]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: fix Haswell FDI link disable path
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                         int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84         struct drm_i915_private *dev_priv = dev->dev_private;
85
86         WARN_ON(!HAS_PCH_SPLIT(dev));
87
88         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93                     int target, int refclk, intel_clock_t *match_clock,
94                     intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                         int target, int refclk, intel_clock_t *match_clock,
98                         intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102                       int target, int refclk, intel_clock_t *match_clock,
103                       intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106                            int target, int refclk, intel_clock_t *match_clock,
107                            intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111                         int target, int refclk, intel_clock_t *match_clock,
112                         intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117         if (IS_GEN5(dev)) {
118                 struct drm_i915_private *dev_priv = dev->dev_private;
119                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120         } else
121                 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125         .dot = { .min = 25000, .max = 350000 },
126         .vco = { .min = 930000, .max = 1400000 },
127         .n = { .min = 3, .max = 16 },
128         .m = { .min = 96, .max = 140 },
129         .m1 = { .min = 18, .max = 26 },
130         .m2 = { .min = 6, .max = 16 },
131         .p = { .min = 4, .max = 128 },
132         .p1 = { .min = 2, .max = 33 },
133         .p2 = { .dot_limit = 165000,
134                 .p2_slow = 4, .p2_fast = 2 },
135         .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139         .dot = { .min = 25000, .max = 350000 },
140         .vco = { .min = 930000, .max = 1400000 },
141         .n = { .min = 3, .max = 16 },
142         .m = { .min = 96, .max = 140 },
143         .m1 = { .min = 18, .max = 26 },
144         .m2 = { .min = 6, .max = 16 },
145         .p = { .min = 4, .max = 128 },
146         .p1 = { .min = 1, .max = 6 },
147         .p2 = { .dot_limit = 165000,
148                 .p2_slow = 14, .p2_fast = 7 },
149         .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153         .dot = { .min = 20000, .max = 400000 },
154         .vco = { .min = 1400000, .max = 2800000 },
155         .n = { .min = 1, .max = 6 },
156         .m = { .min = 70, .max = 120 },
157         .m1 = { .min = 10, .max = 22 },
158         .m2 = { .min = 5, .max = 9 },
159         .p = { .min = 5, .max = 80 },
160         .p1 = { .min = 1, .max = 8 },
161         .p2 = { .dot_limit = 200000,
162                 .p2_slow = 10, .p2_fast = 5 },
163         .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167         .dot = { .min = 20000, .max = 400000 },
168         .vco = { .min = 1400000, .max = 2800000 },
169         .n = { .min = 1, .max = 6 },
170         .m = { .min = 70, .max = 120 },
171         .m1 = { .min = 10, .max = 22 },
172         .m2 = { .min = 5, .max = 9 },
173         .p = { .min = 7, .max = 98 },
174         .p1 = { .min = 1, .max = 8 },
175         .p2 = { .dot_limit = 112000,
176                 .p2_slow = 14, .p2_fast = 7 },
177         .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182         .dot = { .min = 25000, .max = 270000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 17, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 10, .max = 30 },
189         .p1 = { .min = 1, .max = 3},
190         .p2 = { .dot_limit = 270000,
191                 .p2_slow = 10,
192                 .p2_fast = 10
193         },
194         .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198         .dot = { .min = 22000, .max = 400000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 16, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 5, .max = 80 },
205         .p1 = { .min = 1, .max = 8},
206         .p2 = { .dot_limit = 165000,
207                 .p2_slow = 10, .p2_fast = 5 },
208         .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212         .dot = { .min = 20000, .max = 115000 },
213         .vco = { .min = 1750000, .max = 3500000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 28, .max = 112 },
219         .p1 = { .min = 2, .max = 8 },
220         .p2 = { .dot_limit = 0,
221                 .p2_slow = 14, .p2_fast = 14
222         },
223         .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227         .dot = { .min = 80000, .max = 224000 },
228         .vco = { .min = 1750000, .max = 3500000 },
229         .n = { .min = 1, .max = 3 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 17, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 14, .max = 42 },
234         .p1 = { .min = 2, .max = 6 },
235         .p2 = { .dot_limit = 0,
236                 .p2_slow = 7, .p2_fast = 7
237         },
238         .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242         .dot = { .min = 161670, .max = 227000 },
243         .vco = { .min = 1750000, .max = 3500000},
244         .n = { .min = 1, .max = 2 },
245         .m = { .min = 97, .max = 108 },
246         .m1 = { .min = 0x10, .max = 0x12 },
247         .m2 = { .min = 0x05, .max = 0x06 },
248         .p = { .min = 10, .max = 20 },
249         .p1 = { .min = 1, .max = 2},
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 10, .p2_fast = 10 },
252         .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256         .dot = { .min = 20000, .max = 400000},
257         .vco = { .min = 1700000, .max = 3500000 },
258         /* Pineview's Ncounter is a ring counter */
259         .n = { .min = 3, .max = 6 },
260         .m = { .min = 2, .max = 256 },
261         /* Pineview only has one combined m divider, which we treat as m2. */
262         .m1 = { .min = 0, .max = 0 },
263         .m2 = { .min = 0, .max = 254 },
264         .p = { .min = 5, .max = 80 },
265         .p1 = { .min = 1, .max = 8 },
266         .p2 = { .dot_limit = 200000,
267                 .p2_slow = 10, .p2_fast = 5 },
268         .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272         .dot = { .min = 20000, .max = 400000 },
273         .vco = { .min = 1700000, .max = 3500000 },
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 7, .max = 112 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 112000,
281                 .p2_slow = 14, .p2_fast = 14 },
282         .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286  *
287  * We calculate clock using (register_value + 2) for N/M1/M2, so here
288  * the range value for them is (actual_value - 2).
289  */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 5 },
294         .m = { .min = 79, .max = 127 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 5, .max = 80 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 10, .p2_fast = 5 },
301         .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305         .dot = { .min = 25000, .max = 350000 },
306         .vco = { .min = 1760000, .max = 3510000 },
307         .n = { .min = 1, .max = 3 },
308         .m = { .min = 79, .max = 118 },
309         .m1 = { .min = 12, .max = 22 },
310         .m2 = { .min = 5, .max = 9 },
311         .p = { .min = 28, .max = 112 },
312         .p1 = { .min = 2, .max = 8 },
313         .p2 = { .dot_limit = 225000,
314                 .p2_slow = 14, .p2_fast = 14 },
315         .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 3 },
322         .m = { .min = 79, .max = 127 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 14, .max = 56 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 7, .p2_fast = 7 },
329         .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334         .dot = { .min = 25000, .max = 350000 },
335         .vco = { .min = 1760000, .max = 3510000 },
336         .n = { .min = 1, .max = 2 },
337         .m = { .min = 79, .max = 126 },
338         .m1 = { .min = 12, .max = 22 },
339         .m2 = { .min = 5, .max = 9 },
340         .p = { .min = 28, .max = 112 },
341         .p1 = { .min = 2, .max = 8 },
342         .p2 = { .dot_limit = 225000,
343                 .p2_slow = 14, .p2_fast = 14 },
344         .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348         .dot = { .min = 25000, .max = 350000 },
349         .vco = { .min = 1760000, .max = 3510000 },
350         .n = { .min = 1, .max = 3 },
351         .m = { .min = 79, .max = 126 },
352         .m1 = { .min = 12, .max = 22 },
353         .m2 = { .min = 5, .max = 9 },
354         .p = { .min = 14, .max = 42 },
355         .p1 = { .min = 2, .max = 6 },
356         .p2 = { .dot_limit = 225000,
357                 .p2_slow = 7, .p2_fast = 7 },
358         .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362         .dot = { .min = 25000, .max = 350000 },
363         .vco = { .min = 1760000, .max = 3510000},
364         .n = { .min = 1, .max = 2 },
365         .m = { .min = 81, .max = 90 },
366         .m1 = { .min = 12, .max = 22 },
367         .m2 = { .min = 5, .max = 9 },
368         .p = { .min = 10, .max = 20 },
369         .p1 = { .min = 1, .max = 2},
370         .p2 = { .dot_limit = 0,
371                 .p2_slow = 10, .p2_fast = 10 },
372         .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376         .dot = { .min = 25000, .max = 270000 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m = { .min = 22, .max = 450 }, /* guess */
380         .m1 = { .min = 2, .max = 3 },
381         .m2 = { .min = 11, .max = 156 },
382         .p = { .min = 10, .max = 30 },
383         .p1 = { .min = 2, .max = 3 },
384         .p2 = { .dot_limit = 270000,
385                 .p2_slow = 2, .p2_fast = 20 },
386         .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390         .dot = { .min = 20000, .max = 165000 },
391         .vco = { .min = 4000000, .max = 5994000},
392         .n = { .min = 1, .max = 7 },
393         .m = { .min = 60, .max = 300 }, /* guess */
394         .m1 = { .min = 2, .max = 3 },
395         .m2 = { .min = 11, .max = 156 },
396         .p = { .min = 10, .max = 30 },
397         .p1 = { .min = 2, .max = 3 },
398         .p2 = { .dot_limit = 270000,
399                 .p2_slow = 2, .p2_fast = 20 },
400         .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404         .dot = { .min = 25000, .max = 270000 },
405         .vco = { .min = 4000000, .max = 6000000 },
406         .n = { .min = 1, .max = 7 },
407         .m = { .min = 22, .max = 450 },
408         .m1 = { .min = 2, .max = 3 },
409         .m2 = { .min = 11, .max = 156 },
410         .p = { .min = 10, .max = 30 },
411         .p1 = { .min = 2, .max = 3 },
412         .p2 = { .dot_limit = 270000,
413                 .p2_slow = 2, .p2_fast = 20 },
414         .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419         unsigned long flags;
420         u32 val = 0;
421
422         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO idle wait timed out\n");
425                 goto out_unlock;
426         }
427
428         I915_WRITE(DPIO_REG, reg);
429         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430                    DPIO_BYTE);
431         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432                 DRM_ERROR("DPIO read wait timed out\n");
433                 goto out_unlock;
434         }
435         val = I915_READ(DPIO_DATA);
436
437 out_unlock:
438         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439         return val;
440 }
441
442 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443                              u32 val)
444 {
445         unsigned long flags;
446
447         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449                 DRM_ERROR("DPIO idle wait timed out\n");
450                 goto out_unlock;
451         }
452
453         I915_WRITE(DPIO_DATA, val);
454         I915_WRITE(DPIO_REG, reg);
455         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456                    DPIO_BYTE);
457         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458                 DRM_ERROR("DPIO write wait timed out\n");
459
460 out_unlock:
461        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462 }
463
464 static void vlv_init_dpio(struct drm_device *dev)
465 {
466         struct drm_i915_private *dev_priv = dev->dev_private;
467
468         /* Reset the DPIO config */
469         I915_WRITE(DPIO_CTL, 0);
470         POSTING_READ(DPIO_CTL);
471         I915_WRITE(DPIO_CTL, 1);
472         POSTING_READ(DPIO_CTL);
473 }
474
475 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
476 {
477         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
478         return 1;
479 }
480
481 static const struct dmi_system_id intel_dual_link_lvds[] = {
482         {
483                 .callback = intel_dual_link_lvds_callback,
484                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
485                 .matches = {
486                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
487                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
488                 },
489         },
490         { }     /* terminating entry */
491 };
492
493 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
494                               unsigned int reg)
495 {
496         unsigned int val;
497
498         /* use the module option value if specified */
499         if (i915_lvds_channel_mode > 0)
500                 return i915_lvds_channel_mode == 2;
501
502         if (dmi_check_system(intel_dual_link_lvds))
503                 return true;
504
505         if (dev_priv->lvds_val)
506                 val = dev_priv->lvds_val;
507         else {
508                 /* BIOS should set the proper LVDS register value at boot, but
509                  * in reality, it doesn't set the value when the lid is closed;
510                  * we need to check "the value to be set" in VBT when LVDS
511                  * register is uninitialized.
512                  */
513                 val = I915_READ(reg);
514                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
515                         val = dev_priv->bios_lvds_val;
516                 dev_priv->lvds_val = val;
517         }
518         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
519 }
520
521 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
522                                                 int refclk)
523 {
524         struct drm_device *dev = crtc->dev;
525         struct drm_i915_private *dev_priv = dev->dev_private;
526         const intel_limit_t *limit;
527
528         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
529                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
530                         /* LVDS dual channel */
531                         if (refclk == 100000)
532                                 limit = &intel_limits_ironlake_dual_lvds_100m;
533                         else
534                                 limit = &intel_limits_ironlake_dual_lvds;
535                 } else {
536                         if (refclk == 100000)
537                                 limit = &intel_limits_ironlake_single_lvds_100m;
538                         else
539                                 limit = &intel_limits_ironlake_single_lvds;
540                 }
541         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
542                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
543                 limit = &intel_limits_ironlake_display_port;
544         else
545                 limit = &intel_limits_ironlake_dac;
546
547         return limit;
548 }
549
550 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
551 {
552         struct drm_device *dev = crtc->dev;
553         struct drm_i915_private *dev_priv = dev->dev_private;
554         const intel_limit_t *limit;
555
556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557                 if (is_dual_link_lvds(dev_priv, LVDS))
558                         /* LVDS with dual channel */
559                         limit = &intel_limits_g4x_dual_channel_lvds;
560                 else
561                         /* LVDS with dual channel */
562                         limit = &intel_limits_g4x_single_channel_lvds;
563         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
564                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
565                 limit = &intel_limits_g4x_hdmi;
566         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
567                 limit = &intel_limits_g4x_sdvo;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
569                 limit = &intel_limits_g4x_display_port;
570         } else /* The option is for other outputs */
571                 limit = &intel_limits_i9xx_sdvo;
572
573         return limit;
574 }
575
576 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
577 {
578         struct drm_device *dev = crtc->dev;
579         const intel_limit_t *limit;
580
581         if (HAS_PCH_SPLIT(dev))
582                 limit = intel_ironlake_limit(crtc, refclk);
583         else if (IS_G4X(dev)) {
584                 limit = intel_g4x_limit(crtc);
585         } else if (IS_PINEVIEW(dev)) {
586                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
587                         limit = &intel_limits_pineview_lvds;
588                 else
589                         limit = &intel_limits_pineview_sdvo;
590         } else if (IS_VALLEYVIEW(dev)) {
591                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
592                         limit = &intel_limits_vlv_dac;
593                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
594                         limit = &intel_limits_vlv_hdmi;
595                 else
596                         limit = &intel_limits_vlv_dp;
597         } else if (!IS_GEN2(dev)) {
598                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
599                         limit = &intel_limits_i9xx_lvds;
600                 else
601                         limit = &intel_limits_i9xx_sdvo;
602         } else {
603                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
604                         limit = &intel_limits_i8xx_lvds;
605                 else
606                         limit = &intel_limits_i8xx_dvo;
607         }
608         return limit;
609 }
610
611 /* m1 is reserved as 0 in Pineview, n is a ring counter */
612 static void pineview_clock(int refclk, intel_clock_t *clock)
613 {
614         clock->m = clock->m2 + 2;
615         clock->p = clock->p1 * clock->p2;
616         clock->vco = refclk * clock->m / clock->n;
617         clock->dot = clock->vco / clock->p;
618 }
619
620 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
621 {
622         if (IS_PINEVIEW(dev)) {
623                 pineview_clock(refclk, clock);
624                 return;
625         }
626         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
627         clock->p = clock->p1 * clock->p2;
628         clock->vco = refclk * clock->m / (clock->n + 2);
629         clock->dot = clock->vco / clock->p;
630 }
631
632 /**
633  * Returns whether any output on the specified pipe is of the specified type
634  */
635 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
636 {
637         struct drm_device *dev = crtc->dev;
638         struct intel_encoder *encoder;
639
640         for_each_encoder_on_crtc(dev, crtc, encoder)
641                 if (encoder->type == type)
642                         return true;
643
644         return false;
645 }
646
647 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
648 /**
649  * Returns whether the given set of divisors are valid for a given refclk with
650  * the given connectors.
651  */
652
653 static bool intel_PLL_is_valid(struct drm_device *dev,
654                                const intel_limit_t *limit,
655                                const intel_clock_t *clock)
656 {
657         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
658                 INTELPllInvalid("p1 out of range\n");
659         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
660                 INTELPllInvalid("p out of range\n");
661         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
662                 INTELPllInvalid("m2 out of range\n");
663         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
664                 INTELPllInvalid("m1 out of range\n");
665         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
666                 INTELPllInvalid("m1 <= m2\n");
667         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
668                 INTELPllInvalid("m out of range\n");
669         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
670                 INTELPllInvalid("n out of range\n");
671         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
672                 INTELPllInvalid("vco out of range\n");
673         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
674          * connector, etc., rather than just a single range.
675          */
676         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
677                 INTELPllInvalid("dot out of range\n");
678
679         return true;
680 }
681
682 static bool
683 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
684                     int target, int refclk, intel_clock_t *match_clock,
685                     intel_clock_t *best_clock)
686
687 {
688         struct drm_device *dev = crtc->dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         intel_clock_t clock;
691         int err = target;
692
693         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
694             (I915_READ(LVDS)) != 0) {
695                 /*
696                  * For LVDS, if the panel is on, just rely on its current
697                  * settings for dual-channel.  We haven't figured out how to
698                  * reliably set up different single/dual channel state, if we
699                  * even can.
700                  */
701                 if (is_dual_link_lvds(dev_priv, LVDS))
702                         clock.p2 = limit->p2.p2_fast;
703                 else
704                         clock.p2 = limit->p2.p2_slow;
705         } else {
706                 if (target < limit->p2.dot_limit)
707                         clock.p2 = limit->p2.p2_slow;
708                 else
709                         clock.p2 = limit->p2.p2_fast;
710         }
711
712         memset(best_clock, 0, sizeof(*best_clock));
713
714         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715              clock.m1++) {
716                 for (clock.m2 = limit->m2.min;
717                      clock.m2 <= limit->m2.max; clock.m2++) {
718                         /* m1 is always 0 in Pineview */
719                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
720                                 break;
721                         for (clock.n = limit->n.min;
722                              clock.n <= limit->n.max; clock.n++) {
723                                 for (clock.p1 = limit->p1.min;
724                                         clock.p1 <= limit->p1.max; clock.p1++) {
725                                         int this_err;
726
727                                         intel_clock(dev, refclk, &clock);
728                                         if (!intel_PLL_is_valid(dev, limit,
729                                                                 &clock))
730                                                 continue;
731                                         if (match_clock &&
732                                             clock.p != match_clock->p)
733                                                 continue;
734
735                                         this_err = abs(clock.dot - target);
736                                         if (this_err < err) {
737                                                 *best_clock = clock;
738                                                 err = this_err;
739                                         }
740                                 }
741                         }
742                 }
743         }
744
745         return (err != target);
746 }
747
748 static bool
749 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
750                         int target, int refclk, intel_clock_t *match_clock,
751                         intel_clock_t *best_clock)
752 {
753         struct drm_device *dev = crtc->dev;
754         struct drm_i915_private *dev_priv = dev->dev_private;
755         intel_clock_t clock;
756         int max_n;
757         bool found;
758         /* approximately equals target * 0.00585 */
759         int err_most = (target >> 8) + (target >> 9);
760         found = false;
761
762         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
763                 int lvds_reg;
764
765                 if (HAS_PCH_SPLIT(dev))
766                         lvds_reg = PCH_LVDS;
767                 else
768                         lvds_reg = LVDS;
769                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
770                     LVDS_CLKB_POWER_UP)
771                         clock.p2 = limit->p2.p2_fast;
772                 else
773                         clock.p2 = limit->p2.p2_slow;
774         } else {
775                 if (target < limit->p2.dot_limit)
776                         clock.p2 = limit->p2.p2_slow;
777                 else
778                         clock.p2 = limit->p2.p2_fast;
779         }
780
781         memset(best_clock, 0, sizeof(*best_clock));
782         max_n = limit->n.max;
783         /* based on hardware requirement, prefer smaller n to precision */
784         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
785                 /* based on hardware requirement, prefere larger m1,m2 */
786                 for (clock.m1 = limit->m1.max;
787                      clock.m1 >= limit->m1.min; clock.m1--) {
788                         for (clock.m2 = limit->m2.max;
789                              clock.m2 >= limit->m2.min; clock.m2--) {
790                                 for (clock.p1 = limit->p1.max;
791                                      clock.p1 >= limit->p1.min; clock.p1--) {
792                                         int this_err;
793
794                                         intel_clock(dev, refclk, &clock);
795                                         if (!intel_PLL_is_valid(dev, limit,
796                                                                 &clock))
797                                                 continue;
798                                         if (match_clock &&
799                                             clock.p != match_clock->p)
800                                                 continue;
801
802                                         this_err = abs(clock.dot - target);
803                                         if (this_err < err_most) {
804                                                 *best_clock = clock;
805                                                 err_most = this_err;
806                                                 max_n = clock.n;
807                                                 found = true;
808                                         }
809                                 }
810                         }
811                 }
812         }
813         return found;
814 }
815
816 static bool
817 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
818                            int target, int refclk, intel_clock_t *match_clock,
819                            intel_clock_t *best_clock)
820 {
821         struct drm_device *dev = crtc->dev;
822         intel_clock_t clock;
823
824         if (target < 200000) {
825                 clock.n = 1;
826                 clock.p1 = 2;
827                 clock.p2 = 10;
828                 clock.m1 = 12;
829                 clock.m2 = 9;
830         } else {
831                 clock.n = 2;
832                 clock.p1 = 1;
833                 clock.p2 = 10;
834                 clock.m1 = 14;
835                 clock.m2 = 8;
836         }
837         intel_clock(dev, refclk, &clock);
838         memcpy(best_clock, &clock, sizeof(intel_clock_t));
839         return true;
840 }
841
842 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
843 static bool
844 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
845                       int target, int refclk, intel_clock_t *match_clock,
846                       intel_clock_t *best_clock)
847 {
848         intel_clock_t clock;
849         if (target < 200000) {
850                 clock.p1 = 2;
851                 clock.p2 = 10;
852                 clock.n = 2;
853                 clock.m1 = 23;
854                 clock.m2 = 8;
855         } else {
856                 clock.p1 = 1;
857                 clock.p2 = 10;
858                 clock.n = 1;
859                 clock.m1 = 14;
860                 clock.m2 = 2;
861         }
862         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
863         clock.p = (clock.p1 * clock.p2);
864         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
865         clock.vco = 0;
866         memcpy(best_clock, &clock, sizeof(intel_clock_t));
867         return true;
868 }
869 static bool
870 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
871                         int target, int refclk, intel_clock_t *match_clock,
872                         intel_clock_t *best_clock)
873 {
874         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
875         u32 m, n, fastclk;
876         u32 updrate, minupdate, fracbits, p;
877         unsigned long bestppm, ppm, absppm;
878         int dotclk, flag;
879
880         flag = 0;
881         dotclk = target * 1000;
882         bestppm = 1000000;
883         ppm = absppm = 0;
884         fastclk = dotclk / (2*100);
885         updrate = 0;
886         minupdate = 19200;
887         fracbits = 1;
888         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
889         bestm1 = bestm2 = bestp1 = bestp2 = 0;
890
891         /* based on hardware requirement, prefer smaller n to precision */
892         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
893                 updrate = refclk / n;
894                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
895                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
896                                 if (p2 > 10)
897                                         p2 = p2 - 1;
898                                 p = p1 * p2;
899                                 /* based on hardware requirement, prefer bigger m1,m2 values */
900                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
901                                         m2 = (((2*(fastclk * p * n / m1 )) +
902                                                refclk) / (2*refclk));
903                                         m = m1 * m2;
904                                         vco = updrate * m;
905                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
906                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
907                                                 absppm = (ppm > 0) ? ppm : (-ppm);
908                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
909                                                         bestppm = 0;
910                                                         flag = 1;
911                                                 }
912                                                 if (absppm < bestppm - 10) {
913                                                         bestppm = absppm;
914                                                         flag = 1;
915                                                 }
916                                                 if (flag) {
917                                                         bestn = n;
918                                                         bestm1 = m1;
919                                                         bestm2 = m2;
920                                                         bestp1 = p1;
921                                                         bestp2 = p2;
922                                                         flag = 0;
923                                                 }
924                                         }
925                                 }
926                         }
927                 }
928         }
929         best_clock->n = bestn;
930         best_clock->m1 = bestm1;
931         best_clock->m2 = bestm2;
932         best_clock->p1 = bestp1;
933         best_clock->p2 = bestp2;
934
935         return true;
936 }
937
938 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
939                                              enum pipe pipe)
940 {
941         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
943
944         return intel_crtc->cpu_transcoder;
945 }
946
947 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
948 {
949         struct drm_i915_private *dev_priv = dev->dev_private;
950         u32 frame, frame_reg = PIPEFRAME(pipe);
951
952         frame = I915_READ(frame_reg);
953
954         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
955                 DRM_DEBUG_KMS("vblank wait timed out\n");
956 }
957
958 /**
959  * intel_wait_for_vblank - wait for vblank on a given pipe
960  * @dev: drm device
961  * @pipe: pipe to wait for
962  *
963  * Wait for vblank to occur on a given pipe.  Needed for various bits of
964  * mode setting code.
965  */
966 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
967 {
968         struct drm_i915_private *dev_priv = dev->dev_private;
969         int pipestat_reg = PIPESTAT(pipe);
970
971         if (INTEL_INFO(dev)->gen >= 5) {
972                 ironlake_wait_for_vblank(dev, pipe);
973                 return;
974         }
975
976         /* Clear existing vblank status. Note this will clear any other
977          * sticky status fields as well.
978          *
979          * This races with i915_driver_irq_handler() with the result
980          * that either function could miss a vblank event.  Here it is not
981          * fatal, as we will either wait upon the next vblank interrupt or
982          * timeout.  Generally speaking intel_wait_for_vblank() is only
983          * called during modeset at which time the GPU should be idle and
984          * should *not* be performing page flips and thus not waiting on
985          * vblanks...
986          * Currently, the result of us stealing a vblank from the irq
987          * handler is that a single frame will be skipped during swapbuffers.
988          */
989         I915_WRITE(pipestat_reg,
990                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
991
992         /* Wait for vblank interrupt bit to set */
993         if (wait_for(I915_READ(pipestat_reg) &
994                      PIPE_VBLANK_INTERRUPT_STATUS,
995                      50))
996                 DRM_DEBUG_KMS("vblank wait timed out\n");
997 }
998
999 /*
1000  * intel_wait_for_pipe_off - wait for pipe to turn off
1001  * @dev: drm device
1002  * @pipe: pipe to wait for
1003  *
1004  * After disabling a pipe, we can't wait for vblank in the usual way,
1005  * spinning on the vblank interrupt status bit, since we won't actually
1006  * see an interrupt when the pipe is disabled.
1007  *
1008  * On Gen4 and above:
1009  *   wait for the pipe register state bit to turn off
1010  *
1011  * Otherwise:
1012  *   wait for the display line value to settle (it usually
1013  *   ends up stopping at the start of the next frame).
1014  *
1015  */
1016 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1020                                                                       pipe);
1021
1022         if (INTEL_INFO(dev)->gen >= 4) {
1023                 int reg = PIPECONF(cpu_transcoder);
1024
1025                 /* Wait for the Pipe State to go off */
1026                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1027                              100))
1028                         WARN(1, "pipe_off wait timed out\n");
1029         } else {
1030                 u32 last_line, line_mask;
1031                 int reg = PIPEDSL(pipe);
1032                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033
1034                 if (IS_GEN2(dev))
1035                         line_mask = DSL_LINEMASK_GEN2;
1036                 else
1037                         line_mask = DSL_LINEMASK_GEN3;
1038
1039                 /* Wait for the display line to settle */
1040                 do {
1041                         last_line = I915_READ(reg) & line_mask;
1042                         mdelay(5);
1043                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1044                          time_after(timeout, jiffies));
1045                 if (time_after(jiffies, timeout))
1046                         WARN(1, "pipe_off wait timed out\n");
1047         }
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052         return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 static void assert_pll(struct drm_i915_private *dev_priv,
1057                        enum pipe pipe, bool state)
1058 {
1059         int reg;
1060         u32 val;
1061         bool cur_state;
1062
1063         reg = DPLL(pipe);
1064         val = I915_READ(reg);
1065         cur_state = !!(val & DPLL_VCO_ENABLE);
1066         WARN(cur_state != state,
1067              "PLL state assertion failure (expected %s, current %s)\n",
1068              state_string(state), state_string(cur_state));
1069 }
1070 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1071 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1072
1073 /* For ILK+ */
1074 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1075                            struct intel_pch_pll *pll,
1076                            struct intel_crtc *crtc,
1077                            bool state)
1078 {
1079         u32 val;
1080         bool cur_state;
1081
1082         if (HAS_PCH_LPT(dev_priv->dev)) {
1083                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1084                 return;
1085         }
1086
1087         if (WARN (!pll,
1088                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1089                 return;
1090
1091         val = I915_READ(pll->pll_reg);
1092         cur_state = !!(val & DPLL_VCO_ENABLE);
1093         WARN(cur_state != state,
1094              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1095              pll->pll_reg, state_string(state), state_string(cur_state), val);
1096
1097         /* Make sure the selected PLL is correctly attached to the transcoder */
1098         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1099                 u32 pch_dpll;
1100
1101                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1102                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1103                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1104                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1105                           cur_state, crtc->pipe, pch_dpll)) {
1106                         cur_state = !!(val >> (4*crtc->pipe + 3));
1107                         WARN(cur_state != state,
1108                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1109                              pll->pll_reg == _PCH_DPLL_B,
1110                              state_string(state),
1111                              crtc->pipe,
1112                              val);
1113                 }
1114         }
1115 }
1116 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1117 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1118
1119 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1120                           enum pipe pipe, bool state)
1121 {
1122         int reg;
1123         u32 val;
1124         bool cur_state;
1125         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1126                                                                       pipe);
1127
1128         if (IS_HASWELL(dev_priv->dev)) {
1129                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1130                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133         } else {
1134                 reg = FDI_TX_CTL(pipe);
1135                 val = I915_READ(reg);
1136                 cur_state = !!(val & FDI_TX_ENABLE);
1137         }
1138         WARN(cur_state != state,
1139              "FDI TX state assertion failure (expected %s, current %s)\n",
1140              state_string(state), state_string(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146                           enum pipe pipe, bool state)
1147 {
1148         int reg;
1149         u32 val;
1150         bool cur_state;
1151
1152         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1153                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1154                         return;
1155         } else {
1156                 reg = FDI_RX_CTL(pipe);
1157                 val = I915_READ(reg);
1158                 cur_state = !!(val & FDI_RX_ENABLE);
1159         }
1160         WARN(cur_state != state,
1161              "FDI RX state assertion failure (expected %s, current %s)\n",
1162              state_string(state), state_string(cur_state));
1163 }
1164 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1165 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1166
1167 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1168                                       enum pipe pipe)
1169 {
1170         int reg;
1171         u32 val;
1172
1173         /* ILK FDI PLL is always enabled */
1174         if (dev_priv->info->gen == 5)
1175                 return;
1176
1177         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1178         if (IS_HASWELL(dev_priv->dev))
1179                 return;
1180
1181         reg = FDI_TX_CTL(pipe);
1182         val = I915_READ(reg);
1183         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1184 }
1185
1186 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1187                                       enum pipe pipe)
1188 {
1189         int reg;
1190         u32 val;
1191
1192         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1193                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1194                 return;
1195         }
1196         reg = FDI_RX_CTL(pipe);
1197         val = I915_READ(reg);
1198         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1199 }
1200
1201 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1202                                   enum pipe pipe)
1203 {
1204         int pp_reg, lvds_reg;
1205         u32 val;
1206         enum pipe panel_pipe = PIPE_A;
1207         bool locked = true;
1208
1209         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1210                 pp_reg = PCH_PP_CONTROL;
1211                 lvds_reg = PCH_LVDS;
1212         } else {
1213                 pp_reg = PP_CONTROL;
1214                 lvds_reg = LVDS;
1215         }
1216
1217         val = I915_READ(pp_reg);
1218         if (!(val & PANEL_POWER_ON) ||
1219             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1220                 locked = false;
1221
1222         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1223                 panel_pipe = PIPE_B;
1224
1225         WARN(panel_pipe == pipe && locked,
1226              "panel assertion failure, pipe %c regs locked\n",
1227              pipe_name(pipe));
1228 }
1229
1230 void assert_pipe(struct drm_i915_private *dev_priv,
1231                  enum pipe pipe, bool state)
1232 {
1233         int reg;
1234         u32 val;
1235         bool cur_state;
1236         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1237                                                                       pipe);
1238
1239         /* if we need the pipe A quirk it must be always on */
1240         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1241                 state = true;
1242
1243         reg = PIPECONF(cpu_transcoder);
1244         val = I915_READ(reg);
1245         cur_state = !!(val & PIPECONF_ENABLE);
1246         WARN(cur_state != state,
1247              "pipe %c assertion failure (expected %s, current %s)\n",
1248              pipe_name(pipe), state_string(state), state_string(cur_state));
1249 }
1250
1251 static void assert_plane(struct drm_i915_private *dev_priv,
1252                          enum plane plane, bool state)
1253 {
1254         int reg;
1255         u32 val;
1256         bool cur_state;
1257
1258         reg = DSPCNTR(plane);
1259         val = I915_READ(reg);
1260         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1261         WARN(cur_state != state,
1262              "plane %c assertion failure (expected %s, current %s)\n",
1263              plane_name(plane), state_string(state), state_string(cur_state));
1264 }
1265
1266 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1267 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1268
1269 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1270                                    enum pipe pipe)
1271 {
1272         int reg, i;
1273         u32 val;
1274         int cur_pipe;
1275
1276         /* Planes are fixed to pipes on ILK+ */
1277         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1278                 reg = DSPCNTR(pipe);
1279                 val = I915_READ(reg);
1280                 WARN((val & DISPLAY_PLANE_ENABLE),
1281                      "plane %c assertion failure, should be disabled but not\n",
1282                      plane_name(pipe));
1283                 return;
1284         }
1285
1286         /* Need to check both planes against the pipe */
1287         for (i = 0; i < 2; i++) {
1288                 reg = DSPCNTR(i);
1289                 val = I915_READ(reg);
1290                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1291                         DISPPLANE_SEL_PIPE_SHIFT;
1292                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1293                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1294                      plane_name(i), pipe_name(pipe));
1295         }
1296 }
1297
1298 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1299 {
1300         u32 val;
1301         bool enabled;
1302
1303         if (HAS_PCH_LPT(dev_priv->dev)) {
1304                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1305                 return;
1306         }
1307
1308         val = I915_READ(PCH_DREF_CONTROL);
1309         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1310                             DREF_SUPERSPREAD_SOURCE_MASK));
1311         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1312 }
1313
1314 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1315                                        enum pipe pipe)
1316 {
1317         int reg;
1318         u32 val;
1319         bool enabled;
1320
1321         reg = TRANSCONF(pipe);
1322         val = I915_READ(reg);
1323         enabled = !!(val & TRANS_ENABLE);
1324         WARN(enabled,
1325              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1326              pipe_name(pipe));
1327 }
1328
1329 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1330                             enum pipe pipe, u32 port_sel, u32 val)
1331 {
1332         if ((val & DP_PORT_EN) == 0)
1333                 return false;
1334
1335         if (HAS_PCH_CPT(dev_priv->dev)) {
1336                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1337                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1338                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1339                         return false;
1340         } else {
1341                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1342                         return false;
1343         }
1344         return true;
1345 }
1346
1347 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1348                               enum pipe pipe, u32 val)
1349 {
1350         if ((val & PORT_ENABLE) == 0)
1351                 return false;
1352
1353         if (HAS_PCH_CPT(dev_priv->dev)) {
1354                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1355                         return false;
1356         } else {
1357                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1358                         return false;
1359         }
1360         return true;
1361 }
1362
1363 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1364                               enum pipe pipe, u32 val)
1365 {
1366         if ((val & LVDS_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1371                         return false;
1372         } else {
1373                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1374                         return false;
1375         }
1376         return true;
1377 }
1378
1379 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1380                               enum pipe pipe, u32 val)
1381 {
1382         if ((val & ADPA_DAC_ENABLE) == 0)
1383                 return false;
1384         if (HAS_PCH_CPT(dev_priv->dev)) {
1385                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1386                         return false;
1387         } else {
1388                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1389                         return false;
1390         }
1391         return true;
1392 }
1393
1394 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1395                                    enum pipe pipe, int reg, u32 port_sel)
1396 {
1397         u32 val = I915_READ(reg);
1398         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1399              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1400              reg, pipe_name(pipe));
1401
1402         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1403              && (val & DP_PIPEB_SELECT),
1404              "IBX PCH dp port still using transcoder B\n");
1405 }
1406
1407 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1408                                      enum pipe pipe, int reg)
1409 {
1410         u32 val = I915_READ(reg);
1411         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1412              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1413              reg, pipe_name(pipe));
1414
1415         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1416              && (val & SDVO_PIPE_B_SELECT),
1417              "IBX PCH hdmi port still using transcoder B\n");
1418 }
1419
1420 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1421                                       enum pipe pipe)
1422 {
1423         int reg;
1424         u32 val;
1425
1426         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1427         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1429
1430         reg = PCH_ADPA;
1431         val = I915_READ(reg);
1432         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1433              "PCH VGA enabled on transcoder %c, should be disabled\n",
1434              pipe_name(pipe));
1435
1436         reg = PCH_LVDS;
1437         val = I915_READ(reg);
1438         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1439              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1440              pipe_name(pipe));
1441
1442         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1443         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1445 }
1446
1447 /**
1448  * intel_enable_pll - enable a PLL
1449  * @dev_priv: i915 private structure
1450  * @pipe: pipe PLL to enable
1451  *
1452  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1453  * make sure the PLL reg is writable first though, since the panel write
1454  * protect mechanism may be enabled.
1455  *
1456  * Note!  This is for pre-ILK only.
1457  *
1458  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1459  */
1460 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1461 {
1462         int reg;
1463         u32 val;
1464
1465         /* No really, not for ILK+ */
1466         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1467
1468         /* PLL is protected by panel, make sure we can write it */
1469         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1470                 assert_panel_unlocked(dev_priv, pipe);
1471
1472         reg = DPLL(pipe);
1473         val = I915_READ(reg);
1474         val |= DPLL_VCO_ENABLE;
1475
1476         /* We do this three times for luck */
1477         I915_WRITE(reg, val);
1478         POSTING_READ(reg);
1479         udelay(150); /* wait for warmup */
1480         I915_WRITE(reg, val);
1481         POSTING_READ(reg);
1482         udelay(150); /* wait for warmup */
1483         I915_WRITE(reg, val);
1484         POSTING_READ(reg);
1485         udelay(150); /* wait for warmup */
1486 }
1487
1488 /**
1489  * intel_disable_pll - disable a PLL
1490  * @dev_priv: i915 private structure
1491  * @pipe: pipe PLL to disable
1492  *
1493  * Disable the PLL for @pipe, making sure the pipe is off first.
1494  *
1495  * Note!  This is for pre-ILK only.
1496  */
1497 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1498 {
1499         int reg;
1500         u32 val;
1501
1502         /* Don't disable pipe A or pipe A PLLs if needed */
1503         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1504                 return;
1505
1506         /* Make sure the pipe isn't still relying on us */
1507         assert_pipe_disabled(dev_priv, pipe);
1508
1509         reg = DPLL(pipe);
1510         val = I915_READ(reg);
1511         val &= ~DPLL_VCO_ENABLE;
1512         I915_WRITE(reg, val);
1513         POSTING_READ(reg);
1514 }
1515
1516 /* SBI access */
1517 static void
1518 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1519 {
1520         unsigned long flags;
1521
1522         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1523         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1524                                 100)) {
1525                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1526                 goto out_unlock;
1527         }
1528
1529         I915_WRITE(SBI_ADDR,
1530                         (reg << 16));
1531         I915_WRITE(SBI_DATA,
1532                         value);
1533         I915_WRITE(SBI_CTL_STAT,
1534                         SBI_BUSY |
1535                         SBI_CTL_OP_CRWR);
1536
1537         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1538                                 100)) {
1539                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1540                 goto out_unlock;
1541         }
1542
1543 out_unlock:
1544         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1545 }
1546
1547 static u32
1548 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1549 {
1550         unsigned long flags;
1551         u32 value = 0;
1552
1553         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1554         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1555                                 100)) {
1556                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1557                 goto out_unlock;
1558         }
1559
1560         I915_WRITE(SBI_ADDR,
1561                         (reg << 16));
1562         I915_WRITE(SBI_CTL_STAT,
1563                         SBI_BUSY |
1564                         SBI_CTL_OP_CRRD);
1565
1566         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1567                                 100)) {
1568                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1569                 goto out_unlock;
1570         }
1571
1572         value = I915_READ(SBI_DATA);
1573
1574 out_unlock:
1575         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1576         return value;
1577 }
1578
1579 /**
1580  * ironlake_enable_pch_pll - enable PCH PLL
1581  * @dev_priv: i915 private structure
1582  * @pipe: pipe PLL to enable
1583  *
1584  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1585  * drives the transcoder clock.
1586  */
1587 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1588 {
1589         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1590         struct intel_pch_pll *pll;
1591         int reg;
1592         u32 val;
1593
1594         /* PCH PLLs only available on ILK, SNB and IVB */
1595         BUG_ON(dev_priv->info->gen < 5);
1596         pll = intel_crtc->pch_pll;
1597         if (pll == NULL)
1598                 return;
1599
1600         if (WARN_ON(pll->refcount == 0))
1601                 return;
1602
1603         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1604                       pll->pll_reg, pll->active, pll->on,
1605                       intel_crtc->base.base.id);
1606
1607         /* PCH refclock must be enabled first */
1608         assert_pch_refclk_enabled(dev_priv);
1609
1610         if (pll->active++ && pll->on) {
1611                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1612                 return;
1613         }
1614
1615         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1616
1617         reg = pll->pll_reg;
1618         val = I915_READ(reg);
1619         val |= DPLL_VCO_ENABLE;
1620         I915_WRITE(reg, val);
1621         POSTING_READ(reg);
1622         udelay(200);
1623
1624         pll->on = true;
1625 }
1626
1627 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1628 {
1629         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1630         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1631         int reg;
1632         u32 val;
1633
1634         /* PCH only available on ILK+ */
1635         BUG_ON(dev_priv->info->gen < 5);
1636         if (pll == NULL)
1637                return;
1638
1639         if (WARN_ON(pll->refcount == 0))
1640                 return;
1641
1642         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1643                       pll->pll_reg, pll->active, pll->on,
1644                       intel_crtc->base.base.id);
1645
1646         if (WARN_ON(pll->active == 0)) {
1647                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1648                 return;
1649         }
1650
1651         if (--pll->active) {
1652                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1653                 return;
1654         }
1655
1656         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1657
1658         /* Make sure transcoder isn't still depending on us */
1659         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1660
1661         reg = pll->pll_reg;
1662         val = I915_READ(reg);
1663         val &= ~DPLL_VCO_ENABLE;
1664         I915_WRITE(reg, val);
1665         POSTING_READ(reg);
1666         udelay(200);
1667
1668         pll->on = false;
1669 }
1670
1671 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1672                                            enum pipe pipe)
1673 {
1674         struct drm_device *dev = dev_priv->dev;
1675         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1676         uint32_t reg, val, pipeconf_val;
1677
1678         /* PCH only available on ILK+ */
1679         BUG_ON(dev_priv->info->gen < 5);
1680
1681         /* Make sure PCH DPLL is enabled */
1682         assert_pch_pll_enabled(dev_priv,
1683                                to_intel_crtc(crtc)->pch_pll,
1684                                to_intel_crtc(crtc));
1685
1686         /* FDI must be feeding us bits for PCH ports */
1687         assert_fdi_tx_enabled(dev_priv, pipe);
1688         assert_fdi_rx_enabled(dev_priv, pipe);
1689
1690         if (HAS_PCH_CPT(dev)) {
1691                 /* Workaround: Set the timing override bit before enabling the
1692                  * pch transcoder. */
1693                 reg = TRANS_CHICKEN2(pipe);
1694                 val = I915_READ(reg);
1695                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1696                 I915_WRITE(reg, val);
1697         }
1698
1699         reg = TRANSCONF(pipe);
1700         val = I915_READ(reg);
1701         pipeconf_val = I915_READ(PIPECONF(pipe));
1702
1703         if (HAS_PCH_IBX(dev_priv->dev)) {
1704                 /*
1705                  * make the BPC in transcoder be consistent with
1706                  * that in pipeconf reg.
1707                  */
1708                 val &= ~PIPE_BPC_MASK;
1709                 val |= pipeconf_val & PIPE_BPC_MASK;
1710         }
1711
1712         val &= ~TRANS_INTERLACE_MASK;
1713         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1714                 if (HAS_PCH_IBX(dev_priv->dev) &&
1715                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1716                         val |= TRANS_LEGACY_INTERLACED_ILK;
1717                 else
1718                         val |= TRANS_INTERLACED;
1719         else
1720                 val |= TRANS_PROGRESSIVE;
1721
1722         I915_WRITE(reg, val | TRANS_ENABLE);
1723         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1724                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1725 }
1726
1727 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1728                                       enum transcoder cpu_transcoder)
1729 {
1730         u32 val, pipeconf_val;
1731
1732         /* PCH only available on ILK+ */
1733         BUG_ON(dev_priv->info->gen < 5);
1734
1735         /* FDI must be feeding us bits for PCH ports */
1736         assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1737         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1738
1739         /* Workaround: set timing override bit. */
1740         val = I915_READ(_TRANSA_CHICKEN2);
1741         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1742         I915_WRITE(_TRANSA_CHICKEN2, val);
1743
1744         val = TRANS_ENABLE;
1745         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1746
1747         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1748             PIPECONF_INTERLACED_ILK)
1749                 val |= TRANS_INTERLACED;
1750         else
1751                 val |= TRANS_PROGRESSIVE;
1752
1753         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1754         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1755                 DRM_ERROR("Failed to enable PCH transcoder\n");
1756 }
1757
1758 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1759                                             enum pipe pipe)
1760 {
1761         struct drm_device *dev = dev_priv->dev;
1762         uint32_t reg, val;
1763
1764         /* FDI relies on the transcoder */
1765         assert_fdi_tx_disabled(dev_priv, pipe);
1766         assert_fdi_rx_disabled(dev_priv, pipe);
1767
1768         /* Ports must be off as well */
1769         assert_pch_ports_disabled(dev_priv, pipe);
1770
1771         reg = TRANSCONF(pipe);
1772         val = I915_READ(reg);
1773         val &= ~TRANS_ENABLE;
1774         I915_WRITE(reg, val);
1775         /* wait for PCH transcoder off, transcoder state */
1776         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1777                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1778
1779         if (!HAS_PCH_IBX(dev)) {
1780                 /* Workaround: Clear the timing override chicken bit again. */
1781                 reg = TRANS_CHICKEN2(pipe);
1782                 val = I915_READ(reg);
1783                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1784                 I915_WRITE(reg, val);
1785         }
1786 }
1787
1788 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1789 {
1790         u32 val;
1791
1792         val = I915_READ(_TRANSACONF);
1793         val &= ~TRANS_ENABLE;
1794         I915_WRITE(_TRANSACONF, val);
1795         /* wait for PCH transcoder off, transcoder state */
1796         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1797                 DRM_ERROR("Failed to disable PCH transcoder\n");
1798
1799         /* Workaround: clear timing override bit. */
1800         val = I915_READ(_TRANSA_CHICKEN2);
1801         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1802         I915_WRITE(_TRANSA_CHICKEN2, val);
1803 }
1804
1805 /**
1806  * intel_enable_pipe - enable a pipe, asserting requirements
1807  * @dev_priv: i915 private structure
1808  * @pipe: pipe to enable
1809  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1810  *
1811  * Enable @pipe, making sure that various hardware specific requirements
1812  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1813  *
1814  * @pipe should be %PIPE_A or %PIPE_B.
1815  *
1816  * Will wait until the pipe is actually running (i.e. first vblank) before
1817  * returning.
1818  */
1819 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1820                               bool pch_port)
1821 {
1822         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1823                                                                       pipe);
1824         int reg;
1825         u32 val;
1826
1827         /*
1828          * A pipe without a PLL won't actually be able to drive bits from
1829          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1830          * need the check.
1831          */
1832         if (!HAS_PCH_SPLIT(dev_priv->dev))
1833                 assert_pll_enabled(dev_priv, pipe);
1834         else {
1835                 if (pch_port) {
1836                         /* if driving the PCH, we need FDI enabled */
1837                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1838                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1839                 }
1840                 /* FIXME: assert CPU port conditions for SNB+ */
1841         }
1842
1843         reg = PIPECONF(cpu_transcoder);
1844         val = I915_READ(reg);
1845         if (val & PIPECONF_ENABLE)
1846                 return;
1847
1848         I915_WRITE(reg, val | PIPECONF_ENABLE);
1849         intel_wait_for_vblank(dev_priv->dev, pipe);
1850 }
1851
1852 /**
1853  * intel_disable_pipe - disable a pipe, asserting requirements
1854  * @dev_priv: i915 private structure
1855  * @pipe: pipe to disable
1856  *
1857  * Disable @pipe, making sure that various hardware specific requirements
1858  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1859  *
1860  * @pipe should be %PIPE_A or %PIPE_B.
1861  *
1862  * Will wait until the pipe has shut down before returning.
1863  */
1864 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1865                                enum pipe pipe)
1866 {
1867         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1868                                                                       pipe);
1869         int reg;
1870         u32 val;
1871
1872         /*
1873          * Make sure planes won't keep trying to pump pixels to us,
1874          * or we might hang the display.
1875          */
1876         assert_planes_disabled(dev_priv, pipe);
1877
1878         /* Don't disable pipe A or pipe A PLLs if needed */
1879         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1880                 return;
1881
1882         reg = PIPECONF(cpu_transcoder);
1883         val = I915_READ(reg);
1884         if ((val & PIPECONF_ENABLE) == 0)
1885                 return;
1886
1887         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1888         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1889 }
1890
1891 /*
1892  * Plane regs are double buffered, going from enabled->disabled needs a
1893  * trigger in order to latch.  The display address reg provides this.
1894  */
1895 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1896                                       enum plane plane)
1897 {
1898         if (dev_priv->info->gen >= 4)
1899                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1900         else
1901                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1902 }
1903
1904 /**
1905  * intel_enable_plane - enable a display plane on a given pipe
1906  * @dev_priv: i915 private structure
1907  * @plane: plane to enable
1908  * @pipe: pipe being fed
1909  *
1910  * Enable @plane on @pipe, making sure that @pipe is running first.
1911  */
1912 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1913                                enum plane plane, enum pipe pipe)
1914 {
1915         int reg;
1916         u32 val;
1917
1918         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1919         assert_pipe_enabled(dev_priv, pipe);
1920
1921         reg = DSPCNTR(plane);
1922         val = I915_READ(reg);
1923         if (val & DISPLAY_PLANE_ENABLE)
1924                 return;
1925
1926         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1927         intel_flush_display_plane(dev_priv, plane);
1928         intel_wait_for_vblank(dev_priv->dev, pipe);
1929 }
1930
1931 /**
1932  * intel_disable_plane - disable a display plane
1933  * @dev_priv: i915 private structure
1934  * @plane: plane to disable
1935  * @pipe: pipe consuming the data
1936  *
1937  * Disable @plane; should be an independent operation.
1938  */
1939 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1940                                 enum plane plane, enum pipe pipe)
1941 {
1942         int reg;
1943         u32 val;
1944
1945         reg = DSPCNTR(plane);
1946         val = I915_READ(reg);
1947         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1948                 return;
1949
1950         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1951         intel_flush_display_plane(dev_priv, plane);
1952         intel_wait_for_vblank(dev_priv->dev, pipe);
1953 }
1954
1955 int
1956 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1957                            struct drm_i915_gem_object *obj,
1958                            struct intel_ring_buffer *pipelined)
1959 {
1960         struct drm_i915_private *dev_priv = dev->dev_private;
1961         u32 alignment;
1962         int ret;
1963
1964         switch (obj->tiling_mode) {
1965         case I915_TILING_NONE:
1966                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1967                         alignment = 128 * 1024;
1968                 else if (INTEL_INFO(dev)->gen >= 4)
1969                         alignment = 4 * 1024;
1970                 else
1971                         alignment = 64 * 1024;
1972                 break;
1973         case I915_TILING_X:
1974                 /* pin() will align the object as required by fence */
1975                 alignment = 0;
1976                 break;
1977         case I915_TILING_Y:
1978                 /* FIXME: Is this true? */
1979                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1980                 return -EINVAL;
1981         default:
1982                 BUG();
1983         }
1984
1985         dev_priv->mm.interruptible = false;
1986         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1987         if (ret)
1988                 goto err_interruptible;
1989
1990         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1991          * fence, whereas 965+ only requires a fence if using
1992          * framebuffer compression.  For simplicity, we always install
1993          * a fence as the cost is not that onerous.
1994          */
1995         ret = i915_gem_object_get_fence(obj);
1996         if (ret)
1997                 goto err_unpin;
1998
1999         i915_gem_object_pin_fence(obj);
2000
2001         dev_priv->mm.interruptible = true;
2002         return 0;
2003
2004 err_unpin:
2005         i915_gem_object_unpin(obj);
2006 err_interruptible:
2007         dev_priv->mm.interruptible = true;
2008         return ret;
2009 }
2010
2011 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2012 {
2013         i915_gem_object_unpin_fence(obj);
2014         i915_gem_object_unpin(obj);
2015 }
2016
2017 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2018  * is assumed to be a power-of-two. */
2019 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2020                                                unsigned int bpp,
2021                                                unsigned int pitch)
2022 {
2023         int tile_rows, tiles;
2024
2025         tile_rows = *y / 8;
2026         *y %= 8;
2027         tiles = *x / (512/bpp);
2028         *x %= 512/bpp;
2029
2030         return tile_rows * pitch * 8 + tiles * 4096;
2031 }
2032
2033 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2034                              int x, int y)
2035 {
2036         struct drm_device *dev = crtc->dev;
2037         struct drm_i915_private *dev_priv = dev->dev_private;
2038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2039         struct intel_framebuffer *intel_fb;
2040         struct drm_i915_gem_object *obj;
2041         int plane = intel_crtc->plane;
2042         unsigned long linear_offset;
2043         u32 dspcntr;
2044         u32 reg;
2045
2046         switch (plane) {
2047         case 0:
2048         case 1:
2049                 break;
2050         default:
2051                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2052                 return -EINVAL;
2053         }
2054
2055         intel_fb = to_intel_framebuffer(fb);
2056         obj = intel_fb->obj;
2057
2058         reg = DSPCNTR(plane);
2059         dspcntr = I915_READ(reg);
2060         /* Mask out pixel format bits in case we change it */
2061         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2062         switch (fb->pixel_format) {
2063         case DRM_FORMAT_C8:
2064                 dspcntr |= DISPPLANE_8BPP;
2065                 break;
2066         case DRM_FORMAT_XRGB1555:
2067         case DRM_FORMAT_ARGB1555:
2068                 dspcntr |= DISPPLANE_BGRX555;
2069                 break;
2070         case DRM_FORMAT_RGB565:
2071                 dspcntr |= DISPPLANE_BGRX565;
2072                 break;
2073         case DRM_FORMAT_XRGB8888:
2074         case DRM_FORMAT_ARGB8888:
2075                 dspcntr |= DISPPLANE_BGRX888;
2076                 break;
2077         case DRM_FORMAT_XBGR8888:
2078         case DRM_FORMAT_ABGR8888:
2079                 dspcntr |= DISPPLANE_RGBX888;
2080                 break;
2081         case DRM_FORMAT_XRGB2101010:
2082         case DRM_FORMAT_ARGB2101010:
2083                 dspcntr |= DISPPLANE_BGRX101010;
2084                 break;
2085         case DRM_FORMAT_XBGR2101010:
2086         case DRM_FORMAT_ABGR2101010:
2087                 dspcntr |= DISPPLANE_RGBX101010;
2088                 break;
2089         default:
2090                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2091                 return -EINVAL;
2092         }
2093
2094         if (INTEL_INFO(dev)->gen >= 4) {
2095                 if (obj->tiling_mode != I915_TILING_NONE)
2096                         dspcntr |= DISPPLANE_TILED;
2097                 else
2098                         dspcntr &= ~DISPPLANE_TILED;
2099         }
2100
2101         I915_WRITE(reg, dspcntr);
2102
2103         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2104
2105         if (INTEL_INFO(dev)->gen >= 4) {
2106                 intel_crtc->dspaddr_offset =
2107                         intel_gen4_compute_offset_xtiled(&x, &y,
2108                                                          fb->bits_per_pixel / 8,
2109                                                          fb->pitches[0]);
2110                 linear_offset -= intel_crtc->dspaddr_offset;
2111         } else {
2112                 intel_crtc->dspaddr_offset = linear_offset;
2113         }
2114
2115         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2116                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2117         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2118         if (INTEL_INFO(dev)->gen >= 4) {
2119                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2120                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2121                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2122                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2123         } else
2124                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2125         POSTING_READ(reg);
2126
2127         return 0;
2128 }
2129
2130 static int ironlake_update_plane(struct drm_crtc *crtc,
2131                                  struct drm_framebuffer *fb, int x, int y)
2132 {
2133         struct drm_device *dev = crtc->dev;
2134         struct drm_i915_private *dev_priv = dev->dev_private;
2135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2136         struct intel_framebuffer *intel_fb;
2137         struct drm_i915_gem_object *obj;
2138         int plane = intel_crtc->plane;
2139         unsigned long linear_offset;
2140         u32 dspcntr;
2141         u32 reg;
2142
2143         switch (plane) {
2144         case 0:
2145         case 1:
2146         case 2:
2147                 break;
2148         default:
2149                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2150                 return -EINVAL;
2151         }
2152
2153         intel_fb = to_intel_framebuffer(fb);
2154         obj = intel_fb->obj;
2155
2156         reg = DSPCNTR(plane);
2157         dspcntr = I915_READ(reg);
2158         /* Mask out pixel format bits in case we change it */
2159         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2160         switch (fb->pixel_format) {
2161         case DRM_FORMAT_C8:
2162                 dspcntr |= DISPPLANE_8BPP;
2163                 break;
2164         case DRM_FORMAT_RGB565:
2165                 dspcntr |= DISPPLANE_BGRX565;
2166                 break;
2167         case DRM_FORMAT_XRGB8888:
2168         case DRM_FORMAT_ARGB8888:
2169                 dspcntr |= DISPPLANE_BGRX888;
2170                 break;
2171         case DRM_FORMAT_XBGR8888:
2172         case DRM_FORMAT_ABGR8888:
2173                 dspcntr |= DISPPLANE_RGBX888;
2174                 break;
2175         case DRM_FORMAT_XRGB2101010:
2176         case DRM_FORMAT_ARGB2101010:
2177                 dspcntr |= DISPPLANE_BGRX101010;
2178                 break;
2179         case DRM_FORMAT_XBGR2101010:
2180         case DRM_FORMAT_ABGR2101010:
2181                 dspcntr |= DISPPLANE_RGBX101010;
2182                 break;
2183         default:
2184                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2185                 return -EINVAL;
2186         }
2187
2188         if (obj->tiling_mode != I915_TILING_NONE)
2189                 dspcntr |= DISPPLANE_TILED;
2190         else
2191                 dspcntr &= ~DISPPLANE_TILED;
2192
2193         /* must disable */
2194         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2195
2196         I915_WRITE(reg, dspcntr);
2197
2198         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2199         intel_crtc->dspaddr_offset =
2200                 intel_gen4_compute_offset_xtiled(&x, &y,
2201                                                  fb->bits_per_pixel / 8,
2202                                                  fb->pitches[0]);
2203         linear_offset -= intel_crtc->dspaddr_offset;
2204
2205         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2206                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2207         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2208         I915_MODIFY_DISPBASE(DSPSURF(plane),
2209                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2210         if (IS_HASWELL(dev)) {
2211                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2212         } else {
2213                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2214                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2215         }
2216         POSTING_READ(reg);
2217
2218         return 0;
2219 }
2220
2221 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2222 static int
2223 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2224                            int x, int y, enum mode_set_atomic state)
2225 {
2226         struct drm_device *dev = crtc->dev;
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228
2229         if (dev_priv->display.disable_fbc)
2230                 dev_priv->display.disable_fbc(dev);
2231         intel_increase_pllclock(crtc);
2232
2233         return dev_priv->display.update_plane(crtc, fb, x, y);
2234 }
2235
2236 static int
2237 intel_finish_fb(struct drm_framebuffer *old_fb)
2238 {
2239         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2240         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2241         bool was_interruptible = dev_priv->mm.interruptible;
2242         int ret;
2243
2244         wait_event(dev_priv->pending_flip_queue,
2245                    atomic_read(&dev_priv->mm.wedged) ||
2246                    atomic_read(&obj->pending_flip) == 0);
2247
2248         /* Big Hammer, we also need to ensure that any pending
2249          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2250          * current scanout is retired before unpinning the old
2251          * framebuffer.
2252          *
2253          * This should only fail upon a hung GPU, in which case we
2254          * can safely continue.
2255          */
2256         dev_priv->mm.interruptible = false;
2257         ret = i915_gem_object_finish_gpu(obj);
2258         dev_priv->mm.interruptible = was_interruptible;
2259
2260         return ret;
2261 }
2262
2263 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2264 {
2265         struct drm_device *dev = crtc->dev;
2266         struct drm_i915_master_private *master_priv;
2267         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2268
2269         if (!dev->primary->master)
2270                 return;
2271
2272         master_priv = dev->primary->master->driver_priv;
2273         if (!master_priv->sarea_priv)
2274                 return;
2275
2276         switch (intel_crtc->pipe) {
2277         case 0:
2278                 master_priv->sarea_priv->pipeA_x = x;
2279                 master_priv->sarea_priv->pipeA_y = y;
2280                 break;
2281         case 1:
2282                 master_priv->sarea_priv->pipeB_x = x;
2283                 master_priv->sarea_priv->pipeB_y = y;
2284                 break;
2285         default:
2286                 break;
2287         }
2288 }
2289
2290 static int
2291 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2292                     struct drm_framebuffer *fb)
2293 {
2294         struct drm_device *dev = crtc->dev;
2295         struct drm_i915_private *dev_priv = dev->dev_private;
2296         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2297         struct drm_framebuffer *old_fb;
2298         int ret;
2299
2300         /* no fb bound */
2301         if (!fb) {
2302                 DRM_ERROR("No FB bound\n");
2303                 return 0;
2304         }
2305
2306         if(intel_crtc->plane > dev_priv->num_pipe) {
2307                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2308                                 intel_crtc->plane,
2309                                 dev_priv->num_pipe);
2310                 return -EINVAL;
2311         }
2312
2313         mutex_lock(&dev->struct_mutex);
2314         ret = intel_pin_and_fence_fb_obj(dev,
2315                                          to_intel_framebuffer(fb)->obj,
2316                                          NULL);
2317         if (ret != 0) {
2318                 mutex_unlock(&dev->struct_mutex);
2319                 DRM_ERROR("pin & fence failed\n");
2320                 return ret;
2321         }
2322
2323         if (crtc->fb)
2324                 intel_finish_fb(crtc->fb);
2325
2326         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2327         if (ret) {
2328                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2329                 mutex_unlock(&dev->struct_mutex);
2330                 DRM_ERROR("failed to update base address\n");
2331                 return ret;
2332         }
2333
2334         old_fb = crtc->fb;
2335         crtc->fb = fb;
2336         crtc->x = x;
2337         crtc->y = y;
2338
2339         if (old_fb) {
2340                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2341                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2342         }
2343
2344         intel_update_fbc(dev);
2345         mutex_unlock(&dev->struct_mutex);
2346
2347         intel_crtc_update_sarea_pos(crtc, x, y);
2348
2349         return 0;
2350 }
2351
2352 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2353 {
2354         struct drm_device *dev = crtc->dev;
2355         struct drm_i915_private *dev_priv = dev->dev_private;
2356         u32 dpa_ctl;
2357
2358         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2359         dpa_ctl = I915_READ(DP_A);
2360         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2361
2362         if (clock < 200000) {
2363                 u32 temp;
2364                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2365                 /* workaround for 160Mhz:
2366                    1) program 0x4600c bits 15:0 = 0x8124
2367                    2) program 0x46010 bit 0 = 1
2368                    3) program 0x46034 bit 24 = 1
2369                    4) program 0x64000 bit 14 = 1
2370                    */
2371                 temp = I915_READ(0x4600c);
2372                 temp &= 0xffff0000;
2373                 I915_WRITE(0x4600c, temp | 0x8124);
2374
2375                 temp = I915_READ(0x46010);
2376                 I915_WRITE(0x46010, temp | 1);
2377
2378                 temp = I915_READ(0x46034);
2379                 I915_WRITE(0x46034, temp | (1 << 24));
2380         } else {
2381                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2382         }
2383         I915_WRITE(DP_A, dpa_ctl);
2384
2385         POSTING_READ(DP_A);
2386         udelay(500);
2387 }
2388
2389 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2390 {
2391         struct drm_device *dev = crtc->dev;
2392         struct drm_i915_private *dev_priv = dev->dev_private;
2393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2394         int pipe = intel_crtc->pipe;
2395         u32 reg, temp;
2396
2397         /* enable normal train */
2398         reg = FDI_TX_CTL(pipe);
2399         temp = I915_READ(reg);
2400         if (IS_IVYBRIDGE(dev)) {
2401                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2402                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2403         } else {
2404                 temp &= ~FDI_LINK_TRAIN_NONE;
2405                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2406         }
2407         I915_WRITE(reg, temp);
2408
2409         reg = FDI_RX_CTL(pipe);
2410         temp = I915_READ(reg);
2411         if (HAS_PCH_CPT(dev)) {
2412                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2413                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2414         } else {
2415                 temp &= ~FDI_LINK_TRAIN_NONE;
2416                 temp |= FDI_LINK_TRAIN_NONE;
2417         }
2418         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2419
2420         /* wait one idle pattern time */
2421         POSTING_READ(reg);
2422         udelay(1000);
2423
2424         /* IVB wants error correction enabled */
2425         if (IS_IVYBRIDGE(dev))
2426                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2427                            FDI_FE_ERRC_ENABLE);
2428 }
2429
2430 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         u32 flags = I915_READ(SOUTH_CHICKEN1);
2434
2435         flags |= FDI_PHASE_SYNC_OVR(pipe);
2436         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2437         flags |= FDI_PHASE_SYNC_EN(pipe);
2438         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2439         POSTING_READ(SOUTH_CHICKEN1);
2440 }
2441
2442 static void ivb_modeset_global_resources(struct drm_device *dev)
2443 {
2444         struct drm_i915_private *dev_priv = dev->dev_private;
2445         struct intel_crtc *pipe_B_crtc =
2446                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2447         struct intel_crtc *pipe_C_crtc =
2448                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2449         uint32_t temp;
2450
2451         /* When everything is off disable fdi C so that we could enable fdi B
2452          * with all lanes. XXX: This misses the case where a pipe is not using
2453          * any pch resources and so doesn't need any fdi lanes. */
2454         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2455                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2456                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2457
2458                 temp = I915_READ(SOUTH_CHICKEN1);
2459                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2460                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2461                 I915_WRITE(SOUTH_CHICKEN1, temp);
2462         }
2463 }
2464
2465 /* The FDI link training functions for ILK/Ibexpeak. */
2466 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2467 {
2468         struct drm_device *dev = crtc->dev;
2469         struct drm_i915_private *dev_priv = dev->dev_private;
2470         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2471         int pipe = intel_crtc->pipe;
2472         int plane = intel_crtc->plane;
2473         u32 reg, temp, tries;
2474
2475         /* FDI needs bits from pipe & plane first */
2476         assert_pipe_enabled(dev_priv, pipe);
2477         assert_plane_enabled(dev_priv, plane);
2478
2479         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2480            for train result */
2481         reg = FDI_RX_IMR(pipe);
2482         temp = I915_READ(reg);
2483         temp &= ~FDI_RX_SYMBOL_LOCK;
2484         temp &= ~FDI_RX_BIT_LOCK;
2485         I915_WRITE(reg, temp);
2486         I915_READ(reg);
2487         udelay(150);
2488
2489         /* enable CPU FDI TX and PCH FDI RX */
2490         reg = FDI_TX_CTL(pipe);
2491         temp = I915_READ(reg);
2492         temp &= ~(7 << 19);
2493         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2494         temp &= ~FDI_LINK_TRAIN_NONE;
2495         temp |= FDI_LINK_TRAIN_PATTERN_1;
2496         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2497
2498         reg = FDI_RX_CTL(pipe);
2499         temp = I915_READ(reg);
2500         temp &= ~FDI_LINK_TRAIN_NONE;
2501         temp |= FDI_LINK_TRAIN_PATTERN_1;
2502         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2503
2504         POSTING_READ(reg);
2505         udelay(150);
2506
2507         /* Ironlake workaround, enable clock pointer after FDI enable*/
2508         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2509         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2510                    FDI_RX_PHASE_SYNC_POINTER_EN);
2511
2512         reg = FDI_RX_IIR(pipe);
2513         for (tries = 0; tries < 5; tries++) {
2514                 temp = I915_READ(reg);
2515                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2516
2517                 if ((temp & FDI_RX_BIT_LOCK)) {
2518                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2519                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2520                         break;
2521                 }
2522         }
2523         if (tries == 5)
2524                 DRM_ERROR("FDI train 1 fail!\n");
2525
2526         /* Train 2 */
2527         reg = FDI_TX_CTL(pipe);
2528         temp = I915_READ(reg);
2529         temp &= ~FDI_LINK_TRAIN_NONE;
2530         temp |= FDI_LINK_TRAIN_PATTERN_2;
2531         I915_WRITE(reg, temp);
2532
2533         reg = FDI_RX_CTL(pipe);
2534         temp = I915_READ(reg);
2535         temp &= ~FDI_LINK_TRAIN_NONE;
2536         temp |= FDI_LINK_TRAIN_PATTERN_2;
2537         I915_WRITE(reg, temp);
2538
2539         POSTING_READ(reg);
2540         udelay(150);
2541
2542         reg = FDI_RX_IIR(pipe);
2543         for (tries = 0; tries < 5; tries++) {
2544                 temp = I915_READ(reg);
2545                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2546
2547                 if (temp & FDI_RX_SYMBOL_LOCK) {
2548                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2549                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2550                         break;
2551                 }
2552         }
2553         if (tries == 5)
2554                 DRM_ERROR("FDI train 2 fail!\n");
2555
2556         DRM_DEBUG_KMS("FDI train done\n");
2557
2558 }
2559
2560 static const int snb_b_fdi_train_param[] = {
2561         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2562         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2563         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2564         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2565 };
2566
2567 /* The FDI link training functions for SNB/Cougarpoint. */
2568 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2569 {
2570         struct drm_device *dev = crtc->dev;
2571         struct drm_i915_private *dev_priv = dev->dev_private;
2572         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2573         int pipe = intel_crtc->pipe;
2574         u32 reg, temp, i, retry;
2575
2576         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2577            for train result */
2578         reg = FDI_RX_IMR(pipe);
2579         temp = I915_READ(reg);
2580         temp &= ~FDI_RX_SYMBOL_LOCK;
2581         temp &= ~FDI_RX_BIT_LOCK;
2582         I915_WRITE(reg, temp);
2583
2584         POSTING_READ(reg);
2585         udelay(150);
2586
2587         /* enable CPU FDI TX and PCH FDI RX */
2588         reg = FDI_TX_CTL(pipe);
2589         temp = I915_READ(reg);
2590         temp &= ~(7 << 19);
2591         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2592         temp &= ~FDI_LINK_TRAIN_NONE;
2593         temp |= FDI_LINK_TRAIN_PATTERN_1;
2594         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2595         /* SNB-B */
2596         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2597         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2598
2599         I915_WRITE(FDI_RX_MISC(pipe),
2600                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2601
2602         reg = FDI_RX_CTL(pipe);
2603         temp = I915_READ(reg);
2604         if (HAS_PCH_CPT(dev)) {
2605                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2606                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2607         } else {
2608                 temp &= ~FDI_LINK_TRAIN_NONE;
2609                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2610         }
2611         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2612
2613         POSTING_READ(reg);
2614         udelay(150);
2615
2616         cpt_phase_pointer_enable(dev, pipe);
2617
2618         for (i = 0; i < 4; i++) {
2619                 reg = FDI_TX_CTL(pipe);
2620                 temp = I915_READ(reg);
2621                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622                 temp |= snb_b_fdi_train_param[i];
2623                 I915_WRITE(reg, temp);
2624
2625                 POSTING_READ(reg);
2626                 udelay(500);
2627
2628                 for (retry = 0; retry < 5; retry++) {
2629                         reg = FDI_RX_IIR(pipe);
2630                         temp = I915_READ(reg);
2631                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2632                         if (temp & FDI_RX_BIT_LOCK) {
2633                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2634                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2635                                 break;
2636                         }
2637                         udelay(50);
2638                 }
2639                 if (retry < 5)
2640                         break;
2641         }
2642         if (i == 4)
2643                 DRM_ERROR("FDI train 1 fail!\n");
2644
2645         /* Train 2 */
2646         reg = FDI_TX_CTL(pipe);
2647         temp = I915_READ(reg);
2648         temp &= ~FDI_LINK_TRAIN_NONE;
2649         temp |= FDI_LINK_TRAIN_PATTERN_2;
2650         if (IS_GEN6(dev)) {
2651                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2652                 /* SNB-B */
2653                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2654         }
2655         I915_WRITE(reg, temp);
2656
2657         reg = FDI_RX_CTL(pipe);
2658         temp = I915_READ(reg);
2659         if (HAS_PCH_CPT(dev)) {
2660                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2661                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2662         } else {
2663                 temp &= ~FDI_LINK_TRAIN_NONE;
2664                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2665         }
2666         I915_WRITE(reg, temp);
2667
2668         POSTING_READ(reg);
2669         udelay(150);
2670
2671         for (i = 0; i < 4; i++) {
2672                 reg = FDI_TX_CTL(pipe);
2673                 temp = I915_READ(reg);
2674                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675                 temp |= snb_b_fdi_train_param[i];
2676                 I915_WRITE(reg, temp);
2677
2678                 POSTING_READ(reg);
2679                 udelay(500);
2680
2681                 for (retry = 0; retry < 5; retry++) {
2682                         reg = FDI_RX_IIR(pipe);
2683                         temp = I915_READ(reg);
2684                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2685                         if (temp & FDI_RX_SYMBOL_LOCK) {
2686                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2687                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2688                                 break;
2689                         }
2690                         udelay(50);
2691                 }
2692                 if (retry < 5)
2693                         break;
2694         }
2695         if (i == 4)
2696                 DRM_ERROR("FDI train 2 fail!\n");
2697
2698         DRM_DEBUG_KMS("FDI train done.\n");
2699 }
2700
2701 /* Manual link training for Ivy Bridge A0 parts */
2702 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2703 {
2704         struct drm_device *dev = crtc->dev;
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2707         int pipe = intel_crtc->pipe;
2708         u32 reg, temp, i;
2709
2710         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2711            for train result */
2712         reg = FDI_RX_IMR(pipe);
2713         temp = I915_READ(reg);
2714         temp &= ~FDI_RX_SYMBOL_LOCK;
2715         temp &= ~FDI_RX_BIT_LOCK;
2716         I915_WRITE(reg, temp);
2717
2718         POSTING_READ(reg);
2719         udelay(150);
2720
2721         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2722                       I915_READ(FDI_RX_IIR(pipe)));
2723
2724         /* enable CPU FDI TX and PCH FDI RX */
2725         reg = FDI_TX_CTL(pipe);
2726         temp = I915_READ(reg);
2727         temp &= ~(7 << 19);
2728         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2729         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2730         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2731         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2732         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2733         temp |= FDI_COMPOSITE_SYNC;
2734         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2735
2736         I915_WRITE(FDI_RX_MISC(pipe),
2737                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2738
2739         reg = FDI_RX_CTL(pipe);
2740         temp = I915_READ(reg);
2741         temp &= ~FDI_LINK_TRAIN_AUTO;
2742         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2743         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2744         temp |= FDI_COMPOSITE_SYNC;
2745         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2746
2747         POSTING_READ(reg);
2748         udelay(150);
2749
2750         cpt_phase_pointer_enable(dev, pipe);
2751
2752         for (i = 0; i < 4; i++) {
2753                 reg = FDI_TX_CTL(pipe);
2754                 temp = I915_READ(reg);
2755                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2756                 temp |= snb_b_fdi_train_param[i];
2757                 I915_WRITE(reg, temp);
2758
2759                 POSTING_READ(reg);
2760                 udelay(500);
2761
2762                 reg = FDI_RX_IIR(pipe);
2763                 temp = I915_READ(reg);
2764                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2765
2766                 if (temp & FDI_RX_BIT_LOCK ||
2767                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2768                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2769                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2770                         break;
2771                 }
2772         }
2773         if (i == 4)
2774                 DRM_ERROR("FDI train 1 fail!\n");
2775
2776         /* Train 2 */
2777         reg = FDI_TX_CTL(pipe);
2778         temp = I915_READ(reg);
2779         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2780         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2781         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2782         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2783         I915_WRITE(reg, temp);
2784
2785         reg = FDI_RX_CTL(pipe);
2786         temp = I915_READ(reg);
2787         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2788         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2789         I915_WRITE(reg, temp);
2790
2791         POSTING_READ(reg);
2792         udelay(150);
2793
2794         for (i = 0; i < 4; i++) {
2795                 reg = FDI_TX_CTL(pipe);
2796                 temp = I915_READ(reg);
2797                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2798                 temp |= snb_b_fdi_train_param[i];
2799                 I915_WRITE(reg, temp);
2800
2801                 POSTING_READ(reg);
2802                 udelay(500);
2803
2804                 reg = FDI_RX_IIR(pipe);
2805                 temp = I915_READ(reg);
2806                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2807
2808                 if (temp & FDI_RX_SYMBOL_LOCK) {
2809                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2810                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2811                         break;
2812                 }
2813         }
2814         if (i == 4)
2815                 DRM_ERROR("FDI train 2 fail!\n");
2816
2817         DRM_DEBUG_KMS("FDI train done.\n");
2818 }
2819
2820 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2821 {
2822         struct drm_device *dev = intel_crtc->base.dev;
2823         struct drm_i915_private *dev_priv = dev->dev_private;
2824         int pipe = intel_crtc->pipe;
2825         u32 reg, temp;
2826
2827
2828         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2829         reg = FDI_RX_CTL(pipe);
2830         temp = I915_READ(reg);
2831         temp &= ~((0x7 << 19) | (0x7 << 16));
2832         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2833         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2834         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2835
2836         POSTING_READ(reg);
2837         udelay(200);
2838
2839         /* Switch from Rawclk to PCDclk */
2840         temp = I915_READ(reg);
2841         I915_WRITE(reg, temp | FDI_PCDCLK);
2842
2843         POSTING_READ(reg);
2844         udelay(200);
2845
2846         /* On Haswell, the PLL configuration for ports and pipes is handled
2847          * separately, as part of DDI setup */
2848         if (!IS_HASWELL(dev)) {
2849                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2850                 reg = FDI_TX_CTL(pipe);
2851                 temp = I915_READ(reg);
2852                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2853                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2854
2855                         POSTING_READ(reg);
2856                         udelay(100);
2857                 }
2858         }
2859 }
2860
2861 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2862 {
2863         struct drm_device *dev = intel_crtc->base.dev;
2864         struct drm_i915_private *dev_priv = dev->dev_private;
2865         int pipe = intel_crtc->pipe;
2866         u32 reg, temp;
2867
2868         /* Switch from PCDclk to Rawclk */
2869         reg = FDI_RX_CTL(pipe);
2870         temp = I915_READ(reg);
2871         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2872
2873         /* Disable CPU FDI TX PLL */
2874         reg = FDI_TX_CTL(pipe);
2875         temp = I915_READ(reg);
2876         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2877
2878         POSTING_READ(reg);
2879         udelay(100);
2880
2881         reg = FDI_RX_CTL(pipe);
2882         temp = I915_READ(reg);
2883         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2884
2885         /* Wait for the clocks to turn off. */
2886         POSTING_READ(reg);
2887         udelay(100);
2888 }
2889
2890 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2891 {
2892         struct drm_i915_private *dev_priv = dev->dev_private;
2893         u32 flags = I915_READ(SOUTH_CHICKEN1);
2894
2895         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2896         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2897         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2898         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2899         POSTING_READ(SOUTH_CHICKEN1);
2900 }
2901 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2902 {
2903         struct drm_device *dev = crtc->dev;
2904         struct drm_i915_private *dev_priv = dev->dev_private;
2905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2906         int pipe = intel_crtc->pipe;
2907         u32 reg, temp;
2908
2909         /* disable CPU FDI tx and PCH FDI rx */
2910         reg = FDI_TX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2913         POSTING_READ(reg);
2914
2915         reg = FDI_RX_CTL(pipe);
2916         temp = I915_READ(reg);
2917         temp &= ~(0x7 << 16);
2918         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2919         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2920
2921         POSTING_READ(reg);
2922         udelay(100);
2923
2924         /* Ironlake workaround, disable clock pointer after downing FDI */
2925         if (HAS_PCH_IBX(dev)) {
2926                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2927                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2928                            I915_READ(FDI_RX_CHICKEN(pipe) &
2929                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2930         } else if (HAS_PCH_CPT(dev)) {
2931                 cpt_phase_pointer_disable(dev, pipe);
2932         }
2933
2934         /* still set train pattern 1 */
2935         reg = FDI_TX_CTL(pipe);
2936         temp = I915_READ(reg);
2937         temp &= ~FDI_LINK_TRAIN_NONE;
2938         temp |= FDI_LINK_TRAIN_PATTERN_1;
2939         I915_WRITE(reg, temp);
2940
2941         reg = FDI_RX_CTL(pipe);
2942         temp = I915_READ(reg);
2943         if (HAS_PCH_CPT(dev)) {
2944                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2945                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2946         } else {
2947                 temp &= ~FDI_LINK_TRAIN_NONE;
2948                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2949         }
2950         /* BPC in FDI rx is consistent with that in PIPECONF */
2951         temp &= ~(0x07 << 16);
2952         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2953         I915_WRITE(reg, temp);
2954
2955         POSTING_READ(reg);
2956         udelay(100);
2957 }
2958
2959 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2960 {
2961         struct drm_device *dev = crtc->dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         unsigned long flags;
2964         bool pending;
2965
2966         if (atomic_read(&dev_priv->mm.wedged))
2967                 return false;
2968
2969         spin_lock_irqsave(&dev->event_lock, flags);
2970         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2971         spin_unlock_irqrestore(&dev->event_lock, flags);
2972
2973         return pending;
2974 }
2975
2976 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2977 {
2978         struct drm_device *dev = crtc->dev;
2979         struct drm_i915_private *dev_priv = dev->dev_private;
2980
2981         if (crtc->fb == NULL)
2982                 return;
2983
2984         wait_event(dev_priv->pending_flip_queue,
2985                    !intel_crtc_has_pending_flip(crtc));
2986
2987         mutex_lock(&dev->struct_mutex);
2988         intel_finish_fb(crtc->fb);
2989         mutex_unlock(&dev->struct_mutex);
2990 }
2991
2992 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2993 {
2994         struct drm_device *dev = crtc->dev;
2995         struct intel_encoder *intel_encoder;
2996
2997         /*
2998          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2999          * must be driven by its own crtc; no sharing is possible.
3000          */
3001         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3002                 switch (intel_encoder->type) {
3003                 case INTEL_OUTPUT_EDP:
3004                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
3005                                 return false;
3006                         continue;
3007                 }
3008         }
3009
3010         return true;
3011 }
3012
3013 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3014 {
3015         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3016 }
3017
3018 /* Program iCLKIP clock to the desired frequency */
3019 static void lpt_program_iclkip(struct drm_crtc *crtc)
3020 {
3021         struct drm_device *dev = crtc->dev;
3022         struct drm_i915_private *dev_priv = dev->dev_private;
3023         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3024         u32 temp;
3025
3026         /* It is necessary to ungate the pixclk gate prior to programming
3027          * the divisors, and gate it back when it is done.
3028          */
3029         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3030
3031         /* Disable SSCCTL */
3032         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3033                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3034                                         SBI_SSCCTL_DISABLE);
3035
3036         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3037         if (crtc->mode.clock == 20000) {
3038                 auxdiv = 1;
3039                 divsel = 0x41;
3040                 phaseinc = 0x20;
3041         } else {
3042                 /* The iCLK virtual clock root frequency is in MHz,
3043                  * but the crtc->mode.clock in in KHz. To get the divisors,
3044                  * it is necessary to divide one by another, so we
3045                  * convert the virtual clock precision to KHz here for higher
3046                  * precision.
3047                  */
3048                 u32 iclk_virtual_root_freq = 172800 * 1000;
3049                 u32 iclk_pi_range = 64;
3050                 u32 desired_divisor, msb_divisor_value, pi_value;
3051
3052                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3053                 msb_divisor_value = desired_divisor / iclk_pi_range;
3054                 pi_value = desired_divisor % iclk_pi_range;
3055
3056                 auxdiv = 0;
3057                 divsel = msb_divisor_value - 2;
3058                 phaseinc = pi_value;
3059         }
3060
3061         /* This should not happen with any sane values */
3062         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3063                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3064         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3065                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3066
3067         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3068                         crtc->mode.clock,
3069                         auxdiv,
3070                         divsel,
3071                         phasedir,
3072                         phaseinc);
3073
3074         /* Program SSCDIVINTPHASE6 */
3075         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3076         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3077         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3078         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3079         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3080         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3081         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3082
3083         intel_sbi_write(dev_priv,
3084                         SBI_SSCDIVINTPHASE6,
3085                         temp);
3086
3087         /* Program SSCAUXDIV */
3088         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3089         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3090         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3091         intel_sbi_write(dev_priv,
3092                         SBI_SSCAUXDIV6,
3093                         temp);
3094
3095
3096         /* Enable modulator and associated divider */
3097         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3098         temp &= ~SBI_SSCCTL_DISABLE;
3099         intel_sbi_write(dev_priv,
3100                         SBI_SSCCTL6,
3101                         temp);
3102
3103         /* Wait for initialization time */
3104         udelay(24);
3105
3106         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3107 }
3108
3109 /*
3110  * Enable PCH resources required for PCH ports:
3111  *   - PCH PLLs
3112  *   - FDI training & RX/TX
3113  *   - update transcoder timings
3114  *   - DP transcoding bits
3115  *   - transcoder
3116  */
3117 static void ironlake_pch_enable(struct drm_crtc *crtc)
3118 {
3119         struct drm_device *dev = crtc->dev;
3120         struct drm_i915_private *dev_priv = dev->dev_private;
3121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3122         int pipe = intel_crtc->pipe;
3123         u32 reg, temp;
3124
3125         assert_transcoder_disabled(dev_priv, pipe);
3126
3127         /* Write the TU size bits before fdi link training, so that error
3128          * detection works. */
3129         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3130                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3131
3132         /* For PCH output, training FDI link */
3133         dev_priv->display.fdi_link_train(crtc);
3134
3135         /* XXX: pch pll's can be enabled any time before we enable the PCH
3136          * transcoder, and we actually should do this to not upset any PCH
3137          * transcoder that already use the clock when we share it.
3138          *
3139          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3140          * unconditionally resets the pll - we need that to have the right LVDS
3141          * enable sequence. */
3142         ironlake_enable_pch_pll(intel_crtc);
3143
3144         if (HAS_PCH_CPT(dev)) {
3145                 u32 sel;
3146
3147                 temp = I915_READ(PCH_DPLL_SEL);
3148                 switch (pipe) {
3149                 default:
3150                 case 0:
3151                         temp |= TRANSA_DPLL_ENABLE;
3152                         sel = TRANSA_DPLLB_SEL;
3153                         break;
3154                 case 1:
3155                         temp |= TRANSB_DPLL_ENABLE;
3156                         sel = TRANSB_DPLLB_SEL;
3157                         break;
3158                 case 2:
3159                         temp |= TRANSC_DPLL_ENABLE;
3160                         sel = TRANSC_DPLLB_SEL;
3161                         break;
3162                 }
3163                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3164                         temp |= sel;
3165                 else
3166                         temp &= ~sel;
3167                 I915_WRITE(PCH_DPLL_SEL, temp);
3168         }
3169
3170         /* set transcoder timing, panel must allow it */
3171         assert_panel_unlocked(dev_priv, pipe);
3172         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3173         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3174         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3175
3176         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3177         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3178         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3179         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3180
3181         intel_fdi_normal_train(crtc);
3182
3183         /* For PCH DP, enable TRANS_DP_CTL */
3184         if (HAS_PCH_CPT(dev) &&
3185             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3186              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3187                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3188                 reg = TRANS_DP_CTL(pipe);
3189                 temp = I915_READ(reg);
3190                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3191                           TRANS_DP_SYNC_MASK |
3192                           TRANS_DP_BPC_MASK);
3193                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3194                          TRANS_DP_ENH_FRAMING);
3195                 temp |= bpc << 9; /* same format but at 11:9 */
3196
3197                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3198                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3199                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3200                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3201
3202                 switch (intel_trans_dp_port_sel(crtc)) {
3203                 case PCH_DP_B:
3204                         temp |= TRANS_DP_PORT_SEL_B;
3205                         break;
3206                 case PCH_DP_C:
3207                         temp |= TRANS_DP_PORT_SEL_C;
3208                         break;
3209                 case PCH_DP_D:
3210                         temp |= TRANS_DP_PORT_SEL_D;
3211                         break;
3212                 default:
3213                         BUG();
3214                 }
3215
3216                 I915_WRITE(reg, temp);
3217         }
3218
3219         ironlake_enable_pch_transcoder(dev_priv, pipe);
3220 }
3221
3222 static void lpt_pch_enable(struct drm_crtc *crtc)
3223 {
3224         struct drm_device *dev = crtc->dev;
3225         struct drm_i915_private *dev_priv = dev->dev_private;
3226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3227         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3228
3229         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3230
3231         lpt_program_iclkip(crtc);
3232
3233         /* Set transcoder timing. */
3234         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3235         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3236         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3237
3238         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3239         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3240         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3241         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3242
3243         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3244 }
3245
3246 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3247 {
3248         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3249
3250         if (pll == NULL)
3251                 return;
3252
3253         if (pll->refcount == 0) {
3254                 WARN(1, "bad PCH PLL refcount\n");
3255                 return;
3256         }
3257
3258         --pll->refcount;
3259         intel_crtc->pch_pll = NULL;
3260 }
3261
3262 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3263 {
3264         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3265         struct intel_pch_pll *pll;
3266         int i;
3267
3268         pll = intel_crtc->pch_pll;
3269         if (pll) {
3270                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3271                               intel_crtc->base.base.id, pll->pll_reg);
3272                 goto prepare;
3273         }
3274
3275         if (HAS_PCH_IBX(dev_priv->dev)) {
3276                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3277                 i = intel_crtc->pipe;
3278                 pll = &dev_priv->pch_plls[i];
3279
3280                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3281                               intel_crtc->base.base.id, pll->pll_reg);
3282
3283                 goto found;
3284         }
3285
3286         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3287                 pll = &dev_priv->pch_plls[i];
3288
3289                 /* Only want to check enabled timings first */
3290                 if (pll->refcount == 0)
3291                         continue;
3292
3293                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3294                     fp == I915_READ(pll->fp0_reg)) {
3295                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3296                                       intel_crtc->base.base.id,
3297                                       pll->pll_reg, pll->refcount, pll->active);
3298
3299                         goto found;
3300                 }
3301         }
3302
3303         /* Ok no matching timings, maybe there's a free one? */
3304         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3305                 pll = &dev_priv->pch_plls[i];
3306                 if (pll->refcount == 0) {
3307                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3308                                       intel_crtc->base.base.id, pll->pll_reg);
3309                         goto found;
3310                 }
3311         }
3312
3313         return NULL;
3314
3315 found:
3316         intel_crtc->pch_pll = pll;
3317         pll->refcount++;
3318         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3319 prepare: /* separate function? */
3320         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3321
3322         /* Wait for the clocks to stabilize before rewriting the regs */
3323         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3324         POSTING_READ(pll->pll_reg);
3325         udelay(150);
3326
3327         I915_WRITE(pll->fp0_reg, fp);
3328         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3329         pll->on = false;
3330         return pll;
3331 }
3332
3333 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3334 {
3335         struct drm_i915_private *dev_priv = dev->dev_private;
3336         int dslreg = PIPEDSL(pipe);
3337         u32 temp;
3338
3339         temp = I915_READ(dslreg);
3340         udelay(500);
3341         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3342                 if (wait_for(I915_READ(dslreg) != temp, 5))
3343                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3344         }
3345 }
3346
3347 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3348 {
3349         struct drm_device *dev = crtc->dev;
3350         struct drm_i915_private *dev_priv = dev->dev_private;
3351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3352         struct intel_encoder *encoder;
3353         int pipe = intel_crtc->pipe;
3354         int plane = intel_crtc->plane;
3355         u32 temp;
3356         bool is_pch_port;
3357
3358         WARN_ON(!crtc->enabled);
3359
3360         if (intel_crtc->active)
3361                 return;
3362
3363         intel_crtc->active = true;
3364         intel_update_watermarks(dev);
3365
3366         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3367                 temp = I915_READ(PCH_LVDS);
3368                 if ((temp & LVDS_PORT_EN) == 0)
3369                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3370         }
3371
3372         is_pch_port = ironlake_crtc_driving_pch(crtc);
3373
3374         if (is_pch_port) {
3375                 /* Note: FDI PLL enabling _must_ be done before we enable the
3376                  * cpu pipes, hence this is separate from all the other fdi/pch
3377                  * enabling. */
3378                 ironlake_fdi_pll_enable(intel_crtc);
3379         } else {
3380                 assert_fdi_tx_disabled(dev_priv, pipe);
3381                 assert_fdi_rx_disabled(dev_priv, pipe);
3382         }
3383
3384         for_each_encoder_on_crtc(dev, crtc, encoder)
3385                 if (encoder->pre_enable)
3386                         encoder->pre_enable(encoder);
3387
3388         /* Enable panel fitting for LVDS */
3389         if (dev_priv->pch_pf_size &&
3390             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3391              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3392                 /* Force use of hard-coded filter coefficients
3393                  * as some pre-programmed values are broken,
3394                  * e.g. x201.
3395                  */
3396                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3397                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3398                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3399         }
3400
3401         /*
3402          * On ILK+ LUT must be loaded before the pipe is running but with
3403          * clocks enabled
3404          */
3405         intel_crtc_load_lut(crtc);
3406
3407         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3408         intel_enable_plane(dev_priv, plane, pipe);
3409
3410         if (is_pch_port)
3411                 ironlake_pch_enable(crtc);
3412
3413         mutex_lock(&dev->struct_mutex);
3414         intel_update_fbc(dev);
3415         mutex_unlock(&dev->struct_mutex);
3416
3417         intel_crtc_update_cursor(crtc, true);
3418
3419         for_each_encoder_on_crtc(dev, crtc, encoder)
3420                 encoder->enable(encoder);
3421
3422         if (HAS_PCH_CPT(dev))
3423                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3424
3425         /*
3426          * There seems to be a race in PCH platform hw (at least on some
3427          * outputs) where an enabled pipe still completes any pageflip right
3428          * away (as if the pipe is off) instead of waiting for vblank. As soon
3429          * as the first vblank happend, everything works as expected. Hence just
3430          * wait for one vblank before returning to avoid strange things
3431          * happening.
3432          */
3433         intel_wait_for_vblank(dev, intel_crtc->pipe);
3434 }
3435
3436 static void haswell_crtc_enable(struct drm_crtc *crtc)
3437 {
3438         struct drm_device *dev = crtc->dev;
3439         struct drm_i915_private *dev_priv = dev->dev_private;
3440         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3441         struct intel_encoder *encoder;
3442         int pipe = intel_crtc->pipe;
3443         int plane = intel_crtc->plane;
3444         bool is_pch_port;
3445
3446         WARN_ON(!crtc->enabled);
3447
3448         if (intel_crtc->active)
3449                 return;
3450
3451         intel_crtc->active = true;
3452         intel_update_watermarks(dev);
3453
3454         is_pch_port = haswell_crtc_driving_pch(crtc);
3455
3456         if (is_pch_port)
3457                 dev_priv->display.fdi_link_train(crtc);
3458
3459         for_each_encoder_on_crtc(dev, crtc, encoder)
3460                 if (encoder->pre_enable)
3461                         encoder->pre_enable(encoder);
3462
3463         intel_ddi_enable_pipe_clock(intel_crtc);
3464
3465         /* Enable panel fitting for eDP */
3466         if (dev_priv->pch_pf_size &&
3467             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3468                 /* Force use of hard-coded filter coefficients
3469                  * as some pre-programmed values are broken,
3470                  * e.g. x201.
3471                  */
3472                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3473                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3474                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3475         }
3476
3477         /*
3478          * On ILK+ LUT must be loaded before the pipe is running but with
3479          * clocks enabled
3480          */
3481         intel_crtc_load_lut(crtc);
3482
3483         intel_ddi_set_pipe_settings(crtc);
3484         intel_ddi_enable_pipe_func(crtc);
3485
3486         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3487         intel_enable_plane(dev_priv, plane, pipe);
3488
3489         if (is_pch_port)
3490                 lpt_pch_enable(crtc);
3491
3492         mutex_lock(&dev->struct_mutex);
3493         intel_update_fbc(dev);
3494         mutex_unlock(&dev->struct_mutex);
3495
3496         intel_crtc_update_cursor(crtc, true);
3497
3498         for_each_encoder_on_crtc(dev, crtc, encoder)
3499                 encoder->enable(encoder);
3500
3501         /*
3502          * There seems to be a race in PCH platform hw (at least on some
3503          * outputs) where an enabled pipe still completes any pageflip right
3504          * away (as if the pipe is off) instead of waiting for vblank. As soon
3505          * as the first vblank happend, everything works as expected. Hence just
3506          * wait for one vblank before returning to avoid strange things
3507          * happening.
3508          */
3509         intel_wait_for_vblank(dev, intel_crtc->pipe);
3510 }
3511
3512 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3513 {
3514         struct drm_device *dev = crtc->dev;
3515         struct drm_i915_private *dev_priv = dev->dev_private;
3516         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517         struct intel_encoder *encoder;
3518         int pipe = intel_crtc->pipe;
3519         int plane = intel_crtc->plane;
3520         u32 reg, temp;
3521
3522
3523         if (!intel_crtc->active)
3524                 return;
3525
3526         for_each_encoder_on_crtc(dev, crtc, encoder)
3527                 encoder->disable(encoder);
3528
3529         intel_crtc_wait_for_pending_flips(crtc);
3530         drm_vblank_off(dev, pipe);
3531         intel_crtc_update_cursor(crtc, false);
3532
3533         intel_disable_plane(dev_priv, plane, pipe);
3534
3535         if (dev_priv->cfb_plane == plane)
3536                 intel_disable_fbc(dev);
3537
3538         intel_disable_pipe(dev_priv, pipe);
3539
3540         /* Disable PF */
3541         I915_WRITE(PF_CTL(pipe), 0);
3542         I915_WRITE(PF_WIN_SZ(pipe), 0);
3543
3544         for_each_encoder_on_crtc(dev, crtc, encoder)
3545                 if (encoder->post_disable)
3546                         encoder->post_disable(encoder);
3547
3548         ironlake_fdi_disable(crtc);
3549
3550         ironlake_disable_pch_transcoder(dev_priv, pipe);
3551
3552         if (HAS_PCH_CPT(dev)) {
3553                 /* disable TRANS_DP_CTL */
3554                 reg = TRANS_DP_CTL(pipe);
3555                 temp = I915_READ(reg);
3556                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3557                 temp |= TRANS_DP_PORT_SEL_NONE;
3558                 I915_WRITE(reg, temp);
3559
3560                 /* disable DPLL_SEL */
3561                 temp = I915_READ(PCH_DPLL_SEL);
3562                 switch (pipe) {
3563                 case 0:
3564                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3565                         break;
3566                 case 1:
3567                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3568                         break;
3569                 case 2:
3570                         /* C shares PLL A or B */
3571                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3572                         break;
3573                 default:
3574                         BUG(); /* wtf */
3575                 }
3576                 I915_WRITE(PCH_DPLL_SEL, temp);
3577         }
3578
3579         /* disable PCH DPLL */
3580         intel_disable_pch_pll(intel_crtc);
3581
3582         ironlake_fdi_pll_disable(intel_crtc);
3583
3584         intel_crtc->active = false;
3585         intel_update_watermarks(dev);
3586
3587         mutex_lock(&dev->struct_mutex);
3588         intel_update_fbc(dev);
3589         mutex_unlock(&dev->struct_mutex);
3590 }
3591
3592 static void haswell_crtc_disable(struct drm_crtc *crtc)
3593 {
3594         struct drm_device *dev = crtc->dev;
3595         struct drm_i915_private *dev_priv = dev->dev_private;
3596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3597         struct intel_encoder *encoder;
3598         int pipe = intel_crtc->pipe;
3599         int plane = intel_crtc->plane;
3600         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3601         bool is_pch_port;
3602
3603         if (!intel_crtc->active)
3604                 return;
3605
3606         is_pch_port = haswell_crtc_driving_pch(crtc);
3607
3608         for_each_encoder_on_crtc(dev, crtc, encoder)
3609                 encoder->disable(encoder);
3610
3611         intel_crtc_wait_for_pending_flips(crtc);
3612         drm_vblank_off(dev, pipe);
3613         intel_crtc_update_cursor(crtc, false);
3614
3615         intel_disable_plane(dev_priv, plane, pipe);
3616
3617         if (dev_priv->cfb_plane == plane)
3618                 intel_disable_fbc(dev);
3619
3620         intel_disable_pipe(dev_priv, pipe);
3621
3622         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3623
3624         /* Disable PF */
3625         I915_WRITE(PF_CTL(pipe), 0);
3626         I915_WRITE(PF_WIN_SZ(pipe), 0);
3627
3628         intel_ddi_disable_pipe_clock(intel_crtc);
3629
3630         for_each_encoder_on_crtc(dev, crtc, encoder)
3631                 if (encoder->post_disable)
3632                         encoder->post_disable(encoder);
3633
3634         if (is_pch_port) {
3635                 lpt_disable_pch_transcoder(dev_priv);
3636                 intel_ddi_fdi_disable(crtc);
3637         }
3638
3639         intel_crtc->active = false;
3640         intel_update_watermarks(dev);
3641
3642         mutex_lock(&dev->struct_mutex);
3643         intel_update_fbc(dev);
3644         mutex_unlock(&dev->struct_mutex);
3645 }
3646
3647 static void ironlake_crtc_off(struct drm_crtc *crtc)
3648 {
3649         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650         intel_put_pch_pll(intel_crtc);
3651 }
3652
3653 static void haswell_crtc_off(struct drm_crtc *crtc)
3654 {
3655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3656
3657         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3658          * start using it. */
3659         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3660
3661         intel_ddi_put_crtc_pll(crtc);
3662 }
3663
3664 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3665 {
3666         if (!enable && intel_crtc->overlay) {
3667                 struct drm_device *dev = intel_crtc->base.dev;
3668                 struct drm_i915_private *dev_priv = dev->dev_private;
3669
3670                 mutex_lock(&dev->struct_mutex);
3671                 dev_priv->mm.interruptible = false;
3672                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3673                 dev_priv->mm.interruptible = true;
3674                 mutex_unlock(&dev->struct_mutex);
3675         }
3676
3677         /* Let userspace switch the overlay on again. In most cases userspace
3678          * has to recompute where to put it anyway.
3679          */
3680 }
3681
3682 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3683 {
3684         struct drm_device *dev = crtc->dev;
3685         struct drm_i915_private *dev_priv = dev->dev_private;
3686         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3687         struct intel_encoder *encoder;
3688         int pipe = intel_crtc->pipe;
3689         int plane = intel_crtc->plane;
3690
3691         WARN_ON(!crtc->enabled);
3692
3693         if (intel_crtc->active)
3694                 return;
3695
3696         intel_crtc->active = true;
3697         intel_update_watermarks(dev);
3698
3699         intel_enable_pll(dev_priv, pipe);
3700         intel_enable_pipe(dev_priv, pipe, false);
3701         intel_enable_plane(dev_priv, plane, pipe);
3702
3703         intel_crtc_load_lut(crtc);
3704         intel_update_fbc(dev);
3705
3706         /* Give the overlay scaler a chance to enable if it's on this pipe */
3707         intel_crtc_dpms_overlay(intel_crtc, true);
3708         intel_crtc_update_cursor(crtc, true);
3709
3710         for_each_encoder_on_crtc(dev, crtc, encoder)
3711                 encoder->enable(encoder);
3712 }
3713
3714 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3715 {
3716         struct drm_device *dev = crtc->dev;
3717         struct drm_i915_private *dev_priv = dev->dev_private;
3718         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3719         struct intel_encoder *encoder;
3720         int pipe = intel_crtc->pipe;
3721         int plane = intel_crtc->plane;
3722
3723
3724         if (!intel_crtc->active)
3725                 return;
3726
3727         for_each_encoder_on_crtc(dev, crtc, encoder)
3728                 encoder->disable(encoder);
3729
3730         /* Give the overlay scaler a chance to disable if it's on this pipe */
3731         intel_crtc_wait_for_pending_flips(crtc);
3732         drm_vblank_off(dev, pipe);
3733         intel_crtc_dpms_overlay(intel_crtc, false);
3734         intel_crtc_update_cursor(crtc, false);
3735
3736         if (dev_priv->cfb_plane == plane)
3737                 intel_disable_fbc(dev);
3738
3739         intel_disable_plane(dev_priv, plane, pipe);
3740         intel_disable_pipe(dev_priv, pipe);
3741         intel_disable_pll(dev_priv, pipe);
3742
3743         intel_crtc->active = false;
3744         intel_update_fbc(dev);
3745         intel_update_watermarks(dev);
3746 }
3747
3748 static void i9xx_crtc_off(struct drm_crtc *crtc)
3749 {
3750 }
3751
3752 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3753                                     bool enabled)
3754 {
3755         struct drm_device *dev = crtc->dev;
3756         struct drm_i915_master_private *master_priv;
3757         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3758         int pipe = intel_crtc->pipe;
3759
3760         if (!dev->primary->master)
3761                 return;
3762
3763         master_priv = dev->primary->master->driver_priv;
3764         if (!master_priv->sarea_priv)
3765                 return;
3766
3767         switch (pipe) {
3768         case 0:
3769                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3770                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3771                 break;
3772         case 1:
3773                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3774                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3775                 break;
3776         default:
3777                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3778                 break;
3779         }
3780 }
3781
3782 /**
3783  * Sets the power management mode of the pipe and plane.
3784  */
3785 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3786 {
3787         struct drm_device *dev = crtc->dev;
3788         struct drm_i915_private *dev_priv = dev->dev_private;
3789         struct intel_encoder *intel_encoder;
3790         bool enable = false;
3791
3792         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3793                 enable |= intel_encoder->connectors_active;
3794
3795         if (enable)
3796                 dev_priv->display.crtc_enable(crtc);
3797         else
3798                 dev_priv->display.crtc_disable(crtc);
3799
3800         intel_crtc_update_sarea(crtc, enable);
3801 }
3802
3803 static void intel_crtc_noop(struct drm_crtc *crtc)
3804 {
3805 }
3806
3807 static void intel_crtc_disable(struct drm_crtc *crtc)
3808 {
3809         struct drm_device *dev = crtc->dev;
3810         struct drm_connector *connector;
3811         struct drm_i915_private *dev_priv = dev->dev_private;
3812
3813         /* crtc should still be enabled when we disable it. */
3814         WARN_ON(!crtc->enabled);
3815
3816         dev_priv->display.crtc_disable(crtc);
3817         intel_crtc_update_sarea(crtc, false);
3818         dev_priv->display.off(crtc);
3819
3820         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3821         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3822
3823         if (crtc->fb) {
3824                 mutex_lock(&dev->struct_mutex);
3825                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3826                 mutex_unlock(&dev->struct_mutex);
3827                 crtc->fb = NULL;
3828         }
3829
3830         /* Update computed state. */
3831         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3832                 if (!connector->encoder || !connector->encoder->crtc)
3833                         continue;
3834
3835                 if (connector->encoder->crtc != crtc)
3836                         continue;
3837
3838                 connector->dpms = DRM_MODE_DPMS_OFF;
3839                 to_intel_encoder(connector->encoder)->connectors_active = false;
3840         }
3841 }
3842
3843 void intel_modeset_disable(struct drm_device *dev)
3844 {
3845         struct drm_crtc *crtc;
3846
3847         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3848                 if (crtc->enabled)
3849                         intel_crtc_disable(crtc);
3850         }
3851 }
3852
3853 void intel_encoder_noop(struct drm_encoder *encoder)
3854 {
3855 }
3856
3857 void intel_encoder_destroy(struct drm_encoder *encoder)
3858 {
3859         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3860
3861         drm_encoder_cleanup(encoder);
3862         kfree(intel_encoder);
3863 }
3864
3865 /* Simple dpms helper for encodres with just one connector, no cloning and only
3866  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3867  * state of the entire output pipe. */
3868 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3869 {
3870         if (mode == DRM_MODE_DPMS_ON) {
3871                 encoder->connectors_active = true;
3872
3873                 intel_crtc_update_dpms(encoder->base.crtc);
3874         } else {
3875                 encoder->connectors_active = false;
3876
3877                 intel_crtc_update_dpms(encoder->base.crtc);
3878         }
3879 }
3880
3881 /* Cross check the actual hw state with our own modeset state tracking (and it's
3882  * internal consistency). */
3883 static void intel_connector_check_state(struct intel_connector *connector)
3884 {
3885         if (connector->get_hw_state(connector)) {
3886                 struct intel_encoder *encoder = connector->encoder;
3887                 struct drm_crtc *crtc;
3888                 bool encoder_enabled;
3889                 enum pipe pipe;
3890
3891                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3892                               connector->base.base.id,
3893                               drm_get_connector_name(&connector->base));
3894
3895                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3896                      "wrong connector dpms state\n");
3897                 WARN(connector->base.encoder != &encoder->base,
3898                      "active connector not linked to encoder\n");
3899                 WARN(!encoder->connectors_active,
3900                      "encoder->connectors_active not set\n");
3901
3902                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3903                 WARN(!encoder_enabled, "encoder not enabled\n");
3904                 if (WARN_ON(!encoder->base.crtc))
3905                         return;
3906
3907                 crtc = encoder->base.crtc;
3908
3909                 WARN(!crtc->enabled, "crtc not enabled\n");
3910                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3911                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3912                      "encoder active on the wrong pipe\n");
3913         }
3914 }
3915
3916 /* Even simpler default implementation, if there's really no special case to
3917  * consider. */
3918 void intel_connector_dpms(struct drm_connector *connector, int mode)
3919 {
3920         struct intel_encoder *encoder = intel_attached_encoder(connector);
3921
3922         /* All the simple cases only support two dpms states. */
3923         if (mode != DRM_MODE_DPMS_ON)
3924                 mode = DRM_MODE_DPMS_OFF;
3925
3926         if (mode == connector->dpms)
3927                 return;
3928
3929         connector->dpms = mode;
3930
3931         /* Only need to change hw state when actually enabled */
3932         if (encoder->base.crtc)
3933                 intel_encoder_dpms(encoder, mode);
3934         else
3935                 WARN_ON(encoder->connectors_active != false);
3936
3937         intel_modeset_check_state(connector->dev);
3938 }
3939
3940 /* Simple connector->get_hw_state implementation for encoders that support only
3941  * one connector and no cloning and hence the encoder state determines the state
3942  * of the connector. */
3943 bool intel_connector_get_hw_state(struct intel_connector *connector)
3944 {
3945         enum pipe pipe = 0;
3946         struct intel_encoder *encoder = connector->encoder;
3947
3948         return encoder->get_hw_state(encoder, &pipe);
3949 }
3950
3951 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3952                                   const struct drm_display_mode *mode,
3953                                   struct drm_display_mode *adjusted_mode)
3954 {
3955         struct drm_device *dev = crtc->dev;
3956
3957         if (HAS_PCH_SPLIT(dev)) {
3958                 /* FDI link clock is fixed at 2.7G */
3959                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3960                         return false;
3961         }
3962
3963         /* All interlaced capable intel hw wants timings in frames. Note though
3964          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3965          * timings, so we need to be careful not to clobber these.*/
3966         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3967                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3968
3969         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3970          * with a hsync front porch of 0.
3971          */
3972         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3973                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3974                 return false;
3975
3976         return true;
3977 }
3978
3979 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3980 {
3981         return 400000; /* FIXME */
3982 }
3983
3984 static int i945_get_display_clock_speed(struct drm_device *dev)
3985 {
3986         return 400000;
3987 }
3988
3989 static int i915_get_display_clock_speed(struct drm_device *dev)
3990 {
3991         return 333000;
3992 }
3993
3994 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3995 {
3996         return 200000;
3997 }
3998
3999 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4000 {
4001         u16 gcfgc = 0;
4002
4003         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4004
4005         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4006                 return 133000;
4007         else {
4008                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4009                 case GC_DISPLAY_CLOCK_333_MHZ:
4010                         return 333000;
4011                 default:
4012                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4013                         return 190000;
4014                 }
4015         }
4016 }
4017
4018 static int i865_get_display_clock_speed(struct drm_device *dev)
4019 {
4020         return 266000;
4021 }
4022
4023 static int i855_get_display_clock_speed(struct drm_device *dev)
4024 {
4025         u16 hpllcc = 0;
4026         /* Assume that the hardware is in the high speed state.  This
4027          * should be the default.
4028          */
4029         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4030         case GC_CLOCK_133_200:
4031         case GC_CLOCK_100_200:
4032                 return 200000;
4033         case GC_CLOCK_166_250:
4034                 return 250000;
4035         case GC_CLOCK_100_133:
4036                 return 133000;
4037         }
4038
4039         /* Shouldn't happen */
4040         return 0;
4041 }
4042
4043 static int i830_get_display_clock_speed(struct drm_device *dev)
4044 {
4045         return 133000;
4046 }
4047
4048 struct fdi_m_n {
4049         u32        tu;
4050         u32        gmch_m;
4051         u32        gmch_n;
4052         u32        link_m;
4053         u32        link_n;
4054 };
4055
4056 static void
4057 fdi_reduce_ratio(u32 *num, u32 *den)
4058 {
4059         while (*num > 0xffffff || *den > 0xffffff) {
4060                 *num >>= 1;
4061                 *den >>= 1;
4062         }
4063 }
4064
4065 static void
4066 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4067                      int link_clock, struct fdi_m_n *m_n)
4068 {
4069         m_n->tu = 64; /* default size */
4070
4071         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4072         m_n->gmch_m = bits_per_pixel * pixel_clock;
4073         m_n->gmch_n = link_clock * nlanes * 8;
4074         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4075
4076         m_n->link_m = pixel_clock;
4077         m_n->link_n = link_clock;
4078         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4079 }
4080
4081 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4082 {
4083         if (i915_panel_use_ssc >= 0)
4084                 return i915_panel_use_ssc != 0;
4085         return dev_priv->lvds_use_ssc
4086                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4087 }
4088
4089 /**
4090  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4091  * @crtc: CRTC structure
4092  * @mode: requested mode
4093  *
4094  * A pipe may be connected to one or more outputs.  Based on the depth of the
4095  * attached framebuffer, choose a good color depth to use on the pipe.
4096  *
4097  * If possible, match the pipe depth to the fb depth.  In some cases, this
4098  * isn't ideal, because the connected output supports a lesser or restricted
4099  * set of depths.  Resolve that here:
4100  *    LVDS typically supports only 6bpc, so clamp down in that case
4101  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4102  *    Displays may support a restricted set as well, check EDID and clamp as
4103  *      appropriate.
4104  *    DP may want to dither down to 6bpc to fit larger modes
4105  *
4106  * RETURNS:
4107  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4108  * true if they don't match).
4109  */
4110 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4111                                          struct drm_framebuffer *fb,
4112                                          unsigned int *pipe_bpp,
4113                                          struct drm_display_mode *mode)
4114 {
4115         struct drm_device *dev = crtc->dev;
4116         struct drm_i915_private *dev_priv = dev->dev_private;
4117         struct drm_connector *connector;
4118         struct intel_encoder *intel_encoder;
4119         unsigned int display_bpc = UINT_MAX, bpc;
4120
4121         /* Walk the encoders & connectors on this crtc, get min bpc */
4122         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4123
4124                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4125                         unsigned int lvds_bpc;
4126
4127                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4128                             LVDS_A3_POWER_UP)
4129                                 lvds_bpc = 8;
4130                         else
4131                                 lvds_bpc = 6;
4132
4133                         if (lvds_bpc < display_bpc) {
4134                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4135                                 display_bpc = lvds_bpc;
4136                         }
4137                         continue;
4138                 }
4139
4140                 /* Not one of the known troublemakers, check the EDID */
4141                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4142                                     head) {
4143                         if (connector->encoder != &intel_encoder->base)
4144                                 continue;
4145
4146                         /* Don't use an invalid EDID bpc value */
4147                         if (connector->display_info.bpc &&
4148                             connector->display_info.bpc < display_bpc) {
4149                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4150                                 display_bpc = connector->display_info.bpc;
4151                         }
4152                 }
4153
4154                 /*
4155                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4156                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4157                  */
4158                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4159                         if (display_bpc > 8 && display_bpc < 12) {
4160                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4161                                 display_bpc = 12;
4162                         } else {
4163                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4164                                 display_bpc = 8;
4165                         }
4166                 }
4167         }
4168
4169         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4170                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4171                 display_bpc = 6;
4172         }
4173
4174         /*
4175          * We could just drive the pipe at the highest bpc all the time and
4176          * enable dithering as needed, but that costs bandwidth.  So choose
4177          * the minimum value that expresses the full color range of the fb but
4178          * also stays within the max display bpc discovered above.
4179          */
4180
4181         switch (fb->depth) {
4182         case 8:
4183                 bpc = 8; /* since we go through a colormap */
4184                 break;
4185         case 15:
4186         case 16:
4187                 bpc = 6; /* min is 18bpp */
4188                 break;
4189         case 24:
4190                 bpc = 8;
4191                 break;
4192         case 30:
4193                 bpc = 10;
4194                 break;
4195         case 48:
4196                 bpc = 12;
4197                 break;
4198         default:
4199                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4200                 bpc = min((unsigned int)8, display_bpc);
4201                 break;
4202         }
4203
4204         display_bpc = min(display_bpc, bpc);
4205
4206         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4207                       bpc, display_bpc);
4208
4209         *pipe_bpp = display_bpc * 3;
4210
4211         return display_bpc != bpc;
4212 }
4213
4214 static int vlv_get_refclk(struct drm_crtc *crtc)
4215 {
4216         struct drm_device *dev = crtc->dev;
4217         struct drm_i915_private *dev_priv = dev->dev_private;
4218         int refclk = 27000; /* for DP & HDMI */
4219
4220         return 100000; /* only one validated so far */
4221
4222         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4223                 refclk = 96000;
4224         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4225                 if (intel_panel_use_ssc(dev_priv))
4226                         refclk = 100000;
4227                 else
4228                         refclk = 96000;
4229         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4230                 refclk = 100000;
4231         }
4232
4233         return refclk;
4234 }
4235
4236 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4237 {
4238         struct drm_device *dev = crtc->dev;
4239         struct drm_i915_private *dev_priv = dev->dev_private;
4240         int refclk;
4241
4242         if (IS_VALLEYVIEW(dev)) {
4243                 refclk = vlv_get_refclk(crtc);
4244         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4245             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4246                 refclk = dev_priv->lvds_ssc_freq * 1000;
4247                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4248                               refclk / 1000);
4249         } else if (!IS_GEN2(dev)) {
4250                 refclk = 96000;
4251         } else {
4252                 refclk = 48000;
4253         }
4254
4255         return refclk;
4256 }
4257
4258 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4259                                       intel_clock_t *clock)
4260 {
4261         /* SDVO TV has fixed PLL values depend on its clock range,
4262            this mirrors vbios setting. */
4263         if (adjusted_mode->clock >= 100000
4264             && adjusted_mode->clock < 140500) {
4265                 clock->p1 = 2;
4266                 clock->p2 = 10;
4267                 clock->n = 3;
4268                 clock->m1 = 16;
4269                 clock->m2 = 8;
4270         } else if (adjusted_mode->clock >= 140500
4271                    && adjusted_mode->clock <= 200000) {
4272                 clock->p1 = 1;
4273                 clock->p2 = 10;
4274                 clock->n = 6;
4275                 clock->m1 = 12;
4276                 clock->m2 = 8;
4277         }
4278 }
4279
4280 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4281                                      intel_clock_t *clock,
4282                                      intel_clock_t *reduced_clock)
4283 {
4284         struct drm_device *dev = crtc->dev;
4285         struct drm_i915_private *dev_priv = dev->dev_private;
4286         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4287         int pipe = intel_crtc->pipe;
4288         u32 fp, fp2 = 0;
4289
4290         if (IS_PINEVIEW(dev)) {
4291                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4292                 if (reduced_clock)
4293                         fp2 = (1 << reduced_clock->n) << 16 |
4294                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4295         } else {
4296                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4297                 if (reduced_clock)
4298                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4299                                 reduced_clock->m2;
4300         }
4301
4302         I915_WRITE(FP0(pipe), fp);
4303
4304         intel_crtc->lowfreq_avail = false;
4305         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4306             reduced_clock && i915_powersave) {
4307                 I915_WRITE(FP1(pipe), fp2);
4308                 intel_crtc->lowfreq_avail = true;
4309         } else {
4310                 I915_WRITE(FP1(pipe), fp);
4311         }
4312 }
4313
4314 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4315                               struct drm_display_mode *adjusted_mode)
4316 {
4317         struct drm_device *dev = crtc->dev;
4318         struct drm_i915_private *dev_priv = dev->dev_private;
4319         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4320         int pipe = intel_crtc->pipe;
4321         u32 temp;
4322
4323         temp = I915_READ(LVDS);
4324         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4325         if (pipe == 1) {
4326                 temp |= LVDS_PIPEB_SELECT;
4327         } else {
4328                 temp &= ~LVDS_PIPEB_SELECT;
4329         }
4330         /* set the corresponsding LVDS_BORDER bit */
4331         temp |= dev_priv->lvds_border_bits;
4332         /* Set the B0-B3 data pairs corresponding to whether we're going to
4333          * set the DPLLs for dual-channel mode or not.
4334          */
4335         if (clock->p2 == 7)
4336                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4337         else
4338                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4339
4340         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4341          * appropriately here, but we need to look more thoroughly into how
4342          * panels behave in the two modes.
4343          */
4344         /* set the dithering flag on LVDS as needed */
4345         if (INTEL_INFO(dev)->gen >= 4) {
4346                 if (dev_priv->lvds_dither)
4347                         temp |= LVDS_ENABLE_DITHER;
4348                 else
4349                         temp &= ~LVDS_ENABLE_DITHER;
4350         }
4351         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4352         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4353                 temp |= LVDS_HSYNC_POLARITY;
4354         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4355                 temp |= LVDS_VSYNC_POLARITY;
4356         I915_WRITE(LVDS, temp);
4357 }
4358
4359 static void vlv_update_pll(struct drm_crtc *crtc,
4360                            struct drm_display_mode *mode,
4361                            struct drm_display_mode *adjusted_mode,
4362                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4363                            int num_connectors)
4364 {
4365         struct drm_device *dev = crtc->dev;
4366         struct drm_i915_private *dev_priv = dev->dev_private;
4367         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4368         int pipe = intel_crtc->pipe;
4369         u32 dpll, mdiv, pdiv;
4370         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4371         bool is_sdvo;
4372         u32 temp;
4373
4374         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4375                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4376
4377         dpll = DPLL_VGA_MODE_DIS;
4378         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4379         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4380         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4381
4382         I915_WRITE(DPLL(pipe), dpll);
4383         POSTING_READ(DPLL(pipe));
4384
4385         bestn = clock->n;
4386         bestm1 = clock->m1;
4387         bestm2 = clock->m2;
4388         bestp1 = clock->p1;
4389         bestp2 = clock->p2;
4390
4391         /*
4392          * In Valleyview PLL and program lane counter registers are exposed
4393          * through DPIO interface
4394          */
4395         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4396         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4397         mdiv |= ((bestn << DPIO_N_SHIFT));
4398         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4399         mdiv |= (1 << DPIO_K_SHIFT);
4400         mdiv |= DPIO_ENABLE_CALIBRATION;
4401         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4402
4403         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4404
4405         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4406                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4407                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4408                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4409         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4410
4411         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4412
4413         dpll |= DPLL_VCO_ENABLE;
4414         I915_WRITE(DPLL(pipe), dpll);
4415         POSTING_READ(DPLL(pipe));
4416         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4417                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4418
4419         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4420
4421         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4422                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4423
4424         I915_WRITE(DPLL(pipe), dpll);
4425
4426         /* Wait for the clocks to stabilize. */
4427         POSTING_READ(DPLL(pipe));
4428         udelay(150);
4429
4430         temp = 0;
4431         if (is_sdvo) {
4432                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4433                 if (temp > 1)
4434                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4435                 else
4436                         temp = 0;
4437         }
4438         I915_WRITE(DPLL_MD(pipe), temp);
4439         POSTING_READ(DPLL_MD(pipe));
4440
4441         /* Now program lane control registers */
4442         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4443                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4444         {
4445                 temp = 0x1000C4;
4446                 if(pipe == 1)
4447                         temp |= (1 << 21);
4448                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4449         }
4450         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4451         {
4452                 temp = 0x1000C4;
4453                 if(pipe == 1)
4454                         temp |= (1 << 21);
4455                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4456         }
4457 }
4458
4459 static void i9xx_update_pll(struct drm_crtc *crtc,
4460                             struct drm_display_mode *mode,
4461                             struct drm_display_mode *adjusted_mode,
4462                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4463                             int num_connectors)
4464 {
4465         struct drm_device *dev = crtc->dev;
4466         struct drm_i915_private *dev_priv = dev->dev_private;
4467         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4468         int pipe = intel_crtc->pipe;
4469         u32 dpll;
4470         bool is_sdvo;
4471
4472         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4473
4474         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4475                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4476
4477         dpll = DPLL_VGA_MODE_DIS;
4478
4479         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4480                 dpll |= DPLLB_MODE_LVDS;
4481         else
4482                 dpll |= DPLLB_MODE_DAC_SERIAL;
4483         if (is_sdvo) {
4484                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4485                 if (pixel_multiplier > 1) {
4486                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4487                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4488                 }
4489                 dpll |= DPLL_DVO_HIGH_SPEED;
4490         }
4491         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4492                 dpll |= DPLL_DVO_HIGH_SPEED;
4493
4494         /* compute bitmask from p1 value */
4495         if (IS_PINEVIEW(dev))
4496                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4497         else {
4498                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4499                 if (IS_G4X(dev) && reduced_clock)
4500                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4501         }
4502         switch (clock->p2) {
4503         case 5:
4504                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4505                 break;
4506         case 7:
4507                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4508                 break;
4509         case 10:
4510                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4511                 break;
4512         case 14:
4513                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4514                 break;
4515         }
4516         if (INTEL_INFO(dev)->gen >= 4)
4517                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4518
4519         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4520                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4521         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4522                 /* XXX: just matching BIOS for now */
4523                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4524                 dpll |= 3;
4525         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4526                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4527                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4528         else
4529                 dpll |= PLL_REF_INPUT_DREFCLK;
4530
4531         dpll |= DPLL_VCO_ENABLE;
4532         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4533         POSTING_READ(DPLL(pipe));
4534         udelay(150);
4535
4536         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4537          * This is an exception to the general rule that mode_set doesn't turn
4538          * things on.
4539          */
4540         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4541                 intel_update_lvds(crtc, clock, adjusted_mode);
4542
4543         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4544                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4545
4546         I915_WRITE(DPLL(pipe), dpll);
4547
4548         /* Wait for the clocks to stabilize. */
4549         POSTING_READ(DPLL(pipe));
4550         udelay(150);
4551
4552         if (INTEL_INFO(dev)->gen >= 4) {
4553                 u32 temp = 0;
4554                 if (is_sdvo) {
4555                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4556                         if (temp > 1)
4557                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4558                         else
4559                                 temp = 0;
4560                 }
4561                 I915_WRITE(DPLL_MD(pipe), temp);
4562         } else {
4563                 /* The pixel multiplier can only be updated once the
4564                  * DPLL is enabled and the clocks are stable.
4565                  *
4566                  * So write it again.
4567                  */
4568                 I915_WRITE(DPLL(pipe), dpll);
4569         }
4570 }
4571
4572 static void i8xx_update_pll(struct drm_crtc *crtc,
4573                             struct drm_display_mode *adjusted_mode,
4574                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4575                             int num_connectors)
4576 {
4577         struct drm_device *dev = crtc->dev;
4578         struct drm_i915_private *dev_priv = dev->dev_private;
4579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4580         int pipe = intel_crtc->pipe;
4581         u32 dpll;
4582
4583         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4584
4585         dpll = DPLL_VGA_MODE_DIS;
4586
4587         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4588                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4589         } else {
4590                 if (clock->p1 == 2)
4591                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4592                 else
4593                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4594                 if (clock->p2 == 4)
4595                         dpll |= PLL_P2_DIVIDE_BY_4;
4596         }
4597
4598         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4599                 /* XXX: just matching BIOS for now */
4600                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4601                 dpll |= 3;
4602         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4603                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4604                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4605         else
4606                 dpll |= PLL_REF_INPUT_DREFCLK;
4607
4608         dpll |= DPLL_VCO_ENABLE;
4609         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4610         POSTING_READ(DPLL(pipe));
4611         udelay(150);
4612
4613         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4614          * This is an exception to the general rule that mode_set doesn't turn
4615          * things on.
4616          */
4617         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4618                 intel_update_lvds(crtc, clock, adjusted_mode);
4619
4620         I915_WRITE(DPLL(pipe), dpll);
4621
4622         /* Wait for the clocks to stabilize. */
4623         POSTING_READ(DPLL(pipe));
4624         udelay(150);
4625
4626         /* The pixel multiplier can only be updated once the
4627          * DPLL is enabled and the clocks are stable.
4628          *
4629          * So write it again.
4630          */
4631         I915_WRITE(DPLL(pipe), dpll);
4632 }
4633
4634 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4635                                    struct drm_display_mode *mode,
4636                                    struct drm_display_mode *adjusted_mode)
4637 {
4638         struct drm_device *dev = intel_crtc->base.dev;
4639         struct drm_i915_private *dev_priv = dev->dev_private;
4640         enum pipe pipe = intel_crtc->pipe;
4641         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4642         uint32_t vsyncshift;
4643
4644         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4645                 /* the chip adds 2 halflines automatically */
4646                 adjusted_mode->crtc_vtotal -= 1;
4647                 adjusted_mode->crtc_vblank_end -= 1;
4648                 vsyncshift = adjusted_mode->crtc_hsync_start
4649                              - adjusted_mode->crtc_htotal / 2;
4650         } else {
4651                 vsyncshift = 0;
4652         }
4653
4654         if (INTEL_INFO(dev)->gen > 3)
4655                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4656
4657         I915_WRITE(HTOTAL(cpu_transcoder),
4658                    (adjusted_mode->crtc_hdisplay - 1) |
4659                    ((adjusted_mode->crtc_htotal - 1) << 16));
4660         I915_WRITE(HBLANK(cpu_transcoder),
4661                    (adjusted_mode->crtc_hblank_start - 1) |
4662                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4663         I915_WRITE(HSYNC(cpu_transcoder),
4664                    (adjusted_mode->crtc_hsync_start - 1) |
4665                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4666
4667         I915_WRITE(VTOTAL(cpu_transcoder),
4668                    (adjusted_mode->crtc_vdisplay - 1) |
4669                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4670         I915_WRITE(VBLANK(cpu_transcoder),
4671                    (adjusted_mode->crtc_vblank_start - 1) |
4672                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4673         I915_WRITE(VSYNC(cpu_transcoder),
4674                    (adjusted_mode->crtc_vsync_start - 1) |
4675                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4676
4677         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4678          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4679          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4680          * bits. */
4681         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4682             (pipe == PIPE_B || pipe == PIPE_C))
4683                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4684
4685         /* pipesrc controls the size that is scaled from, which should
4686          * always be the user's requested size.
4687          */
4688         I915_WRITE(PIPESRC(pipe),
4689                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4690 }
4691
4692 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4693                               struct drm_display_mode *mode,
4694                               struct drm_display_mode *adjusted_mode,
4695                               int x, int y,
4696                               struct drm_framebuffer *fb)
4697 {
4698         struct drm_device *dev = crtc->dev;
4699         struct drm_i915_private *dev_priv = dev->dev_private;
4700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4701         int pipe = intel_crtc->pipe;
4702         int plane = intel_crtc->plane;
4703         int refclk, num_connectors = 0;
4704         intel_clock_t clock, reduced_clock;
4705         u32 dspcntr, pipeconf;
4706         bool ok, has_reduced_clock = false, is_sdvo = false;
4707         bool is_lvds = false, is_tv = false, is_dp = false;
4708         struct intel_encoder *encoder;
4709         const intel_limit_t *limit;
4710         int ret;
4711
4712         for_each_encoder_on_crtc(dev, crtc, encoder) {
4713                 switch (encoder->type) {
4714                 case INTEL_OUTPUT_LVDS:
4715                         is_lvds = true;
4716                         break;
4717                 case INTEL_OUTPUT_SDVO:
4718                 case INTEL_OUTPUT_HDMI:
4719                         is_sdvo = true;
4720                         if (encoder->needs_tv_clock)
4721                                 is_tv = true;
4722                         break;
4723                 case INTEL_OUTPUT_TVOUT:
4724                         is_tv = true;
4725                         break;
4726                 case INTEL_OUTPUT_DISPLAYPORT:
4727                         is_dp = true;
4728                         break;
4729                 }
4730
4731                 num_connectors++;
4732         }
4733
4734         refclk = i9xx_get_refclk(crtc, num_connectors);
4735
4736         /*
4737          * Returns a set of divisors for the desired target clock with the given
4738          * refclk, or FALSE.  The returned values represent the clock equation:
4739          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4740          */
4741         limit = intel_limit(crtc, refclk);
4742         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4743                              &clock);
4744         if (!ok) {
4745                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4746                 return -EINVAL;
4747         }
4748
4749         /* Ensure that the cursor is valid for the new mode before changing... */
4750         intel_crtc_update_cursor(crtc, true);
4751
4752         if (is_lvds && dev_priv->lvds_downclock_avail) {
4753                 /*
4754                  * Ensure we match the reduced clock's P to the target clock.
4755                  * If the clocks don't match, we can't switch the display clock
4756                  * by using the FP0/FP1. In such case we will disable the LVDS
4757                  * downclock feature.
4758                 */
4759                 has_reduced_clock = limit->find_pll(limit, crtc,
4760                                                     dev_priv->lvds_downclock,
4761                                                     refclk,
4762                                                     &clock,
4763                                                     &reduced_clock);
4764         }
4765
4766         if (is_sdvo && is_tv)
4767                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4768
4769         if (IS_GEN2(dev))
4770                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4771                                 has_reduced_clock ? &reduced_clock : NULL,
4772                                 num_connectors);
4773         else if (IS_VALLEYVIEW(dev))
4774                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4775                                 has_reduced_clock ? &reduced_clock : NULL,
4776                                 num_connectors);
4777         else
4778                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4779                                 has_reduced_clock ? &reduced_clock : NULL,
4780                                 num_connectors);
4781
4782         /* setup pipeconf */
4783         pipeconf = I915_READ(PIPECONF(pipe));
4784
4785         /* Set up the display plane register */
4786         dspcntr = DISPPLANE_GAMMA_ENABLE;
4787
4788         if (pipe == 0)
4789                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4790         else
4791                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4792
4793         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4794                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4795                  * core speed.
4796                  *
4797                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4798                  * pipe == 0 check?
4799                  */
4800                 if (mode->clock >
4801                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4802                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4803                 else
4804                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4805         }
4806
4807         /* default to 8bpc */
4808         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4809         if (is_dp) {
4810                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4811                         pipeconf |= PIPECONF_BPP_6 |
4812                                     PIPECONF_DITHER_EN |
4813                                     PIPECONF_DITHER_TYPE_SP;
4814                 }
4815         }
4816
4817         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4818                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4819                         pipeconf |= PIPECONF_BPP_6 |
4820                                         PIPECONF_ENABLE |
4821                                         I965_PIPECONF_ACTIVE;
4822                 }
4823         }
4824
4825         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4826         drm_mode_debug_printmodeline(mode);
4827
4828         if (HAS_PIPE_CXSR(dev)) {
4829                 if (intel_crtc->lowfreq_avail) {
4830                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4831                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4832                 } else {
4833                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4834                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4835                 }
4836         }
4837
4838         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4839         if (!IS_GEN2(dev) &&
4840             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4841                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4842         else
4843                 pipeconf |= PIPECONF_PROGRESSIVE;
4844
4845         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4846
4847         /* pipesrc and dspsize control the size that is scaled from,
4848          * which should always be the user's requested size.
4849          */
4850         I915_WRITE(DSPSIZE(plane),
4851                    ((mode->vdisplay - 1) << 16) |
4852                    (mode->hdisplay - 1));
4853         I915_WRITE(DSPPOS(plane), 0);
4854
4855         I915_WRITE(PIPECONF(pipe), pipeconf);
4856         POSTING_READ(PIPECONF(pipe));
4857         intel_enable_pipe(dev_priv, pipe, false);
4858
4859         intel_wait_for_vblank(dev, pipe);
4860
4861         I915_WRITE(DSPCNTR(plane), dspcntr);
4862         POSTING_READ(DSPCNTR(plane));
4863
4864         ret = intel_pipe_set_base(crtc, x, y, fb);
4865
4866         intel_update_watermarks(dev);
4867
4868         return ret;
4869 }
4870
4871 /*
4872  * Initialize reference clocks when the driver loads
4873  */
4874 void ironlake_init_pch_refclk(struct drm_device *dev)
4875 {
4876         struct drm_i915_private *dev_priv = dev->dev_private;
4877         struct drm_mode_config *mode_config = &dev->mode_config;
4878         struct intel_encoder *encoder;
4879         u32 temp;
4880         bool has_lvds = false;
4881         bool has_cpu_edp = false;
4882         bool has_pch_edp = false;
4883         bool has_panel = false;
4884         bool has_ck505 = false;
4885         bool can_ssc = false;
4886
4887         /* We need to take the global config into account */
4888         list_for_each_entry(encoder, &mode_config->encoder_list,
4889                             base.head) {
4890                 switch (encoder->type) {
4891                 case INTEL_OUTPUT_LVDS:
4892                         has_panel = true;
4893                         has_lvds = true;
4894                         break;
4895                 case INTEL_OUTPUT_EDP:
4896                         has_panel = true;
4897                         if (intel_encoder_is_pch_edp(&encoder->base))
4898                                 has_pch_edp = true;
4899                         else
4900                                 has_cpu_edp = true;
4901                         break;
4902                 }
4903         }
4904
4905         if (HAS_PCH_IBX(dev)) {
4906                 has_ck505 = dev_priv->display_clock_mode;
4907                 can_ssc = has_ck505;
4908         } else {
4909                 has_ck505 = false;
4910                 can_ssc = true;
4911         }
4912
4913         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4914                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4915                       has_ck505);
4916
4917         /* Ironlake: try to setup display ref clock before DPLL
4918          * enabling. This is only under driver's control after
4919          * PCH B stepping, previous chipset stepping should be
4920          * ignoring this setting.
4921          */
4922         temp = I915_READ(PCH_DREF_CONTROL);
4923         /* Always enable nonspread source */
4924         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4925
4926         if (has_ck505)
4927                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4928         else
4929                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4930
4931         if (has_panel) {
4932                 temp &= ~DREF_SSC_SOURCE_MASK;
4933                 temp |= DREF_SSC_SOURCE_ENABLE;
4934
4935                 /* SSC must be turned on before enabling the CPU output  */
4936                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4937                         DRM_DEBUG_KMS("Using SSC on panel\n");
4938                         temp |= DREF_SSC1_ENABLE;
4939                 } else
4940                         temp &= ~DREF_SSC1_ENABLE;
4941
4942                 /* Get SSC going before enabling the outputs */
4943                 I915_WRITE(PCH_DREF_CONTROL, temp);
4944                 POSTING_READ(PCH_DREF_CONTROL);
4945                 udelay(200);
4946
4947                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4948
4949                 /* Enable CPU source on CPU attached eDP */
4950                 if (has_cpu_edp) {
4951                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4952                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4953                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4954                         }
4955                         else
4956                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4957                 } else
4958                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4959
4960                 I915_WRITE(PCH_DREF_CONTROL, temp);
4961                 POSTING_READ(PCH_DREF_CONTROL);
4962                 udelay(200);
4963         } else {
4964                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4965
4966                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4967
4968                 /* Turn off CPU output */
4969                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4970
4971                 I915_WRITE(PCH_DREF_CONTROL, temp);
4972                 POSTING_READ(PCH_DREF_CONTROL);
4973                 udelay(200);
4974
4975                 /* Turn off the SSC source */
4976                 temp &= ~DREF_SSC_SOURCE_MASK;
4977                 temp |= DREF_SSC_SOURCE_DISABLE;
4978
4979                 /* Turn off SSC1 */
4980                 temp &= ~ DREF_SSC1_ENABLE;
4981
4982                 I915_WRITE(PCH_DREF_CONTROL, temp);
4983                 POSTING_READ(PCH_DREF_CONTROL);
4984                 udelay(200);
4985         }
4986 }
4987
4988 static int ironlake_get_refclk(struct drm_crtc *crtc)
4989 {
4990         struct drm_device *dev = crtc->dev;
4991         struct drm_i915_private *dev_priv = dev->dev_private;
4992         struct intel_encoder *encoder;
4993         struct intel_encoder *edp_encoder = NULL;
4994         int num_connectors = 0;
4995         bool is_lvds = false;
4996
4997         for_each_encoder_on_crtc(dev, crtc, encoder) {
4998                 switch (encoder->type) {
4999                 case INTEL_OUTPUT_LVDS:
5000                         is_lvds = true;
5001                         break;
5002                 case INTEL_OUTPUT_EDP:
5003                         edp_encoder = encoder;
5004                         break;
5005                 }
5006                 num_connectors++;
5007         }
5008
5009         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5010                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5011                               dev_priv->lvds_ssc_freq);
5012                 return dev_priv->lvds_ssc_freq * 1000;
5013         }
5014
5015         return 120000;
5016 }
5017
5018 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5019                                   struct drm_display_mode *adjusted_mode,
5020                                   bool dither)
5021 {
5022         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5024         int pipe = intel_crtc->pipe;
5025         uint32_t val;
5026
5027         val = I915_READ(PIPECONF(pipe));
5028
5029         val &= ~PIPE_BPC_MASK;
5030         switch (intel_crtc->bpp) {
5031         case 18:
5032                 val |= PIPE_6BPC;
5033                 break;
5034         case 24:
5035                 val |= PIPE_8BPC;
5036                 break;
5037         case 30:
5038                 val |= PIPE_10BPC;
5039                 break;
5040         case 36:
5041                 val |= PIPE_12BPC;
5042                 break;
5043         default:
5044                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5045                 BUG();
5046         }
5047
5048         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5049         if (dither)
5050                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5051
5052         val &= ~PIPECONF_INTERLACE_MASK;
5053         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5054                 val |= PIPECONF_INTERLACED_ILK;
5055         else
5056                 val |= PIPECONF_PROGRESSIVE;
5057
5058         I915_WRITE(PIPECONF(pipe), val);
5059         POSTING_READ(PIPECONF(pipe));
5060 }
5061
5062 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5063                                  struct drm_display_mode *adjusted_mode,
5064                                  bool dither)
5065 {
5066         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5068         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5069         uint32_t val;
5070
5071         val = I915_READ(PIPECONF(cpu_transcoder));
5072
5073         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5074         if (dither)
5075                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5076
5077         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5078         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5079                 val |= PIPECONF_INTERLACED_ILK;
5080         else
5081                 val |= PIPECONF_PROGRESSIVE;
5082
5083         I915_WRITE(PIPECONF(cpu_transcoder), val);
5084         POSTING_READ(PIPECONF(cpu_transcoder));
5085 }
5086
5087 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5088                                     struct drm_display_mode *adjusted_mode,
5089                                     intel_clock_t *clock,
5090                                     bool *has_reduced_clock,
5091                                     intel_clock_t *reduced_clock)
5092 {
5093         struct drm_device *dev = crtc->dev;
5094         struct drm_i915_private *dev_priv = dev->dev_private;
5095         struct intel_encoder *intel_encoder;
5096         int refclk;
5097         const intel_limit_t *limit;
5098         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5099
5100         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5101                 switch (intel_encoder->type) {
5102                 case INTEL_OUTPUT_LVDS:
5103                         is_lvds = true;
5104                         break;
5105                 case INTEL_OUTPUT_SDVO:
5106                 case INTEL_OUTPUT_HDMI:
5107                         is_sdvo = true;
5108                         if (intel_encoder->needs_tv_clock)
5109                                 is_tv = true;
5110                         break;
5111                 case INTEL_OUTPUT_TVOUT:
5112                         is_tv = true;
5113                         break;
5114                 }
5115         }
5116
5117         refclk = ironlake_get_refclk(crtc);
5118
5119         /*
5120          * Returns a set of divisors for the desired target clock with the given
5121          * refclk, or FALSE.  The returned values represent the clock equation:
5122          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5123          */
5124         limit = intel_limit(crtc, refclk);
5125         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5126                               clock);
5127         if (!ret)
5128                 return false;
5129
5130         if (is_lvds && dev_priv->lvds_downclock_avail) {
5131                 /*
5132                  * Ensure we match the reduced clock's P to the target clock.
5133                  * If the clocks don't match, we can't switch the display clock
5134                  * by using the FP0/FP1. In such case we will disable the LVDS
5135                  * downclock feature.
5136                 */
5137                 *has_reduced_clock = limit->find_pll(limit, crtc,
5138                                                      dev_priv->lvds_downclock,
5139                                                      refclk,
5140                                                      clock,
5141                                                      reduced_clock);
5142         }
5143
5144         if (is_sdvo && is_tv)
5145                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5146
5147         return true;
5148 }
5149
5150 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5151 {
5152         struct drm_i915_private *dev_priv = dev->dev_private;
5153         uint32_t temp;
5154
5155         temp = I915_READ(SOUTH_CHICKEN1);
5156         if (temp & FDI_BC_BIFURCATION_SELECT)
5157                 return;
5158
5159         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5160         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5161
5162         temp |= FDI_BC_BIFURCATION_SELECT;
5163         DRM_DEBUG_KMS("enabling fdi C rx\n");
5164         I915_WRITE(SOUTH_CHICKEN1, temp);
5165         POSTING_READ(SOUTH_CHICKEN1);
5166 }
5167
5168 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5169 {
5170         struct drm_device *dev = intel_crtc->base.dev;
5171         struct drm_i915_private *dev_priv = dev->dev_private;
5172         struct intel_crtc *pipe_B_crtc =
5173                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5174
5175         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5176                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5177         if (intel_crtc->fdi_lanes > 4) {
5178                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5179                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5180                 /* Clamp lanes to avoid programming the hw with bogus values. */
5181                 intel_crtc->fdi_lanes = 4;
5182
5183                 return false;
5184         }
5185
5186         if (dev_priv->num_pipe == 2)
5187                 return true;
5188
5189         switch (intel_crtc->pipe) {
5190         case PIPE_A:
5191                 return true;
5192         case PIPE_B:
5193                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5194                     intel_crtc->fdi_lanes > 2) {
5195                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5196                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5197                         /* Clamp lanes to avoid programming the hw with bogus values. */
5198                         intel_crtc->fdi_lanes = 2;
5199
5200                         return false;
5201                 }
5202
5203                 if (intel_crtc->fdi_lanes > 2)
5204                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5205                 else
5206                         cpt_enable_fdi_bc_bifurcation(dev);
5207
5208                 return true;
5209         case PIPE_C:
5210                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5211                         if (intel_crtc->fdi_lanes > 2) {
5212                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5213                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5214                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5215                                 intel_crtc->fdi_lanes = 2;
5216
5217                                 return false;
5218                         }
5219                 } else {
5220                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5221                         return false;
5222                 }
5223
5224                 cpt_enable_fdi_bc_bifurcation(dev);
5225
5226                 return true;
5227         default:
5228                 BUG();
5229         }
5230 }
5231
5232 static void ironlake_set_m_n(struct drm_crtc *crtc,
5233                              struct drm_display_mode *mode,
5234                              struct drm_display_mode *adjusted_mode)
5235 {
5236         struct drm_device *dev = crtc->dev;
5237         struct drm_i915_private *dev_priv = dev->dev_private;
5238         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5239         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5240         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5241         struct fdi_m_n m_n = {0};
5242         int target_clock, pixel_multiplier, lane, link_bw;
5243         bool is_dp = false, is_cpu_edp = false;
5244
5245         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5246                 switch (intel_encoder->type) {
5247                 case INTEL_OUTPUT_DISPLAYPORT:
5248                         is_dp = true;
5249                         break;
5250                 case INTEL_OUTPUT_EDP:
5251                         is_dp = true;
5252                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5253                                 is_cpu_edp = true;
5254                         edp_encoder = intel_encoder;
5255                         break;
5256                 }
5257         }
5258
5259         /* FDI link */
5260         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5261         lane = 0;
5262         /* CPU eDP doesn't require FDI link, so just set DP M/N
5263            according to current link config */
5264         if (is_cpu_edp) {
5265                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5266         } else {
5267                 /* FDI is a binary signal running at ~2.7GHz, encoding
5268                  * each output octet as 10 bits. The actual frequency
5269                  * is stored as a divider into a 100MHz clock, and the
5270                  * mode pixel clock is stored in units of 1KHz.
5271                  * Hence the bw of each lane in terms of the mode signal
5272                  * is:
5273                  */
5274                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5275         }
5276
5277         /* [e]DP over FDI requires target mode clock instead of link clock. */
5278         if (edp_encoder)
5279                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5280         else if (is_dp)
5281                 target_clock = mode->clock;
5282         else
5283                 target_clock = adjusted_mode->clock;
5284
5285         if (!lane) {
5286                 /*
5287                  * Account for spread spectrum to avoid
5288                  * oversubscribing the link. Max center spread
5289                  * is 2.5%; use 5% for safety's sake.
5290                  */
5291                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5292                 lane = bps / (link_bw * 8) + 1;
5293         }
5294
5295         intel_crtc->fdi_lanes = lane;
5296
5297         if (pixel_multiplier > 1)
5298                 link_bw *= pixel_multiplier;
5299         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5300                              &m_n);
5301
5302         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5303         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5304         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5305         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5306 }
5307
5308 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5309                                       struct drm_display_mode *adjusted_mode,
5310                                       intel_clock_t *clock, u32 fp)
5311 {
5312         struct drm_crtc *crtc = &intel_crtc->base;
5313         struct drm_device *dev = crtc->dev;
5314         struct drm_i915_private *dev_priv = dev->dev_private;
5315         struct intel_encoder *intel_encoder;
5316         uint32_t dpll;
5317         int factor, pixel_multiplier, num_connectors = 0;
5318         bool is_lvds = false, is_sdvo = false, is_tv = false;
5319         bool is_dp = false, is_cpu_edp = false;
5320
5321         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5322                 switch (intel_encoder->type) {
5323                 case INTEL_OUTPUT_LVDS:
5324                         is_lvds = true;
5325                         break;
5326                 case INTEL_OUTPUT_SDVO:
5327                 case INTEL_OUTPUT_HDMI:
5328                         is_sdvo = true;
5329                         if (intel_encoder->needs_tv_clock)
5330                                 is_tv = true;
5331                         break;
5332                 case INTEL_OUTPUT_TVOUT:
5333                         is_tv = true;
5334                         break;
5335                 case INTEL_OUTPUT_DISPLAYPORT:
5336                         is_dp = true;
5337                         break;
5338                 case INTEL_OUTPUT_EDP:
5339                         is_dp = true;
5340                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5341                                 is_cpu_edp = true;
5342                         break;
5343                 }
5344
5345                 num_connectors++;
5346         }
5347
5348         /* Enable autotuning of the PLL clock (if permissible) */
5349         factor = 21;
5350         if (is_lvds) {
5351                 if ((intel_panel_use_ssc(dev_priv) &&
5352                      dev_priv->lvds_ssc_freq == 100) ||
5353                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5354                         factor = 25;
5355         } else if (is_sdvo && is_tv)
5356                 factor = 20;
5357
5358         if (clock->m < factor * clock->n)
5359                 fp |= FP_CB_TUNE;
5360
5361         dpll = 0;
5362
5363         if (is_lvds)
5364                 dpll |= DPLLB_MODE_LVDS;
5365         else
5366                 dpll |= DPLLB_MODE_DAC_SERIAL;
5367         if (is_sdvo) {
5368                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5369                 if (pixel_multiplier > 1) {
5370                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5371                 }
5372                 dpll |= DPLL_DVO_HIGH_SPEED;
5373         }
5374         if (is_dp && !is_cpu_edp)
5375                 dpll |= DPLL_DVO_HIGH_SPEED;
5376
5377         /* compute bitmask from p1 value */
5378         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5379         /* also FPA1 */
5380         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5381
5382         switch (clock->p2) {
5383         case 5:
5384                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5385                 break;
5386         case 7:
5387                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5388                 break;
5389         case 10:
5390                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5391                 break;
5392         case 14:
5393                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5394                 break;
5395         }
5396
5397         if (is_sdvo && is_tv)
5398                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5399         else if (is_tv)
5400                 /* XXX: just matching BIOS for now */
5401                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5402                 dpll |= 3;
5403         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5404                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5405         else
5406                 dpll |= PLL_REF_INPUT_DREFCLK;
5407
5408         return dpll;
5409 }
5410
5411 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5412                                   struct drm_display_mode *mode,
5413                                   struct drm_display_mode *adjusted_mode,
5414                                   int x, int y,
5415                                   struct drm_framebuffer *fb)
5416 {
5417         struct drm_device *dev = crtc->dev;
5418         struct drm_i915_private *dev_priv = dev->dev_private;
5419         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5420         int pipe = intel_crtc->pipe;
5421         int plane = intel_crtc->plane;
5422         int num_connectors = 0;
5423         intel_clock_t clock, reduced_clock;
5424         u32 dpll, fp = 0, fp2 = 0;
5425         bool ok, has_reduced_clock = false;
5426         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5427         struct intel_encoder *encoder;
5428         u32 temp;
5429         int ret;
5430         bool dither, fdi_config_ok;
5431
5432         for_each_encoder_on_crtc(dev, crtc, encoder) {
5433                 switch (encoder->type) {
5434                 case INTEL_OUTPUT_LVDS:
5435                         is_lvds = true;
5436                         break;
5437                 case INTEL_OUTPUT_DISPLAYPORT:
5438                         is_dp = true;
5439                         break;
5440                 case INTEL_OUTPUT_EDP:
5441                         is_dp = true;
5442                         if (!intel_encoder_is_pch_edp(&encoder->base))
5443                                 is_cpu_edp = true;
5444                         break;
5445                 }
5446
5447                 num_connectors++;
5448         }
5449
5450         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5451              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5452
5453         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5454                                      &has_reduced_clock, &reduced_clock);
5455         if (!ok) {
5456                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5457                 return -EINVAL;
5458         }
5459
5460         /* Ensure that the cursor is valid for the new mode before changing... */
5461         intel_crtc_update_cursor(crtc, true);
5462
5463         /* determine panel color depth */
5464         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5465                                               adjusted_mode);
5466         if (is_lvds && dev_priv->lvds_dither)
5467                 dither = true;
5468
5469         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5470         if (has_reduced_clock)
5471                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5472                         reduced_clock.m2;
5473
5474         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5475
5476         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5477         drm_mode_debug_printmodeline(mode);
5478
5479         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5480         if (!is_cpu_edp) {
5481                 struct intel_pch_pll *pll;
5482
5483                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5484                 if (pll == NULL) {
5485                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5486                                          pipe);
5487                         return -EINVAL;
5488                 }
5489         } else
5490                 intel_put_pch_pll(intel_crtc);
5491
5492         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5493          * This is an exception to the general rule that mode_set doesn't turn
5494          * things on.
5495          */
5496         if (is_lvds) {
5497                 temp = I915_READ(PCH_LVDS);
5498                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5499                 if (HAS_PCH_CPT(dev)) {
5500                         temp &= ~PORT_TRANS_SEL_MASK;
5501                         temp |= PORT_TRANS_SEL_CPT(pipe);
5502                 } else {
5503                         if (pipe == 1)
5504                                 temp |= LVDS_PIPEB_SELECT;
5505                         else
5506                                 temp &= ~LVDS_PIPEB_SELECT;
5507                 }
5508
5509                 /* set the corresponsding LVDS_BORDER bit */
5510                 temp |= dev_priv->lvds_border_bits;
5511                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5512                  * set the DPLLs for dual-channel mode or not.
5513                  */
5514                 if (clock.p2 == 7)
5515                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5516                 else
5517                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5518
5519                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5520                  * appropriately here, but we need to look more thoroughly into how
5521                  * panels behave in the two modes.
5522                  */
5523                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5524                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5525                         temp |= LVDS_HSYNC_POLARITY;
5526                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5527                         temp |= LVDS_VSYNC_POLARITY;
5528                 I915_WRITE(PCH_LVDS, temp);
5529         }
5530
5531         if (is_dp && !is_cpu_edp) {
5532                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5533         } else {
5534                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5535                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5536                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5537                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5538                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5539         }
5540
5541         if (intel_crtc->pch_pll) {
5542                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5543
5544                 /* Wait for the clocks to stabilize. */
5545                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5546                 udelay(150);
5547
5548                 /* The pixel multiplier can only be updated once the
5549                  * DPLL is enabled and the clocks are stable.
5550                  *
5551                  * So write it again.
5552                  */
5553                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5554         }
5555
5556         intel_crtc->lowfreq_avail = false;
5557         if (intel_crtc->pch_pll) {
5558                 if (is_lvds && has_reduced_clock && i915_powersave) {
5559                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5560                         intel_crtc->lowfreq_avail = true;
5561                 } else {
5562                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5563                 }
5564         }
5565
5566         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5567
5568         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5569          * ironlake_check_fdi_lanes. */
5570         ironlake_set_m_n(crtc, mode, adjusted_mode);
5571
5572         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5573
5574         if (is_cpu_edp)
5575                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5576
5577         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5578
5579         intel_wait_for_vblank(dev, pipe);
5580
5581         /* Set up the display plane register */
5582         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5583         POSTING_READ(DSPCNTR(plane));
5584
5585         ret = intel_pipe_set_base(crtc, x, y, fb);
5586
5587         intel_update_watermarks(dev);
5588
5589         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5590
5591         return fdi_config_ok ? ret : -EINVAL;
5592 }
5593
5594 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5595                                  struct drm_display_mode *mode,
5596                                  struct drm_display_mode *adjusted_mode,
5597                                  int x, int y,
5598                                  struct drm_framebuffer *fb)
5599 {
5600         struct drm_device *dev = crtc->dev;
5601         struct drm_i915_private *dev_priv = dev->dev_private;
5602         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5603         int pipe = intel_crtc->pipe;
5604         int plane = intel_crtc->plane;
5605         int num_connectors = 0;
5606         intel_clock_t clock, reduced_clock;
5607         u32 dpll = 0, fp = 0, fp2 = 0;
5608         bool ok, has_reduced_clock = false;
5609         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5610         struct intel_encoder *encoder;
5611         u32 temp;
5612         int ret;
5613         bool dither;
5614
5615         for_each_encoder_on_crtc(dev, crtc, encoder) {
5616                 switch (encoder->type) {
5617                 case INTEL_OUTPUT_LVDS:
5618                         is_lvds = true;
5619                         break;
5620                 case INTEL_OUTPUT_DISPLAYPORT:
5621                         is_dp = true;
5622                         break;
5623                 case INTEL_OUTPUT_EDP:
5624                         is_dp = true;
5625                         if (!intel_encoder_is_pch_edp(&encoder->base))
5626                                 is_cpu_edp = true;
5627                         break;
5628                 }
5629
5630                 num_connectors++;
5631         }
5632
5633         if (is_cpu_edp)
5634                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5635         else
5636                 intel_crtc->cpu_transcoder = pipe;
5637
5638         /* We are not sure yet this won't happen. */
5639         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5640              INTEL_PCH_TYPE(dev));
5641
5642         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5643              num_connectors, pipe_name(pipe));
5644
5645         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5646                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5647
5648         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5649
5650         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5651                 return -EINVAL;
5652
5653         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5654                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5655                                              &has_reduced_clock,
5656                                              &reduced_clock);
5657                 if (!ok) {
5658                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5659                         return -EINVAL;
5660                 }
5661         }
5662
5663         /* Ensure that the cursor is valid for the new mode before changing... */
5664         intel_crtc_update_cursor(crtc, true);
5665
5666         /* determine panel color depth */
5667         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5668                                               adjusted_mode);
5669         if (is_lvds && dev_priv->lvds_dither)
5670                 dither = true;
5671
5672         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5673         drm_mode_debug_printmodeline(mode);
5674
5675         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5676                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5677                 if (has_reduced_clock)
5678                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5679                               reduced_clock.m2;
5680
5681                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5682                                              fp);
5683
5684                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5685                  * own on pre-Haswell/LPT generation */
5686                 if (!is_cpu_edp) {
5687                         struct intel_pch_pll *pll;
5688
5689                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5690                         if (pll == NULL) {
5691                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5692                                                  pipe);
5693                                 return -EINVAL;
5694                         }
5695                 } else
5696                         intel_put_pch_pll(intel_crtc);
5697
5698                 /* The LVDS pin pair needs to be on before the DPLLs are
5699                  * enabled.  This is an exception to the general rule that
5700                  * mode_set doesn't turn things on.
5701                  */
5702                 if (is_lvds) {
5703                         temp = I915_READ(PCH_LVDS);
5704                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5705                         if (HAS_PCH_CPT(dev)) {
5706                                 temp &= ~PORT_TRANS_SEL_MASK;
5707                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5708                         } else {
5709                                 if (pipe == 1)
5710                                         temp |= LVDS_PIPEB_SELECT;
5711                                 else
5712                                         temp &= ~LVDS_PIPEB_SELECT;
5713                         }
5714
5715                         /* set the corresponsding LVDS_BORDER bit */
5716                         temp |= dev_priv->lvds_border_bits;
5717                         /* Set the B0-B3 data pairs corresponding to whether
5718                          * we're going to set the DPLLs for dual-channel mode or
5719                          * not.
5720                          */
5721                         if (clock.p2 == 7)
5722                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5723                         else
5724                                 temp &= ~(LVDS_B0B3_POWER_UP |
5725                                           LVDS_CLKB_POWER_UP);
5726
5727                         /* It would be nice to set 24 vs 18-bit mode
5728                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5729                          * look more thoroughly into how panels behave in the
5730                          * two modes.
5731                          */
5732                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5733                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5734                                 temp |= LVDS_HSYNC_POLARITY;
5735                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5736                                 temp |= LVDS_VSYNC_POLARITY;
5737                         I915_WRITE(PCH_LVDS, temp);
5738                 }
5739         }
5740
5741         if (is_dp && !is_cpu_edp) {
5742                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5743         } else {
5744                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5745                         /* For non-DP output, clear any trans DP clock recovery
5746                          * setting.*/
5747                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5748                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5749                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5750                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5751                 }
5752         }
5753
5754         intel_crtc->lowfreq_avail = false;
5755         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5756                 if (intel_crtc->pch_pll) {
5757                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5758
5759                         /* Wait for the clocks to stabilize. */
5760                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5761                         udelay(150);
5762
5763                         /* The pixel multiplier can only be updated once the
5764                          * DPLL is enabled and the clocks are stable.
5765                          *
5766                          * So write it again.
5767                          */
5768                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5769                 }
5770
5771                 if (intel_crtc->pch_pll) {
5772                         if (is_lvds && has_reduced_clock && i915_powersave) {
5773                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5774                                 intel_crtc->lowfreq_avail = true;
5775                         } else {
5776                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5777                         }
5778                 }
5779         }
5780
5781         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5782
5783         if (!is_dp || is_cpu_edp)
5784                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5785
5786         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5787                 if (is_cpu_edp)
5788                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5789
5790         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5791
5792         /* Set up the display plane register */
5793         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5794         POSTING_READ(DSPCNTR(plane));
5795
5796         ret = intel_pipe_set_base(crtc, x, y, fb);
5797
5798         intel_update_watermarks(dev);
5799
5800         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5801
5802         return ret;
5803 }
5804
5805 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5806                                struct drm_display_mode *mode,
5807                                struct drm_display_mode *adjusted_mode,
5808                                int x, int y,
5809                                struct drm_framebuffer *fb)
5810 {
5811         struct drm_device *dev = crtc->dev;
5812         struct drm_i915_private *dev_priv = dev->dev_private;
5813         struct drm_encoder_helper_funcs *encoder_funcs;
5814         struct intel_encoder *encoder;
5815         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5816         int pipe = intel_crtc->pipe;
5817         int ret;
5818
5819         drm_vblank_pre_modeset(dev, pipe);
5820
5821         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5822                                               x, y, fb);
5823         drm_vblank_post_modeset(dev, pipe);
5824
5825         if (ret != 0)
5826                 return ret;
5827
5828         for_each_encoder_on_crtc(dev, crtc, encoder) {
5829                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5830                         encoder->base.base.id,
5831                         drm_get_encoder_name(&encoder->base),
5832                         mode->base.id, mode->name);
5833                 encoder_funcs = encoder->base.helper_private;
5834                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5835         }
5836
5837         return 0;
5838 }
5839
5840 static bool intel_eld_uptodate(struct drm_connector *connector,
5841                                int reg_eldv, uint32_t bits_eldv,
5842                                int reg_elda, uint32_t bits_elda,
5843                                int reg_edid)
5844 {
5845         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5846         uint8_t *eld = connector->eld;
5847         uint32_t i;
5848
5849         i = I915_READ(reg_eldv);
5850         i &= bits_eldv;
5851
5852         if (!eld[0])
5853                 return !i;
5854
5855         if (!i)
5856                 return false;
5857
5858         i = I915_READ(reg_elda);
5859         i &= ~bits_elda;
5860         I915_WRITE(reg_elda, i);
5861
5862         for (i = 0; i < eld[2]; i++)
5863                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5864                         return false;
5865
5866         return true;
5867 }
5868
5869 static void g4x_write_eld(struct drm_connector *connector,
5870                           struct drm_crtc *crtc)
5871 {
5872         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5873         uint8_t *eld = connector->eld;
5874         uint32_t eldv;
5875         uint32_t len;
5876         uint32_t i;
5877
5878         i = I915_READ(G4X_AUD_VID_DID);
5879
5880         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5881                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5882         else
5883                 eldv = G4X_ELDV_DEVCTG;
5884
5885         if (intel_eld_uptodate(connector,
5886                                G4X_AUD_CNTL_ST, eldv,
5887                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5888                                G4X_HDMIW_HDMIEDID))
5889                 return;
5890
5891         i = I915_READ(G4X_AUD_CNTL_ST);
5892         i &= ~(eldv | G4X_ELD_ADDR);
5893         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5894         I915_WRITE(G4X_AUD_CNTL_ST, i);
5895
5896         if (!eld[0])
5897                 return;
5898
5899         len = min_t(uint8_t, eld[2], len);
5900         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5901         for (i = 0; i < len; i++)
5902                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5903
5904         i = I915_READ(G4X_AUD_CNTL_ST);
5905         i |= eldv;
5906         I915_WRITE(G4X_AUD_CNTL_ST, i);
5907 }
5908
5909 static void haswell_write_eld(struct drm_connector *connector,
5910                                      struct drm_crtc *crtc)
5911 {
5912         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5913         uint8_t *eld = connector->eld;
5914         struct drm_device *dev = crtc->dev;
5915         uint32_t eldv;
5916         uint32_t i;
5917         int len;
5918         int pipe = to_intel_crtc(crtc)->pipe;
5919         int tmp;
5920
5921         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5922         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5923         int aud_config = HSW_AUD_CFG(pipe);
5924         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5925
5926
5927         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5928
5929         /* Audio output enable */
5930         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5931         tmp = I915_READ(aud_cntrl_st2);
5932         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5933         I915_WRITE(aud_cntrl_st2, tmp);
5934
5935         /* Wait for 1 vertical blank */
5936         intel_wait_for_vblank(dev, pipe);
5937
5938         /* Set ELD valid state */
5939         tmp = I915_READ(aud_cntrl_st2);
5940         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5941         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5942         I915_WRITE(aud_cntrl_st2, tmp);
5943         tmp = I915_READ(aud_cntrl_st2);
5944         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5945
5946         /* Enable HDMI mode */
5947         tmp = I915_READ(aud_config);
5948         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5949         /* clear N_programing_enable and N_value_index */
5950         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5951         I915_WRITE(aud_config, tmp);
5952
5953         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5954
5955         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5956
5957         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5958                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5959                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5960                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5961         } else
5962                 I915_WRITE(aud_config, 0);
5963
5964         if (intel_eld_uptodate(connector,
5965                                aud_cntrl_st2, eldv,
5966                                aud_cntl_st, IBX_ELD_ADDRESS,
5967                                hdmiw_hdmiedid))
5968                 return;
5969
5970         i = I915_READ(aud_cntrl_st2);
5971         i &= ~eldv;
5972         I915_WRITE(aud_cntrl_st2, i);
5973
5974         if (!eld[0])
5975                 return;
5976
5977         i = I915_READ(aud_cntl_st);
5978         i &= ~IBX_ELD_ADDRESS;
5979         I915_WRITE(aud_cntl_st, i);
5980         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5981         DRM_DEBUG_DRIVER("port num:%d\n", i);
5982
5983         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5984         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5985         for (i = 0; i < len; i++)
5986                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5987
5988         i = I915_READ(aud_cntrl_st2);
5989         i |= eldv;
5990         I915_WRITE(aud_cntrl_st2, i);
5991
5992 }
5993
5994 static void ironlake_write_eld(struct drm_connector *connector,
5995                                      struct drm_crtc *crtc)
5996 {
5997         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5998         uint8_t *eld = connector->eld;
5999         uint32_t eldv;
6000         uint32_t i;
6001         int len;
6002         int hdmiw_hdmiedid;
6003         int aud_config;
6004         int aud_cntl_st;
6005         int aud_cntrl_st2;
6006         int pipe = to_intel_crtc(crtc)->pipe;
6007
6008         if (HAS_PCH_IBX(connector->dev)) {
6009                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6010                 aud_config = IBX_AUD_CFG(pipe);
6011                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6012                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6013         } else {
6014                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6015                 aud_config = CPT_AUD_CFG(pipe);
6016                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6017                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6018         }
6019
6020         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6021
6022         i = I915_READ(aud_cntl_st);
6023         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6024         if (!i) {
6025                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6026                 /* operate blindly on all ports */
6027                 eldv = IBX_ELD_VALIDB;
6028                 eldv |= IBX_ELD_VALIDB << 4;
6029                 eldv |= IBX_ELD_VALIDB << 8;
6030         } else {
6031                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6032                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6033         }
6034
6035         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6036                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6037                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6038                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6039         } else
6040                 I915_WRITE(aud_config, 0);
6041
6042         if (intel_eld_uptodate(connector,
6043                                aud_cntrl_st2, eldv,
6044                                aud_cntl_st, IBX_ELD_ADDRESS,
6045                                hdmiw_hdmiedid))
6046                 return;
6047
6048         i = I915_READ(aud_cntrl_st2);
6049         i &= ~eldv;
6050         I915_WRITE(aud_cntrl_st2, i);
6051
6052         if (!eld[0])
6053                 return;
6054
6055         i = I915_READ(aud_cntl_st);
6056         i &= ~IBX_ELD_ADDRESS;
6057         I915_WRITE(aud_cntl_st, i);
6058
6059         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6060         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6061         for (i = 0; i < len; i++)
6062                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6063
6064         i = I915_READ(aud_cntrl_st2);
6065         i |= eldv;
6066         I915_WRITE(aud_cntrl_st2, i);
6067 }
6068
6069 void intel_write_eld(struct drm_encoder *encoder,
6070                      struct drm_display_mode *mode)
6071 {
6072         struct drm_crtc *crtc = encoder->crtc;
6073         struct drm_connector *connector;
6074         struct drm_device *dev = encoder->dev;
6075         struct drm_i915_private *dev_priv = dev->dev_private;
6076
6077         connector = drm_select_eld(encoder, mode);
6078         if (!connector)
6079                 return;
6080
6081         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6082                          connector->base.id,
6083                          drm_get_connector_name(connector),
6084                          connector->encoder->base.id,
6085                          drm_get_encoder_name(connector->encoder));
6086
6087         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6088
6089         if (dev_priv->display.write_eld)
6090                 dev_priv->display.write_eld(connector, crtc);
6091 }
6092
6093 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6094 void intel_crtc_load_lut(struct drm_crtc *crtc)
6095 {
6096         struct drm_device *dev = crtc->dev;
6097         struct drm_i915_private *dev_priv = dev->dev_private;
6098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6099         int palreg = PALETTE(intel_crtc->pipe);
6100         int i;
6101
6102         /* The clocks have to be on to load the palette. */
6103         if (!crtc->enabled || !intel_crtc->active)
6104                 return;
6105
6106         /* use legacy palette for Ironlake */
6107         if (HAS_PCH_SPLIT(dev))
6108                 palreg = LGC_PALETTE(intel_crtc->pipe);
6109
6110         for (i = 0; i < 256; i++) {
6111                 I915_WRITE(palreg + 4 * i,
6112                            (intel_crtc->lut_r[i] << 16) |
6113                            (intel_crtc->lut_g[i] << 8) |
6114                            intel_crtc->lut_b[i]);
6115         }
6116 }
6117
6118 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6119 {
6120         struct drm_device *dev = crtc->dev;
6121         struct drm_i915_private *dev_priv = dev->dev_private;
6122         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6123         bool visible = base != 0;
6124         u32 cntl;
6125
6126         if (intel_crtc->cursor_visible == visible)
6127                 return;
6128
6129         cntl = I915_READ(_CURACNTR);
6130         if (visible) {
6131                 /* On these chipsets we can only modify the base whilst
6132                  * the cursor is disabled.
6133                  */
6134                 I915_WRITE(_CURABASE, base);
6135
6136                 cntl &= ~(CURSOR_FORMAT_MASK);
6137                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6138                 cntl |= CURSOR_ENABLE |
6139                         CURSOR_GAMMA_ENABLE |
6140                         CURSOR_FORMAT_ARGB;
6141         } else
6142                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6143         I915_WRITE(_CURACNTR, cntl);
6144
6145         intel_crtc->cursor_visible = visible;
6146 }
6147
6148 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6149 {
6150         struct drm_device *dev = crtc->dev;
6151         struct drm_i915_private *dev_priv = dev->dev_private;
6152         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6153         int pipe = intel_crtc->pipe;
6154         bool visible = base != 0;
6155
6156         if (intel_crtc->cursor_visible != visible) {
6157                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6158                 if (base) {
6159                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6160                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6161                         cntl |= pipe << 28; /* Connect to correct pipe */
6162                 } else {
6163                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6164                         cntl |= CURSOR_MODE_DISABLE;
6165                 }
6166                 I915_WRITE(CURCNTR(pipe), cntl);
6167
6168                 intel_crtc->cursor_visible = visible;
6169         }
6170         /* and commit changes on next vblank */
6171         I915_WRITE(CURBASE(pipe), base);
6172 }
6173
6174 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6175 {
6176         struct drm_device *dev = crtc->dev;
6177         struct drm_i915_private *dev_priv = dev->dev_private;
6178         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6179         int pipe = intel_crtc->pipe;
6180         bool visible = base != 0;
6181
6182         if (intel_crtc->cursor_visible != visible) {
6183                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6184                 if (base) {
6185                         cntl &= ~CURSOR_MODE;
6186                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6187                 } else {
6188                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6189                         cntl |= CURSOR_MODE_DISABLE;
6190                 }
6191                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6192
6193                 intel_crtc->cursor_visible = visible;
6194         }
6195         /* and commit changes on next vblank */
6196         I915_WRITE(CURBASE_IVB(pipe), base);
6197 }
6198
6199 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6200 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6201                                      bool on)
6202 {
6203         struct drm_device *dev = crtc->dev;
6204         struct drm_i915_private *dev_priv = dev->dev_private;
6205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6206         int pipe = intel_crtc->pipe;
6207         int x = intel_crtc->cursor_x;
6208         int y = intel_crtc->cursor_y;
6209         u32 base, pos;
6210         bool visible;
6211
6212         pos = 0;
6213
6214         if (on && crtc->enabled && crtc->fb) {
6215                 base = intel_crtc->cursor_addr;
6216                 if (x > (int) crtc->fb->width)
6217                         base = 0;
6218
6219                 if (y > (int) crtc->fb->height)
6220                         base = 0;
6221         } else
6222                 base = 0;
6223
6224         if (x < 0) {
6225                 if (x + intel_crtc->cursor_width < 0)
6226                         base = 0;
6227
6228                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6229                 x = -x;
6230         }
6231         pos |= x << CURSOR_X_SHIFT;
6232
6233         if (y < 0) {
6234                 if (y + intel_crtc->cursor_height < 0)
6235                         base = 0;
6236
6237                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6238                 y = -y;
6239         }
6240         pos |= y << CURSOR_Y_SHIFT;
6241
6242         visible = base != 0;
6243         if (!visible && !intel_crtc->cursor_visible)
6244                 return;
6245
6246         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6247                 I915_WRITE(CURPOS_IVB(pipe), pos);
6248                 ivb_update_cursor(crtc, base);
6249         } else {
6250                 I915_WRITE(CURPOS(pipe), pos);
6251                 if (IS_845G(dev) || IS_I865G(dev))
6252                         i845_update_cursor(crtc, base);
6253                 else
6254                         i9xx_update_cursor(crtc, base);
6255         }
6256 }
6257
6258 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6259                                  struct drm_file *file,
6260                                  uint32_t handle,
6261                                  uint32_t width, uint32_t height)
6262 {
6263         struct drm_device *dev = crtc->dev;
6264         struct drm_i915_private *dev_priv = dev->dev_private;
6265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6266         struct drm_i915_gem_object *obj;
6267         uint32_t addr;
6268         int ret;
6269
6270         /* if we want to turn off the cursor ignore width and height */
6271         if (!handle) {
6272                 DRM_DEBUG_KMS("cursor off\n");
6273                 addr = 0;
6274                 obj = NULL;
6275                 mutex_lock(&dev->struct_mutex);
6276                 goto finish;
6277         }
6278
6279         /* Currently we only support 64x64 cursors */
6280         if (width != 64 || height != 64) {
6281                 DRM_ERROR("we currently only support 64x64 cursors\n");
6282                 return -EINVAL;
6283         }
6284
6285         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6286         if (&obj->base == NULL)
6287                 return -ENOENT;
6288
6289         if (obj->base.size < width * height * 4) {
6290                 DRM_ERROR("buffer is to small\n");
6291                 ret = -ENOMEM;
6292                 goto fail;
6293         }
6294
6295         /* we only need to pin inside GTT if cursor is non-phy */
6296         mutex_lock(&dev->struct_mutex);
6297         if (!dev_priv->info->cursor_needs_physical) {
6298                 if (obj->tiling_mode) {
6299                         DRM_ERROR("cursor cannot be tiled\n");
6300                         ret = -EINVAL;
6301                         goto fail_locked;
6302                 }
6303
6304                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6305                 if (ret) {
6306                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6307                         goto fail_locked;
6308                 }
6309
6310                 ret = i915_gem_object_put_fence(obj);
6311                 if (ret) {
6312                         DRM_ERROR("failed to release fence for cursor");
6313                         goto fail_unpin;
6314                 }
6315
6316                 addr = obj->gtt_offset;
6317         } else {
6318                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6319                 ret = i915_gem_attach_phys_object(dev, obj,
6320                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6321                                                   align);
6322                 if (ret) {
6323                         DRM_ERROR("failed to attach phys object\n");
6324                         goto fail_locked;
6325                 }
6326                 addr = obj->phys_obj->handle->busaddr;
6327         }
6328
6329         if (IS_GEN2(dev))
6330                 I915_WRITE(CURSIZE, (height << 12) | width);
6331
6332  finish:
6333         if (intel_crtc->cursor_bo) {
6334                 if (dev_priv->info->cursor_needs_physical) {
6335                         if (intel_crtc->cursor_bo != obj)
6336                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6337                 } else
6338                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6339                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6340         }
6341
6342         mutex_unlock(&dev->struct_mutex);
6343
6344         intel_crtc->cursor_addr = addr;
6345         intel_crtc->cursor_bo = obj;
6346         intel_crtc->cursor_width = width;
6347         intel_crtc->cursor_height = height;
6348
6349         intel_crtc_update_cursor(crtc, true);
6350
6351         return 0;
6352 fail_unpin:
6353         i915_gem_object_unpin(obj);
6354 fail_locked:
6355         mutex_unlock(&dev->struct_mutex);
6356 fail:
6357         drm_gem_object_unreference_unlocked(&obj->base);
6358         return ret;
6359 }
6360
6361 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6362 {
6363         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6364
6365         intel_crtc->cursor_x = x;
6366         intel_crtc->cursor_y = y;
6367
6368         intel_crtc_update_cursor(crtc, true);
6369
6370         return 0;
6371 }
6372
6373 /** Sets the color ramps on behalf of RandR */
6374 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6375                                  u16 blue, int regno)
6376 {
6377         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6378
6379         intel_crtc->lut_r[regno] = red >> 8;
6380         intel_crtc->lut_g[regno] = green >> 8;
6381         intel_crtc->lut_b[regno] = blue >> 8;
6382 }
6383
6384 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6385                              u16 *blue, int regno)
6386 {
6387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6388
6389         *red = intel_crtc->lut_r[regno] << 8;
6390         *green = intel_crtc->lut_g[regno] << 8;
6391         *blue = intel_crtc->lut_b[regno] << 8;
6392 }
6393
6394 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6395                                  u16 *blue, uint32_t start, uint32_t size)
6396 {
6397         int end = (start + size > 256) ? 256 : start + size, i;
6398         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6399
6400         for (i = start; i < end; i++) {
6401                 intel_crtc->lut_r[i] = red[i] >> 8;
6402                 intel_crtc->lut_g[i] = green[i] >> 8;
6403                 intel_crtc->lut_b[i] = blue[i] >> 8;
6404         }
6405
6406         intel_crtc_load_lut(crtc);
6407 }
6408
6409 /**
6410  * Get a pipe with a simple mode set on it for doing load-based monitor
6411  * detection.
6412  *
6413  * It will be up to the load-detect code to adjust the pipe as appropriate for
6414  * its requirements.  The pipe will be connected to no other encoders.
6415  *
6416  * Currently this code will only succeed if there is a pipe with no encoders
6417  * configured for it.  In the future, it could choose to temporarily disable
6418  * some outputs to free up a pipe for its use.
6419  *
6420  * \return crtc, or NULL if no pipes are available.
6421  */
6422
6423 /* VESA 640x480x72Hz mode to set on the pipe */
6424 static struct drm_display_mode load_detect_mode = {
6425         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6426                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6427 };
6428
6429 static struct drm_framebuffer *
6430 intel_framebuffer_create(struct drm_device *dev,
6431                          struct drm_mode_fb_cmd2 *mode_cmd,
6432                          struct drm_i915_gem_object *obj)
6433 {
6434         struct intel_framebuffer *intel_fb;
6435         int ret;
6436
6437         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6438         if (!intel_fb) {
6439                 drm_gem_object_unreference_unlocked(&obj->base);
6440                 return ERR_PTR(-ENOMEM);
6441         }
6442
6443         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6444         if (ret) {
6445                 drm_gem_object_unreference_unlocked(&obj->base);
6446                 kfree(intel_fb);
6447                 return ERR_PTR(ret);
6448         }
6449
6450         return &intel_fb->base;
6451 }
6452
6453 static u32
6454 intel_framebuffer_pitch_for_width(int width, int bpp)
6455 {
6456         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6457         return ALIGN(pitch, 64);
6458 }
6459
6460 static u32
6461 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6462 {
6463         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6464         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6465 }
6466
6467 static struct drm_framebuffer *
6468 intel_framebuffer_create_for_mode(struct drm_device *dev,
6469                                   struct drm_display_mode *mode,
6470                                   int depth, int bpp)
6471 {
6472         struct drm_i915_gem_object *obj;
6473         struct drm_mode_fb_cmd2 mode_cmd;
6474
6475         obj = i915_gem_alloc_object(dev,
6476                                     intel_framebuffer_size_for_mode(mode, bpp));
6477         if (obj == NULL)
6478                 return ERR_PTR(-ENOMEM);
6479
6480         mode_cmd.width = mode->hdisplay;
6481         mode_cmd.height = mode->vdisplay;
6482         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6483                                                                 bpp);
6484         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6485
6486         return intel_framebuffer_create(dev, &mode_cmd, obj);
6487 }
6488
6489 static struct drm_framebuffer *
6490 mode_fits_in_fbdev(struct drm_device *dev,
6491                    struct drm_display_mode *mode)
6492 {
6493         struct drm_i915_private *dev_priv = dev->dev_private;
6494         struct drm_i915_gem_object *obj;
6495         struct drm_framebuffer *fb;
6496
6497         if (dev_priv->fbdev == NULL)
6498                 return NULL;
6499
6500         obj = dev_priv->fbdev->ifb.obj;
6501         if (obj == NULL)
6502                 return NULL;
6503
6504         fb = &dev_priv->fbdev->ifb.base;
6505         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6506                                                                fb->bits_per_pixel))
6507                 return NULL;
6508
6509         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6510                 return NULL;
6511
6512         return fb;
6513 }
6514
6515 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6516                                 struct drm_display_mode *mode,
6517                                 struct intel_load_detect_pipe *old)
6518 {
6519         struct intel_crtc *intel_crtc;
6520         struct intel_encoder *intel_encoder =
6521                 intel_attached_encoder(connector);
6522         struct drm_crtc *possible_crtc;
6523         struct drm_encoder *encoder = &intel_encoder->base;
6524         struct drm_crtc *crtc = NULL;
6525         struct drm_device *dev = encoder->dev;
6526         struct drm_framebuffer *fb;
6527         int i = -1;
6528
6529         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6530                       connector->base.id, drm_get_connector_name(connector),
6531                       encoder->base.id, drm_get_encoder_name(encoder));
6532
6533         /*
6534          * Algorithm gets a little messy:
6535          *
6536          *   - if the connector already has an assigned crtc, use it (but make
6537          *     sure it's on first)
6538          *
6539          *   - try to find the first unused crtc that can drive this connector,
6540          *     and use that if we find one
6541          */
6542
6543         /* See if we already have a CRTC for this connector */
6544         if (encoder->crtc) {
6545                 crtc = encoder->crtc;
6546
6547                 old->dpms_mode = connector->dpms;
6548                 old->load_detect_temp = false;
6549
6550                 /* Make sure the crtc and connector are running */
6551                 if (connector->dpms != DRM_MODE_DPMS_ON)
6552                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6553
6554                 return true;
6555         }
6556
6557         /* Find an unused one (if possible) */
6558         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6559                 i++;
6560                 if (!(encoder->possible_crtcs & (1 << i)))
6561                         continue;
6562                 if (!possible_crtc->enabled) {
6563                         crtc = possible_crtc;
6564                         break;
6565                 }
6566         }
6567
6568         /*
6569          * If we didn't find an unused CRTC, don't use any.
6570          */
6571         if (!crtc) {
6572                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6573                 return false;
6574         }
6575
6576         intel_encoder->new_crtc = to_intel_crtc(crtc);
6577         to_intel_connector(connector)->new_encoder = intel_encoder;
6578
6579         intel_crtc = to_intel_crtc(crtc);
6580         old->dpms_mode = connector->dpms;
6581         old->load_detect_temp = true;
6582         old->release_fb = NULL;
6583
6584         if (!mode)
6585                 mode = &load_detect_mode;
6586
6587         /* We need a framebuffer large enough to accommodate all accesses
6588          * that the plane may generate whilst we perform load detection.
6589          * We can not rely on the fbcon either being present (we get called
6590          * during its initialisation to detect all boot displays, or it may
6591          * not even exist) or that it is large enough to satisfy the
6592          * requested mode.
6593          */
6594         fb = mode_fits_in_fbdev(dev, mode);
6595         if (fb == NULL) {
6596                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6597                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6598                 old->release_fb = fb;
6599         } else
6600                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6601         if (IS_ERR(fb)) {
6602                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6603                 goto fail;
6604         }
6605
6606         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6607                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6608                 if (old->release_fb)
6609                         old->release_fb->funcs->destroy(old->release_fb);
6610                 goto fail;
6611         }
6612
6613         /* let the connector get through one full cycle before testing */
6614         intel_wait_for_vblank(dev, intel_crtc->pipe);
6615
6616         return true;
6617 fail:
6618         connector->encoder = NULL;
6619         encoder->crtc = NULL;
6620         return false;
6621 }
6622
6623 void intel_release_load_detect_pipe(struct drm_connector *connector,
6624                                     struct intel_load_detect_pipe *old)
6625 {
6626         struct intel_encoder *intel_encoder =
6627                 intel_attached_encoder(connector);
6628         struct drm_encoder *encoder = &intel_encoder->base;
6629
6630         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6631                       connector->base.id, drm_get_connector_name(connector),
6632                       encoder->base.id, drm_get_encoder_name(encoder));
6633
6634         if (old->load_detect_temp) {
6635                 struct drm_crtc *crtc = encoder->crtc;
6636
6637                 to_intel_connector(connector)->new_encoder = NULL;
6638                 intel_encoder->new_crtc = NULL;
6639                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6640
6641                 if (old->release_fb)
6642                         old->release_fb->funcs->destroy(old->release_fb);
6643
6644                 return;
6645         }
6646
6647         /* Switch crtc and encoder back off if necessary */
6648         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6649                 connector->funcs->dpms(connector, old->dpms_mode);
6650 }
6651
6652 /* Returns the clock of the currently programmed mode of the given pipe. */
6653 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6654 {
6655         struct drm_i915_private *dev_priv = dev->dev_private;
6656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6657         int pipe = intel_crtc->pipe;
6658         u32 dpll = I915_READ(DPLL(pipe));
6659         u32 fp;
6660         intel_clock_t clock;
6661
6662         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6663                 fp = I915_READ(FP0(pipe));
6664         else
6665                 fp = I915_READ(FP1(pipe));
6666
6667         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6668         if (IS_PINEVIEW(dev)) {
6669                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6670                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6671         } else {
6672                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6673                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6674         }
6675
6676         if (!IS_GEN2(dev)) {
6677                 if (IS_PINEVIEW(dev))
6678                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6679                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6680                 else
6681                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6682                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6683
6684                 switch (dpll & DPLL_MODE_MASK) {
6685                 case DPLLB_MODE_DAC_SERIAL:
6686                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6687                                 5 : 10;
6688                         break;
6689                 case DPLLB_MODE_LVDS:
6690                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6691                                 7 : 14;
6692                         break;
6693                 default:
6694                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6695                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6696                         return 0;
6697                 }
6698
6699                 /* XXX: Handle the 100Mhz refclk */
6700                 intel_clock(dev, 96000, &clock);
6701         } else {
6702                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6703
6704                 if (is_lvds) {
6705                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6706                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6707                         clock.p2 = 14;
6708
6709                         if ((dpll & PLL_REF_INPUT_MASK) ==
6710                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6711                                 /* XXX: might not be 66MHz */
6712                                 intel_clock(dev, 66000, &clock);
6713                         } else
6714                                 intel_clock(dev, 48000, &clock);
6715                 } else {
6716                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6717                                 clock.p1 = 2;
6718                         else {
6719                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6720                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6721                         }
6722                         if (dpll & PLL_P2_DIVIDE_BY_4)
6723                                 clock.p2 = 4;
6724                         else
6725                                 clock.p2 = 2;
6726
6727                         intel_clock(dev, 48000, &clock);
6728                 }
6729         }
6730
6731         /* XXX: It would be nice to validate the clocks, but we can't reuse
6732          * i830PllIsValid() because it relies on the xf86_config connector
6733          * configuration being accurate, which it isn't necessarily.
6734          */
6735
6736         return clock.dot;
6737 }
6738
6739 /** Returns the currently programmed mode of the given pipe. */
6740 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6741                                              struct drm_crtc *crtc)
6742 {
6743         struct drm_i915_private *dev_priv = dev->dev_private;
6744         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6745         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6746         struct drm_display_mode *mode;
6747         int htot = I915_READ(HTOTAL(cpu_transcoder));
6748         int hsync = I915_READ(HSYNC(cpu_transcoder));
6749         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6750         int vsync = I915_READ(VSYNC(cpu_transcoder));
6751
6752         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6753         if (!mode)
6754                 return NULL;
6755
6756         mode->clock = intel_crtc_clock_get(dev, crtc);
6757         mode->hdisplay = (htot & 0xffff) + 1;
6758         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6759         mode->hsync_start = (hsync & 0xffff) + 1;
6760         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6761         mode->vdisplay = (vtot & 0xffff) + 1;
6762         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6763         mode->vsync_start = (vsync & 0xffff) + 1;
6764         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6765
6766         drm_mode_set_name(mode);
6767
6768         return mode;
6769 }
6770
6771 static void intel_increase_pllclock(struct drm_crtc *crtc)
6772 {
6773         struct drm_device *dev = crtc->dev;
6774         drm_i915_private_t *dev_priv = dev->dev_private;
6775         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6776         int pipe = intel_crtc->pipe;
6777         int dpll_reg = DPLL(pipe);
6778         int dpll;
6779
6780         if (HAS_PCH_SPLIT(dev))
6781                 return;
6782
6783         if (!dev_priv->lvds_downclock_avail)
6784                 return;
6785
6786         dpll = I915_READ(dpll_reg);
6787         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6788                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6789
6790                 assert_panel_unlocked(dev_priv, pipe);
6791
6792                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6793                 I915_WRITE(dpll_reg, dpll);
6794                 intel_wait_for_vblank(dev, pipe);
6795
6796                 dpll = I915_READ(dpll_reg);
6797                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6798                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6799         }
6800 }
6801
6802 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6803 {
6804         struct drm_device *dev = crtc->dev;
6805         drm_i915_private_t *dev_priv = dev->dev_private;
6806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6807
6808         if (HAS_PCH_SPLIT(dev))
6809                 return;
6810
6811         if (!dev_priv->lvds_downclock_avail)
6812                 return;
6813
6814         /*
6815          * Since this is called by a timer, we should never get here in
6816          * the manual case.
6817          */
6818         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6819                 int pipe = intel_crtc->pipe;
6820                 int dpll_reg = DPLL(pipe);
6821                 int dpll;
6822
6823                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6824
6825                 assert_panel_unlocked(dev_priv, pipe);
6826
6827                 dpll = I915_READ(dpll_reg);
6828                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6829                 I915_WRITE(dpll_reg, dpll);
6830                 intel_wait_for_vblank(dev, pipe);
6831                 dpll = I915_READ(dpll_reg);
6832                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6833                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6834         }
6835
6836 }
6837
6838 void intel_mark_busy(struct drm_device *dev)
6839 {
6840         i915_update_gfx_val(dev->dev_private);
6841 }
6842
6843 void intel_mark_idle(struct drm_device *dev)
6844 {
6845 }
6846
6847 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6848 {
6849         struct drm_device *dev = obj->base.dev;
6850         struct drm_crtc *crtc;
6851
6852         if (!i915_powersave)
6853                 return;
6854
6855         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6856                 if (!crtc->fb)
6857                         continue;
6858
6859                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6860                         intel_increase_pllclock(crtc);
6861         }
6862 }
6863
6864 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6865 {
6866         struct drm_device *dev = obj->base.dev;
6867         struct drm_crtc *crtc;
6868
6869         if (!i915_powersave)
6870                 return;
6871
6872         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6873                 if (!crtc->fb)
6874                         continue;
6875
6876                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6877                         intel_decrease_pllclock(crtc);
6878         }
6879 }
6880
6881 static void intel_crtc_destroy(struct drm_crtc *crtc)
6882 {
6883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6884         struct drm_device *dev = crtc->dev;
6885         struct intel_unpin_work *work;
6886         unsigned long flags;
6887
6888         spin_lock_irqsave(&dev->event_lock, flags);
6889         work = intel_crtc->unpin_work;
6890         intel_crtc->unpin_work = NULL;
6891         spin_unlock_irqrestore(&dev->event_lock, flags);
6892
6893         if (work) {
6894                 cancel_work_sync(&work->work);
6895                 kfree(work);
6896         }
6897
6898         drm_crtc_cleanup(crtc);
6899
6900         kfree(intel_crtc);
6901 }
6902
6903 static void intel_unpin_work_fn(struct work_struct *__work)
6904 {
6905         struct intel_unpin_work *work =
6906                 container_of(__work, struct intel_unpin_work, work);
6907
6908         mutex_lock(&work->dev->struct_mutex);
6909         intel_unpin_fb_obj(work->old_fb_obj);
6910         drm_gem_object_unreference(&work->pending_flip_obj->base);
6911         drm_gem_object_unreference(&work->old_fb_obj->base);
6912
6913         intel_update_fbc(work->dev);
6914         mutex_unlock(&work->dev->struct_mutex);
6915         kfree(work);
6916 }
6917
6918 static void do_intel_finish_page_flip(struct drm_device *dev,
6919                                       struct drm_crtc *crtc)
6920 {
6921         drm_i915_private_t *dev_priv = dev->dev_private;
6922         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6923         struct intel_unpin_work *work;
6924         struct drm_i915_gem_object *obj;
6925         struct drm_pending_vblank_event *e;
6926         struct timeval tvbl;
6927         unsigned long flags;
6928
6929         /* Ignore early vblank irqs */
6930         if (intel_crtc == NULL)
6931                 return;
6932
6933         spin_lock_irqsave(&dev->event_lock, flags);
6934         work = intel_crtc->unpin_work;
6935         if (work == NULL || !work->pending) {
6936                 spin_unlock_irqrestore(&dev->event_lock, flags);
6937                 return;
6938         }
6939
6940         intel_crtc->unpin_work = NULL;
6941
6942         if (work->event) {
6943                 e = work->event;
6944                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6945
6946                 e->event.tv_sec = tvbl.tv_sec;
6947                 e->event.tv_usec = tvbl.tv_usec;
6948
6949                 list_add_tail(&e->base.link,
6950                               &e->base.file_priv->event_list);
6951                 wake_up_interruptible(&e->base.file_priv->event_wait);
6952         }
6953
6954         drm_vblank_put(dev, intel_crtc->pipe);
6955
6956         spin_unlock_irqrestore(&dev->event_lock, flags);
6957
6958         obj = work->old_fb_obj;
6959
6960         atomic_clear_mask(1 << intel_crtc->plane,
6961                           &obj->pending_flip.counter);
6962
6963         wake_up(&dev_priv->pending_flip_queue);
6964         schedule_work(&work->work);
6965
6966         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6967 }
6968
6969 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6970 {
6971         drm_i915_private_t *dev_priv = dev->dev_private;
6972         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6973
6974         do_intel_finish_page_flip(dev, crtc);
6975 }
6976
6977 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6978 {
6979         drm_i915_private_t *dev_priv = dev->dev_private;
6980         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6981
6982         do_intel_finish_page_flip(dev, crtc);
6983 }
6984
6985 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6986 {
6987         drm_i915_private_t *dev_priv = dev->dev_private;
6988         struct intel_crtc *intel_crtc =
6989                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6990         unsigned long flags;
6991
6992         spin_lock_irqsave(&dev->event_lock, flags);
6993         if (intel_crtc->unpin_work) {
6994                 if ((++intel_crtc->unpin_work->pending) > 1)
6995                         DRM_ERROR("Prepared flip multiple times\n");
6996         } else {
6997                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6998         }
6999         spin_unlock_irqrestore(&dev->event_lock, flags);
7000 }
7001
7002 static int intel_gen2_queue_flip(struct drm_device *dev,
7003                                  struct drm_crtc *crtc,
7004                                  struct drm_framebuffer *fb,
7005                                  struct drm_i915_gem_object *obj)
7006 {
7007         struct drm_i915_private *dev_priv = dev->dev_private;
7008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7009         u32 flip_mask;
7010         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7011         int ret;
7012
7013         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7014         if (ret)
7015                 goto err;
7016
7017         ret = intel_ring_begin(ring, 6);
7018         if (ret)
7019                 goto err_unpin;
7020
7021         /* Can't queue multiple flips, so wait for the previous
7022          * one to finish before executing the next.
7023          */
7024         if (intel_crtc->plane)
7025                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7026         else
7027                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7028         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7029         intel_ring_emit(ring, MI_NOOP);
7030         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7031                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7032         intel_ring_emit(ring, fb->pitches[0]);
7033         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7034         intel_ring_emit(ring, 0); /* aux display base address, unused */
7035         intel_ring_advance(ring);
7036         return 0;
7037
7038 err_unpin:
7039         intel_unpin_fb_obj(obj);
7040 err:
7041         return ret;
7042 }
7043
7044 static int intel_gen3_queue_flip(struct drm_device *dev,
7045                                  struct drm_crtc *crtc,
7046                                  struct drm_framebuffer *fb,
7047                                  struct drm_i915_gem_object *obj)
7048 {
7049         struct drm_i915_private *dev_priv = dev->dev_private;
7050         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7051         u32 flip_mask;
7052         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7053         int ret;
7054
7055         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7056         if (ret)
7057                 goto err;
7058
7059         ret = intel_ring_begin(ring, 6);
7060         if (ret)
7061                 goto err_unpin;
7062
7063         if (intel_crtc->plane)
7064                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7065         else
7066                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7067         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7068         intel_ring_emit(ring, MI_NOOP);
7069         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7070                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7071         intel_ring_emit(ring, fb->pitches[0]);
7072         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7073         intel_ring_emit(ring, MI_NOOP);
7074
7075         intel_ring_advance(ring);
7076         return 0;
7077
7078 err_unpin:
7079         intel_unpin_fb_obj(obj);
7080 err:
7081         return ret;
7082 }
7083
7084 static int intel_gen4_queue_flip(struct drm_device *dev,
7085                                  struct drm_crtc *crtc,
7086                                  struct drm_framebuffer *fb,
7087                                  struct drm_i915_gem_object *obj)
7088 {
7089         struct drm_i915_private *dev_priv = dev->dev_private;
7090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7091         uint32_t pf, pipesrc;
7092         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7093         int ret;
7094
7095         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7096         if (ret)
7097                 goto err;
7098
7099         ret = intel_ring_begin(ring, 4);
7100         if (ret)
7101                 goto err_unpin;
7102
7103         /* i965+ uses the linear or tiled offsets from the
7104          * Display Registers (which do not change across a page-flip)
7105          * so we need only reprogram the base address.
7106          */
7107         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7108                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7109         intel_ring_emit(ring, fb->pitches[0]);
7110         intel_ring_emit(ring,
7111                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7112                         obj->tiling_mode);
7113
7114         /* XXX Enabling the panel-fitter across page-flip is so far
7115          * untested on non-native modes, so ignore it for now.
7116          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7117          */
7118         pf = 0;
7119         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7120         intel_ring_emit(ring, pf | pipesrc);
7121         intel_ring_advance(ring);
7122         return 0;
7123
7124 err_unpin:
7125         intel_unpin_fb_obj(obj);
7126 err:
7127         return ret;
7128 }
7129
7130 static int intel_gen6_queue_flip(struct drm_device *dev,
7131                                  struct drm_crtc *crtc,
7132                                  struct drm_framebuffer *fb,
7133                                  struct drm_i915_gem_object *obj)
7134 {
7135         struct drm_i915_private *dev_priv = dev->dev_private;
7136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7137         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7138         uint32_t pf, pipesrc;
7139         int ret;
7140
7141         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7142         if (ret)
7143                 goto err;
7144
7145         ret = intel_ring_begin(ring, 4);
7146         if (ret)
7147                 goto err_unpin;
7148
7149         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7150                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7151         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7152         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7153
7154         /* Contrary to the suggestions in the documentation,
7155          * "Enable Panel Fitter" does not seem to be required when page
7156          * flipping with a non-native mode, and worse causes a normal
7157          * modeset to fail.
7158          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7159          */
7160         pf = 0;
7161         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7162         intel_ring_emit(ring, pf | pipesrc);
7163         intel_ring_advance(ring);
7164         return 0;
7165
7166 err_unpin:
7167         intel_unpin_fb_obj(obj);
7168 err:
7169         return ret;
7170 }
7171
7172 /*
7173  * On gen7 we currently use the blit ring because (in early silicon at least)
7174  * the render ring doesn't give us interrpts for page flip completion, which
7175  * means clients will hang after the first flip is queued.  Fortunately the
7176  * blit ring generates interrupts properly, so use it instead.
7177  */
7178 static int intel_gen7_queue_flip(struct drm_device *dev,
7179                                  struct drm_crtc *crtc,
7180                                  struct drm_framebuffer *fb,
7181                                  struct drm_i915_gem_object *obj)
7182 {
7183         struct drm_i915_private *dev_priv = dev->dev_private;
7184         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7185         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7186         uint32_t plane_bit = 0;
7187         int ret;
7188
7189         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7190         if (ret)
7191                 goto err;
7192
7193         switch(intel_crtc->plane) {
7194         case PLANE_A:
7195                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7196                 break;
7197         case PLANE_B:
7198                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7199                 break;
7200         case PLANE_C:
7201                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7202                 break;
7203         default:
7204                 WARN_ONCE(1, "unknown plane in flip command\n");
7205                 ret = -ENODEV;
7206                 goto err_unpin;
7207         }
7208
7209         ret = intel_ring_begin(ring, 4);
7210         if (ret)
7211                 goto err_unpin;
7212
7213         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7214         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7215         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7216         intel_ring_emit(ring, (MI_NOOP));
7217         intel_ring_advance(ring);
7218         return 0;
7219
7220 err_unpin:
7221         intel_unpin_fb_obj(obj);
7222 err:
7223         return ret;
7224 }
7225
7226 static int intel_default_queue_flip(struct drm_device *dev,
7227                                     struct drm_crtc *crtc,
7228                                     struct drm_framebuffer *fb,
7229                                     struct drm_i915_gem_object *obj)
7230 {
7231         return -ENODEV;
7232 }
7233
7234 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7235                                 struct drm_framebuffer *fb,
7236                                 struct drm_pending_vblank_event *event)
7237 {
7238         struct drm_device *dev = crtc->dev;
7239         struct drm_i915_private *dev_priv = dev->dev_private;
7240         struct intel_framebuffer *intel_fb;
7241         struct drm_i915_gem_object *obj;
7242         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7243         struct intel_unpin_work *work;
7244         unsigned long flags;
7245         int ret;
7246
7247         /* Can't change pixel format via MI display flips. */
7248         if (fb->pixel_format != crtc->fb->pixel_format)
7249                 return -EINVAL;
7250
7251         /*
7252          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7253          * Note that pitch changes could also affect these register.
7254          */
7255         if (INTEL_INFO(dev)->gen > 3 &&
7256             (fb->offsets[0] != crtc->fb->offsets[0] ||
7257              fb->pitches[0] != crtc->fb->pitches[0]))
7258                 return -EINVAL;
7259
7260         work = kzalloc(sizeof *work, GFP_KERNEL);
7261         if (work == NULL)
7262                 return -ENOMEM;
7263
7264         work->event = event;
7265         work->dev = crtc->dev;
7266         intel_fb = to_intel_framebuffer(crtc->fb);
7267         work->old_fb_obj = intel_fb->obj;
7268         INIT_WORK(&work->work, intel_unpin_work_fn);
7269
7270         ret = drm_vblank_get(dev, intel_crtc->pipe);
7271         if (ret)
7272                 goto free_work;
7273
7274         /* We borrow the event spin lock for protecting unpin_work */
7275         spin_lock_irqsave(&dev->event_lock, flags);
7276         if (intel_crtc->unpin_work) {
7277                 spin_unlock_irqrestore(&dev->event_lock, flags);
7278                 kfree(work);
7279                 drm_vblank_put(dev, intel_crtc->pipe);
7280
7281                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7282                 return -EBUSY;
7283         }
7284         intel_crtc->unpin_work = work;
7285         spin_unlock_irqrestore(&dev->event_lock, flags);
7286
7287         intel_fb = to_intel_framebuffer(fb);
7288         obj = intel_fb->obj;
7289
7290         ret = i915_mutex_lock_interruptible(dev);
7291         if (ret)
7292                 goto cleanup;
7293
7294         /* Reference the objects for the scheduled work. */
7295         drm_gem_object_reference(&work->old_fb_obj->base);
7296         drm_gem_object_reference(&obj->base);
7297
7298         crtc->fb = fb;
7299
7300         work->pending_flip_obj = obj;
7301
7302         work->enable_stall_check = true;
7303
7304         /* Block clients from rendering to the new back buffer until
7305          * the flip occurs and the object is no longer visible.
7306          */
7307         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7308
7309         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7310         if (ret)
7311                 goto cleanup_pending;
7312
7313         intel_disable_fbc(dev);
7314         intel_mark_fb_busy(obj);
7315         mutex_unlock(&dev->struct_mutex);
7316
7317         trace_i915_flip_request(intel_crtc->plane, obj);
7318
7319         return 0;
7320
7321 cleanup_pending:
7322         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7323         drm_gem_object_unreference(&work->old_fb_obj->base);
7324         drm_gem_object_unreference(&obj->base);
7325         mutex_unlock(&dev->struct_mutex);
7326
7327 cleanup:
7328         spin_lock_irqsave(&dev->event_lock, flags);
7329         intel_crtc->unpin_work = NULL;
7330         spin_unlock_irqrestore(&dev->event_lock, flags);
7331
7332         drm_vblank_put(dev, intel_crtc->pipe);
7333 free_work:
7334         kfree(work);
7335
7336         return ret;
7337 }
7338
7339 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7340         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7341         .load_lut = intel_crtc_load_lut,
7342         .disable = intel_crtc_noop,
7343 };
7344
7345 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7346 {
7347         struct intel_encoder *other_encoder;
7348         struct drm_crtc *crtc = &encoder->new_crtc->base;
7349
7350         if (WARN_ON(!crtc))
7351                 return false;
7352
7353         list_for_each_entry(other_encoder,
7354                             &crtc->dev->mode_config.encoder_list,
7355                             base.head) {
7356
7357                 if (&other_encoder->new_crtc->base != crtc ||
7358                     encoder == other_encoder)
7359                         continue;
7360                 else
7361                         return true;
7362         }
7363
7364         return false;
7365 }
7366
7367 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7368                                   struct drm_crtc *crtc)
7369 {
7370         struct drm_device *dev;
7371         struct drm_crtc *tmp;
7372         int crtc_mask = 1;
7373
7374         WARN(!crtc, "checking null crtc?\n");
7375
7376         dev = crtc->dev;
7377
7378         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7379                 if (tmp == crtc)
7380                         break;
7381                 crtc_mask <<= 1;
7382         }
7383
7384         if (encoder->possible_crtcs & crtc_mask)
7385                 return true;
7386         return false;
7387 }
7388
7389 /**
7390  * intel_modeset_update_staged_output_state
7391  *
7392  * Updates the staged output configuration state, e.g. after we've read out the
7393  * current hw state.
7394  */
7395 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7396 {
7397         struct intel_encoder *encoder;
7398         struct intel_connector *connector;
7399
7400         list_for_each_entry(connector, &dev->mode_config.connector_list,
7401                             base.head) {
7402                 connector->new_encoder =
7403                         to_intel_encoder(connector->base.encoder);
7404         }
7405
7406         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7407                             base.head) {
7408                 encoder->new_crtc =
7409                         to_intel_crtc(encoder->base.crtc);
7410         }
7411 }
7412
7413 /**
7414  * intel_modeset_commit_output_state
7415  *
7416  * This function copies the stage display pipe configuration to the real one.
7417  */
7418 static void intel_modeset_commit_output_state(struct drm_device *dev)
7419 {
7420         struct intel_encoder *encoder;
7421         struct intel_connector *connector;
7422
7423         list_for_each_entry(connector, &dev->mode_config.connector_list,
7424                             base.head) {
7425                 connector->base.encoder = &connector->new_encoder->base;
7426         }
7427
7428         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7429                             base.head) {
7430                 encoder->base.crtc = &encoder->new_crtc->base;
7431         }
7432 }
7433
7434 static struct drm_display_mode *
7435 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7436                             struct drm_display_mode *mode)
7437 {
7438         struct drm_device *dev = crtc->dev;
7439         struct drm_display_mode *adjusted_mode;
7440         struct drm_encoder_helper_funcs *encoder_funcs;
7441         struct intel_encoder *encoder;
7442
7443         adjusted_mode = drm_mode_duplicate(dev, mode);
7444         if (!adjusted_mode)
7445                 return ERR_PTR(-ENOMEM);
7446
7447         /* Pass our mode to the connectors and the CRTC to give them a chance to
7448          * adjust it according to limitations or connector properties, and also
7449          * a chance to reject the mode entirely.
7450          */
7451         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7452                             base.head) {
7453
7454                 if (&encoder->new_crtc->base != crtc)
7455                         continue;
7456                 encoder_funcs = encoder->base.helper_private;
7457                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7458                                                 adjusted_mode))) {
7459                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7460                         goto fail;
7461                 }
7462         }
7463
7464         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7465                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7466                 goto fail;
7467         }
7468         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7469
7470         return adjusted_mode;
7471 fail:
7472         drm_mode_destroy(dev, adjusted_mode);
7473         return ERR_PTR(-EINVAL);
7474 }
7475
7476 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7477  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7478 static void
7479 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7480                              unsigned *prepare_pipes, unsigned *disable_pipes)
7481 {
7482         struct intel_crtc *intel_crtc;
7483         struct drm_device *dev = crtc->dev;
7484         struct intel_encoder *encoder;
7485         struct intel_connector *connector;
7486         struct drm_crtc *tmp_crtc;
7487
7488         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7489
7490         /* Check which crtcs have changed outputs connected to them, these need
7491          * to be part of the prepare_pipes mask. We don't (yet) support global
7492          * modeset across multiple crtcs, so modeset_pipes will only have one
7493          * bit set at most. */
7494         list_for_each_entry(connector, &dev->mode_config.connector_list,
7495                             base.head) {
7496                 if (connector->base.encoder == &connector->new_encoder->base)
7497                         continue;
7498
7499                 if (connector->base.encoder) {
7500                         tmp_crtc = connector->base.encoder->crtc;
7501
7502                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7503                 }
7504
7505                 if (connector->new_encoder)
7506                         *prepare_pipes |=
7507                                 1 << connector->new_encoder->new_crtc->pipe;
7508         }
7509
7510         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7511                             base.head) {
7512                 if (encoder->base.crtc == &encoder->new_crtc->base)
7513                         continue;
7514
7515                 if (encoder->base.crtc) {
7516                         tmp_crtc = encoder->base.crtc;
7517
7518                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7519                 }
7520
7521                 if (encoder->new_crtc)
7522                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7523         }
7524
7525         /* Check for any pipes that will be fully disabled ... */
7526         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7527                             base.head) {
7528                 bool used = false;
7529
7530                 /* Don't try to disable disabled crtcs. */
7531                 if (!intel_crtc->base.enabled)
7532                         continue;
7533
7534                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7535                                     base.head) {
7536                         if (encoder->new_crtc == intel_crtc)
7537                                 used = true;
7538                 }
7539
7540                 if (!used)
7541                         *disable_pipes |= 1 << intel_crtc->pipe;
7542         }
7543
7544
7545         /* set_mode is also used to update properties on life display pipes. */
7546         intel_crtc = to_intel_crtc(crtc);
7547         if (crtc->enabled)
7548                 *prepare_pipes |= 1 << intel_crtc->pipe;
7549
7550         /* We only support modeset on one single crtc, hence we need to do that
7551          * only for the passed in crtc iff we change anything else than just
7552          * disable crtcs.
7553          *
7554          * This is actually not true, to be fully compatible with the old crtc
7555          * helper we automatically disable _any_ output (i.e. doesn't need to be
7556          * connected to the crtc we're modesetting on) if it's disconnected.
7557          * Which is a rather nutty api (since changed the output configuration
7558          * without userspace's explicit request can lead to confusion), but
7559          * alas. Hence we currently need to modeset on all pipes we prepare. */
7560         if (*prepare_pipes)
7561                 *modeset_pipes = *prepare_pipes;
7562
7563         /* ... and mask these out. */
7564         *modeset_pipes &= ~(*disable_pipes);
7565         *prepare_pipes &= ~(*disable_pipes);
7566 }
7567
7568 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7569 {
7570         struct drm_encoder *encoder;
7571         struct drm_device *dev = crtc->dev;
7572
7573         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7574                 if (encoder->crtc == crtc)
7575                         return true;
7576
7577         return false;
7578 }
7579
7580 static void
7581 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7582 {
7583         struct intel_encoder *intel_encoder;
7584         struct intel_crtc *intel_crtc;
7585         struct drm_connector *connector;
7586
7587         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7588                             base.head) {
7589                 if (!intel_encoder->base.crtc)
7590                         continue;
7591
7592                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7593
7594                 if (prepare_pipes & (1 << intel_crtc->pipe))
7595                         intel_encoder->connectors_active = false;
7596         }
7597
7598         intel_modeset_commit_output_state(dev);
7599
7600         /* Update computed state. */
7601         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7602                             base.head) {
7603                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7604         }
7605
7606         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7607                 if (!connector->encoder || !connector->encoder->crtc)
7608                         continue;
7609
7610                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7611
7612                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7613                         struct drm_property *dpms_property =
7614                                 dev->mode_config.dpms_property;
7615
7616                         connector->dpms = DRM_MODE_DPMS_ON;
7617                         drm_connector_property_set_value(connector,
7618                                                          dpms_property,
7619                                                          DRM_MODE_DPMS_ON);
7620
7621                         intel_encoder = to_intel_encoder(connector->encoder);
7622                         intel_encoder->connectors_active = true;
7623                 }
7624         }
7625
7626 }
7627
7628 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7629         list_for_each_entry((intel_crtc), \
7630                             &(dev)->mode_config.crtc_list, \
7631                             base.head) \
7632                 if (mask & (1 <<(intel_crtc)->pipe)) \
7633
7634 void
7635 intel_modeset_check_state(struct drm_device *dev)
7636 {
7637         struct intel_crtc *crtc;
7638         struct intel_encoder *encoder;
7639         struct intel_connector *connector;
7640
7641         list_for_each_entry(connector, &dev->mode_config.connector_list,
7642                             base.head) {
7643                 /* This also checks the encoder/connector hw state with the
7644                  * ->get_hw_state callbacks. */
7645                 intel_connector_check_state(connector);
7646
7647                 WARN(&connector->new_encoder->base != connector->base.encoder,
7648                      "connector's staged encoder doesn't match current encoder\n");
7649         }
7650
7651         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7652                             base.head) {
7653                 bool enabled = false;
7654                 bool active = false;
7655                 enum pipe pipe, tracked_pipe;
7656
7657                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7658                               encoder->base.base.id,
7659                               drm_get_encoder_name(&encoder->base));
7660
7661                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7662                      "encoder's stage crtc doesn't match current crtc\n");
7663                 WARN(encoder->connectors_active && !encoder->base.crtc,
7664                      "encoder's active_connectors set, but no crtc\n");
7665
7666                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7667                                     base.head) {
7668                         if (connector->base.encoder != &encoder->base)
7669                                 continue;
7670                         enabled = true;
7671                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7672                                 active = true;
7673                 }
7674                 WARN(!!encoder->base.crtc != enabled,
7675                      "encoder's enabled state mismatch "
7676                      "(expected %i, found %i)\n",
7677                      !!encoder->base.crtc, enabled);
7678                 WARN(active && !encoder->base.crtc,
7679                      "active encoder with no crtc\n");
7680
7681                 WARN(encoder->connectors_active != active,
7682                      "encoder's computed active state doesn't match tracked active state "
7683                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7684
7685                 active = encoder->get_hw_state(encoder, &pipe);
7686                 WARN(active != encoder->connectors_active,
7687                      "encoder's hw state doesn't match sw tracking "
7688                      "(expected %i, found %i)\n",
7689                      encoder->connectors_active, active);
7690
7691                 if (!encoder->base.crtc)
7692                         continue;
7693
7694                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7695                 WARN(active && pipe != tracked_pipe,
7696                      "active encoder's pipe doesn't match"
7697                      "(expected %i, found %i)\n",
7698                      tracked_pipe, pipe);
7699
7700         }
7701
7702         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7703                             base.head) {
7704                 bool enabled = false;
7705                 bool active = false;
7706
7707                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7708                               crtc->base.base.id);
7709
7710                 WARN(crtc->active && !crtc->base.enabled,
7711                      "active crtc, but not enabled in sw tracking\n");
7712
7713                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7714                                     base.head) {
7715                         if (encoder->base.crtc != &crtc->base)
7716                                 continue;
7717                         enabled = true;
7718                         if (encoder->connectors_active)
7719                                 active = true;
7720                 }
7721                 WARN(active != crtc->active,
7722                      "crtc's computed active state doesn't match tracked active state "
7723                      "(expected %i, found %i)\n", active, crtc->active);
7724                 WARN(enabled != crtc->base.enabled,
7725                      "crtc's computed enabled state doesn't match tracked enabled state "
7726                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7727
7728                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7729         }
7730 }
7731
7732 bool intel_set_mode(struct drm_crtc *crtc,
7733                     struct drm_display_mode *mode,
7734                     int x, int y, struct drm_framebuffer *fb)
7735 {
7736         struct drm_device *dev = crtc->dev;
7737         drm_i915_private_t *dev_priv = dev->dev_private;
7738         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7739         struct intel_crtc *intel_crtc;
7740         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7741         bool ret = true;
7742
7743         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7744                                      &prepare_pipes, &disable_pipes);
7745
7746         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7747                       modeset_pipes, prepare_pipes, disable_pipes);
7748
7749         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7750                 intel_crtc_disable(&intel_crtc->base);
7751
7752         saved_hwmode = crtc->hwmode;
7753         saved_mode = crtc->mode;
7754
7755         /* Hack: Because we don't (yet) support global modeset on multiple
7756          * crtcs, we don't keep track of the new mode for more than one crtc.
7757          * Hence simply check whether any bit is set in modeset_pipes in all the
7758          * pieces of code that are not yet converted to deal with mutliple crtcs
7759          * changing their mode at the same time. */
7760         adjusted_mode = NULL;
7761         if (modeset_pipes) {
7762                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7763                 if (IS_ERR(adjusted_mode)) {
7764                         return false;
7765                 }
7766         }
7767
7768         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7769                 if (intel_crtc->base.enabled)
7770                         dev_priv->display.crtc_disable(&intel_crtc->base);
7771         }
7772
7773         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7774          * to set it here already despite that we pass it down the callchain.
7775          */
7776         if (modeset_pipes)
7777                 crtc->mode = *mode;
7778
7779         /* Only after disabling all output pipelines that will be changed can we
7780          * update the the output configuration. */
7781         intel_modeset_update_state(dev, prepare_pipes);
7782
7783         if (dev_priv->display.modeset_global_resources)
7784                 dev_priv->display.modeset_global_resources(dev);
7785
7786         /* Set up the DPLL and any encoders state that needs to adjust or depend
7787          * on the DPLL.
7788          */
7789         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7790                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7791                                            mode, adjusted_mode,
7792                                            x, y, fb);
7793                 if (!ret)
7794                     goto done;
7795         }
7796
7797         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7798         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7799                 dev_priv->display.crtc_enable(&intel_crtc->base);
7800
7801         if (modeset_pipes) {
7802                 /* Store real post-adjustment hardware mode. */
7803                 crtc->hwmode = *adjusted_mode;
7804
7805                 /* Calculate and store various constants which
7806                  * are later needed by vblank and swap-completion
7807                  * timestamping. They are derived from true hwmode.
7808                  */
7809                 drm_calc_timestamping_constants(crtc);
7810         }
7811
7812         /* FIXME: add subpixel order */
7813 done:
7814         drm_mode_destroy(dev, adjusted_mode);
7815         if (!ret && crtc->enabled) {
7816                 crtc->hwmode = saved_hwmode;
7817                 crtc->mode = saved_mode;
7818         } else {
7819                 intel_modeset_check_state(dev);
7820         }
7821
7822         return ret;
7823 }
7824
7825 #undef for_each_intel_crtc_masked
7826
7827 static void intel_set_config_free(struct intel_set_config *config)
7828 {
7829         if (!config)
7830                 return;
7831
7832         kfree(config->save_connector_encoders);
7833         kfree(config->save_encoder_crtcs);
7834         kfree(config);
7835 }
7836
7837 static int intel_set_config_save_state(struct drm_device *dev,
7838                                        struct intel_set_config *config)
7839 {
7840         struct drm_encoder *encoder;
7841         struct drm_connector *connector;
7842         int count;
7843
7844         config->save_encoder_crtcs =
7845                 kcalloc(dev->mode_config.num_encoder,
7846                         sizeof(struct drm_crtc *), GFP_KERNEL);
7847         if (!config->save_encoder_crtcs)
7848                 return -ENOMEM;
7849
7850         config->save_connector_encoders =
7851                 kcalloc(dev->mode_config.num_connector,
7852                         sizeof(struct drm_encoder *), GFP_KERNEL);
7853         if (!config->save_connector_encoders)
7854                 return -ENOMEM;
7855
7856         /* Copy data. Note that driver private data is not affected.
7857          * Should anything bad happen only the expected state is
7858          * restored, not the drivers personal bookkeeping.
7859          */
7860         count = 0;
7861         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7862                 config->save_encoder_crtcs[count++] = encoder->crtc;
7863         }
7864
7865         count = 0;
7866         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7867                 config->save_connector_encoders[count++] = connector->encoder;
7868         }
7869
7870         return 0;
7871 }
7872
7873 static void intel_set_config_restore_state(struct drm_device *dev,
7874                                            struct intel_set_config *config)
7875 {
7876         struct intel_encoder *encoder;
7877         struct intel_connector *connector;
7878         int count;
7879
7880         count = 0;
7881         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7882                 encoder->new_crtc =
7883                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7884         }
7885
7886         count = 0;
7887         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7888                 connector->new_encoder =
7889                         to_intel_encoder(config->save_connector_encoders[count++]);
7890         }
7891 }
7892
7893 static void
7894 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7895                                       struct intel_set_config *config)
7896 {
7897
7898         /* We should be able to check here if the fb has the same properties
7899          * and then just flip_or_move it */
7900         if (set->crtc->fb != set->fb) {
7901                 /* If we have no fb then treat it as a full mode set */
7902                 if (set->crtc->fb == NULL) {
7903                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7904                         config->mode_changed = true;
7905                 } else if (set->fb == NULL) {
7906                         config->mode_changed = true;
7907                 } else if (set->fb->depth != set->crtc->fb->depth) {
7908                         config->mode_changed = true;
7909                 } else if (set->fb->bits_per_pixel !=
7910                            set->crtc->fb->bits_per_pixel) {
7911                         config->mode_changed = true;
7912                 } else
7913                         config->fb_changed = true;
7914         }
7915
7916         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7917                 config->fb_changed = true;
7918
7919         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7920                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7921                 drm_mode_debug_printmodeline(&set->crtc->mode);
7922                 drm_mode_debug_printmodeline(set->mode);
7923                 config->mode_changed = true;
7924         }
7925 }
7926
7927 static int
7928 intel_modeset_stage_output_state(struct drm_device *dev,
7929                                  struct drm_mode_set *set,
7930                                  struct intel_set_config *config)
7931 {
7932         struct drm_crtc *new_crtc;
7933         struct intel_connector *connector;
7934         struct intel_encoder *encoder;
7935         int count, ro;
7936
7937         /* The upper layers ensure that we either disabl a crtc or have a list
7938          * of connectors. For paranoia, double-check this. */
7939         WARN_ON(!set->fb && (set->num_connectors != 0));
7940         WARN_ON(set->fb && (set->num_connectors == 0));
7941
7942         count = 0;
7943         list_for_each_entry(connector, &dev->mode_config.connector_list,
7944                             base.head) {
7945                 /* Otherwise traverse passed in connector list and get encoders
7946                  * for them. */
7947                 for (ro = 0; ro < set->num_connectors; ro++) {
7948                         if (set->connectors[ro] == &connector->base) {
7949                                 connector->new_encoder = connector->encoder;
7950                                 break;
7951                         }
7952                 }
7953
7954                 /* If we disable the crtc, disable all its connectors. Also, if
7955                  * the connector is on the changing crtc but not on the new
7956                  * connector list, disable it. */
7957                 if ((!set->fb || ro == set->num_connectors) &&
7958                     connector->base.encoder &&
7959                     connector->base.encoder->crtc == set->crtc) {
7960                         connector->new_encoder = NULL;
7961
7962                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7963                                 connector->base.base.id,
7964                                 drm_get_connector_name(&connector->base));
7965                 }
7966
7967
7968                 if (&connector->new_encoder->base != connector->base.encoder) {
7969                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7970                         config->mode_changed = true;
7971                 }
7972
7973                 /* Disable all disconnected encoders. */
7974                 if (connector->base.status == connector_status_disconnected)
7975                         connector->new_encoder = NULL;
7976         }
7977         /* connector->new_encoder is now updated for all connectors. */
7978
7979         /* Update crtc of enabled connectors. */
7980         count = 0;
7981         list_for_each_entry(connector, &dev->mode_config.connector_list,
7982                             base.head) {
7983                 if (!connector->new_encoder)
7984                         continue;
7985
7986                 new_crtc = connector->new_encoder->base.crtc;
7987
7988                 for (ro = 0; ro < set->num_connectors; ro++) {
7989                         if (set->connectors[ro] == &connector->base)
7990                                 new_crtc = set->crtc;
7991                 }
7992
7993                 /* Make sure the new CRTC will work with the encoder */
7994                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7995                                            new_crtc)) {
7996                         return -EINVAL;
7997                 }
7998                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7999
8000                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8001                         connector->base.base.id,
8002                         drm_get_connector_name(&connector->base),
8003                         new_crtc->base.id);
8004         }
8005
8006         /* Check for any encoders that needs to be disabled. */
8007         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8008                             base.head) {
8009                 list_for_each_entry(connector,
8010                                     &dev->mode_config.connector_list,
8011                                     base.head) {
8012                         if (connector->new_encoder == encoder) {
8013                                 WARN_ON(!connector->new_encoder->new_crtc);
8014
8015                                 goto next_encoder;
8016                         }
8017                 }
8018                 encoder->new_crtc = NULL;
8019 next_encoder:
8020                 /* Only now check for crtc changes so we don't miss encoders
8021                  * that will be disabled. */
8022                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8023                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8024                         config->mode_changed = true;
8025                 }
8026         }
8027         /* Now we've also updated encoder->new_crtc for all encoders. */
8028
8029         return 0;
8030 }
8031
8032 static int intel_crtc_set_config(struct drm_mode_set *set)
8033 {
8034         struct drm_device *dev;
8035         struct drm_mode_set save_set;
8036         struct intel_set_config *config;
8037         int ret;
8038
8039         BUG_ON(!set);
8040         BUG_ON(!set->crtc);
8041         BUG_ON(!set->crtc->helper_private);
8042
8043         if (!set->mode)
8044                 set->fb = NULL;
8045
8046         /* The fb helper likes to play gross jokes with ->mode_set_config.
8047          * Unfortunately the crtc helper doesn't do much at all for this case,
8048          * so we have to cope with this madness until the fb helper is fixed up. */
8049         if (set->fb && set->num_connectors == 0)
8050                 return 0;
8051
8052         if (set->fb) {
8053                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8054                                 set->crtc->base.id, set->fb->base.id,
8055                                 (int)set->num_connectors, set->x, set->y);
8056         } else {
8057                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8058         }
8059
8060         dev = set->crtc->dev;
8061
8062         ret = -ENOMEM;
8063         config = kzalloc(sizeof(*config), GFP_KERNEL);
8064         if (!config)
8065                 goto out_config;
8066
8067         ret = intel_set_config_save_state(dev, config);
8068         if (ret)
8069                 goto out_config;
8070
8071         save_set.crtc = set->crtc;
8072         save_set.mode = &set->crtc->mode;
8073         save_set.x = set->crtc->x;
8074         save_set.y = set->crtc->y;
8075         save_set.fb = set->crtc->fb;
8076
8077         /* Compute whether we need a full modeset, only an fb base update or no
8078          * change at all. In the future we might also check whether only the
8079          * mode changed, e.g. for LVDS where we only change the panel fitter in
8080          * such cases. */
8081         intel_set_config_compute_mode_changes(set, config);
8082
8083         ret = intel_modeset_stage_output_state(dev, set, config);
8084         if (ret)
8085                 goto fail;
8086
8087         if (config->mode_changed) {
8088                 if (set->mode) {
8089                         DRM_DEBUG_KMS("attempting to set mode from"
8090                                         " userspace\n");
8091                         drm_mode_debug_printmodeline(set->mode);
8092                 }
8093
8094                 if (!intel_set_mode(set->crtc, set->mode,
8095                                     set->x, set->y, set->fb)) {
8096                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8097                                   set->crtc->base.id);
8098                         ret = -EINVAL;
8099                         goto fail;
8100                 }
8101         } else if (config->fb_changed) {
8102                 ret = intel_pipe_set_base(set->crtc,
8103                                           set->x, set->y, set->fb);
8104         }
8105
8106         intel_set_config_free(config);
8107
8108         return 0;
8109
8110 fail:
8111         intel_set_config_restore_state(dev, config);
8112
8113         /* Try to restore the config */
8114         if (config->mode_changed &&
8115             !intel_set_mode(save_set.crtc, save_set.mode,
8116                             save_set.x, save_set.y, save_set.fb))
8117                 DRM_ERROR("failed to restore config after modeset failure\n");
8118
8119 out_config:
8120         intel_set_config_free(config);
8121         return ret;
8122 }
8123
8124 static const struct drm_crtc_funcs intel_crtc_funcs = {
8125         .cursor_set = intel_crtc_cursor_set,
8126         .cursor_move = intel_crtc_cursor_move,
8127         .gamma_set = intel_crtc_gamma_set,
8128         .set_config = intel_crtc_set_config,
8129         .destroy = intel_crtc_destroy,
8130         .page_flip = intel_crtc_page_flip,
8131 };
8132
8133 static void intel_cpu_pll_init(struct drm_device *dev)
8134 {
8135         if (IS_HASWELL(dev))
8136                 intel_ddi_pll_init(dev);
8137 }
8138
8139 static void intel_pch_pll_init(struct drm_device *dev)
8140 {
8141         drm_i915_private_t *dev_priv = dev->dev_private;
8142         int i;
8143
8144         if (dev_priv->num_pch_pll == 0) {
8145                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8146                 return;
8147         }
8148
8149         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8150                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8151                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8152                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8153         }
8154 }
8155
8156 static void intel_crtc_init(struct drm_device *dev, int pipe)
8157 {
8158         drm_i915_private_t *dev_priv = dev->dev_private;
8159         struct intel_crtc *intel_crtc;
8160         int i;
8161
8162         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8163         if (intel_crtc == NULL)
8164                 return;
8165
8166         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8167
8168         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8169         for (i = 0; i < 256; i++) {
8170                 intel_crtc->lut_r[i] = i;
8171                 intel_crtc->lut_g[i] = i;
8172                 intel_crtc->lut_b[i] = i;
8173         }
8174
8175         /* Swap pipes & planes for FBC on pre-965 */
8176         intel_crtc->pipe = pipe;
8177         intel_crtc->plane = pipe;
8178         intel_crtc->cpu_transcoder = pipe;
8179         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8180                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8181                 intel_crtc->plane = !pipe;
8182         }
8183
8184         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8185                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8186         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8187         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8188
8189         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8190
8191         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8192 }
8193
8194 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8195                                 struct drm_file *file)
8196 {
8197         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8198         struct drm_mode_object *drmmode_obj;
8199         struct intel_crtc *crtc;
8200
8201         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8202                 return -ENODEV;
8203
8204         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8205                         DRM_MODE_OBJECT_CRTC);
8206
8207         if (!drmmode_obj) {
8208                 DRM_ERROR("no such CRTC id\n");
8209                 return -EINVAL;
8210         }
8211
8212         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8213         pipe_from_crtc_id->pipe = crtc->pipe;
8214
8215         return 0;
8216 }
8217
8218 static int intel_encoder_clones(struct intel_encoder *encoder)
8219 {
8220         struct drm_device *dev = encoder->base.dev;
8221         struct intel_encoder *source_encoder;
8222         int index_mask = 0;
8223         int entry = 0;
8224
8225         list_for_each_entry(source_encoder,
8226                             &dev->mode_config.encoder_list, base.head) {
8227
8228                 if (encoder == source_encoder)
8229                         index_mask |= (1 << entry);
8230
8231                 /* Intel hw has only one MUX where enocoders could be cloned. */
8232                 if (encoder->cloneable && source_encoder->cloneable)
8233                         index_mask |= (1 << entry);
8234
8235                 entry++;
8236         }
8237
8238         return index_mask;
8239 }
8240
8241 static bool has_edp_a(struct drm_device *dev)
8242 {
8243         struct drm_i915_private *dev_priv = dev->dev_private;
8244
8245         if (!IS_MOBILE(dev))
8246                 return false;
8247
8248         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8249                 return false;
8250
8251         if (IS_GEN5(dev) &&
8252             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8253                 return false;
8254
8255         return true;
8256 }
8257
8258 static void intel_setup_outputs(struct drm_device *dev)
8259 {
8260         struct drm_i915_private *dev_priv = dev->dev_private;
8261         struct intel_encoder *encoder;
8262         bool dpd_is_edp = false;
8263         bool has_lvds;
8264
8265         has_lvds = intel_lvds_init(dev);
8266         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8267                 /* disable the panel fitter on everything but LVDS */
8268                 I915_WRITE(PFIT_CONTROL, 0);
8269         }
8270
8271         intel_crt_init(dev);
8272
8273         if (IS_HASWELL(dev)) {
8274                 int found;
8275
8276                 /* Haswell uses DDI functions to detect digital outputs */
8277                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8278                 /* DDI A only supports eDP */
8279                 if (found)
8280                         intel_ddi_init(dev, PORT_A);
8281
8282                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8283                  * register */
8284                 found = I915_READ(SFUSE_STRAP);
8285
8286                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8287                         intel_ddi_init(dev, PORT_B);
8288                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8289                         intel_ddi_init(dev, PORT_C);
8290                 if (found & SFUSE_STRAP_DDID_DETECTED)
8291                         intel_ddi_init(dev, PORT_D);
8292         } else if (HAS_PCH_SPLIT(dev)) {
8293                 int found;
8294                 dpd_is_edp = intel_dpd_is_edp(dev);
8295
8296                 if (has_edp_a(dev))
8297                         intel_dp_init(dev, DP_A, PORT_A);
8298
8299                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8300                         /* PCH SDVOB multiplex with HDMIB */
8301                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8302                         if (!found)
8303                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8304                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8305                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8306                 }
8307
8308                 if (I915_READ(HDMIC) & PORT_DETECTED)
8309                         intel_hdmi_init(dev, HDMIC, PORT_C);
8310
8311                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8312                         intel_hdmi_init(dev, HDMID, PORT_D);
8313
8314                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8315                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8316
8317                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8318                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8319         } else if (IS_VALLEYVIEW(dev)) {
8320                 int found;
8321
8322                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8323                 if (I915_READ(DP_C) & DP_DETECTED)
8324                         intel_dp_init(dev, DP_C, PORT_C);
8325
8326                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8327                         /* SDVOB multiplex with HDMIB */
8328                         found = intel_sdvo_init(dev, SDVOB, true);
8329                         if (!found)
8330                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8331                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8332                                 intel_dp_init(dev, DP_B, PORT_B);
8333                 }
8334
8335                 if (I915_READ(SDVOC) & PORT_DETECTED)
8336                         intel_hdmi_init(dev, SDVOC, PORT_C);
8337
8338         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8339                 bool found = false;
8340
8341                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8342                         DRM_DEBUG_KMS("probing SDVOB\n");
8343                         found = intel_sdvo_init(dev, SDVOB, true);
8344                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8345                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8346                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8347                         }
8348
8349                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8350                                 DRM_DEBUG_KMS("probing DP_B\n");
8351                                 intel_dp_init(dev, DP_B, PORT_B);
8352                         }
8353                 }
8354
8355                 /* Before G4X SDVOC doesn't have its own detect register */
8356
8357                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8358                         DRM_DEBUG_KMS("probing SDVOC\n");
8359                         found = intel_sdvo_init(dev, SDVOC, false);
8360                 }
8361
8362                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8363
8364                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8365                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8366                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8367                         }
8368                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8369                                 DRM_DEBUG_KMS("probing DP_C\n");
8370                                 intel_dp_init(dev, DP_C, PORT_C);
8371                         }
8372                 }
8373
8374                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8375                     (I915_READ(DP_D) & DP_DETECTED)) {
8376                         DRM_DEBUG_KMS("probing DP_D\n");
8377                         intel_dp_init(dev, DP_D, PORT_D);
8378                 }
8379         } else if (IS_GEN2(dev))
8380                 intel_dvo_init(dev);
8381
8382         if (SUPPORTS_TV(dev))
8383                 intel_tv_init(dev);
8384
8385         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8386                 encoder->base.possible_crtcs = encoder->crtc_mask;
8387                 encoder->base.possible_clones =
8388                         intel_encoder_clones(encoder);
8389         }
8390
8391         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8392                 ironlake_init_pch_refclk(dev);
8393
8394         drm_helper_move_panel_connectors_to_head(dev);
8395 }
8396
8397 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8398 {
8399         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8400
8401         drm_framebuffer_cleanup(fb);
8402         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8403
8404         kfree(intel_fb);
8405 }
8406
8407 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8408                                                 struct drm_file *file,
8409                                                 unsigned int *handle)
8410 {
8411         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8412         struct drm_i915_gem_object *obj = intel_fb->obj;
8413
8414         return drm_gem_handle_create(file, &obj->base, handle);
8415 }
8416
8417 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8418         .destroy = intel_user_framebuffer_destroy,
8419         .create_handle = intel_user_framebuffer_create_handle,
8420 };
8421
8422 int intel_framebuffer_init(struct drm_device *dev,
8423                            struct intel_framebuffer *intel_fb,
8424                            struct drm_mode_fb_cmd2 *mode_cmd,
8425                            struct drm_i915_gem_object *obj)
8426 {
8427         int ret;
8428
8429         if (obj->tiling_mode == I915_TILING_Y)
8430                 return -EINVAL;
8431
8432         if (mode_cmd->pitches[0] & 63)
8433                 return -EINVAL;
8434
8435         /* FIXME <= Gen4 stride limits are bit unclear */
8436         if (mode_cmd->pitches[0] > 32768)
8437                 return -EINVAL;
8438
8439         if (obj->tiling_mode != I915_TILING_NONE &&
8440             mode_cmd->pitches[0] != obj->stride)
8441                 return -EINVAL;
8442
8443         /* Reject formats not supported by any plane early. */
8444         switch (mode_cmd->pixel_format) {
8445         case DRM_FORMAT_C8:
8446         case DRM_FORMAT_RGB565:
8447         case DRM_FORMAT_XRGB8888:
8448         case DRM_FORMAT_ARGB8888:
8449                 break;
8450         case DRM_FORMAT_XRGB1555:
8451         case DRM_FORMAT_ARGB1555:
8452                 if (INTEL_INFO(dev)->gen > 3)
8453                         return -EINVAL;
8454                 break;
8455         case DRM_FORMAT_XBGR8888:
8456         case DRM_FORMAT_ABGR8888:
8457         case DRM_FORMAT_XRGB2101010:
8458         case DRM_FORMAT_ARGB2101010:
8459         case DRM_FORMAT_XBGR2101010:
8460         case DRM_FORMAT_ABGR2101010:
8461                 if (INTEL_INFO(dev)->gen < 4)
8462                         return -EINVAL;
8463                 break;
8464         case DRM_FORMAT_YUYV:
8465         case DRM_FORMAT_UYVY:
8466         case DRM_FORMAT_YVYU:
8467         case DRM_FORMAT_VYUY:
8468                 if (INTEL_INFO(dev)->gen < 6)
8469                         return -EINVAL;
8470                 break;
8471         default:
8472                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8473                 return -EINVAL;
8474         }
8475
8476         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8477         if (mode_cmd->offsets[0] != 0)
8478                 return -EINVAL;
8479
8480         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8481         if (ret) {
8482                 DRM_ERROR("framebuffer init failed %d\n", ret);
8483                 return ret;
8484         }
8485
8486         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8487         intel_fb->obj = obj;
8488         return 0;
8489 }
8490
8491 static struct drm_framebuffer *
8492 intel_user_framebuffer_create(struct drm_device *dev,
8493                               struct drm_file *filp,
8494                               struct drm_mode_fb_cmd2 *mode_cmd)
8495 {
8496         struct drm_i915_gem_object *obj;
8497
8498         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8499                                                 mode_cmd->handles[0]));
8500         if (&obj->base == NULL)
8501                 return ERR_PTR(-ENOENT);
8502
8503         return intel_framebuffer_create(dev, mode_cmd, obj);
8504 }
8505
8506 static const struct drm_mode_config_funcs intel_mode_funcs = {
8507         .fb_create = intel_user_framebuffer_create,
8508         .output_poll_changed = intel_fb_output_poll_changed,
8509 };
8510
8511 /* Set up chip specific display functions */
8512 static void intel_init_display(struct drm_device *dev)
8513 {
8514         struct drm_i915_private *dev_priv = dev->dev_private;
8515
8516         /* We always want a DPMS function */
8517         if (IS_HASWELL(dev)) {
8518                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8519                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8520                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8521                 dev_priv->display.off = haswell_crtc_off;
8522                 dev_priv->display.update_plane = ironlake_update_plane;
8523         } else if (HAS_PCH_SPLIT(dev)) {
8524                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8525                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8526                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8527                 dev_priv->display.off = ironlake_crtc_off;
8528                 dev_priv->display.update_plane = ironlake_update_plane;
8529         } else {
8530                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8531                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8532                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8533                 dev_priv->display.off = i9xx_crtc_off;
8534                 dev_priv->display.update_plane = i9xx_update_plane;
8535         }
8536
8537         /* Returns the core display clock speed */
8538         if (IS_VALLEYVIEW(dev))
8539                 dev_priv->display.get_display_clock_speed =
8540                         valleyview_get_display_clock_speed;
8541         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8542                 dev_priv->display.get_display_clock_speed =
8543                         i945_get_display_clock_speed;
8544         else if (IS_I915G(dev))
8545                 dev_priv->display.get_display_clock_speed =
8546                         i915_get_display_clock_speed;
8547         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8548                 dev_priv->display.get_display_clock_speed =
8549                         i9xx_misc_get_display_clock_speed;
8550         else if (IS_I915GM(dev))
8551                 dev_priv->display.get_display_clock_speed =
8552                         i915gm_get_display_clock_speed;
8553         else if (IS_I865G(dev))
8554                 dev_priv->display.get_display_clock_speed =
8555                         i865_get_display_clock_speed;
8556         else if (IS_I85X(dev))
8557                 dev_priv->display.get_display_clock_speed =
8558                         i855_get_display_clock_speed;
8559         else /* 852, 830 */
8560                 dev_priv->display.get_display_clock_speed =
8561                         i830_get_display_clock_speed;
8562
8563         if (HAS_PCH_SPLIT(dev)) {
8564                 if (IS_GEN5(dev)) {
8565                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8566                         dev_priv->display.write_eld = ironlake_write_eld;
8567                 } else if (IS_GEN6(dev)) {
8568                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8569                         dev_priv->display.write_eld = ironlake_write_eld;
8570                 } else if (IS_IVYBRIDGE(dev)) {
8571                         /* FIXME: detect B0+ stepping and use auto training */
8572                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8573                         dev_priv->display.write_eld = ironlake_write_eld;
8574                         dev_priv->display.modeset_global_resources =
8575                                 ivb_modeset_global_resources;
8576                 } else if (IS_HASWELL(dev)) {
8577                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8578                         dev_priv->display.write_eld = haswell_write_eld;
8579                 } else
8580                         dev_priv->display.update_wm = NULL;
8581         } else if (IS_G4X(dev)) {
8582                 dev_priv->display.write_eld = g4x_write_eld;
8583         }
8584
8585         /* Default just returns -ENODEV to indicate unsupported */
8586         dev_priv->display.queue_flip = intel_default_queue_flip;
8587
8588         switch (INTEL_INFO(dev)->gen) {
8589         case 2:
8590                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8591                 break;
8592
8593         case 3:
8594                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8595                 break;
8596
8597         case 4:
8598         case 5:
8599                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8600                 break;
8601
8602         case 6:
8603                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8604                 break;
8605         case 7:
8606                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8607                 break;
8608         }
8609 }
8610
8611 /*
8612  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8613  * resume, or other times.  This quirk makes sure that's the case for
8614  * affected systems.
8615  */
8616 static void quirk_pipea_force(struct drm_device *dev)
8617 {
8618         struct drm_i915_private *dev_priv = dev->dev_private;
8619
8620         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8621         DRM_INFO("applying pipe a force quirk\n");
8622 }
8623
8624 /*
8625  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8626  */
8627 static void quirk_ssc_force_disable(struct drm_device *dev)
8628 {
8629         struct drm_i915_private *dev_priv = dev->dev_private;
8630         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8631         DRM_INFO("applying lvds SSC disable quirk\n");
8632 }
8633
8634 /*
8635  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8636  * brightness value
8637  */
8638 static void quirk_invert_brightness(struct drm_device *dev)
8639 {
8640         struct drm_i915_private *dev_priv = dev->dev_private;
8641         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8642         DRM_INFO("applying inverted panel brightness quirk\n");
8643 }
8644
8645 struct intel_quirk {
8646         int device;
8647         int subsystem_vendor;
8648         int subsystem_device;
8649         void (*hook)(struct drm_device *dev);
8650 };
8651
8652 static struct intel_quirk intel_quirks[] = {
8653         /* HP Mini needs pipe A force quirk (LP: #322104) */
8654         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8655
8656         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8657         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8658
8659         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8660         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8661
8662         /* 830/845 need to leave pipe A & dpll A up */
8663         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8664         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8665
8666         /* Lenovo U160 cannot use SSC on LVDS */
8667         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8668
8669         /* Sony Vaio Y cannot use SSC on LVDS */
8670         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8671
8672         /* Acer Aspire 5734Z must invert backlight brightness */
8673         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8674 };
8675
8676 static void intel_init_quirks(struct drm_device *dev)
8677 {
8678         struct pci_dev *d = dev->pdev;
8679         int i;
8680
8681         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8682                 struct intel_quirk *q = &intel_quirks[i];
8683
8684                 if (d->device == q->device &&
8685                     (d->subsystem_vendor == q->subsystem_vendor ||
8686                      q->subsystem_vendor == PCI_ANY_ID) &&
8687                     (d->subsystem_device == q->subsystem_device ||
8688                      q->subsystem_device == PCI_ANY_ID))
8689                         q->hook(dev);
8690         }
8691 }
8692
8693 /* Disable the VGA plane that we never use */
8694 static void i915_disable_vga(struct drm_device *dev)
8695 {
8696         struct drm_i915_private *dev_priv = dev->dev_private;
8697         u8 sr1;
8698         u32 vga_reg;
8699
8700         if (HAS_PCH_SPLIT(dev))
8701                 vga_reg = CPU_VGACNTRL;
8702         else
8703                 vga_reg = VGACNTRL;
8704
8705         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8706         outb(SR01, VGA_SR_INDEX);
8707         sr1 = inb(VGA_SR_DATA);
8708         outb(sr1 | 1<<5, VGA_SR_DATA);
8709         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8710         udelay(300);
8711
8712         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8713         POSTING_READ(vga_reg);
8714 }
8715
8716 void intel_modeset_init_hw(struct drm_device *dev)
8717 {
8718         /* We attempt to init the necessary power wells early in the initialization
8719          * time, so the subsystems that expect power to be enabled can work.
8720          */
8721         intel_init_power_wells(dev);
8722
8723         intel_prepare_ddi(dev);
8724
8725         intel_init_clock_gating(dev);
8726
8727         mutex_lock(&dev->struct_mutex);
8728         intel_enable_gt_powersave(dev);
8729         mutex_unlock(&dev->struct_mutex);
8730 }
8731
8732 void intel_modeset_init(struct drm_device *dev)
8733 {
8734         struct drm_i915_private *dev_priv = dev->dev_private;
8735         int i, ret;
8736
8737         drm_mode_config_init(dev);
8738
8739         dev->mode_config.min_width = 0;
8740         dev->mode_config.min_height = 0;
8741
8742         dev->mode_config.preferred_depth = 24;
8743         dev->mode_config.prefer_shadow = 1;
8744
8745         dev->mode_config.funcs = &intel_mode_funcs;
8746
8747         intel_init_quirks(dev);
8748
8749         intel_init_pm(dev);
8750
8751         intel_init_display(dev);
8752
8753         if (IS_GEN2(dev)) {
8754                 dev->mode_config.max_width = 2048;
8755                 dev->mode_config.max_height = 2048;
8756         } else if (IS_GEN3(dev)) {
8757                 dev->mode_config.max_width = 4096;
8758                 dev->mode_config.max_height = 4096;
8759         } else {
8760                 dev->mode_config.max_width = 8192;
8761                 dev->mode_config.max_height = 8192;
8762         }
8763         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8764
8765         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8766                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8767
8768         for (i = 0; i < dev_priv->num_pipe; i++) {
8769                 intel_crtc_init(dev, i);
8770                 ret = intel_plane_init(dev, i);
8771                 if (ret)
8772                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8773         }
8774
8775         intel_cpu_pll_init(dev);
8776         intel_pch_pll_init(dev);
8777
8778         /* Just disable it once at startup */
8779         i915_disable_vga(dev);
8780         intel_setup_outputs(dev);
8781 }
8782
8783 static void
8784 intel_connector_break_all_links(struct intel_connector *connector)
8785 {
8786         connector->base.dpms = DRM_MODE_DPMS_OFF;
8787         connector->base.encoder = NULL;
8788         connector->encoder->connectors_active = false;
8789         connector->encoder->base.crtc = NULL;
8790 }
8791
8792 static void intel_enable_pipe_a(struct drm_device *dev)
8793 {
8794         struct intel_connector *connector;
8795         struct drm_connector *crt = NULL;
8796         struct intel_load_detect_pipe load_detect_temp;
8797
8798         /* We can't just switch on the pipe A, we need to set things up with a
8799          * proper mode and output configuration. As a gross hack, enable pipe A
8800          * by enabling the load detect pipe once. */
8801         list_for_each_entry(connector,
8802                             &dev->mode_config.connector_list,
8803                             base.head) {
8804                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8805                         crt = &connector->base;
8806                         break;
8807                 }
8808         }
8809
8810         if (!crt)
8811                 return;
8812
8813         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8814                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8815
8816
8817 }
8818
8819 static bool
8820 intel_check_plane_mapping(struct intel_crtc *crtc)
8821 {
8822         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8823         u32 reg, val;
8824
8825         if (dev_priv->num_pipe == 1)
8826                 return true;
8827
8828         reg = DSPCNTR(!crtc->plane);
8829         val = I915_READ(reg);
8830
8831         if ((val & DISPLAY_PLANE_ENABLE) &&
8832             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8833                 return false;
8834
8835         return true;
8836 }
8837
8838 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8839 {
8840         struct drm_device *dev = crtc->base.dev;
8841         struct drm_i915_private *dev_priv = dev->dev_private;
8842         u32 reg;
8843
8844         /* Clear any frame start delays used for debugging left by the BIOS */
8845         reg = PIPECONF(crtc->cpu_transcoder);
8846         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8847
8848         /* We need to sanitize the plane -> pipe mapping first because this will
8849          * disable the crtc (and hence change the state) if it is wrong. Note
8850          * that gen4+ has a fixed plane -> pipe mapping.  */
8851         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8852                 struct intel_connector *connector;
8853                 bool plane;
8854
8855                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8856                               crtc->base.base.id);
8857
8858                 /* Pipe has the wrong plane attached and the plane is active.
8859                  * Temporarily change the plane mapping and disable everything
8860                  * ...  */
8861                 plane = crtc->plane;
8862                 crtc->plane = !plane;
8863                 dev_priv->display.crtc_disable(&crtc->base);
8864                 crtc->plane = plane;
8865
8866                 /* ... and break all links. */
8867                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8868                                     base.head) {
8869                         if (connector->encoder->base.crtc != &crtc->base)
8870                                 continue;
8871
8872                         intel_connector_break_all_links(connector);
8873                 }
8874
8875                 WARN_ON(crtc->active);
8876                 crtc->base.enabled = false;
8877         }
8878
8879         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8880             crtc->pipe == PIPE_A && !crtc->active) {
8881                 /* BIOS forgot to enable pipe A, this mostly happens after
8882                  * resume. Force-enable the pipe to fix this, the update_dpms
8883                  * call below we restore the pipe to the right state, but leave
8884                  * the required bits on. */
8885                 intel_enable_pipe_a(dev);
8886         }
8887
8888         /* Adjust the state of the output pipe according to whether we
8889          * have active connectors/encoders. */
8890         intel_crtc_update_dpms(&crtc->base);
8891
8892         if (crtc->active != crtc->base.enabled) {
8893                 struct intel_encoder *encoder;
8894
8895                 /* This can happen either due to bugs in the get_hw_state
8896                  * functions or because the pipe is force-enabled due to the
8897                  * pipe A quirk. */
8898                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8899                               crtc->base.base.id,
8900                               crtc->base.enabled ? "enabled" : "disabled",
8901                               crtc->active ? "enabled" : "disabled");
8902
8903                 crtc->base.enabled = crtc->active;
8904
8905                 /* Because we only establish the connector -> encoder ->
8906                  * crtc links if something is active, this means the
8907                  * crtc is now deactivated. Break the links. connector
8908                  * -> encoder links are only establish when things are
8909                  *  actually up, hence no need to break them. */
8910                 WARN_ON(crtc->active);
8911
8912                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8913                         WARN_ON(encoder->connectors_active);
8914                         encoder->base.crtc = NULL;
8915                 }
8916         }
8917 }
8918
8919 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8920 {
8921         struct intel_connector *connector;
8922         struct drm_device *dev = encoder->base.dev;
8923
8924         /* We need to check both for a crtc link (meaning that the
8925          * encoder is active and trying to read from a pipe) and the
8926          * pipe itself being active. */
8927         bool has_active_crtc = encoder->base.crtc &&
8928                 to_intel_crtc(encoder->base.crtc)->active;
8929
8930         if (encoder->connectors_active && !has_active_crtc) {
8931                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8932                               encoder->base.base.id,
8933                               drm_get_encoder_name(&encoder->base));
8934
8935                 /* Connector is active, but has no active pipe. This is
8936                  * fallout from our resume register restoring. Disable
8937                  * the encoder manually again. */
8938                 if (encoder->base.crtc) {
8939                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8940                                       encoder->base.base.id,
8941                                       drm_get_encoder_name(&encoder->base));
8942                         encoder->disable(encoder);
8943                 }
8944
8945                 /* Inconsistent output/port/pipe state happens presumably due to
8946                  * a bug in one of the get_hw_state functions. Or someplace else
8947                  * in our code, like the register restore mess on resume. Clamp
8948                  * things to off as a safer default. */
8949                 list_for_each_entry(connector,
8950                                     &dev->mode_config.connector_list,
8951                                     base.head) {
8952                         if (connector->encoder != encoder)
8953                                 continue;
8954
8955                         intel_connector_break_all_links(connector);
8956                 }
8957         }
8958         /* Enabled encoders without active connectors will be fixed in
8959          * the crtc fixup. */
8960 }
8961
8962 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8963  * and i915 state tracking structures. */
8964 void intel_modeset_setup_hw_state(struct drm_device *dev)
8965 {
8966         struct drm_i915_private *dev_priv = dev->dev_private;
8967         enum pipe pipe;
8968         u32 tmp;
8969         struct intel_crtc *crtc;
8970         struct intel_encoder *encoder;
8971         struct intel_connector *connector;
8972
8973         if (IS_HASWELL(dev)) {
8974                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8975
8976                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8977                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8978                         case TRANS_DDI_EDP_INPUT_A_ON:
8979                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8980                                 pipe = PIPE_A;
8981                                 break;
8982                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8983                                 pipe = PIPE_B;
8984                                 break;
8985                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8986                                 pipe = PIPE_C;
8987                                 break;
8988                         }
8989
8990                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8991                         crtc->cpu_transcoder = TRANSCODER_EDP;
8992
8993                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8994                                       pipe_name(pipe));
8995                 }
8996         }
8997
8998         for_each_pipe(pipe) {
8999                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9000
9001                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9002                 if (tmp & PIPECONF_ENABLE)
9003                         crtc->active = true;
9004                 else
9005                         crtc->active = false;
9006
9007                 crtc->base.enabled = crtc->active;
9008
9009                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9010                               crtc->base.base.id,
9011                               crtc->active ? "enabled" : "disabled");
9012         }
9013
9014         if (IS_HASWELL(dev))
9015                 intel_ddi_setup_hw_pll_state(dev);
9016
9017         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9018                             base.head) {
9019                 pipe = 0;
9020
9021                 if (encoder->get_hw_state(encoder, &pipe)) {
9022                         encoder->base.crtc =
9023                                 dev_priv->pipe_to_crtc_mapping[pipe];
9024                 } else {
9025                         encoder->base.crtc = NULL;
9026                 }
9027
9028                 encoder->connectors_active = false;
9029                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9030                               encoder->base.base.id,
9031                               drm_get_encoder_name(&encoder->base),
9032                               encoder->base.crtc ? "enabled" : "disabled",
9033                               pipe);
9034         }
9035
9036         list_for_each_entry(connector, &dev->mode_config.connector_list,
9037                             base.head) {
9038                 if (connector->get_hw_state(connector)) {
9039                         connector->base.dpms = DRM_MODE_DPMS_ON;
9040                         connector->encoder->connectors_active = true;
9041                         connector->base.encoder = &connector->encoder->base;
9042                 } else {
9043                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9044                         connector->base.encoder = NULL;
9045                 }
9046                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9047                               connector->base.base.id,
9048                               drm_get_connector_name(&connector->base),
9049                               connector->base.encoder ? "enabled" : "disabled");
9050         }
9051
9052         /* HW state is read out, now we need to sanitize this mess. */
9053         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9054                             base.head) {
9055                 intel_sanitize_encoder(encoder);
9056         }
9057
9058         for_each_pipe(pipe) {
9059                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9060                 intel_sanitize_crtc(crtc);
9061         }
9062
9063         intel_modeset_update_staged_output_state(dev);
9064
9065         intel_modeset_check_state(dev);
9066
9067         drm_mode_config_reset(dev);
9068 }
9069
9070 void intel_modeset_gem_init(struct drm_device *dev)
9071 {
9072         intel_modeset_init_hw(dev);
9073
9074         intel_setup_overlay(dev);
9075
9076         intel_modeset_setup_hw_state(dev);
9077 }
9078
9079 void intel_modeset_cleanup(struct drm_device *dev)
9080 {
9081         struct drm_i915_private *dev_priv = dev->dev_private;
9082         struct drm_crtc *crtc;
9083         struct intel_crtc *intel_crtc;
9084
9085         drm_kms_helper_poll_fini(dev);
9086         mutex_lock(&dev->struct_mutex);
9087
9088         intel_unregister_dsm_handler();
9089
9090
9091         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9092                 /* Skip inactive CRTCs */
9093                 if (!crtc->fb)
9094                         continue;
9095
9096                 intel_crtc = to_intel_crtc(crtc);
9097                 intel_increase_pllclock(crtc);
9098         }
9099
9100         intel_disable_fbc(dev);
9101
9102         intel_disable_gt_powersave(dev);
9103
9104         ironlake_teardown_rc6(dev);
9105
9106         if (IS_VALLEYVIEW(dev))
9107                 vlv_init_dpio(dev);
9108
9109         mutex_unlock(&dev->struct_mutex);
9110
9111         /* Disable the irq before mode object teardown, for the irq might
9112          * enqueue unpin/hotplug work. */
9113         drm_irq_uninstall(dev);
9114         cancel_work_sync(&dev_priv->hotplug_work);
9115         cancel_work_sync(&dev_priv->rps.work);
9116
9117         /* flush any delayed tasks or pending work */
9118         flush_scheduled_work();
9119
9120         drm_mode_config_cleanup(dev);
9121 }
9122
9123 /*
9124  * Return which encoder is currently attached for connector.
9125  */
9126 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9127 {
9128         return &intel_attached_encoder(connector)->base;
9129 }
9130
9131 void intel_connector_attach_encoder(struct intel_connector *connector,
9132                                     struct intel_encoder *encoder)
9133 {
9134         connector->encoder = encoder;
9135         drm_mode_connector_attach_encoder(&connector->base,
9136                                           &encoder->base);
9137 }
9138
9139 /*
9140  * set vga decode state - true == enable VGA decode
9141  */
9142 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9143 {
9144         struct drm_i915_private *dev_priv = dev->dev_private;
9145         u16 gmch_ctrl;
9146
9147         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9148         if (state)
9149                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9150         else
9151                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9152         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9153         return 0;
9154 }
9155
9156 #ifdef CONFIG_DEBUG_FS
9157 #include <linux/seq_file.h>
9158
9159 struct intel_display_error_state {
9160         struct intel_cursor_error_state {
9161                 u32 control;
9162                 u32 position;
9163                 u32 base;
9164                 u32 size;
9165         } cursor[I915_MAX_PIPES];
9166
9167         struct intel_pipe_error_state {
9168                 u32 conf;
9169                 u32 source;
9170
9171                 u32 htotal;
9172                 u32 hblank;
9173                 u32 hsync;
9174                 u32 vtotal;
9175                 u32 vblank;
9176                 u32 vsync;
9177         } pipe[I915_MAX_PIPES];
9178
9179         struct intel_plane_error_state {
9180                 u32 control;
9181                 u32 stride;
9182                 u32 size;
9183                 u32 pos;
9184                 u32 addr;
9185                 u32 surface;
9186                 u32 tile_offset;
9187         } plane[I915_MAX_PIPES];
9188 };
9189
9190 struct intel_display_error_state *
9191 intel_display_capture_error_state(struct drm_device *dev)
9192 {
9193         drm_i915_private_t *dev_priv = dev->dev_private;
9194         struct intel_display_error_state *error;
9195         enum transcoder cpu_transcoder;
9196         int i;
9197
9198         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9199         if (error == NULL)
9200                 return NULL;
9201
9202         for_each_pipe(i) {
9203                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9204
9205                 error->cursor[i].control = I915_READ(CURCNTR(i));
9206                 error->cursor[i].position = I915_READ(CURPOS(i));
9207                 error->cursor[i].base = I915_READ(CURBASE(i));
9208
9209                 error->plane[i].control = I915_READ(DSPCNTR(i));
9210                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9211                 error->plane[i].size = I915_READ(DSPSIZE(i));
9212                 error->plane[i].pos = I915_READ(DSPPOS(i));
9213                 error->plane[i].addr = I915_READ(DSPADDR(i));
9214                 if (INTEL_INFO(dev)->gen >= 4) {
9215                         error->plane[i].surface = I915_READ(DSPSURF(i));
9216                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9217                 }
9218
9219                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9220                 error->pipe[i].source = I915_READ(PIPESRC(i));
9221                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9222                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9223                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9224                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9225                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9226                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9227         }
9228
9229         return error;
9230 }
9231
9232 void
9233 intel_display_print_error_state(struct seq_file *m,
9234                                 struct drm_device *dev,
9235                                 struct intel_display_error_state *error)
9236 {
9237         drm_i915_private_t *dev_priv = dev->dev_private;
9238         int i;
9239
9240         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9241         for_each_pipe(i) {
9242                 seq_printf(m, "Pipe [%d]:\n", i);
9243                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9244                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9245                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9246                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9247                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9248                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9249                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9250                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9251
9252                 seq_printf(m, "Plane [%d]:\n", i);
9253                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9254                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9255                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9256                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9257                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9258                 if (INTEL_INFO(dev)->gen >= 4) {
9259                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9260                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9261                 }
9262
9263                 seq_printf(m, "Cursor [%d]:\n", i);
9264                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9265                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9266                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9267         }
9268 }
9269 #endif