]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: encoder->get_config is no longer optional
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57         int     min, max;
58 } intel_range_t;
59
60 typedef struct {
61         int     dot_limit;
62         int     p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
68         intel_p2_t          p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74         struct drm_i915_private *dev_priv = dev->dev_private;
75
76         WARN_ON(!HAS_PCH_SPLIT(dev));
77
78         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84         if (IS_GEN5(dev)) {
85                 struct drm_i915_private *dev_priv = dev->dev_private;
86                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87         } else
88                 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92         .dot = { .min = 25000, .max = 350000 },
93         .vco = { .min = 930000, .max = 1400000 },
94         .n = { .min = 3, .max = 16 },
95         .m = { .min = 96, .max = 140 },
96         .m1 = { .min = 18, .max = 26 },
97         .m2 = { .min = 6, .max = 16 },
98         .p = { .min = 4, .max = 128 },
99         .p1 = { .min = 2, .max = 33 },
100         .p2 = { .dot_limit = 165000,
101                 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105         .dot = { .min = 25000, .max = 350000 },
106         .vco = { .min = 930000, .max = 1400000 },
107         .n = { .min = 3, .max = 16 },
108         .m = { .min = 96, .max = 140 },
109         .m1 = { .min = 18, .max = 26 },
110         .m2 = { .min = 6, .max = 16 },
111         .p = { .min = 4, .max = 128 },
112         .p1 = { .min = 2, .max = 33 },
113         .p2 = { .dot_limit = 165000,
114                 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118         .dot = { .min = 25000, .max = 350000 },
119         .vco = { .min = 930000, .max = 1400000 },
120         .n = { .min = 3, .max = 16 },
121         .m = { .min = 96, .max = 140 },
122         .m1 = { .min = 18, .max = 26 },
123         .m2 = { .min = 6, .max = 16 },
124         .p = { .min = 4, .max = 128 },
125         .p1 = { .min = 1, .max = 6 },
126         .p2 = { .dot_limit = 165000,
127                 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131         .dot = { .min = 20000, .max = 400000 },
132         .vco = { .min = 1400000, .max = 2800000 },
133         .n = { .min = 1, .max = 6 },
134         .m = { .min = 70, .max = 120 },
135         .m1 = { .min = 8, .max = 18 },
136         .m2 = { .min = 3, .max = 7 },
137         .p = { .min = 5, .max = 80 },
138         .p1 = { .min = 1, .max = 8 },
139         .p2 = { .dot_limit = 200000,
140                 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144         .dot = { .min = 20000, .max = 400000 },
145         .vco = { .min = 1400000, .max = 2800000 },
146         .n = { .min = 1, .max = 6 },
147         .m = { .min = 70, .max = 120 },
148         .m1 = { .min = 8, .max = 18 },
149         .m2 = { .min = 3, .max = 7 },
150         .p = { .min = 7, .max = 98 },
151         .p1 = { .min = 1, .max = 8 },
152         .p2 = { .dot_limit = 112000,
153                 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158         .dot = { .min = 25000, .max = 270000 },
159         .vco = { .min = 1750000, .max = 3500000},
160         .n = { .min = 1, .max = 4 },
161         .m = { .min = 104, .max = 138 },
162         .m1 = { .min = 17, .max = 23 },
163         .m2 = { .min = 5, .max = 11 },
164         .p = { .min = 10, .max = 30 },
165         .p1 = { .min = 1, .max = 3},
166         .p2 = { .dot_limit = 270000,
167                 .p2_slow = 10,
168                 .p2_fast = 10
169         },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173         .dot = { .min = 22000, .max = 400000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 16, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 5, .max = 80 },
180         .p1 = { .min = 1, .max = 8},
181         .p2 = { .dot_limit = 165000,
182                 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186         .dot = { .min = 20000, .max = 115000 },
187         .vco = { .min = 1750000, .max = 3500000 },
188         .n = { .min = 1, .max = 3 },
189         .m = { .min = 104, .max = 138 },
190         .m1 = { .min = 17, .max = 23 },
191         .m2 = { .min = 5, .max = 11 },
192         .p = { .min = 28, .max = 112 },
193         .p1 = { .min = 2, .max = 8 },
194         .p2 = { .dot_limit = 0,
195                 .p2_slow = 14, .p2_fast = 14
196         },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200         .dot = { .min = 80000, .max = 224000 },
201         .vco = { .min = 1750000, .max = 3500000 },
202         .n = { .min = 1, .max = 3 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 17, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 14, .max = 42 },
207         .p1 = { .min = 2, .max = 6 },
208         .p2 = { .dot_limit = 0,
209                 .p2_slow = 7, .p2_fast = 7
210         },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214         .dot = { .min = 20000, .max = 400000},
215         .vco = { .min = 1700000, .max = 3500000 },
216         /* Pineview's Ncounter is a ring counter */
217         .n = { .min = 3, .max = 6 },
218         .m = { .min = 2, .max = 256 },
219         /* Pineview only has one combined m divider, which we treat as m2. */
220         .m1 = { .min = 0, .max = 0 },
221         .m2 = { .min = 0, .max = 254 },
222         .p = { .min = 5, .max = 80 },
223         .p1 = { .min = 1, .max = 8 },
224         .p2 = { .dot_limit = 200000,
225                 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229         .dot = { .min = 20000, .max = 400000 },
230         .vco = { .min = 1700000, .max = 3500000 },
231         .n = { .min = 3, .max = 6 },
232         .m = { .min = 2, .max = 256 },
233         .m1 = { .min = 0, .max = 0 },
234         .m2 = { .min = 0, .max = 254 },
235         .p = { .min = 7, .max = 112 },
236         .p1 = { .min = 1, .max = 8 },
237         .p2 = { .dot_limit = 112000,
238                 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242  *
243  * We calculate clock using (register_value + 2) for N/M1/M2, so here
244  * the range value for them is (actual_value - 2).
245  */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247         .dot = { .min = 25000, .max = 350000 },
248         .vco = { .min = 1760000, .max = 3510000 },
249         .n = { .min = 1, .max = 5 },
250         .m = { .min = 79, .max = 127 },
251         .m1 = { .min = 12, .max = 22 },
252         .m2 = { .min = 5, .max = 9 },
253         .p = { .min = 5, .max = 80 },
254         .p1 = { .min = 1, .max = 8 },
255         .p2 = { .dot_limit = 225000,
256                 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260         .dot = { .min = 25000, .max = 350000 },
261         .vco = { .min = 1760000, .max = 3510000 },
262         .n = { .min = 1, .max = 3 },
263         .m = { .min = 79, .max = 118 },
264         .m1 = { .min = 12, .max = 22 },
265         .m2 = { .min = 5, .max = 9 },
266         .p = { .min = 28, .max = 112 },
267         .p1 = { .min = 2, .max = 8 },
268         .p2 = { .dot_limit = 225000,
269                 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 3 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 14, .max = 56 },
280         .p1 = { .min = 2, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 2 },
290         .m = { .min = 79, .max = 126 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 126 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 42 },
307         .p1 = { .min = 2, .max = 6 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv = {
313          /*
314           * These are the data rate limits (measured in fast clocks)
315           * since those are the strictest limits we have. The fast
316           * clock and actual rate limits are more relaxed, so checking
317           * them would make no difference.
318           */
319         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320         .vco = { .min = 4000000, .max = 6000000 },
321         .n = { .min = 1, .max = 7 },
322         .m1 = { .min = 2, .max = 3 },
323         .m2 = { .min = 11, .max = 156 },
324         .p1 = { .min = 2, .max = 3 },
325         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326 };
327
328 static void vlv_clock(int refclk, intel_clock_t *clock)
329 {
330         clock->m = clock->m1 * clock->m2;
331         clock->p = clock->p1 * clock->p2;
332         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
333         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
334 }
335
336 /**
337  * Returns whether any output on the specified pipe is of the specified type
338  */
339 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
340 {
341         struct drm_device *dev = crtc->dev;
342         struct intel_encoder *encoder;
343
344         for_each_encoder_on_crtc(dev, crtc, encoder)
345                 if (encoder->type == type)
346                         return true;
347
348         return false;
349 }
350
351 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
352                                                 int refclk)
353 {
354         struct drm_device *dev = crtc->dev;
355         const intel_limit_t *limit;
356
357         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
358                 if (intel_is_dual_link_lvds(dev)) {
359                         if (refclk == 100000)
360                                 limit = &intel_limits_ironlake_dual_lvds_100m;
361                         else
362                                 limit = &intel_limits_ironlake_dual_lvds;
363                 } else {
364                         if (refclk == 100000)
365                                 limit = &intel_limits_ironlake_single_lvds_100m;
366                         else
367                                 limit = &intel_limits_ironlake_single_lvds;
368                 }
369         } else
370                 limit = &intel_limits_ironlake_dac;
371
372         return limit;
373 }
374
375 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
376 {
377         struct drm_device *dev = crtc->dev;
378         const intel_limit_t *limit;
379
380         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
381                 if (intel_is_dual_link_lvds(dev))
382                         limit = &intel_limits_g4x_dual_channel_lvds;
383                 else
384                         limit = &intel_limits_g4x_single_channel_lvds;
385         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
386                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
387                 limit = &intel_limits_g4x_hdmi;
388         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
389                 limit = &intel_limits_g4x_sdvo;
390         } else /* The option is for other outputs */
391                 limit = &intel_limits_i9xx_sdvo;
392
393         return limit;
394 }
395
396 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
397 {
398         struct drm_device *dev = crtc->dev;
399         const intel_limit_t *limit;
400
401         if (HAS_PCH_SPLIT(dev))
402                 limit = intel_ironlake_limit(crtc, refclk);
403         else if (IS_G4X(dev)) {
404                 limit = intel_g4x_limit(crtc);
405         } else if (IS_PINEVIEW(dev)) {
406                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407                         limit = &intel_limits_pineview_lvds;
408                 else
409                         limit = &intel_limits_pineview_sdvo;
410         } else if (IS_VALLEYVIEW(dev)) {
411                 limit = &intel_limits_vlv;
412         } else if (!IS_GEN2(dev)) {
413                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
414                         limit = &intel_limits_i9xx_lvds;
415                 else
416                         limit = &intel_limits_i9xx_sdvo;
417         } else {
418                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419                         limit = &intel_limits_i8xx_lvds;
420                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
421                         limit = &intel_limits_i8xx_dvo;
422                 else
423                         limit = &intel_limits_i8xx_dac;
424         }
425         return limit;
426 }
427
428 /* m1 is reserved as 0 in Pineview, n is a ring counter */
429 static void pineview_clock(int refclk, intel_clock_t *clock)
430 {
431         clock->m = clock->m2 + 2;
432         clock->p = clock->p1 * clock->p2;
433         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
434         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
435 }
436
437 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
438 {
439         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
440 }
441
442 static void i9xx_clock(int refclk, intel_clock_t *clock)
443 {
444         clock->m = i9xx_dpll_compute_m(clock);
445         clock->p = clock->p1 * clock->p2;
446         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
447         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
448 }
449
450 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
451 /**
452  * Returns whether the given set of divisors are valid for a given refclk with
453  * the given connectors.
454  */
455
456 static bool intel_PLL_is_valid(struct drm_device *dev,
457                                const intel_limit_t *limit,
458                                const intel_clock_t *clock)
459 {
460         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
461                 INTELPllInvalid("n out of range\n");
462         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
463                 INTELPllInvalid("p1 out of range\n");
464         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
465                 INTELPllInvalid("m2 out of range\n");
466         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
467                 INTELPllInvalid("m1 out of range\n");
468
469         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
470                 if (clock->m1 <= clock->m2)
471                         INTELPllInvalid("m1 <= m2\n");
472
473         if (!IS_VALLEYVIEW(dev)) {
474                 if (clock->p < limit->p.min || limit->p.max < clock->p)
475                         INTELPllInvalid("p out of range\n");
476                 if (clock->m < limit->m.min || limit->m.max < clock->m)
477                         INTELPllInvalid("m out of range\n");
478         }
479
480         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481                 INTELPllInvalid("vco out of range\n");
482         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483          * connector, etc., rather than just a single range.
484          */
485         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486                 INTELPllInvalid("dot out of range\n");
487
488         return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493                     int target, int refclk, intel_clock_t *match_clock,
494                     intel_clock_t *best_clock)
495 {
496         struct drm_device *dev = crtc->dev;
497         intel_clock_t clock;
498         int err = target;
499
500         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501                 /*
502                  * For LVDS just rely on its current settings for dual-channel.
503                  * We haven't figured out how to reliably set up different
504                  * single/dual channel state, if we even can.
505                  */
506                 if (intel_is_dual_link_lvds(dev))
507                         clock.p2 = limit->p2.p2_fast;
508                 else
509                         clock.p2 = limit->p2.p2_slow;
510         } else {
511                 if (target < limit->p2.dot_limit)
512                         clock.p2 = limit->p2.p2_slow;
513                 else
514                         clock.p2 = limit->p2.p2_fast;
515         }
516
517         memset(best_clock, 0, sizeof(*best_clock));
518
519         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520              clock.m1++) {
521                 for (clock.m2 = limit->m2.min;
522                      clock.m2 <= limit->m2.max; clock.m2++) {
523                         if (clock.m2 >= clock.m1)
524                                 break;
525                         for (clock.n = limit->n.min;
526                              clock.n <= limit->n.max; clock.n++) {
527                                 for (clock.p1 = limit->p1.min;
528                                         clock.p1 <= limit->p1.max; clock.p1++) {
529                                         int this_err;
530
531                                         i9xx_clock(refclk, &clock);
532                                         if (!intel_PLL_is_valid(dev, limit,
533                                                                 &clock))
534                                                 continue;
535                                         if (match_clock &&
536                                             clock.p != match_clock->p)
537                                                 continue;
538
539                                         this_err = abs(clock.dot - target);
540                                         if (this_err < err) {
541                                                 *best_clock = clock;
542                                                 err = this_err;
543                                         }
544                                 }
545                         }
546                 }
547         }
548
549         return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554                    int target, int refclk, intel_clock_t *match_clock,
555                    intel_clock_t *best_clock)
556 {
557         struct drm_device *dev = crtc->dev;
558         intel_clock_t clock;
559         int err = target;
560
561         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562                 /*
563                  * For LVDS just rely on its current settings for dual-channel.
564                  * We haven't figured out how to reliably set up different
565                  * single/dual channel state, if we even can.
566                  */
567                 if (intel_is_dual_link_lvds(dev))
568                         clock.p2 = limit->p2.p2_fast;
569                 else
570                         clock.p2 = limit->p2.p2_slow;
571         } else {
572                 if (target < limit->p2.dot_limit)
573                         clock.p2 = limit->p2.p2_slow;
574                 else
575                         clock.p2 = limit->p2.p2_fast;
576         }
577
578         memset(best_clock, 0, sizeof(*best_clock));
579
580         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581              clock.m1++) {
582                 for (clock.m2 = limit->m2.min;
583                      clock.m2 <= limit->m2.max; clock.m2++) {
584                         for (clock.n = limit->n.min;
585                              clock.n <= limit->n.max; clock.n++) {
586                                 for (clock.p1 = limit->p1.min;
587                                         clock.p1 <= limit->p1.max; clock.p1++) {
588                                         int this_err;
589
590                                         pineview_clock(refclk, &clock);
591                                         if (!intel_PLL_is_valid(dev, limit,
592                                                                 &clock))
593                                                 continue;
594                                         if (match_clock &&
595                                             clock.p != match_clock->p)
596                                                 continue;
597
598                                         this_err = abs(clock.dot - target);
599                                         if (this_err < err) {
600                                                 *best_clock = clock;
601                                                 err = this_err;
602                                         }
603                                 }
604                         }
605                 }
606         }
607
608         return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613                    int target, int refclk, intel_clock_t *match_clock,
614                    intel_clock_t *best_clock)
615 {
616         struct drm_device *dev = crtc->dev;
617         intel_clock_t clock;
618         int max_n;
619         bool found;
620         /* approximately equals target * 0.00585 */
621         int err_most = (target >> 8) + (target >> 9);
622         found = false;
623
624         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625                 if (intel_is_dual_link_lvds(dev))
626                         clock.p2 = limit->p2.p2_fast;
627                 else
628                         clock.p2 = limit->p2.p2_slow;
629         } else {
630                 if (target < limit->p2.dot_limit)
631                         clock.p2 = limit->p2.p2_slow;
632                 else
633                         clock.p2 = limit->p2.p2_fast;
634         }
635
636         memset(best_clock, 0, sizeof(*best_clock));
637         max_n = limit->n.max;
638         /* based on hardware requirement, prefer smaller n to precision */
639         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640                 /* based on hardware requirement, prefere larger m1,m2 */
641                 for (clock.m1 = limit->m1.max;
642                      clock.m1 >= limit->m1.min; clock.m1--) {
643                         for (clock.m2 = limit->m2.max;
644                              clock.m2 >= limit->m2.min; clock.m2--) {
645                                 for (clock.p1 = limit->p1.max;
646                                      clock.p1 >= limit->p1.min; clock.p1--) {
647                                         int this_err;
648
649                                         i9xx_clock(refclk, &clock);
650                                         if (!intel_PLL_is_valid(dev, limit,
651                                                                 &clock))
652                                                 continue;
653
654                                         this_err = abs(clock.dot - target);
655                                         if (this_err < err_most) {
656                                                 *best_clock = clock;
657                                                 err_most = this_err;
658                                                 max_n = clock.n;
659                                                 found = true;
660                                         }
661                                 }
662                         }
663                 }
664         }
665         return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670                    int target, int refclk, intel_clock_t *match_clock,
671                    intel_clock_t *best_clock)
672 {
673         struct drm_device *dev = crtc->dev;
674         intel_clock_t clock;
675         unsigned int bestppm = 1000000;
676         /* min update 19.2 MHz */
677         int max_n = min(limit->n.max, refclk / 19200);
678         bool found = false;
679
680         target *= 5; /* fast clock */
681
682         memset(best_clock, 0, sizeof(*best_clock));
683
684         /* based on hardware requirement, prefer smaller n to precision */
685         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
686                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
687                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
688                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
689                                 clock.p = clock.p1 * clock.p2;
690                                 /* based on hardware requirement, prefer bigger m1,m2 values */
691                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
692                                         unsigned int ppm, diff;
693
694                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
695                                                                      refclk * clock.m1);
696
697                                         vlv_clock(refclk, &clock);
698
699                                         if (!intel_PLL_is_valid(dev, limit,
700                                                                 &clock))
701                                                 continue;
702
703                                         diff = abs(clock.dot - target);
704                                         ppm = div_u64(1000000ULL * diff, target);
705
706                                         if (ppm < 100 && clock.p > best_clock->p) {
707                                                 bestppm = 0;
708                                                 *best_clock = clock;
709                                                 found = true;
710                                         }
711
712                                         if (bestppm >= 10 && ppm < bestppm - 10) {
713                                                 bestppm = ppm;
714                                                 *best_clock = clock;
715                                                 found = true;
716                                         }
717                                 }
718                         }
719                 }
720         }
721
722         return found;
723 }
724
725 bool intel_crtc_active(struct drm_crtc *crtc)
726 {
727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
728
729         /* Be paranoid as we can arrive here with only partial
730          * state retrieved from the hardware during setup.
731          *
732          * We can ditch the adjusted_mode.crtc_clock check as soon
733          * as Haswell has gained clock readout/fastboot support.
734          *
735          * We can ditch the crtc->fb check as soon as we can
736          * properly reconstruct framebuffers.
737          */
738         return intel_crtc->active && crtc->fb &&
739                 intel_crtc->config.adjusted_mode.crtc_clock;
740 }
741
742 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
743                                              enum pipe pipe)
744 {
745         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
747
748         return intel_crtc->config.cpu_transcoder;
749 }
750
751 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
752 {
753         struct drm_i915_private *dev_priv = dev->dev_private;
754         u32 frame, frame_reg = PIPEFRAME(pipe);
755
756         frame = I915_READ(frame_reg);
757
758         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
759                 DRM_DEBUG_KMS("vblank wait timed out\n");
760 }
761
762 /**
763  * intel_wait_for_vblank - wait for vblank on a given pipe
764  * @dev: drm device
765  * @pipe: pipe to wait for
766  *
767  * Wait for vblank to occur on a given pipe.  Needed for various bits of
768  * mode setting code.
769  */
770 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
771 {
772         struct drm_i915_private *dev_priv = dev->dev_private;
773         int pipestat_reg = PIPESTAT(pipe);
774
775         if (INTEL_INFO(dev)->gen >= 5) {
776                 ironlake_wait_for_vblank(dev, pipe);
777                 return;
778         }
779
780         /* Clear existing vblank status. Note this will clear any other
781          * sticky status fields as well.
782          *
783          * This races with i915_driver_irq_handler() with the result
784          * that either function could miss a vblank event.  Here it is not
785          * fatal, as we will either wait upon the next vblank interrupt or
786          * timeout.  Generally speaking intel_wait_for_vblank() is only
787          * called during modeset at which time the GPU should be idle and
788          * should *not* be performing page flips and thus not waiting on
789          * vblanks...
790          * Currently, the result of us stealing a vblank from the irq
791          * handler is that a single frame will be skipped during swapbuffers.
792          */
793         I915_WRITE(pipestat_reg,
794                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
795
796         /* Wait for vblank interrupt bit to set */
797         if (wait_for(I915_READ(pipestat_reg) &
798                      PIPE_VBLANK_INTERRUPT_STATUS,
799                      50))
800                 DRM_DEBUG_KMS("vblank wait timed out\n");
801 }
802
803 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
804 {
805         struct drm_i915_private *dev_priv = dev->dev_private;
806         u32 reg = PIPEDSL(pipe);
807         u32 line1, line2;
808         u32 line_mask;
809
810         if (IS_GEN2(dev))
811                 line_mask = DSL_LINEMASK_GEN2;
812         else
813                 line_mask = DSL_LINEMASK_GEN3;
814
815         line1 = I915_READ(reg) & line_mask;
816         mdelay(5);
817         line2 = I915_READ(reg) & line_mask;
818
819         return line1 == line2;
820 }
821
822 /*
823  * intel_wait_for_pipe_off - wait for pipe to turn off
824  * @dev: drm device
825  * @pipe: pipe to wait for
826  *
827  * After disabling a pipe, we can't wait for vblank in the usual way,
828  * spinning on the vblank interrupt status bit, since we won't actually
829  * see an interrupt when the pipe is disabled.
830  *
831  * On Gen4 and above:
832  *   wait for the pipe register state bit to turn off
833  *
834  * Otherwise:
835  *   wait for the display line value to settle (it usually
836  *   ends up stopping at the start of the next frame).
837  *
838  */
839 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
840 {
841         struct drm_i915_private *dev_priv = dev->dev_private;
842         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
843                                                                       pipe);
844
845         if (INTEL_INFO(dev)->gen >= 4) {
846                 int reg = PIPECONF(cpu_transcoder);
847
848                 /* Wait for the Pipe State to go off */
849                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
850                              100))
851                         WARN(1, "pipe_off wait timed out\n");
852         } else {
853                 /* Wait for the display line to settle */
854                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
855                         WARN(1, "pipe_off wait timed out\n");
856         }
857 }
858
859 /*
860  * ibx_digital_port_connected - is the specified port connected?
861  * @dev_priv: i915 private structure
862  * @port: the port to test
863  *
864  * Returns true if @port is connected, false otherwise.
865  */
866 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
867                                 struct intel_digital_port *port)
868 {
869         u32 bit;
870
871         if (HAS_PCH_IBX(dev_priv->dev)) {
872                 switch(port->port) {
873                 case PORT_B:
874                         bit = SDE_PORTB_HOTPLUG;
875                         break;
876                 case PORT_C:
877                         bit = SDE_PORTC_HOTPLUG;
878                         break;
879                 case PORT_D:
880                         bit = SDE_PORTD_HOTPLUG;
881                         break;
882                 default:
883                         return true;
884                 }
885         } else {
886                 switch(port->port) {
887                 case PORT_B:
888                         bit = SDE_PORTB_HOTPLUG_CPT;
889                         break;
890                 case PORT_C:
891                         bit = SDE_PORTC_HOTPLUG_CPT;
892                         break;
893                 case PORT_D:
894                         bit = SDE_PORTD_HOTPLUG_CPT;
895                         break;
896                 default:
897                         return true;
898                 }
899         }
900
901         return I915_READ(SDEISR) & bit;
902 }
903
904 static const char *state_string(bool enabled)
905 {
906         return enabled ? "on" : "off";
907 }
908
909 /* Only for pre-ILK configs */
910 void assert_pll(struct drm_i915_private *dev_priv,
911                 enum pipe pipe, bool state)
912 {
913         int reg;
914         u32 val;
915         bool cur_state;
916
917         reg = DPLL(pipe);
918         val = I915_READ(reg);
919         cur_state = !!(val & DPLL_VCO_ENABLE);
920         WARN(cur_state != state,
921              "PLL state assertion failure (expected %s, current %s)\n",
922              state_string(state), state_string(cur_state));
923 }
924
925 /* XXX: the dsi pll is shared between MIPI DSI ports */
926 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
927 {
928         u32 val;
929         bool cur_state;
930
931         mutex_lock(&dev_priv->dpio_lock);
932         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
933         mutex_unlock(&dev_priv->dpio_lock);
934
935         cur_state = val & DSI_PLL_VCO_EN;
936         WARN(cur_state != state,
937              "DSI PLL state assertion failure (expected %s, current %s)\n",
938              state_string(state), state_string(cur_state));
939 }
940 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
941 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
942
943 struct intel_shared_dpll *
944 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
945 {
946         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
947
948         if (crtc->config.shared_dpll < 0)
949                 return NULL;
950
951         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
952 }
953
954 /* For ILK+ */
955 void assert_shared_dpll(struct drm_i915_private *dev_priv,
956                         struct intel_shared_dpll *pll,
957                         bool state)
958 {
959         bool cur_state;
960         struct intel_dpll_hw_state hw_state;
961
962         if (HAS_PCH_LPT(dev_priv->dev)) {
963                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
964                 return;
965         }
966
967         if (WARN (!pll,
968                   "asserting DPLL %s with no DPLL\n", state_string(state)))
969                 return;
970
971         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
972         WARN(cur_state != state,
973              "%s assertion failure (expected %s, current %s)\n",
974              pll->name, state_string(state), state_string(cur_state));
975 }
976
977 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
978                           enum pipe pipe, bool state)
979 {
980         int reg;
981         u32 val;
982         bool cur_state;
983         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
984                                                                       pipe);
985
986         if (HAS_DDI(dev_priv->dev)) {
987                 /* DDI does not have a specific FDI_TX register */
988                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
989                 val = I915_READ(reg);
990                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
991         } else {
992                 reg = FDI_TX_CTL(pipe);
993                 val = I915_READ(reg);
994                 cur_state = !!(val & FDI_TX_ENABLE);
995         }
996         WARN(cur_state != state,
997              "FDI TX state assertion failure (expected %s, current %s)\n",
998              state_string(state), state_string(cur_state));
999 }
1000 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1001 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1002
1003 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1004                           enum pipe pipe, bool state)
1005 {
1006         int reg;
1007         u32 val;
1008         bool cur_state;
1009
1010         reg = FDI_RX_CTL(pipe);
1011         val = I915_READ(reg);
1012         cur_state = !!(val & FDI_RX_ENABLE);
1013         WARN(cur_state != state,
1014              "FDI RX state assertion failure (expected %s, current %s)\n",
1015              state_string(state), state_string(cur_state));
1016 }
1017 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1018 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1019
1020 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1021                                       enum pipe pipe)
1022 {
1023         int reg;
1024         u32 val;
1025
1026         /* ILK FDI PLL is always enabled */
1027         if (dev_priv->info->gen == 5)
1028                 return;
1029
1030         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1031         if (HAS_DDI(dev_priv->dev))
1032                 return;
1033
1034         reg = FDI_TX_CTL(pipe);
1035         val = I915_READ(reg);
1036         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1037 }
1038
1039 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1040                        enum pipe pipe, bool state)
1041 {
1042         int reg;
1043         u32 val;
1044         bool cur_state;
1045
1046         reg = FDI_RX_CTL(pipe);
1047         val = I915_READ(reg);
1048         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1049         WARN(cur_state != state,
1050              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1051              state_string(state), state_string(cur_state));
1052 }
1053
1054 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1055                                   enum pipe pipe)
1056 {
1057         int pp_reg, lvds_reg;
1058         u32 val;
1059         enum pipe panel_pipe = PIPE_A;
1060         bool locked = true;
1061
1062         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1063                 pp_reg = PCH_PP_CONTROL;
1064                 lvds_reg = PCH_LVDS;
1065         } else {
1066                 pp_reg = PP_CONTROL;
1067                 lvds_reg = LVDS;
1068         }
1069
1070         val = I915_READ(pp_reg);
1071         if (!(val & PANEL_POWER_ON) ||
1072             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1073                 locked = false;
1074
1075         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1076                 panel_pipe = PIPE_B;
1077
1078         WARN(panel_pipe == pipe && locked,
1079              "panel assertion failure, pipe %c regs locked\n",
1080              pipe_name(pipe));
1081 }
1082
1083 static void assert_cursor(struct drm_i915_private *dev_priv,
1084                           enum pipe pipe, bool state)
1085 {
1086         struct drm_device *dev = dev_priv->dev;
1087         bool cur_state;
1088
1089         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1090                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1091         else if (IS_845G(dev) || IS_I865G(dev))
1092                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1093         else
1094                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1095
1096         WARN(cur_state != state,
1097              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1098              pipe_name(pipe), state_string(state), state_string(cur_state));
1099 }
1100 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1101 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1102
1103 void assert_pipe(struct drm_i915_private *dev_priv,
1104                  enum pipe pipe, bool state)
1105 {
1106         int reg;
1107         u32 val;
1108         bool cur_state;
1109         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1110                                                                       pipe);
1111
1112         /* if we need the pipe A quirk it must be always on */
1113         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1114                 state = true;
1115
1116         if (!intel_display_power_enabled(dev_priv->dev,
1117                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1118                 cur_state = false;
1119         } else {
1120                 reg = PIPECONF(cpu_transcoder);
1121                 val = I915_READ(reg);
1122                 cur_state = !!(val & PIPECONF_ENABLE);
1123         }
1124
1125         WARN(cur_state != state,
1126              "pipe %c assertion failure (expected %s, current %s)\n",
1127              pipe_name(pipe), state_string(state), state_string(cur_state));
1128 }
1129
1130 static void assert_plane(struct drm_i915_private *dev_priv,
1131                          enum plane plane, bool state)
1132 {
1133         int reg;
1134         u32 val;
1135         bool cur_state;
1136
1137         reg = DSPCNTR(plane);
1138         val = I915_READ(reg);
1139         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1140         WARN(cur_state != state,
1141              "plane %c assertion failure (expected %s, current %s)\n",
1142              plane_name(plane), state_string(state), state_string(cur_state));
1143 }
1144
1145 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1146 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1147
1148 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1149                                    enum pipe pipe)
1150 {
1151         struct drm_device *dev = dev_priv->dev;
1152         int reg, i;
1153         u32 val;
1154         int cur_pipe;
1155
1156         /* Primary planes are fixed to pipes on gen4+ */
1157         if (INTEL_INFO(dev)->gen >= 4) {
1158                 reg = DSPCNTR(pipe);
1159                 val = I915_READ(reg);
1160                 WARN((val & DISPLAY_PLANE_ENABLE),
1161                      "plane %c assertion failure, should be disabled but not\n",
1162                      plane_name(pipe));
1163                 return;
1164         }
1165
1166         /* Need to check both planes against the pipe */
1167         for_each_pipe(i) {
1168                 reg = DSPCNTR(i);
1169                 val = I915_READ(reg);
1170                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1171                         DISPPLANE_SEL_PIPE_SHIFT;
1172                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1173                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1174                      plane_name(i), pipe_name(pipe));
1175         }
1176 }
1177
1178 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1179                                     enum pipe pipe)
1180 {
1181         struct drm_device *dev = dev_priv->dev;
1182         int reg, i;
1183         u32 val;
1184
1185         if (IS_VALLEYVIEW(dev)) {
1186                 for (i = 0; i < dev_priv->num_plane; i++) {
1187                         reg = SPCNTR(pipe, i);
1188                         val = I915_READ(reg);
1189                         WARN((val & SP_ENABLE),
1190                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1191                              sprite_name(pipe, i), pipe_name(pipe));
1192                 }
1193         } else if (INTEL_INFO(dev)->gen >= 7) {
1194                 reg = SPRCTL(pipe);
1195                 val = I915_READ(reg);
1196                 WARN((val & SPRITE_ENABLE),
1197                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1198                      plane_name(pipe), pipe_name(pipe));
1199         } else if (INTEL_INFO(dev)->gen >= 5) {
1200                 reg = DVSCNTR(pipe);
1201                 val = I915_READ(reg);
1202                 WARN((val & DVS_ENABLE),
1203                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204                      plane_name(pipe), pipe_name(pipe));
1205         }
1206 }
1207
1208 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1209 {
1210         u32 val;
1211         bool enabled;
1212
1213         if (HAS_PCH_LPT(dev_priv->dev)) {
1214                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1215                 return;
1216         }
1217
1218         val = I915_READ(PCH_DREF_CONTROL);
1219         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1220                             DREF_SUPERSPREAD_SOURCE_MASK));
1221         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1222 }
1223
1224 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1225                                            enum pipe pipe)
1226 {
1227         int reg;
1228         u32 val;
1229         bool enabled;
1230
1231         reg = PCH_TRANSCONF(pipe);
1232         val = I915_READ(reg);
1233         enabled = !!(val & TRANS_ENABLE);
1234         WARN(enabled,
1235              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1236              pipe_name(pipe));
1237 }
1238
1239 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1240                             enum pipe pipe, u32 port_sel, u32 val)
1241 {
1242         if ((val & DP_PORT_EN) == 0)
1243                 return false;
1244
1245         if (HAS_PCH_CPT(dev_priv->dev)) {
1246                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1247                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1248                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1249                         return false;
1250         } else {
1251                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1252                         return false;
1253         }
1254         return true;
1255 }
1256
1257 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1258                               enum pipe pipe, u32 val)
1259 {
1260         if ((val & SDVO_ENABLE) == 0)
1261                 return false;
1262
1263         if (HAS_PCH_CPT(dev_priv->dev)) {
1264                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1265                         return false;
1266         } else {
1267                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1268                         return false;
1269         }
1270         return true;
1271 }
1272
1273 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1274                               enum pipe pipe, u32 val)
1275 {
1276         if ((val & LVDS_PORT_EN) == 0)
1277                 return false;
1278
1279         if (HAS_PCH_CPT(dev_priv->dev)) {
1280                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281                         return false;
1282         } else {
1283                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1284                         return false;
1285         }
1286         return true;
1287 }
1288
1289 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1290                               enum pipe pipe, u32 val)
1291 {
1292         if ((val & ADPA_DAC_ENABLE) == 0)
1293                 return false;
1294         if (HAS_PCH_CPT(dev_priv->dev)) {
1295                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1296                         return false;
1297         } else {
1298                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1299                         return false;
1300         }
1301         return true;
1302 }
1303
1304 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1305                                    enum pipe pipe, int reg, u32 port_sel)
1306 {
1307         u32 val = I915_READ(reg);
1308         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1309              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1310              reg, pipe_name(pipe));
1311
1312         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1313              && (val & DP_PIPEB_SELECT),
1314              "IBX PCH dp port still using transcoder B\n");
1315 }
1316
1317 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1318                                      enum pipe pipe, int reg)
1319 {
1320         u32 val = I915_READ(reg);
1321         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1322              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1323              reg, pipe_name(pipe));
1324
1325         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1326              && (val & SDVO_PIPE_B_SELECT),
1327              "IBX PCH hdmi port still using transcoder B\n");
1328 }
1329
1330 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1331                                       enum pipe pipe)
1332 {
1333         int reg;
1334         u32 val;
1335
1336         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1337         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1338         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1339
1340         reg = PCH_ADPA;
1341         val = I915_READ(reg);
1342         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1343              "PCH VGA enabled on transcoder %c, should be disabled\n",
1344              pipe_name(pipe));
1345
1346         reg = PCH_LVDS;
1347         val = I915_READ(reg);
1348         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1349              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1353         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1354         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1355 }
1356
1357 static void intel_init_dpio(struct drm_device *dev)
1358 {
1359         struct drm_i915_private *dev_priv = dev->dev_private;
1360
1361         if (!IS_VALLEYVIEW(dev))
1362                 return;
1363
1364         /*
1365          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1366          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1367          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1368          *   b. The other bits such as sfr settings / modesel may all be set
1369          *      to 0.
1370          *
1371          * This should only be done on init and resume from S3 with both
1372          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1373          */
1374         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1375 }
1376
1377 static void vlv_enable_pll(struct intel_crtc *crtc)
1378 {
1379         struct drm_device *dev = crtc->base.dev;
1380         struct drm_i915_private *dev_priv = dev->dev_private;
1381         int reg = DPLL(crtc->pipe);
1382         u32 dpll = crtc->config.dpll_hw_state.dpll;
1383
1384         assert_pipe_disabled(dev_priv, crtc->pipe);
1385
1386         /* No really, not for ILK+ */
1387         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1388
1389         /* PLL is protected by panel, make sure we can write it */
1390         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1391                 assert_panel_unlocked(dev_priv, crtc->pipe);
1392
1393         I915_WRITE(reg, dpll);
1394         POSTING_READ(reg);
1395         udelay(150);
1396
1397         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1398                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1399
1400         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1401         POSTING_READ(DPLL_MD(crtc->pipe));
1402
1403         /* We do this three times for luck */
1404         I915_WRITE(reg, dpll);
1405         POSTING_READ(reg);
1406         udelay(150); /* wait for warmup */
1407         I915_WRITE(reg, dpll);
1408         POSTING_READ(reg);
1409         udelay(150); /* wait for warmup */
1410         I915_WRITE(reg, dpll);
1411         POSTING_READ(reg);
1412         udelay(150); /* wait for warmup */
1413 }
1414
1415 static void i9xx_enable_pll(struct intel_crtc *crtc)
1416 {
1417         struct drm_device *dev = crtc->base.dev;
1418         struct drm_i915_private *dev_priv = dev->dev_private;
1419         int reg = DPLL(crtc->pipe);
1420         u32 dpll = crtc->config.dpll_hw_state.dpll;
1421
1422         assert_pipe_disabled(dev_priv, crtc->pipe);
1423
1424         /* No really, not for ILK+ */
1425         BUG_ON(dev_priv->info->gen >= 5);
1426
1427         /* PLL is protected by panel, make sure we can write it */
1428         if (IS_MOBILE(dev) && !IS_I830(dev))
1429                 assert_panel_unlocked(dev_priv, crtc->pipe);
1430
1431         I915_WRITE(reg, dpll);
1432
1433         /* Wait for the clocks to stabilize. */
1434         POSTING_READ(reg);
1435         udelay(150);
1436
1437         if (INTEL_INFO(dev)->gen >= 4) {
1438                 I915_WRITE(DPLL_MD(crtc->pipe),
1439                            crtc->config.dpll_hw_state.dpll_md);
1440         } else {
1441                 /* The pixel multiplier can only be updated once the
1442                  * DPLL is enabled and the clocks are stable.
1443                  *
1444                  * So write it again.
1445                  */
1446                 I915_WRITE(reg, dpll);
1447         }
1448
1449         /* We do this three times for luck */
1450         I915_WRITE(reg, dpll);
1451         POSTING_READ(reg);
1452         udelay(150); /* wait for warmup */
1453         I915_WRITE(reg, dpll);
1454         POSTING_READ(reg);
1455         udelay(150); /* wait for warmup */
1456         I915_WRITE(reg, dpll);
1457         POSTING_READ(reg);
1458         udelay(150); /* wait for warmup */
1459 }
1460
1461 /**
1462  * i9xx_disable_pll - disable a PLL
1463  * @dev_priv: i915 private structure
1464  * @pipe: pipe PLL to disable
1465  *
1466  * Disable the PLL for @pipe, making sure the pipe is off first.
1467  *
1468  * Note!  This is for pre-ILK only.
1469  */
1470 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1471 {
1472         /* Don't disable pipe A or pipe A PLLs if needed */
1473         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1474                 return;
1475
1476         /* Make sure the pipe isn't still relying on us */
1477         assert_pipe_disabled(dev_priv, pipe);
1478
1479         I915_WRITE(DPLL(pipe), 0);
1480         POSTING_READ(DPLL(pipe));
1481 }
1482
1483 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1484 {
1485         u32 val = 0;
1486
1487         /* Make sure the pipe isn't still relying on us */
1488         assert_pipe_disabled(dev_priv, pipe);
1489
1490         /* Leave integrated clock source enabled */
1491         if (pipe == PIPE_B)
1492                 val = DPLL_INTEGRATED_CRI_CLK_VLV;
1493         I915_WRITE(DPLL(pipe), val);
1494         POSTING_READ(DPLL(pipe));
1495 }
1496
1497 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1498 {
1499         u32 port_mask;
1500
1501         if (!port)
1502                 port_mask = DPLL_PORTB_READY_MASK;
1503         else
1504                 port_mask = DPLL_PORTC_READY_MASK;
1505
1506         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1507                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1508                      'B' + port, I915_READ(DPLL(0)));
1509 }
1510
1511 /**
1512  * ironlake_enable_shared_dpll - enable PCH PLL
1513  * @dev_priv: i915 private structure
1514  * @pipe: pipe PLL to enable
1515  *
1516  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1517  * drives the transcoder clock.
1518  */
1519 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1520 {
1521         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1522         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1523
1524         /* PCH PLLs only available on ILK, SNB and IVB */
1525         BUG_ON(dev_priv->info->gen < 5);
1526         if (WARN_ON(pll == NULL))
1527                 return;
1528
1529         if (WARN_ON(pll->refcount == 0))
1530                 return;
1531
1532         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1533                       pll->name, pll->active, pll->on,
1534                       crtc->base.base.id);
1535
1536         if (pll->active++) {
1537                 WARN_ON(!pll->on);
1538                 assert_shared_dpll_enabled(dev_priv, pll);
1539                 return;
1540         }
1541         WARN_ON(pll->on);
1542
1543         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1544         pll->enable(dev_priv, pll);
1545         pll->on = true;
1546 }
1547
1548 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1549 {
1550         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1551         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1552
1553         /* PCH only available on ILK+ */
1554         BUG_ON(dev_priv->info->gen < 5);
1555         if (WARN_ON(pll == NULL))
1556                return;
1557
1558         if (WARN_ON(pll->refcount == 0))
1559                 return;
1560
1561         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1562                       pll->name, pll->active, pll->on,
1563                       crtc->base.base.id);
1564
1565         if (WARN_ON(pll->active == 0)) {
1566                 assert_shared_dpll_disabled(dev_priv, pll);
1567                 return;
1568         }
1569
1570         assert_shared_dpll_enabled(dev_priv, pll);
1571         WARN_ON(!pll->on);
1572         if (--pll->active)
1573                 return;
1574
1575         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1576         pll->disable(dev_priv, pll);
1577         pll->on = false;
1578 }
1579
1580 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1581                                            enum pipe pipe)
1582 {
1583         struct drm_device *dev = dev_priv->dev;
1584         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1585         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1586         uint32_t reg, val, pipeconf_val;
1587
1588         /* PCH only available on ILK+ */
1589         BUG_ON(dev_priv->info->gen < 5);
1590
1591         /* Make sure PCH DPLL is enabled */
1592         assert_shared_dpll_enabled(dev_priv,
1593                                    intel_crtc_to_shared_dpll(intel_crtc));
1594
1595         /* FDI must be feeding us bits for PCH ports */
1596         assert_fdi_tx_enabled(dev_priv, pipe);
1597         assert_fdi_rx_enabled(dev_priv, pipe);
1598
1599         if (HAS_PCH_CPT(dev)) {
1600                 /* Workaround: Set the timing override bit before enabling the
1601                  * pch transcoder. */
1602                 reg = TRANS_CHICKEN2(pipe);
1603                 val = I915_READ(reg);
1604                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1605                 I915_WRITE(reg, val);
1606         }
1607
1608         reg = PCH_TRANSCONF(pipe);
1609         val = I915_READ(reg);
1610         pipeconf_val = I915_READ(PIPECONF(pipe));
1611
1612         if (HAS_PCH_IBX(dev_priv->dev)) {
1613                 /*
1614                  * make the BPC in transcoder be consistent with
1615                  * that in pipeconf reg.
1616                  */
1617                 val &= ~PIPECONF_BPC_MASK;
1618                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1619         }
1620
1621         val &= ~TRANS_INTERLACE_MASK;
1622         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1623                 if (HAS_PCH_IBX(dev_priv->dev) &&
1624                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1625                         val |= TRANS_LEGACY_INTERLACED_ILK;
1626                 else
1627                         val |= TRANS_INTERLACED;
1628         else
1629                 val |= TRANS_PROGRESSIVE;
1630
1631         I915_WRITE(reg, val | TRANS_ENABLE);
1632         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1633                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1634 }
1635
1636 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1637                                       enum transcoder cpu_transcoder)
1638 {
1639         u32 val, pipeconf_val;
1640
1641         /* PCH only available on ILK+ */
1642         BUG_ON(dev_priv->info->gen < 5);
1643
1644         /* FDI must be feeding us bits for PCH ports */
1645         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1646         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1647
1648         /* Workaround: set timing override bit. */
1649         val = I915_READ(_TRANSA_CHICKEN2);
1650         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1651         I915_WRITE(_TRANSA_CHICKEN2, val);
1652
1653         val = TRANS_ENABLE;
1654         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1655
1656         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1657             PIPECONF_INTERLACED_ILK)
1658                 val |= TRANS_INTERLACED;
1659         else
1660                 val |= TRANS_PROGRESSIVE;
1661
1662         I915_WRITE(LPT_TRANSCONF, val);
1663         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1664                 DRM_ERROR("Failed to enable PCH transcoder\n");
1665 }
1666
1667 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1668                                             enum pipe pipe)
1669 {
1670         struct drm_device *dev = dev_priv->dev;
1671         uint32_t reg, val;
1672
1673         /* FDI relies on the transcoder */
1674         assert_fdi_tx_disabled(dev_priv, pipe);
1675         assert_fdi_rx_disabled(dev_priv, pipe);
1676
1677         /* Ports must be off as well */
1678         assert_pch_ports_disabled(dev_priv, pipe);
1679
1680         reg = PCH_TRANSCONF(pipe);
1681         val = I915_READ(reg);
1682         val &= ~TRANS_ENABLE;
1683         I915_WRITE(reg, val);
1684         /* wait for PCH transcoder off, transcoder state */
1685         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1686                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1687
1688         if (!HAS_PCH_IBX(dev)) {
1689                 /* Workaround: Clear the timing override chicken bit again. */
1690                 reg = TRANS_CHICKEN2(pipe);
1691                 val = I915_READ(reg);
1692                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1693                 I915_WRITE(reg, val);
1694         }
1695 }
1696
1697 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1698 {
1699         u32 val;
1700
1701         val = I915_READ(LPT_TRANSCONF);
1702         val &= ~TRANS_ENABLE;
1703         I915_WRITE(LPT_TRANSCONF, val);
1704         /* wait for PCH transcoder off, transcoder state */
1705         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1706                 DRM_ERROR("Failed to disable PCH transcoder\n");
1707
1708         /* Workaround: clear timing override bit. */
1709         val = I915_READ(_TRANSA_CHICKEN2);
1710         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1711         I915_WRITE(_TRANSA_CHICKEN2, val);
1712 }
1713
1714 /**
1715  * intel_enable_pipe - enable a pipe, asserting requirements
1716  * @dev_priv: i915 private structure
1717  * @pipe: pipe to enable
1718  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1719  *
1720  * Enable @pipe, making sure that various hardware specific requirements
1721  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1722  *
1723  * @pipe should be %PIPE_A or %PIPE_B.
1724  *
1725  * Will wait until the pipe is actually running (i.e. first vblank) before
1726  * returning.
1727  */
1728 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1729                               bool pch_port, bool dsi)
1730 {
1731         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1732                                                                       pipe);
1733         enum pipe pch_transcoder;
1734         int reg;
1735         u32 val;
1736
1737         assert_planes_disabled(dev_priv, pipe);
1738         assert_cursor_disabled(dev_priv, pipe);
1739         assert_sprites_disabled(dev_priv, pipe);
1740
1741         if (HAS_PCH_LPT(dev_priv->dev))
1742                 pch_transcoder = TRANSCODER_A;
1743         else
1744                 pch_transcoder = pipe;
1745
1746         /*
1747          * A pipe without a PLL won't actually be able to drive bits from
1748          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1749          * need the check.
1750          */
1751         if (!HAS_PCH_SPLIT(dev_priv->dev))
1752                 if (dsi)
1753                         assert_dsi_pll_enabled(dev_priv);
1754                 else
1755                         assert_pll_enabled(dev_priv, pipe);
1756         else {
1757                 if (pch_port) {
1758                         /* if driving the PCH, we need FDI enabled */
1759                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1760                         assert_fdi_tx_pll_enabled(dev_priv,
1761                                                   (enum pipe) cpu_transcoder);
1762                 }
1763                 /* FIXME: assert CPU port conditions for SNB+ */
1764         }
1765
1766         reg = PIPECONF(cpu_transcoder);
1767         val = I915_READ(reg);
1768         if (val & PIPECONF_ENABLE)
1769                 return;
1770
1771         I915_WRITE(reg, val | PIPECONF_ENABLE);
1772         intel_wait_for_vblank(dev_priv->dev, pipe);
1773 }
1774
1775 /**
1776  * intel_disable_pipe - disable a pipe, asserting requirements
1777  * @dev_priv: i915 private structure
1778  * @pipe: pipe to disable
1779  *
1780  * Disable @pipe, making sure that various hardware specific requirements
1781  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1782  *
1783  * @pipe should be %PIPE_A or %PIPE_B.
1784  *
1785  * Will wait until the pipe has shut down before returning.
1786  */
1787 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1788                                enum pipe pipe)
1789 {
1790         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1791                                                                       pipe);
1792         int reg;
1793         u32 val;
1794
1795         /*
1796          * Make sure planes won't keep trying to pump pixels to us,
1797          * or we might hang the display.
1798          */
1799         assert_planes_disabled(dev_priv, pipe);
1800         assert_cursor_disabled(dev_priv, pipe);
1801         assert_sprites_disabled(dev_priv, pipe);
1802
1803         /* Don't disable pipe A or pipe A PLLs if needed */
1804         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1805                 return;
1806
1807         reg = PIPECONF(cpu_transcoder);
1808         val = I915_READ(reg);
1809         if ((val & PIPECONF_ENABLE) == 0)
1810                 return;
1811
1812         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1813         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1814 }
1815
1816 /*
1817  * Plane regs are double buffered, going from enabled->disabled needs a
1818  * trigger in order to latch.  The display address reg provides this.
1819  */
1820 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1821                                enum plane plane)
1822 {
1823         u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1824
1825         I915_WRITE(reg, I915_READ(reg));
1826         POSTING_READ(reg);
1827 }
1828
1829 /**
1830  * intel_enable_primary_plane - enable the primary plane on a given pipe
1831  * @dev_priv: i915 private structure
1832  * @plane: plane to enable
1833  * @pipe: pipe being fed
1834  *
1835  * Enable @plane on @pipe, making sure that @pipe is running first.
1836  */
1837 static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1838                                        enum plane plane, enum pipe pipe)
1839 {
1840         struct intel_crtc *intel_crtc =
1841                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1842         int reg;
1843         u32 val;
1844
1845         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1846         assert_pipe_enabled(dev_priv, pipe);
1847
1848         WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1849
1850         intel_crtc->primary_enabled = true;
1851
1852         reg = DSPCNTR(plane);
1853         val = I915_READ(reg);
1854         if (val & DISPLAY_PLANE_ENABLE)
1855                 return;
1856
1857         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1858         intel_flush_primary_plane(dev_priv, plane);
1859         intel_wait_for_vblank(dev_priv->dev, pipe);
1860 }
1861
1862 /**
1863  * intel_disable_primary_plane - disable the primary plane
1864  * @dev_priv: i915 private structure
1865  * @plane: plane to disable
1866  * @pipe: pipe consuming the data
1867  *
1868  * Disable @plane; should be an independent operation.
1869  */
1870 static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1871                                         enum plane plane, enum pipe pipe)
1872 {
1873         struct intel_crtc *intel_crtc =
1874                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1875         int reg;
1876         u32 val;
1877
1878         WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1879
1880         intel_crtc->primary_enabled = false;
1881
1882         reg = DSPCNTR(plane);
1883         val = I915_READ(reg);
1884         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1885                 return;
1886
1887         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1888         intel_flush_primary_plane(dev_priv, plane);
1889         intel_wait_for_vblank(dev_priv->dev, pipe);
1890 }
1891
1892 static bool need_vtd_wa(struct drm_device *dev)
1893 {
1894 #ifdef CONFIG_INTEL_IOMMU
1895         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1896                 return true;
1897 #endif
1898         return false;
1899 }
1900
1901 int
1902 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1903                            struct drm_i915_gem_object *obj,
1904                            struct intel_ring_buffer *pipelined)
1905 {
1906         struct drm_i915_private *dev_priv = dev->dev_private;
1907         u32 alignment;
1908         int ret;
1909
1910         switch (obj->tiling_mode) {
1911         case I915_TILING_NONE:
1912                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1913                         alignment = 128 * 1024;
1914                 else if (INTEL_INFO(dev)->gen >= 4)
1915                         alignment = 4 * 1024;
1916                 else
1917                         alignment = 64 * 1024;
1918                 break;
1919         case I915_TILING_X:
1920                 /* pin() will align the object as required by fence */
1921                 alignment = 0;
1922                 break;
1923         case I915_TILING_Y:
1924                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1925                 return -EINVAL;
1926         default:
1927                 BUG();
1928         }
1929
1930         /* Note that the w/a also requires 64 PTE of padding following the
1931          * bo. We currently fill all unused PTE with the shadow page and so
1932          * we should always have valid PTE following the scanout preventing
1933          * the VT-d warning.
1934          */
1935         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1936                 alignment = 256 * 1024;
1937
1938         dev_priv->mm.interruptible = false;
1939         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1940         if (ret)
1941                 goto err_interruptible;
1942
1943         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1944          * fence, whereas 965+ only requires a fence if using
1945          * framebuffer compression.  For simplicity, we always install
1946          * a fence as the cost is not that onerous.
1947          */
1948         ret = i915_gem_object_get_fence(obj);
1949         if (ret)
1950                 goto err_unpin;
1951
1952         i915_gem_object_pin_fence(obj);
1953
1954         dev_priv->mm.interruptible = true;
1955         return 0;
1956
1957 err_unpin:
1958         i915_gem_object_unpin_from_display_plane(obj);
1959 err_interruptible:
1960         dev_priv->mm.interruptible = true;
1961         return ret;
1962 }
1963
1964 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1965 {
1966         i915_gem_object_unpin_fence(obj);
1967         i915_gem_object_unpin_from_display_plane(obj);
1968 }
1969
1970 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1971  * is assumed to be a power-of-two. */
1972 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1973                                              unsigned int tiling_mode,
1974                                              unsigned int cpp,
1975                                              unsigned int pitch)
1976 {
1977         if (tiling_mode != I915_TILING_NONE) {
1978                 unsigned int tile_rows, tiles;
1979
1980                 tile_rows = *y / 8;
1981                 *y %= 8;
1982
1983                 tiles = *x / (512/cpp);
1984                 *x %= 512/cpp;
1985
1986                 return tile_rows * pitch * 8 + tiles * 4096;
1987         } else {
1988                 unsigned int offset;
1989
1990                 offset = *y * pitch + *x * cpp;
1991                 *y = 0;
1992                 *x = (offset & 4095) / cpp;
1993                 return offset & -4096;
1994         }
1995 }
1996
1997 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1998                              int x, int y)
1999 {
2000         struct drm_device *dev = crtc->dev;
2001         struct drm_i915_private *dev_priv = dev->dev_private;
2002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2003         struct intel_framebuffer *intel_fb;
2004         struct drm_i915_gem_object *obj;
2005         int plane = intel_crtc->plane;
2006         unsigned long linear_offset;
2007         u32 dspcntr;
2008         u32 reg;
2009
2010         switch (plane) {
2011         case 0:
2012         case 1:
2013                 break;
2014         default:
2015                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2016                 return -EINVAL;
2017         }
2018
2019         intel_fb = to_intel_framebuffer(fb);
2020         obj = intel_fb->obj;
2021
2022         reg = DSPCNTR(plane);
2023         dspcntr = I915_READ(reg);
2024         /* Mask out pixel format bits in case we change it */
2025         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2026         switch (fb->pixel_format) {
2027         case DRM_FORMAT_C8:
2028                 dspcntr |= DISPPLANE_8BPP;
2029                 break;
2030         case DRM_FORMAT_XRGB1555:
2031         case DRM_FORMAT_ARGB1555:
2032                 dspcntr |= DISPPLANE_BGRX555;
2033                 break;
2034         case DRM_FORMAT_RGB565:
2035                 dspcntr |= DISPPLANE_BGRX565;
2036                 break;
2037         case DRM_FORMAT_XRGB8888:
2038         case DRM_FORMAT_ARGB8888:
2039                 dspcntr |= DISPPLANE_BGRX888;
2040                 break;
2041         case DRM_FORMAT_XBGR8888:
2042         case DRM_FORMAT_ABGR8888:
2043                 dspcntr |= DISPPLANE_RGBX888;
2044                 break;
2045         case DRM_FORMAT_XRGB2101010:
2046         case DRM_FORMAT_ARGB2101010:
2047                 dspcntr |= DISPPLANE_BGRX101010;
2048                 break;
2049         case DRM_FORMAT_XBGR2101010:
2050         case DRM_FORMAT_ABGR2101010:
2051                 dspcntr |= DISPPLANE_RGBX101010;
2052                 break;
2053         default:
2054                 BUG();
2055         }
2056
2057         if (INTEL_INFO(dev)->gen >= 4) {
2058                 if (obj->tiling_mode != I915_TILING_NONE)
2059                         dspcntr |= DISPPLANE_TILED;
2060                 else
2061                         dspcntr &= ~DISPPLANE_TILED;
2062         }
2063
2064         if (IS_G4X(dev))
2065                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2066
2067         I915_WRITE(reg, dspcntr);
2068
2069         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2070
2071         if (INTEL_INFO(dev)->gen >= 4) {
2072                 intel_crtc->dspaddr_offset =
2073                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2074                                                        fb->bits_per_pixel / 8,
2075                                                        fb->pitches[0]);
2076                 linear_offset -= intel_crtc->dspaddr_offset;
2077         } else {
2078                 intel_crtc->dspaddr_offset = linear_offset;
2079         }
2080
2081         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2082                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2083                       fb->pitches[0]);
2084         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2085         if (INTEL_INFO(dev)->gen >= 4) {
2086                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2087                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2088                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2089                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2090         } else
2091                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2092         POSTING_READ(reg);
2093
2094         return 0;
2095 }
2096
2097 static int ironlake_update_plane(struct drm_crtc *crtc,
2098                                  struct drm_framebuffer *fb, int x, int y)
2099 {
2100         struct drm_device *dev = crtc->dev;
2101         struct drm_i915_private *dev_priv = dev->dev_private;
2102         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2103         struct intel_framebuffer *intel_fb;
2104         struct drm_i915_gem_object *obj;
2105         int plane = intel_crtc->plane;
2106         unsigned long linear_offset;
2107         u32 dspcntr;
2108         u32 reg;
2109
2110         switch (plane) {
2111         case 0:
2112         case 1:
2113         case 2:
2114                 break;
2115         default:
2116                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2117                 return -EINVAL;
2118         }
2119
2120         intel_fb = to_intel_framebuffer(fb);
2121         obj = intel_fb->obj;
2122
2123         reg = DSPCNTR(plane);
2124         dspcntr = I915_READ(reg);
2125         /* Mask out pixel format bits in case we change it */
2126         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2127         switch (fb->pixel_format) {
2128         case DRM_FORMAT_C8:
2129                 dspcntr |= DISPPLANE_8BPP;
2130                 break;
2131         case DRM_FORMAT_RGB565:
2132                 dspcntr |= DISPPLANE_BGRX565;
2133                 break;
2134         case DRM_FORMAT_XRGB8888:
2135         case DRM_FORMAT_ARGB8888:
2136                 dspcntr |= DISPPLANE_BGRX888;
2137                 break;
2138         case DRM_FORMAT_XBGR8888:
2139         case DRM_FORMAT_ABGR8888:
2140                 dspcntr |= DISPPLANE_RGBX888;
2141                 break;
2142         case DRM_FORMAT_XRGB2101010:
2143         case DRM_FORMAT_ARGB2101010:
2144                 dspcntr |= DISPPLANE_BGRX101010;
2145                 break;
2146         case DRM_FORMAT_XBGR2101010:
2147         case DRM_FORMAT_ABGR2101010:
2148                 dspcntr |= DISPPLANE_RGBX101010;
2149                 break;
2150         default:
2151                 BUG();
2152         }
2153
2154         if (obj->tiling_mode != I915_TILING_NONE)
2155                 dspcntr |= DISPPLANE_TILED;
2156         else
2157                 dspcntr &= ~DISPPLANE_TILED;
2158
2159         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2160                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2161         else
2162                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2163
2164         I915_WRITE(reg, dspcntr);
2165
2166         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2167         intel_crtc->dspaddr_offset =
2168                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2169                                                fb->bits_per_pixel / 8,
2170                                                fb->pitches[0]);
2171         linear_offset -= intel_crtc->dspaddr_offset;
2172
2173         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2174                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2175                       fb->pitches[0]);
2176         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2177         I915_MODIFY_DISPBASE(DSPSURF(plane),
2178                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2179         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2180                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2181         } else {
2182                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2183                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2184         }
2185         POSTING_READ(reg);
2186
2187         return 0;
2188 }
2189
2190 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2191 static int
2192 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2193                            int x, int y, enum mode_set_atomic state)
2194 {
2195         struct drm_device *dev = crtc->dev;
2196         struct drm_i915_private *dev_priv = dev->dev_private;
2197
2198         if (dev_priv->display.disable_fbc)
2199                 dev_priv->display.disable_fbc(dev);
2200         intel_increase_pllclock(crtc);
2201
2202         return dev_priv->display.update_plane(crtc, fb, x, y);
2203 }
2204
2205 void intel_display_handle_reset(struct drm_device *dev)
2206 {
2207         struct drm_i915_private *dev_priv = dev->dev_private;
2208         struct drm_crtc *crtc;
2209
2210         /*
2211          * Flips in the rings have been nuked by the reset,
2212          * so complete all pending flips so that user space
2213          * will get its events and not get stuck.
2214          *
2215          * Also update the base address of all primary
2216          * planes to the the last fb to make sure we're
2217          * showing the correct fb after a reset.
2218          *
2219          * Need to make two loops over the crtcs so that we
2220          * don't try to grab a crtc mutex before the
2221          * pending_flip_queue really got woken up.
2222          */
2223
2224         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2225                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2226                 enum plane plane = intel_crtc->plane;
2227
2228                 intel_prepare_page_flip(dev, plane);
2229                 intel_finish_page_flip_plane(dev, plane);
2230         }
2231
2232         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2233                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234
2235                 mutex_lock(&crtc->mutex);
2236                 if (intel_crtc->active)
2237                         dev_priv->display.update_plane(crtc, crtc->fb,
2238                                                        crtc->x, crtc->y);
2239                 mutex_unlock(&crtc->mutex);
2240         }
2241 }
2242
2243 static int
2244 intel_finish_fb(struct drm_framebuffer *old_fb)
2245 {
2246         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2247         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2248         bool was_interruptible = dev_priv->mm.interruptible;
2249         int ret;
2250
2251         /* Big Hammer, we also need to ensure that any pending
2252          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2253          * current scanout is retired before unpinning the old
2254          * framebuffer.
2255          *
2256          * This should only fail upon a hung GPU, in which case we
2257          * can safely continue.
2258          */
2259         dev_priv->mm.interruptible = false;
2260         ret = i915_gem_object_finish_gpu(obj);
2261         dev_priv->mm.interruptible = was_interruptible;
2262
2263         return ret;
2264 }
2265
2266 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2267 {
2268         struct drm_device *dev = crtc->dev;
2269         struct drm_i915_master_private *master_priv;
2270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2271
2272         if (!dev->primary->master)
2273                 return;
2274
2275         master_priv = dev->primary->master->driver_priv;
2276         if (!master_priv->sarea_priv)
2277                 return;
2278
2279         switch (intel_crtc->pipe) {
2280         case 0:
2281                 master_priv->sarea_priv->pipeA_x = x;
2282                 master_priv->sarea_priv->pipeA_y = y;
2283                 break;
2284         case 1:
2285                 master_priv->sarea_priv->pipeB_x = x;
2286                 master_priv->sarea_priv->pipeB_y = y;
2287                 break;
2288         default:
2289                 break;
2290         }
2291 }
2292
2293 static int
2294 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2295                     struct drm_framebuffer *fb)
2296 {
2297         struct drm_device *dev = crtc->dev;
2298         struct drm_i915_private *dev_priv = dev->dev_private;
2299         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2300         struct drm_framebuffer *old_fb;
2301         int ret;
2302
2303         /* no fb bound */
2304         if (!fb) {
2305                 DRM_ERROR("No FB bound\n");
2306                 return 0;
2307         }
2308
2309         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2310                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2311                           plane_name(intel_crtc->plane),
2312                           INTEL_INFO(dev)->num_pipes);
2313                 return -EINVAL;
2314         }
2315
2316         mutex_lock(&dev->struct_mutex);
2317         ret = intel_pin_and_fence_fb_obj(dev,
2318                                          to_intel_framebuffer(fb)->obj,
2319                                          NULL);
2320         if (ret != 0) {
2321                 mutex_unlock(&dev->struct_mutex);
2322                 DRM_ERROR("pin & fence failed\n");
2323                 return ret;
2324         }
2325
2326         /*
2327          * Update pipe size and adjust fitter if needed: the reason for this is
2328          * that in compute_mode_changes we check the native mode (not the pfit
2329          * mode) to see if we can flip rather than do a full mode set. In the
2330          * fastboot case, we'll flip, but if we don't update the pipesrc and
2331          * pfit state, we'll end up with a big fb scanned out into the wrong
2332          * sized surface.
2333          *
2334          * To fix this properly, we need to hoist the checks up into
2335          * compute_mode_changes (or above), check the actual pfit state and
2336          * whether the platform allows pfit disable with pipe active, and only
2337          * then update the pipesrc and pfit state, even on the flip path.
2338          */
2339         if (i915_fastboot) {
2340                 const struct drm_display_mode *adjusted_mode =
2341                         &intel_crtc->config.adjusted_mode;
2342
2343                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2344                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2345                            (adjusted_mode->crtc_vdisplay - 1));
2346                 if (!intel_crtc->config.pch_pfit.enabled &&
2347                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2348                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2349                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2350                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2351                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2352                 }
2353         }
2354
2355         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2356         if (ret) {
2357                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2358                 mutex_unlock(&dev->struct_mutex);
2359                 DRM_ERROR("failed to update base address\n");
2360                 return ret;
2361         }
2362
2363         old_fb = crtc->fb;
2364         crtc->fb = fb;
2365         crtc->x = x;
2366         crtc->y = y;
2367
2368         if (old_fb) {
2369                 if (intel_crtc->active && old_fb != fb)
2370                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2371                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2372         }
2373
2374         intel_update_fbc(dev);
2375         intel_edp_psr_update(dev);
2376         mutex_unlock(&dev->struct_mutex);
2377
2378         intel_crtc_update_sarea_pos(crtc, x, y);
2379
2380         return 0;
2381 }
2382
2383 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2384 {
2385         struct drm_device *dev = crtc->dev;
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2388         int pipe = intel_crtc->pipe;
2389         u32 reg, temp;
2390
2391         /* enable normal train */
2392         reg = FDI_TX_CTL(pipe);
2393         temp = I915_READ(reg);
2394         if (IS_IVYBRIDGE(dev)) {
2395                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2396                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2397         } else {
2398                 temp &= ~FDI_LINK_TRAIN_NONE;
2399                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2400         }
2401         I915_WRITE(reg, temp);
2402
2403         reg = FDI_RX_CTL(pipe);
2404         temp = I915_READ(reg);
2405         if (HAS_PCH_CPT(dev)) {
2406                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2407                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2408         } else {
2409                 temp &= ~FDI_LINK_TRAIN_NONE;
2410                 temp |= FDI_LINK_TRAIN_NONE;
2411         }
2412         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2413
2414         /* wait one idle pattern time */
2415         POSTING_READ(reg);
2416         udelay(1000);
2417
2418         /* IVB wants error correction enabled */
2419         if (IS_IVYBRIDGE(dev))
2420                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2421                            FDI_FE_ERRC_ENABLE);
2422 }
2423
2424 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2425 {
2426         return crtc->base.enabled && crtc->active &&
2427                 crtc->config.has_pch_encoder;
2428 }
2429
2430 static void ivb_modeset_global_resources(struct drm_device *dev)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         struct intel_crtc *pipe_B_crtc =
2434                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2435         struct intel_crtc *pipe_C_crtc =
2436                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2437         uint32_t temp;
2438
2439         /*
2440          * When everything is off disable fdi C so that we could enable fdi B
2441          * with all lanes. Note that we don't care about enabled pipes without
2442          * an enabled pch encoder.
2443          */
2444         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2445             !pipe_has_enabled_pch(pipe_C_crtc)) {
2446                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2447                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2448
2449                 temp = I915_READ(SOUTH_CHICKEN1);
2450                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2451                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2452                 I915_WRITE(SOUTH_CHICKEN1, temp);
2453         }
2454 }
2455
2456 /* The FDI link training functions for ILK/Ibexpeak. */
2457 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2458 {
2459         struct drm_device *dev = crtc->dev;
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2462         int pipe = intel_crtc->pipe;
2463         int plane = intel_crtc->plane;
2464         u32 reg, temp, tries;
2465
2466         /* FDI needs bits from pipe & plane first */
2467         assert_pipe_enabled(dev_priv, pipe);
2468         assert_plane_enabled(dev_priv, plane);
2469
2470         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2471            for train result */
2472         reg = FDI_RX_IMR(pipe);
2473         temp = I915_READ(reg);
2474         temp &= ~FDI_RX_SYMBOL_LOCK;
2475         temp &= ~FDI_RX_BIT_LOCK;
2476         I915_WRITE(reg, temp);
2477         I915_READ(reg);
2478         udelay(150);
2479
2480         /* enable CPU FDI TX and PCH FDI RX */
2481         reg = FDI_TX_CTL(pipe);
2482         temp = I915_READ(reg);
2483         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2484         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2485         temp &= ~FDI_LINK_TRAIN_NONE;
2486         temp |= FDI_LINK_TRAIN_PATTERN_1;
2487         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2488
2489         reg = FDI_RX_CTL(pipe);
2490         temp = I915_READ(reg);
2491         temp &= ~FDI_LINK_TRAIN_NONE;
2492         temp |= FDI_LINK_TRAIN_PATTERN_1;
2493         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2494
2495         POSTING_READ(reg);
2496         udelay(150);
2497
2498         /* Ironlake workaround, enable clock pointer after FDI enable*/
2499         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2500         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2501                    FDI_RX_PHASE_SYNC_POINTER_EN);
2502
2503         reg = FDI_RX_IIR(pipe);
2504         for (tries = 0; tries < 5; tries++) {
2505                 temp = I915_READ(reg);
2506                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2507
2508                 if ((temp & FDI_RX_BIT_LOCK)) {
2509                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2510                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2511                         break;
2512                 }
2513         }
2514         if (tries == 5)
2515                 DRM_ERROR("FDI train 1 fail!\n");
2516
2517         /* Train 2 */
2518         reg = FDI_TX_CTL(pipe);
2519         temp = I915_READ(reg);
2520         temp &= ~FDI_LINK_TRAIN_NONE;
2521         temp |= FDI_LINK_TRAIN_PATTERN_2;
2522         I915_WRITE(reg, temp);
2523
2524         reg = FDI_RX_CTL(pipe);
2525         temp = I915_READ(reg);
2526         temp &= ~FDI_LINK_TRAIN_NONE;
2527         temp |= FDI_LINK_TRAIN_PATTERN_2;
2528         I915_WRITE(reg, temp);
2529
2530         POSTING_READ(reg);
2531         udelay(150);
2532
2533         reg = FDI_RX_IIR(pipe);
2534         for (tries = 0; tries < 5; tries++) {
2535                 temp = I915_READ(reg);
2536                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538                 if (temp & FDI_RX_SYMBOL_LOCK) {
2539                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2540                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2541                         break;
2542                 }
2543         }
2544         if (tries == 5)
2545                 DRM_ERROR("FDI train 2 fail!\n");
2546
2547         DRM_DEBUG_KMS("FDI train done\n");
2548
2549 }
2550
2551 static const int snb_b_fdi_train_param[] = {
2552         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2553         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2554         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2555         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2556 };
2557
2558 /* The FDI link training functions for SNB/Cougarpoint. */
2559 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2560 {
2561         struct drm_device *dev = crtc->dev;
2562         struct drm_i915_private *dev_priv = dev->dev_private;
2563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2564         int pipe = intel_crtc->pipe;
2565         u32 reg, temp, i, retry;
2566
2567         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2568            for train result */
2569         reg = FDI_RX_IMR(pipe);
2570         temp = I915_READ(reg);
2571         temp &= ~FDI_RX_SYMBOL_LOCK;
2572         temp &= ~FDI_RX_BIT_LOCK;
2573         I915_WRITE(reg, temp);
2574
2575         POSTING_READ(reg);
2576         udelay(150);
2577
2578         /* enable CPU FDI TX and PCH FDI RX */
2579         reg = FDI_TX_CTL(pipe);
2580         temp = I915_READ(reg);
2581         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2582         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2583         temp &= ~FDI_LINK_TRAIN_NONE;
2584         temp |= FDI_LINK_TRAIN_PATTERN_1;
2585         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2586         /* SNB-B */
2587         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2588         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2589
2590         I915_WRITE(FDI_RX_MISC(pipe),
2591                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2592
2593         reg = FDI_RX_CTL(pipe);
2594         temp = I915_READ(reg);
2595         if (HAS_PCH_CPT(dev)) {
2596                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2598         } else {
2599                 temp &= ~FDI_LINK_TRAIN_NONE;
2600                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2601         }
2602         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2603
2604         POSTING_READ(reg);
2605         udelay(150);
2606
2607         for (i = 0; i < 4; i++) {
2608                 reg = FDI_TX_CTL(pipe);
2609                 temp = I915_READ(reg);
2610                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611                 temp |= snb_b_fdi_train_param[i];
2612                 I915_WRITE(reg, temp);
2613
2614                 POSTING_READ(reg);
2615                 udelay(500);
2616
2617                 for (retry = 0; retry < 5; retry++) {
2618                         reg = FDI_RX_IIR(pipe);
2619                         temp = I915_READ(reg);
2620                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621                         if (temp & FDI_RX_BIT_LOCK) {
2622                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2623                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2624                                 break;
2625                         }
2626                         udelay(50);
2627                 }
2628                 if (retry < 5)
2629                         break;
2630         }
2631         if (i == 4)
2632                 DRM_ERROR("FDI train 1 fail!\n");
2633
2634         /* Train 2 */
2635         reg = FDI_TX_CTL(pipe);
2636         temp = I915_READ(reg);
2637         temp &= ~FDI_LINK_TRAIN_NONE;
2638         temp |= FDI_LINK_TRAIN_PATTERN_2;
2639         if (IS_GEN6(dev)) {
2640                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641                 /* SNB-B */
2642                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2643         }
2644         I915_WRITE(reg, temp);
2645
2646         reg = FDI_RX_CTL(pipe);
2647         temp = I915_READ(reg);
2648         if (HAS_PCH_CPT(dev)) {
2649                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2650                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2651         } else {
2652                 temp &= ~FDI_LINK_TRAIN_NONE;
2653                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2654         }
2655         I915_WRITE(reg, temp);
2656
2657         POSTING_READ(reg);
2658         udelay(150);
2659
2660         for (i = 0; i < 4; i++) {
2661                 reg = FDI_TX_CTL(pipe);
2662                 temp = I915_READ(reg);
2663                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664                 temp |= snb_b_fdi_train_param[i];
2665                 I915_WRITE(reg, temp);
2666
2667                 POSTING_READ(reg);
2668                 udelay(500);
2669
2670                 for (retry = 0; retry < 5; retry++) {
2671                         reg = FDI_RX_IIR(pipe);
2672                         temp = I915_READ(reg);
2673                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2674                         if (temp & FDI_RX_SYMBOL_LOCK) {
2675                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2676                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2677                                 break;
2678                         }
2679                         udelay(50);
2680                 }
2681                 if (retry < 5)
2682                         break;
2683         }
2684         if (i == 4)
2685                 DRM_ERROR("FDI train 2 fail!\n");
2686
2687         DRM_DEBUG_KMS("FDI train done.\n");
2688 }
2689
2690 /* Manual link training for Ivy Bridge A0 parts */
2691 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2692 {
2693         struct drm_device *dev = crtc->dev;
2694         struct drm_i915_private *dev_priv = dev->dev_private;
2695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2696         int pipe = intel_crtc->pipe;
2697         u32 reg, temp, i, j;
2698
2699         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2700            for train result */
2701         reg = FDI_RX_IMR(pipe);
2702         temp = I915_READ(reg);
2703         temp &= ~FDI_RX_SYMBOL_LOCK;
2704         temp &= ~FDI_RX_BIT_LOCK;
2705         I915_WRITE(reg, temp);
2706
2707         POSTING_READ(reg);
2708         udelay(150);
2709
2710         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2711                       I915_READ(FDI_RX_IIR(pipe)));
2712
2713         /* Try each vswing and preemphasis setting twice before moving on */
2714         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2715                 /* disable first in case we need to retry */
2716                 reg = FDI_TX_CTL(pipe);
2717                 temp = I915_READ(reg);
2718                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2719                 temp &= ~FDI_TX_ENABLE;
2720                 I915_WRITE(reg, temp);
2721
2722                 reg = FDI_RX_CTL(pipe);
2723                 temp = I915_READ(reg);
2724                 temp &= ~FDI_LINK_TRAIN_AUTO;
2725                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2726                 temp &= ~FDI_RX_ENABLE;
2727                 I915_WRITE(reg, temp);
2728
2729                 /* enable CPU FDI TX and PCH FDI RX */
2730                 reg = FDI_TX_CTL(pipe);
2731                 temp = I915_READ(reg);
2732                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2733                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2734                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2735                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2736                 temp |= snb_b_fdi_train_param[j/2];
2737                 temp |= FDI_COMPOSITE_SYNC;
2738                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2739
2740                 I915_WRITE(FDI_RX_MISC(pipe),
2741                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2742
2743                 reg = FDI_RX_CTL(pipe);
2744                 temp = I915_READ(reg);
2745                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2746                 temp |= FDI_COMPOSITE_SYNC;
2747                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2748
2749                 POSTING_READ(reg);
2750                 udelay(1); /* should be 0.5us */
2751
2752                 for (i = 0; i < 4; i++) {
2753                         reg = FDI_RX_IIR(pipe);
2754                         temp = I915_READ(reg);
2755                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2756
2757                         if (temp & FDI_RX_BIT_LOCK ||
2758                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2759                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2760                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2761                                               i);
2762                                 break;
2763                         }
2764                         udelay(1); /* should be 0.5us */
2765                 }
2766                 if (i == 4) {
2767                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2768                         continue;
2769                 }
2770
2771                 /* Train 2 */
2772                 reg = FDI_TX_CTL(pipe);
2773                 temp = I915_READ(reg);
2774                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2775                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2776                 I915_WRITE(reg, temp);
2777
2778                 reg = FDI_RX_CTL(pipe);
2779                 temp = I915_READ(reg);
2780                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2781                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2782                 I915_WRITE(reg, temp);
2783
2784                 POSTING_READ(reg);
2785                 udelay(2); /* should be 1.5us */
2786
2787                 for (i = 0; i < 4; i++) {
2788                         reg = FDI_RX_IIR(pipe);
2789                         temp = I915_READ(reg);
2790                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2791
2792                         if (temp & FDI_RX_SYMBOL_LOCK ||
2793                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2794                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2795                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2796                                               i);
2797                                 goto train_done;
2798                         }
2799                         udelay(2); /* should be 1.5us */
2800                 }
2801                 if (i == 4)
2802                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2803         }
2804
2805 train_done:
2806         DRM_DEBUG_KMS("FDI train done.\n");
2807 }
2808
2809 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2810 {
2811         struct drm_device *dev = intel_crtc->base.dev;
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813         int pipe = intel_crtc->pipe;
2814         u32 reg, temp;
2815
2816
2817         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2818         reg = FDI_RX_CTL(pipe);
2819         temp = I915_READ(reg);
2820         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2821         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2822         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2823         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2824
2825         POSTING_READ(reg);
2826         udelay(200);
2827
2828         /* Switch from Rawclk to PCDclk */
2829         temp = I915_READ(reg);
2830         I915_WRITE(reg, temp | FDI_PCDCLK);
2831
2832         POSTING_READ(reg);
2833         udelay(200);
2834
2835         /* Enable CPU FDI TX PLL, always on for Ironlake */
2836         reg = FDI_TX_CTL(pipe);
2837         temp = I915_READ(reg);
2838         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2839                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2840
2841                 POSTING_READ(reg);
2842                 udelay(100);
2843         }
2844 }
2845
2846 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2847 {
2848         struct drm_device *dev = intel_crtc->base.dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         int pipe = intel_crtc->pipe;
2851         u32 reg, temp;
2852
2853         /* Switch from PCDclk to Rawclk */
2854         reg = FDI_RX_CTL(pipe);
2855         temp = I915_READ(reg);
2856         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2857
2858         /* Disable CPU FDI TX PLL */
2859         reg = FDI_TX_CTL(pipe);
2860         temp = I915_READ(reg);
2861         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2862
2863         POSTING_READ(reg);
2864         udelay(100);
2865
2866         reg = FDI_RX_CTL(pipe);
2867         temp = I915_READ(reg);
2868         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2869
2870         /* Wait for the clocks to turn off. */
2871         POSTING_READ(reg);
2872         udelay(100);
2873 }
2874
2875 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880         int pipe = intel_crtc->pipe;
2881         u32 reg, temp;
2882
2883         /* disable CPU FDI tx and PCH FDI rx */
2884         reg = FDI_TX_CTL(pipe);
2885         temp = I915_READ(reg);
2886         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2887         POSTING_READ(reg);
2888
2889         reg = FDI_RX_CTL(pipe);
2890         temp = I915_READ(reg);
2891         temp &= ~(0x7 << 16);
2892         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2893         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2894
2895         POSTING_READ(reg);
2896         udelay(100);
2897
2898         /* Ironlake workaround, disable clock pointer after downing FDI */
2899         if (HAS_PCH_IBX(dev)) {
2900                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2901         }
2902
2903         /* still set train pattern 1 */
2904         reg = FDI_TX_CTL(pipe);
2905         temp = I915_READ(reg);
2906         temp &= ~FDI_LINK_TRAIN_NONE;
2907         temp |= FDI_LINK_TRAIN_PATTERN_1;
2908         I915_WRITE(reg, temp);
2909
2910         reg = FDI_RX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         if (HAS_PCH_CPT(dev)) {
2913                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2914                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2915         } else {
2916                 temp &= ~FDI_LINK_TRAIN_NONE;
2917                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2918         }
2919         /* BPC in FDI rx is consistent with that in PIPECONF */
2920         temp &= ~(0x07 << 16);
2921         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2922         I915_WRITE(reg, temp);
2923
2924         POSTING_READ(reg);
2925         udelay(100);
2926 }
2927
2928 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2929 {
2930         struct drm_device *dev = crtc->dev;
2931         struct drm_i915_private *dev_priv = dev->dev_private;
2932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2933         unsigned long flags;
2934         bool pending;
2935
2936         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2937             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2938                 return false;
2939
2940         spin_lock_irqsave(&dev->event_lock, flags);
2941         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2942         spin_unlock_irqrestore(&dev->event_lock, flags);
2943
2944         return pending;
2945 }
2946
2947 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2948 {
2949         struct drm_device *dev = crtc->dev;
2950         struct drm_i915_private *dev_priv = dev->dev_private;
2951
2952         if (crtc->fb == NULL)
2953                 return;
2954
2955         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2956
2957         wait_event(dev_priv->pending_flip_queue,
2958                    !intel_crtc_has_pending_flip(crtc));
2959
2960         mutex_lock(&dev->struct_mutex);
2961         intel_finish_fb(crtc->fb);
2962         mutex_unlock(&dev->struct_mutex);
2963 }
2964
2965 /* Program iCLKIP clock to the desired frequency */
2966 static void lpt_program_iclkip(struct drm_crtc *crtc)
2967 {
2968         struct drm_device *dev = crtc->dev;
2969         struct drm_i915_private *dev_priv = dev->dev_private;
2970         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2971         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2972         u32 temp;
2973
2974         mutex_lock(&dev_priv->dpio_lock);
2975
2976         /* It is necessary to ungate the pixclk gate prior to programming
2977          * the divisors, and gate it back when it is done.
2978          */
2979         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2980
2981         /* Disable SSCCTL */
2982         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2983                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2984                                 SBI_SSCCTL_DISABLE,
2985                         SBI_ICLK);
2986
2987         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2988         if (clock == 20000) {
2989                 auxdiv = 1;
2990                 divsel = 0x41;
2991                 phaseinc = 0x20;
2992         } else {
2993                 /* The iCLK virtual clock root frequency is in MHz,
2994                  * but the adjusted_mode->crtc_clock in in KHz. To get the
2995                  * divisors, it is necessary to divide one by another, so we
2996                  * convert the virtual clock precision to KHz here for higher
2997                  * precision.
2998                  */
2999                 u32 iclk_virtual_root_freq = 172800 * 1000;
3000                 u32 iclk_pi_range = 64;
3001                 u32 desired_divisor, msb_divisor_value, pi_value;
3002
3003                 desired_divisor = (iclk_virtual_root_freq / clock);
3004                 msb_divisor_value = desired_divisor / iclk_pi_range;
3005                 pi_value = desired_divisor % iclk_pi_range;
3006
3007                 auxdiv = 0;
3008                 divsel = msb_divisor_value - 2;
3009                 phaseinc = pi_value;
3010         }
3011
3012         /* This should not happen with any sane values */
3013         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3014                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3015         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3016                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3017
3018         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3019                         clock,
3020                         auxdiv,
3021                         divsel,
3022                         phasedir,
3023                         phaseinc);
3024
3025         /* Program SSCDIVINTPHASE6 */
3026         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3027         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3028         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3029         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3030         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3031         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3032         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3033         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3034
3035         /* Program SSCAUXDIV */
3036         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3037         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3038         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3039         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3040
3041         /* Enable modulator and associated divider */
3042         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3043         temp &= ~SBI_SSCCTL_DISABLE;
3044         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3045
3046         /* Wait for initialization time */
3047         udelay(24);
3048
3049         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3050
3051         mutex_unlock(&dev_priv->dpio_lock);
3052 }
3053
3054 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3055                                                 enum pipe pch_transcoder)
3056 {
3057         struct drm_device *dev = crtc->base.dev;
3058         struct drm_i915_private *dev_priv = dev->dev_private;
3059         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3060
3061         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3062                    I915_READ(HTOTAL(cpu_transcoder)));
3063         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3064                    I915_READ(HBLANK(cpu_transcoder)));
3065         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3066                    I915_READ(HSYNC(cpu_transcoder)));
3067
3068         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3069                    I915_READ(VTOTAL(cpu_transcoder)));
3070         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3071                    I915_READ(VBLANK(cpu_transcoder)));
3072         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3073                    I915_READ(VSYNC(cpu_transcoder)));
3074         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3075                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3076 }
3077
3078 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3079 {
3080         struct drm_i915_private *dev_priv = dev->dev_private;
3081         uint32_t temp;
3082
3083         temp = I915_READ(SOUTH_CHICKEN1);
3084         if (temp & FDI_BC_BIFURCATION_SELECT)
3085                 return;
3086
3087         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3088         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3089
3090         temp |= FDI_BC_BIFURCATION_SELECT;
3091         DRM_DEBUG_KMS("enabling fdi C rx\n");
3092         I915_WRITE(SOUTH_CHICKEN1, temp);
3093         POSTING_READ(SOUTH_CHICKEN1);
3094 }
3095
3096 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3097 {
3098         struct drm_device *dev = intel_crtc->base.dev;
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100
3101         switch (intel_crtc->pipe) {
3102         case PIPE_A:
3103                 break;
3104         case PIPE_B:
3105                 if (intel_crtc->config.fdi_lanes > 2)
3106                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3107                 else
3108                         cpt_enable_fdi_bc_bifurcation(dev);
3109
3110                 break;
3111         case PIPE_C:
3112                 cpt_enable_fdi_bc_bifurcation(dev);
3113
3114                 break;
3115         default:
3116                 BUG();
3117         }
3118 }
3119
3120 /*
3121  * Enable PCH resources required for PCH ports:
3122  *   - PCH PLLs
3123  *   - FDI training & RX/TX
3124  *   - update transcoder timings
3125  *   - DP transcoding bits
3126  *   - transcoder
3127  */
3128 static void ironlake_pch_enable(struct drm_crtc *crtc)
3129 {
3130         struct drm_device *dev = crtc->dev;
3131         struct drm_i915_private *dev_priv = dev->dev_private;
3132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3133         int pipe = intel_crtc->pipe;
3134         u32 reg, temp;
3135
3136         assert_pch_transcoder_disabled(dev_priv, pipe);
3137
3138         if (IS_IVYBRIDGE(dev))
3139                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3140
3141         /* Write the TU size bits before fdi link training, so that error
3142          * detection works. */
3143         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3144                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3145
3146         /* For PCH output, training FDI link */
3147         dev_priv->display.fdi_link_train(crtc);
3148
3149         /* We need to program the right clock selection before writing the pixel
3150          * mutliplier into the DPLL. */
3151         if (HAS_PCH_CPT(dev)) {
3152                 u32 sel;
3153
3154                 temp = I915_READ(PCH_DPLL_SEL);
3155                 temp |= TRANS_DPLL_ENABLE(pipe);
3156                 sel = TRANS_DPLLB_SEL(pipe);
3157                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3158                         temp |= sel;
3159                 else
3160                         temp &= ~sel;
3161                 I915_WRITE(PCH_DPLL_SEL, temp);
3162         }
3163
3164         /* XXX: pch pll's can be enabled any time before we enable the PCH
3165          * transcoder, and we actually should do this to not upset any PCH
3166          * transcoder that already use the clock when we share it.
3167          *
3168          * Note that enable_shared_dpll tries to do the right thing, but
3169          * get_shared_dpll unconditionally resets the pll - we need that to have
3170          * the right LVDS enable sequence. */
3171         ironlake_enable_shared_dpll(intel_crtc);
3172
3173         /* set transcoder timing, panel must allow it */
3174         assert_panel_unlocked(dev_priv, pipe);
3175         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3176
3177         intel_fdi_normal_train(crtc);
3178
3179         /* For PCH DP, enable TRANS_DP_CTL */
3180         if (HAS_PCH_CPT(dev) &&
3181             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3182              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3183                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3184                 reg = TRANS_DP_CTL(pipe);
3185                 temp = I915_READ(reg);
3186                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3187                           TRANS_DP_SYNC_MASK |
3188                           TRANS_DP_BPC_MASK);
3189                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3190                          TRANS_DP_ENH_FRAMING);
3191                 temp |= bpc << 9; /* same format but at 11:9 */
3192
3193                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3194                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3195                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3196                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3197
3198                 switch (intel_trans_dp_port_sel(crtc)) {
3199                 case PCH_DP_B:
3200                         temp |= TRANS_DP_PORT_SEL_B;
3201                         break;
3202                 case PCH_DP_C:
3203                         temp |= TRANS_DP_PORT_SEL_C;
3204                         break;
3205                 case PCH_DP_D:
3206                         temp |= TRANS_DP_PORT_SEL_D;
3207                         break;
3208                 default:
3209                         BUG();
3210                 }
3211
3212                 I915_WRITE(reg, temp);
3213         }
3214
3215         ironlake_enable_pch_transcoder(dev_priv, pipe);
3216 }
3217
3218 static void lpt_pch_enable(struct drm_crtc *crtc)
3219 {
3220         struct drm_device *dev = crtc->dev;
3221         struct drm_i915_private *dev_priv = dev->dev_private;
3222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3223         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3224
3225         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3226
3227         lpt_program_iclkip(crtc);
3228
3229         /* Set transcoder timing. */
3230         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3231
3232         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3233 }
3234
3235 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3236 {
3237         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3238
3239         if (pll == NULL)
3240                 return;
3241
3242         if (pll->refcount == 0) {
3243                 WARN(1, "bad %s refcount\n", pll->name);
3244                 return;
3245         }
3246
3247         if (--pll->refcount == 0) {
3248                 WARN_ON(pll->on);
3249                 WARN_ON(pll->active);
3250         }
3251
3252         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3253 }
3254
3255 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3256 {
3257         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3258         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3259         enum intel_dpll_id i;
3260
3261         if (pll) {
3262                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3263                               crtc->base.base.id, pll->name);
3264                 intel_put_shared_dpll(crtc);
3265         }
3266
3267         if (HAS_PCH_IBX(dev_priv->dev)) {
3268                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3269                 i = (enum intel_dpll_id) crtc->pipe;
3270                 pll = &dev_priv->shared_dplls[i];
3271
3272                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3273                               crtc->base.base.id, pll->name);
3274
3275                 goto found;
3276         }
3277
3278         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3279                 pll = &dev_priv->shared_dplls[i];
3280
3281                 /* Only want to check enabled timings first */
3282                 if (pll->refcount == 0)
3283                         continue;
3284
3285                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3286                            sizeof(pll->hw_state)) == 0) {
3287                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3288                                       crtc->base.base.id,
3289                                       pll->name, pll->refcount, pll->active);
3290
3291                         goto found;
3292                 }
3293         }
3294
3295         /* Ok no matching timings, maybe there's a free one? */
3296         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3297                 pll = &dev_priv->shared_dplls[i];
3298                 if (pll->refcount == 0) {
3299                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3300                                       crtc->base.base.id, pll->name);
3301                         goto found;
3302                 }
3303         }
3304
3305         return NULL;
3306
3307 found:
3308         crtc->config.shared_dpll = i;
3309         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3310                          pipe_name(crtc->pipe));
3311
3312         if (pll->active == 0) {
3313                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3314                        sizeof(pll->hw_state));
3315
3316                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3317                 WARN_ON(pll->on);
3318                 assert_shared_dpll_disabled(dev_priv, pll);
3319
3320                 pll->mode_set(dev_priv, pll);
3321         }
3322         pll->refcount++;
3323
3324         return pll;
3325 }
3326
3327 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3328 {
3329         struct drm_i915_private *dev_priv = dev->dev_private;
3330         int dslreg = PIPEDSL(pipe);
3331         u32 temp;
3332
3333         temp = I915_READ(dslreg);
3334         udelay(500);
3335         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3336                 if (wait_for(I915_READ(dslreg) != temp, 5))
3337                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3338         }
3339 }
3340
3341 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3342 {
3343         struct drm_device *dev = crtc->base.dev;
3344         struct drm_i915_private *dev_priv = dev->dev_private;
3345         int pipe = crtc->pipe;
3346
3347         if (crtc->config.pch_pfit.enabled) {
3348                 /* Force use of hard-coded filter coefficients
3349                  * as some pre-programmed values are broken,
3350                  * e.g. x201.
3351                  */
3352                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3353                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3354                                                  PF_PIPE_SEL_IVB(pipe));
3355                 else
3356                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3357                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3358                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3359         }
3360 }
3361
3362 static void intel_enable_planes(struct drm_crtc *crtc)
3363 {
3364         struct drm_device *dev = crtc->dev;
3365         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3366         struct intel_plane *intel_plane;
3367
3368         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3369                 if (intel_plane->pipe == pipe)
3370                         intel_plane_restore(&intel_plane->base);
3371 }
3372
3373 static void intel_disable_planes(struct drm_crtc *crtc)
3374 {
3375         struct drm_device *dev = crtc->dev;
3376         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3377         struct intel_plane *intel_plane;
3378
3379         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3380                 if (intel_plane->pipe == pipe)
3381                         intel_plane_disable(&intel_plane->base);
3382 }
3383
3384 void hsw_enable_ips(struct intel_crtc *crtc)
3385 {
3386         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3387
3388         if (!crtc->config.ips_enabled)
3389                 return;
3390
3391         /* We can only enable IPS after we enable a plane and wait for a vblank.
3392          * We guarantee that the plane is enabled by calling intel_enable_ips
3393          * only after intel_enable_plane. And intel_enable_plane already waits
3394          * for a vblank, so all we need to do here is to enable the IPS bit. */
3395         assert_plane_enabled(dev_priv, crtc->plane);
3396         if (IS_BROADWELL(crtc->base.dev)) {
3397                 mutex_lock(&dev_priv->rps.hw_lock);
3398                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3399                 mutex_unlock(&dev_priv->rps.hw_lock);
3400                 /* Quoting Art Runyan: "its not safe to expect any particular
3401                  * value in IPS_CTL bit 31 after enabling IPS through the
3402                  * mailbox." Therefore we need to defer waiting on the state
3403                  * change.
3404                  * TODO: need to fix this for state checker
3405                  */
3406         } else {
3407                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3408                 /* The bit only becomes 1 in the next vblank, so this wait here
3409                  * is essentially intel_wait_for_vblank. If we don't have this
3410                  * and don't wait for vblanks until the end of crtc_enable, then
3411                  * the HW state readout code will complain that the expected
3412                  * IPS_CTL value is not the one we read. */
3413                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3414                         DRM_ERROR("Timed out waiting for IPS enable\n");
3415         }
3416 }
3417
3418 void hsw_disable_ips(struct intel_crtc *crtc)
3419 {
3420         struct drm_device *dev = crtc->base.dev;
3421         struct drm_i915_private *dev_priv = dev->dev_private;
3422
3423         if (!crtc->config.ips_enabled)
3424                 return;
3425
3426         assert_plane_enabled(dev_priv, crtc->plane);
3427         if (IS_BROADWELL(crtc->base.dev)) {
3428                 mutex_lock(&dev_priv->rps.hw_lock);
3429                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3430                 mutex_unlock(&dev_priv->rps.hw_lock);
3431         } else
3432                 I915_WRITE(IPS_CTL, 0);
3433         POSTING_READ(IPS_CTL);
3434
3435         /* We need to wait for a vblank before we can disable the plane. */
3436         intel_wait_for_vblank(dev, crtc->pipe);
3437 }
3438
3439 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3440 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3441 {
3442         struct drm_device *dev = crtc->dev;
3443         struct drm_i915_private *dev_priv = dev->dev_private;
3444         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445         enum pipe pipe = intel_crtc->pipe;
3446         int palreg = PALETTE(pipe);
3447         int i;
3448         bool reenable_ips = false;
3449
3450         /* The clocks have to be on to load the palette. */
3451         if (!crtc->enabled || !intel_crtc->active)
3452                 return;
3453
3454         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3455                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3456                         assert_dsi_pll_enabled(dev_priv);
3457                 else
3458                         assert_pll_enabled(dev_priv, pipe);
3459         }
3460
3461         /* use legacy palette for Ironlake */
3462         if (HAS_PCH_SPLIT(dev))
3463                 palreg = LGC_PALETTE(pipe);
3464
3465         /* Workaround : Do not read or write the pipe palette/gamma data while
3466          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3467          */
3468         if (intel_crtc->config.ips_enabled &&
3469             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3470              GAMMA_MODE_MODE_SPLIT)) {
3471                 hsw_disable_ips(intel_crtc);
3472                 reenable_ips = true;
3473         }
3474
3475         for (i = 0; i < 256; i++) {
3476                 I915_WRITE(palreg + 4 * i,
3477                            (intel_crtc->lut_r[i] << 16) |
3478                            (intel_crtc->lut_g[i] << 8) |
3479                            intel_crtc->lut_b[i]);
3480         }
3481
3482         if (reenable_ips)
3483                 hsw_enable_ips(intel_crtc);
3484 }
3485
3486 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3487 {
3488         struct drm_device *dev = crtc->dev;
3489         struct drm_i915_private *dev_priv = dev->dev_private;
3490         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3491         struct intel_encoder *encoder;
3492         int pipe = intel_crtc->pipe;
3493         int plane = intel_crtc->plane;
3494
3495         WARN_ON(!crtc->enabled);
3496
3497         if (intel_crtc->active)
3498                 return;
3499
3500         intel_crtc->active = true;
3501
3502         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3503         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3504
3505         for_each_encoder_on_crtc(dev, crtc, encoder)
3506                 if (encoder->pre_enable)
3507                         encoder->pre_enable(encoder);
3508
3509         if (intel_crtc->config.has_pch_encoder) {
3510                 /* Note: FDI PLL enabling _must_ be done before we enable the
3511                  * cpu pipes, hence this is separate from all the other fdi/pch
3512                  * enabling. */
3513                 ironlake_fdi_pll_enable(intel_crtc);
3514         } else {
3515                 assert_fdi_tx_disabled(dev_priv, pipe);
3516                 assert_fdi_rx_disabled(dev_priv, pipe);
3517         }
3518
3519         ironlake_pfit_enable(intel_crtc);
3520
3521         /*
3522          * On ILK+ LUT must be loaded before the pipe is running but with
3523          * clocks enabled
3524          */
3525         intel_crtc_load_lut(crtc);
3526
3527         intel_update_watermarks(crtc);
3528         intel_enable_pipe(dev_priv, pipe,
3529                           intel_crtc->config.has_pch_encoder, false);
3530         intel_enable_primary_plane(dev_priv, plane, pipe);
3531         intel_enable_planes(crtc);
3532         intel_crtc_update_cursor(crtc, true);
3533
3534         if (intel_crtc->config.has_pch_encoder)
3535                 ironlake_pch_enable(crtc);
3536
3537         mutex_lock(&dev->struct_mutex);
3538         intel_update_fbc(dev);
3539         mutex_unlock(&dev->struct_mutex);
3540
3541         for_each_encoder_on_crtc(dev, crtc, encoder)
3542                 encoder->enable(encoder);
3543
3544         if (HAS_PCH_CPT(dev))
3545                 cpt_verify_modeset(dev, intel_crtc->pipe);
3546
3547         /*
3548          * There seems to be a race in PCH platform hw (at least on some
3549          * outputs) where an enabled pipe still completes any pageflip right
3550          * away (as if the pipe is off) instead of waiting for vblank. As soon
3551          * as the first vblank happend, everything works as expected. Hence just
3552          * wait for one vblank before returning to avoid strange things
3553          * happening.
3554          */
3555         intel_wait_for_vblank(dev, intel_crtc->pipe);
3556 }
3557
3558 /* IPS only exists on ULT machines and is tied to pipe A. */
3559 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3560 {
3561         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3562 }
3563
3564 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3565 {
3566         struct drm_device *dev = crtc->dev;
3567         struct drm_i915_private *dev_priv = dev->dev_private;
3568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3569         int pipe = intel_crtc->pipe;
3570         int plane = intel_crtc->plane;
3571
3572         intel_enable_primary_plane(dev_priv, plane, pipe);
3573         intel_enable_planes(crtc);
3574         intel_crtc_update_cursor(crtc, true);
3575
3576         hsw_enable_ips(intel_crtc);
3577
3578         mutex_lock(&dev->struct_mutex);
3579         intel_update_fbc(dev);
3580         mutex_unlock(&dev->struct_mutex);
3581 }
3582
3583 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3584 {
3585         struct drm_device *dev = crtc->dev;
3586         struct drm_i915_private *dev_priv = dev->dev_private;
3587         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3588         int pipe = intel_crtc->pipe;
3589         int plane = intel_crtc->plane;
3590
3591         intel_crtc_wait_for_pending_flips(crtc);
3592         drm_vblank_off(dev, pipe);
3593
3594         /* FBC must be disabled before disabling the plane on HSW. */
3595         if (dev_priv->fbc.plane == plane)
3596                 intel_disable_fbc(dev);
3597
3598         hsw_disable_ips(intel_crtc);
3599
3600         intel_crtc_update_cursor(crtc, false);
3601         intel_disable_planes(crtc);
3602         intel_disable_primary_plane(dev_priv, plane, pipe);
3603 }
3604
3605 /*
3606  * This implements the workaround described in the "notes" section of the mode
3607  * set sequence documentation. When going from no pipes or single pipe to
3608  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3609  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3610  */
3611 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3612 {
3613         struct drm_device *dev = crtc->base.dev;
3614         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3615
3616         /* We want to get the other_active_crtc only if there's only 1 other
3617          * active crtc. */
3618         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3619                 if (!crtc_it->active || crtc_it == crtc)
3620                         continue;
3621
3622                 if (other_active_crtc)
3623                         return;
3624
3625                 other_active_crtc = crtc_it;
3626         }
3627         if (!other_active_crtc)
3628                 return;
3629
3630         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3631         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3632 }
3633
3634 static void haswell_crtc_enable(struct drm_crtc *crtc)
3635 {
3636         struct drm_device *dev = crtc->dev;
3637         struct drm_i915_private *dev_priv = dev->dev_private;
3638         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3639         struct intel_encoder *encoder;
3640         int pipe = intel_crtc->pipe;
3641
3642         WARN_ON(!crtc->enabled);
3643
3644         if (intel_crtc->active)
3645                 return;
3646
3647         intel_crtc->active = true;
3648
3649         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3650         if (intel_crtc->config.has_pch_encoder)
3651                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3652
3653         if (intel_crtc->config.has_pch_encoder)
3654                 dev_priv->display.fdi_link_train(crtc);
3655
3656         for_each_encoder_on_crtc(dev, crtc, encoder)
3657                 if (encoder->pre_enable)
3658                         encoder->pre_enable(encoder);
3659
3660         intel_ddi_enable_pipe_clock(intel_crtc);
3661
3662         ironlake_pfit_enable(intel_crtc);
3663
3664         /*
3665          * On ILK+ LUT must be loaded before the pipe is running but with
3666          * clocks enabled
3667          */
3668         intel_crtc_load_lut(crtc);
3669
3670         intel_ddi_set_pipe_settings(crtc);
3671         intel_ddi_enable_transcoder_func(crtc);
3672
3673         intel_update_watermarks(crtc);
3674         intel_enable_pipe(dev_priv, pipe,
3675                           intel_crtc->config.has_pch_encoder, false);
3676
3677         if (intel_crtc->config.has_pch_encoder)
3678                 lpt_pch_enable(crtc);
3679
3680         for_each_encoder_on_crtc(dev, crtc, encoder) {
3681                 encoder->enable(encoder);
3682                 intel_opregion_notify_encoder(encoder, true);
3683         }
3684
3685         /* If we change the relative order between pipe/planes enabling, we need
3686          * to change the workaround. */
3687         haswell_mode_set_planes_workaround(intel_crtc);
3688         haswell_crtc_enable_planes(crtc);
3689
3690         /*
3691          * There seems to be a race in PCH platform hw (at least on some
3692          * outputs) where an enabled pipe still completes any pageflip right
3693          * away (as if the pipe is off) instead of waiting for vblank. As soon
3694          * as the first vblank happend, everything works as expected. Hence just
3695          * wait for one vblank before returning to avoid strange things
3696          * happening.
3697          */
3698         intel_wait_for_vblank(dev, intel_crtc->pipe);
3699 }
3700
3701 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3702 {
3703         struct drm_device *dev = crtc->base.dev;
3704         struct drm_i915_private *dev_priv = dev->dev_private;
3705         int pipe = crtc->pipe;
3706
3707         /* To avoid upsetting the power well on haswell only disable the pfit if
3708          * it's in use. The hw state code will make sure we get this right. */
3709         if (crtc->config.pch_pfit.enabled) {
3710                 I915_WRITE(PF_CTL(pipe), 0);
3711                 I915_WRITE(PF_WIN_POS(pipe), 0);
3712                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3713         }
3714 }
3715
3716 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3717 {
3718         struct drm_device *dev = crtc->dev;
3719         struct drm_i915_private *dev_priv = dev->dev_private;
3720         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3721         struct intel_encoder *encoder;
3722         int pipe = intel_crtc->pipe;
3723         int plane = intel_crtc->plane;
3724         u32 reg, temp;
3725
3726
3727         if (!intel_crtc->active)
3728                 return;
3729
3730         for_each_encoder_on_crtc(dev, crtc, encoder)
3731                 encoder->disable(encoder);
3732
3733         intel_crtc_wait_for_pending_flips(crtc);
3734         drm_vblank_off(dev, pipe);
3735
3736         if (dev_priv->fbc.plane == plane)
3737                 intel_disable_fbc(dev);
3738
3739         intel_crtc_update_cursor(crtc, false);
3740         intel_disable_planes(crtc);
3741         intel_disable_primary_plane(dev_priv, plane, pipe);
3742
3743         if (intel_crtc->config.has_pch_encoder)
3744                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3745
3746         intel_disable_pipe(dev_priv, pipe);
3747
3748         ironlake_pfit_disable(intel_crtc);
3749
3750         for_each_encoder_on_crtc(dev, crtc, encoder)
3751                 if (encoder->post_disable)
3752                         encoder->post_disable(encoder);
3753
3754         if (intel_crtc->config.has_pch_encoder) {
3755                 ironlake_fdi_disable(crtc);
3756
3757                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3758                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3759
3760                 if (HAS_PCH_CPT(dev)) {
3761                         /* disable TRANS_DP_CTL */
3762                         reg = TRANS_DP_CTL(pipe);
3763                         temp = I915_READ(reg);
3764                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3765                                   TRANS_DP_PORT_SEL_MASK);
3766                         temp |= TRANS_DP_PORT_SEL_NONE;
3767                         I915_WRITE(reg, temp);
3768
3769                         /* disable DPLL_SEL */
3770                         temp = I915_READ(PCH_DPLL_SEL);
3771                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3772                         I915_WRITE(PCH_DPLL_SEL, temp);
3773                 }
3774
3775                 /* disable PCH DPLL */
3776                 intel_disable_shared_dpll(intel_crtc);
3777
3778                 ironlake_fdi_pll_disable(intel_crtc);
3779         }
3780
3781         intel_crtc->active = false;
3782         intel_update_watermarks(crtc);
3783
3784         mutex_lock(&dev->struct_mutex);
3785         intel_update_fbc(dev);
3786         mutex_unlock(&dev->struct_mutex);
3787 }
3788
3789 static void haswell_crtc_disable(struct drm_crtc *crtc)
3790 {
3791         struct drm_device *dev = crtc->dev;
3792         struct drm_i915_private *dev_priv = dev->dev_private;
3793         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3794         struct intel_encoder *encoder;
3795         int pipe = intel_crtc->pipe;
3796         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3797
3798         if (!intel_crtc->active)
3799                 return;
3800
3801         haswell_crtc_disable_planes(crtc);
3802
3803         for_each_encoder_on_crtc(dev, crtc, encoder) {
3804                 intel_opregion_notify_encoder(encoder, false);
3805                 encoder->disable(encoder);
3806         }
3807
3808         if (intel_crtc->config.has_pch_encoder)
3809                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3810         intel_disable_pipe(dev_priv, pipe);
3811
3812         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3813
3814         ironlake_pfit_disable(intel_crtc);
3815
3816         intel_ddi_disable_pipe_clock(intel_crtc);
3817
3818         for_each_encoder_on_crtc(dev, crtc, encoder)
3819                 if (encoder->post_disable)
3820                         encoder->post_disable(encoder);
3821
3822         if (intel_crtc->config.has_pch_encoder) {
3823                 lpt_disable_pch_transcoder(dev_priv);
3824                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3825                 intel_ddi_fdi_disable(crtc);
3826         }
3827
3828         intel_crtc->active = false;
3829         intel_update_watermarks(crtc);
3830
3831         mutex_lock(&dev->struct_mutex);
3832         intel_update_fbc(dev);
3833         mutex_unlock(&dev->struct_mutex);
3834 }
3835
3836 static void ironlake_crtc_off(struct drm_crtc *crtc)
3837 {
3838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3839         intel_put_shared_dpll(intel_crtc);
3840 }
3841
3842 static void haswell_crtc_off(struct drm_crtc *crtc)
3843 {
3844         intel_ddi_put_crtc_pll(crtc);
3845 }
3846
3847 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3848 {
3849         if (!enable && intel_crtc->overlay) {
3850                 struct drm_device *dev = intel_crtc->base.dev;
3851                 struct drm_i915_private *dev_priv = dev->dev_private;
3852
3853                 mutex_lock(&dev->struct_mutex);
3854                 dev_priv->mm.interruptible = false;
3855                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3856                 dev_priv->mm.interruptible = true;
3857                 mutex_unlock(&dev->struct_mutex);
3858         }
3859
3860         /* Let userspace switch the overlay on again. In most cases userspace
3861          * has to recompute where to put it anyway.
3862          */
3863 }
3864
3865 /**
3866  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3867  * cursor plane briefly if not already running after enabling the display
3868  * plane.
3869  * This workaround avoids occasional blank screens when self refresh is
3870  * enabled.
3871  */
3872 static void
3873 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3874 {
3875         u32 cntl = I915_READ(CURCNTR(pipe));
3876
3877         if ((cntl & CURSOR_MODE) == 0) {
3878                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3879
3880                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3881                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3882                 intel_wait_for_vblank(dev_priv->dev, pipe);
3883                 I915_WRITE(CURCNTR(pipe), cntl);
3884                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3885                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3886         }
3887 }
3888
3889 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3890 {
3891         struct drm_device *dev = crtc->base.dev;
3892         struct drm_i915_private *dev_priv = dev->dev_private;
3893         struct intel_crtc_config *pipe_config = &crtc->config;
3894
3895         if (!crtc->config.gmch_pfit.control)
3896                 return;
3897
3898         /*
3899          * The panel fitter should only be adjusted whilst the pipe is disabled,
3900          * according to register description and PRM.
3901          */
3902         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3903         assert_pipe_disabled(dev_priv, crtc->pipe);
3904
3905         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3906         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3907
3908         /* Border color in case we don't scale up to the full screen. Black by
3909          * default, change to something else for debugging. */
3910         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3911 }
3912
3913 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3914 {
3915         struct drm_device *dev = crtc->dev;
3916         struct drm_i915_private *dev_priv = dev->dev_private;
3917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3918         struct intel_encoder *encoder;
3919         int pipe = intel_crtc->pipe;
3920         int plane = intel_crtc->plane;
3921         bool is_dsi;
3922
3923         WARN_ON(!crtc->enabled);
3924
3925         if (intel_crtc->active)
3926                 return;
3927
3928         intel_crtc->active = true;
3929
3930         for_each_encoder_on_crtc(dev, crtc, encoder)
3931                 if (encoder->pre_pll_enable)
3932                         encoder->pre_pll_enable(encoder);
3933
3934         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3935
3936         if (!is_dsi)
3937                 vlv_enable_pll(intel_crtc);
3938
3939         for_each_encoder_on_crtc(dev, crtc, encoder)
3940                 if (encoder->pre_enable)
3941                         encoder->pre_enable(encoder);
3942
3943         i9xx_pfit_enable(intel_crtc);
3944
3945         intel_crtc_load_lut(crtc);
3946
3947         intel_update_watermarks(crtc);
3948         intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3949         intel_enable_primary_plane(dev_priv, plane, pipe);
3950         intel_enable_planes(crtc);
3951         intel_crtc_update_cursor(crtc, true);
3952
3953         intel_update_fbc(dev);
3954
3955         for_each_encoder_on_crtc(dev, crtc, encoder)
3956                 encoder->enable(encoder);
3957 }
3958
3959 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3960 {
3961         struct drm_device *dev = crtc->dev;
3962         struct drm_i915_private *dev_priv = dev->dev_private;
3963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3964         struct intel_encoder *encoder;
3965         int pipe = intel_crtc->pipe;
3966         int plane = intel_crtc->plane;
3967
3968         WARN_ON(!crtc->enabled);
3969
3970         if (intel_crtc->active)
3971                 return;
3972
3973         intel_crtc->active = true;
3974
3975         for_each_encoder_on_crtc(dev, crtc, encoder)
3976                 if (encoder->pre_enable)
3977                         encoder->pre_enable(encoder);
3978
3979         i9xx_enable_pll(intel_crtc);
3980
3981         i9xx_pfit_enable(intel_crtc);
3982
3983         intel_crtc_load_lut(crtc);
3984
3985         intel_update_watermarks(crtc);
3986         intel_enable_pipe(dev_priv, pipe, false, false);
3987         intel_enable_primary_plane(dev_priv, plane, pipe);
3988         intel_enable_planes(crtc);
3989         /* The fixup needs to happen before cursor is enabled */
3990         if (IS_G4X(dev))
3991                 g4x_fixup_plane(dev_priv, pipe);
3992         intel_crtc_update_cursor(crtc, true);
3993
3994         /* Give the overlay scaler a chance to enable if it's on this pipe */
3995         intel_crtc_dpms_overlay(intel_crtc, true);
3996
3997         intel_update_fbc(dev);
3998
3999         for_each_encoder_on_crtc(dev, crtc, encoder)
4000                 encoder->enable(encoder);
4001 }
4002
4003 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4004 {
4005         struct drm_device *dev = crtc->base.dev;
4006         struct drm_i915_private *dev_priv = dev->dev_private;
4007
4008         if (!crtc->config.gmch_pfit.control)
4009                 return;
4010
4011         assert_pipe_disabled(dev_priv, crtc->pipe);
4012
4013         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4014                          I915_READ(PFIT_CONTROL));
4015         I915_WRITE(PFIT_CONTROL, 0);
4016 }
4017
4018 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4019 {
4020         struct drm_device *dev = crtc->dev;
4021         struct drm_i915_private *dev_priv = dev->dev_private;
4022         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4023         struct intel_encoder *encoder;
4024         int pipe = intel_crtc->pipe;
4025         int plane = intel_crtc->plane;
4026
4027         if (!intel_crtc->active)
4028                 return;
4029
4030         for_each_encoder_on_crtc(dev, crtc, encoder)
4031                 encoder->disable(encoder);
4032
4033         /* Give the overlay scaler a chance to disable if it's on this pipe */
4034         intel_crtc_wait_for_pending_flips(crtc);
4035         drm_vblank_off(dev, pipe);
4036
4037         if (dev_priv->fbc.plane == plane)
4038                 intel_disable_fbc(dev);
4039
4040         intel_crtc_dpms_overlay(intel_crtc, false);
4041         intel_crtc_update_cursor(crtc, false);
4042         intel_disable_planes(crtc);
4043         intel_disable_primary_plane(dev_priv, plane, pipe);
4044
4045         intel_disable_pipe(dev_priv, pipe);
4046
4047         i9xx_pfit_disable(intel_crtc);
4048
4049         for_each_encoder_on_crtc(dev, crtc, encoder)
4050                 if (encoder->post_disable)
4051                         encoder->post_disable(encoder);
4052
4053         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4054                 vlv_disable_pll(dev_priv, pipe);
4055         else if (!IS_VALLEYVIEW(dev))
4056                 i9xx_disable_pll(dev_priv, pipe);
4057
4058         intel_crtc->active = false;
4059         intel_update_watermarks(crtc);
4060
4061         intel_update_fbc(dev);
4062 }
4063
4064 static void i9xx_crtc_off(struct drm_crtc *crtc)
4065 {
4066 }
4067
4068 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4069                                     bool enabled)
4070 {
4071         struct drm_device *dev = crtc->dev;
4072         struct drm_i915_master_private *master_priv;
4073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4074         int pipe = intel_crtc->pipe;
4075
4076         if (!dev->primary->master)
4077                 return;
4078
4079         master_priv = dev->primary->master->driver_priv;
4080         if (!master_priv->sarea_priv)
4081                 return;
4082
4083         switch (pipe) {
4084         case 0:
4085                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4086                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4087                 break;
4088         case 1:
4089                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4090                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4091                 break;
4092         default:
4093                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4094                 break;
4095         }
4096 }
4097
4098 /**
4099  * Sets the power management mode of the pipe and plane.
4100  */
4101 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4102 {
4103         struct drm_device *dev = crtc->dev;
4104         struct drm_i915_private *dev_priv = dev->dev_private;
4105         struct intel_encoder *intel_encoder;
4106         bool enable = false;
4107
4108         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4109                 enable |= intel_encoder->connectors_active;
4110
4111         if (enable)
4112                 dev_priv->display.crtc_enable(crtc);
4113         else
4114                 dev_priv->display.crtc_disable(crtc);
4115
4116         intel_crtc_update_sarea(crtc, enable);
4117 }
4118
4119 static void intel_crtc_disable(struct drm_crtc *crtc)
4120 {
4121         struct drm_device *dev = crtc->dev;
4122         struct drm_connector *connector;
4123         struct drm_i915_private *dev_priv = dev->dev_private;
4124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4125
4126         /* crtc should still be enabled when we disable it. */
4127         WARN_ON(!crtc->enabled);
4128
4129         dev_priv->display.crtc_disable(crtc);
4130         intel_crtc->eld_vld = false;
4131         intel_crtc_update_sarea(crtc, false);
4132         dev_priv->display.off(crtc);
4133
4134         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4135         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4136         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4137
4138         if (crtc->fb) {
4139                 mutex_lock(&dev->struct_mutex);
4140                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4141                 mutex_unlock(&dev->struct_mutex);
4142                 crtc->fb = NULL;
4143         }
4144
4145         /* Update computed state. */
4146         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4147                 if (!connector->encoder || !connector->encoder->crtc)
4148                         continue;
4149
4150                 if (connector->encoder->crtc != crtc)
4151                         continue;
4152
4153                 connector->dpms = DRM_MODE_DPMS_OFF;
4154                 to_intel_encoder(connector->encoder)->connectors_active = false;
4155         }
4156 }
4157
4158 void intel_encoder_destroy(struct drm_encoder *encoder)
4159 {
4160         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4161
4162         drm_encoder_cleanup(encoder);
4163         kfree(intel_encoder);
4164 }
4165
4166 /* Simple dpms helper for encoders with just one connector, no cloning and only
4167  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4168  * state of the entire output pipe. */
4169 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4170 {
4171         if (mode == DRM_MODE_DPMS_ON) {
4172                 encoder->connectors_active = true;
4173
4174                 intel_crtc_update_dpms(encoder->base.crtc);
4175         } else {
4176                 encoder->connectors_active = false;
4177
4178                 intel_crtc_update_dpms(encoder->base.crtc);
4179         }
4180 }
4181
4182 /* Cross check the actual hw state with our own modeset state tracking (and it's
4183  * internal consistency). */
4184 static void intel_connector_check_state(struct intel_connector *connector)
4185 {
4186         if (connector->get_hw_state(connector)) {
4187                 struct intel_encoder *encoder = connector->encoder;
4188                 struct drm_crtc *crtc;
4189                 bool encoder_enabled;
4190                 enum pipe pipe;
4191
4192                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4193                               connector->base.base.id,
4194                               drm_get_connector_name(&connector->base));
4195
4196                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4197                      "wrong connector dpms state\n");
4198                 WARN(connector->base.encoder != &encoder->base,
4199                      "active connector not linked to encoder\n");
4200                 WARN(!encoder->connectors_active,
4201                      "encoder->connectors_active not set\n");
4202
4203                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4204                 WARN(!encoder_enabled, "encoder not enabled\n");
4205                 if (WARN_ON(!encoder->base.crtc))
4206                         return;
4207
4208                 crtc = encoder->base.crtc;
4209
4210                 WARN(!crtc->enabled, "crtc not enabled\n");
4211                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4212                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4213                      "encoder active on the wrong pipe\n");
4214         }
4215 }
4216
4217 /* Even simpler default implementation, if there's really no special case to
4218  * consider. */
4219 void intel_connector_dpms(struct drm_connector *connector, int mode)
4220 {
4221         /* All the simple cases only support two dpms states. */
4222         if (mode != DRM_MODE_DPMS_ON)
4223                 mode = DRM_MODE_DPMS_OFF;
4224
4225         if (mode == connector->dpms)
4226                 return;
4227
4228         connector->dpms = mode;
4229
4230         /* Only need to change hw state when actually enabled */
4231         if (connector->encoder)
4232                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4233
4234         intel_modeset_check_state(connector->dev);
4235 }
4236
4237 /* Simple connector->get_hw_state implementation for encoders that support only
4238  * one connector and no cloning and hence the encoder state determines the state
4239  * of the connector. */
4240 bool intel_connector_get_hw_state(struct intel_connector *connector)
4241 {
4242         enum pipe pipe = 0;
4243         struct intel_encoder *encoder = connector->encoder;
4244
4245         return encoder->get_hw_state(encoder, &pipe);
4246 }
4247
4248 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4249                                      struct intel_crtc_config *pipe_config)
4250 {
4251         struct drm_i915_private *dev_priv = dev->dev_private;
4252         struct intel_crtc *pipe_B_crtc =
4253                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4254
4255         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4256                       pipe_name(pipe), pipe_config->fdi_lanes);
4257         if (pipe_config->fdi_lanes > 4) {
4258                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4259                               pipe_name(pipe), pipe_config->fdi_lanes);
4260                 return false;
4261         }
4262
4263         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4264                 if (pipe_config->fdi_lanes > 2) {
4265                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4266                                       pipe_config->fdi_lanes);
4267                         return false;
4268                 } else {
4269                         return true;
4270                 }
4271         }
4272
4273         if (INTEL_INFO(dev)->num_pipes == 2)
4274                 return true;
4275
4276         /* Ivybridge 3 pipe is really complicated */
4277         switch (pipe) {
4278         case PIPE_A:
4279                 return true;
4280         case PIPE_B:
4281                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4282                     pipe_config->fdi_lanes > 2) {
4283                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4284                                       pipe_name(pipe), pipe_config->fdi_lanes);
4285                         return false;
4286                 }
4287                 return true;
4288         case PIPE_C:
4289                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4290                     pipe_B_crtc->config.fdi_lanes <= 2) {
4291                         if (pipe_config->fdi_lanes > 2) {
4292                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4293                                               pipe_name(pipe), pipe_config->fdi_lanes);
4294                                 return false;
4295                         }
4296                 } else {
4297                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4298                         return false;
4299                 }
4300                 return true;
4301         default:
4302                 BUG();
4303         }
4304 }
4305
4306 #define RETRY 1
4307 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4308                                        struct intel_crtc_config *pipe_config)
4309 {
4310         struct drm_device *dev = intel_crtc->base.dev;
4311         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4312         int lane, link_bw, fdi_dotclock;
4313         bool setup_ok, needs_recompute = false;
4314
4315 retry:
4316         /* FDI is a binary signal running at ~2.7GHz, encoding
4317          * each output octet as 10 bits. The actual frequency
4318          * is stored as a divider into a 100MHz clock, and the
4319          * mode pixel clock is stored in units of 1KHz.
4320          * Hence the bw of each lane in terms of the mode signal
4321          * is:
4322          */
4323         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4324
4325         fdi_dotclock = adjusted_mode->crtc_clock;
4326
4327         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4328                                            pipe_config->pipe_bpp);
4329
4330         pipe_config->fdi_lanes = lane;
4331
4332         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4333                                link_bw, &pipe_config->fdi_m_n);
4334
4335         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4336                                             intel_crtc->pipe, pipe_config);
4337         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4338                 pipe_config->pipe_bpp -= 2*3;
4339                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4340                               pipe_config->pipe_bpp);
4341                 needs_recompute = true;
4342                 pipe_config->bw_constrained = true;
4343
4344                 goto retry;
4345         }
4346
4347         if (needs_recompute)
4348                 return RETRY;
4349
4350         return setup_ok ? 0 : -EINVAL;
4351 }
4352
4353 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4354                                    struct intel_crtc_config *pipe_config)
4355 {
4356         pipe_config->ips_enabled = i915_enable_ips &&
4357                                    hsw_crtc_supports_ips(crtc) &&
4358                                    pipe_config->pipe_bpp <= 24;
4359 }
4360
4361 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4362                                      struct intel_crtc_config *pipe_config)
4363 {
4364         struct drm_device *dev = crtc->base.dev;
4365         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4366
4367         /* FIXME should check pixel clock limits on all platforms */
4368         if (INTEL_INFO(dev)->gen < 4) {
4369                 struct drm_i915_private *dev_priv = dev->dev_private;
4370                 int clock_limit =
4371                         dev_priv->display.get_display_clock_speed(dev);
4372
4373                 /*
4374                  * Enable pixel doubling when the dot clock
4375                  * is > 90% of the (display) core speed.
4376                  *
4377                  * GDG double wide on either pipe,
4378                  * otherwise pipe A only.
4379                  */
4380                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4381                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4382                         clock_limit *= 2;
4383                         pipe_config->double_wide = true;
4384                 }
4385
4386                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4387                         return -EINVAL;
4388         }
4389
4390         /*
4391          * Pipe horizontal size must be even in:
4392          * - DVO ganged mode
4393          * - LVDS dual channel mode
4394          * - Double wide pipe
4395          */
4396         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4397              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4398                 pipe_config->pipe_src_w &= ~1;
4399
4400         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4401          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4402          */
4403         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4404                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4405                 return -EINVAL;
4406
4407         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4408                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4409         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4410                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4411                  * for lvds. */
4412                 pipe_config->pipe_bpp = 8*3;
4413         }
4414
4415         if (HAS_IPS(dev))
4416                 hsw_compute_ips_config(crtc, pipe_config);
4417
4418         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4419          * clock survives for now. */
4420         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4421                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4422
4423         if (pipe_config->has_pch_encoder)
4424                 return ironlake_fdi_compute_config(crtc, pipe_config);
4425
4426         return 0;
4427 }
4428
4429 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4430 {
4431         return 400000; /* FIXME */
4432 }
4433
4434 static int i945_get_display_clock_speed(struct drm_device *dev)
4435 {
4436         return 400000;
4437 }
4438
4439 static int i915_get_display_clock_speed(struct drm_device *dev)
4440 {
4441         return 333000;
4442 }
4443
4444 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4445 {
4446         return 200000;
4447 }
4448
4449 static int pnv_get_display_clock_speed(struct drm_device *dev)
4450 {
4451         u16 gcfgc = 0;
4452
4453         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4454
4455         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4456         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4457                 return 267000;
4458         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4459                 return 333000;
4460         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4461                 return 444000;
4462         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4463                 return 200000;
4464         default:
4465                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4466         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4467                 return 133000;
4468         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4469                 return 167000;
4470         }
4471 }
4472
4473 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4474 {
4475         u16 gcfgc = 0;
4476
4477         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4478
4479         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4480                 return 133000;
4481         else {
4482                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4483                 case GC_DISPLAY_CLOCK_333_MHZ:
4484                         return 333000;
4485                 default:
4486                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4487                         return 190000;
4488                 }
4489         }
4490 }
4491
4492 static int i865_get_display_clock_speed(struct drm_device *dev)
4493 {
4494         return 266000;
4495 }
4496
4497 static int i855_get_display_clock_speed(struct drm_device *dev)
4498 {
4499         u16 hpllcc = 0;
4500         /* Assume that the hardware is in the high speed state.  This
4501          * should be the default.
4502          */
4503         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4504         case GC_CLOCK_133_200:
4505         case GC_CLOCK_100_200:
4506                 return 200000;
4507         case GC_CLOCK_166_250:
4508                 return 250000;
4509         case GC_CLOCK_100_133:
4510                 return 133000;
4511         }
4512
4513         /* Shouldn't happen */
4514         return 0;
4515 }
4516
4517 static int i830_get_display_clock_speed(struct drm_device *dev)
4518 {
4519         return 133000;
4520 }
4521
4522 static void
4523 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4524 {
4525         while (*num > DATA_LINK_M_N_MASK ||
4526                *den > DATA_LINK_M_N_MASK) {
4527                 *num >>= 1;
4528                 *den >>= 1;
4529         }
4530 }
4531
4532 static void compute_m_n(unsigned int m, unsigned int n,
4533                         uint32_t *ret_m, uint32_t *ret_n)
4534 {
4535         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4536         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4537         intel_reduce_m_n_ratio(ret_m, ret_n);
4538 }
4539
4540 void
4541 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4542                        int pixel_clock, int link_clock,
4543                        struct intel_link_m_n *m_n)
4544 {
4545         m_n->tu = 64;
4546
4547         compute_m_n(bits_per_pixel * pixel_clock,
4548                     link_clock * nlanes * 8,
4549                     &m_n->gmch_m, &m_n->gmch_n);
4550
4551         compute_m_n(pixel_clock, link_clock,
4552                     &m_n->link_m, &m_n->link_n);
4553 }
4554
4555 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4556 {
4557         if (i915_panel_use_ssc >= 0)
4558                 return i915_panel_use_ssc != 0;
4559         return dev_priv->vbt.lvds_use_ssc
4560                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4561 }
4562
4563 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4564 {
4565         struct drm_device *dev = crtc->dev;
4566         struct drm_i915_private *dev_priv = dev->dev_private;
4567         int refclk;
4568
4569         if (IS_VALLEYVIEW(dev)) {
4570                 refclk = 100000;
4571         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4572             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4573                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4574                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4575                               refclk / 1000);
4576         } else if (!IS_GEN2(dev)) {
4577                 refclk = 96000;
4578         } else {
4579                 refclk = 48000;
4580         }
4581
4582         return refclk;
4583 }
4584
4585 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4586 {
4587         return (1 << dpll->n) << 16 | dpll->m2;
4588 }
4589
4590 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4591 {
4592         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4593 }
4594
4595 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4596                                      intel_clock_t *reduced_clock)
4597 {
4598         struct drm_device *dev = crtc->base.dev;
4599         struct drm_i915_private *dev_priv = dev->dev_private;
4600         int pipe = crtc->pipe;
4601         u32 fp, fp2 = 0;
4602
4603         if (IS_PINEVIEW(dev)) {
4604                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4605                 if (reduced_clock)
4606                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4607         } else {
4608                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4609                 if (reduced_clock)
4610                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4611         }
4612
4613         I915_WRITE(FP0(pipe), fp);
4614         crtc->config.dpll_hw_state.fp0 = fp;
4615
4616         crtc->lowfreq_avail = false;
4617         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4618             reduced_clock && i915_powersave) {
4619                 I915_WRITE(FP1(pipe), fp2);
4620                 crtc->config.dpll_hw_state.fp1 = fp2;
4621                 crtc->lowfreq_avail = true;
4622         } else {
4623                 I915_WRITE(FP1(pipe), fp);
4624                 crtc->config.dpll_hw_state.fp1 = fp;
4625         }
4626 }
4627
4628 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4629                 pipe)
4630 {
4631         u32 reg_val;
4632
4633         /*
4634          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4635          * and set it to a reasonable value instead.
4636          */
4637         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4638         reg_val &= 0xffffff00;
4639         reg_val |= 0x00000030;
4640         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4641
4642         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4643         reg_val &= 0x8cffffff;
4644         reg_val = 0x8c000000;
4645         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4646
4647         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4648         reg_val &= 0xffffff00;
4649         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4650
4651         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4652         reg_val &= 0x00ffffff;
4653         reg_val |= 0xb0000000;
4654         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4655 }
4656
4657 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4658                                          struct intel_link_m_n *m_n)
4659 {
4660         struct drm_device *dev = crtc->base.dev;
4661         struct drm_i915_private *dev_priv = dev->dev_private;
4662         int pipe = crtc->pipe;
4663
4664         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4665         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4666         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4667         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4668 }
4669
4670 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4671                                          struct intel_link_m_n *m_n)
4672 {
4673         struct drm_device *dev = crtc->base.dev;
4674         struct drm_i915_private *dev_priv = dev->dev_private;
4675         int pipe = crtc->pipe;
4676         enum transcoder transcoder = crtc->config.cpu_transcoder;
4677
4678         if (INTEL_INFO(dev)->gen >= 5) {
4679                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4680                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4681                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4682                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4683         } else {
4684                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4685                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4686                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4687                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4688         }
4689 }
4690
4691 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4692 {
4693         if (crtc->config.has_pch_encoder)
4694                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4695         else
4696                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4697 }
4698
4699 static void vlv_update_pll(struct intel_crtc *crtc)
4700 {
4701         struct drm_device *dev = crtc->base.dev;
4702         struct drm_i915_private *dev_priv = dev->dev_private;
4703         int pipe = crtc->pipe;
4704         u32 dpll, mdiv;
4705         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4706         u32 coreclk, reg_val, dpll_md;
4707
4708         mutex_lock(&dev_priv->dpio_lock);
4709
4710         bestn = crtc->config.dpll.n;
4711         bestm1 = crtc->config.dpll.m1;
4712         bestm2 = crtc->config.dpll.m2;
4713         bestp1 = crtc->config.dpll.p1;
4714         bestp2 = crtc->config.dpll.p2;
4715
4716         /* See eDP HDMI DPIO driver vbios notes doc */
4717
4718         /* PLL B needs special handling */
4719         if (pipe)
4720                 vlv_pllb_recal_opamp(dev_priv, pipe);
4721
4722         /* Set up Tx target for periodic Rcomp update */
4723         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4724
4725         /* Disable target IRef on PLL */
4726         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4727         reg_val &= 0x00ffffff;
4728         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4729
4730         /* Disable fast lock */
4731         vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4732
4733         /* Set idtafcrecal before PLL is enabled */
4734         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4735         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4736         mdiv |= ((bestn << DPIO_N_SHIFT));
4737         mdiv |= (1 << DPIO_K_SHIFT);
4738
4739         /*
4740          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4741          * but we don't support that).
4742          * Note: don't use the DAC post divider as it seems unstable.
4743          */
4744         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4745         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4746
4747         mdiv |= DPIO_ENABLE_CALIBRATION;
4748         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4749
4750         /* Set HBR and RBR LPF coefficients */
4751         if (crtc->config.port_clock == 162000 ||
4752             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4753             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4754                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4755                                  0x009f0003);
4756         else
4757                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4758                                  0x00d0000f);
4759
4760         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4761             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4762                 /* Use SSC source */
4763                 if (!pipe)
4764                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4765                                          0x0df40000);
4766                 else
4767                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4768                                          0x0df70000);
4769         } else { /* HDMI or VGA */
4770                 /* Use bend source */
4771                 if (!pipe)
4772                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4773                                          0x0df70000);
4774                 else
4775                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4776                                          0x0df40000);
4777         }
4778
4779         coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4780         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4781         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4782             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4783                 coreclk |= 0x01000000;
4784         vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4785
4786         vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4787
4788         /* Enable DPIO clock input */
4789         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4790                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4791         /* We should never disable this, set it here for state tracking */
4792         if (pipe == PIPE_B)
4793                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4794         dpll |= DPLL_VCO_ENABLE;
4795         crtc->config.dpll_hw_state.dpll = dpll;
4796
4797         dpll_md = (crtc->config.pixel_multiplier - 1)
4798                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4799         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4800
4801         if (crtc->config.has_dp_encoder)
4802                 intel_dp_set_m_n(crtc);
4803
4804         mutex_unlock(&dev_priv->dpio_lock);
4805 }
4806
4807 static void i9xx_update_pll(struct intel_crtc *crtc,
4808                             intel_clock_t *reduced_clock,
4809                             int num_connectors)
4810 {
4811         struct drm_device *dev = crtc->base.dev;
4812         struct drm_i915_private *dev_priv = dev->dev_private;
4813         u32 dpll;
4814         bool is_sdvo;
4815         struct dpll *clock = &crtc->config.dpll;
4816
4817         i9xx_update_pll_dividers(crtc, reduced_clock);
4818
4819         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4820                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4821
4822         dpll = DPLL_VGA_MODE_DIS;
4823
4824         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4825                 dpll |= DPLLB_MODE_LVDS;
4826         else
4827                 dpll |= DPLLB_MODE_DAC_SERIAL;
4828
4829         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4830                 dpll |= (crtc->config.pixel_multiplier - 1)
4831                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4832         }
4833
4834         if (is_sdvo)
4835                 dpll |= DPLL_SDVO_HIGH_SPEED;
4836
4837         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4838                 dpll |= DPLL_SDVO_HIGH_SPEED;
4839
4840         /* compute bitmask from p1 value */
4841         if (IS_PINEVIEW(dev))
4842                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4843         else {
4844                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4845                 if (IS_G4X(dev) && reduced_clock)
4846                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4847         }
4848         switch (clock->p2) {
4849         case 5:
4850                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4851                 break;
4852         case 7:
4853                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4854                 break;
4855         case 10:
4856                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4857                 break;
4858         case 14:
4859                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4860                 break;
4861         }
4862         if (INTEL_INFO(dev)->gen >= 4)
4863                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4864
4865         if (crtc->config.sdvo_tv_clock)
4866                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4867         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4868                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4869                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4870         else
4871                 dpll |= PLL_REF_INPUT_DREFCLK;
4872
4873         dpll |= DPLL_VCO_ENABLE;
4874         crtc->config.dpll_hw_state.dpll = dpll;
4875
4876         if (INTEL_INFO(dev)->gen >= 4) {
4877                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4878                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4879                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4880         }
4881
4882         if (crtc->config.has_dp_encoder)
4883                 intel_dp_set_m_n(crtc);
4884 }
4885
4886 static void i8xx_update_pll(struct intel_crtc *crtc,
4887                             intel_clock_t *reduced_clock,
4888                             int num_connectors)
4889 {
4890         struct drm_device *dev = crtc->base.dev;
4891         struct drm_i915_private *dev_priv = dev->dev_private;
4892         u32 dpll;
4893         struct dpll *clock = &crtc->config.dpll;
4894
4895         i9xx_update_pll_dividers(crtc, reduced_clock);
4896
4897         dpll = DPLL_VGA_MODE_DIS;
4898
4899         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4900                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4901         } else {
4902                 if (clock->p1 == 2)
4903                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4904                 else
4905                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4906                 if (clock->p2 == 4)
4907                         dpll |= PLL_P2_DIVIDE_BY_4;
4908         }
4909
4910         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4911                 dpll |= DPLL_DVO_2X_MODE;
4912
4913         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4914                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4915                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4916         else
4917                 dpll |= PLL_REF_INPUT_DREFCLK;
4918
4919         dpll |= DPLL_VCO_ENABLE;
4920         crtc->config.dpll_hw_state.dpll = dpll;
4921 }
4922
4923 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4924 {
4925         struct drm_device *dev = intel_crtc->base.dev;
4926         struct drm_i915_private *dev_priv = dev->dev_private;
4927         enum pipe pipe = intel_crtc->pipe;
4928         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4929         struct drm_display_mode *adjusted_mode =
4930                 &intel_crtc->config.adjusted_mode;
4931         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4932
4933         /* We need to be careful not to changed the adjusted mode, for otherwise
4934          * the hw state checker will get angry at the mismatch. */
4935         crtc_vtotal = adjusted_mode->crtc_vtotal;
4936         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4937
4938         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4939                 /* the chip adds 2 halflines automatically */
4940                 crtc_vtotal -= 1;
4941                 crtc_vblank_end -= 1;
4942                 vsyncshift = adjusted_mode->crtc_hsync_start
4943                              - adjusted_mode->crtc_htotal / 2;
4944         } else {
4945                 vsyncshift = 0;
4946         }
4947
4948         if (INTEL_INFO(dev)->gen > 3)
4949                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4950
4951         I915_WRITE(HTOTAL(cpu_transcoder),
4952                    (adjusted_mode->crtc_hdisplay - 1) |
4953                    ((adjusted_mode->crtc_htotal - 1) << 16));
4954         I915_WRITE(HBLANK(cpu_transcoder),
4955                    (adjusted_mode->crtc_hblank_start - 1) |
4956                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4957         I915_WRITE(HSYNC(cpu_transcoder),
4958                    (adjusted_mode->crtc_hsync_start - 1) |
4959                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4960
4961         I915_WRITE(VTOTAL(cpu_transcoder),
4962                    (adjusted_mode->crtc_vdisplay - 1) |
4963                    ((crtc_vtotal - 1) << 16));
4964         I915_WRITE(VBLANK(cpu_transcoder),
4965                    (adjusted_mode->crtc_vblank_start - 1) |
4966                    ((crtc_vblank_end - 1) << 16));
4967         I915_WRITE(VSYNC(cpu_transcoder),
4968                    (adjusted_mode->crtc_vsync_start - 1) |
4969                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4970
4971         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4972          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4973          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4974          * bits. */
4975         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4976             (pipe == PIPE_B || pipe == PIPE_C))
4977                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4978
4979         /* pipesrc controls the size that is scaled from, which should
4980          * always be the user's requested size.
4981          */
4982         I915_WRITE(PIPESRC(pipe),
4983                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
4984                    (intel_crtc->config.pipe_src_h - 1));
4985 }
4986
4987 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4988                                    struct intel_crtc_config *pipe_config)
4989 {
4990         struct drm_device *dev = crtc->base.dev;
4991         struct drm_i915_private *dev_priv = dev->dev_private;
4992         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4993         uint32_t tmp;
4994
4995         tmp = I915_READ(HTOTAL(cpu_transcoder));
4996         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4997         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4998         tmp = I915_READ(HBLANK(cpu_transcoder));
4999         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5000         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5001         tmp = I915_READ(HSYNC(cpu_transcoder));
5002         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5003         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5004
5005         tmp = I915_READ(VTOTAL(cpu_transcoder));
5006         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5007         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5008         tmp = I915_READ(VBLANK(cpu_transcoder));
5009         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5010         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5011         tmp = I915_READ(VSYNC(cpu_transcoder));
5012         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5013         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5014
5015         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5016                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5017                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5018                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5019         }
5020
5021         tmp = I915_READ(PIPESRC(crtc->pipe));
5022         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5023         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5024
5025         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5026         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5027 }
5028
5029 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
5030                                              struct intel_crtc_config *pipe_config)
5031 {
5032         struct drm_crtc *crtc = &intel_crtc->base;
5033
5034         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5035         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
5036         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5037         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5038
5039         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5040         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5041         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5042         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5043
5044         crtc->mode.flags = pipe_config->adjusted_mode.flags;
5045
5046         crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
5047         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
5048 }
5049
5050 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5051 {
5052         struct drm_device *dev = intel_crtc->base.dev;
5053         struct drm_i915_private *dev_priv = dev->dev_private;
5054         uint32_t pipeconf;
5055
5056         pipeconf = 0;
5057
5058         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5059             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5060                 pipeconf |= PIPECONF_ENABLE;
5061
5062         if (intel_crtc->config.double_wide)
5063                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5064
5065         /* only g4x and later have fancy bpc/dither controls */
5066         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5067                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5068                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5069                         pipeconf |= PIPECONF_DITHER_EN |
5070                                     PIPECONF_DITHER_TYPE_SP;
5071
5072                 switch (intel_crtc->config.pipe_bpp) {
5073                 case 18:
5074                         pipeconf |= PIPECONF_6BPC;
5075                         break;
5076                 case 24:
5077                         pipeconf |= PIPECONF_8BPC;
5078                         break;
5079                 case 30:
5080                         pipeconf |= PIPECONF_10BPC;
5081                         break;
5082                 default:
5083                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5084                         BUG();
5085                 }
5086         }
5087
5088         if (HAS_PIPE_CXSR(dev)) {
5089                 if (intel_crtc->lowfreq_avail) {
5090                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5091                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5092                 } else {
5093                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5094                 }
5095         }
5096
5097         if (!IS_GEN2(dev) &&
5098             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5099                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5100         else
5101                 pipeconf |= PIPECONF_PROGRESSIVE;
5102
5103         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5104                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5105
5106         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5107         POSTING_READ(PIPECONF(intel_crtc->pipe));
5108 }
5109
5110 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5111                               int x, int y,
5112                               struct drm_framebuffer *fb)
5113 {
5114         struct drm_device *dev = crtc->dev;
5115         struct drm_i915_private *dev_priv = dev->dev_private;
5116         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5117         int pipe = intel_crtc->pipe;
5118         int plane = intel_crtc->plane;
5119         int refclk, num_connectors = 0;
5120         intel_clock_t clock, reduced_clock;
5121         u32 dspcntr;
5122         bool ok, has_reduced_clock = false;
5123         bool is_lvds = false, is_dsi = false;
5124         struct intel_encoder *encoder;
5125         const intel_limit_t *limit;
5126         int ret;
5127
5128         for_each_encoder_on_crtc(dev, crtc, encoder) {
5129                 switch (encoder->type) {
5130                 case INTEL_OUTPUT_LVDS:
5131                         is_lvds = true;
5132                         break;
5133                 case INTEL_OUTPUT_DSI:
5134                         is_dsi = true;
5135                         break;
5136                 }
5137
5138                 num_connectors++;
5139         }
5140
5141         if (is_dsi)
5142                 goto skip_dpll;
5143
5144         if (!intel_crtc->config.clock_set) {
5145                 refclk = i9xx_get_refclk(crtc, num_connectors);
5146
5147                 /*
5148                  * Returns a set of divisors for the desired target clock with
5149                  * the given refclk, or FALSE.  The returned values represent
5150                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5151                  * 2) / p1 / p2.
5152                  */
5153                 limit = intel_limit(crtc, refclk);
5154                 ok = dev_priv->display.find_dpll(limit, crtc,
5155                                                  intel_crtc->config.port_clock,
5156                                                  refclk, NULL, &clock);
5157                 if (!ok) {
5158                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5159                         return -EINVAL;
5160                 }
5161
5162                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5163                         /*
5164                          * Ensure we match the reduced clock's P to the target
5165                          * clock.  If the clocks don't match, we can't switch
5166                          * the display clock by using the FP0/FP1. In such case
5167                          * we will disable the LVDS downclock feature.
5168                          */
5169                         has_reduced_clock =
5170                                 dev_priv->display.find_dpll(limit, crtc,
5171                                                             dev_priv->lvds_downclock,
5172                                                             refclk, &clock,
5173                                                             &reduced_clock);
5174                 }
5175                 /* Compat-code for transition, will disappear. */
5176                 intel_crtc->config.dpll.n = clock.n;
5177                 intel_crtc->config.dpll.m1 = clock.m1;
5178                 intel_crtc->config.dpll.m2 = clock.m2;
5179                 intel_crtc->config.dpll.p1 = clock.p1;
5180                 intel_crtc->config.dpll.p2 = clock.p2;
5181         }
5182
5183         if (IS_GEN2(dev)) {
5184                 i8xx_update_pll(intel_crtc,
5185                                 has_reduced_clock ? &reduced_clock : NULL,
5186                                 num_connectors);
5187         } else if (IS_VALLEYVIEW(dev)) {
5188                 vlv_update_pll(intel_crtc);
5189         } else {
5190                 i9xx_update_pll(intel_crtc,
5191                                 has_reduced_clock ? &reduced_clock : NULL,
5192                                 num_connectors);
5193         }
5194
5195 skip_dpll:
5196         /* Set up the display plane register */
5197         dspcntr = DISPPLANE_GAMMA_ENABLE;
5198
5199         if (!IS_VALLEYVIEW(dev)) {
5200                 if (pipe == 0)
5201                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5202                 else
5203                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5204         }
5205
5206         intel_set_pipe_timings(intel_crtc);
5207
5208         /* pipesrc and dspsize control the size that is scaled from,
5209          * which should always be the user's requested size.
5210          */
5211         I915_WRITE(DSPSIZE(plane),
5212                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5213                    (intel_crtc->config.pipe_src_w - 1));
5214         I915_WRITE(DSPPOS(plane), 0);
5215
5216         i9xx_set_pipeconf(intel_crtc);
5217
5218         I915_WRITE(DSPCNTR(plane), dspcntr);
5219         POSTING_READ(DSPCNTR(plane));
5220
5221         ret = intel_pipe_set_base(crtc, x, y, fb);
5222
5223         return ret;
5224 }
5225
5226 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5227                                  struct intel_crtc_config *pipe_config)
5228 {
5229         struct drm_device *dev = crtc->base.dev;
5230         struct drm_i915_private *dev_priv = dev->dev_private;
5231         uint32_t tmp;
5232
5233         tmp = I915_READ(PFIT_CONTROL);
5234         if (!(tmp & PFIT_ENABLE))
5235                 return;
5236
5237         /* Check whether the pfit is attached to our pipe. */
5238         if (INTEL_INFO(dev)->gen < 4) {
5239                 if (crtc->pipe != PIPE_B)
5240                         return;
5241         } else {
5242                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5243                         return;
5244         }
5245
5246         pipe_config->gmch_pfit.control = tmp;
5247         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5248         if (INTEL_INFO(dev)->gen < 5)
5249                 pipe_config->gmch_pfit.lvds_border_bits =
5250                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5251 }
5252
5253 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5254                                struct intel_crtc_config *pipe_config)
5255 {
5256         struct drm_device *dev = crtc->base.dev;
5257         struct drm_i915_private *dev_priv = dev->dev_private;
5258         int pipe = pipe_config->cpu_transcoder;
5259         intel_clock_t clock;
5260         u32 mdiv;
5261         int refclk = 100000;
5262
5263         mutex_lock(&dev_priv->dpio_lock);
5264         mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
5265         mutex_unlock(&dev_priv->dpio_lock);
5266
5267         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5268         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5269         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5270         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5271         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5272
5273         vlv_clock(refclk, &clock);
5274
5275         /* clock.dot is the fast clock */
5276         pipe_config->port_clock = clock.dot / 5;
5277 }
5278
5279 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5280                                  struct intel_crtc_config *pipe_config)
5281 {
5282         struct drm_device *dev = crtc->base.dev;
5283         struct drm_i915_private *dev_priv = dev->dev_private;
5284         uint32_t tmp;
5285
5286         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5287         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5288
5289         tmp = I915_READ(PIPECONF(crtc->pipe));
5290         if (!(tmp & PIPECONF_ENABLE))
5291                 return false;
5292
5293         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5294                 switch (tmp & PIPECONF_BPC_MASK) {
5295                 case PIPECONF_6BPC:
5296                         pipe_config->pipe_bpp = 18;
5297                         break;
5298                 case PIPECONF_8BPC:
5299                         pipe_config->pipe_bpp = 24;
5300                         break;
5301                 case PIPECONF_10BPC:
5302                         pipe_config->pipe_bpp = 30;
5303                         break;
5304                 default:
5305                         break;
5306                 }
5307         }
5308
5309         if (INTEL_INFO(dev)->gen < 4)
5310                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5311
5312         intel_get_pipe_timings(crtc, pipe_config);
5313
5314         i9xx_get_pfit_config(crtc, pipe_config);
5315
5316         if (INTEL_INFO(dev)->gen >= 4) {
5317                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5318                 pipe_config->pixel_multiplier =
5319                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5320                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5321                 pipe_config->dpll_hw_state.dpll_md = tmp;
5322         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5323                 tmp = I915_READ(DPLL(crtc->pipe));
5324                 pipe_config->pixel_multiplier =
5325                         ((tmp & SDVO_MULTIPLIER_MASK)
5326                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5327         } else {
5328                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5329                  * port and will be fixed up in the encoder->get_config
5330                  * function. */
5331                 pipe_config->pixel_multiplier = 1;
5332         }
5333         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5334         if (!IS_VALLEYVIEW(dev)) {
5335                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5336                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5337         } else {
5338                 /* Mask out read-only status bits. */
5339                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5340                                                      DPLL_PORTC_READY_MASK |
5341                                                      DPLL_PORTB_READY_MASK);
5342         }
5343
5344         if (IS_VALLEYVIEW(dev))
5345                 vlv_crtc_clock_get(crtc, pipe_config);
5346         else
5347                 i9xx_crtc_clock_get(crtc, pipe_config);
5348
5349         return true;
5350 }
5351
5352 static void ironlake_init_pch_refclk(struct drm_device *dev)
5353 {
5354         struct drm_i915_private *dev_priv = dev->dev_private;
5355         struct drm_mode_config *mode_config = &dev->mode_config;
5356         struct intel_encoder *encoder;
5357         u32 val, final;
5358         bool has_lvds = false;
5359         bool has_cpu_edp = false;
5360         bool has_panel = false;
5361         bool has_ck505 = false;
5362         bool can_ssc = false;
5363
5364         /* We need to take the global config into account */
5365         list_for_each_entry(encoder, &mode_config->encoder_list,
5366                             base.head) {
5367                 switch (encoder->type) {
5368                 case INTEL_OUTPUT_LVDS:
5369                         has_panel = true;
5370                         has_lvds = true;
5371                         break;
5372                 case INTEL_OUTPUT_EDP:
5373                         has_panel = true;
5374                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5375                                 has_cpu_edp = true;
5376                         break;
5377                 }
5378         }
5379
5380         if (HAS_PCH_IBX(dev)) {
5381                 has_ck505 = dev_priv->vbt.display_clock_mode;
5382                 can_ssc = has_ck505;
5383         } else {
5384                 has_ck505 = false;
5385                 can_ssc = true;
5386         }
5387
5388         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5389                       has_panel, has_lvds, has_ck505);
5390
5391         /* Ironlake: try to setup display ref clock before DPLL
5392          * enabling. This is only under driver's control after
5393          * PCH B stepping, previous chipset stepping should be
5394          * ignoring this setting.
5395          */
5396         val = I915_READ(PCH_DREF_CONTROL);
5397
5398         /* As we must carefully and slowly disable/enable each source in turn,
5399          * compute the final state we want first and check if we need to
5400          * make any changes at all.
5401          */
5402         final = val;
5403         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5404         if (has_ck505)
5405                 final |= DREF_NONSPREAD_CK505_ENABLE;
5406         else
5407                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5408
5409         final &= ~DREF_SSC_SOURCE_MASK;
5410         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5411         final &= ~DREF_SSC1_ENABLE;
5412
5413         if (has_panel) {
5414                 final |= DREF_SSC_SOURCE_ENABLE;
5415
5416                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5417                         final |= DREF_SSC1_ENABLE;
5418
5419                 if (has_cpu_edp) {
5420                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5421                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5422                         else
5423                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5424                 } else
5425                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5426         } else {
5427                 final |= DREF_SSC_SOURCE_DISABLE;
5428                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5429         }
5430
5431         if (final == val)
5432                 return;
5433
5434         /* Always enable nonspread source */
5435         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5436
5437         if (has_ck505)
5438                 val |= DREF_NONSPREAD_CK505_ENABLE;
5439         else
5440                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5441
5442         if (has_panel) {
5443                 val &= ~DREF_SSC_SOURCE_MASK;
5444                 val |= DREF_SSC_SOURCE_ENABLE;
5445
5446                 /* SSC must be turned on before enabling the CPU output  */
5447                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5448                         DRM_DEBUG_KMS("Using SSC on panel\n");
5449                         val |= DREF_SSC1_ENABLE;
5450                 } else
5451                         val &= ~DREF_SSC1_ENABLE;
5452
5453                 /* Get SSC going before enabling the outputs */
5454                 I915_WRITE(PCH_DREF_CONTROL, val);
5455                 POSTING_READ(PCH_DREF_CONTROL);
5456                 udelay(200);
5457
5458                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5459
5460                 /* Enable CPU source on CPU attached eDP */
5461                 if (has_cpu_edp) {
5462                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5463                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5464                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5465                         }
5466                         else
5467                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5468                 } else
5469                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5470
5471                 I915_WRITE(PCH_DREF_CONTROL, val);
5472                 POSTING_READ(PCH_DREF_CONTROL);
5473                 udelay(200);
5474         } else {
5475                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5476
5477                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5478
5479                 /* Turn off CPU output */
5480                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5481
5482                 I915_WRITE(PCH_DREF_CONTROL, val);
5483                 POSTING_READ(PCH_DREF_CONTROL);
5484                 udelay(200);
5485
5486                 /* Turn off the SSC source */
5487                 val &= ~DREF_SSC_SOURCE_MASK;
5488                 val |= DREF_SSC_SOURCE_DISABLE;
5489
5490                 /* Turn off SSC1 */
5491                 val &= ~DREF_SSC1_ENABLE;
5492
5493                 I915_WRITE(PCH_DREF_CONTROL, val);
5494                 POSTING_READ(PCH_DREF_CONTROL);
5495                 udelay(200);
5496         }
5497
5498         BUG_ON(val != final);
5499 }
5500
5501 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5502 {
5503         uint32_t tmp;
5504
5505         tmp = I915_READ(SOUTH_CHICKEN2);
5506         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5507         I915_WRITE(SOUTH_CHICKEN2, tmp);
5508
5509         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5510                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5511                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5512
5513         tmp = I915_READ(SOUTH_CHICKEN2);
5514         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5515         I915_WRITE(SOUTH_CHICKEN2, tmp);
5516
5517         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5518                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5519                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5520 }
5521
5522 /* WaMPhyProgramming:hsw */
5523 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5524 {
5525         uint32_t tmp;
5526
5527         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5528         tmp &= ~(0xFF << 24);
5529         tmp |= (0x12 << 24);
5530         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5531
5532         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5533         tmp |= (1 << 11);
5534         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5535
5536         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5537         tmp |= (1 << 11);
5538         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5539
5540         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5541         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5542         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5543
5544         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5545         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5546         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5547
5548         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5549         tmp &= ~(7 << 13);
5550         tmp |= (5 << 13);
5551         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5552
5553         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5554         tmp &= ~(7 << 13);
5555         tmp |= (5 << 13);
5556         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5557
5558         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5559         tmp &= ~0xFF;
5560         tmp |= 0x1C;
5561         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5562
5563         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5564         tmp &= ~0xFF;
5565         tmp |= 0x1C;
5566         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5567
5568         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5569         tmp &= ~(0xFF << 16);
5570         tmp |= (0x1C << 16);
5571         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5572
5573         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5574         tmp &= ~(0xFF << 16);
5575         tmp |= (0x1C << 16);
5576         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5577
5578         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5579         tmp |= (1 << 27);
5580         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5581
5582         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5583         tmp |= (1 << 27);
5584         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5585
5586         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5587         tmp &= ~(0xF << 28);
5588         tmp |= (4 << 28);
5589         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5590
5591         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5592         tmp &= ~(0xF << 28);
5593         tmp |= (4 << 28);
5594         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5595 }
5596
5597 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5598  * Programming" based on the parameters passed:
5599  * - Sequence to enable CLKOUT_DP
5600  * - Sequence to enable CLKOUT_DP without spread
5601  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5602  */
5603 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5604                                  bool with_fdi)
5605 {
5606         struct drm_i915_private *dev_priv = dev->dev_private;
5607         uint32_t reg, tmp;
5608
5609         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5610                 with_spread = true;
5611         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5612                  with_fdi, "LP PCH doesn't have FDI\n"))
5613                 with_fdi = false;
5614
5615         mutex_lock(&dev_priv->dpio_lock);
5616
5617         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5618         tmp &= ~SBI_SSCCTL_DISABLE;
5619         tmp |= SBI_SSCCTL_PATHALT;
5620         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5621
5622         udelay(24);
5623
5624         if (with_spread) {
5625                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5626                 tmp &= ~SBI_SSCCTL_PATHALT;
5627                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5628
5629                 if (with_fdi) {
5630                         lpt_reset_fdi_mphy(dev_priv);
5631                         lpt_program_fdi_mphy(dev_priv);
5632                 }
5633         }
5634
5635         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5636                SBI_GEN0 : SBI_DBUFF0;
5637         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5638         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5639         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5640
5641         mutex_unlock(&dev_priv->dpio_lock);
5642 }
5643
5644 /* Sequence to disable CLKOUT_DP */
5645 static void lpt_disable_clkout_dp(struct drm_device *dev)
5646 {
5647         struct drm_i915_private *dev_priv = dev->dev_private;
5648         uint32_t reg, tmp;
5649
5650         mutex_lock(&dev_priv->dpio_lock);
5651
5652         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5653                SBI_GEN0 : SBI_DBUFF0;
5654         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5655         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5656         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5657
5658         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5659         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5660                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5661                         tmp |= SBI_SSCCTL_PATHALT;
5662                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5663                         udelay(32);
5664                 }
5665                 tmp |= SBI_SSCCTL_DISABLE;
5666                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5667         }
5668
5669         mutex_unlock(&dev_priv->dpio_lock);
5670 }
5671
5672 static void lpt_init_pch_refclk(struct drm_device *dev)
5673 {
5674         struct drm_mode_config *mode_config = &dev->mode_config;
5675         struct intel_encoder *encoder;
5676         bool has_vga = false;
5677
5678         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5679                 switch (encoder->type) {
5680                 case INTEL_OUTPUT_ANALOG:
5681                         has_vga = true;
5682                         break;
5683                 }
5684         }
5685
5686         if (has_vga)
5687                 lpt_enable_clkout_dp(dev, true, true);
5688         else
5689                 lpt_disable_clkout_dp(dev);
5690 }
5691
5692 /*
5693  * Initialize reference clocks when the driver loads
5694  */
5695 void intel_init_pch_refclk(struct drm_device *dev)
5696 {
5697         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5698                 ironlake_init_pch_refclk(dev);
5699         else if (HAS_PCH_LPT(dev))
5700                 lpt_init_pch_refclk(dev);
5701 }
5702
5703 static int ironlake_get_refclk(struct drm_crtc *crtc)
5704 {
5705         struct drm_device *dev = crtc->dev;
5706         struct drm_i915_private *dev_priv = dev->dev_private;
5707         struct intel_encoder *encoder;
5708         int num_connectors = 0;
5709         bool is_lvds = false;
5710
5711         for_each_encoder_on_crtc(dev, crtc, encoder) {
5712                 switch (encoder->type) {
5713                 case INTEL_OUTPUT_LVDS:
5714                         is_lvds = true;
5715                         break;
5716                 }
5717                 num_connectors++;
5718         }
5719
5720         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5721                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5722                               dev_priv->vbt.lvds_ssc_freq);
5723                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5724         }
5725
5726         return 120000;
5727 }
5728
5729 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5730 {
5731         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5733         int pipe = intel_crtc->pipe;
5734         uint32_t val;
5735
5736         val = 0;
5737
5738         switch (intel_crtc->config.pipe_bpp) {
5739         case 18:
5740                 val |= PIPECONF_6BPC;
5741                 break;
5742         case 24:
5743                 val |= PIPECONF_8BPC;
5744                 break;
5745         case 30:
5746                 val |= PIPECONF_10BPC;
5747                 break;
5748         case 36:
5749                 val |= PIPECONF_12BPC;
5750                 break;
5751         default:
5752                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5753                 BUG();
5754         }
5755
5756         if (intel_crtc->config.dither)
5757                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5758
5759         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5760                 val |= PIPECONF_INTERLACED_ILK;
5761         else
5762                 val |= PIPECONF_PROGRESSIVE;
5763
5764         if (intel_crtc->config.limited_color_range)
5765                 val |= PIPECONF_COLOR_RANGE_SELECT;
5766
5767         I915_WRITE(PIPECONF(pipe), val);
5768         POSTING_READ(PIPECONF(pipe));
5769 }
5770
5771 /*
5772  * Set up the pipe CSC unit.
5773  *
5774  * Currently only full range RGB to limited range RGB conversion
5775  * is supported, but eventually this should handle various
5776  * RGB<->YCbCr scenarios as well.
5777  */
5778 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5779 {
5780         struct drm_device *dev = crtc->dev;
5781         struct drm_i915_private *dev_priv = dev->dev_private;
5782         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5783         int pipe = intel_crtc->pipe;
5784         uint16_t coeff = 0x7800; /* 1.0 */
5785
5786         /*
5787          * TODO: Check what kind of values actually come out of the pipe
5788          * with these coeff/postoff values and adjust to get the best
5789          * accuracy. Perhaps we even need to take the bpc value into
5790          * consideration.
5791          */
5792
5793         if (intel_crtc->config.limited_color_range)
5794                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5795
5796         /*
5797          * GY/GU and RY/RU should be the other way around according
5798          * to BSpec, but reality doesn't agree. Just set them up in
5799          * a way that results in the correct picture.
5800          */
5801         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5802         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5803
5804         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5805         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5806
5807         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5808         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5809
5810         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5811         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5812         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5813
5814         if (INTEL_INFO(dev)->gen > 6) {
5815                 uint16_t postoff = 0;
5816
5817                 if (intel_crtc->config.limited_color_range)
5818                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5819
5820                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5821                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5822                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5823
5824                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5825         } else {
5826                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5827
5828                 if (intel_crtc->config.limited_color_range)
5829                         mode |= CSC_BLACK_SCREEN_OFFSET;
5830
5831                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5832         }
5833 }
5834
5835 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5836 {
5837         struct drm_device *dev = crtc->dev;
5838         struct drm_i915_private *dev_priv = dev->dev_private;
5839         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5840         enum pipe pipe = intel_crtc->pipe;
5841         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5842         uint32_t val;
5843
5844         val = 0;
5845
5846         if (IS_HASWELL(dev) && intel_crtc->config.dither)
5847                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5848
5849         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5850                 val |= PIPECONF_INTERLACED_ILK;
5851         else
5852                 val |= PIPECONF_PROGRESSIVE;
5853
5854         I915_WRITE(PIPECONF(cpu_transcoder), val);
5855         POSTING_READ(PIPECONF(cpu_transcoder));
5856
5857         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5858         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5859
5860         if (IS_BROADWELL(dev)) {
5861                 val = 0;
5862
5863                 switch (intel_crtc->config.pipe_bpp) {
5864                 case 18:
5865                         val |= PIPEMISC_DITHER_6_BPC;
5866                         break;
5867                 case 24:
5868                         val |= PIPEMISC_DITHER_8_BPC;
5869                         break;
5870                 case 30:
5871                         val |= PIPEMISC_DITHER_10_BPC;
5872                         break;
5873                 case 36:
5874                         val |= PIPEMISC_DITHER_12_BPC;
5875                         break;
5876                 default:
5877                         /* Case prevented by pipe_config_set_bpp. */
5878                         BUG();
5879                 }
5880
5881                 if (intel_crtc->config.dither)
5882                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
5883
5884                 I915_WRITE(PIPEMISC(pipe), val);
5885         }
5886 }
5887
5888 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5889                                     intel_clock_t *clock,
5890                                     bool *has_reduced_clock,
5891                                     intel_clock_t *reduced_clock)
5892 {
5893         struct drm_device *dev = crtc->dev;
5894         struct drm_i915_private *dev_priv = dev->dev_private;
5895         struct intel_encoder *intel_encoder;
5896         int refclk;
5897         const intel_limit_t *limit;
5898         bool ret, is_lvds = false;
5899
5900         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5901                 switch (intel_encoder->type) {
5902                 case INTEL_OUTPUT_LVDS:
5903                         is_lvds = true;
5904                         break;
5905                 }
5906         }
5907
5908         refclk = ironlake_get_refclk(crtc);
5909
5910         /*
5911          * Returns a set of divisors for the desired target clock with the given
5912          * refclk, or FALSE.  The returned values represent the clock equation:
5913          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5914          */
5915         limit = intel_limit(crtc, refclk);
5916         ret = dev_priv->display.find_dpll(limit, crtc,
5917                                           to_intel_crtc(crtc)->config.port_clock,
5918                                           refclk, NULL, clock);
5919         if (!ret)
5920                 return false;
5921
5922         if (is_lvds && dev_priv->lvds_downclock_avail) {
5923                 /*
5924                  * Ensure we match the reduced clock's P to the target clock.
5925                  * If the clocks don't match, we can't switch the display clock
5926                  * by using the FP0/FP1. In such case we will disable the LVDS
5927                  * downclock feature.
5928                 */
5929                 *has_reduced_clock =
5930                         dev_priv->display.find_dpll(limit, crtc,
5931                                                     dev_priv->lvds_downclock,
5932                                                     refclk, clock,
5933                                                     reduced_clock);
5934         }
5935
5936         return true;
5937 }
5938
5939 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5940 {
5941         /*
5942          * Account for spread spectrum to avoid
5943          * oversubscribing the link. Max center spread
5944          * is 2.5%; use 5% for safety's sake.
5945          */
5946         u32 bps = target_clock * bpp * 21 / 20;
5947         return bps / (link_bw * 8) + 1;
5948 }
5949
5950 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5951 {
5952         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5953 }
5954
5955 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5956                                       u32 *fp,
5957                                       intel_clock_t *reduced_clock, u32 *fp2)
5958 {
5959         struct drm_crtc *crtc = &intel_crtc->base;
5960         struct drm_device *dev = crtc->dev;
5961         struct drm_i915_private *dev_priv = dev->dev_private;
5962         struct intel_encoder *intel_encoder;
5963         uint32_t dpll;
5964         int factor, num_connectors = 0;
5965         bool is_lvds = false, is_sdvo = false;
5966
5967         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5968                 switch (intel_encoder->type) {
5969                 case INTEL_OUTPUT_LVDS:
5970                         is_lvds = true;
5971                         break;
5972                 case INTEL_OUTPUT_SDVO:
5973                 case INTEL_OUTPUT_HDMI:
5974                         is_sdvo = true;
5975                         break;
5976                 }
5977
5978                 num_connectors++;
5979         }
5980
5981         /* Enable autotuning of the PLL clock (if permissible) */
5982         factor = 21;
5983         if (is_lvds) {
5984                 if ((intel_panel_use_ssc(dev_priv) &&
5985                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5986                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5987                         factor = 25;
5988         } else if (intel_crtc->config.sdvo_tv_clock)
5989                 factor = 20;
5990
5991         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5992                 *fp |= FP_CB_TUNE;
5993
5994         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5995                 *fp2 |= FP_CB_TUNE;
5996
5997         dpll = 0;
5998
5999         if (is_lvds)
6000                 dpll |= DPLLB_MODE_LVDS;
6001         else
6002                 dpll |= DPLLB_MODE_DAC_SERIAL;
6003
6004         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6005                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6006
6007         if (is_sdvo)
6008                 dpll |= DPLL_SDVO_HIGH_SPEED;
6009         if (intel_crtc->config.has_dp_encoder)
6010                 dpll |= DPLL_SDVO_HIGH_SPEED;
6011
6012         /* compute bitmask from p1 value */
6013         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6014         /* also FPA1 */
6015         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6016
6017         switch (intel_crtc->config.dpll.p2) {
6018         case 5:
6019                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6020                 break;
6021         case 7:
6022                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6023                 break;
6024         case 10:
6025                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6026                 break;
6027         case 14:
6028                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6029                 break;
6030         }
6031
6032         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6033                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6034         else
6035                 dpll |= PLL_REF_INPUT_DREFCLK;
6036
6037         return dpll | DPLL_VCO_ENABLE;
6038 }
6039
6040 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6041                                   int x, int y,
6042                                   struct drm_framebuffer *fb)
6043 {
6044         struct drm_device *dev = crtc->dev;
6045         struct drm_i915_private *dev_priv = dev->dev_private;
6046         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6047         int pipe = intel_crtc->pipe;
6048         int plane = intel_crtc->plane;
6049         int num_connectors = 0;
6050         intel_clock_t clock, reduced_clock;
6051         u32 dpll = 0, fp = 0, fp2 = 0;
6052         bool ok, has_reduced_clock = false;
6053         bool is_lvds = false;
6054         struct intel_encoder *encoder;
6055         struct intel_shared_dpll *pll;
6056         int ret;
6057
6058         for_each_encoder_on_crtc(dev, crtc, encoder) {
6059                 switch (encoder->type) {
6060                 case INTEL_OUTPUT_LVDS:
6061                         is_lvds = true;
6062                         break;
6063                 }
6064
6065                 num_connectors++;
6066         }
6067
6068         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6069              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6070
6071         ok = ironlake_compute_clocks(crtc, &clock,
6072                                      &has_reduced_clock, &reduced_clock);
6073         if (!ok && !intel_crtc->config.clock_set) {
6074                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6075                 return -EINVAL;
6076         }
6077         /* Compat-code for transition, will disappear. */
6078         if (!intel_crtc->config.clock_set) {
6079                 intel_crtc->config.dpll.n = clock.n;
6080                 intel_crtc->config.dpll.m1 = clock.m1;
6081                 intel_crtc->config.dpll.m2 = clock.m2;
6082                 intel_crtc->config.dpll.p1 = clock.p1;
6083                 intel_crtc->config.dpll.p2 = clock.p2;
6084         }
6085
6086         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6087         if (intel_crtc->config.has_pch_encoder) {
6088                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6089                 if (has_reduced_clock)
6090                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6091
6092                 dpll = ironlake_compute_dpll(intel_crtc,
6093                                              &fp, &reduced_clock,
6094                                              has_reduced_clock ? &fp2 : NULL);
6095
6096                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6097                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6098                 if (has_reduced_clock)
6099                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6100                 else
6101                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6102
6103                 pll = intel_get_shared_dpll(intel_crtc);
6104                 if (pll == NULL) {
6105                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6106                                          pipe_name(pipe));
6107                         return -EINVAL;
6108                 }
6109         } else
6110                 intel_put_shared_dpll(intel_crtc);
6111
6112         if (intel_crtc->config.has_dp_encoder)
6113                 intel_dp_set_m_n(intel_crtc);
6114
6115         if (is_lvds && has_reduced_clock && i915_powersave)
6116                 intel_crtc->lowfreq_avail = true;
6117         else
6118                 intel_crtc->lowfreq_avail = false;
6119
6120         intel_set_pipe_timings(intel_crtc);
6121
6122         if (intel_crtc->config.has_pch_encoder) {
6123                 intel_cpu_transcoder_set_m_n(intel_crtc,
6124                                              &intel_crtc->config.fdi_m_n);
6125         }
6126
6127         ironlake_set_pipeconf(crtc);
6128
6129         /* Set up the display plane register */
6130         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6131         POSTING_READ(DSPCNTR(plane));
6132
6133         ret = intel_pipe_set_base(crtc, x, y, fb);
6134
6135         return ret;
6136 }
6137
6138 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6139                                          struct intel_link_m_n *m_n)
6140 {
6141         struct drm_device *dev = crtc->base.dev;
6142         struct drm_i915_private *dev_priv = dev->dev_private;
6143         enum pipe pipe = crtc->pipe;
6144
6145         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6146         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6147         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6148                 & ~TU_SIZE_MASK;
6149         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6150         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6151                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6152 }
6153
6154 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6155                                          enum transcoder transcoder,
6156                                          struct intel_link_m_n *m_n)
6157 {
6158         struct drm_device *dev = crtc->base.dev;
6159         struct drm_i915_private *dev_priv = dev->dev_private;
6160         enum pipe pipe = crtc->pipe;
6161
6162         if (INTEL_INFO(dev)->gen >= 5) {
6163                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6164                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6165                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6166                         & ~TU_SIZE_MASK;
6167                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6168                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6169                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6170         } else {
6171                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6172                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6173                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6174                         & ~TU_SIZE_MASK;
6175                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6176                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6177                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6178         }
6179 }
6180
6181 void intel_dp_get_m_n(struct intel_crtc *crtc,
6182                       struct intel_crtc_config *pipe_config)
6183 {
6184         if (crtc->config.has_pch_encoder)
6185                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6186         else
6187                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6188                                              &pipe_config->dp_m_n);
6189 }
6190
6191 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6192                                         struct intel_crtc_config *pipe_config)
6193 {
6194         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6195                                      &pipe_config->fdi_m_n);
6196 }
6197
6198 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6199                                      struct intel_crtc_config *pipe_config)
6200 {
6201         struct drm_device *dev = crtc->base.dev;
6202         struct drm_i915_private *dev_priv = dev->dev_private;
6203         uint32_t tmp;
6204
6205         tmp = I915_READ(PF_CTL(crtc->pipe));
6206
6207         if (tmp & PF_ENABLE) {
6208                 pipe_config->pch_pfit.enabled = true;
6209                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6210                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6211
6212                 /* We currently do not free assignements of panel fitters on
6213                  * ivb/hsw (since we don't use the higher upscaling modes which
6214                  * differentiates them) so just WARN about this case for now. */
6215                 if (IS_GEN7(dev)) {
6216                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6217                                 PF_PIPE_SEL_IVB(crtc->pipe));
6218                 }
6219         }
6220 }
6221
6222 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6223                                      struct intel_crtc_config *pipe_config)
6224 {
6225         struct drm_device *dev = crtc->base.dev;
6226         struct drm_i915_private *dev_priv = dev->dev_private;
6227         uint32_t tmp;
6228
6229         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6230         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6231
6232         tmp = I915_READ(PIPECONF(crtc->pipe));
6233         if (!(tmp & PIPECONF_ENABLE))
6234                 return false;
6235
6236         switch (tmp & PIPECONF_BPC_MASK) {
6237         case PIPECONF_6BPC:
6238                 pipe_config->pipe_bpp = 18;
6239                 break;
6240         case PIPECONF_8BPC:
6241                 pipe_config->pipe_bpp = 24;
6242                 break;
6243         case PIPECONF_10BPC:
6244                 pipe_config->pipe_bpp = 30;
6245                 break;
6246         case PIPECONF_12BPC:
6247                 pipe_config->pipe_bpp = 36;
6248                 break;
6249         default:
6250                 break;
6251         }
6252
6253         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6254                 struct intel_shared_dpll *pll;
6255
6256                 pipe_config->has_pch_encoder = true;
6257
6258                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6259                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6260                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6261
6262                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6263
6264                 if (HAS_PCH_IBX(dev_priv->dev)) {
6265                         pipe_config->shared_dpll =
6266                                 (enum intel_dpll_id) crtc->pipe;
6267                 } else {
6268                         tmp = I915_READ(PCH_DPLL_SEL);
6269                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6270                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6271                         else
6272                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6273                 }
6274
6275                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6276
6277                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6278                                            &pipe_config->dpll_hw_state));
6279
6280                 tmp = pipe_config->dpll_hw_state.dpll;
6281                 pipe_config->pixel_multiplier =
6282                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6283                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6284
6285                 ironlake_pch_clock_get(crtc, pipe_config);
6286         } else {
6287                 pipe_config->pixel_multiplier = 1;
6288         }
6289
6290         intel_get_pipe_timings(crtc, pipe_config);
6291
6292         ironlake_get_pfit_config(crtc, pipe_config);
6293
6294         return true;
6295 }
6296
6297 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6298 {
6299         struct drm_device *dev = dev_priv->dev;
6300         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6301         struct intel_crtc *crtc;
6302         unsigned long irqflags;
6303         uint32_t val;
6304
6305         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6306                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6307                      pipe_name(crtc->pipe));
6308
6309         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6310         WARN(plls->spll_refcount, "SPLL enabled\n");
6311         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6312         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6313         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6314         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6315              "CPU PWM1 enabled\n");
6316         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6317              "CPU PWM2 enabled\n");
6318         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6319              "PCH PWM1 enabled\n");
6320         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6321              "Utility pin enabled\n");
6322         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6323
6324         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6325         val = I915_READ(DEIMR);
6326         WARN((val & ~DE_PCH_EVENT_IVB) != val,
6327              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6328         val = I915_READ(SDEIMR);
6329         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6330              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6331         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6332 }
6333
6334 /*
6335  * This function implements pieces of two sequences from BSpec:
6336  * - Sequence for display software to disable LCPLL
6337  * - Sequence for display software to allow package C8+
6338  * The steps implemented here are just the steps that actually touch the LCPLL
6339  * register. Callers should take care of disabling all the display engine
6340  * functions, doing the mode unset, fixing interrupts, etc.
6341  */
6342 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6343                               bool switch_to_fclk, bool allow_power_down)
6344 {
6345         uint32_t val;
6346
6347         assert_can_disable_lcpll(dev_priv);
6348
6349         val = I915_READ(LCPLL_CTL);
6350
6351         if (switch_to_fclk) {
6352                 val |= LCPLL_CD_SOURCE_FCLK;
6353                 I915_WRITE(LCPLL_CTL, val);
6354
6355                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6356                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6357                         DRM_ERROR("Switching to FCLK failed\n");
6358
6359                 val = I915_READ(LCPLL_CTL);
6360         }
6361
6362         val |= LCPLL_PLL_DISABLE;
6363         I915_WRITE(LCPLL_CTL, val);
6364         POSTING_READ(LCPLL_CTL);
6365
6366         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6367                 DRM_ERROR("LCPLL still locked\n");
6368
6369         val = I915_READ(D_COMP);
6370         val |= D_COMP_COMP_DISABLE;
6371         mutex_lock(&dev_priv->rps.hw_lock);
6372         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6373                 DRM_ERROR("Failed to disable D_COMP\n");
6374         mutex_unlock(&dev_priv->rps.hw_lock);
6375         POSTING_READ(D_COMP);
6376         ndelay(100);
6377
6378         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6379                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6380
6381         if (allow_power_down) {
6382                 val = I915_READ(LCPLL_CTL);
6383                 val |= LCPLL_POWER_DOWN_ALLOW;
6384                 I915_WRITE(LCPLL_CTL, val);
6385                 POSTING_READ(LCPLL_CTL);
6386         }
6387 }
6388
6389 /*
6390  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6391  * source.
6392  */
6393 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6394 {
6395         uint32_t val;
6396
6397         val = I915_READ(LCPLL_CTL);
6398
6399         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6400                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6401                 return;
6402
6403         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6404          * we'll hang the machine! */
6405         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6406
6407         if (val & LCPLL_POWER_DOWN_ALLOW) {
6408                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6409                 I915_WRITE(LCPLL_CTL, val);
6410                 POSTING_READ(LCPLL_CTL);
6411         }
6412
6413         val = I915_READ(D_COMP);
6414         val |= D_COMP_COMP_FORCE;
6415         val &= ~D_COMP_COMP_DISABLE;
6416         mutex_lock(&dev_priv->rps.hw_lock);
6417         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6418                 DRM_ERROR("Failed to enable D_COMP\n");
6419         mutex_unlock(&dev_priv->rps.hw_lock);
6420         POSTING_READ(D_COMP);
6421
6422         val = I915_READ(LCPLL_CTL);
6423         val &= ~LCPLL_PLL_DISABLE;
6424         I915_WRITE(LCPLL_CTL, val);
6425
6426         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6427                 DRM_ERROR("LCPLL not locked yet\n");
6428
6429         if (val & LCPLL_CD_SOURCE_FCLK) {
6430                 val = I915_READ(LCPLL_CTL);
6431                 val &= ~LCPLL_CD_SOURCE_FCLK;
6432                 I915_WRITE(LCPLL_CTL, val);
6433
6434                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6435                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6436                         DRM_ERROR("Switching back to LCPLL failed\n");
6437         }
6438
6439         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6440 }
6441
6442 void hsw_enable_pc8_work(struct work_struct *__work)
6443 {
6444         struct drm_i915_private *dev_priv =
6445                 container_of(to_delayed_work(__work), struct drm_i915_private,
6446                              pc8.enable_work);
6447         struct drm_device *dev = dev_priv->dev;
6448         uint32_t val;
6449
6450         if (dev_priv->pc8.enabled)
6451                 return;
6452
6453         DRM_DEBUG_KMS("Enabling package C8+\n");
6454
6455         dev_priv->pc8.enabled = true;
6456
6457         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6458                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6459                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6460                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6461         }
6462
6463         lpt_disable_clkout_dp(dev);
6464         hsw_pc8_disable_interrupts(dev);
6465         hsw_disable_lcpll(dev_priv, true, true);
6466 }
6467
6468 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6469 {
6470         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6471         WARN(dev_priv->pc8.disable_count < 1,
6472              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6473
6474         dev_priv->pc8.disable_count--;
6475         if (dev_priv->pc8.disable_count != 0)
6476                 return;
6477
6478         schedule_delayed_work(&dev_priv->pc8.enable_work,
6479                               msecs_to_jiffies(i915_pc8_timeout));
6480 }
6481
6482 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6483 {
6484         struct drm_device *dev = dev_priv->dev;
6485         uint32_t val;
6486
6487         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6488         WARN(dev_priv->pc8.disable_count < 0,
6489              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6490
6491         dev_priv->pc8.disable_count++;
6492         if (dev_priv->pc8.disable_count != 1)
6493                 return;
6494
6495         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6496         if (!dev_priv->pc8.enabled)
6497                 return;
6498
6499         DRM_DEBUG_KMS("Disabling package C8+\n");
6500
6501         hsw_restore_lcpll(dev_priv);
6502         hsw_pc8_restore_interrupts(dev);
6503         lpt_init_pch_refclk(dev);
6504
6505         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6506                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6507                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6508                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6509         }
6510
6511         intel_prepare_ddi(dev);
6512         i915_gem_init_swizzling(dev);
6513         mutex_lock(&dev_priv->rps.hw_lock);
6514         gen6_update_ring_freq(dev);
6515         mutex_unlock(&dev_priv->rps.hw_lock);
6516         dev_priv->pc8.enabled = false;
6517 }
6518
6519 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6520 {
6521         mutex_lock(&dev_priv->pc8.lock);
6522         __hsw_enable_package_c8(dev_priv);
6523         mutex_unlock(&dev_priv->pc8.lock);
6524 }
6525
6526 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6527 {
6528         mutex_lock(&dev_priv->pc8.lock);
6529         __hsw_disable_package_c8(dev_priv);
6530         mutex_unlock(&dev_priv->pc8.lock);
6531 }
6532
6533 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6534 {
6535         struct drm_device *dev = dev_priv->dev;
6536         struct intel_crtc *crtc;
6537         uint32_t val;
6538
6539         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6540                 if (crtc->base.enabled)
6541                         return false;
6542
6543         /* This case is still possible since we have the i915.disable_power_well
6544          * parameter and also the KVMr or something else might be requesting the
6545          * power well. */
6546         val = I915_READ(HSW_PWR_WELL_DRIVER);
6547         if (val != 0) {
6548                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6549                 return false;
6550         }
6551
6552         return true;
6553 }
6554
6555 /* Since we're called from modeset_global_resources there's no way to
6556  * symmetrically increase and decrease the refcount, so we use
6557  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6558  * or not.
6559  */
6560 static void hsw_update_package_c8(struct drm_device *dev)
6561 {
6562         struct drm_i915_private *dev_priv = dev->dev_private;
6563         bool allow;
6564
6565         if (!i915_enable_pc8)
6566                 return;
6567
6568         mutex_lock(&dev_priv->pc8.lock);
6569
6570         allow = hsw_can_enable_package_c8(dev_priv);
6571
6572         if (allow == dev_priv->pc8.requirements_met)
6573                 goto done;
6574
6575         dev_priv->pc8.requirements_met = allow;
6576
6577         if (allow)
6578                 __hsw_enable_package_c8(dev_priv);
6579         else
6580                 __hsw_disable_package_c8(dev_priv);
6581
6582 done:
6583         mutex_unlock(&dev_priv->pc8.lock);
6584 }
6585
6586 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6587 {
6588         if (!dev_priv->pc8.gpu_idle) {
6589                 dev_priv->pc8.gpu_idle = true;
6590                 hsw_enable_package_c8(dev_priv);
6591         }
6592 }
6593
6594 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6595 {
6596         if (dev_priv->pc8.gpu_idle) {
6597                 dev_priv->pc8.gpu_idle = false;
6598                 hsw_disable_package_c8(dev_priv);
6599         }
6600 }
6601
6602 #define for_each_power_domain(domain, mask)                             \
6603         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
6604                 if ((1 << (domain)) & (mask))
6605
6606 static unsigned long get_pipe_power_domains(struct drm_device *dev,
6607                                             enum pipe pipe, bool pfit_enabled)
6608 {
6609         unsigned long mask;
6610         enum transcoder transcoder;
6611
6612         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
6613
6614         mask = BIT(POWER_DOMAIN_PIPE(pipe));
6615         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6616         if (pfit_enabled)
6617                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6618
6619         return mask;
6620 }
6621
6622 void intel_display_set_init_power(struct drm_device *dev, bool enable)
6623 {
6624         struct drm_i915_private *dev_priv = dev->dev_private;
6625
6626         if (dev_priv->power_domains.init_power_on == enable)
6627                 return;
6628
6629         if (enable)
6630                 intel_display_power_get(dev, POWER_DOMAIN_INIT);
6631         else
6632                 intel_display_power_put(dev, POWER_DOMAIN_INIT);
6633
6634         dev_priv->power_domains.init_power_on = enable;
6635 }
6636
6637 static void modeset_update_power_wells(struct drm_device *dev)
6638 {
6639         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
6640         struct intel_crtc *crtc;
6641
6642         /*
6643          * First get all needed power domains, then put all unneeded, to avoid
6644          * any unnecessary toggling of the power wells.
6645          */
6646         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6647                 enum intel_display_power_domain domain;
6648
6649                 if (!crtc->base.enabled)
6650                         continue;
6651
6652                 pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
6653                                                 crtc->pipe,
6654                                                 crtc->config.pch_pfit.enabled);
6655
6656                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
6657                         intel_display_power_get(dev, domain);
6658         }
6659
6660         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6661                 enum intel_display_power_domain domain;
6662
6663                 for_each_power_domain(domain, crtc->enabled_power_domains)
6664                         intel_display_power_put(dev, domain);
6665
6666                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
6667         }
6668
6669         intel_display_set_init_power(dev, false);
6670 }
6671
6672 static void haswell_modeset_global_resources(struct drm_device *dev)
6673 {
6674         modeset_update_power_wells(dev);
6675         hsw_update_package_c8(dev);
6676 }
6677
6678 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6679                                  int x, int y,
6680                                  struct drm_framebuffer *fb)
6681 {
6682         struct drm_device *dev = crtc->dev;
6683         struct drm_i915_private *dev_priv = dev->dev_private;
6684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6685         int plane = intel_crtc->plane;
6686         int ret;
6687
6688         if (!intel_ddi_pll_mode_set(crtc))
6689                 return -EINVAL;
6690
6691         if (intel_crtc->config.has_dp_encoder)
6692                 intel_dp_set_m_n(intel_crtc);
6693
6694         intel_crtc->lowfreq_avail = false;
6695
6696         intel_set_pipe_timings(intel_crtc);
6697
6698         if (intel_crtc->config.has_pch_encoder) {
6699                 intel_cpu_transcoder_set_m_n(intel_crtc,
6700                                              &intel_crtc->config.fdi_m_n);
6701         }
6702
6703         haswell_set_pipeconf(crtc);
6704
6705         intel_set_pipe_csc(crtc);
6706
6707         /* Set up the display plane register */
6708         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6709         POSTING_READ(DSPCNTR(plane));
6710
6711         ret = intel_pipe_set_base(crtc, x, y, fb);
6712
6713         return ret;
6714 }
6715
6716 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6717                                     struct intel_crtc_config *pipe_config)
6718 {
6719         struct drm_device *dev = crtc->base.dev;
6720         struct drm_i915_private *dev_priv = dev->dev_private;
6721         enum intel_display_power_domain pfit_domain;
6722         uint32_t tmp;
6723
6724         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6725         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6726
6727         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6728         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6729                 enum pipe trans_edp_pipe;
6730                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6731                 default:
6732                         WARN(1, "unknown pipe linked to edp transcoder\n");
6733                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6734                 case TRANS_DDI_EDP_INPUT_A_ON:
6735                         trans_edp_pipe = PIPE_A;
6736                         break;
6737                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6738                         trans_edp_pipe = PIPE_B;
6739                         break;
6740                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6741                         trans_edp_pipe = PIPE_C;
6742                         break;
6743                 }
6744
6745                 if (trans_edp_pipe == crtc->pipe)
6746                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6747         }
6748
6749         if (!intel_display_power_enabled(dev,
6750                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6751                 return false;
6752
6753         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6754         if (!(tmp & PIPECONF_ENABLE))
6755                 return false;
6756
6757         /*
6758          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6759          * DDI E. So just check whether this pipe is wired to DDI E and whether
6760          * the PCH transcoder is on.
6761          */
6762         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6763         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6764             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6765                 pipe_config->has_pch_encoder = true;
6766
6767                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6768                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6769                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6770
6771                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6772         }
6773
6774         intel_get_pipe_timings(crtc, pipe_config);
6775
6776         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6777         if (intel_display_power_enabled(dev, pfit_domain))
6778                 ironlake_get_pfit_config(crtc, pipe_config);
6779
6780         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6781                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6782
6783         pipe_config->pixel_multiplier = 1;
6784
6785         return true;
6786 }
6787
6788 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6789                                int x, int y,
6790                                struct drm_framebuffer *fb)
6791 {
6792         struct drm_device *dev = crtc->dev;
6793         struct drm_i915_private *dev_priv = dev->dev_private;
6794         struct intel_encoder *encoder;
6795         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6796         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6797         int pipe = intel_crtc->pipe;
6798         int ret;
6799
6800         drm_vblank_pre_modeset(dev, pipe);
6801
6802         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6803
6804         drm_vblank_post_modeset(dev, pipe);
6805
6806         if (ret != 0)
6807                 return ret;
6808
6809         for_each_encoder_on_crtc(dev, crtc, encoder) {
6810                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6811                         encoder->base.base.id,
6812                         drm_get_encoder_name(&encoder->base),
6813                         mode->base.id, mode->name);
6814                 encoder->mode_set(encoder);
6815         }
6816
6817         return 0;
6818 }
6819
6820 static struct {
6821         int clock;
6822         u32 config;
6823 } hdmi_audio_clock[] = {
6824         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
6825         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
6826         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
6827         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
6828         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
6829         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
6830         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
6831         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
6832         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
6833         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
6834 };
6835
6836 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
6837 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
6838 {
6839         int i;
6840
6841         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
6842                 if (mode->clock == hdmi_audio_clock[i].clock)
6843                         break;
6844         }
6845
6846         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
6847                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
6848                 i = 1;
6849         }
6850
6851         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
6852                       hdmi_audio_clock[i].clock,
6853                       hdmi_audio_clock[i].config);
6854
6855         return hdmi_audio_clock[i].config;
6856 }
6857
6858 static bool intel_eld_uptodate(struct drm_connector *connector,
6859                                int reg_eldv, uint32_t bits_eldv,
6860                                int reg_elda, uint32_t bits_elda,
6861                                int reg_edid)
6862 {
6863         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6864         uint8_t *eld = connector->eld;
6865         uint32_t i;
6866
6867         i = I915_READ(reg_eldv);
6868         i &= bits_eldv;
6869
6870         if (!eld[0])
6871                 return !i;
6872
6873         if (!i)
6874                 return false;
6875
6876         i = I915_READ(reg_elda);
6877         i &= ~bits_elda;
6878         I915_WRITE(reg_elda, i);
6879
6880         for (i = 0; i < eld[2]; i++)
6881                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6882                         return false;
6883
6884         return true;
6885 }
6886
6887 static void g4x_write_eld(struct drm_connector *connector,
6888                           struct drm_crtc *crtc,
6889                           struct drm_display_mode *mode)
6890 {
6891         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6892         uint8_t *eld = connector->eld;
6893         uint32_t eldv;
6894         uint32_t len;
6895         uint32_t i;
6896
6897         i = I915_READ(G4X_AUD_VID_DID);
6898
6899         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6900                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6901         else
6902                 eldv = G4X_ELDV_DEVCTG;
6903
6904         if (intel_eld_uptodate(connector,
6905                                G4X_AUD_CNTL_ST, eldv,
6906                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6907                                G4X_HDMIW_HDMIEDID))
6908                 return;
6909
6910         i = I915_READ(G4X_AUD_CNTL_ST);
6911         i &= ~(eldv | G4X_ELD_ADDR);
6912         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6913         I915_WRITE(G4X_AUD_CNTL_ST, i);
6914
6915         if (!eld[0])
6916                 return;
6917
6918         len = min_t(uint8_t, eld[2], len);
6919         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6920         for (i = 0; i < len; i++)
6921                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6922
6923         i = I915_READ(G4X_AUD_CNTL_ST);
6924         i |= eldv;
6925         I915_WRITE(G4X_AUD_CNTL_ST, i);
6926 }
6927
6928 static void haswell_write_eld(struct drm_connector *connector,
6929                               struct drm_crtc *crtc,
6930                               struct drm_display_mode *mode)
6931 {
6932         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6933         uint8_t *eld = connector->eld;
6934         struct drm_device *dev = crtc->dev;
6935         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6936         uint32_t eldv;
6937         uint32_t i;
6938         int len;
6939         int pipe = to_intel_crtc(crtc)->pipe;
6940         int tmp;
6941
6942         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6943         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6944         int aud_config = HSW_AUD_CFG(pipe);
6945         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6946
6947
6948         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6949
6950         /* Audio output enable */
6951         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6952         tmp = I915_READ(aud_cntrl_st2);
6953         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6954         I915_WRITE(aud_cntrl_st2, tmp);
6955
6956         /* Wait for 1 vertical blank */
6957         intel_wait_for_vblank(dev, pipe);
6958
6959         /* Set ELD valid state */
6960         tmp = I915_READ(aud_cntrl_st2);
6961         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6962         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6963         I915_WRITE(aud_cntrl_st2, tmp);
6964         tmp = I915_READ(aud_cntrl_st2);
6965         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6966
6967         /* Enable HDMI mode */
6968         tmp = I915_READ(aud_config);
6969         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6970         /* clear N_programing_enable and N_value_index */
6971         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6972         I915_WRITE(aud_config, tmp);
6973
6974         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6975
6976         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6977         intel_crtc->eld_vld = true;
6978
6979         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6980                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6981                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6982                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6983         } else {
6984                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
6985         }
6986
6987         if (intel_eld_uptodate(connector,
6988                                aud_cntrl_st2, eldv,
6989                                aud_cntl_st, IBX_ELD_ADDRESS,
6990                                hdmiw_hdmiedid))
6991                 return;
6992
6993         i = I915_READ(aud_cntrl_st2);
6994         i &= ~eldv;
6995         I915_WRITE(aud_cntrl_st2, i);
6996
6997         if (!eld[0])
6998                 return;
6999
7000         i = I915_READ(aud_cntl_st);
7001         i &= ~IBX_ELD_ADDRESS;
7002         I915_WRITE(aud_cntl_st, i);
7003         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7004         DRM_DEBUG_DRIVER("port num:%d\n", i);
7005
7006         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7007         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7008         for (i = 0; i < len; i++)
7009                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7010
7011         i = I915_READ(aud_cntrl_st2);
7012         i |= eldv;
7013         I915_WRITE(aud_cntrl_st2, i);
7014
7015 }
7016
7017 static void ironlake_write_eld(struct drm_connector *connector,
7018                                struct drm_crtc *crtc,
7019                                struct drm_display_mode *mode)
7020 {
7021         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7022         uint8_t *eld = connector->eld;
7023         uint32_t eldv;
7024         uint32_t i;
7025         int len;
7026         int hdmiw_hdmiedid;
7027         int aud_config;
7028         int aud_cntl_st;
7029         int aud_cntrl_st2;
7030         int pipe = to_intel_crtc(crtc)->pipe;
7031
7032         if (HAS_PCH_IBX(connector->dev)) {
7033                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7034                 aud_config = IBX_AUD_CFG(pipe);
7035                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7036                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7037         } else if (IS_VALLEYVIEW(connector->dev)) {
7038                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7039                 aud_config = VLV_AUD_CFG(pipe);
7040                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7041                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7042         } else {
7043                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7044                 aud_config = CPT_AUD_CFG(pipe);
7045                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7046                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7047         }
7048
7049         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7050
7051         if (IS_VALLEYVIEW(connector->dev))  {
7052                 struct intel_encoder *intel_encoder;
7053                 struct intel_digital_port *intel_dig_port;
7054
7055                 intel_encoder = intel_attached_encoder(connector);
7056                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7057                 i = intel_dig_port->port;
7058         } else {
7059                 i = I915_READ(aud_cntl_st);
7060                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7061                 /* DIP_Port_Select, 0x1 = PortB */
7062         }
7063
7064         if (!i) {
7065                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7066                 /* operate blindly on all ports */
7067                 eldv = IBX_ELD_VALIDB;
7068                 eldv |= IBX_ELD_VALIDB << 4;
7069                 eldv |= IBX_ELD_VALIDB << 8;
7070         } else {
7071                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7072                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7073         }
7074
7075         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7076                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7077                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7078                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7079         } else {
7080                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7081         }
7082
7083         if (intel_eld_uptodate(connector,
7084                                aud_cntrl_st2, eldv,
7085                                aud_cntl_st, IBX_ELD_ADDRESS,
7086                                hdmiw_hdmiedid))
7087                 return;
7088
7089         i = I915_READ(aud_cntrl_st2);
7090         i &= ~eldv;
7091         I915_WRITE(aud_cntrl_st2, i);
7092
7093         if (!eld[0])
7094                 return;
7095
7096         i = I915_READ(aud_cntl_st);
7097         i &= ~IBX_ELD_ADDRESS;
7098         I915_WRITE(aud_cntl_st, i);
7099
7100         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7101         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7102         for (i = 0; i < len; i++)
7103                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7104
7105         i = I915_READ(aud_cntrl_st2);
7106         i |= eldv;
7107         I915_WRITE(aud_cntrl_st2, i);
7108 }
7109
7110 void intel_write_eld(struct drm_encoder *encoder,
7111                      struct drm_display_mode *mode)
7112 {
7113         struct drm_crtc *crtc = encoder->crtc;
7114         struct drm_connector *connector;
7115         struct drm_device *dev = encoder->dev;
7116         struct drm_i915_private *dev_priv = dev->dev_private;
7117
7118         connector = drm_select_eld(encoder, mode);
7119         if (!connector)
7120                 return;
7121
7122         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7123                          connector->base.id,
7124                          drm_get_connector_name(connector),
7125                          connector->encoder->base.id,
7126                          drm_get_encoder_name(connector->encoder));
7127
7128         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7129
7130         if (dev_priv->display.write_eld)
7131                 dev_priv->display.write_eld(connector, crtc, mode);
7132 }
7133
7134 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7135 {
7136         struct drm_device *dev = crtc->dev;
7137         struct drm_i915_private *dev_priv = dev->dev_private;
7138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7139         bool visible = base != 0;
7140         u32 cntl;
7141
7142         if (intel_crtc->cursor_visible == visible)
7143                 return;
7144
7145         cntl = I915_READ(_CURACNTR);
7146         if (visible) {
7147                 /* On these chipsets we can only modify the base whilst
7148                  * the cursor is disabled.
7149                  */
7150                 I915_WRITE(_CURABASE, base);
7151
7152                 cntl &= ~(CURSOR_FORMAT_MASK);
7153                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7154                 cntl |= CURSOR_ENABLE |
7155                         CURSOR_GAMMA_ENABLE |
7156                         CURSOR_FORMAT_ARGB;
7157         } else
7158                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7159         I915_WRITE(_CURACNTR, cntl);
7160
7161         intel_crtc->cursor_visible = visible;
7162 }
7163
7164 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7165 {
7166         struct drm_device *dev = crtc->dev;
7167         struct drm_i915_private *dev_priv = dev->dev_private;
7168         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7169         int pipe = intel_crtc->pipe;
7170         bool visible = base != 0;
7171
7172         if (intel_crtc->cursor_visible != visible) {
7173                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7174                 if (base) {
7175                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7176                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7177                         cntl |= pipe << 28; /* Connect to correct pipe */
7178                 } else {
7179                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7180                         cntl |= CURSOR_MODE_DISABLE;
7181                 }
7182                 I915_WRITE(CURCNTR(pipe), cntl);
7183
7184                 intel_crtc->cursor_visible = visible;
7185         }
7186         /* and commit changes on next vblank */
7187         POSTING_READ(CURCNTR(pipe));
7188         I915_WRITE(CURBASE(pipe), base);
7189         POSTING_READ(CURBASE(pipe));
7190 }
7191
7192 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7193 {
7194         struct drm_device *dev = crtc->dev;
7195         struct drm_i915_private *dev_priv = dev->dev_private;
7196         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7197         int pipe = intel_crtc->pipe;
7198         bool visible = base != 0;
7199
7200         if (intel_crtc->cursor_visible != visible) {
7201                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7202                 if (base) {
7203                         cntl &= ~CURSOR_MODE;
7204                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7205                 } else {
7206                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7207                         cntl |= CURSOR_MODE_DISABLE;
7208                 }
7209                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7210                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7211                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7212                 }
7213                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7214
7215                 intel_crtc->cursor_visible = visible;
7216         }
7217         /* and commit changes on next vblank */
7218         POSTING_READ(CURCNTR_IVB(pipe));
7219         I915_WRITE(CURBASE_IVB(pipe), base);
7220         POSTING_READ(CURBASE_IVB(pipe));
7221 }
7222
7223 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7224 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7225                                      bool on)
7226 {
7227         struct drm_device *dev = crtc->dev;
7228         struct drm_i915_private *dev_priv = dev->dev_private;
7229         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7230         int pipe = intel_crtc->pipe;
7231         int x = intel_crtc->cursor_x;
7232         int y = intel_crtc->cursor_y;
7233         u32 base = 0, pos = 0;
7234         bool visible;
7235
7236         if (on)
7237                 base = intel_crtc->cursor_addr;
7238
7239         if (x >= intel_crtc->config.pipe_src_w)
7240                 base = 0;
7241
7242         if (y >= intel_crtc->config.pipe_src_h)
7243                 base = 0;
7244
7245         if (x < 0) {
7246                 if (x + intel_crtc->cursor_width <= 0)
7247                         base = 0;
7248
7249                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7250                 x = -x;
7251         }
7252         pos |= x << CURSOR_X_SHIFT;
7253
7254         if (y < 0) {
7255                 if (y + intel_crtc->cursor_height <= 0)
7256                         base = 0;
7257
7258                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7259                 y = -y;
7260         }
7261         pos |= y << CURSOR_Y_SHIFT;
7262
7263         visible = base != 0;
7264         if (!visible && !intel_crtc->cursor_visible)
7265                 return;
7266
7267         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7268                 I915_WRITE(CURPOS_IVB(pipe), pos);
7269                 ivb_update_cursor(crtc, base);
7270         } else {
7271                 I915_WRITE(CURPOS(pipe), pos);
7272                 if (IS_845G(dev) || IS_I865G(dev))
7273                         i845_update_cursor(crtc, base);
7274                 else
7275                         i9xx_update_cursor(crtc, base);
7276         }
7277 }
7278
7279 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7280                                  struct drm_file *file,
7281                                  uint32_t handle,
7282                                  uint32_t width, uint32_t height)
7283 {
7284         struct drm_device *dev = crtc->dev;
7285         struct drm_i915_private *dev_priv = dev->dev_private;
7286         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7287         struct drm_i915_gem_object *obj;
7288         uint32_t addr;
7289         int ret;
7290
7291         /* if we want to turn off the cursor ignore width and height */
7292         if (!handle) {
7293                 DRM_DEBUG_KMS("cursor off\n");
7294                 addr = 0;
7295                 obj = NULL;
7296                 mutex_lock(&dev->struct_mutex);
7297                 goto finish;
7298         }
7299
7300         /* Currently we only support 64x64 cursors */
7301         if (width != 64 || height != 64) {
7302                 DRM_ERROR("we currently only support 64x64 cursors\n");
7303                 return -EINVAL;
7304         }
7305
7306         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7307         if (&obj->base == NULL)
7308                 return -ENOENT;
7309
7310         if (obj->base.size < width * height * 4) {
7311                 DRM_ERROR("buffer is to small\n");
7312                 ret = -ENOMEM;
7313                 goto fail;
7314         }
7315
7316         /* we only need to pin inside GTT if cursor is non-phy */
7317         mutex_lock(&dev->struct_mutex);
7318         if (!dev_priv->info->cursor_needs_physical) {
7319                 unsigned alignment;
7320
7321                 if (obj->tiling_mode) {
7322                         DRM_ERROR("cursor cannot be tiled\n");
7323                         ret = -EINVAL;
7324                         goto fail_locked;
7325                 }
7326
7327                 /* Note that the w/a also requires 2 PTE of padding following
7328                  * the bo. We currently fill all unused PTE with the shadow
7329                  * page and so we should always have valid PTE following the
7330                  * cursor preventing the VT-d warning.
7331                  */
7332                 alignment = 0;
7333                 if (need_vtd_wa(dev))
7334                         alignment = 64*1024;
7335
7336                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7337                 if (ret) {
7338                         DRM_ERROR("failed to move cursor bo into the GTT\n");
7339                         goto fail_locked;
7340                 }
7341
7342                 ret = i915_gem_object_put_fence(obj);
7343                 if (ret) {
7344                         DRM_ERROR("failed to release fence for cursor");
7345                         goto fail_unpin;
7346                 }
7347
7348                 addr = i915_gem_obj_ggtt_offset(obj);
7349         } else {
7350                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7351                 ret = i915_gem_attach_phys_object(dev, obj,
7352                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7353                                                   align);
7354                 if (ret) {
7355                         DRM_ERROR("failed to attach phys object\n");
7356                         goto fail_locked;
7357                 }
7358                 addr = obj->phys_obj->handle->busaddr;
7359         }
7360
7361         if (IS_GEN2(dev))
7362                 I915_WRITE(CURSIZE, (height << 12) | width);
7363
7364  finish:
7365         if (intel_crtc->cursor_bo) {
7366                 if (dev_priv->info->cursor_needs_physical) {
7367                         if (intel_crtc->cursor_bo != obj)
7368                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7369                 } else
7370                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7371                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7372         }
7373
7374         mutex_unlock(&dev->struct_mutex);
7375
7376         intel_crtc->cursor_addr = addr;
7377         intel_crtc->cursor_bo = obj;
7378         intel_crtc->cursor_width = width;
7379         intel_crtc->cursor_height = height;
7380
7381         if (intel_crtc->active)
7382                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7383
7384         return 0;
7385 fail_unpin:
7386         i915_gem_object_unpin_from_display_plane(obj);
7387 fail_locked:
7388         mutex_unlock(&dev->struct_mutex);
7389 fail:
7390         drm_gem_object_unreference_unlocked(&obj->base);
7391         return ret;
7392 }
7393
7394 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7395 {
7396         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7397
7398         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7399         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7400
7401         if (intel_crtc->active)
7402                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7403
7404         return 0;
7405 }
7406
7407 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7408                                  u16 *blue, uint32_t start, uint32_t size)
7409 {
7410         int end = (start + size > 256) ? 256 : start + size, i;
7411         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7412
7413         for (i = start; i < end; i++) {
7414                 intel_crtc->lut_r[i] = red[i] >> 8;
7415                 intel_crtc->lut_g[i] = green[i] >> 8;
7416                 intel_crtc->lut_b[i] = blue[i] >> 8;
7417         }
7418
7419         intel_crtc_load_lut(crtc);
7420 }
7421
7422 /* VESA 640x480x72Hz mode to set on the pipe */
7423 static struct drm_display_mode load_detect_mode = {
7424         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7425                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7426 };
7427
7428 static struct drm_framebuffer *
7429 intel_framebuffer_create(struct drm_device *dev,
7430                          struct drm_mode_fb_cmd2 *mode_cmd,
7431                          struct drm_i915_gem_object *obj)
7432 {
7433         struct intel_framebuffer *intel_fb;
7434         int ret;
7435
7436         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7437         if (!intel_fb) {
7438                 drm_gem_object_unreference_unlocked(&obj->base);
7439                 return ERR_PTR(-ENOMEM);
7440         }
7441
7442         ret = i915_mutex_lock_interruptible(dev);
7443         if (ret)
7444                 goto err;
7445
7446         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7447         mutex_unlock(&dev->struct_mutex);
7448         if (ret)
7449                 goto err;
7450
7451         return &intel_fb->base;
7452 err:
7453         drm_gem_object_unreference_unlocked(&obj->base);
7454         kfree(intel_fb);
7455
7456         return ERR_PTR(ret);
7457 }
7458
7459 static u32
7460 intel_framebuffer_pitch_for_width(int width, int bpp)
7461 {
7462         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7463         return ALIGN(pitch, 64);
7464 }
7465
7466 static u32
7467 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7468 {
7469         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7470         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7471 }
7472
7473 static struct drm_framebuffer *
7474 intel_framebuffer_create_for_mode(struct drm_device *dev,
7475                                   struct drm_display_mode *mode,
7476                                   int depth, int bpp)
7477 {
7478         struct drm_i915_gem_object *obj;
7479         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7480
7481         obj = i915_gem_alloc_object(dev,
7482                                     intel_framebuffer_size_for_mode(mode, bpp));
7483         if (obj == NULL)
7484                 return ERR_PTR(-ENOMEM);
7485
7486         mode_cmd.width = mode->hdisplay;
7487         mode_cmd.height = mode->vdisplay;
7488         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7489                                                                 bpp);
7490         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7491
7492         return intel_framebuffer_create(dev, &mode_cmd, obj);
7493 }
7494
7495 static struct drm_framebuffer *
7496 mode_fits_in_fbdev(struct drm_device *dev,
7497                    struct drm_display_mode *mode)
7498 {
7499 #ifdef CONFIG_DRM_I915_FBDEV
7500         struct drm_i915_private *dev_priv = dev->dev_private;
7501         struct drm_i915_gem_object *obj;
7502         struct drm_framebuffer *fb;
7503
7504         if (dev_priv->fbdev == NULL)
7505                 return NULL;
7506
7507         obj = dev_priv->fbdev->ifb.obj;
7508         if (obj == NULL)
7509                 return NULL;
7510
7511         fb = &dev_priv->fbdev->ifb.base;
7512         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7513                                                                fb->bits_per_pixel))
7514                 return NULL;
7515
7516         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7517                 return NULL;
7518
7519         return fb;
7520 #else
7521         return NULL;
7522 #endif
7523 }
7524
7525 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7526                                 struct drm_display_mode *mode,
7527                                 struct intel_load_detect_pipe *old)
7528 {
7529         struct intel_crtc *intel_crtc;
7530         struct intel_encoder *intel_encoder =
7531                 intel_attached_encoder(connector);
7532         struct drm_crtc *possible_crtc;
7533         struct drm_encoder *encoder = &intel_encoder->base;
7534         struct drm_crtc *crtc = NULL;
7535         struct drm_device *dev = encoder->dev;
7536         struct drm_framebuffer *fb;
7537         int i = -1;
7538
7539         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7540                       connector->base.id, drm_get_connector_name(connector),
7541                       encoder->base.id, drm_get_encoder_name(encoder));
7542
7543         /*
7544          * Algorithm gets a little messy:
7545          *
7546          *   - if the connector already has an assigned crtc, use it (but make
7547          *     sure it's on first)
7548          *
7549          *   - try to find the first unused crtc that can drive this connector,
7550          *     and use that if we find one
7551          */
7552
7553         /* See if we already have a CRTC for this connector */
7554         if (encoder->crtc) {
7555                 crtc = encoder->crtc;
7556
7557                 mutex_lock(&crtc->mutex);
7558
7559                 old->dpms_mode = connector->dpms;
7560                 old->load_detect_temp = false;
7561
7562                 /* Make sure the crtc and connector are running */
7563                 if (connector->dpms != DRM_MODE_DPMS_ON)
7564                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7565
7566                 return true;
7567         }
7568
7569         /* Find an unused one (if possible) */
7570         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7571                 i++;
7572                 if (!(encoder->possible_crtcs & (1 << i)))
7573                         continue;
7574                 if (!possible_crtc->enabled) {
7575                         crtc = possible_crtc;
7576                         break;
7577                 }
7578         }
7579
7580         /*
7581          * If we didn't find an unused CRTC, don't use any.
7582          */
7583         if (!crtc) {
7584                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7585                 return false;
7586         }
7587
7588         mutex_lock(&crtc->mutex);
7589         intel_encoder->new_crtc = to_intel_crtc(crtc);
7590         to_intel_connector(connector)->new_encoder = intel_encoder;
7591
7592         intel_crtc = to_intel_crtc(crtc);
7593         old->dpms_mode = connector->dpms;
7594         old->load_detect_temp = true;
7595         old->release_fb = NULL;
7596
7597         if (!mode)
7598                 mode = &load_detect_mode;
7599
7600         /* We need a framebuffer large enough to accommodate all accesses
7601          * that the plane may generate whilst we perform load detection.
7602          * We can not rely on the fbcon either being present (we get called
7603          * during its initialisation to detect all boot displays, or it may
7604          * not even exist) or that it is large enough to satisfy the
7605          * requested mode.
7606          */
7607         fb = mode_fits_in_fbdev(dev, mode);
7608         if (fb == NULL) {
7609                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7610                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7611                 old->release_fb = fb;
7612         } else
7613                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7614         if (IS_ERR(fb)) {
7615                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7616                 mutex_unlock(&crtc->mutex);
7617                 return false;
7618         }
7619
7620         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7621                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7622                 if (old->release_fb)
7623                         old->release_fb->funcs->destroy(old->release_fb);
7624                 mutex_unlock(&crtc->mutex);
7625                 return false;
7626         }
7627
7628         /* let the connector get through one full cycle before testing */
7629         intel_wait_for_vblank(dev, intel_crtc->pipe);
7630         return true;
7631 }
7632
7633 void intel_release_load_detect_pipe(struct drm_connector *connector,
7634                                     struct intel_load_detect_pipe *old)
7635 {
7636         struct intel_encoder *intel_encoder =
7637                 intel_attached_encoder(connector);
7638         struct drm_encoder *encoder = &intel_encoder->base;
7639         struct drm_crtc *crtc = encoder->crtc;
7640
7641         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7642                       connector->base.id, drm_get_connector_name(connector),
7643                       encoder->base.id, drm_get_encoder_name(encoder));
7644
7645         if (old->load_detect_temp) {
7646                 to_intel_connector(connector)->new_encoder = NULL;
7647                 intel_encoder->new_crtc = NULL;
7648                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7649
7650                 if (old->release_fb) {
7651                         drm_framebuffer_unregister_private(old->release_fb);
7652                         drm_framebuffer_unreference(old->release_fb);
7653                 }
7654
7655                 mutex_unlock(&crtc->mutex);
7656                 return;
7657         }
7658
7659         /* Switch crtc and encoder back off if necessary */
7660         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7661                 connector->funcs->dpms(connector, old->dpms_mode);
7662
7663         mutex_unlock(&crtc->mutex);
7664 }
7665
7666 static int i9xx_pll_refclk(struct drm_device *dev,
7667                            const struct intel_crtc_config *pipe_config)
7668 {
7669         struct drm_i915_private *dev_priv = dev->dev_private;
7670         u32 dpll = pipe_config->dpll_hw_state.dpll;
7671
7672         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7673                 return dev_priv->vbt.lvds_ssc_freq * 1000;
7674         else if (HAS_PCH_SPLIT(dev))
7675                 return 120000;
7676         else if (!IS_GEN2(dev))
7677                 return 96000;
7678         else
7679                 return 48000;
7680 }
7681
7682 /* Returns the clock of the currently programmed mode of the given pipe. */
7683 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7684                                 struct intel_crtc_config *pipe_config)
7685 {
7686         struct drm_device *dev = crtc->base.dev;
7687         struct drm_i915_private *dev_priv = dev->dev_private;
7688         int pipe = pipe_config->cpu_transcoder;
7689         u32 dpll = pipe_config->dpll_hw_state.dpll;
7690         u32 fp;
7691         intel_clock_t clock;
7692         int refclk = i9xx_pll_refclk(dev, pipe_config);
7693
7694         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7695                 fp = pipe_config->dpll_hw_state.fp0;
7696         else
7697                 fp = pipe_config->dpll_hw_state.fp1;
7698
7699         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7700         if (IS_PINEVIEW(dev)) {
7701                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7702                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7703         } else {
7704                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7705                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7706         }
7707
7708         if (!IS_GEN2(dev)) {
7709                 if (IS_PINEVIEW(dev))
7710                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7711                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7712                 else
7713                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7714                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7715
7716                 switch (dpll & DPLL_MODE_MASK) {
7717                 case DPLLB_MODE_DAC_SERIAL:
7718                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7719                                 5 : 10;
7720                         break;
7721                 case DPLLB_MODE_LVDS:
7722                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7723                                 7 : 14;
7724                         break;
7725                 default:
7726                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7727                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7728                         return;
7729                 }
7730
7731                 if (IS_PINEVIEW(dev))
7732                         pineview_clock(refclk, &clock);
7733                 else
7734                         i9xx_clock(refclk, &clock);
7735         } else {
7736                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7737
7738                 if (is_lvds) {
7739                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7740                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7741                         clock.p2 = 14;
7742                 } else {
7743                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7744                                 clock.p1 = 2;
7745                         else {
7746                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7747                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7748                         }
7749                         if (dpll & PLL_P2_DIVIDE_BY_4)
7750                                 clock.p2 = 4;
7751                         else
7752                                 clock.p2 = 2;
7753                 }
7754
7755                 i9xx_clock(refclk, &clock);
7756         }
7757
7758         /*
7759          * This value includes pixel_multiplier. We will use
7760          * port_clock to compute adjusted_mode.crtc_clock in the
7761          * encoder's get_config() function.
7762          */
7763         pipe_config->port_clock = clock.dot;
7764 }
7765
7766 int intel_dotclock_calculate(int link_freq,
7767                              const struct intel_link_m_n *m_n)
7768 {
7769         /*
7770          * The calculation for the data clock is:
7771          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7772          * But we want to avoid losing precison if possible, so:
7773          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7774          *
7775          * and the link clock is simpler:
7776          * link_clock = (m * link_clock) / n
7777          */
7778
7779         if (!m_n->link_n)
7780                 return 0;
7781
7782         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7783 }
7784
7785 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7786                                    struct intel_crtc_config *pipe_config)
7787 {
7788         struct drm_device *dev = crtc->base.dev;
7789
7790         /* read out port_clock from the DPLL */
7791         i9xx_crtc_clock_get(crtc, pipe_config);
7792
7793         /*
7794          * This value does not include pixel_multiplier.
7795          * We will check that port_clock and adjusted_mode.crtc_clock
7796          * agree once we know their relationship in the encoder's
7797          * get_config() function.
7798          */
7799         pipe_config->adjusted_mode.crtc_clock =
7800                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7801                                          &pipe_config->fdi_m_n);
7802 }
7803
7804 /** Returns the currently programmed mode of the given pipe. */
7805 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7806                                              struct drm_crtc *crtc)
7807 {
7808         struct drm_i915_private *dev_priv = dev->dev_private;
7809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7810         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7811         struct drm_display_mode *mode;
7812         struct intel_crtc_config pipe_config;
7813         int htot = I915_READ(HTOTAL(cpu_transcoder));
7814         int hsync = I915_READ(HSYNC(cpu_transcoder));
7815         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7816         int vsync = I915_READ(VSYNC(cpu_transcoder));
7817         enum pipe pipe = intel_crtc->pipe;
7818
7819         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7820         if (!mode)
7821                 return NULL;
7822
7823         /*
7824          * Construct a pipe_config sufficient for getting the clock info
7825          * back out of crtc_clock_get.
7826          *
7827          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7828          * to use a real value here instead.
7829          */
7830         pipe_config.cpu_transcoder = (enum transcoder) pipe;
7831         pipe_config.pixel_multiplier = 1;
7832         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7833         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7834         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7835         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7836
7837         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
7838         mode->hdisplay = (htot & 0xffff) + 1;
7839         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7840         mode->hsync_start = (hsync & 0xffff) + 1;
7841         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7842         mode->vdisplay = (vtot & 0xffff) + 1;
7843         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7844         mode->vsync_start = (vsync & 0xffff) + 1;
7845         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7846
7847         drm_mode_set_name(mode);
7848
7849         return mode;
7850 }
7851
7852 static void intel_increase_pllclock(struct drm_crtc *crtc)
7853 {
7854         struct drm_device *dev = crtc->dev;
7855         drm_i915_private_t *dev_priv = dev->dev_private;
7856         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7857         int pipe = intel_crtc->pipe;
7858         int dpll_reg = DPLL(pipe);
7859         int dpll;
7860
7861         if (HAS_PCH_SPLIT(dev))
7862                 return;
7863
7864         if (!dev_priv->lvds_downclock_avail)
7865                 return;
7866
7867         dpll = I915_READ(dpll_reg);
7868         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7869                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7870
7871                 assert_panel_unlocked(dev_priv, pipe);
7872
7873                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7874                 I915_WRITE(dpll_reg, dpll);
7875                 intel_wait_for_vblank(dev, pipe);
7876
7877                 dpll = I915_READ(dpll_reg);
7878                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7879                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7880         }
7881 }
7882
7883 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7884 {
7885         struct drm_device *dev = crtc->dev;
7886         drm_i915_private_t *dev_priv = dev->dev_private;
7887         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7888
7889         if (HAS_PCH_SPLIT(dev))
7890                 return;
7891
7892         if (!dev_priv->lvds_downclock_avail)
7893                 return;
7894
7895         /*
7896          * Since this is called by a timer, we should never get here in
7897          * the manual case.
7898          */
7899         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7900                 int pipe = intel_crtc->pipe;
7901                 int dpll_reg = DPLL(pipe);
7902                 int dpll;
7903
7904                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7905
7906                 assert_panel_unlocked(dev_priv, pipe);
7907
7908                 dpll = I915_READ(dpll_reg);
7909                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7910                 I915_WRITE(dpll_reg, dpll);
7911                 intel_wait_for_vblank(dev, pipe);
7912                 dpll = I915_READ(dpll_reg);
7913                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7914                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7915         }
7916
7917 }
7918
7919 void intel_mark_busy(struct drm_device *dev)
7920 {
7921         struct drm_i915_private *dev_priv = dev->dev_private;
7922
7923         hsw_package_c8_gpu_busy(dev_priv);
7924         i915_update_gfx_val(dev_priv);
7925 }
7926
7927 void intel_mark_idle(struct drm_device *dev)
7928 {
7929         struct drm_i915_private *dev_priv = dev->dev_private;
7930         struct drm_crtc *crtc;
7931
7932         hsw_package_c8_gpu_idle(dev_priv);
7933
7934         if (!i915_powersave)
7935                 return;
7936
7937         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7938                 if (!crtc->fb)
7939                         continue;
7940
7941                 intel_decrease_pllclock(crtc);
7942         }
7943
7944         if (dev_priv->info->gen >= 6)
7945                 gen6_rps_idle(dev->dev_private);
7946 }
7947
7948 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7949                         struct intel_ring_buffer *ring)
7950 {
7951         struct drm_device *dev = obj->base.dev;
7952         struct drm_crtc *crtc;
7953
7954         if (!i915_powersave)
7955                 return;
7956
7957         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7958                 if (!crtc->fb)
7959                         continue;
7960
7961                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7962                         continue;
7963
7964                 intel_increase_pllclock(crtc);
7965                 if (ring && intel_fbc_enabled(dev))
7966                         ring->fbc_dirty = true;
7967         }
7968 }
7969
7970 static void intel_crtc_destroy(struct drm_crtc *crtc)
7971 {
7972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7973         struct drm_device *dev = crtc->dev;
7974         struct intel_unpin_work *work;
7975         unsigned long flags;
7976
7977         spin_lock_irqsave(&dev->event_lock, flags);
7978         work = intel_crtc->unpin_work;
7979         intel_crtc->unpin_work = NULL;
7980         spin_unlock_irqrestore(&dev->event_lock, flags);
7981
7982         if (work) {
7983                 cancel_work_sync(&work->work);
7984                 kfree(work);
7985         }
7986
7987         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7988
7989         drm_crtc_cleanup(crtc);
7990
7991         kfree(intel_crtc);
7992 }
7993
7994 static void intel_unpin_work_fn(struct work_struct *__work)
7995 {
7996         struct intel_unpin_work *work =
7997                 container_of(__work, struct intel_unpin_work, work);
7998         struct drm_device *dev = work->crtc->dev;
7999
8000         mutex_lock(&dev->struct_mutex);
8001         intel_unpin_fb_obj(work->old_fb_obj);
8002         drm_gem_object_unreference(&work->pending_flip_obj->base);
8003         drm_gem_object_unreference(&work->old_fb_obj->base);
8004
8005         intel_update_fbc(dev);
8006         mutex_unlock(&dev->struct_mutex);
8007
8008         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8009         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8010
8011         kfree(work);
8012 }
8013
8014 static void do_intel_finish_page_flip(struct drm_device *dev,
8015                                       struct drm_crtc *crtc)
8016 {
8017         drm_i915_private_t *dev_priv = dev->dev_private;
8018         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8019         struct intel_unpin_work *work;
8020         unsigned long flags;
8021
8022         /* Ignore early vblank irqs */
8023         if (intel_crtc == NULL)
8024                 return;
8025
8026         spin_lock_irqsave(&dev->event_lock, flags);
8027         work = intel_crtc->unpin_work;
8028
8029         /* Ensure we don't miss a work->pending update ... */
8030         smp_rmb();
8031
8032         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8033                 spin_unlock_irqrestore(&dev->event_lock, flags);
8034                 return;
8035         }
8036
8037         /* and that the unpin work is consistent wrt ->pending. */
8038         smp_rmb();
8039
8040         intel_crtc->unpin_work = NULL;
8041
8042         if (work->event)
8043                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8044
8045         drm_vblank_put(dev, intel_crtc->pipe);
8046
8047         spin_unlock_irqrestore(&dev->event_lock, flags);
8048
8049         wake_up_all(&dev_priv->pending_flip_queue);
8050
8051         queue_work(dev_priv->wq, &work->work);
8052
8053         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8054 }
8055
8056 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8057 {
8058         drm_i915_private_t *dev_priv = dev->dev_private;
8059         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8060
8061         do_intel_finish_page_flip(dev, crtc);
8062 }
8063
8064 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8065 {
8066         drm_i915_private_t *dev_priv = dev->dev_private;
8067         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8068
8069         do_intel_finish_page_flip(dev, crtc);
8070 }
8071
8072 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8073 {
8074         drm_i915_private_t *dev_priv = dev->dev_private;
8075         struct intel_crtc *intel_crtc =
8076                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8077         unsigned long flags;
8078
8079         /* NB: An MMIO update of the plane base pointer will also
8080          * generate a page-flip completion irq, i.e. every modeset
8081          * is also accompanied by a spurious intel_prepare_page_flip().
8082          */
8083         spin_lock_irqsave(&dev->event_lock, flags);
8084         if (intel_crtc->unpin_work)
8085                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8086         spin_unlock_irqrestore(&dev->event_lock, flags);
8087 }
8088
8089 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8090 {
8091         /* Ensure that the work item is consistent when activating it ... */
8092         smp_wmb();
8093         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8094         /* and that it is marked active as soon as the irq could fire. */
8095         smp_wmb();
8096 }
8097
8098 static int intel_gen2_queue_flip(struct drm_device *dev,
8099                                  struct drm_crtc *crtc,
8100                                  struct drm_framebuffer *fb,
8101                                  struct drm_i915_gem_object *obj,
8102                                  uint32_t flags)
8103 {
8104         struct drm_i915_private *dev_priv = dev->dev_private;
8105         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8106         u32 flip_mask;
8107         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8108         int ret;
8109
8110         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8111         if (ret)
8112                 goto err;
8113
8114         ret = intel_ring_begin(ring, 6);
8115         if (ret)
8116                 goto err_unpin;
8117
8118         /* Can't queue multiple flips, so wait for the previous
8119          * one to finish before executing the next.
8120          */
8121         if (intel_crtc->plane)
8122                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8123         else
8124                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8125         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8126         intel_ring_emit(ring, MI_NOOP);
8127         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8128                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8129         intel_ring_emit(ring, fb->pitches[0]);
8130         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8131         intel_ring_emit(ring, 0); /* aux display base address, unused */
8132
8133         intel_mark_page_flip_active(intel_crtc);
8134         __intel_ring_advance(ring);
8135         return 0;
8136
8137 err_unpin:
8138         intel_unpin_fb_obj(obj);
8139 err:
8140         return ret;
8141 }
8142
8143 static int intel_gen3_queue_flip(struct drm_device *dev,
8144                                  struct drm_crtc *crtc,
8145                                  struct drm_framebuffer *fb,
8146                                  struct drm_i915_gem_object *obj,
8147                                  uint32_t flags)
8148 {
8149         struct drm_i915_private *dev_priv = dev->dev_private;
8150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8151         u32 flip_mask;
8152         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8153         int ret;
8154
8155         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8156         if (ret)
8157                 goto err;
8158
8159         ret = intel_ring_begin(ring, 6);
8160         if (ret)
8161                 goto err_unpin;
8162
8163         if (intel_crtc->plane)
8164                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8165         else
8166                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8167         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8168         intel_ring_emit(ring, MI_NOOP);
8169         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8170                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8171         intel_ring_emit(ring, fb->pitches[0]);
8172         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8173         intel_ring_emit(ring, MI_NOOP);
8174
8175         intel_mark_page_flip_active(intel_crtc);
8176         __intel_ring_advance(ring);
8177         return 0;
8178
8179 err_unpin:
8180         intel_unpin_fb_obj(obj);
8181 err:
8182         return ret;
8183 }
8184
8185 static int intel_gen4_queue_flip(struct drm_device *dev,
8186                                  struct drm_crtc *crtc,
8187                                  struct drm_framebuffer *fb,
8188                                  struct drm_i915_gem_object *obj,
8189                                  uint32_t flags)
8190 {
8191         struct drm_i915_private *dev_priv = dev->dev_private;
8192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8193         uint32_t pf, pipesrc;
8194         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8195         int ret;
8196
8197         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8198         if (ret)
8199                 goto err;
8200
8201         ret = intel_ring_begin(ring, 4);
8202         if (ret)
8203                 goto err_unpin;
8204
8205         /* i965+ uses the linear or tiled offsets from the
8206          * Display Registers (which do not change across a page-flip)
8207          * so we need only reprogram the base address.
8208          */
8209         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8210                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8211         intel_ring_emit(ring, fb->pitches[0]);
8212         intel_ring_emit(ring,
8213                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8214                         obj->tiling_mode);
8215
8216         /* XXX Enabling the panel-fitter across page-flip is so far
8217          * untested on non-native modes, so ignore it for now.
8218          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8219          */
8220         pf = 0;
8221         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8222         intel_ring_emit(ring, pf | pipesrc);
8223
8224         intel_mark_page_flip_active(intel_crtc);
8225         __intel_ring_advance(ring);
8226         return 0;
8227
8228 err_unpin:
8229         intel_unpin_fb_obj(obj);
8230 err:
8231         return ret;
8232 }
8233
8234 static int intel_gen6_queue_flip(struct drm_device *dev,
8235                                  struct drm_crtc *crtc,
8236                                  struct drm_framebuffer *fb,
8237                                  struct drm_i915_gem_object *obj,
8238                                  uint32_t flags)
8239 {
8240         struct drm_i915_private *dev_priv = dev->dev_private;
8241         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8242         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8243         uint32_t pf, pipesrc;
8244         int ret;
8245
8246         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8247         if (ret)
8248                 goto err;
8249
8250         ret = intel_ring_begin(ring, 4);
8251         if (ret)
8252                 goto err_unpin;
8253
8254         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8255                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8256         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8257         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8258
8259         /* Contrary to the suggestions in the documentation,
8260          * "Enable Panel Fitter" does not seem to be required when page
8261          * flipping with a non-native mode, and worse causes a normal
8262          * modeset to fail.
8263          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8264          */
8265         pf = 0;
8266         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8267         intel_ring_emit(ring, pf | pipesrc);
8268
8269         intel_mark_page_flip_active(intel_crtc);
8270         __intel_ring_advance(ring);
8271         return 0;
8272
8273 err_unpin:
8274         intel_unpin_fb_obj(obj);
8275 err:
8276         return ret;
8277 }
8278
8279 static int intel_gen7_queue_flip(struct drm_device *dev,
8280                                  struct drm_crtc *crtc,
8281                                  struct drm_framebuffer *fb,
8282                                  struct drm_i915_gem_object *obj,
8283                                  uint32_t flags)
8284 {
8285         struct drm_i915_private *dev_priv = dev->dev_private;
8286         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8287         struct intel_ring_buffer *ring;
8288         uint32_t plane_bit = 0;
8289         int len, ret;
8290
8291         ring = obj->ring;
8292         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8293                 ring = &dev_priv->ring[BCS];
8294
8295         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8296         if (ret)
8297                 goto err;
8298
8299         switch(intel_crtc->plane) {
8300         case PLANE_A:
8301                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8302                 break;
8303         case PLANE_B:
8304                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8305                 break;
8306         case PLANE_C:
8307                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8308                 break;
8309         default:
8310                 WARN_ONCE(1, "unknown plane in flip command\n");
8311                 ret = -ENODEV;
8312                 goto err_unpin;
8313         }
8314
8315         len = 4;
8316         if (ring->id == RCS)
8317                 len += 6;
8318
8319         ret = intel_ring_begin(ring, len);
8320         if (ret)
8321                 goto err_unpin;
8322
8323         /* Unmask the flip-done completion message. Note that the bspec says that
8324          * we should do this for both the BCS and RCS, and that we must not unmask
8325          * more than one flip event at any time (or ensure that one flip message
8326          * can be sent by waiting for flip-done prior to queueing new flips).
8327          * Experimentation says that BCS works despite DERRMR masking all
8328          * flip-done completion events and that unmasking all planes at once
8329          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8330          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8331          */
8332         if (ring->id == RCS) {
8333                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8334                 intel_ring_emit(ring, DERRMR);
8335                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8336                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8337                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8338                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8339                 intel_ring_emit(ring, DERRMR);
8340                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8341         }
8342
8343         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8344         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8345         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8346         intel_ring_emit(ring, (MI_NOOP));
8347
8348         intel_mark_page_flip_active(intel_crtc);
8349         __intel_ring_advance(ring);
8350         return 0;
8351
8352 err_unpin:
8353         intel_unpin_fb_obj(obj);
8354 err:
8355         return ret;
8356 }
8357
8358 static int intel_default_queue_flip(struct drm_device *dev,
8359                                     struct drm_crtc *crtc,
8360                                     struct drm_framebuffer *fb,
8361                                     struct drm_i915_gem_object *obj,
8362                                     uint32_t flags)
8363 {
8364         return -ENODEV;
8365 }
8366
8367 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8368                                 struct drm_framebuffer *fb,
8369                                 struct drm_pending_vblank_event *event,
8370                                 uint32_t page_flip_flags)
8371 {
8372         struct drm_device *dev = crtc->dev;
8373         struct drm_i915_private *dev_priv = dev->dev_private;
8374         struct drm_framebuffer *old_fb = crtc->fb;
8375         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8377         struct intel_unpin_work *work;
8378         unsigned long flags;
8379         int ret;
8380
8381         /* Can't change pixel format via MI display flips. */
8382         if (fb->pixel_format != crtc->fb->pixel_format)
8383                 return -EINVAL;
8384
8385         /*
8386          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8387          * Note that pitch changes could also affect these register.
8388          */
8389         if (INTEL_INFO(dev)->gen > 3 &&
8390             (fb->offsets[0] != crtc->fb->offsets[0] ||
8391              fb->pitches[0] != crtc->fb->pitches[0]))
8392                 return -EINVAL;
8393
8394         work = kzalloc(sizeof(*work), GFP_KERNEL);
8395         if (work == NULL)
8396                 return -ENOMEM;
8397
8398         work->event = event;
8399         work->crtc = crtc;
8400         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8401         INIT_WORK(&work->work, intel_unpin_work_fn);
8402
8403         ret = drm_vblank_get(dev, intel_crtc->pipe);
8404         if (ret)
8405                 goto free_work;
8406
8407         /* We borrow the event spin lock for protecting unpin_work */
8408         spin_lock_irqsave(&dev->event_lock, flags);
8409         if (intel_crtc->unpin_work) {
8410                 spin_unlock_irqrestore(&dev->event_lock, flags);
8411                 kfree(work);
8412                 drm_vblank_put(dev, intel_crtc->pipe);
8413
8414                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8415                 return -EBUSY;
8416         }
8417         intel_crtc->unpin_work = work;
8418         spin_unlock_irqrestore(&dev->event_lock, flags);
8419
8420         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8421                 flush_workqueue(dev_priv->wq);
8422
8423         ret = i915_mutex_lock_interruptible(dev);
8424         if (ret)
8425                 goto cleanup;
8426
8427         /* Reference the objects for the scheduled work. */
8428         drm_gem_object_reference(&work->old_fb_obj->base);
8429         drm_gem_object_reference(&obj->base);
8430
8431         crtc->fb = fb;
8432
8433         work->pending_flip_obj = obj;
8434
8435         work->enable_stall_check = true;
8436
8437         atomic_inc(&intel_crtc->unpin_work_count);
8438         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8439
8440         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8441         if (ret)
8442                 goto cleanup_pending;
8443
8444         intel_disable_fbc(dev);
8445         intel_mark_fb_busy(obj, NULL);
8446         mutex_unlock(&dev->struct_mutex);
8447
8448         trace_i915_flip_request(intel_crtc->plane, obj);
8449
8450         return 0;
8451
8452 cleanup_pending:
8453         atomic_dec(&intel_crtc->unpin_work_count);
8454         crtc->fb = old_fb;
8455         drm_gem_object_unreference(&work->old_fb_obj->base);
8456         drm_gem_object_unreference(&obj->base);
8457         mutex_unlock(&dev->struct_mutex);
8458
8459 cleanup:
8460         spin_lock_irqsave(&dev->event_lock, flags);
8461         intel_crtc->unpin_work = NULL;
8462         spin_unlock_irqrestore(&dev->event_lock, flags);
8463
8464         drm_vblank_put(dev, intel_crtc->pipe);
8465 free_work:
8466         kfree(work);
8467
8468         return ret;
8469 }
8470
8471 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8472         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8473         .load_lut = intel_crtc_load_lut,
8474 };
8475
8476 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8477                                   struct drm_crtc *crtc)
8478 {
8479         struct drm_device *dev;
8480         struct drm_crtc *tmp;
8481         int crtc_mask = 1;
8482
8483         WARN(!crtc, "checking null crtc?\n");
8484
8485         dev = crtc->dev;
8486
8487         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8488                 if (tmp == crtc)
8489                         break;
8490                 crtc_mask <<= 1;
8491         }
8492
8493         if (encoder->possible_crtcs & crtc_mask)
8494                 return true;
8495         return false;
8496 }
8497
8498 /**
8499  * intel_modeset_update_staged_output_state
8500  *
8501  * Updates the staged output configuration state, e.g. after we've read out the
8502  * current hw state.
8503  */
8504 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8505 {
8506         struct intel_encoder *encoder;
8507         struct intel_connector *connector;
8508
8509         list_for_each_entry(connector, &dev->mode_config.connector_list,
8510                             base.head) {
8511                 connector->new_encoder =
8512                         to_intel_encoder(connector->base.encoder);
8513         }
8514
8515         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8516                             base.head) {
8517                 encoder->new_crtc =
8518                         to_intel_crtc(encoder->base.crtc);
8519         }
8520 }
8521
8522 /**
8523  * intel_modeset_commit_output_state
8524  *
8525  * This function copies the stage display pipe configuration to the real one.
8526  */
8527 static void intel_modeset_commit_output_state(struct drm_device *dev)
8528 {
8529         struct intel_encoder *encoder;
8530         struct intel_connector *connector;
8531
8532         list_for_each_entry(connector, &dev->mode_config.connector_list,
8533                             base.head) {
8534                 connector->base.encoder = &connector->new_encoder->base;
8535         }
8536
8537         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8538                             base.head) {
8539                 encoder->base.crtc = &encoder->new_crtc->base;
8540         }
8541 }
8542
8543 static void
8544 connected_sink_compute_bpp(struct intel_connector * connector,
8545                            struct intel_crtc_config *pipe_config)
8546 {
8547         int bpp = pipe_config->pipe_bpp;
8548
8549         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8550                 connector->base.base.id,
8551                 drm_get_connector_name(&connector->base));
8552
8553         /* Don't use an invalid EDID bpc value */
8554         if (connector->base.display_info.bpc &&
8555             connector->base.display_info.bpc * 3 < bpp) {
8556                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8557                               bpp, connector->base.display_info.bpc*3);
8558                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8559         }
8560
8561         /* Clamp bpp to 8 on screens without EDID 1.4 */
8562         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8563                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8564                               bpp);
8565                 pipe_config->pipe_bpp = 24;
8566         }
8567 }
8568
8569 static int
8570 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8571                           struct drm_framebuffer *fb,
8572                           struct intel_crtc_config *pipe_config)
8573 {
8574         struct drm_device *dev = crtc->base.dev;
8575         struct intel_connector *connector;
8576         int bpp;
8577
8578         switch (fb->pixel_format) {
8579         case DRM_FORMAT_C8:
8580                 bpp = 8*3; /* since we go through a colormap */
8581                 break;
8582         case DRM_FORMAT_XRGB1555:
8583         case DRM_FORMAT_ARGB1555:
8584                 /* checked in intel_framebuffer_init already */
8585                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8586                         return -EINVAL;
8587         case DRM_FORMAT_RGB565:
8588                 bpp = 6*3; /* min is 18bpp */
8589                 break;
8590         case DRM_FORMAT_XBGR8888:
8591         case DRM_FORMAT_ABGR8888:
8592                 /* checked in intel_framebuffer_init already */
8593                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8594                         return -EINVAL;
8595         case DRM_FORMAT_XRGB8888:
8596         case DRM_FORMAT_ARGB8888:
8597                 bpp = 8*3;
8598                 break;
8599         case DRM_FORMAT_XRGB2101010:
8600         case DRM_FORMAT_ARGB2101010:
8601         case DRM_FORMAT_XBGR2101010:
8602         case DRM_FORMAT_ABGR2101010:
8603                 /* checked in intel_framebuffer_init already */
8604                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8605                         return -EINVAL;
8606                 bpp = 10*3;
8607                 break;
8608         /* TODO: gen4+ supports 16 bpc floating point, too. */
8609         default:
8610                 DRM_DEBUG_KMS("unsupported depth\n");
8611                 return -EINVAL;
8612         }
8613
8614         pipe_config->pipe_bpp = bpp;
8615
8616         /* Clamp display bpp to EDID value */
8617         list_for_each_entry(connector, &dev->mode_config.connector_list,
8618                             base.head) {
8619                 if (!connector->new_encoder ||
8620                     connector->new_encoder->new_crtc != crtc)
8621                         continue;
8622
8623                 connected_sink_compute_bpp(connector, pipe_config);
8624         }
8625
8626         return bpp;
8627 }
8628
8629 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8630 {
8631         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8632                         "type: 0x%x flags: 0x%x\n",
8633                 mode->crtc_clock,
8634                 mode->crtc_hdisplay, mode->crtc_hsync_start,
8635                 mode->crtc_hsync_end, mode->crtc_htotal,
8636                 mode->crtc_vdisplay, mode->crtc_vsync_start,
8637                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8638 }
8639
8640 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8641                                    struct intel_crtc_config *pipe_config,
8642                                    const char *context)
8643 {
8644         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8645                       context, pipe_name(crtc->pipe));
8646
8647         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8648         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8649                       pipe_config->pipe_bpp, pipe_config->dither);
8650         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8651                       pipe_config->has_pch_encoder,
8652                       pipe_config->fdi_lanes,
8653                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8654                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8655                       pipe_config->fdi_m_n.tu);
8656         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8657                       pipe_config->has_dp_encoder,
8658                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8659                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8660                       pipe_config->dp_m_n.tu);
8661         DRM_DEBUG_KMS("requested mode:\n");
8662         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8663         DRM_DEBUG_KMS("adjusted mode:\n");
8664         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8665         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8666         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8667         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8668                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8669         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8670                       pipe_config->gmch_pfit.control,
8671                       pipe_config->gmch_pfit.pgm_ratios,
8672                       pipe_config->gmch_pfit.lvds_border_bits);
8673         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8674                       pipe_config->pch_pfit.pos,
8675                       pipe_config->pch_pfit.size,
8676                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8677         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8678         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8679 }
8680
8681 static bool check_encoder_cloning(struct drm_crtc *crtc)
8682 {
8683         int num_encoders = 0;
8684         bool uncloneable_encoders = false;
8685         struct intel_encoder *encoder;
8686
8687         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8688                             base.head) {
8689                 if (&encoder->new_crtc->base != crtc)
8690                         continue;
8691
8692                 num_encoders++;
8693                 if (!encoder->cloneable)
8694                         uncloneable_encoders = true;
8695         }
8696
8697         return !(num_encoders > 1 && uncloneable_encoders);
8698 }
8699
8700 static struct intel_crtc_config *
8701 intel_modeset_pipe_config(struct drm_crtc *crtc,
8702                           struct drm_framebuffer *fb,
8703                           struct drm_display_mode *mode)
8704 {
8705         struct drm_device *dev = crtc->dev;
8706         struct intel_encoder *encoder;
8707         struct intel_crtc_config *pipe_config;
8708         int plane_bpp, ret = -EINVAL;
8709         bool retry = true;
8710
8711         if (!check_encoder_cloning(crtc)) {
8712                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8713                 return ERR_PTR(-EINVAL);
8714         }
8715
8716         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8717         if (!pipe_config)
8718                 return ERR_PTR(-ENOMEM);
8719
8720         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8721         drm_mode_copy(&pipe_config->requested_mode, mode);
8722
8723         pipe_config->cpu_transcoder =
8724                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8725         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8726
8727         /*
8728          * Sanitize sync polarity flags based on requested ones. If neither
8729          * positive or negative polarity is requested, treat this as meaning
8730          * negative polarity.
8731          */
8732         if (!(pipe_config->adjusted_mode.flags &
8733               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8734                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8735
8736         if (!(pipe_config->adjusted_mode.flags &
8737               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8738                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8739
8740         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8741          * plane pixel format and any sink constraints into account. Returns the
8742          * source plane bpp so that dithering can be selected on mismatches
8743          * after encoders and crtc also have had their say. */
8744         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8745                                               fb, pipe_config);
8746         if (plane_bpp < 0)
8747                 goto fail;
8748
8749         /*
8750          * Determine the real pipe dimensions. Note that stereo modes can
8751          * increase the actual pipe size due to the frame doubling and
8752          * insertion of additional space for blanks between the frame. This
8753          * is stored in the crtc timings. We use the requested mode to do this
8754          * computation to clearly distinguish it from the adjusted mode, which
8755          * can be changed by the connectors in the below retry loop.
8756          */
8757         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
8758         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
8759         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
8760
8761 encoder_retry:
8762         /* Ensure the port clock defaults are reset when retrying. */
8763         pipe_config->port_clock = 0;
8764         pipe_config->pixel_multiplier = 1;
8765
8766         /* Fill in default crtc timings, allow encoders to overwrite them. */
8767         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
8768
8769         /* Pass our mode to the connectors and the CRTC to give them a chance to
8770          * adjust it according to limitations or connector properties, and also
8771          * a chance to reject the mode entirely.
8772          */
8773         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8774                             base.head) {
8775
8776                 if (&encoder->new_crtc->base != crtc)
8777                         continue;
8778
8779                 if (!(encoder->compute_config(encoder, pipe_config))) {
8780                         DRM_DEBUG_KMS("Encoder config failure\n");
8781                         goto fail;
8782                 }
8783         }
8784
8785         /* Set default port clock if not overwritten by the encoder. Needs to be
8786          * done afterwards in case the encoder adjusts the mode. */
8787         if (!pipe_config->port_clock)
8788                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
8789                         * pipe_config->pixel_multiplier;
8790
8791         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8792         if (ret < 0) {
8793                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8794                 goto fail;
8795         }
8796
8797         if (ret == RETRY) {
8798                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8799                         ret = -EINVAL;
8800                         goto fail;
8801                 }
8802
8803                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8804                 retry = false;
8805                 goto encoder_retry;
8806         }
8807
8808         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8809         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8810                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8811
8812         return pipe_config;
8813 fail:
8814         kfree(pipe_config);
8815         return ERR_PTR(ret);
8816 }
8817
8818 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8819  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8820 static void
8821 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8822                              unsigned *prepare_pipes, unsigned *disable_pipes)
8823 {
8824         struct intel_crtc *intel_crtc;
8825         struct drm_device *dev = crtc->dev;
8826         struct intel_encoder *encoder;
8827         struct intel_connector *connector;
8828         struct drm_crtc *tmp_crtc;
8829
8830         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8831
8832         /* Check which crtcs have changed outputs connected to them, these need
8833          * to be part of the prepare_pipes mask. We don't (yet) support global
8834          * modeset across multiple crtcs, so modeset_pipes will only have one
8835          * bit set at most. */
8836         list_for_each_entry(connector, &dev->mode_config.connector_list,
8837                             base.head) {
8838                 if (connector->base.encoder == &connector->new_encoder->base)
8839                         continue;
8840
8841                 if (connector->base.encoder) {
8842                         tmp_crtc = connector->base.encoder->crtc;
8843
8844                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8845                 }
8846
8847                 if (connector->new_encoder)
8848                         *prepare_pipes |=
8849                                 1 << connector->new_encoder->new_crtc->pipe;
8850         }
8851
8852         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8853                             base.head) {
8854                 if (encoder->base.crtc == &encoder->new_crtc->base)
8855                         continue;
8856
8857                 if (encoder->base.crtc) {
8858                         tmp_crtc = encoder->base.crtc;
8859
8860                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8861                 }
8862
8863                 if (encoder->new_crtc)
8864                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8865         }
8866
8867         /* Check for any pipes that will be fully disabled ... */
8868         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8869                             base.head) {
8870                 bool used = false;
8871
8872                 /* Don't try to disable disabled crtcs. */
8873                 if (!intel_crtc->base.enabled)
8874                         continue;
8875
8876                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8877                                     base.head) {
8878                         if (encoder->new_crtc == intel_crtc)
8879                                 used = true;
8880                 }
8881
8882                 if (!used)
8883                         *disable_pipes |= 1 << intel_crtc->pipe;
8884         }
8885
8886
8887         /* set_mode is also used to update properties on life display pipes. */
8888         intel_crtc = to_intel_crtc(crtc);
8889         if (crtc->enabled)
8890                 *prepare_pipes |= 1 << intel_crtc->pipe;
8891
8892         /*
8893          * For simplicity do a full modeset on any pipe where the output routing
8894          * changed. We could be more clever, but that would require us to be
8895          * more careful with calling the relevant encoder->mode_set functions.
8896          */
8897         if (*prepare_pipes)
8898                 *modeset_pipes = *prepare_pipes;
8899
8900         /* ... and mask these out. */
8901         *modeset_pipes &= ~(*disable_pipes);
8902         *prepare_pipes &= ~(*disable_pipes);
8903
8904         /*
8905          * HACK: We don't (yet) fully support global modesets. intel_set_config
8906          * obies this rule, but the modeset restore mode of
8907          * intel_modeset_setup_hw_state does not.
8908          */
8909         *modeset_pipes &= 1 << intel_crtc->pipe;
8910         *prepare_pipes &= 1 << intel_crtc->pipe;
8911
8912         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8913                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8914 }
8915
8916 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8917 {
8918         struct drm_encoder *encoder;
8919         struct drm_device *dev = crtc->dev;
8920
8921         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8922                 if (encoder->crtc == crtc)
8923                         return true;
8924
8925         return false;
8926 }
8927
8928 static void
8929 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8930 {
8931         struct intel_encoder *intel_encoder;
8932         struct intel_crtc *intel_crtc;
8933         struct drm_connector *connector;
8934
8935         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8936                             base.head) {
8937                 if (!intel_encoder->base.crtc)
8938                         continue;
8939
8940                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8941
8942                 if (prepare_pipes & (1 << intel_crtc->pipe))
8943                         intel_encoder->connectors_active = false;
8944         }
8945
8946         intel_modeset_commit_output_state(dev);
8947
8948         /* Update computed state. */
8949         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8950                             base.head) {
8951                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8952         }
8953
8954         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8955                 if (!connector->encoder || !connector->encoder->crtc)
8956                         continue;
8957
8958                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8959
8960                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8961                         struct drm_property *dpms_property =
8962                                 dev->mode_config.dpms_property;
8963
8964                         connector->dpms = DRM_MODE_DPMS_ON;
8965                         drm_object_property_set_value(&connector->base,
8966                                                          dpms_property,
8967                                                          DRM_MODE_DPMS_ON);
8968
8969                         intel_encoder = to_intel_encoder(connector->encoder);
8970                         intel_encoder->connectors_active = true;
8971                 }
8972         }
8973
8974 }
8975
8976 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8977 {
8978         int diff;
8979
8980         if (clock1 == clock2)
8981                 return true;
8982
8983         if (!clock1 || !clock2)
8984                 return false;
8985
8986         diff = abs(clock1 - clock2);
8987
8988         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8989                 return true;
8990
8991         return false;
8992 }
8993
8994 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8995         list_for_each_entry((intel_crtc), \
8996                             &(dev)->mode_config.crtc_list, \
8997                             base.head) \
8998                 if (mask & (1 <<(intel_crtc)->pipe))
8999
9000 static bool
9001 intel_pipe_config_compare(struct drm_device *dev,
9002                           struct intel_crtc_config *current_config,
9003                           struct intel_crtc_config *pipe_config)
9004 {
9005 #define PIPE_CONF_CHECK_X(name) \
9006         if (current_config->name != pipe_config->name) { \
9007                 DRM_ERROR("mismatch in " #name " " \
9008                           "(expected 0x%08x, found 0x%08x)\n", \
9009                           current_config->name, \
9010                           pipe_config->name); \
9011                 return false; \
9012         }
9013
9014 #define PIPE_CONF_CHECK_I(name) \
9015         if (current_config->name != pipe_config->name) { \
9016                 DRM_ERROR("mismatch in " #name " " \
9017                           "(expected %i, found %i)\n", \
9018                           current_config->name, \
9019                           pipe_config->name); \
9020                 return false; \
9021         }
9022
9023 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9024         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9025                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9026                           "(expected %i, found %i)\n", \
9027                           current_config->name & (mask), \
9028                           pipe_config->name & (mask)); \
9029                 return false; \
9030         }
9031
9032 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9033         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9034                 DRM_ERROR("mismatch in " #name " " \
9035                           "(expected %i, found %i)\n", \
9036                           current_config->name, \
9037                           pipe_config->name); \
9038                 return false; \
9039         }
9040
9041 #define PIPE_CONF_QUIRK(quirk)  \
9042         ((current_config->quirks | pipe_config->quirks) & (quirk))
9043
9044         PIPE_CONF_CHECK_I(cpu_transcoder);
9045
9046         PIPE_CONF_CHECK_I(has_pch_encoder);
9047         PIPE_CONF_CHECK_I(fdi_lanes);
9048         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9049         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9050         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9051         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9052         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9053
9054         PIPE_CONF_CHECK_I(has_dp_encoder);
9055         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9056         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9057         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9058         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9059         PIPE_CONF_CHECK_I(dp_m_n.tu);
9060
9061         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9062         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9063         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9064         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9065         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9066         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9067
9068         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9069         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9070         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9071         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9072         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9073         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9074
9075         PIPE_CONF_CHECK_I(pixel_multiplier);
9076
9077         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9078                               DRM_MODE_FLAG_INTERLACE);
9079
9080         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9081                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9082                                       DRM_MODE_FLAG_PHSYNC);
9083                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9084                                       DRM_MODE_FLAG_NHSYNC);
9085                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9086                                       DRM_MODE_FLAG_PVSYNC);
9087                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9088                                       DRM_MODE_FLAG_NVSYNC);
9089         }
9090
9091         PIPE_CONF_CHECK_I(pipe_src_w);
9092         PIPE_CONF_CHECK_I(pipe_src_h);
9093
9094         PIPE_CONF_CHECK_I(gmch_pfit.control);
9095         /* pfit ratios are autocomputed by the hw on gen4+ */
9096         if (INTEL_INFO(dev)->gen < 4)
9097                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9098         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9099         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9100         if (current_config->pch_pfit.enabled) {
9101                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9102                 PIPE_CONF_CHECK_I(pch_pfit.size);
9103         }
9104
9105         PIPE_CONF_CHECK_I(ips_enabled);
9106
9107         PIPE_CONF_CHECK_I(double_wide);
9108
9109         PIPE_CONF_CHECK_I(shared_dpll);
9110         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9111         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9112         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9113         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9114
9115         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9116                 PIPE_CONF_CHECK_I(pipe_bpp);
9117
9118         if (!IS_HASWELL(dev)) {
9119                 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9120                 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9121         }
9122
9123 #undef PIPE_CONF_CHECK_X
9124 #undef PIPE_CONF_CHECK_I
9125 #undef PIPE_CONF_CHECK_FLAGS
9126 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9127 #undef PIPE_CONF_QUIRK
9128
9129         return true;
9130 }
9131
9132 static void
9133 check_connector_state(struct drm_device *dev)
9134 {
9135         struct intel_connector *connector;
9136
9137         list_for_each_entry(connector, &dev->mode_config.connector_list,
9138                             base.head) {
9139                 /* This also checks the encoder/connector hw state with the
9140                  * ->get_hw_state callbacks. */
9141                 intel_connector_check_state(connector);
9142
9143                 WARN(&connector->new_encoder->base != connector->base.encoder,
9144                      "connector's staged encoder doesn't match current encoder\n");
9145         }
9146 }
9147
9148 static void
9149 check_encoder_state(struct drm_device *dev)
9150 {
9151         struct intel_encoder *encoder;
9152         struct intel_connector *connector;
9153
9154         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9155                             base.head) {
9156                 bool enabled = false;
9157                 bool active = false;
9158                 enum pipe pipe, tracked_pipe;
9159
9160                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9161                               encoder->base.base.id,
9162                               drm_get_encoder_name(&encoder->base));
9163
9164                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9165                      "encoder's stage crtc doesn't match current crtc\n");
9166                 WARN(encoder->connectors_active && !encoder->base.crtc,
9167                      "encoder's active_connectors set, but no crtc\n");
9168
9169                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9170                                     base.head) {
9171                         if (connector->base.encoder != &encoder->base)
9172                                 continue;
9173                         enabled = true;
9174                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9175                                 active = true;
9176                 }
9177                 WARN(!!encoder->base.crtc != enabled,
9178                      "encoder's enabled state mismatch "
9179                      "(expected %i, found %i)\n",
9180                      !!encoder->base.crtc, enabled);
9181                 WARN(active && !encoder->base.crtc,
9182                      "active encoder with no crtc\n");
9183
9184                 WARN(encoder->connectors_active != active,
9185                      "encoder's computed active state doesn't match tracked active state "
9186                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9187
9188                 active = encoder->get_hw_state(encoder, &pipe);
9189                 WARN(active != encoder->connectors_active,
9190                      "encoder's hw state doesn't match sw tracking "
9191                      "(expected %i, found %i)\n",
9192                      encoder->connectors_active, active);
9193
9194                 if (!encoder->base.crtc)
9195                         continue;
9196
9197                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9198                 WARN(active && pipe != tracked_pipe,
9199                      "active encoder's pipe doesn't match"
9200                      "(expected %i, found %i)\n",
9201                      tracked_pipe, pipe);
9202
9203         }
9204 }
9205
9206 static void
9207 check_crtc_state(struct drm_device *dev)
9208 {
9209         drm_i915_private_t *dev_priv = dev->dev_private;
9210         struct intel_crtc *crtc;
9211         struct intel_encoder *encoder;
9212         struct intel_crtc_config pipe_config;
9213
9214         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9215                             base.head) {
9216                 bool enabled = false;
9217                 bool active = false;
9218
9219                 memset(&pipe_config, 0, sizeof(pipe_config));
9220
9221                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9222                               crtc->base.base.id);
9223
9224                 WARN(crtc->active && !crtc->base.enabled,
9225                      "active crtc, but not enabled in sw tracking\n");
9226
9227                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9228                                     base.head) {
9229                         if (encoder->base.crtc != &crtc->base)
9230                                 continue;
9231                         enabled = true;
9232                         if (encoder->connectors_active)
9233                                 active = true;
9234                 }
9235
9236                 WARN(active != crtc->active,
9237                      "crtc's computed active state doesn't match tracked active state "
9238                      "(expected %i, found %i)\n", active, crtc->active);
9239                 WARN(enabled != crtc->base.enabled,
9240                      "crtc's computed enabled state doesn't match tracked enabled state "
9241                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9242
9243                 active = dev_priv->display.get_pipe_config(crtc,
9244                                                            &pipe_config);
9245
9246                 /* hw state is inconsistent with the pipe A quirk */
9247                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9248                         active = crtc->active;
9249
9250                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9251                                     base.head) {
9252                         enum pipe pipe;
9253                         if (encoder->base.crtc != &crtc->base)
9254                                 continue;
9255                         if (encoder->get_hw_state(encoder, &pipe))
9256                                 encoder->get_config(encoder, &pipe_config);
9257                 }
9258
9259                 WARN(crtc->active != active,
9260                      "crtc active state doesn't match with hw state "
9261                      "(expected %i, found %i)\n", crtc->active, active);
9262
9263                 if (active &&
9264                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9265                         WARN(1, "pipe state doesn't match!\n");
9266                         intel_dump_pipe_config(crtc, &pipe_config,
9267                                                "[hw state]");
9268                         intel_dump_pipe_config(crtc, &crtc->config,
9269                                                "[sw state]");
9270                 }
9271         }
9272 }
9273
9274 static void
9275 check_shared_dpll_state(struct drm_device *dev)
9276 {
9277         drm_i915_private_t *dev_priv = dev->dev_private;
9278         struct intel_crtc *crtc;
9279         struct intel_dpll_hw_state dpll_hw_state;
9280         int i;
9281
9282         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9283                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9284                 int enabled_crtcs = 0, active_crtcs = 0;
9285                 bool active;
9286
9287                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9288
9289                 DRM_DEBUG_KMS("%s\n", pll->name);
9290
9291                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9292
9293                 WARN(pll->active > pll->refcount,
9294                      "more active pll users than references: %i vs %i\n",
9295                      pll->active, pll->refcount);
9296                 WARN(pll->active && !pll->on,
9297                      "pll in active use but not on in sw tracking\n");
9298                 WARN(pll->on && !pll->active,
9299                      "pll in on but not on in use in sw tracking\n");
9300                 WARN(pll->on != active,
9301                      "pll on state mismatch (expected %i, found %i)\n",
9302                      pll->on, active);
9303
9304                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9305                                     base.head) {
9306                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9307                                 enabled_crtcs++;
9308                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9309                                 active_crtcs++;
9310                 }
9311                 WARN(pll->active != active_crtcs,
9312                      "pll active crtcs mismatch (expected %i, found %i)\n",
9313                      pll->active, active_crtcs);
9314                 WARN(pll->refcount != enabled_crtcs,
9315                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9316                      pll->refcount, enabled_crtcs);
9317
9318                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9319                                        sizeof(dpll_hw_state)),
9320                      "pll hw state mismatch\n");
9321         }
9322 }
9323
9324 void
9325 intel_modeset_check_state(struct drm_device *dev)
9326 {
9327         check_connector_state(dev);
9328         check_encoder_state(dev);
9329         check_crtc_state(dev);
9330         check_shared_dpll_state(dev);
9331 }
9332
9333 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9334                                      int dotclock)
9335 {
9336         /*
9337          * FDI already provided one idea for the dotclock.
9338          * Yell if the encoder disagrees.
9339          */
9340         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9341              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9342              pipe_config->adjusted_mode.crtc_clock, dotclock);
9343 }
9344
9345 static int __intel_set_mode(struct drm_crtc *crtc,
9346                             struct drm_display_mode *mode,
9347                             int x, int y, struct drm_framebuffer *fb)
9348 {
9349         struct drm_device *dev = crtc->dev;
9350         drm_i915_private_t *dev_priv = dev->dev_private;
9351         struct drm_display_mode *saved_mode, *saved_hwmode;
9352         struct intel_crtc_config *pipe_config = NULL;
9353         struct intel_crtc *intel_crtc;
9354         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9355         int ret = 0;
9356
9357         saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9358         if (!saved_mode)
9359                 return -ENOMEM;
9360         saved_hwmode = saved_mode + 1;
9361
9362         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9363                                      &prepare_pipes, &disable_pipes);
9364
9365         *saved_hwmode = crtc->hwmode;
9366         *saved_mode = crtc->mode;
9367
9368         /* Hack: Because we don't (yet) support global modeset on multiple
9369          * crtcs, we don't keep track of the new mode for more than one crtc.
9370          * Hence simply check whether any bit is set in modeset_pipes in all the
9371          * pieces of code that are not yet converted to deal with mutliple crtcs
9372          * changing their mode at the same time. */
9373         if (modeset_pipes) {
9374                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9375                 if (IS_ERR(pipe_config)) {
9376                         ret = PTR_ERR(pipe_config);
9377                         pipe_config = NULL;
9378
9379                         goto out;
9380                 }
9381                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9382                                        "[modeset]");
9383         }
9384
9385         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9386                 intel_crtc_disable(&intel_crtc->base);
9387
9388         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9389                 if (intel_crtc->base.enabled)
9390                         dev_priv->display.crtc_disable(&intel_crtc->base);
9391         }
9392
9393         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9394          * to set it here already despite that we pass it down the callchain.
9395          */
9396         if (modeset_pipes) {
9397                 crtc->mode = *mode;
9398                 /* mode_set/enable/disable functions rely on a correct pipe
9399                  * config. */
9400                 to_intel_crtc(crtc)->config = *pipe_config;
9401         }
9402
9403         /* Only after disabling all output pipelines that will be changed can we
9404          * update the the output configuration. */
9405         intel_modeset_update_state(dev, prepare_pipes);
9406
9407         if (dev_priv->display.modeset_global_resources)
9408                 dev_priv->display.modeset_global_resources(dev);
9409
9410         /* Set up the DPLL and any encoders state that needs to adjust or depend
9411          * on the DPLL.
9412          */
9413         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9414                 ret = intel_crtc_mode_set(&intel_crtc->base,
9415                                           x, y, fb);
9416                 if (ret)
9417                         goto done;
9418         }
9419
9420         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9421         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9422                 dev_priv->display.crtc_enable(&intel_crtc->base);
9423
9424         if (modeset_pipes) {
9425                 /* Store real post-adjustment hardware mode. */
9426                 crtc->hwmode = pipe_config->adjusted_mode;
9427
9428                 /* Calculate and store various constants which
9429                  * are later needed by vblank and swap-completion
9430                  * timestamping. They are derived from true hwmode.
9431                  */
9432                 drm_calc_timestamping_constants(crtc);
9433         }
9434
9435         /* FIXME: add subpixel order */
9436 done:
9437         if (ret && crtc->enabled) {
9438                 crtc->hwmode = *saved_hwmode;
9439                 crtc->mode = *saved_mode;
9440         }
9441
9442 out:
9443         kfree(pipe_config);
9444         kfree(saved_mode);
9445         return ret;
9446 }
9447
9448 static int intel_set_mode(struct drm_crtc *crtc,
9449                           struct drm_display_mode *mode,
9450                           int x, int y, struct drm_framebuffer *fb)
9451 {
9452         int ret;
9453
9454         ret = __intel_set_mode(crtc, mode, x, y, fb);
9455
9456         if (ret == 0)
9457                 intel_modeset_check_state(crtc->dev);
9458
9459         return ret;
9460 }
9461
9462 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9463 {
9464         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9465 }
9466
9467 #undef for_each_intel_crtc_masked
9468
9469 static void intel_set_config_free(struct intel_set_config *config)
9470 {
9471         if (!config)
9472                 return;
9473
9474         kfree(config->save_connector_encoders);
9475         kfree(config->save_encoder_crtcs);
9476         kfree(config);
9477 }
9478
9479 static int intel_set_config_save_state(struct drm_device *dev,
9480                                        struct intel_set_config *config)
9481 {
9482         struct drm_encoder *encoder;
9483         struct drm_connector *connector;
9484         int count;
9485
9486         config->save_encoder_crtcs =
9487                 kcalloc(dev->mode_config.num_encoder,
9488                         sizeof(struct drm_crtc *), GFP_KERNEL);
9489         if (!config->save_encoder_crtcs)
9490                 return -ENOMEM;
9491
9492         config->save_connector_encoders =
9493                 kcalloc(dev->mode_config.num_connector,
9494                         sizeof(struct drm_encoder *), GFP_KERNEL);
9495         if (!config->save_connector_encoders)
9496                 return -ENOMEM;
9497
9498         /* Copy data. Note that driver private data is not affected.
9499          * Should anything bad happen only the expected state is
9500          * restored, not the drivers personal bookkeeping.
9501          */
9502         count = 0;
9503         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9504                 config->save_encoder_crtcs[count++] = encoder->crtc;
9505         }
9506
9507         count = 0;
9508         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9509                 config->save_connector_encoders[count++] = connector->encoder;
9510         }
9511
9512         return 0;
9513 }
9514
9515 static void intel_set_config_restore_state(struct drm_device *dev,
9516                                            struct intel_set_config *config)
9517 {
9518         struct intel_encoder *encoder;
9519         struct intel_connector *connector;
9520         int count;
9521
9522         count = 0;
9523         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9524                 encoder->new_crtc =
9525                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9526         }
9527
9528         count = 0;
9529         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9530                 connector->new_encoder =
9531                         to_intel_encoder(config->save_connector_encoders[count++]);
9532         }
9533 }
9534
9535 static bool
9536 is_crtc_connector_off(struct drm_mode_set *set)
9537 {
9538         int i;
9539
9540         if (set->num_connectors == 0)
9541                 return false;
9542
9543         if (WARN_ON(set->connectors == NULL))
9544                 return false;
9545
9546         for (i = 0; i < set->num_connectors; i++)
9547                 if (set->connectors[i]->encoder &&
9548                     set->connectors[i]->encoder->crtc == set->crtc &&
9549                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9550                         return true;
9551
9552         return false;
9553 }
9554
9555 static void
9556 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9557                                       struct intel_set_config *config)
9558 {
9559
9560         /* We should be able to check here if the fb has the same properties
9561          * and then just flip_or_move it */
9562         if (is_crtc_connector_off(set)) {
9563                 config->mode_changed = true;
9564         } else if (set->crtc->fb != set->fb) {
9565                 /* If we have no fb then treat it as a full mode set */
9566                 if (set->crtc->fb == NULL) {
9567                         struct intel_crtc *intel_crtc =
9568                                 to_intel_crtc(set->crtc);
9569
9570                         if (intel_crtc->active && i915_fastboot) {
9571                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9572                                 config->fb_changed = true;
9573                         } else {
9574                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9575                                 config->mode_changed = true;
9576                         }
9577                 } else if (set->fb == NULL) {
9578                         config->mode_changed = true;
9579                 } else if (set->fb->pixel_format !=
9580                            set->crtc->fb->pixel_format) {
9581                         config->mode_changed = true;
9582                 } else {
9583                         config->fb_changed = true;
9584                 }
9585         }
9586
9587         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9588                 config->fb_changed = true;
9589
9590         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9591                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9592                 drm_mode_debug_printmodeline(&set->crtc->mode);
9593                 drm_mode_debug_printmodeline(set->mode);
9594                 config->mode_changed = true;
9595         }
9596
9597         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9598                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9599 }
9600
9601 static int
9602 intel_modeset_stage_output_state(struct drm_device *dev,
9603                                  struct drm_mode_set *set,
9604                                  struct intel_set_config *config)
9605 {
9606         struct drm_crtc *new_crtc;
9607         struct intel_connector *connector;
9608         struct intel_encoder *encoder;
9609         int ro;
9610
9611         /* The upper layers ensure that we either disable a crtc or have a list
9612          * of connectors. For paranoia, double-check this. */
9613         WARN_ON(!set->fb && (set->num_connectors != 0));
9614         WARN_ON(set->fb && (set->num_connectors == 0));
9615
9616         list_for_each_entry(connector, &dev->mode_config.connector_list,
9617                             base.head) {
9618                 /* Otherwise traverse passed in connector list and get encoders
9619                  * for them. */
9620                 for (ro = 0; ro < set->num_connectors; ro++) {
9621                         if (set->connectors[ro] == &connector->base) {
9622                                 connector->new_encoder = connector->encoder;
9623                                 break;
9624                         }
9625                 }
9626
9627                 /* If we disable the crtc, disable all its connectors. Also, if
9628                  * the connector is on the changing crtc but not on the new
9629                  * connector list, disable it. */
9630                 if ((!set->fb || ro == set->num_connectors) &&
9631                     connector->base.encoder &&
9632                     connector->base.encoder->crtc == set->crtc) {
9633                         connector->new_encoder = NULL;
9634
9635                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9636                                 connector->base.base.id,
9637                                 drm_get_connector_name(&connector->base));
9638                 }
9639
9640
9641                 if (&connector->new_encoder->base != connector->base.encoder) {
9642                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9643                         config->mode_changed = true;
9644                 }
9645         }
9646         /* connector->new_encoder is now updated for all connectors. */
9647
9648         /* Update crtc of enabled connectors. */
9649         list_for_each_entry(connector, &dev->mode_config.connector_list,
9650                             base.head) {
9651                 if (!connector->new_encoder)
9652                         continue;
9653
9654                 new_crtc = connector->new_encoder->base.crtc;
9655
9656                 for (ro = 0; ro < set->num_connectors; ro++) {
9657                         if (set->connectors[ro] == &connector->base)
9658                                 new_crtc = set->crtc;
9659                 }
9660
9661                 /* Make sure the new CRTC will work with the encoder */
9662                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9663                                            new_crtc)) {
9664                         return -EINVAL;
9665                 }
9666                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9667
9668                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9669                         connector->base.base.id,
9670                         drm_get_connector_name(&connector->base),
9671                         new_crtc->base.id);
9672         }
9673
9674         /* Check for any encoders that needs to be disabled. */
9675         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9676                             base.head) {
9677                 list_for_each_entry(connector,
9678                                     &dev->mode_config.connector_list,
9679                                     base.head) {
9680                         if (connector->new_encoder == encoder) {
9681                                 WARN_ON(!connector->new_encoder->new_crtc);
9682
9683                                 goto next_encoder;
9684                         }
9685                 }
9686                 encoder->new_crtc = NULL;
9687 next_encoder:
9688                 /* Only now check for crtc changes so we don't miss encoders
9689                  * that will be disabled. */
9690                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9691                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9692                         config->mode_changed = true;
9693                 }
9694         }
9695         /* Now we've also updated encoder->new_crtc for all encoders. */
9696
9697         return 0;
9698 }
9699
9700 static int intel_crtc_set_config(struct drm_mode_set *set)
9701 {
9702         struct drm_device *dev;
9703         struct drm_mode_set save_set;
9704         struct intel_set_config *config;
9705         int ret;
9706
9707         BUG_ON(!set);
9708         BUG_ON(!set->crtc);
9709         BUG_ON(!set->crtc->helper_private);
9710
9711         /* Enforce sane interface api - has been abused by the fb helper. */
9712         BUG_ON(!set->mode && set->fb);
9713         BUG_ON(set->fb && set->num_connectors == 0);
9714
9715         if (set->fb) {
9716                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9717                                 set->crtc->base.id, set->fb->base.id,
9718                                 (int)set->num_connectors, set->x, set->y);
9719         } else {
9720                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9721         }
9722
9723         dev = set->crtc->dev;
9724
9725         ret = -ENOMEM;
9726         config = kzalloc(sizeof(*config), GFP_KERNEL);
9727         if (!config)
9728                 goto out_config;
9729
9730         ret = intel_set_config_save_state(dev, config);
9731         if (ret)
9732                 goto out_config;
9733
9734         save_set.crtc = set->crtc;
9735         save_set.mode = &set->crtc->mode;
9736         save_set.x = set->crtc->x;
9737         save_set.y = set->crtc->y;
9738         save_set.fb = set->crtc->fb;
9739
9740         /* Compute whether we need a full modeset, only an fb base update or no
9741          * change at all. In the future we might also check whether only the
9742          * mode changed, e.g. for LVDS where we only change the panel fitter in
9743          * such cases. */
9744         intel_set_config_compute_mode_changes(set, config);
9745
9746         ret = intel_modeset_stage_output_state(dev, set, config);
9747         if (ret)
9748                 goto fail;
9749
9750         if (config->mode_changed) {
9751                 ret = intel_set_mode(set->crtc, set->mode,
9752                                      set->x, set->y, set->fb);
9753         } else if (config->fb_changed) {
9754                 intel_crtc_wait_for_pending_flips(set->crtc);
9755
9756                 ret = intel_pipe_set_base(set->crtc,
9757                                           set->x, set->y, set->fb);
9758         }
9759
9760         if (ret) {
9761                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9762                               set->crtc->base.id, ret);
9763 fail:
9764                 intel_set_config_restore_state(dev, config);
9765
9766                 /* Try to restore the config */
9767                 if (config->mode_changed &&
9768                     intel_set_mode(save_set.crtc, save_set.mode,
9769                                    save_set.x, save_set.y, save_set.fb))
9770                         DRM_ERROR("failed to restore config after modeset failure\n");
9771         }
9772
9773 out_config:
9774         intel_set_config_free(config);
9775         return ret;
9776 }
9777
9778 static const struct drm_crtc_funcs intel_crtc_funcs = {
9779         .cursor_set = intel_crtc_cursor_set,
9780         .cursor_move = intel_crtc_cursor_move,
9781         .gamma_set = intel_crtc_gamma_set,
9782         .set_config = intel_crtc_set_config,
9783         .destroy = intel_crtc_destroy,
9784         .page_flip = intel_crtc_page_flip,
9785 };
9786
9787 static void intel_cpu_pll_init(struct drm_device *dev)
9788 {
9789         if (HAS_DDI(dev))
9790                 intel_ddi_pll_init(dev);
9791 }
9792
9793 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9794                                       struct intel_shared_dpll *pll,
9795                                       struct intel_dpll_hw_state *hw_state)
9796 {
9797         uint32_t val;
9798
9799         val = I915_READ(PCH_DPLL(pll->id));
9800         hw_state->dpll = val;
9801         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9802         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9803
9804         return val & DPLL_VCO_ENABLE;
9805 }
9806
9807 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9808                                   struct intel_shared_dpll *pll)
9809 {
9810         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9811         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9812 }
9813
9814 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9815                                 struct intel_shared_dpll *pll)
9816 {
9817         /* PCH refclock must be enabled first */
9818         assert_pch_refclk_enabled(dev_priv);
9819
9820         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9821
9822         /* Wait for the clocks to stabilize. */
9823         POSTING_READ(PCH_DPLL(pll->id));
9824         udelay(150);
9825
9826         /* The pixel multiplier can only be updated once the
9827          * DPLL is enabled and the clocks are stable.
9828          *
9829          * So write it again.
9830          */
9831         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9832         POSTING_READ(PCH_DPLL(pll->id));
9833         udelay(200);
9834 }
9835
9836 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9837                                  struct intel_shared_dpll *pll)
9838 {
9839         struct drm_device *dev = dev_priv->dev;
9840         struct intel_crtc *crtc;
9841
9842         /* Make sure no transcoder isn't still depending on us. */
9843         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9844                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9845                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9846         }
9847
9848         I915_WRITE(PCH_DPLL(pll->id), 0);
9849         POSTING_READ(PCH_DPLL(pll->id));
9850         udelay(200);
9851 }
9852
9853 static char *ibx_pch_dpll_names[] = {
9854         "PCH DPLL A",
9855         "PCH DPLL B",
9856 };
9857
9858 static void ibx_pch_dpll_init(struct drm_device *dev)
9859 {
9860         struct drm_i915_private *dev_priv = dev->dev_private;
9861         int i;
9862
9863         dev_priv->num_shared_dpll = 2;
9864
9865         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9866                 dev_priv->shared_dplls[i].id = i;
9867                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9868                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9869                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9870                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9871                 dev_priv->shared_dplls[i].get_hw_state =
9872                         ibx_pch_dpll_get_hw_state;
9873         }
9874 }
9875
9876 static void intel_shared_dpll_init(struct drm_device *dev)
9877 {
9878         struct drm_i915_private *dev_priv = dev->dev_private;
9879
9880         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9881                 ibx_pch_dpll_init(dev);
9882         else
9883                 dev_priv->num_shared_dpll = 0;
9884
9885         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9886         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9887                       dev_priv->num_shared_dpll);
9888 }
9889
9890 static void intel_crtc_init(struct drm_device *dev, int pipe)
9891 {
9892         drm_i915_private_t *dev_priv = dev->dev_private;
9893         struct intel_crtc *intel_crtc;
9894         int i;
9895
9896         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
9897         if (intel_crtc == NULL)
9898                 return;
9899
9900         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9901
9902         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9903         for (i = 0; i < 256; i++) {
9904                 intel_crtc->lut_r[i] = i;
9905                 intel_crtc->lut_g[i] = i;
9906                 intel_crtc->lut_b[i] = i;
9907         }
9908
9909         /* Swap pipes & planes for FBC on pre-965 */
9910         intel_crtc->pipe = pipe;
9911         intel_crtc->plane = pipe;
9912         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9913                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9914                 intel_crtc->plane = !pipe;
9915         }
9916
9917         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9918                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9919         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9920         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9921
9922         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9923 }
9924
9925 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
9926 {
9927         struct drm_encoder *encoder = connector->base.encoder;
9928
9929         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
9930
9931         if (!encoder)
9932                 return INVALID_PIPE;
9933
9934         return to_intel_crtc(encoder->crtc)->pipe;
9935 }
9936
9937 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9938                                 struct drm_file *file)
9939 {
9940         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9941         struct drm_mode_object *drmmode_obj;
9942         struct intel_crtc *crtc;
9943
9944         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9945                 return -ENODEV;
9946
9947         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9948                         DRM_MODE_OBJECT_CRTC);
9949
9950         if (!drmmode_obj) {
9951                 DRM_ERROR("no such CRTC id\n");
9952                 return -ENOENT;
9953         }
9954
9955         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9956         pipe_from_crtc_id->pipe = crtc->pipe;
9957
9958         return 0;
9959 }
9960
9961 static int intel_encoder_clones(struct intel_encoder *encoder)
9962 {
9963         struct drm_device *dev = encoder->base.dev;
9964         struct intel_encoder *source_encoder;
9965         int index_mask = 0;
9966         int entry = 0;
9967
9968         list_for_each_entry(source_encoder,
9969                             &dev->mode_config.encoder_list, base.head) {
9970
9971                 if (encoder == source_encoder)
9972                         index_mask |= (1 << entry);
9973
9974                 /* Intel hw has only one MUX where enocoders could be cloned. */
9975                 if (encoder->cloneable && source_encoder->cloneable)
9976                         index_mask |= (1 << entry);
9977
9978                 entry++;
9979         }
9980
9981         return index_mask;
9982 }
9983
9984 static bool has_edp_a(struct drm_device *dev)
9985 {
9986         struct drm_i915_private *dev_priv = dev->dev_private;
9987
9988         if (!IS_MOBILE(dev))
9989                 return false;
9990
9991         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9992                 return false;
9993
9994         if (IS_GEN5(dev) &&
9995             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9996                 return false;
9997
9998         return true;
9999 }
10000
10001 static void intel_setup_outputs(struct drm_device *dev)
10002 {
10003         struct drm_i915_private *dev_priv = dev->dev_private;
10004         struct intel_encoder *encoder;
10005         bool dpd_is_edp = false;
10006
10007         intel_lvds_init(dev);
10008
10009         if (!IS_ULT(dev))
10010                 intel_crt_init(dev);
10011
10012         if (HAS_DDI(dev)) {
10013                 int found;
10014
10015                 /* Haswell uses DDI functions to detect digital outputs */
10016                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10017                 /* DDI A only supports eDP */
10018                 if (found)
10019                         intel_ddi_init(dev, PORT_A);
10020
10021                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10022                  * register */
10023                 found = I915_READ(SFUSE_STRAP);
10024
10025                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10026                         intel_ddi_init(dev, PORT_B);
10027                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10028                         intel_ddi_init(dev, PORT_C);
10029                 if (found & SFUSE_STRAP_DDID_DETECTED)
10030                         intel_ddi_init(dev, PORT_D);
10031         } else if (HAS_PCH_SPLIT(dev)) {
10032                 int found;
10033                 dpd_is_edp = intel_dpd_is_edp(dev);
10034
10035                 if (has_edp_a(dev))
10036                         intel_dp_init(dev, DP_A, PORT_A);
10037
10038                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10039                         /* PCH SDVOB multiplex with HDMIB */
10040                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10041                         if (!found)
10042                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10043                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10044                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10045                 }
10046
10047                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10048                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10049
10050                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10051                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10052
10053                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10054                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10055
10056                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10057                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10058         } else if (IS_VALLEYVIEW(dev)) {
10059                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10060                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10061                                         PORT_B);
10062                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10063                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10064                 }
10065
10066                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10067                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10068                                         PORT_C);
10069                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10070                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
10071                                               PORT_C);
10072                 }
10073
10074                 intel_dsi_init(dev);
10075         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10076                 bool found = false;
10077
10078                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10079                         DRM_DEBUG_KMS("probing SDVOB\n");
10080                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10081                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10082                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10083                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10084                         }
10085
10086                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10087                                 intel_dp_init(dev, DP_B, PORT_B);
10088                 }
10089
10090                 /* Before G4X SDVOC doesn't have its own detect register */
10091
10092                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10093                         DRM_DEBUG_KMS("probing SDVOC\n");
10094                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10095                 }
10096
10097                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10098
10099                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10100                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10101                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10102                         }
10103                         if (SUPPORTS_INTEGRATED_DP(dev))
10104                                 intel_dp_init(dev, DP_C, PORT_C);
10105                 }
10106
10107                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10108                     (I915_READ(DP_D) & DP_DETECTED))
10109                         intel_dp_init(dev, DP_D, PORT_D);
10110         } else if (IS_GEN2(dev))
10111                 intel_dvo_init(dev);
10112
10113         if (SUPPORTS_TV(dev))
10114                 intel_tv_init(dev);
10115
10116         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10117                 encoder->base.possible_crtcs = encoder->crtc_mask;
10118                 encoder->base.possible_clones =
10119                         intel_encoder_clones(encoder);
10120         }
10121
10122         intel_init_pch_refclk(dev);
10123
10124         drm_helper_move_panel_connectors_to_head(dev);
10125 }
10126
10127 void intel_framebuffer_fini(struct intel_framebuffer *fb)
10128 {
10129         drm_framebuffer_cleanup(&fb->base);
10130         WARN_ON(!fb->obj->framebuffer_references--);
10131         drm_gem_object_unreference_unlocked(&fb->obj->base);
10132 }
10133
10134 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10135 {
10136         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10137
10138         intel_framebuffer_fini(intel_fb);
10139         kfree(intel_fb);
10140 }
10141
10142 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10143                                                 struct drm_file *file,
10144                                                 unsigned int *handle)
10145 {
10146         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10147         struct drm_i915_gem_object *obj = intel_fb->obj;
10148
10149         return drm_gem_handle_create(file, &obj->base, handle);
10150 }
10151
10152 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10153         .destroy = intel_user_framebuffer_destroy,
10154         .create_handle = intel_user_framebuffer_create_handle,
10155 };
10156
10157 int intel_framebuffer_init(struct drm_device *dev,
10158                            struct intel_framebuffer *intel_fb,
10159                            struct drm_mode_fb_cmd2 *mode_cmd,
10160                            struct drm_i915_gem_object *obj)
10161 {
10162         int aligned_height, tile_height;
10163         int pitch_limit;
10164         int ret;
10165
10166         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10167
10168         if (obj->tiling_mode == I915_TILING_Y) {
10169                 DRM_DEBUG("hardware does not support tiling Y\n");
10170                 return -EINVAL;
10171         }
10172
10173         if (mode_cmd->pitches[0] & 63) {
10174                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10175                           mode_cmd->pitches[0]);
10176                 return -EINVAL;
10177         }
10178
10179         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10180                 pitch_limit = 32*1024;
10181         } else if (INTEL_INFO(dev)->gen >= 4) {
10182                 if (obj->tiling_mode)
10183                         pitch_limit = 16*1024;
10184                 else
10185                         pitch_limit = 32*1024;
10186         } else if (INTEL_INFO(dev)->gen >= 3) {
10187                 if (obj->tiling_mode)
10188                         pitch_limit = 8*1024;
10189                 else
10190                         pitch_limit = 16*1024;
10191         } else
10192                 /* XXX DSPC is limited to 4k tiled */
10193                 pitch_limit = 8*1024;
10194
10195         if (mode_cmd->pitches[0] > pitch_limit) {
10196                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10197                           obj->tiling_mode ? "tiled" : "linear",
10198                           mode_cmd->pitches[0], pitch_limit);
10199                 return -EINVAL;
10200         }
10201
10202         if (obj->tiling_mode != I915_TILING_NONE &&
10203             mode_cmd->pitches[0] != obj->stride) {
10204                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10205                           mode_cmd->pitches[0], obj->stride);
10206                 return -EINVAL;
10207         }
10208
10209         /* Reject formats not supported by any plane early. */
10210         switch (mode_cmd->pixel_format) {
10211         case DRM_FORMAT_C8:
10212         case DRM_FORMAT_RGB565:
10213         case DRM_FORMAT_XRGB8888:
10214         case DRM_FORMAT_ARGB8888:
10215                 break;
10216         case DRM_FORMAT_XRGB1555:
10217         case DRM_FORMAT_ARGB1555:
10218                 if (INTEL_INFO(dev)->gen > 3) {
10219                         DRM_DEBUG("unsupported pixel format: %s\n",
10220                                   drm_get_format_name(mode_cmd->pixel_format));
10221                         return -EINVAL;
10222                 }
10223                 break;
10224         case DRM_FORMAT_XBGR8888:
10225         case DRM_FORMAT_ABGR8888:
10226         case DRM_FORMAT_XRGB2101010:
10227         case DRM_FORMAT_ARGB2101010:
10228         case DRM_FORMAT_XBGR2101010:
10229         case DRM_FORMAT_ABGR2101010:
10230                 if (INTEL_INFO(dev)->gen < 4) {
10231                         DRM_DEBUG("unsupported pixel format: %s\n",
10232                                   drm_get_format_name(mode_cmd->pixel_format));
10233                         return -EINVAL;
10234                 }
10235                 break;
10236         case DRM_FORMAT_YUYV:
10237         case DRM_FORMAT_UYVY:
10238         case DRM_FORMAT_YVYU:
10239         case DRM_FORMAT_VYUY:
10240                 if (INTEL_INFO(dev)->gen < 5) {
10241                         DRM_DEBUG("unsupported pixel format: %s\n",
10242                                   drm_get_format_name(mode_cmd->pixel_format));
10243                         return -EINVAL;
10244                 }
10245                 break;
10246         default:
10247                 DRM_DEBUG("unsupported pixel format: %s\n",
10248                           drm_get_format_name(mode_cmd->pixel_format));
10249                 return -EINVAL;
10250         }
10251
10252         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10253         if (mode_cmd->offsets[0] != 0)
10254                 return -EINVAL;
10255
10256         tile_height = IS_GEN2(dev) ? 16 : 8;
10257         aligned_height = ALIGN(mode_cmd->height,
10258                                obj->tiling_mode ? tile_height : 1);
10259         /* FIXME drm helper for size checks (especially planar formats)? */
10260         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10261                 return -EINVAL;
10262
10263         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10264         intel_fb->obj = obj;
10265         intel_fb->obj->framebuffer_references++;
10266
10267         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10268         if (ret) {
10269                 DRM_ERROR("framebuffer init failed %d\n", ret);
10270                 return ret;
10271         }
10272
10273         return 0;
10274 }
10275
10276 static struct drm_framebuffer *
10277 intel_user_framebuffer_create(struct drm_device *dev,
10278                               struct drm_file *filp,
10279                               struct drm_mode_fb_cmd2 *mode_cmd)
10280 {
10281         struct drm_i915_gem_object *obj;
10282
10283         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10284                                                 mode_cmd->handles[0]));
10285         if (&obj->base == NULL)
10286                 return ERR_PTR(-ENOENT);
10287
10288         return intel_framebuffer_create(dev, mode_cmd, obj);
10289 }
10290
10291 #ifndef CONFIG_DRM_I915_FBDEV
10292 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10293 {
10294 }
10295 #endif
10296
10297 static const struct drm_mode_config_funcs intel_mode_funcs = {
10298         .fb_create = intel_user_framebuffer_create,
10299         .output_poll_changed = intel_fbdev_output_poll_changed,
10300 };
10301
10302 /* Set up chip specific display functions */
10303 static void intel_init_display(struct drm_device *dev)
10304 {
10305         struct drm_i915_private *dev_priv = dev->dev_private;
10306
10307         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10308                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10309         else if (IS_VALLEYVIEW(dev))
10310                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10311         else if (IS_PINEVIEW(dev))
10312                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10313         else
10314                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10315
10316         if (HAS_DDI(dev)) {
10317                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10318                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10319                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10320                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10321                 dev_priv->display.off = haswell_crtc_off;
10322                 dev_priv->display.update_plane = ironlake_update_plane;
10323         } else if (HAS_PCH_SPLIT(dev)) {
10324                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10325                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10326                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10327                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10328                 dev_priv->display.off = ironlake_crtc_off;
10329                 dev_priv->display.update_plane = ironlake_update_plane;
10330         } else if (IS_VALLEYVIEW(dev)) {
10331                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10332                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10333                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10334                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10335                 dev_priv->display.off = i9xx_crtc_off;
10336                 dev_priv->display.update_plane = i9xx_update_plane;
10337         } else {
10338                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10339                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10340                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10341                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10342                 dev_priv->display.off = i9xx_crtc_off;
10343                 dev_priv->display.update_plane = i9xx_update_plane;
10344         }
10345
10346         /* Returns the core display clock speed */
10347         if (IS_VALLEYVIEW(dev))
10348                 dev_priv->display.get_display_clock_speed =
10349                         valleyview_get_display_clock_speed;
10350         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10351                 dev_priv->display.get_display_clock_speed =
10352                         i945_get_display_clock_speed;
10353         else if (IS_I915G(dev))
10354                 dev_priv->display.get_display_clock_speed =
10355                         i915_get_display_clock_speed;
10356         else if (IS_I945GM(dev) || IS_845G(dev))
10357                 dev_priv->display.get_display_clock_speed =
10358                         i9xx_misc_get_display_clock_speed;
10359         else if (IS_PINEVIEW(dev))
10360                 dev_priv->display.get_display_clock_speed =
10361                         pnv_get_display_clock_speed;
10362         else if (IS_I915GM(dev))
10363                 dev_priv->display.get_display_clock_speed =
10364                         i915gm_get_display_clock_speed;
10365         else if (IS_I865G(dev))
10366                 dev_priv->display.get_display_clock_speed =
10367                         i865_get_display_clock_speed;
10368         else if (IS_I85X(dev))
10369                 dev_priv->display.get_display_clock_speed =
10370                         i855_get_display_clock_speed;
10371         else /* 852, 830 */
10372                 dev_priv->display.get_display_clock_speed =
10373                         i830_get_display_clock_speed;
10374
10375         if (HAS_PCH_SPLIT(dev)) {
10376                 if (IS_GEN5(dev)) {
10377                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10378                         dev_priv->display.write_eld = ironlake_write_eld;
10379                 } else if (IS_GEN6(dev)) {
10380                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10381                         dev_priv->display.write_eld = ironlake_write_eld;
10382                 } else if (IS_IVYBRIDGE(dev)) {
10383                         /* FIXME: detect B0+ stepping and use auto training */
10384                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10385                         dev_priv->display.write_eld = ironlake_write_eld;
10386                         dev_priv->display.modeset_global_resources =
10387                                 ivb_modeset_global_resources;
10388                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
10389                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10390                         dev_priv->display.write_eld = haswell_write_eld;
10391                         dev_priv->display.modeset_global_resources =
10392                                 haswell_modeset_global_resources;
10393                 }
10394         } else if (IS_G4X(dev)) {
10395                 dev_priv->display.write_eld = g4x_write_eld;
10396         } else if (IS_VALLEYVIEW(dev))
10397                 dev_priv->display.write_eld = ironlake_write_eld;
10398
10399         /* Default just returns -ENODEV to indicate unsupported */
10400         dev_priv->display.queue_flip = intel_default_queue_flip;
10401
10402         switch (INTEL_INFO(dev)->gen) {
10403         case 2:
10404                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10405                 break;
10406
10407         case 3:
10408                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10409                 break;
10410
10411         case 4:
10412         case 5:
10413                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10414                 break;
10415
10416         case 6:
10417                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10418                 break;
10419         case 7:
10420         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
10421                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10422                 break;
10423         }
10424 }
10425
10426 /*
10427  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10428  * resume, or other times.  This quirk makes sure that's the case for
10429  * affected systems.
10430  */
10431 static void quirk_pipea_force(struct drm_device *dev)
10432 {
10433         struct drm_i915_private *dev_priv = dev->dev_private;
10434
10435         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10436         DRM_INFO("applying pipe a force quirk\n");
10437 }
10438
10439 /*
10440  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10441  */
10442 static void quirk_ssc_force_disable(struct drm_device *dev)
10443 {
10444         struct drm_i915_private *dev_priv = dev->dev_private;
10445         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10446         DRM_INFO("applying lvds SSC disable quirk\n");
10447 }
10448
10449 /*
10450  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10451  * brightness value
10452  */
10453 static void quirk_invert_brightness(struct drm_device *dev)
10454 {
10455         struct drm_i915_private *dev_priv = dev->dev_private;
10456         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10457         DRM_INFO("applying inverted panel brightness quirk\n");
10458 }
10459
10460 /*
10461  * Some machines (Dell XPS13) suffer broken backlight controls if
10462  * BLM_PCH_PWM_ENABLE is set.
10463  */
10464 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10465 {
10466         struct drm_i915_private *dev_priv = dev->dev_private;
10467         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10468         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10469 }
10470
10471 struct intel_quirk {
10472         int device;
10473         int subsystem_vendor;
10474         int subsystem_device;
10475         void (*hook)(struct drm_device *dev);
10476 };
10477
10478 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10479 struct intel_dmi_quirk {
10480         void (*hook)(struct drm_device *dev);
10481         const struct dmi_system_id (*dmi_id_list)[];
10482 };
10483
10484 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10485 {
10486         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10487         return 1;
10488 }
10489
10490 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10491         {
10492                 .dmi_id_list = &(const struct dmi_system_id[]) {
10493                         {
10494                                 .callback = intel_dmi_reverse_brightness,
10495                                 .ident = "NCR Corporation",
10496                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10497                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
10498                                 },
10499                         },
10500                         { }  /* terminating entry */
10501                 },
10502                 .hook = quirk_invert_brightness,
10503         },
10504 };
10505
10506 static struct intel_quirk intel_quirks[] = {
10507         /* HP Mini needs pipe A force quirk (LP: #322104) */
10508         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10509
10510         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10511         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10512
10513         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10514         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10515
10516         /* 830 needs to leave pipe A & dpll A up */
10517         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10518
10519         /* Lenovo U160 cannot use SSC on LVDS */
10520         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10521
10522         /* Sony Vaio Y cannot use SSC on LVDS */
10523         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10524
10525         /*
10526          * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10527          * seem to use inverted backlight PWM.
10528          */
10529         { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10530
10531         /* Dell XPS13 HD Sandy Bridge */
10532         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10533         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10534         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10535 };
10536
10537 static void intel_init_quirks(struct drm_device *dev)
10538 {
10539         struct pci_dev *d = dev->pdev;
10540         int i;
10541
10542         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10543                 struct intel_quirk *q = &intel_quirks[i];
10544
10545                 if (d->device == q->device &&
10546                     (d->subsystem_vendor == q->subsystem_vendor ||
10547                      q->subsystem_vendor == PCI_ANY_ID) &&
10548                     (d->subsystem_device == q->subsystem_device ||
10549                      q->subsystem_device == PCI_ANY_ID))
10550                         q->hook(dev);
10551         }
10552         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10553                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10554                         intel_dmi_quirks[i].hook(dev);
10555         }
10556 }
10557
10558 /* Disable the VGA plane that we never use */
10559 static void i915_disable_vga(struct drm_device *dev)
10560 {
10561         struct drm_i915_private *dev_priv = dev->dev_private;
10562         u8 sr1;
10563         u32 vga_reg = i915_vgacntrl_reg(dev);
10564
10565         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10566         outb(SR01, VGA_SR_INDEX);
10567         sr1 = inb(VGA_SR_DATA);
10568         outb(sr1 | 1<<5, VGA_SR_DATA);
10569         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10570         udelay(300);
10571
10572         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10573         POSTING_READ(vga_reg);
10574 }
10575
10576 void intel_modeset_init_hw(struct drm_device *dev)
10577 {
10578         struct drm_i915_private *dev_priv = dev->dev_private;
10579
10580         intel_prepare_ddi(dev);
10581
10582         intel_init_clock_gating(dev);
10583
10584         /* Enable the CRI clock source so we can get at the display */
10585         if (IS_VALLEYVIEW(dev))
10586                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
10587                            DPLL_INTEGRATED_CRI_CLK_VLV);
10588
10589         intel_init_dpio(dev);
10590
10591         mutex_lock(&dev->struct_mutex);
10592         intel_enable_gt_powersave(dev);
10593         mutex_unlock(&dev->struct_mutex);
10594 }
10595
10596 void intel_modeset_suspend_hw(struct drm_device *dev)
10597 {
10598         intel_suspend_hw(dev);
10599 }
10600
10601 void intel_modeset_init(struct drm_device *dev)
10602 {
10603         struct drm_i915_private *dev_priv = dev->dev_private;
10604         int i, j, ret;
10605
10606         drm_mode_config_init(dev);
10607
10608         dev->mode_config.min_width = 0;
10609         dev->mode_config.min_height = 0;
10610
10611         dev->mode_config.preferred_depth = 24;
10612         dev->mode_config.prefer_shadow = 1;
10613
10614         dev->mode_config.funcs = &intel_mode_funcs;
10615
10616         intel_init_quirks(dev);
10617
10618         intel_init_pm(dev);
10619
10620         if (INTEL_INFO(dev)->num_pipes == 0)
10621                 return;
10622
10623         intel_init_display(dev);
10624
10625         if (IS_GEN2(dev)) {
10626                 dev->mode_config.max_width = 2048;
10627                 dev->mode_config.max_height = 2048;
10628         } else if (IS_GEN3(dev)) {
10629                 dev->mode_config.max_width = 4096;
10630                 dev->mode_config.max_height = 4096;
10631         } else {
10632                 dev->mode_config.max_width = 8192;
10633                 dev->mode_config.max_height = 8192;
10634         }
10635         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10636
10637         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10638                       INTEL_INFO(dev)->num_pipes,
10639                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10640
10641         for_each_pipe(i) {
10642                 intel_crtc_init(dev, i);
10643                 for (j = 0; j < dev_priv->num_plane; j++) {
10644                         ret = intel_plane_init(dev, i, j);
10645                         if (ret)
10646                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10647                                               pipe_name(i), sprite_name(i, j), ret);
10648                 }
10649         }
10650
10651         intel_cpu_pll_init(dev);
10652         intel_shared_dpll_init(dev);
10653
10654         /* Just disable it once at startup */
10655         i915_disable_vga(dev);
10656         intel_setup_outputs(dev);
10657
10658         /* Just in case the BIOS is doing something questionable. */
10659         intel_disable_fbc(dev);
10660 }
10661
10662 static void
10663 intel_connector_break_all_links(struct intel_connector *connector)
10664 {
10665         connector->base.dpms = DRM_MODE_DPMS_OFF;
10666         connector->base.encoder = NULL;
10667         connector->encoder->connectors_active = false;
10668         connector->encoder->base.crtc = NULL;
10669 }
10670
10671 static void intel_enable_pipe_a(struct drm_device *dev)
10672 {
10673         struct intel_connector *connector;
10674         struct drm_connector *crt = NULL;
10675         struct intel_load_detect_pipe load_detect_temp;
10676
10677         /* We can't just switch on the pipe A, we need to set things up with a
10678          * proper mode and output configuration. As a gross hack, enable pipe A
10679          * by enabling the load detect pipe once. */
10680         list_for_each_entry(connector,
10681                             &dev->mode_config.connector_list,
10682                             base.head) {
10683                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10684                         crt = &connector->base;
10685                         break;
10686                 }
10687         }
10688
10689         if (!crt)
10690                 return;
10691
10692         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10693                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10694
10695
10696 }
10697
10698 static bool
10699 intel_check_plane_mapping(struct intel_crtc *crtc)
10700 {
10701         struct drm_device *dev = crtc->base.dev;
10702         struct drm_i915_private *dev_priv = dev->dev_private;
10703         u32 reg, val;
10704
10705         if (INTEL_INFO(dev)->num_pipes == 1)
10706                 return true;
10707
10708         reg = DSPCNTR(!crtc->plane);
10709         val = I915_READ(reg);
10710
10711         if ((val & DISPLAY_PLANE_ENABLE) &&
10712             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10713                 return false;
10714
10715         return true;
10716 }
10717
10718 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10719 {
10720         struct drm_device *dev = crtc->base.dev;
10721         struct drm_i915_private *dev_priv = dev->dev_private;
10722         u32 reg;
10723
10724         /* Clear any frame start delays used for debugging left by the BIOS */
10725         reg = PIPECONF(crtc->config.cpu_transcoder);
10726         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10727
10728         /* We need to sanitize the plane -> pipe mapping first because this will
10729          * disable the crtc (and hence change the state) if it is wrong. Note
10730          * that gen4+ has a fixed plane -> pipe mapping.  */
10731         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10732                 struct intel_connector *connector;
10733                 bool plane;
10734
10735                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10736                               crtc->base.base.id);
10737
10738                 /* Pipe has the wrong plane attached and the plane is active.
10739                  * Temporarily change the plane mapping and disable everything
10740                  * ...  */
10741                 plane = crtc->plane;
10742                 crtc->plane = !plane;
10743                 dev_priv->display.crtc_disable(&crtc->base);
10744                 crtc->plane = plane;
10745
10746                 /* ... and break all links. */
10747                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10748                                     base.head) {
10749                         if (connector->encoder->base.crtc != &crtc->base)
10750                                 continue;
10751
10752                         intel_connector_break_all_links(connector);
10753                 }
10754
10755                 WARN_ON(crtc->active);
10756                 crtc->base.enabled = false;
10757         }
10758
10759         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10760             crtc->pipe == PIPE_A && !crtc->active) {
10761                 /* BIOS forgot to enable pipe A, this mostly happens after
10762                  * resume. Force-enable the pipe to fix this, the update_dpms
10763                  * call below we restore the pipe to the right state, but leave
10764                  * the required bits on. */
10765                 intel_enable_pipe_a(dev);
10766         }
10767
10768         /* Adjust the state of the output pipe according to whether we
10769          * have active connectors/encoders. */
10770         intel_crtc_update_dpms(&crtc->base);
10771
10772         if (crtc->active != crtc->base.enabled) {
10773                 struct intel_encoder *encoder;
10774
10775                 /* This can happen either due to bugs in the get_hw_state
10776                  * functions or because the pipe is force-enabled due to the
10777                  * pipe A quirk. */
10778                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10779                               crtc->base.base.id,
10780                               crtc->base.enabled ? "enabled" : "disabled",
10781                               crtc->active ? "enabled" : "disabled");
10782
10783                 crtc->base.enabled = crtc->active;
10784
10785                 /* Because we only establish the connector -> encoder ->
10786                  * crtc links if something is active, this means the
10787                  * crtc is now deactivated. Break the links. connector
10788                  * -> encoder links are only establish when things are
10789                  *  actually up, hence no need to break them. */
10790                 WARN_ON(crtc->active);
10791
10792                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10793                         WARN_ON(encoder->connectors_active);
10794                         encoder->base.crtc = NULL;
10795                 }
10796         }
10797 }
10798
10799 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10800 {
10801         struct intel_connector *connector;
10802         struct drm_device *dev = encoder->base.dev;
10803
10804         /* We need to check both for a crtc link (meaning that the
10805          * encoder is active and trying to read from a pipe) and the
10806          * pipe itself being active. */
10807         bool has_active_crtc = encoder->base.crtc &&
10808                 to_intel_crtc(encoder->base.crtc)->active;
10809
10810         if (encoder->connectors_active && !has_active_crtc) {
10811                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10812                               encoder->base.base.id,
10813                               drm_get_encoder_name(&encoder->base));
10814
10815                 /* Connector is active, but has no active pipe. This is
10816                  * fallout from our resume register restoring. Disable
10817                  * the encoder manually again. */
10818                 if (encoder->base.crtc) {
10819                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10820                                       encoder->base.base.id,
10821                                       drm_get_encoder_name(&encoder->base));
10822                         encoder->disable(encoder);
10823                 }
10824
10825                 /* Inconsistent output/port/pipe state happens presumably due to
10826                  * a bug in one of the get_hw_state functions. Or someplace else
10827                  * in our code, like the register restore mess on resume. Clamp
10828                  * things to off as a safer default. */
10829                 list_for_each_entry(connector,
10830                                     &dev->mode_config.connector_list,
10831                                     base.head) {
10832                         if (connector->encoder != encoder)
10833                                 continue;
10834
10835                         intel_connector_break_all_links(connector);
10836                 }
10837         }
10838         /* Enabled encoders without active connectors will be fixed in
10839          * the crtc fixup. */
10840 }
10841
10842 void i915_redisable_vga(struct drm_device *dev)
10843 {
10844         struct drm_i915_private *dev_priv = dev->dev_private;
10845         u32 vga_reg = i915_vgacntrl_reg(dev);
10846
10847         /* This function can be called both from intel_modeset_setup_hw_state or
10848          * at a very early point in our resume sequence, where the power well
10849          * structures are not yet restored. Since this function is at a very
10850          * paranoid "someone might have enabled VGA while we were not looking"
10851          * level, just check if the power well is enabled instead of trying to
10852          * follow the "don't touch the power well if we don't need it" policy
10853          * the rest of the driver uses. */
10854         if (HAS_POWER_WELL(dev) &&
10855             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10856                 return;
10857
10858         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
10859                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10860                 i915_disable_vga(dev);
10861         }
10862 }
10863
10864 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10865 {
10866         struct drm_i915_private *dev_priv = dev->dev_private;
10867         enum pipe pipe;
10868         struct intel_crtc *crtc;
10869         struct intel_encoder *encoder;
10870         struct intel_connector *connector;
10871         int i;
10872
10873         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10874                             base.head) {
10875                 memset(&crtc->config, 0, sizeof(crtc->config));
10876
10877                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10878                                                                  &crtc->config);
10879
10880                 crtc->base.enabled = crtc->active;
10881                 crtc->primary_enabled = crtc->active;
10882
10883                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10884                               crtc->base.base.id,
10885                               crtc->active ? "enabled" : "disabled");
10886         }
10887
10888         /* FIXME: Smash this into the new shared dpll infrastructure. */
10889         if (HAS_DDI(dev))
10890                 intel_ddi_setup_hw_pll_state(dev);
10891
10892         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10893                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10894
10895                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10896                 pll->active = 0;
10897                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10898                                     base.head) {
10899                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10900                                 pll->active++;
10901                 }
10902                 pll->refcount = pll->active;
10903
10904                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10905                               pll->name, pll->refcount, pll->on);
10906         }
10907
10908         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10909                             base.head) {
10910                 pipe = 0;
10911
10912                 if (encoder->get_hw_state(encoder, &pipe)) {
10913                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10914                         encoder->base.crtc = &crtc->base;
10915                         encoder->get_config(encoder, &crtc->config);
10916                 } else {
10917                         encoder->base.crtc = NULL;
10918                 }
10919
10920                 encoder->connectors_active = false;
10921                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
10922                               encoder->base.base.id,
10923                               drm_get_encoder_name(&encoder->base),
10924                               encoder->base.crtc ? "enabled" : "disabled",
10925                               pipe_name(pipe));
10926         }
10927
10928         list_for_each_entry(connector, &dev->mode_config.connector_list,
10929                             base.head) {
10930                 if (connector->get_hw_state(connector)) {
10931                         connector->base.dpms = DRM_MODE_DPMS_ON;
10932                         connector->encoder->connectors_active = true;
10933                         connector->base.encoder = &connector->encoder->base;
10934                 } else {
10935                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10936                         connector->base.encoder = NULL;
10937                 }
10938                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10939                               connector->base.base.id,
10940                               drm_get_connector_name(&connector->base),
10941                               connector->base.encoder ? "enabled" : "disabled");
10942         }
10943 }
10944
10945 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10946  * and i915 state tracking structures. */
10947 void intel_modeset_setup_hw_state(struct drm_device *dev,
10948                                   bool force_restore)
10949 {
10950         struct drm_i915_private *dev_priv = dev->dev_private;
10951         enum pipe pipe;
10952         struct intel_crtc *crtc;
10953         struct intel_encoder *encoder;
10954         int i;
10955
10956         intel_modeset_readout_hw_state(dev);
10957
10958         /*
10959          * Now that we have the config, copy it to each CRTC struct
10960          * Note that this could go away if we move to using crtc_config
10961          * checking everywhere.
10962          */
10963         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10964                             base.head) {
10965                 if (crtc->active && i915_fastboot) {
10966                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10967
10968                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10969                                       crtc->base.base.id);
10970                         drm_mode_debug_printmodeline(&crtc->base.mode);
10971                 }
10972         }
10973
10974         /* HW state is read out, now we need to sanitize this mess. */
10975         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10976                             base.head) {
10977                 intel_sanitize_encoder(encoder);
10978         }
10979
10980         for_each_pipe(pipe) {
10981                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10982                 intel_sanitize_crtc(crtc);
10983                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10984         }
10985
10986         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10987                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10988
10989                 if (!pll->on || pll->active)
10990                         continue;
10991
10992                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10993
10994                 pll->disable(dev_priv, pll);
10995                 pll->on = false;
10996         }
10997
10998         if (IS_HASWELL(dev))
10999                 ilk_wm_get_hw_state(dev);
11000
11001         if (force_restore) {
11002                 i915_redisable_vga(dev);
11003
11004                 /*
11005                  * We need to use raw interfaces for restoring state to avoid
11006                  * checking (bogus) intermediate states.
11007                  */
11008                 for_each_pipe(pipe) {
11009                         struct drm_crtc *crtc =
11010                                 dev_priv->pipe_to_crtc_mapping[pipe];
11011
11012                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11013                                          crtc->fb);
11014                 }
11015         } else {
11016                 intel_modeset_update_staged_output_state(dev);
11017         }
11018
11019         intel_modeset_check_state(dev);
11020
11021         drm_mode_config_reset(dev);
11022 }
11023
11024 void intel_modeset_gem_init(struct drm_device *dev)
11025 {
11026         intel_modeset_init_hw(dev);
11027
11028         intel_setup_overlay(dev);
11029
11030         intel_modeset_setup_hw_state(dev, false);
11031 }
11032
11033 void intel_modeset_cleanup(struct drm_device *dev)
11034 {
11035         struct drm_i915_private *dev_priv = dev->dev_private;
11036         struct drm_crtc *crtc;
11037         struct drm_connector *connector;
11038
11039         /*
11040          * Interrupts and polling as the first thing to avoid creating havoc.
11041          * Too much stuff here (turning of rps, connectors, ...) would
11042          * experience fancy races otherwise.
11043          */
11044         drm_irq_uninstall(dev);
11045         cancel_work_sync(&dev_priv->hotplug_work);
11046         /*
11047          * Due to the hpd irq storm handling the hotplug work can re-arm the
11048          * poll handlers. Hence disable polling after hpd handling is shut down.
11049          */
11050         drm_kms_helper_poll_fini(dev);
11051
11052         mutex_lock(&dev->struct_mutex);
11053
11054         intel_unregister_dsm_handler();
11055
11056         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11057                 /* Skip inactive CRTCs */
11058                 if (!crtc->fb)
11059                         continue;
11060
11061                 intel_increase_pllclock(crtc);
11062         }
11063
11064         intel_disable_fbc(dev);
11065
11066         intel_disable_gt_powersave(dev);
11067
11068         ironlake_teardown_rc6(dev);
11069
11070         mutex_unlock(&dev->struct_mutex);
11071
11072         /* flush any delayed tasks or pending work */
11073         flush_scheduled_work();
11074
11075         /* destroy backlight, if any, before the connectors */
11076         intel_panel_destroy_backlight(dev);
11077
11078         /* destroy the sysfs files before encoders/connectors */
11079         list_for_each_entry(connector, &dev->mode_config.connector_list, head)
11080                 drm_sysfs_connector_remove(connector);
11081
11082         drm_mode_config_cleanup(dev);
11083
11084         intel_cleanup_overlay(dev);
11085 }
11086
11087 /*
11088  * Return which encoder is currently attached for connector.
11089  */
11090 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11091 {
11092         return &intel_attached_encoder(connector)->base;
11093 }
11094
11095 void intel_connector_attach_encoder(struct intel_connector *connector,
11096                                     struct intel_encoder *encoder)
11097 {
11098         connector->encoder = encoder;
11099         drm_mode_connector_attach_encoder(&connector->base,
11100                                           &encoder->base);
11101 }
11102
11103 /*
11104  * set vga decode state - true == enable VGA decode
11105  */
11106 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11107 {
11108         struct drm_i915_private *dev_priv = dev->dev_private;
11109         u16 gmch_ctrl;
11110
11111         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
11112         if (state)
11113                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11114         else
11115                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11116         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
11117         return 0;
11118 }
11119
11120 struct intel_display_error_state {
11121
11122         u32 power_well_driver;
11123
11124         int num_transcoders;
11125
11126         struct intel_cursor_error_state {
11127                 u32 control;
11128                 u32 position;
11129                 u32 base;
11130                 u32 size;
11131         } cursor[I915_MAX_PIPES];
11132
11133         struct intel_pipe_error_state {
11134                 u32 source;
11135         } pipe[I915_MAX_PIPES];
11136
11137         struct intel_plane_error_state {
11138                 u32 control;
11139                 u32 stride;
11140                 u32 size;
11141                 u32 pos;
11142                 u32 addr;
11143                 u32 surface;
11144                 u32 tile_offset;
11145         } plane[I915_MAX_PIPES];
11146
11147         struct intel_transcoder_error_state {
11148                 enum transcoder cpu_transcoder;
11149
11150                 u32 conf;
11151
11152                 u32 htotal;
11153                 u32 hblank;
11154                 u32 hsync;
11155                 u32 vtotal;
11156                 u32 vblank;
11157                 u32 vsync;
11158         } transcoder[4];
11159 };
11160
11161 struct intel_display_error_state *
11162 intel_display_capture_error_state(struct drm_device *dev)
11163 {
11164         drm_i915_private_t *dev_priv = dev->dev_private;
11165         struct intel_display_error_state *error;
11166         int transcoders[] = {
11167                 TRANSCODER_A,
11168                 TRANSCODER_B,
11169                 TRANSCODER_C,
11170                 TRANSCODER_EDP,
11171         };
11172         int i;
11173
11174         if (INTEL_INFO(dev)->num_pipes == 0)
11175                 return NULL;
11176
11177         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11178         if (error == NULL)
11179                 return NULL;
11180
11181         if (HAS_POWER_WELL(dev))
11182                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11183
11184         for_each_pipe(i) {
11185                 if (!intel_display_power_enabled(dev, POWER_DOMAIN_PIPE(i)))
11186                         continue;
11187
11188                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11189                         error->cursor[i].control = I915_READ(CURCNTR(i));
11190                         error->cursor[i].position = I915_READ(CURPOS(i));
11191                         error->cursor[i].base = I915_READ(CURBASE(i));
11192                 } else {
11193                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11194                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11195                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11196                 }
11197
11198                 error->plane[i].control = I915_READ(DSPCNTR(i));
11199                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11200                 if (INTEL_INFO(dev)->gen <= 3) {
11201                         error->plane[i].size = I915_READ(DSPSIZE(i));
11202                         error->plane[i].pos = I915_READ(DSPPOS(i));
11203                 }
11204                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11205                         error->plane[i].addr = I915_READ(DSPADDR(i));
11206                 if (INTEL_INFO(dev)->gen >= 4) {
11207                         error->plane[i].surface = I915_READ(DSPSURF(i));
11208                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11209                 }
11210
11211                 error->pipe[i].source = I915_READ(PIPESRC(i));
11212         }
11213
11214         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11215         if (HAS_DDI(dev_priv->dev))
11216                 error->num_transcoders++; /* Account for eDP. */
11217
11218         for (i = 0; i < error->num_transcoders; i++) {
11219                 enum transcoder cpu_transcoder = transcoders[i];
11220
11221                 if (!intel_display_power_enabled(dev,
11222                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
11223                         continue;
11224
11225                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11226
11227                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11228                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11229                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11230                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11231                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11232                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11233                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11234         }
11235
11236         return error;
11237 }
11238
11239 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11240
11241 void
11242 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11243                                 struct drm_device *dev,
11244                                 struct intel_display_error_state *error)
11245 {
11246         int i;
11247
11248         if (!error)
11249                 return;
11250
11251         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11252         if (HAS_POWER_WELL(dev))
11253                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11254                            error->power_well_driver);
11255         for_each_pipe(i) {
11256                 err_printf(m, "Pipe [%d]:\n", i);
11257                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
11258
11259                 err_printf(m, "Plane [%d]:\n", i);
11260                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
11261                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
11262                 if (INTEL_INFO(dev)->gen <= 3) {
11263                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
11264                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
11265                 }
11266                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11267                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
11268                 if (INTEL_INFO(dev)->gen >= 4) {
11269                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
11270                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
11271                 }
11272
11273                 err_printf(m, "Cursor [%d]:\n", i);
11274                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
11275                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
11276                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
11277         }
11278
11279         for (i = 0; i < error->num_transcoders; i++) {
11280                 err_printf(m, "CPU transcoder: %c\n",
11281                            transcoder_name(error->transcoder[i].cpu_transcoder));
11282                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
11283                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
11284                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
11285                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
11286                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
11287                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
11288                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
11289         }
11290 }