (is_lvds) {
5359                 if ((intel_panel_use_ssc(dev_priv) &&
5360                      dev_priv->lvds_ssc_freq == 100) ||
5361                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5362                         factor = 25;
5363         } else if (is_sdvo && is_tv)
5364                 factor = 20;
5365
5366         if (clock->m < factor * clock->n)
5367                 fp |= FP_CB_TUNE;
5368
5369         dpll = 0;
5370
5371         if (is_lvds)
5372                 dpll |= DPLLB_MODE_LVDS;
5373         else
5374                 dpll |= DPLLB_MODE_DAC_SERIAL;
5375         if (is_sdvo) {
5376                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5377                 if (pixel_multiplier > 1) {
5378                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5379                 }
5380                 dpll |= DPLL_DVO_HIGH_SPEED;
5381         }
5382         if (is_dp && !is_cpu_edp)
5383                 dpll |= DPLL_DVO_HIGH_SPEED;
5384
5385         /* compute bitmask from p1 value */
5386         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5387         /* also FPA1 */
5388         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5389
5390         switch (clock->p2) {
5391         case 5:
5392                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5393                 break;
5394         case 7:
5395                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5396                 break;
5397         case 10:
5398                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5399                 break;
5400         case 14:
5401                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5402                 break;
5403         }
5404
5405         if (is_sdvo && is_tv)
5406                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5407         else if (is_tv)
5408                 /* XXX: just matching BIOS for now */
5409                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5410                 dpll |= 3;
5411         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5412                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5413         else
5414                 dpll |= PLL_REF_INPUT_DREFCLK;
5415
5416         return dpll;
5417 }
5418
5419 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5420                                   struct drm_display_mode *mode,
5421                                   struct drm_display_mode *adjusted_mode,
5422                                   int x, int y,
5423                                   struct drm_framebuffer *fb)
5424 {
5425         struct drm_device *dev = crtc->dev;
5426         struct drm_i915_private *dev_priv = dev->dev_private;
5427         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5428         int pipe = intel_crtc->pipe;
5429         int plane = intel_crtc->plane;
5430         int num_connectors = 0;
5431         intel_clock_t clock, reduced_clock;
5432         u32 dpll, fp = 0, fp2 = 0;
5433         bool ok, has_reduced_clock = false;
5434         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5435         struct intel_encoder *encoder;
5436         u32 temp;
5437         int ret;
5438         bool dither, fdi_config_ok;
5439
5440         for_each_encoder_on_crtc(dev, crtc, encoder) {
5441                 switch (encoder->type) {
5442                 case INTEL_OUTPUT_LVDS:
5443                         is_lvds = true;
5444                         break;
5445                 case INTEL_OUTPUT_DISPLAYPORT:
5446                         is_dp = true;
5447                         break;
5448                 case INTEL_OUTPUT_EDP:
5449                         is_dp = true;
5450                         if (!intel_encoder_is_pch_edp(&encoder->base))
5451                                 is_cpu_edp = true;
5452                         break;
5453                 }
5454
5455                 num_connectors++;
5456         }
5457
5458         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5459              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5460
5461         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5462                                      &has_reduced_clock, &reduced_clock);
5463         if (!ok) {
5464                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5465                 return -EINVAL;
5466         }
5467
5468         /* Ensure that the cursor is valid for the new mode before changing... */
5469         intel_crtc_update_cursor(crtc, true);
5470
5471         /* determine panel color depth */
5472         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5473                                               adjusted_mode);
5474         if (is_lvds && dev_priv->lvds_dither)
5475                 dither = true;
5476
5477         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5478         if (has_reduced_clock)
5479                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5480                         reduced_clock.m2;
5481
5482         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5483
5484         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5485         drm_mode_debug_printmodeline(mode);
5486
5487         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5488         if (!is_cpu_edp) {
5489                 struct intel_pch_pll *pll;
5490
5491                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5492                 if (pll == NULL) {
5493                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5494                                          pipe);
5495                         return -EINVAL;
5496                 }
5497         } else
5498                 intel_put_pch_pll(intel_crtc);
5499
5500         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5501          * This is an exception to the general rule that mode_set doesn't turn
5502          * things on.
5503          */
5504         if (is_lvds) {
5505                 temp = I915_READ(PCH_LVDS);
5506                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5507                 if (HAS_PCH_CPT(dev)) {
5508                         temp &= ~PORT_TRANS_SEL_MASK;
5509                         temp |= PORT_TRANS_SEL_CPT(pipe);
5510                 } else {
5511                         if (pipe == 1)
5512                                 temp |= LVDS_PIPEB_SELECT;
5513                         else
5514                                 temp &= ~LVDS_PIPEB_SELECT;
5515                 }
5516
5517                 /* set the corresponsding LVDS_BORDER bit */
5518                 temp |= dev_priv->lvds_border_bits;
5519                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5520                  * set the DPLLs for dual-channel mode or not.
5521                  */
5522                 if (clock.p2 == 7)
5523                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5524                 else
5525                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5526
5527                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5528                  * appropriately here, but we need to look more thoroughly into how
5529                  * panels behave in the two modes.
5530                  */
5531                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5532                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5533                         temp |= LVDS_HSYNC_POLARITY;
5534                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5535                         temp |= LVDS_VSYNC_POLARITY;
5536                 I915_WRITE(PCH_LVDS, temp);
5537         }
5538
5539         if (is_dp && !is_cpu_edp) {
5540                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5541         } else {
5542                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5543                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5544                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5545                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5546                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5547         }
5548
5549         if (intel_crtc->pch_pll) {
5550                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5551
5552                 /* Wait for the clocks to stabilize. */
5553                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5554                 udelay(150);
5555
5556                 /* The pixel multiplier can only be updated once the
5557                  * DPLL is enabled and the clocks are stable.
5558                  *
5559                  * So write it again.
5560                  */
5561                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5562         }
5563
5564         intel_crtc->lowfreq_avail = false;
5565         if (intel_crtc->pch_pll) {
5566                 if (is_lvds && has_reduced_clock && i915_powersave) {
5567                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5568                         intel_crtc->lowfreq_avail = true;
5569                 } else {
5570                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5571                 }
5572         }
5573
5574         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5575
5576         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5577          * ironlake_check_fdi_lanes. */
5578         ironlake_set_m_n(crtc, mode, adjusted_mode);
5579
5580         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5581
5582         if (is_cpu_edp)
5583                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5584
5585         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5586
5587         intel_wait_for_vblank(dev, pipe);
5588
5589         /* Set up the display plane register */
5590         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5591         POSTING_READ(DSPCNTR(plane));
5592
5593         ret = intel_pipe_set_base(crtc, x, y, fb);
5594
5595         intel_update_watermarks(dev);
5596
5597         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5598
5599         return fdi_config_ok ? ret : -EINVAL;
5600 }
5601
5602 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5603                                  struct drm_display_mode *mode,
5604                                  struct drm_display_mode *adjusted_mode,
5605                                  int x, int y,
5606                                  struct drm_framebuffer *fb)
5607 {
5608         struct drm_device *dev = crtc->dev;
5609         struct drm_i915_private *dev_priv = dev->dev_private;
5610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5611         int pipe = intel_crtc->pipe;
5612         int plane = intel_crtc->plane;
5613         int num_connectors = 0;
5614         intel_clock_t clock, reduced_clock;
5615         u32 dpll = 0, fp = 0, fp2 = 0;
5616         bool ok, has_reduced_clock = false;
5617         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5618         struct intel_encoder *encoder;
5619         u32 temp;
5620         int ret;
5621         bool dither;
5622
5623         for_each_encoder_on_crtc(dev, crtc, encoder) {
5624                 switch (encoder->type) {
5625                 case INTEL_OUTPUT_LVDS:
5626                         is_lvds = true;
5627                         break;
5628                 case INTEL_OUTPUT_DISPLAYPORT:
5629                         is_dp = true;
5630                         break;
5631                 case INTEL_OUTPUT_EDP:
5632                         is_dp = true;
5633                         if (!intel_encoder_is_pch_edp(&encoder->base))
5634                                 is_cpu_edp = true;
5635                         break;
5636                 }
5637
5638                 num_connectors++;
5639         }
5640
5641         if (is_cpu_edp)
5642                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5643         else
5644                 intel_crtc->cpu_transcoder = pipe;
5645
5646         /* We are not sure yet this won't happen. */
5647         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5648              INTEL_PCH_TYPE(dev));
5649
5650         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5651              num_connectors, pipe_name(pipe));
5652
5653         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5654                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5655
5656         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5657
5658         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5659                 return -EINVAL;
5660
5661         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5662                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5663                                              &has_reduced_clock,
5664                                              &reduced_clock);
5665                 if (!ok) {
5666                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5667                         return -EINVAL;
5668                 }
5669         }
5670
5671         /* Ensure that the cursor is valid for the new mode before changing... */
5672         intel_crtc_update_cursor(crtc, true);
5673
5674         /* determine panel color depth */
5675         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5676                                               adjusted_mode);
5677         if (is_lvds && dev_priv->lvds_dither)
5678                 dither = true;
5679
5680         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5681         drm_mode_debug_printmodeline(mode);
5682
5683         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5684                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5685                 if (has_reduced_clock)
5686                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5687                               reduced_clock.m2;
5688
5689                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5690                                              fp);
5691
5692                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5693                  * own on pre-Haswell/LPT generation */
5694                 if (!is_cpu_edp) {
5695                         struct intel_pch_pll *pll;
5696
5697                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5698                         if (pll == NULL) {
5699                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5700                                                  pipe);
5701                                 return -EINVAL;
5702                         }
5703                 } else
5704                         intel_put_pch_pll(intel_crtc);
5705
5706                 /* The LVDS pin pair needs to be on before the DPLLs are
5707                  * enabled.  This is an exception to the general rule that
5708                  * mode_set doesn't turn things on.
5709                  */
5710                 if (is_lvds) {
5711                         temp = I915_READ(PCH_LVDS);
5712                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5713                         if (HAS_PCH_CPT(dev)) {
5714                                 temp &= ~PORT_TRANS_SEL_MASK;
5715                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5716                         } else {
5717                                 if (pipe == 1)
5718                                         temp |= LVDS_PIPEB_SELECT;
5719                                 else
5720                                         temp &= ~LVDS_PIPEB_SELECT;
5721                         }
5722
5723                         /* set the corresponsding LVDS_BORDER bit */
5724                         temp |= dev_priv->lvds_border_bits;
5725                         /* Set the B0-B3 data pairs corresponding to whether
5726                          * we're going to set the DPLLs for dual-channel mode or
5727                          * not.
5728                          */
5729                         if (clock.p2 == 7)
5730                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5731                         else
5732                                 temp &= ~(LVDS_B0B3_POWER_UP |
5733                                           LVDS_CLKB_POWER_UP);
5734
5735                         /* It would be nice to set 24 vs 18-bit mode
5736                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5737                          * look more thoroughly into how panels behave in the
5738                          * two modes.
5739                          */
5740                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5741                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5742                                 temp |= LVDS_HSYNC_POLARITY;
5743                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5744                                 temp |= LVDS_VSYNC_POLARITY;
5745                         I915_WRITE(PCH_LVDS, temp);
5746                 }
5747         }
5748
5749         if (is_dp && !is_cpu_edp) {
5750                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5751         } else {
5752                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5753                         /* For non-DP output, clear any trans DP clock recovery
5754                          * setting.*/
5755                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5756                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5757                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5758                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5759                 }
5760         }
5761
5762         intel_crtc->lowfreq_avail = false;
5763         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5764                 if (intel_crtc->pch_pll) {
5765                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5766
5767                         /* Wait for the clocks to stabilize. */
5768                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5769                         udelay(150);
5770
5771                         /* The pixel multiplier can only be updated once the
5772                          * DPLL is enabled and the clocks are stable.
5773                          *
5774                          * So write it again.
5775                          */
5776                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5777                 }
5778
5779                 if (intel_crtc->pch_pll) {
5780                         if (is_lvds && has_reduced_clock && i915_powersave) {
5781                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5782                                 intel_crtc->lowfreq_avail = true;
5783                         } else {
5784                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5785                         }
5786                 }
5787         }
5788
5789         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5790
5791         if (!is_dp || is_cpu_edp)
5792                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5793
5794         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5795                 if (is_cpu_edp)
5796                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5797
5798         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5799
5800         /* Set up the display plane register */
5801         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5802         POSTING_READ(DSPCNTR(plane));
5803
5804         ret = intel_pipe_set_base(crtc, x, y, fb);
5805
5806         intel_update_watermarks(dev);
5807
5808         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5809
5810         return ret;
5811 }
5812
5813 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5814                                struct drm_display_mode *mode,
5815                                struct drm_display_mode *adjusted_mode,
5816                                int x, int y,
5817                                struct drm_framebuffer *fb)
5818 {
5819         struct drm_device *dev = crtc->dev;
5820         struct drm_i915_private *dev_priv = dev->dev_private;
5821         struct drm_encoder_helper_funcs *encoder_funcs;
5822         struct intel_encoder *encoder;
5823         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5824         int pipe = intel_crtc->pipe;
5825         int ret;
5826
5827         drm_vblank_pre_modeset(dev, pipe);
5828
5829         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5830                                               x, y, fb);
5831         drm_vblank_post_modeset(dev, pipe);
5832
5833         if (ret != 0)
5834                 return ret;
5835
5836         for_each_encoder_on_crtc(dev, crtc, encoder) {
5837                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5838                         encoder->base.base.id,
5839                         drm_get_encoder_name(&encoder->base),
5840                         mode->base.id, mode->name);
5841                 encoder_funcs = encoder->base.helper_private;
5842                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5843         }
5844
5845         return 0;
5846 }
5847
5848 static bool intel_eld_uptodate(struct drm_connector *connector,
5849                                int reg_eldv, uint32_t bits_eldv,
5850                                int reg_elda, uint32_t bits_elda,
5851                                int reg_edid)
5852 {
5853         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5854         uint8_t *eld = connector->eld;
5855         uint32_t i;
5856
5857         i = I915_READ(reg_eldv);
5858         i &= bits_eldv;
5859
5860         if (!eld[0])
5861                 return !i;
5862
5863         if (!i)
5864                 return false;
5865
5866         i = I915_READ(reg_elda);
5867         i &= ~bits_elda;
5868         I915_WRITE(reg_elda, i);
5869
5870         for (i = 0; i < eld[2]; i++)
5871                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5872                         return false;
5873
5874         return true;
5875 }
5876
5877 static void g4x_write_eld(struct drm_connector *connector,
5878                           struct drm_crtc *crtc)
5879 {
5880         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5881         uint8_t *eld = connector->eld;
5882         uint32_t eldv;
5883         uint32_t len;
5884         uint32_t i;
5885
5886         i = I915_READ(G4X_AUD_VID_DID);
5887
5888         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5889                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5890         else
5891                 eldv = G4X_ELDV_DEVCTG;
5892
5893         if (intel_eld_uptodate(connector,
5894                                G4X_AUD_CNTL_ST, eldv,
5895                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5896                                G4X_HDMIW_HDMIEDID))
5897                 return;
5898
5899         i = I915_READ(G4X_AUD_CNTL_ST);
5900         i &= ~(eldv | G4X_ELD_ADDR);
5901         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5902         I915_WRITE(G4X_AUD_CNTL_ST, i);
5903
5904         if (!eld[0])
5905                 return;
5906
5907         len = min_t(uint8_t, eld[2], len);
5908         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5909         for (i = 0; i < len; i++)
5910                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5911
5912         i = I915_READ(G4X_AUD_CNTL_ST);
5913         i |= eldv;
5914         I915_WRITE(G4X_AUD_CNTL_ST, i);
5915 }
5916
5917 static void haswell_write_eld(struct drm_connector *connector,
5918                                      struct drm_crtc *crtc)
5919 {
5920         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5921         uint8_t *eld = connector->eld;
5922         struct drm_device *dev = crtc->dev;
5923         uint32_t eldv;
5924         uint32_t i;
5925         int len;
5926         int pipe = to_intel_crtc(crtc)->pipe;
5927         int tmp;
5928
5929         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5930         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5931         int aud_config = HSW_AUD_CFG(pipe);
5932         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5933
5934
5935         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5936
5937         /* Audio output enable */
5938         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5939         tmp = I915_READ(aud_cntrl_st2);
5940         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5941         I915_WRITE(aud_cntrl_st2, tmp);
5942
5943         /* Wait for 1 vertical blank */
5944         intel_wait_for_vblank(dev, pipe);
5945
5946         /* Set ELD valid state */
5947         tmp = I915_READ(aud_cntrl_st2);
5948         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5949         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5950         I915_WRITE(aud_cntrl_st2, tmp);
5951         tmp = I915_READ(aud_cntrl_st2);
5952         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5953
5954         /* Enable HDMI mode */
5955         tmp = I915_READ(aud_config);
5956         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5957         /* clear N_programing_enable and N_value_index */
5958         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5959         I915_WRITE(aud_config, tmp);
5960
5961         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5962
5963         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5964
5965         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5966                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5967                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5968                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5969         } else
5970                 I915_WRITE(aud_config, 0);
5971
5972         if (intel_eld_uptodate(connector,
5973                                aud_cntrl_st2, eldv,
5974                                aud_cntl_st, IBX_ELD_ADDRESS,
5975                                hdmiw_hdmiedid))
5976                 return;
5977
5978         i = I915_READ(aud_cntrl_st2);
5979         i &= ~eldv;
5980         I915_WRITE(aud_cntrl_st2, i);
5981
5982         if (!eld[0])
5983                 return;
5984
5985         i = I915_READ(aud_cntl_st);
5986         i &= ~IBX_ELD_ADDRESS;
5987         I915_WRITE(aud_cntl_st, i);
5988         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5989         DRM_DEBUG_DRIVER("port num:%d\n", i);
5990
5991         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5992         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5993         for (i = 0; i < len; i++)
5994                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5995
5996         i = I915_READ(aud_cntrl_st2);
5997         i |= eldv;
5998         I915_WRITE(aud_cntrl_st2, i);
5999
6000 }
6001
6002 static void ironlake_write_eld(struct drm_connector *connector,
6003                                      struct drm_crtc *crtc)
6004 {
6005         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6006         uint8_t *eld = connector->eld;
6007         uint32_t eldv;
6008         uint32_t i;
6009         int len;
6010         int hdmiw_hdmiedid;
6011         int aud_config;
6012         int aud_cntl_st;
6013         int aud_cntrl_st2;
6014         int pipe = to_intel_crtc(crtc)->pipe;
6015
6016         if (HAS_PCH_IBX(connector->dev)) {
6017                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6018                 aud_config = IBX_AUD_CFG(pipe);
6019                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6020                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6021         } else {
6022                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6023                 aud_config = CPT_AUD_CFG(pipe);
6024                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6025                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6026         }
6027
6028         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6029
6030         i = I915_READ(aud_cntl_st);
6031         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6032         if (!i) {
6033                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6034                 /* operate blindly on all ports */
6035                 eldv = IBX_ELD_VALIDB;
6036                 eldv |= IBX_ELD_VALIDB << 4;
6037                 eldv |= IBX_ELD_VALIDB << 8;
6038         } else {
6039                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6040                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6041         }
6042
6043         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6044                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6045                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6046                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6047         } else
6048                 I915_WRITE(aud_config, 0);
6049
6050         if (intel_eld_uptodate(connector,
6051                                aud_cntrl_st2, eldv,
6052                                aud_cntl_st, IBX_ELD_ADDRESS,
6053                                hdmiw_hdmiedid))
6054                 return;
6055
6056         i = I915_READ(aud_cntrl_st2);
6057         i &= ~eldv;
6058         I915_WRITE(aud_cntrl_st2, i);
6059
6060         if (!eld[0])
6061                 return;
6062
6063         i = I915_READ(aud_cntl_st);
6064         i &= ~IBX_ELD_ADDRESS;
6065         I915_WRITE(aud_cntl_st, i);
6066
6067         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6068         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6069         for (i = 0; i < len; i++)
6070                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6071
6072         i = I915_READ(aud_cntrl_st2);
6073         i |= eldv;
6074         I915_WRITE(aud_cntrl_st2, i);
6075 }
6076
6077 void intel_write_eld(struct drm_encoder *encoder,
6078                      struct drm_display_mode *mode)
6079 {
6080         struct drm_crtc *crtc = encoder->crtc;
6081         struct drm_connector *connector;
6082         struct drm_device *dev = encoder->dev;
6083         struct drm_i915_private *dev_priv = dev->dev_private;
6084
6085         connector = drm_select_eld(encoder, mode);
6086         if (!connector)
6087                 return;
6088
6089         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6090                          connector->base.id,
6091                          drm_get_connector_name(connector),
6092                          connector->encoder->base.id,
6093                          drm_get_encoder_name(connector->encoder));
6094
6095         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6096
6097         if (dev_priv->display.write_eld)
6098                 dev_priv->display.write_eld(connector, crtc);
6099 }
6100
6101 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6102 void intel_crtc_load_lut(struct drm_crtc *crtc)
6103 {
6104         struct drm_device *dev = crtc->dev;
6105         struct drm_i915_private *dev_priv = dev->dev_private;
6106         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6107         int palreg = PALETTE(intel_crtc->pipe);
6108         int i;
6109
6110         /* The clocks have to be on to load the palette. */
6111         if (!crtc->enabled || !intel_crtc->active)
6112                 return;
6113
6114         /* use legacy palette for Ironlake */
6115         if (HAS_PCH_SPLIT(dev))
6116                 palreg = LGC_PALETTE(intel_crtc->pipe);
6117
6118         for (i = 0; i < 256; i++) {
6119                 I915_WRITE(palreg + 4 * i,
6120                            (intel_crtc->lut_r[i] << 16) |
6121                            (intel_crtc->lut_g[i] << 8) |
6122                            intel_crtc->lut_b[i]);
6123         }
6124 }
6125
6126 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6127 {
6128         struct drm_device *dev = crtc->dev;
6129         struct drm_i915_private *dev_priv = dev->dev_private;
6130         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6131         bool visible = base != 0;
6132         u32 cntl;
6133
6134         if (intel_crtc->cursor_visible == visible)
6135                 return;
6136
6137         cntl = I915_READ(_CURACNTR);
6138         if (visible) {
6139                 /* On these chipsets we can only modify the base whilst
6140                  * the cursor is disabled.
6141                  */
6142                 I915_WRITE(_CURABASE, base);
6143
6144                 cntl &= ~(CURSOR_FORMAT_MASK);
6145                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6146                 cntl |= CURSOR_ENABLE |
6147                         CURSOR_GAMMA_ENABLE |
6148                         CURSOR_FORMAT_ARGB;
6149         } else
6150                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6151         I915_WRITE(_CURACNTR, cntl);
6152
6153         intel_crtc->cursor_visible = visible;
6154 }
6155
6156 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6157 {
6158         struct drm_device *dev = crtc->dev;
6159         struct drm_i915_private *dev_priv = dev->dev_private;
6160         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6161         int pipe = intel_crtc->pipe;
6162         bool visible = base != 0;
6163
6164         if (intel_crtc->cursor_visible != visible) {
6165                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6166                 if (base) {
6167                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6168                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6169                         cntl |= pipe << 28; /* Connect to correct pipe */
6170                 } else {
6171                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6172                         cntl |= CURSOR_MODE_DISABLE;
6173                 }
6174                 I915_WRITE(CURCNTR(pipe), cntl);
6175
6176                 intel_crtc->cursor_visible = visible;
6177         }
6178         /* and commit changes on next vblank */
6179         I915_WRITE(CURBASE(pipe), base);
6180 }
6181
6182 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6183 {
6184         struct drm_device *dev = crtc->dev;
6185         struct drm_i915_private *dev_priv = dev->dev_private;
6186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6187         int pipe = intel_crtc->pipe;
6188         bool visible = base != 0;
6189
6190         if (intel_crtc->cursor_visible != visible) {
6191                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6192                 if (base) {
6193                         cntl &= ~CURSOR_MODE;
6194                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6195                 } else {
6196                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6197                         cntl |= CURSOR_MODE_DISABLE;
6198                 }
6199                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6200
6201                 intel_crtc->cursor_visible = visible;
6202         }
6203         /* and commit changes on next vblank */
6204         I915_WRITE(CURBASE_IVB(pipe), base);
6205 }
6206
6207 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6208 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6209                                      bool on)
6210 {
6211         struct drm_device *dev = crtc->dev;
6212         struct drm_i915_private *dev_priv = dev->dev_private;
6213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6214         int pipe = intel_crtc->pipe;
6215         int x = intel_crtc->cursor_x;
6216         int y = intel_crtc->cursor_y;
6217         u32 base, pos;
6218         bool visible;
6219
6220         pos = 0;
6221
6222         if (on && crtc->enabled && crtc->fb) {
6223                 base = intel_crtc->cursor_addr;
6224                 if (x > (int) crtc->fb->width)
6225                         base = 0;
6226
6227                 if (y > (int) crtc->fb->height)
6228                         base = 0;
6229         } else
6230                 base = 0;
6231
6232         if (x < 0) {
6233                 if (x + intel_crtc->cursor_width < 0)
6234                         base = 0;
6235
6236                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6237                 x = -x;
6238         }
6239         pos |= x << CURSOR_X_SHIFT;
6240
6241         if (y < 0) {
6242                 if (y + intel_crtc->cursor_height < 0)
6243                         base = 0;
6244
6245                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6246                 y = -y;
6247         }
6248         pos |= y << CURSOR_Y_SHIFT;
6249
6250         visible = base != 0;
6251         if (!visible && !intel_crtc->cursor_visible)
6252                 return;
6253
6254         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6255                 I915_WRITE(CURPOS_IVB(pipe), pos);
6256                 ivb_update_cursor(crtc, base);
6257         } else {
6258                 I915_WRITE(CURPOS(pipe), pos);
6259                 if (IS_845G(dev) || IS_I865G(dev))
6260                         i845_update_cursor(crtc, base);
6261                 else
6262                         i9xx_update_cursor(crtc, base);
6263         }
6264 }
6265
6266 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6267                                  struct drm_file *file,
6268                                  uint32_t handle,
6269                                  uint32_t width, uint32_t height)
6270 {
6271         struct drm_device *dev = crtc->dev;
6272         struct drm_i915_private *dev_priv = dev->dev_private;
6273         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6274         struct drm_i915_gem_object *obj;
6275         uint32_t addr;
6276         int ret;
6277
6278         /* if we want to turn off the cursor ignore width and height */
6279         if (!handle) {
6280                 DRM_DEBUG_KMS("cursor off\n");
6281                 addr = 0;
6282                 obj = NULL;
6283                 mutex_lock(&dev->struct_mutex);
6284                 goto finish;
6285         }
6286
6287         /* Currently we only support 64x64 cursors */
6288         if (width != 64 || height != 64) {
6289                 DRM_ERROR("we currently only support 64x64 cursors\n");
6290                 return -EINVAL;
6291         }
6292
6293         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6294         if (&obj->base == NULL)
6295                 return -ENOENT;
6296
6297         if (obj->base.size < width * height * 4) {
6298                 DRM_ERROR("buffer is to small\n");
6299                 ret = -ENOMEM;
6300                 goto fail;
6301         }
6302
6303         /* we only need to pin inside GTT if cursor is non-phy */
6304         mutex_lock(&dev->struct_mutex);
6305         if (!dev_priv->info->cursor_needs_physical) {
6306                 if (obj->tiling_mode) {
6307                         DRM_ERROR("cursor cannot be tiled\n");
6308                         ret = -EINVAL;
6309                         goto fail_locked;
6310                 }
6311
6312                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6313                 if (ret) {
6314                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6315                         goto fail_locked;
6316                 }
6317
6318                 ret = i915_gem_object_put_fence(obj);
6319                 if (ret) {
6320                         DRM_ERROR("failed to release fence for cursor");
6321                         goto fail_unpin;
6322                 }
6323
6324                 addr = obj->gtt_offset;
6325         } else {
6326                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6327                 ret = i915_gem_attach_phys_object(dev, obj,
6328                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6329                                                   align);
6330                 if (ret) {
6331                         DRM_ERROR("failed to attach phys object\n");
6332                         goto fail_locked;
6333                 }
6334                 addr = obj->phys_obj->handle->busaddr;
6335         }
6336
6337         if (IS_GEN2(dev))
6338                 I915_WRITE(CURSIZE, (height << 12) | width);
6339
6340  finish:
6341         if (intel_crtc->cursor_bo) {
6342                 if (dev_priv->info->cursor_needs_physical) {
6343                         if (intel_crtc->cursor_bo != obj)
6344                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6345                 } else
6346                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6347                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6348         }
6349
6350         mutex_unlock(&dev->struct_mutex);
6351
6352         intel_crtc->cursor_addr = addr;
6353         intel_crtc->cursor_bo = obj;
6354         intel_crtc->cursor_width = width;
6355         intel_crtc->cursor_height = height;
6356
6357         intel_crtc_update_cursor(crtc, true);
6358
6359         return 0;
6360 fail_unpin:
6361         i915_gem_object_unpin(obj);
6362 fail_locked:
6363         mutex_unlock(&dev->struct_mutex);
6364 fail:
6365         drm_gem_object_unreference_unlocked(&obj->base);
6366         return ret;
6367 }
6368
6369 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6370 {
6371         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6372
6373         intel_crtc->cursor_x = x;
6374         intel_crtc->cursor_y = y;
6375
6376         intel_crtc_update_cursor(crtc, true);
6377
6378         return 0;
6379 }
6380
6381 /** Sets the color ramps on behalf of RandR */
6382 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6383                                  u16 blue, int regno)
6384 {
6385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6386
6387         intel_crtc->lut_r[regno] = red >> 8;
6388         intel_crtc->lut_g[regno] = green >> 8;
6389         intel_crtc->lut_b[regno] = blue >> 8;
6390 }
6391
6392 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6393                              u16 *blue, int regno)
6394 {
6395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6396
6397         *red = intel_crtc->lut_r[regno] << 8;
6398         *green = intel_crtc->lut_g[regno] << 8;
6399         *blue = intel_crtc->lut_b[regno] << 8;
6400 }
6401
6402 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6403                                  u16 *blue, uint32_t start, uint32_t size)
6404 {
6405         int end = (start + size > 256) ? 256 : start + size, i;
6406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6407
6408         for (i = start; i < end; i++) {
6409                 intel_crtc->lut_r[i] = red[i] >> 8;
6410                 intel_crtc->lut_g[i] = green[i] >> 8;
6411                 intel_crtc->lut_b[i] = blue[i] >> 8;
6412         }
6413
6414         intel_crtc_load_lut(crtc);
6415 }
6416
6417 /**
6418  * Get a pipe with a simple mode set on it for doing load-based monitor
6419  * detection.
6420  *
6421  * It will be up to the load-detect code to adjust the pipe as appropriate for
6422  * its requirements.  The pipe will be connected to no other encoders.
6423  *
6424  * Currently this code will only succeed if there is a pipe with no encoders
6425  * configured for it.  In the future, it could choose to temporarily disable
6426  * some outputs to free up a pipe for its use.
6427  *
6428  * \return crtc, or NULL if no pipes are available.
6429  */
6430
6431 /* VESA 640x480x72Hz mode to set on the pipe */
6432 static struct drm_display_mode load_detect_mode = {
6433         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6434                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6435 };
6436
6437 static struct drm_framebuffer *
6438 intel_framebuffer_create(struct drm_device *dev,
6439                          struct drm_mode_fb_cmd2 *mode_cmd,
6440                          struct drm_i915_gem_object *obj)
6441 {
6442         struct intel_framebuffer *intel_fb;
6443         int ret;
6444
6445         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6446         if (!intel_fb) {
6447                 drm_gem_object_unreference_unlocked(&obj->base);
6448                 return ERR_PTR(-ENOMEM);
6449         }
6450
6451         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6452         if (ret) {
6453                 drm_gem_object_unreference_unlocked(&obj->base);
6454                 kfree(intel_fb);
6455                 return ERR_PTR(ret);
6456         }
6457
6458         return &intel_fb->base;
6459 }
6460
6461 static u32
6462 intel_framebuffer_pitch_for_width(int width, int bpp)
6463 {
6464         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6465         return ALIGN(pitch, 64);
6466 }
6467
6468 static u32
6469 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6470 {
6471         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6472         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6473 }
6474
6475 static struct drm_framebuffer *
6476 intel_framebuffer_create_for_mode(struct drm_device *dev,
6477                                   struct drm_display_mode *mode,
6478                                   int depth, int bpp)
6479 {
6480         struct drm_i915_gem_object *obj;
6481         struct drm_mode_fb_cmd2 mode_cmd;
6482
6483         obj = i915_gem_alloc_object(dev,
6484                                     intel_framebuffer_size_for_mode(mode, bpp));
6485         if (obj == NULL)
6486                 return ERR_PTR(-ENOMEM);
6487
6488         mode_cmd.width = mode->hdisplay;
6489         mode_cmd.height = mode->vdisplay;
6490         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6491                                                                 bpp);
6492         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6493
6494         return intel_framebuffer_create(dev, &mode_cmd, obj);
6495 }
6496
6497 static struct drm_framebuffer *
6498 mode_fits_in_fbdev(struct drm_device *dev,
6499                    struct drm_display_mode *mode)
6500 {
6501         struct drm_i915_private *dev_priv = dev->dev_private;
6502         struct drm_i915_gem_object *obj;
6503         struct drm_framebuffer *fb;
6504
6505         if (dev_priv->fbdev == NULL)
6506                 return NULL;
6507
6508         obj = dev_priv->fbdev->ifb.obj;
6509         if (obj == NULL)
6510                 return NULL;
6511
6512         fb = &dev_priv->fbdev->ifb.base;
6513         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6514                                                                fb->bits_per_pixel))
6515                 return NULL;
6516
6517         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6518                 return NULL;
6519
6520         return fb;
6521 }
6522
6523 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6524                                 struct drm_display_mode *mode,
6525                                 struct intel_load_detect_pipe *old)
6526 {
6527         struct intel_crtc *intel_crtc;
6528         struct intel_encoder *intel_encoder =
6529                 intel_attached_encoder(connector);
6530         struct drm_crtc *possible_crtc;
6531         struct drm_encoder *encoder = &intel_encoder->base;
6532         struct drm_crtc *crtc = NULL;
6533         struct drm_device *dev = encoder->dev;
6534         struct drm_framebuffer *fb;
6535         int i = -1;
6536
6537         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6538                       connector->base.id, drm_get_connector_name(connector),
6539                       encoder->base.id, drm_get_encoder_name(encoder));
6540
6541         /*
6542          * Algorithm gets a little messy:
6543          *
6544          *   - if the connector already has an assigned crtc, use it (but make
6545          *     sure it's on first)
6546          *
6547          *   - try to find the first unused crtc that can drive this connector,
6548          *     and use that if we find one
6549          */
6550
6551         /* See if we already have a CRTC for this connector */
6552         if (encoder->crtc) {
6553                 crtc = encoder->crtc;
6554
6555                 old->dpms_mode = connector->dpms;
6556                 old->load_detect_temp = false;
6557
6558                 /* Make sure the crtc and connector are running */
6559                 if (connector->dpms != DRM_MODE_DPMS_ON)
6560                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6561
6562                 return true;
6563         }
6564
6565         /* Find an unused one (if possible) */
6566         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6567                 i++;
6568                 if (!(encoder->possible_crtcs & (1 << i)))
6569                         continue;
6570                 if (!possible_crtc->enabled) {
6571                         crtc = possible_crtc;
6572                         break;
6573                 }
6574         }
6575
6576         /*
6577          * If we didn't find an unused CRTC, don't use any.
6578          */
6579         if (!crtc) {
6580                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6581                 return false;
6582         }
6583
6584         intel_encoder->new_crtc = to_intel_crtc(crtc);
6585         to_intel_connector(connector)->new_encoder = intel_encoder;
6586
6587         intel_crtc = to_intel_crtc(crtc);
6588         old->dpms_mode = connector->dpms;
6589         old->load_detect_temp = true;
6590         old->release_fb = NULL;
6591
6592         if (!mode)
6593                 mode = &load_detect_mode;
6594
6595         /* We need a framebuffer large enough to accommodate all accesses
6596          * that the plane may generate whilst we perform load detection.
6597          * We can not rely on the fbcon either being present (we get called
6598          * during its initialisation to detect all boot displays, or it may
6599          * not even exist) or that it is large enough to satisfy the
6600          * requested mode.
6601          */
6602         fb = mode_fits_in_fbdev(dev, mode);
6603         if (fb == NULL) {
6604                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6605                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6606                 old->release_fb = fb;
6607         } else
6608                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6609         if (IS_ERR(fb)) {
6610                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6611                 goto fail;
6612         }
6613
6614         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6615                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6616                 if (old->release_fb)
6617                         old->release_fb->funcs->destroy(old->release_fb);
6618                 goto fail;
6619         }
6620
6621         /* let the connector get through one full cycle before testing */
6622         intel_wait_for_vblank(dev, intel_crtc->pipe);
6623
6624         return true;
6625 fail:
6626         connector->encoder = NULL;
6627         encoder->crtc = NULL;
6628         return false;
6629 }
6630
6631 void intel_release_load_detect_pipe(struct drm_connector *connector,
6632                                     struct intel_load_detect_pipe *old)
6633 {
6634         struct intel_encoder *intel_encoder =
6635                 intel_attached_encoder(connector);
6636         struct drm_encoder *encoder = &intel_encoder->base;
6637
6638         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6639                       connector->base.id, drm_get_connector_name(connector),
6640                       encoder->base.id, drm_get_encoder_name(encoder));
6641
6642         if (old->load_detect_temp) {
6643                 struct drm_crtc *crtc = encoder->crtc;
6644
6645                 to_intel_connector(connector)->new_encoder = NULL;
6646                 intel_encoder->new_crtc = NULL;
6647                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6648
6649                 if (old->release_fb)
6650                         old->release_fb->funcs->destroy(old->release_fb);
6651
6652                 return;
6653         }
6654
6655         /* Switch crtc and encoder back off if necessary */
6656         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6657                 connector->funcs->dpms(connector, old->dpms_mode);
6658 }
6659
6660 /* Returns the clock of the currently programmed mode of the given pipe. */
6661 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6662 {
6663         struct drm_i915_private *dev_priv = dev->dev_private;
6664         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6665         int pipe = intel_crtc->pipe;
6666         u32 dpll = I915_READ(DPLL(pipe));
6667         u32 fp;
6668         intel_clock_t clock;
6669
6670         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6671                 fp = I915_READ(FP0(pipe));
6672         else
6673                 fp = I915_READ(FP1(pipe));
6674
6675         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6676         if (IS_PINEVIEW(dev)) {
6677                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6678                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6679         } else {
6680                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6681                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6682         }
6683
6684         if (!IS_GEN2(dev)) {
6685                 if (IS_PINEVIEW(dev))
6686                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6687                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6688                 else
6689                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6690                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6691
6692                 switch (dpll & DPLL_MODE_MASK) {
6693                 case DPLLB_MODE_DAC_SERIAL:
6694                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6695                                 5 : 10;
6696                         break;
6697                 case DPLLB_MODE_LVDS:
6698                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6699                                 7 : 14;
6700                         break;
6701                 default:
6702                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6703                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6704                         return 0;
6705                 }
6706
6707                 /* XXX: Handle the 100Mhz refclk */
6708                 intel_clock(dev, 96000, &clock);
6709         } else {
6710                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6711
6712                 if (is_lvds) {
6713                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6714                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6715                         clock.p2 = 14;
6716
6717                         if ((dpll & PLL_REF_INPUT_MASK) ==
6718                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6719                                 /* XXX: might not be 66MHz */
6720                                 intel_clock(dev, 66000, &clock);
6721                         } else
6722                                 intel_clock(dev, 48000, &clock);
6723                 } else {
6724                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6725                                 clock.p1 = 2;
6726                         else {
6727                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6728                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6729                         }
6730                         if (dpll & PLL_P2_DIVIDE_BY_4)
6731                                 clock.p2 = 4;
6732                         else
6733                                 clock.p2 = 2;
6734
6735                         intel_clock(dev, 48000, &clock);
6736                 }
6737         }
6738
6739         /* XXX: It would be nice to validate the clocks, but we can't reuse
6740          * i830PllIsValid() because it relies on the xf86_config connector
6741          * configuration being accurate, which it isn't necessarily.
6742          */
6743
6744         return clock.dot;
6745 }
6746
6747 /** Returns the currently programmed mode of the given pipe. */
6748 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6749                                              struct drm_crtc *crtc)
6750 {
6751         struct drm_i915_private *dev_priv = dev->dev_private;
6752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6753         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6754         struct drm_display_mode *mode;
6755         int htot = I915_READ(HTOTAL(cpu_transcoder));
6756         int hsync = I915_READ(HSYNC(cpu_transcoder));
6757         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6758         int vsync = I915_READ(VSYNC(cpu_transcoder));
6759
6760         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6761         if (!mode)
6762                 return NULL;
6763
6764         mode->clock = intel_crtc_clock_get(dev, crtc);
6765         mode->hdisplay = (htot & 0xffff) + 1;
6766         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6767         mode->hsync_start = (hsync & 0xffff) + 1;
6768         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6769         mode->vdisplay = (vtot & 0xffff) + 1;
6770         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6771         mode->vsync_start = (vsync & 0xffff) + 1;
6772         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6773
6774         drm_mode_set_name(mode);
6775
6776         return mode;
6777 }
6778
6779 static void intel_increase_pllclock(struct drm_crtc *crtc)
6780 {
6781         struct drm_device *dev = crtc->dev;
6782         drm_i915_private_t *dev_priv = dev->dev_private;
6783         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6784         int pipe = intel_crtc->pipe;
6785         int dpll_reg = DPLL(pipe);
6786         int dpll;
6787
6788         if (HAS_PCH_SPLIT(dev))
6789                 return;
6790
6791         if (!dev_priv->lvds_downclock_avail)
6792                 return;
6793
6794         dpll = I915_READ(dpll_reg);
6795         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6796                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6797
6798                 assert_panel_unlocked(dev_priv, pipe);
6799
6800                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6801                 I915_WRITE(dpll_reg, dpll);
6802                 intel_wait_for_vblank(dev, pipe);
6803
6804                 dpll = I915_READ(dpll_reg);
6805                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6806                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6807         }
6808 }
6809
6810 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6811 {
6812         struct drm_device *dev = crtc->dev;
6813         drm_i915_private_t *dev_priv = dev->dev_private;
6814         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6815
6816         if (HAS_PCH_SPLIT(dev))
6817                 return;
6818
6819         if (!dev_priv->lvds_downclock_avail)
6820                 return;
6821
6822         /*
6823          * Since this is called by a timer, we should never get here in
6824          * the manual case.
6825          */
6826         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6827                 int pipe = intel_crtc->pipe;
6828                 int dpll_reg = DPLL(pipe);
6829                 int dpll;
6830
6831                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6832
6833                 assert_panel_unlocked(dev_priv, pipe);
6834
6835                 dpll = I915_READ(dpll_reg);
6836                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6837                 I915_WRITE(dpll_reg, dpll);
6838                 intel_wait_for_vblank(dev, pipe);
6839                 dpll = I915_READ(dpll_reg);
6840                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6841                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6842         }
6843
6844 }
6845
6846 void intel_mark_busy(struct drm_device *dev)
6847 {
6848         i915_update_gfx_val(dev->dev_private);
6849 }
6850
6851 void intel_mark_idle(struct drm_device *dev)
6852 {
6853 }
6854
6855 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6856 {
6857         struct drm_device *dev = obj->base.dev;
6858         struct drm_crtc *crtc;
6859
6860         if (!i915_powersave)
6861                 return;
6862
6863         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6864                 if (!crtc->fb)
6865                         continue;
6866
6867                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6868                         intel_increase_pllclock(crtc);
6869         }
6870 }
6871
6872 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6873 {
6874         struct drm_device *dev = obj->base.dev;
6875         struct drm_crtc *crtc;
6876
6877         if (!i915_powersave)
6878                 return;
6879
6880         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6881                 if (!crtc->fb)
6882                         continue;
6883
6884                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6885                         intel_decrease_pllclock(crtc);
6886         }
6887 }
6888
6889 static void intel_crtc_destroy(struct drm_crtc *crtc)
6890 {
6891         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6892         struct drm_device *dev = crtc->dev;
6893         struct intel_unpin_work *work;
6894         unsigned long flags;
6895
6896         spin_lock_irqsave(&dev->event_lock, flags);
6897         work = intel_crtc->unpin_work;
6898         intel_crtc->unpin_work = NULL;
6899         spin_unlock_irqrestore(&dev->event_lock, flags);
6900
6901         if (work) {
6902                 cancel_work_sync(&work->work);
6903                 kfree(work);
6904         }
6905
6906         drm_crtc_cleanup(crtc);
6907
6908         kfree(intel_crtc);
6909 }
6910
6911 static void intel_unpin_work_fn(struct work_struct *__work)
6912 {
6913         struct intel_unpin_work *work =
6914                 container_of(__work, struct intel_unpin_work, work);
6915
6916         mutex_lock(&work->dev->struct_mutex);
6917         intel_unpin_fb_obj(work->old_fb_obj);
6918         drm_gem_object_unreference(&work->pending_flip_obj->base);
6919         drm_gem_object_unreference(&work->old_fb_obj->base);
6920
6921         intel_update_fbc(work->dev);
6922         mutex_unlock(&work->dev->struct_mutex);
6923         kfree(work);
6924 }
6925
6926 static void do_intel_finish_page_flip(struct drm_device *dev,
6927                                       struct drm_crtc *crtc)
6928 {
6929         drm_i915_private_t *dev_priv = dev->dev_private;
6930         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6931         struct intel_unpin_work *work;
6932         struct drm_i915_gem_object *obj;
6933         struct drm_pending_vblank_event *e;
6934         struct timeval tvbl;
6935         unsigned long flags;
6936
6937         /* Ignore early vblank irqs */
6938         if (intel_crtc == NULL)
6939                 return;
6940
6941         spin_lock_irqsave(&dev->event_lock, flags);
6942         work = intel_crtc->unpin_work;
6943         if (work == NULL || !work->pending) {
6944                 spin_unlock_irqrestore(&dev->event_lock, flags);
6945                 return;
6946         }
6947
6948         intel_crtc->unpin_work = NULL;
6949
6950         if (work->event) {
6951                 e = work->event;
6952                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6953
6954                 e->event.tv_sec = tvbl.tv_sec;
6955                 e->event.tv_usec = tvbl.tv_usec;
6956
6957                 list_add_tail(&e->base.link,
6958                               &e->base.file_priv->event_list);
6959                 wake_up_interruptible(&e->base.file_priv->event_wait);
6960         }
6961
6962         drm_vblank_put(dev, intel_crtc->pipe);
6963
6964         spin_unlock_irqrestore(&dev->event_lock, flags);
6965
6966         obj = work->old_fb_obj;
6967
6968         atomic_clear_mask(1 << intel_crtc->plane,
6969                           &obj->pending_flip.counter);
6970
6971         wake_up(&dev_priv->pending_flip_queue);
6972         schedule_work(&work->work);
6973
6974         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6975 }
6976
6977 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6978 {
6979         drm_i915_private_t *dev_priv = dev->dev_private;
6980         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6981
6982         do_intel_finish_page_flip(dev, crtc);
6983 }
6984
6985 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6986 {
6987         drm_i915_private_t *dev_priv = dev->dev_private;
6988         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6989
6990         do_intel_finish_page_flip(dev, crtc);
6991 }
6992
6993 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6994 {
6995         drm_i915_private_t *dev_priv = dev->dev_private;
6996         struct intel_crtc *intel_crtc =
6997                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6998         unsigned long flags;
6999
7000         spin_lock_irqsave(&dev->event_lock, flags);
7001         if (intel_crtc->unpin_work) {
7002                 if ((++intel_crtc->unpin_work->pending) > 1)
7003                         DRM_ERROR("Prepared flip multiple times\n");
7004         } else {
7005                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7006         }
7007         spin_unlock_irqrestore(&dev->event_lock, flags);
7008 }
7009
7010 static int intel_gen2_queue_flip(struct drm_device *dev,
7011                                  struct drm_crtc *crtc,
7012                                  struct drm_framebuffer *fb,
7013                                  struct drm_i915_gem_object *obj)
7014 {
7015         struct drm_i915_private *dev_priv = dev->dev_private;
7016         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7017         u32 flip_mask;
7018         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7019         int ret;
7020
7021         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7022         if (ret)
7023                 goto err;
7024
7025         ret = intel_ring_begin(ring, 6);
7026         if (ret)
7027                 goto err_unpin;
7028
7029         /* Can't queue multiple flips, so wait for the previous
7030          * one to finish before executing the next.
7031          */
7032         if (intel_crtc->plane)
7033                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7034         else
7035                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7036         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7037         intel_ring_emit(ring, MI_NOOP);
7038         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7039                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7040         intel_ring_emit(ring, fb->pitches[0]);
7041         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7042         intel_ring_emit(ring, 0); /* aux display base address, unused */
7043         intel_ring_advance(ring);
7044         return 0;
7045
7046 err_unpin:
7047         intel_unpin_fb_obj(obj);
7048 err:
7049         return ret;
7050 }
7051
7052 static int intel_gen3_queue_flip(struct drm_device *dev,
7053                                  struct drm_crtc *crtc,
7054                                  struct drm_framebuffer *fb,
7055                                  struct drm_i915_gem_object *obj)
7056 {
7057         struct drm_i915_private *dev_priv = dev->dev_private;
7058         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7059         u32 flip_mask;
7060         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7061         int ret;
7062
7063         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7064         if (ret)
7065                 goto err;
7066
7067         ret = intel_ring_begin(ring, 6);
7068         if (ret)
7069                 goto err_unpin;
7070
7071         if (intel_crtc->plane)
7072                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7073         else
7074                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7075         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7076         intel_ring_emit(ring, MI_NOOP);
7077         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7078                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7079         intel_ring_emit(ring, fb->pitches[0]);
7080         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7081         intel_ring_emit(ring, MI_NOOP);
7082
7083         intel_ring_advance(ring);
7084         return 0;
7085
7086 err_unpin:
7087         intel_unpin_fb_obj(obj);
7088 err:
7089         return ret;
7090 }
7091
7092 static int intel_gen4_queue_flip(struct drm_device *dev,
7093                                  struct drm_crtc *crtc,
7094                                  struct drm_framebuffer *fb,
7095                                  struct drm_i915_gem_object *obj)
7096 {
7097         struct drm_i915_private *dev_priv = dev->dev_private;
7098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7099         uint32_t pf, pipesrc;
7100         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7101         int ret;
7102
7103         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7104         if (ret)
7105                 goto err;
7106
7107         ret = intel_ring_begin(ring, 4);
7108         if (ret)
7109                 goto err_unpin;
7110
7111         /* i965+ uses the linear or tiled offsets from the
7112          * Display Registers (which do not change across a page-flip)
7113          * so we need only reprogram the base address.
7114          */
7115         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7116                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7117         intel_ring_emit(ring, fb->pitches[0]);
7118         intel_ring_emit(ring,
7119                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7120                         obj->tiling_mode);
7121
7122         /* XXX Enabling the panel-fitter across page-flip is so far
7123          * untested on non-native modes, so ignore it for now.
7124          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7125          */
7126         pf = 0;
7127         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7128         intel_ring_emit(ring, pf | pipesrc);
7129         intel_ring_advance(ring);
7130         return 0;
7131
7132 err_unpin:
7133         intel_unpin_fb_obj(obj);
7134 err:
7135         return ret;
7136 }
7137
7138 static int intel_gen6_queue_flip(struct drm_device *dev,
7139                                  struct drm_crtc *crtc,
7140                                  struct drm_framebuffer *fb,
7141                                  struct drm_i915_gem_object *obj)
7142 {
7143         struct drm_i915_private *dev_priv = dev->dev_private;
7144         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7145         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7146         uint32_t pf, pipesrc;
7147         int ret;
7148
7149         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7150         if (ret)
7151                 goto err;
7152
7153         ret = intel_ring_begin(ring, 4);
7154         if (ret)
7155                 goto err_unpin;
7156
7157         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7158                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7159         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7160         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7161
7162         /* Contrary to the suggestions in the documentation,
7163          * "Enable Panel Fitter" does not seem to be required when page
7164          * flipping with a non-native mode, and worse causes a normal
7165          * modeset to fail.
7166          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7167          */
7168         pf = 0;
7169         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7170         intel_ring_emit(ring, pf | pipesrc);
7171         intel_ring_advance(ring);
7172         return 0;
7173
7174 err_unpin:
7175         intel_unpin_fb_obj(obj);
7176 err:
7177         return ret;
7178 }
7179
7180 /*
7181  * On gen7 we currently use the blit ring because (in early silicon at least)
7182  * the render ring doesn't give us interrpts for page flip completion, which
7183  * means clients will hang after the first flip is queued.  Fortunately the
7184  * blit ring generates interrupts properly, so use it instead.
7185  */
7186 static int intel_gen7_queue_flip(struct drm_device *dev,
7187                                  struct drm_crtc *crtc,
7188                                  struct drm_framebuffer *fb,
7189                                  struct drm_i915_gem_object *obj)
7190 {
7191         struct drm_i915_private *dev_priv = dev->dev_private;
7192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7193         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7194         uint32_t plane_bit = 0;
7195         int ret;
7196
7197         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7198         if (ret)
7199                 goto err;
7200
7201         switch(intel_crtc->plane) {
7202         case PLANE_A:
7203                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7204                 break;
7205         case PLANE_B:
7206                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7207                 break;
7208         case PLANE_C:
7209                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7210                 break;
7211         default:
7212                 WARN_ONCE(1, "unknown plane in flip command\n");
7213                 ret = -ENODEV;
7214                 goto err_unpin;
7215         }
7216
7217         ret = intel_ring_begin(ring, 4);
7218         if (ret)
7219                 goto err_unpin;
7220
7221         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7222         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7223         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7224         intel_ring_emit(ring, (MI_NOOP));
7225         intel_ring_advance(ring);
7226         return 0;
7227
7228 err_unpin:
7229         intel_unpin_fb_obj(obj);
7230 err:
7231         return ret;
7232 }
7233
7234 static int intel_default_queue_flip(struct drm_device *dev,
7235                                     struct drm_crtc *crtc,
7236                                     struct drm_framebuffer *fb,
7237                                     struct drm_i915_gem_object *obj)
7238 {
7239         return -ENODEV;
7240 }
7241
7242 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7243                                 struct drm_framebuffer *fb,
7244                                 struct drm_pending_vblank_event *event)
7245 {
7246         struct drm_device *dev = crtc->dev;
7247         struct drm_i915_private *dev_priv = dev->dev_private;
7248         struct intel_framebuffer *intel_fb;
7249         struct drm_i915_gem_object *obj;
7250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7251         struct intel_unpin_work *work;
7252         unsigned long flags;
7253         int ret;
7254
7255         /* Can't change pixel format via MI display flips. */
7256         if (fb->pixel_format != crtc->fb->pixel_format)
7257                 return -EINVAL;
7258
7259         /*
7260          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7261          * Note that pitch changes could also affect these register.
7262          */
7263         if (INTEL_INFO(dev)->gen > 3 &&
7264             (fb->offsets[0] != crtc->fb->offsets[0] ||
7265              fb->pitches[0] != crtc->fb->pitches[0]))
7266                 return -EINVAL;
7267
7268         work = kzalloc(sizeof *work, GFP_KERNEL);
7269         if (work == NULL)
7270                 return -ENOMEM;
7271
7272         work->event = event;
7273         work->dev = crtc->dev;
7274         intel_fb = to_intel_framebuffer(crtc->fb);
7275         work->old_fb_obj = intel_fb->obj;
7276         INIT_WORK(&work->work, intel_unpin_work_fn);
7277
7278         ret = drm_vblank_get(dev, intel_crtc->pipe);
7279         if (ret)
7280                 goto free_work;
7281
7282         /* We borrow the event spin lock for protecting unpin_work */
7283         spin_lock_irqsave(&dev->event_lock, flags);
7284         if (intel_crtc->unpin_work) {
7285                 spin_unlock_irqrestore(&dev->event_lock, flags);
7286                 kfree(work);
7287                 drm_vblank_put(dev, intel_crtc->pipe);
7288
7289                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7290                 return -EBUSY;
7291         }
7292         intel_crtc->unpin_work = work;
7293         spin_unlock_irqrestore(&dev->event_lock, flags);
7294
7295         intel_fb = to_intel_framebuffer(fb);
7296         obj = intel_fb->obj;
7297
7298         ret = i915_mutex_lock_interruptible(dev);
7299         if (ret)
7300                 goto cleanup;
7301
7302         /* Reference the objects for the scheduled work. */
7303         drm_gem_object_reference(&work->old_fb_obj->base);
7304         drm_gem_object_reference(&obj->base);
7305
7306         crtc->fb = fb;
7307
7308         work->pending_flip_obj = obj;
7309
7310         work->enable_stall_check = true;
7311
7312         /* Block clients from rendering to the new back buffer until
7313          * the flip occurs and the object is no longer visible.
7314          */
7315         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7316
7317         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7318         if (ret)
7319                 goto cleanup_pending;
7320
7321         intel_disable_fbc(dev);
7322         intel_mark_fb_busy(obj);
7323         mutex_unlock(&dev->struct_mutex);
7324
7325         trace_i915_flip_request(intel_crtc->plane, obj);
7326
7327         return 0;
7328
7329 cleanup_pending:
7330         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7331         drm_gem_object_unreference(&work->old_fb_obj->base);
7332         drm_gem_object_unreference(&obj->base);
7333         mutex_unlock(&dev->struct_mutex);
7334
7335 cleanup:
7336         spin_lock_irqsave(&dev->event_lock, flags);
7337         intel_crtc->unpin_work = NULL;
7338         spin_unlock_irqrestore(&dev->event_lock, flags);
7339
7340         drm_vblank_put(dev, intel_crtc->pipe);
7341 free_work:
7342         kfree(work);
7343
7344         return ret;
7345 }
7346
7347 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7348         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7349         .load_lut = intel_crtc_load_lut,
7350         .disable = intel_crtc_noop,
7351 };
7352
7353 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7354 {
7355         struct intel_encoder *other_encoder;
7356         struct drm_crtc *crtc = &encoder->new_crtc->base;
7357
7358         if (WARN_ON(!crtc))
7359                 return false;
7360
7361         list_for_each_entry(other_encoder,
7362                             &crtc->dev->mode_config.encoder_list,
7363                             base.head) {
7364
7365                 if (&other_encoder->new_crtc->base != crtc ||
7366                     encoder == other_encoder)
7367                         continue;
7368                 else
7369                         return true;
7370         }
7371
7372         return false;
7373 }
7374
7375 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7376                                   struct drm_crtc *crtc)
7377 {
7378         struct drm_device *dev;
7379         struct drm_crtc *tmp;
7380         int crtc_mask = 1;
7381
7382         WARN(!crtc, "checking null crtc?\n");
7383
7384         dev = crtc->dev;
7385
7386         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7387                 if (tmp == crtc)
7388                         break;
7389                 crtc_mask <<= 1;
7390         }
7391
7392         if (encoder->possible_crtcs & crtc_mask)
7393                 return true;
7394         return false;
7395 }
7396
7397 /**
7398  * intel_modeset_update_staged_output_state
7399  *
7400  * Updates the staged output configuration state, e.g. after we've read out the
7401  * current hw state.
7402  */
7403 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7404 {
7405         struct intel_encoder *encoder;
7406         struct intel_connector *connector;
7407
7408         list_for_each_entry(connector, &dev->mode_config.connector_list,
7409                             base.head) {
7410                 connector->new_encoder =
7411                         to_intel_encoder(connector->base.encoder);
7412         }
7413
7414         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7415                             base.head) {
7416                 encoder->new_crtc =
7417                         to_intel_crtc(encoder->base.crtc);
7418         }
7419 }
7420
7421 /**
7422  * intel_modeset_commit_output_state
7423  *
7424  * This function copies the stage display pipe configuration to the real one.
7425  */
7426 static void intel_modeset_commit_output_state(struct drm_device *dev)
7427 {
7428         struct intel_encoder *encoder;
7429         struct intel_connector *connector;
7430
7431         list_for_each_entry(connector, &dev->mode_config.connector_list,
7432                             base.head) {
7433                 connector->base.encoder = &connector->new_encoder->base;
7434         }
7435
7436         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7437                             base.head) {
7438                 encoder->base.crtc = &encoder->new_crtc->base;
7439         }
7440 }
7441
7442 static struct drm_display_mode *
7443 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7444                             struct drm_display_mode *mode)
7445 {
7446         struct drm_device *dev = crtc->dev;
7447         struct drm_display_mode *adjusted_mode;
7448         struct drm_encoder_helper_funcs *encoder_funcs;
7449         struct intel_encoder *encoder;
7450
7451         adjusted_mode = drm_mode_duplicate(dev, mode);
7452         if (!adjusted_mode)
7453                 return ERR_PTR(-ENOMEM);
7454
7455         /* Pass our mode to the connectors and the CRTC to give them a chance to
7456          * adjust it according to limitations or connector properties, and also
7457          * a chance to reject the mode entirely.
7458          */
7459         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7460                             base.head) {
7461
7462                 if (&encoder->new_crtc->base != crtc)
7463                         continue;
7464                 encoder_funcs = encoder->base.helper_private;
7465                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7466                                                 adjusted_mode))) {
7467                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7468                         goto fail;
7469                 }
7470         }
7471
7472         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7473                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7474                 goto fail;
7475         }
7476         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7477
7478         return adjusted_mode;
7479 fail:
7480         drm_mode_destroy(dev, adjusted_mode);
7481         return ERR_PTR(-EINVAL);
7482 }
7483
7484 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7485  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7486 static void
7487 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7488                              unsigned *prepare_pipes, unsigned *disable_pipes)
7489 {
7490         struct intel_crtc *intel_crtc;
7491         struct drm_device *dev = crtc->dev;
7492         struct intel_encoder *encoder;
7493         struct intel_connector *connector;
7494         struct drm_crtc *tmp_crtc;
7495
7496         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7497
7498         /* Check which crtcs have changed outputs connected to them, these need
7499          * to be part of the prepare_pipes mask. We don't (yet) support global
7500          * modeset across multiple crtcs, so modeset_pipes will only have one
7501          * bit set at most. */
7502         list_for_each_entry(connector, &dev->mode_config.connector_list,
7503                             base.head) {
7504                 if (connector->base.encoder == &connector->new_encoder->base)
7505                         continue;
7506
7507                 if (connector->base.encoder) {
7508                         tmp_crtc = connector->base.encoder->crtc;
7509
7510                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7511                 }
7512
7513                 if (connector->new_encoder)
7514                         *prepare_pipes |=
7515                                 1 << connector->new_encoder->new_crtc->pipe;
7516         }
7517
7518         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7519                             base.head) {
7520                 if (encoder->base.crtc == &encoder->new_crtc->base)
7521                         continue;
7522
7523                 if (encoder->base.crtc) {
7524                         tmp_crtc = encoder->base.crtc;
7525
7526                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7527                 }
7528
7529                 if (encoder->new_crtc)
7530                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7531         }
7532
7533         /* Check for any pipes that will be fully disabled ... */
7534         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7535                             base.head) {
7536                 bool used = false;
7537
7538                 /* Don't try to disable disabled crtcs. */
7539                 if (!intel_crtc->base.enabled)
7540                         continue;
7541
7542                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7543                                     base.head) {
7544                         if (encoder->new_crtc == intel_crtc)
7545                                 used = true;
7546                 }
7547
7548                 if (!used)
7549                         *disable_pipes |= 1 << intel_crtc->pipe;
7550         }
7551
7552
7553         /* set_mode is also used to update properties on life display pipes. */
7554         intel_crtc = to_intel_crtc(crtc);
7555         if (crtc->enabled)
7556                 *prepare_pipes |= 1 << intel_crtc->pipe;
7557
7558         /* We only support modeset on one single crtc, hence we need to do that
7559          * only for the passed in crtc iff we change anything else than just
7560          * disable crtcs.
7561          *
7562          * This is actually not true, to be fully compatible with the old crtc
7563          * helper we automatically disable _any_ output (i.e. doesn't need to be
7564          * connected to the crtc we're modesetting on) if it's disconnected.
7565          * Which is a rather nutty api (since changed the output configuration
7566          * without userspace's explicit request can lead to confusion), but
7567          * alas. Hence we currently need to modeset on all pipes we prepare. */
7568         if (*prepare_pipes)
7569                 *modeset_pipes = *prepare_pipes;
7570
7571         /* ... and mask these out. */
7572         *modeset_pipes &= ~(*disable_pipes);
7573         *prepare_pipes &= ~(*disable_pipes);
7574 }
7575
7576 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7577 {
7578         struct drm_encoder *encoder;
7579         struct drm_device *dev = crtc->dev;
7580
7581         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7582                 if (encoder->crtc == crtc)
7583                         return true;
7584
7585         return false;
7586 }
7587
7588 static void
7589 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7590 {
7591         struct intel_encoder *intel_encoder;
7592         struct intel_crtc *intel_crtc;
7593         struct drm_connector *connector;
7594
7595         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7596                             base.head) {
7597                 if (!intel_encoder->base.crtc)
7598                         continue;
7599
7600                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7601
7602                 if (prepare_pipes & (1 << intel_crtc->pipe))
7603                         intel_encoder->connectors_active = false;
7604         }
7605
7606         intel_modeset_commit_output_state(dev);
7607
7608         /* Update computed state. */
7609         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7610                             base.head) {
7611                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7612         }
7613
7614         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7615                 if (!connector->encoder || !connector->encoder->crtc)
7616                         continue;
7617
7618                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7619
7620                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7621                         struct drm_property *dpms_property =
7622                                 dev->mode_config.dpms_property;
7623
7624                         connector->dpms = DRM_MODE_DPMS_ON;
7625                         drm_connector_property_set_value(connector,
7626                                                          dpms_property,
7627                                                          DRM_MODE_DPMS_ON);
7628
7629                         intel_encoder = to_intel_encoder(connector->encoder);
7630                         intel_encoder->connectors_active = true;
7631                 }
7632         }
7633
7634 }
7635
7636 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7637         list_for_each_entry((intel_crtc), \
7638                             &(dev)->mode_config.crtc_list, \
7639                             base.head) \
7640                 if (mask & (1 <<(intel_crtc)->pipe)) \
7641
7642 void
7643 intel_modeset_check_state(struct drm_device *dev)
7644 {
7645         struct intel_crtc *crtc;
7646         struct intel_encoder *encoder;
7647         struct intel_connector *connector;
7648
7649         list_for_each_entry(connector, &dev->mode_config.connector_list,
7650                             base.head) {
7651                 /* This also checks the encoder/connector hw state with the
7652                  * ->get_hw_state callbacks. */
7653                 intel_connector_check_state(connector);
7654
7655                 WARN(&connector->new_encoder->base != connector->base.encoder,
7656                      "connector's staged encoder doesn't match current encoder\n");
7657         }
7658
7659         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7660                             base.head) {
7661                 bool enabled = false;
7662                 bool active = false;
7663                 enum pipe pipe, tracked_pipe;
7664
7665                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7666                               encoder->base.base.id,
7667                               drm_get_encoder_name(&encoder->base));
7668
7669                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7670                      "encoder's stage crtc doesn't match current crtc\n");
7671                 WARN(encoder->connectors_active && !encoder->base.crtc,
7672                      "encoder's active_connectors set, but no crtc\n");
7673
7674                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7675                                     base.head) {
7676                         if (connector->base.encoder != &encoder->base)
7677                                 continue;
7678                         enabled = true;
7679                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7680                                 active = true;
7681                 }
7682                 WARN(!!encoder->base.crtc != enabled,
7683                      "encoder's enabled state mismatch "
7684                      "(expected %i, found %i)\n",
7685                      !!encoder->base.crtc, enabled);
7686                 WARN(active && !encoder->base.crtc,
7687                      "active encoder with no crtc\n");
7688
7689                 WARN(encoder->connectors_active != active,
7690                      "encoder's computed active state doesn't match tracked active state "
7691                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7692
7693                 active = encoder->get_hw_state(encoder, &pipe);
7694                 WARN(active != encoder->connectors_active,
7695                      "encoder's hw state doesn't match sw tracking "
7696                      "(expected %i, found %i)\n",
7697                      encoder->connectors_active, active);
7698
7699                 if (!encoder->base.crtc)
7700                         continue;
7701
7702                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7703                 WARN(active && pipe != tracked_pipe,
7704                      "active encoder's pipe doesn't match"
7705                      "(expected %i, found %i)\n",
7706                      tracked_pipe, pipe);
7707
7708         }
7709
7710         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7711                             base.head) {
7712                 bool enabled = false;
7713                 bool active = false;
7714
7715                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7716                               crtc->base.base.id);
7717
7718                 WARN(crtc->active && !crtc->base.enabled,
7719                      "active crtc, but not enabled in sw tracking\n");
7720
7721                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7722                                     base.head) {
7723                         if (encoder->base.crtc != &crtc->base)
7724                                 continue;
7725                         enabled = true;
7726                         if (encoder->connectors_active)
7727                                 active = true;
7728                 }
7729                 WARN(active != crtc->active,
7730                      "crtc's computed active state doesn't match tracked active state "
7731                      "(expected %i, found %i)\n", active, crtc->active);
7732                 WARN(enabled != crtc->base.enabled,
7733                      "crtc's computed enabled state doesn't match tracked enabled state "
7734                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7735
7736                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7737         }
7738 }
7739
7740 bool intel_set_mode(struct drm_crtc *crtc,
7741                     struct drm_display_mode *mode,
7742                     int x, int y, struct drm_framebuffer *fb)
7743 {
7744         struct drm_device *dev = crtc->dev;
7745         drm_i915_private_t *dev_priv = dev->dev_private;
7746         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7747         struct intel_crtc *intel_crtc;
7748         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7749         bool ret = true;
7750
7751         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7752                                      &prepare_pipes, &disable_pipes);
7753
7754         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7755                       modeset_pipes, prepare_pipes, disable_pipes);
7756
7757         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7758                 intel_crtc_disable(&intel_crtc->base);
7759
7760         saved_hwmode = crtc->hwmode;
7761         saved_mode = crtc->mode;
7762
7763         /* Hack: Because we don't (yet) support global modeset on multiple
7764          * crtcs, we don't keep track of the new mode for more than one crtc.
7765          * Hence simply check whether any bit is set in modeset_pipes in all the
7766          * pieces of code that are not yet converted to deal with mutliple crtcs
7767          * changing their mode at the same time. */
7768         adjusted_mode = NULL;
7769         if (modeset_pipes) {
7770                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7771                 if (IS_ERR(adjusted_mode)) {
7772                         return false;
7773                 }
7774         }
7775
7776         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7777                 if (intel_crtc->base.enabled)
7778                         dev_priv->display.crtc_disable(&intel_crtc->base);
7779         }
7780
7781         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7782          * to set it here already despite that we pass it down the callchain.
7783          */
7784         if (modeset_pipes)
7785                 crtc->mode = *mode;
7786
7787         /* Only after disabling all output pipelines that will be changed can we
7788          * update the the output configuration. */
7789         intel_modeset_update_state(dev, prepare_pipes);
7790
7791         if (dev_priv->display.modeset_global_resources)
7792                 dev_priv->display.modeset_global_resources(dev);
7793
7794         /* Set up the DPLL and any encoders state that needs to adjust or depend
7795          * on the DPLL.
7796          */
7797         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7798                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7799                                            mode, adjusted_mode,
7800                                            x, y, fb);
7801                 if (!ret)
7802                     goto done;
7803         }
7804
7805         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7806         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7807                 dev_priv->display.crtc_enable(&intel_crtc->base);
7808
7809         if (modeset_pipes) {
7810                 /* Store real post-adjustment hardware mode. */
7811                 crtc->hwmode = *adjusted_mode;
7812
7813                 /* Calculate and store various constants which
7814                  * are later needed by vblank and swap-completion
7815                  * timestamping. They are derived from true hwmode.
7816                  */
7817                 drm_calc_timestamping_constants(crtc);
7818         }
7819
7820         /* FIXME: add subpixel order */
7821 done:
7822         drm_mode_destroy(dev, adjusted_mode);
7823         if (!ret && crtc->enabled) {
7824                 crtc->hwmode = saved_hwmode;
7825                 crtc->mode = saved_mode;
7826         } else {
7827                 intel_modeset_check_state(dev);
7828         }
7829
7830         return ret;
7831 }
7832
7833 #undef for_each_intel_crtc_masked
7834
7835 static void intel_set_config_free(struct intel_set_config *config)
7836 {
7837         if (!config)
7838                 return;
7839
7840         kfree(config->save_connector_encoders);
7841         kfree(config->save_encoder_crtcs);
7842         kfree(config);
7843 }
7844
7845 static int intel_set_config_save_state(struct drm_device *dev,
7846                                        struct intel_set_config *config)
7847 {
7848         struct drm_encoder *encoder;
7849         struct drm_connector *connector;
7850         int count;
7851
7852         config->save_encoder_crtcs =
7853                 kcalloc(dev->mode_config.num_encoder,
7854                         sizeof(struct drm_crtc *), GFP_KERNEL);
7855         if (!config->save_encoder_crtcs)
7856                 return -ENOMEM;
7857
7858         config->save_connector_encoders =
7859                 kcalloc(dev->mode_config.num_connector,
7860                         sizeof(struct drm_encoder *), GFP_KERNEL);
7861         if (!config->save_connector_encoders)
7862                 return -ENOMEM;
7863
7864         /* Copy data. Note that driver private data is not affected.
7865          * Should anything bad happen only the expected state is
7866          * restored, not the drivers personal bookkeeping.
7867          */
7868         count = 0;
7869         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7870                 config->save_encoder_crtcs[count++] = encoder->crtc;
7871         }
7872
7873         count = 0;
7874         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7875                 config->save_connector_encoders[count++] = connector->encoder;
7876         }
7877
7878         return 0;
7879 }
7880
7881 static void intel_set_config_restore_state(struct drm_device *dev,
7882                                            struct intel_set_config *config)
7883 {
7884         struct intel_encoder *encoder;
7885         struct intel_connector *connector;
7886         int count;
7887
7888         count = 0;
7889         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7890                 encoder->new_crtc =
7891                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7892         }
7893
7894         count = 0;
7895         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7896                 connector->new_encoder =
7897                         to_intel_encoder(config->save_connector_encoders[count++]);
7898         }
7899 }
7900
7901 static void
7902 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7903                                       struct intel_set_config *config)
7904 {
7905
7906         /* We should be able to check here if the fb has the same properties
7907          * and then just flip_or_move it */
7908         if (set->crtc->fb != set->fb) {
7909                 /* If we have no fb then treat it as a full mode set */
7910                 if (set->crtc->fb == NULL) {
7911                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7912                         config->mode_changed = true;
7913                 } else if (set->fb == NULL) {
7914                         config->mode_changed = true;
7915                 } else if (set->fb->depth != set->crtc->fb->depth) {
7916                         config->mode_changed = true;
7917                 } else if (set->fb->bits_per_pixel !=
7918                            set->crtc->fb->bits_per_pixel) {
7919                         config->mode_changed = true;
7920                 } else
7921                         config->fb_changed = true;
7922         }
7923
7924         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7925                 config->fb_changed = true;
7926
7927         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7928                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7929                 drm_mode_debug_printmodeline(&set->crtc->mode);
7930                 drm_mode_debug_printmodeline(set->mode);
7931                 config->mode_changed = true;
7932         }
7933 }
7934
7935 static int
7936 intel_modeset_stage_output_state(struct drm_device *dev,
7937                                  struct drm_mode_set *set,
7938                                  struct intel_set_config *config)
7939 {
7940         struct drm_crtc *new_crtc;
7941         struct intel_connector *connector;
7942         struct intel_encoder *encoder;
7943         int count, ro;
7944
7945         /* The upper layers ensure that we either disabl a crtc or have a list
7946          * of connectors. For paranoia, double-check this. */
7947         WARN_ON(!set->fb && (set->num_connectors != 0));
7948         WARN_ON(set->fb && (set->num_connectors == 0));
7949
7950         count = 0;
7951         list_for_each_entry(connector, &dev->mode_config.connector_list,
7952                             base.head) {
7953                 /* Otherwise traverse passed in connector list and get encoders
7954                  * for them. */
7955                 for (ro = 0; ro < set->num_connectors; ro++) {
7956                         if (set->connectors[ro] == &connector->base) {
7957                                 connector->new_encoder = connector->encoder;
7958                                 break;
7959                         }
7960                 }
7961
7962                 /* If we disable the crtc, disable all its connectors. Also, if
7963                  * the connector is on the changing crtc but not on the new
7964                  * connector list, disable it. */
7965                 if ((!set->fb || ro == set->num_connectors) &&
7966                     connector->base.encoder &&
7967                     connector->base.encoder->crtc == set->crtc) {
7968                         connector->new_encoder = NULL;
7969
7970                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7971                                 connector->base.base.id,
7972                                 drm_get_connector_name(&connector->base));
7973                 }
7974
7975
7976                 if (&connector->new_encoder->base != connector->base.encoder) {
7977                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7978                         config->mode_changed = true;
7979                 }
7980
7981                 /* Disable all disconnected encoders. */
7982                 if (connector->base.status == connector_status_disconnected)
7983                         connector->new_encoder = NULL;
7984         }
7985         /* connector->new_encoder is now updated for all connectors. */
7986
7987         /* Update crtc of enabled connectors. */
7988         count = 0;
7989         list_for_each_entry(connector, &dev->mode_config.connector_list,
7990                             base.head) {
7991                 if (!connector->new_encoder)
7992                         continue;
7993
7994                 new_crtc = connector->new_encoder->base.crtc;
7995
7996                 for (ro = 0; ro < set->num_connectors; ro++) {
7997                         if (set->connectors[ro] == &connector->base)
7998                                 new_crtc = set->crtc;
7999                 }
8000
8001                 /* Make sure the new CRTC will work with the encoder */
8002                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8003                                            new_crtc)) {
8004                         return -EINVAL;
8005                 }
8006                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8007
8008                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8009                         connector->base.base.id,
8010                         drm_get_connector_name(&connector->base),
8011                         new_crtc->base.id);
8012         }
8013
8014         /* Check for any encoders that needs to be disabled. */
8015         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8016                             base.head) {
8017                 list_for_each_entry(connector,
8018                                     &dev->mode_config.connector_list,
8019                                     base.head) {
8020                         if (connector->new_encoder == encoder) {
8021                                 WARN_ON(!connector->new_encoder->new_crtc);
8022
8023                                 goto next_encoder;
8024                         }
8025                 }
8026                 encoder->new_crtc = NULL;
8027 next_encoder:
8028                 /* Only now check for crtc changes so we don't miss encoders
8029                  * that will be disabled. */
8030                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8031                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8032                         config->mode_changed = true;
8033                 }
8034         }
8035         /* Now we've also updated encoder->new_crtc for all encoders. */
8036
8037         return 0;
8038 }
8039
8040 static int intel_crtc_set_config(struct drm_mode_set *set)
8041 {
8042         struct drm_device *dev;
8043         struct drm_mode_set save_set;
8044         struct intel_set_config *config;
8045         int ret;
8046
8047         BUG_ON(!set);
8048         BUG_ON(!set->crtc);
8049         BUG_ON(!set->crtc->helper_private);
8050
8051         if (!set->mode)
8052                 set->fb = NULL;
8053
8054         /* The fb helper likes to play gross jokes with ->mode_set_config.
8055          * Unfortunately the crtc helper doesn't do much at all for this case,
8056          * so we have to cope with this madness until the fb helper is fixed up. */
8057         if (set->fb && set->num_connectors == 0)
8058                 return 0;
8059
8060         if (set->fb) {
8061                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8062                                 set->crtc->base.id, set->fb->base.id,
8063                                 (int)set->num_connectors, set->x, set->y);
8064         } else {
8065                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8066         }
8067
8068         dev = set->crtc->dev;
8069
8070         ret = -ENOMEM;
8071         config = kzalloc(sizeof(*config), GFP_KERNEL);
8072         if (!config)
8073                 goto out_config;
8074
8075         ret = intel_set_config_save_state(dev, config);
8076         if (ret)
8077                 goto out_config;
8078
8079         save_set.crtc = set->crtc;
8080         save_set.mode = &set->crtc->mode;
8081         save_set.x = set->crtc->x;
8082         save_set.y = set->crtc->y;
8083         save_set.fb = set->crtc->fb;
8084
8085         /* Compute whether we need a full modeset, only an fb base update or no
8086          * change at all. In the future we might also check whether only the
8087          * mode changed, e.g. for LVDS where we only change the panel fitter in
8088          * such cases. */
8089         intel_set_config_compute_mode_changes(set, config);
8090
8091         ret = intel_modeset_stage_output_state(dev, set, config);
8092         if (ret)
8093                 goto fail;
8094
8095         if (config->mode_changed) {
8096                 if (set->mode) {
8097                         DRM_DEBUG_KMS("attempting to set mode from"
8098                                         " userspace\n");
8099                         drm_mode_debug_printmodeline(set->mode);
8100                 }
8101
8102                 if (!intel_set_mode(set->crtc, set->mode,
8103                                     set->x, set->y, set->fb)) {
8104                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8105                                   set->crtc->base.id);
8106                         ret = -EINVAL;
8107                         goto fail;
8108                 }
8109         } else if (config->fb_changed) {
8110                 ret = intel_pipe_set_base(set->crtc,
8111                                           set->x, set->y, set->fb);
8112         }
8113
8114         intel_set_config_free(config);
8115
8116         return 0;
8117
8118 fail:
8119         intel_set_config_restore_state(dev, config);
8120
8121         /* Try to restore the config */
8122         if (config->mode_changed &&
8123             !intel_set_mode(save_set.crtc, save_set.mode,
8124                             save_set.x, save_set.y, save_set.fb))
8125                 DRM_ERROR("failed to restore config after modeset failure\n");
8126
8127 out_config:
8128         intel_set_config_free(config);
8129         return ret;
8130 }
8131
8132 static const struct drm_crtc_funcs intel_crtc_funcs = {
8133         .cursor_set = intel_crtc_cursor_set,
8134         .cursor_move = intel_crtc_cursor_move,
8135         .gamma_set = intel_crtc_gamma_set,
8136         .set_config = intel_crtc_set_config,
8137         .destroy = intel_crtc_destroy,
8138         .page_flip = intel_crtc_page_flip,
8139 };
8140
8141 static void intel_cpu_pll_init(struct drm_device *dev)
8142 {
8143         if (IS_HASWELL(dev))
8144                 intel_ddi_pll_init(dev);
8145 }
8146
8147 static void intel_pch_pll_init(struct drm_device *dev)
8148 {
8149         drm_i915_private_t *dev_priv = dev->dev_private;
8150         int i;
8151
8152         if (dev_priv->num_pch_pll == 0) {
8153                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8154                 return;
8155         }
8156
8157         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8158                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8159                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8160                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8161         }
8162 }
8163
8164 static void intel_crtc_init(struct drm_device *dev, int pipe)
8165 {
8166         drm_i915_private_t *dev_priv = dev->dev_private;
8167         struct intel_crtc *intel_crtc;
8168         int i;
8169
8170         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8171         if (intel_crtc == NULL)
8172                 return;
8173
8174         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8175
8176         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8177         for (i = 0; i < 256; i++) {
8178                 intel_crtc->lut_r[i] = i;
8179                 intel_crtc->lut_g[i] = i;
8180                 intel_crtc->lut_b[i] = i;
8181         }
8182
8183         /* Swap pipes & planes for FBC on pre-965 */
8184         intel_crtc->pipe = pipe;
8185         intel_crtc->plane = pipe;
8186         intel_crtc->cpu_transcoder = pipe;
8187         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8188                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8189                 intel_crtc->plane = !pipe;
8190         }
8191
8192         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8193                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8194         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8195         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8196
8197         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8198
8199         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8200 }
8201
8202 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8203                                 struct drm_file *file)
8204 {
8205         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8206         struct drm_mode_object *drmmode_obj;
8207         struct intel_crtc *crtc;
8208
8209         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8210                 return -ENODEV;
8211
8212         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8213                         DRM_MODE_OBJECT_CRTC);
8214
8215         if (!drmmode_obj) {
8216                 DRM_ERROR("no such CRTC id\n");
8217                 return -EINVAL;
8218         }
8219
8220         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8221         pipe_from_crtc_id->pipe = crtc->pipe;
8222
8223         return 0;
8224 }
8225
8226 static int intel_encoder_clones(struct intel_encoder *encoder)
8227 {
8228         struct drm_device *dev = encoder->base.dev;
8229         struct intel_encoder *source_encoder;
8230         int index_mask = 0;
8231         int entry = 0;
8232
8233         list_for_each_entry(source_encoder,
8234                             &dev->mode_config.encoder_list, base.head) {
8235
8236                 if (encoder == source_encoder)
8237                         index_mask |= (1 << entry);
8238
8239                 /* Intel hw has only one MUX where enocoders could be cloned. */
8240                 if (encoder->cloneable && source_encoder->cloneable)
8241                         index_mask |= (1 << entry);
8242
8243                 entry++;
8244         }
8245
8246         return index_mask;
8247 }
8248
8249 static bool has_edp_a(struct drm_device *dev)
8250 {
8251         struct drm_i915_private *dev_priv = dev->dev_private;
8252
8253         if (!IS_MOBILE(dev))
8254                 return false;
8255
8256         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8257                 return false;
8258
8259         if (IS_GEN5(dev) &&
8260             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8261                 return false;
8262
8263         return true;
8264 }
8265
8266 static void intel_setup_outputs(struct drm_device *dev)
8267 {
8268         struct drm_i915_private *dev_priv = dev->dev_private;
8269         struct intel_encoder *encoder;
8270         bool dpd_is_edp = false;
8271         bool has_lvds;
8272
8273         has_lvds = intel_lvds_init(dev);
8274         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8275                 /* disable the panel fitter on everything but LVDS */
8276                 I915_WRITE(PFIT_CONTROL, 0);
8277         }
8278
8279         if (HAS_PCH_SPLIT(dev)) {
8280                 dpd_is_edp = intel_dpd_is_edp(dev);
8281
8282                 if (has_edp_a(dev))
8283                         intel_dp_init(dev, DP_A, PORT_A);
8284
8285                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8286                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8287         }
8288
8289         intel_crt_init(dev);
8290
8291         if (IS_HASWELL(dev)) {
8292                 int found;
8293
8294                 /* Haswell uses DDI functions to detect digital outputs */
8295                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8296                 /* DDI A only supports eDP */
8297                 if (found)
8298                         intel_ddi_init(dev, PORT_A);
8299
8300                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8301                  * register */
8302                 found = I915_READ(SFUSE_STRAP);
8303
8304                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8305                         intel_ddi_init(dev, PORT_B);
8306                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8307                         intel_ddi_init(dev, PORT_C);
8308                 if (found & SFUSE_STRAP_DDID_DETECTED)
8309                         intel_ddi_init(dev, PORT_D);
8310         } else if (HAS_PCH_SPLIT(dev)) {
8311                 int found;
8312
8313                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8314                         /* PCH SDVOB multiplex with HDMIB */
8315                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8316                         if (!found)
8317                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8318                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8319                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8320                 }
8321
8322                 if (I915_READ(HDMIC) & PORT_DETECTED)
8323                         intel_hdmi_init(dev, HDMIC, PORT_C);
8324
8325                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8326                         intel_hdmi_init(dev, HDMID, PORT_D);
8327
8328                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8329                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8330
8331                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8332                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8333         } else if (IS_VALLEYVIEW(dev)) {
8334                 int found;
8335
8336                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8337                 if (I915_READ(DP_C) & DP_DETECTED)
8338                         intel_dp_init(dev, DP_C, PORT_C);
8339
8340                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8341                         /* SDVOB multiplex with HDMIB */
8342                         found = intel_sdvo_init(dev, SDVOB, true);
8343                         if (!found)
8344                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8345                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8346                                 intel_dp_init(dev, DP_B, PORT_B);
8347                 }
8348
8349                 if (I915_READ(SDVOC) & PORT_DETECTED)
8350                         intel_hdmi_init(dev, SDVOC, PORT_C);
8351
8352         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8353                 bool found = false;
8354
8355                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8356                         DRM_DEBUG_KMS("probing SDVOB\n");
8357                         found = intel_sdvo_init(dev, SDVOB, true);
8358                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8359                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8360                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8361                         }
8362
8363                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8364                                 DRM_DEBUG_KMS("probing DP_B\n");
8365                                 intel_dp_init(dev, DP_B, PORT_B);
8366                         }
8367                 }
8368
8369                 /* Before G4X SDVOC doesn't have its own detect register */
8370
8371                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8372                         DRM_DEBUG_KMS("probing SDVOC\n");
8373                         found = intel_sdvo_init(dev, SDVOC, false);
8374                 }
8375
8376                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8377
8378                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8379                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8380                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8381                         }
8382                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8383                                 DRM_DEBUG_KMS("probing DP_C\n");
8384                                 intel_dp_init(dev, DP_C, PORT_C);
8385                         }
8386                 }
8387
8388                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8389                     (I915_READ(DP_D) & DP_DETECTED)) {
8390                         DRM_DEBUG_KMS("probing DP_D\n");
8391                         intel_dp_init(dev, DP_D, PORT_D);
8392                 }
8393         } else if (IS_GEN2(dev))
8394                 intel_dvo_init(dev);
8395
8396         if (SUPPORTS_TV(dev))
8397                 intel_tv_init(dev);
8398
8399         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8400                 encoder->base.possible_crtcs = encoder->crtc_mask;
8401                 encoder->base.possible_clones =
8402                         intel_encoder_clones(encoder);
8403         }
8404
8405         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8406                 ironlake_init_pch_refclk(dev);
8407 }
8408
8409 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8410 {
8411         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8412
8413         drm_framebuffer_cleanup(fb);
8414         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8415
8416         kfree(intel_fb);
8417 }
8418
8419 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8420                                                 struct drm_file *file,
8421                                                 unsigned int *handle)
8422 {
8423         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8424         struct drm_i915_gem_object *obj = intel_fb->obj;
8425
8426         return drm_gem_handle_create(file, &obj->base, handle);
8427 }
8428
8429 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8430         .destroy = intel_user_framebuffer_destroy,
8431         .create_handle = intel_user_framebuffer_create_handle,
8432 };
8433
8434 int intel_framebuffer_init(struct drm_device *dev,
8435                            struct intel_framebuffer *intel_fb,
8436                            struct drm_mode_fb_cmd2 *mode_cmd,
8437                            struct drm_i915_gem_object *obj)
8438 {
8439         int ret;
8440
8441         if (obj->tiling_mode == I915_TILING_Y)
8442                 return -EINVAL;
8443
8444         if (mode_cmd->pitches[0] & 63)
8445                 return -EINVAL;
8446
8447         /* FIXME <= Gen4 stride limits are bit unclear */
8448         if (mode_cmd->pitches[0] > 32768)
8449                 return -EINVAL;
8450
8451         if (obj->tiling_mode != I915_TILING_NONE &&
8452             mode_cmd->pitches[0] != obj->stride)
8453                 return -EINVAL;
8454
8455         /* Reject formats not supported by any plane early. */
8456         switch (mode_cmd->pixel_format) {
8457         case DRM_FORMAT_C8:
8458         case DRM_FORMAT_RGB565:
8459         case DRM_FORMAT_XRGB8888:
8460         case DRM_FORMAT_ARGB8888:
8461                 break;
8462         case DRM_FORMAT_XRGB1555:
8463         case DRM_FORMAT_ARGB1555:
8464                 if (INTEL_INFO(dev)->gen > 3)
8465                         return -EINVAL;
8466                 break;
8467         case DRM_FORMAT_XBGR8888:
8468         case DRM_FORMAT_ABGR8888:
8469         case DRM_FORMAT_XRGB2101010:
8470         case DRM_FORMAT_ARGB2101010:
8471         case DRM_FORMAT_XBGR2101010:
8472         case DRM_FORMAT_ABGR2101010:
8473                 if (INTEL_INFO(dev)->gen < 4)
8474                         return -EINVAL;
8475                 break;
8476         case DRM_FORMAT_YUYV:
8477         case DRM_FORMAT_UYVY:
8478         case DRM_FORMAT_YVYU:
8479         case DRM_FORMAT_VYUY:
8480                 if (INTEL_INFO(dev)->gen < 6)
8481                         return -EINVAL;
8482                 break;
8483         default:
8484                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8485                 return -EINVAL;
8486         }
8487
8488         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8489         if (mode_cmd->offsets[0] != 0)
8490                 return -EINVAL;
8491
8492         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8493         if (ret) {
8494                 DRM_ERROR("framebuffer init failed %d\n", ret);
8495                 return ret;
8496         }
8497
8498         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8499         intel_fb->obj = obj;
8500         return 0;
8501 }
8502
8503 static struct drm_framebuffer *
8504 intel_user_framebuffer_create(struct drm_device *dev,
8505                               struct drm_file *filp,
8506                               struct drm_mode_fb_cmd2 *mode_cmd)
8507 {
8508         struct drm_i915_gem_object *obj;
8509
8510         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8511                                                 mode_cmd->handles[0]));
8512         if (&obj->base == NULL)
8513                 return ERR_PTR(-ENOENT);
8514
8515         return intel_framebuffer_create(dev, mode_cmd, obj);
8516 }
8517
8518 static const struct drm_mode_config_funcs intel_mode_funcs = {
8519         .fb_create = intel_user_framebuffer_create,
8520         .output_poll_changed = intel_fb_output_poll_changed,
8521 };
8522
8523 /* Set up chip specific display functions */
8524 static void intel_init_display(struct drm_device *dev)
8525 {
8526         struct drm_i915_private *dev_priv = dev->dev_private;
8527
8528         /* We always want a DPMS function */
8529         if (IS_HASWELL(dev)) {
8530                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8531                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8532                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8533                 dev_priv->display.off = haswell_crtc_off;
8534                 dev_priv->display.update_plane = ironlake_update_plane;
8535         } else if (HAS_PCH_SPLIT(dev)) {
8536                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8537                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8538                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8539                 dev_priv->display.off = ironlake_crtc_off;
8540                 dev_priv->display.update_plane = ironlake_update_plane;
8541         } else {
8542                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8543                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8544                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8545                 dev_priv->display.off = i9xx_crtc_off;
8546                 dev_priv->display.update_plane = i9xx_update_plane;
8547         }
8548
8549         /* Returns the core display clock speed */
8550         if (IS_VALLEYVIEW(dev))
8551                 dev_priv->display.get_display_clock_speed =
8552                         valleyview_get_display_clock_speed;
8553         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8554                 dev_priv->display.get_display_clock_speed =
8555                         i945_get_display_clock_speed;
8556         else if (IS_I915G(dev))
8557                 dev_priv->display.get_display_clock_speed =
8558                         i915_get_display_clock_speed;
8559         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8560                 dev_priv->display.get_display_clock_speed =
8561                         i9xx_misc_get_display_clock_speed;
8562         else if (IS_I915GM(dev))
8563                 dev_priv->display.get_display_clock_speed =
8564                         i915gm_get_display_clock_speed;
8565         else if (IS_I865G(dev))
8566                 dev_priv->display.get_display_clock_speed =
8567                         i865_get_display_clock_speed;
8568         else if (IS_I85X(dev))
8569                 dev_priv->display.get_display_clock_speed =
8570                         i855_get_display_clock_speed;
8571         else /* 852, 830 */
8572                 dev_priv->display.get_display_clock_speed =
8573                         i830_get_display_clock_speed;
8574
8575         if (HAS_PCH_SPLIT(dev)) {
8576                 if (IS_GEN5(dev)) {
8577                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8578                         dev_priv->display.write_eld = ironlake_write_eld;
8579                 } else if (IS_GEN6(dev)) {
8580                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8581                         dev_priv->display.write_eld = ironlake_write_eld;
8582                 } else if (IS_IVYBRIDGE(dev)) {
8583                         /* FIXME: detect B0+ stepping and use auto training */
8584                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8585                         dev_priv->display.write_eld = ironlake_write_eld;
8586                         dev_priv->display.modeset_global_resources =
8587                                 ivb_modeset_global_resources;
8588                 } else if (IS_HASWELL(dev)) {
8589                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8590                         dev_priv->display.write_eld = haswell_write_eld;
8591                 } else
8592                         dev_priv->display.update_wm = NULL;
8593         } else if (IS_G4X(dev)) {
8594                 dev_priv->display.write_eld = g4x_write_eld;
8595         }
8596
8597         /* Default just returns -ENODEV to indicate unsupported */
8598         dev_priv->display.queue_flip = intel_default_queue_flip;
8599
8600         switch (INTEL_INFO(dev)->gen) {
8601         case 2:
8602                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8603                 break;
8604
8605         case 3:
8606                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8607                 break;
8608
8609         case 4:
8610         case 5:
8611                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8612                 break;
8613
8614         case 6:
8615                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8616                 break;
8617         case 7:
8618                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8619                 break;
8620         }
8621 }
8622
8623 /*
8624  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8625  * resume, or other times.  This quirk makes sure that's the case for
8626  * affected systems.
8627  */
8628 static void quirk_pipea_force(struct drm_device *dev)
8629 {
8630         struct drm_i915_private *dev_priv = dev->dev_private;
8631
8632         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8633         DRM_INFO("applying pipe a force quirk\n");
8634 }
8635
8636 /*
8637  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8638  */
8639 static void quirk_ssc_force_disable(struct drm_device *dev)
8640 {
8641         struct drm_i915_private *dev_priv = dev->dev_private;
8642         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8643         DRM_INFO("applying lvds SSC disable quirk\n");
8644 }
8645
8646 /*
8647  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8648  * brightness value
8649  */
8650 static void quirk_invert_brightness(struct drm_device *dev)
8651 {
8652         struct drm_i915_private *dev_priv = dev->dev_private;
8653         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8654         DRM_INFO("applying inverted panel brightness quirk\n");
8655 }
8656
8657 struct intel_quirk {
8658         int device;
8659         int subsystem_vendor;
8660         int subsystem_device;
8661         void (*hook)(struct drm_device *dev);
8662 };
8663
8664 static struct intel_quirk intel_quirks[] = {
8665         /* HP Mini needs pipe A force quirk (LP: #322104) */
8666         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8667
8668         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8669         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8670
8671         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8672         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8673
8674         /* 830/845 need to leave pipe A & dpll A up */
8675         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8676         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8677
8678         /* Lenovo U160 cannot use SSC on LVDS */
8679         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8680
8681         /* Sony Vaio Y cannot use SSC on LVDS */
8682         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8683
8684         /* Acer Aspire 5734Z must invert backlight brightness */
8685         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8686 };
8687
8688 static void intel_init_quirks(struct drm_device *dev)
8689 {
8690         struct pci_dev *d = dev->pdev;
8691         int i;
8692
8693         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8694                 struct intel_quirk *q = &intel_quirks[i];
8695
8696                 if (d->device == q->device &&
8697                     (d->subsystem_vendor == q->subsystem_vendor ||
8698                      q->subsystem_vendor == PCI_ANY_ID) &&
8699                     (d->subsystem_device == q->subsystem_device ||
8700                      q->subsystem_device == PCI_ANY_ID))
8701                         q->hook(dev);
8702         }
8703 }
8704
8705 /* Disable the VGA plane that we never use */
8706 static void i915_disable_vga(struct drm_device *dev)
8707 {
8708         struct drm_i915_private *dev_priv = dev->dev_private;
8709         u8 sr1;
8710         u32 vga_reg;
8711
8712         if (HAS_PCH_SPLIT(dev))
8713                 vga_reg = CPU_VGACNTRL;
8714         else
8715                 vga_reg = VGACNTRL;
8716
8717         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8718         outb(SR01, VGA_SR_INDEX);
8719         sr1 = inb(VGA_SR_DATA);
8720         outb(sr1 | 1<<5, VGA_SR_DATA);
8721         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8722         udelay(300);
8723
8724         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8725         POSTING_READ(vga_reg);
8726 }
8727
8728 void intel_modeset_init_hw(struct drm_device *dev)
8729 {
8730         /* We attempt to init the necessary power wells early in the initialization
8731          * time, so the subsystems that expect power to be enabled can work.
8732          */
8733         intel_init_power_wells(dev);
8734
8735         intel_prepare_ddi(dev);
8736
8737         intel_init_clock_gating(dev);
8738
8739         mutex_lock(&dev->struct_mutex);
8740         intel_enable_gt_powersave(dev);
8741         mutex_unlock(&dev->struct_mutex);
8742 }
8743
8744 void intel_modeset_init(struct drm_device *dev)
8745 {
8746         struct drm_i915_private *dev_priv = dev->dev_private;
8747         int i, ret;
8748
8749         drm_mode_config_init(dev);
8750
8751         dev->mode_config.min_width = 0;
8752         dev->mode_config.min_height = 0;
8753
8754         dev->mode_config.preferred_depth = 24;
8755         dev->mode_config.prefer_shadow = 1;
8756
8757         dev->mode_config.funcs = &intel_mode_funcs;
8758
8759         intel_init_quirks(dev);
8760
8761         intel_init_pm(dev);
8762
8763         intel_init_display(dev);
8764
8765         if (IS_GEN2(dev)) {
8766                 dev->mode_config.max_width = 2048;
8767                 dev->mode_config.max_height = 2048;
8768         } else if (IS_GEN3(dev)) {
8769                 dev->mode_config.max_width = 4096;
8770                 dev->mode_config.max_height = 4096;
8771         } else {
8772                 dev->mode_config.max_width = 8192;
8773                 dev->mode_config.max_height = 8192;
8774         }
8775         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8776
8777         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8778                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8779
8780         for (i = 0; i < dev_priv->num_pipe; i++) {
8781                 intel_crtc_init(dev, i);
8782                 ret = intel_plane_init(dev, i);
8783                 if (ret)
8784                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8785         }
8786
8787         intel_cpu_pll_init(dev);
8788         intel_pch_pll_init(dev);
8789
8790         /* Just disable it once at startup */
8791         i915_disable_vga(dev);
8792         intel_setup_outputs(dev);
8793 }
8794
8795 static void
8796 intel_connector_break_all_links(struct intel_connector *connector)
8797 {
8798         connector->base.dpms = DRM_MODE_DPMS_OFF;
8799         connector->base.encoder = NULL;
8800         connector->encoder->connectors_active = false;
8801         connector->encoder->base.crtc = NULL;
8802 }
8803
8804 static void intel_enable_pipe_a(struct drm_device *dev)
8805 {
8806         struct intel_connector *connector;
8807         struct drm_connector *crt = NULL;
8808         struct intel_load_detect_pipe load_detect_temp;
8809
8810         /* We can't just switch on the pipe A, we need to set things up with a
8811          * proper mode and output configuration. As a gross hack, enable pipe A
8812          * by enabling the load detect pipe once. */
8813         list_for_each_entry(connector,
8814                             &dev->mode_config.connector_list,
8815                             base.head) {
8816                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8817                         crt = &connector->base;
8818                         break;
8819                 }
8820         }
8821
8822         if (!crt)
8823                 return;
8824
8825         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8826                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8827
8828
8829 }
8830
8831 static bool
8832 intel_check_plane_mapping(struct intel_crtc *crtc)
8833 {
8834         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8835         u32 reg, val;
8836
8837         if (dev_priv->num_pipe == 1)
8838                 return true;
8839
8840         reg = DSPCNTR(!crtc->plane);
8841         val = I915_READ(reg);
8842
8843         if ((val & DISPLAY_PLANE_ENABLE) &&
8844             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8845                 return false;
8846
8847         return true;
8848 }
8849
8850 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8851 {
8852         struct drm_device *dev = crtc->base.dev;
8853         struct drm_i915_private *dev_priv = dev->dev_private;
8854         u32 reg;
8855
8856         /* Clear any frame start delays used for debugging left by the BIOS */
8857         reg = PIPECONF(crtc->cpu_transcoder);
8858         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8859
8860         /* We need to sanitize the plane -> pipe mapping first because this will
8861          * disable the crtc (and hence change the state) if it is wrong. Note
8862          * that gen4+ has a fixed plane -> pipe mapping.  */
8863         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8864                 struct intel_connector *connector;
8865                 bool plane;
8866
8867                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8868                               crtc->base.base.id);
8869
8870                 /* Pipe has the wrong plane attached and the plane is active.
8871                  * Temporarily change the plane mapping and disable everything
8872                  * ...  */
8873                 plane = crtc->plane;
8874                 crtc->plane = !plane;
8875                 dev_priv->display.crtc_disable(&crtc->base);
8876                 crtc->plane = plane;
8877
8878                 /* ... and break all links. */
8879                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8880                                     base.head) {
8881                         if (connector->encoder->base.crtc != &crtc->base)
8882                                 continue;
8883
8884                         intel_connector_break_all_links(connector);
8885                 }
8886
8887                 WARN_ON(crtc->active);
8888                 crtc->base.enabled = false;
8889         }
8890
8891         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8892             crtc->pipe == PIPE_A && !crtc->active) {
8893                 /* BIOS forgot to enable pipe A, this mostly happens after
8894                  * resume. Force-enable the pipe to fix this, the update_dpms
8895                  * call below we restore the pipe to the right state, but leave
8896                  * the required bits on. */
8897                 intel_enable_pipe_a(dev);
8898         }
8899
8900         /* Adjust the state of the output pipe according to whether we
8901          * have active connectors/encoders. */
8902         intel_crtc_update_dpms(&crtc->base);
8903
8904         if (crtc->active != crtc->base.enabled) {
8905                 struct intel_encoder *encoder;
8906
8907                 /* This can happen either due to bugs in the get_hw_state
8908                  * functions or because the pipe is force-enabled due to the
8909                  * pipe A quirk. */
8910                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8911                               crtc->base.base.id,
8912                               crtc->base.enabled ? "enabled" : "disabled",
8913                               crtc->active ? "enabled" : "disabled");
8914
8915                 crtc->base.enabled = crtc->active;
8916
8917                 /* Because we only establish the connector -> encoder ->
8918                  * crtc links if something is active, this means the
8919                  * crtc is now deactivated. Break the links. connector
8920                  * -> encoder links are only establish when things are
8921                  *  actually up, hence no need to break them. */
8922                 WARN_ON(crtc->active);
8923
8924                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8925                         WARN_ON(encoder->connectors_active);
8926                         encoder->base.crtc = NULL;
8927                 }
8928         }
8929 }
8930
8931 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8932 {
8933         struct intel_connector *connector;
8934         struct drm_device *dev = encoder->base.dev;
8935
8936         /* We need to check both for a crtc link (meaning that the
8937          * encoder is active and trying to read from a pipe) and the
8938          * pipe itself being active. */
8939         bool has_active_crtc = encoder->base.crtc &&
8940                 to_intel_crtc(encoder->base.crtc)->active;
8941
8942         if (encoder->connectors_active && !has_active_crtc) {
8943                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8944                               encoder->base.base.id,
8945                               drm_get_encoder_name(&encoder->base));
8946
8947                 /* Connector is active, but has no active pipe. This is
8948                  * fallout from our resume register restoring. Disable
8949                  * the encoder manually again. */
8950                 if (encoder->base.crtc) {
8951                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8952                                       encoder->base.base.id,
8953                                       drm_get_encoder_name(&encoder->base));
8954                         encoder->disable(encoder);
8955                 }
8956
8957                 /* Inconsistent output/port/pipe state happens presumably due to
8958                  * a bug in one of the get_hw_state functions. Or someplace else
8959                  * in our code, like the register restore mess on resume. Clamp
8960                  * things to off as a safer default. */
8961                 list_for_each_entry(connector,
8962                                     &dev->mode_config.connector_list,
8963                                     base.head) {
8964                         if (connector->encoder != encoder)
8965                                 continue;
8966
8967                         intel_connector_break_all_links(connector);
8968                 }
8969         }
8970         /* Enabled encoders without active connectors will be fixed in
8971          * the crtc fixup. */
8972 }
8973
8974 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8975  * and i915 state tracking structures. */
8976 void intel_modeset_setup_hw_state(struct drm_device *dev)
8977 {
8978         struct drm_i915_private *dev_priv = dev->dev_private;
8979         enum pipe pipe;
8980         u32 tmp;
8981         struct intel_crtc *crtc;
8982         struct intel_encoder *encoder;
8983         struct intel_connector *connector;
8984
8985         if (IS_HASWELL(dev)) {
8986                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8987
8988                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8989                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8990                         case TRANS_DDI_EDP_INPUT_A_ON:
8991                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8992                                 pipe = PIPE_A;
8993                                 break;
8994                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8995                                 pipe = PIPE_B;
8996                                 break;
8997                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8998                                 pipe = PIPE_C;
8999                                 break;
9000                         }
9001
9002                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9003                         crtc->cpu_transcoder = TRANSCODER_EDP;
9004
9005                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9006                                       pipe_name(pipe));
9007                 }
9008         }
9009
9010         for_each_pipe(pipe) {
9011                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9012
9013                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9014                 if (tmp & PIPECONF_ENABLE)
9015                         crtc->active = true;
9016                 else
9017                         crtc->active = false;
9018
9019                 crtc->base.enabled = crtc->active;
9020
9021                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9022                               crtc->base.base.id,
9023                               crtc->active ? "enabled" : "disabled");
9024         }
9025
9026         if (IS_HASWELL(dev))
9027                 intel_ddi_setup_hw_pll_state(dev);
9028
9029         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9030                             base.head) {
9031                 pipe = 0;
9032
9033                 if (encoder->get_hw_state(encoder, &pipe)) {
9034                         encoder->base.crtc =
9035                                 dev_priv->pipe_to_crtc_mapping[pipe];
9036                 } else {
9037                         encoder->base.crtc = NULL;
9038                 }
9039
9040                 encoder->connectors_active = false;
9041                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9042                               encoder->base.base.id,
9043                               drm_get_encoder_name(&encoder->base),
9044                               encoder->base.crtc ? "enabled" : "disabled",
9045                               pipe);
9046         }
9047
9048         list_for_each_entry(connector, &dev->mode_config.connector_list,
9049                             base.head) {
9050                 if (connector->get_hw_state(connector)) {
9051                         connector->base.dpms = DRM_MODE_DPMS_ON;
9052                         connector->encoder->connectors_active = true;
9053                         connector->base.encoder = &connector->encoder->base;
9054                 } else {
9055                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9056                         connector->base.encoder = NULL;
9057                 }
9058                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9059                               connector->base.base.id,
9060                               drm_get_connector_name(&connector->base),
9061                               connector->base.encoder ? "enabled" : "disabled");
9062         }
9063
9064         /* HW state is read out, now we need to sanitize this mess. */
9065         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9066                             base.head) {
9067                 intel_sanitize_encoder(encoder);
9068         }
9069
9070         for_each_pipe(pipe) {
9071                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9072                 intel_sanitize_crtc(crtc);
9073         }
9074
9075         intel_modeset_update_staged_output_state(dev);
9076
9077         intel_modeset_check_state(dev);
9078
9079         drm_mode_config_reset(dev);
9080 }
9081
9082 void intel_modeset_gem_init(struct drm_device *dev)
9083 {
9084         intel_modeset_init_hw(dev);
9085
9086         intel_setup_overlay(dev);
9087
9088         intel_modeset_setup_hw_state(dev);
9089 }
9090
9091 void intel_modeset_cleanup(struct drm_device *dev)
9092 {
9093         struct drm_i915_private *dev_priv = dev->dev_private;
9094         struct drm_crtc *crtc;
9095         struct intel_crtc *intel_crtc;
9096
9097         drm_kms_helper_poll_fini(dev);
9098         mutex_lock(&dev->struct_mutex);
9099
9100         intel_unregister_dsm_handler();
9101
9102
9103         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9104                 /* Skip inactive CRTCs */
9105                 if (!crtc->fb)
9106                         continue;
9107
9108                 intel_crtc = to_intel_crtc(crtc);
9109                 intel_increase_pllclock(crtc);
9110         }
9111
9112         intel_disable_fbc(dev);
9113
9114         intel_disable_gt_powersave(dev);
9115
9116         ironlake_teardown_rc6(dev);
9117
9118         if (IS_VALLEYVIEW(dev))
9119                 vlv_init_dpio(dev);
9120
9121         mutex_unlock(&dev->struct_mutex);
9122
9123         /* Disable the irq before mode object teardown, for the irq might
9124          * enqueue unpin/hotplug work. */
9125         drm_irq_uninstall(dev);
9126         cancel_work_sync(&dev_priv->hotplug_work);
9127         cancel_work_sync(&dev_priv->rps.work);
9128
9129         /* flush any delayed tasks or pending work */
9130         flush_scheduled_work();
9131
9132         drm_mode_config_cleanup(dev);
9133 }
9134
9135 /*
9136  * Return which encoder is currently attached for connector.
9137  */
9138 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9139 {
9140         return &intel_attached_encoder(connector)->base;
9141 }
9142
9143 void intel_connector_attach_encoder(struct intel_connector *connector,
9144                                     struct intel_encoder *encoder)
9145 {
9146         connector->encoder = encoder;
9147         drm_mode_connector_attach_encoder(&connector->base,
9148                                           &encoder->base);
9149 }
9150
9151 /*
9152  * set vga decode state - true == enable VGA decode
9153  */
9154 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9155 {
9156         struct drm_i915_private *dev_priv = dev->dev_private;
9157         u16 gmch_ctrl;
9158
9159         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9160         if (state)
9161                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9162         else
9163                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9164         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9165         return 0;
9166 }
9167
9168 #ifdef CONFIG_DEBUG_FS
9169 #include <linux/seq_file.h>
9170
9171 struct intel_display_error_state {
9172         struct intel_cursor_error_state {
9173                 u32 control;
9174                 u32 position;
9175                 u32 base;
9176                 u32 size;
9177         } cursor[I915_MAX_PIPES];
9178
9179         struct intel_pipe_error_state {
9180                 u32 conf;
9181                 u32 source;
9182
9183                 u32 htotal;
9184                 u32 hblank;
9185                 u32 hsync;
9186                 u32 vtotal;
9187                 u32 vblank;
9188                 u32 vsync;
9189         } pipe[I915_MAX_PIPES];
9190
9191         struct intel_plane_error_state {
9192                 u32 control;
9193                 u32 stride;
9194                 u32 size;
9195                 u32 pos;
9196                 u32 addr;
9197                 u32 surface;
9198                 u32 tile_offset;
9199         } plane[I915_MAX_PIPES];
9200 };
9201
9202 struct intel_display_error_state *
9203 intel_display_capture_error_state(struct drm_device *dev)
9204 {
9205         drm_i915_private_t *dev_priv = dev->dev_private;
9206         struct intel_display_error_state *error;
9207         enum transcoder cpu_transcoder;
9208         int i;
9209
9210         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9211         if (error == NULL)
9212                 return NULL;
9213
9214         for_each_pipe(i) {
9215                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9216
9217                 error->cursor[i].control = I915_READ(CURCNTR(i));
9218                 error->cursor[i].position = I915_READ(CURPOS(i));
9219                 error->cursor[i].base = I915_READ(CURBASE(i));
9220
9221                 error->plane[i].control = I915_READ(DSPCNTR(i));
9222                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9223                 error->plane[i].size = I915_READ(DSPSIZE(i));
9224                 error->plane[i].pos = I915_READ(DSPPOS(i));
9225                 error->plane[i].addr = I915_READ(DSPADDR(i));
9226                 if (INTEL_INFO(dev)->gen >= 4) {
9227                         error->plane[i].surface = I915_READ(DSPSURF(i));
9228                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9229                 }
9230
9231                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9232                 error->pipe[i].source = I915_READ(PIPESRC(i));
9233                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9234                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9235                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9236                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9237                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9238                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9239         }
9240
9241         return error;
9242 }
9243
9244 void
9245 intel_display_print_error_state(struct seq_file *m,
9246                                 struct drm_device *dev,
9247                                 struct intel_display_error_state *error)
9248 {
9249         drm_i915_private_t *dev_priv = dev->dev_private;
9250         int i;
9251
9252         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9253         for_each_pipe(i) {
9254                 seq_printf(m, "Pipe [%d]:\n", i);
9255                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9256                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9257                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9258                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9259                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9260                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9261                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9262                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9263
9264                 seq_printf(m, "Plane [%d]:\n", i);
9265                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9266                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9267                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9268                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9269                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9270                 if (INTEL_INFO(dev)->gen >= 4) {
9271                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9272                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9273                 }
9274
9275                 seq_printf(m, "Cursor [%d]:\n", i);
9276                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9277                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9278                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9279         }
9280 }
9281 #endif