]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: use IS_HASWELL/BROADWELL instead of HAS_POWER_WELL
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57         int     min, max;
58 } intel_range_t;
59
60 typedef struct {
61         int     dot_limit;
62         int     p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
68         intel_p2_t          p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74         struct drm_i915_private *dev_priv = dev->dev_private;
75
76         WARN_ON(!HAS_PCH_SPLIT(dev));
77
78         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84         if (IS_GEN5(dev)) {
85                 struct drm_i915_private *dev_priv = dev->dev_private;
86                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87         } else
88                 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92         .dot = { .min = 25000, .max = 350000 },
93         .vco = { .min = 930000, .max = 1400000 },
94         .n = { .min = 3, .max = 16 },
95         .m = { .min = 96, .max = 140 },
96         .m1 = { .min = 18, .max = 26 },
97         .m2 = { .min = 6, .max = 16 },
98         .p = { .min = 4, .max = 128 },
99         .p1 = { .min = 2, .max = 33 },
100         .p2 = { .dot_limit = 165000,
101                 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105         .dot = { .min = 25000, .max = 350000 },
106         .vco = { .min = 930000, .max = 1400000 },
107         .n = { .min = 3, .max = 16 },
108         .m = { .min = 96, .max = 140 },
109         .m1 = { .min = 18, .max = 26 },
110         .m2 = { .min = 6, .max = 16 },
111         .p = { .min = 4, .max = 128 },
112         .p1 = { .min = 2, .max = 33 },
113         .p2 = { .dot_limit = 165000,
114                 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118         .dot = { .min = 25000, .max = 350000 },
119         .vco = { .min = 930000, .max = 1400000 },
120         .n = { .min = 3, .max = 16 },
121         .m = { .min = 96, .max = 140 },
122         .m1 = { .min = 18, .max = 26 },
123         .m2 = { .min = 6, .max = 16 },
124         .p = { .min = 4, .max = 128 },
125         .p1 = { .min = 1, .max = 6 },
126         .p2 = { .dot_limit = 165000,
127                 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131         .dot = { .min = 20000, .max = 400000 },
132         .vco = { .min = 1400000, .max = 2800000 },
133         .n = { .min = 1, .max = 6 },
134         .m = { .min = 70, .max = 120 },
135         .m1 = { .min = 8, .max = 18 },
136         .m2 = { .min = 3, .max = 7 },
137         .p = { .min = 5, .max = 80 },
138         .p1 = { .min = 1, .max = 8 },
139         .p2 = { .dot_limit = 200000,
140                 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144         .dot = { .min = 20000, .max = 400000 },
145         .vco = { .min = 1400000, .max = 2800000 },
146         .n = { .min = 1, .max = 6 },
147         .m = { .min = 70, .max = 120 },
148         .m1 = { .min = 8, .max = 18 },
149         .m2 = { .min = 3, .max = 7 },
150         .p = { .min = 7, .max = 98 },
151         .p1 = { .min = 1, .max = 8 },
152         .p2 = { .dot_limit = 112000,
153                 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158         .dot = { .min = 25000, .max = 270000 },
159         .vco = { .min = 1750000, .max = 3500000},
160         .n = { .min = 1, .max = 4 },
161         .m = { .min = 104, .max = 138 },
162         .m1 = { .min = 17, .max = 23 },
163         .m2 = { .min = 5, .max = 11 },
164         .p = { .min = 10, .max = 30 },
165         .p1 = { .min = 1, .max = 3},
166         .p2 = { .dot_limit = 270000,
167                 .p2_slow = 10,
168                 .p2_fast = 10
169         },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173         .dot = { .min = 22000, .max = 400000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 16, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 5, .max = 80 },
180         .p1 = { .min = 1, .max = 8},
181         .p2 = { .dot_limit = 165000,
182                 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186         .dot = { .min = 20000, .max = 115000 },
187         .vco = { .min = 1750000, .max = 3500000 },
188         .n = { .min = 1, .max = 3 },
189         .m = { .min = 104, .max = 138 },
190         .m1 = { .min = 17, .max = 23 },
191         .m2 = { .min = 5, .max = 11 },
192         .p = { .min = 28, .max = 112 },
193         .p1 = { .min = 2, .max = 8 },
194         .p2 = { .dot_limit = 0,
195                 .p2_slow = 14, .p2_fast = 14
196         },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200         .dot = { .min = 80000, .max = 224000 },
201         .vco = { .min = 1750000, .max = 3500000 },
202         .n = { .min = 1, .max = 3 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 17, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 14, .max = 42 },
207         .p1 = { .min = 2, .max = 6 },
208         .p2 = { .dot_limit = 0,
209                 .p2_slow = 7, .p2_fast = 7
210         },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214         .dot = { .min = 20000, .max = 400000},
215         .vco = { .min = 1700000, .max = 3500000 },
216         /* Pineview's Ncounter is a ring counter */
217         .n = { .min = 3, .max = 6 },
218         .m = { .min = 2, .max = 256 },
219         /* Pineview only has one combined m divider, which we treat as m2. */
220         .m1 = { .min = 0, .max = 0 },
221         .m2 = { .min = 0, .max = 254 },
222         .p = { .min = 5, .max = 80 },
223         .p1 = { .min = 1, .max = 8 },
224         .p2 = { .dot_limit = 200000,
225                 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229         .dot = { .min = 20000, .max = 400000 },
230         .vco = { .min = 1700000, .max = 3500000 },
231         .n = { .min = 3, .max = 6 },
232         .m = { .min = 2, .max = 256 },
233         .m1 = { .min = 0, .max = 0 },
234         .m2 = { .min = 0, .max = 254 },
235         .p = { .min = 7, .max = 112 },
236         .p1 = { .min = 1, .max = 8 },
237         .p2 = { .dot_limit = 112000,
238                 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242  *
243  * We calculate clock using (register_value + 2) for N/M1/M2, so here
244  * the range value for them is (actual_value - 2).
245  */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247         .dot = { .min = 25000, .max = 350000 },
248         .vco = { .min = 1760000, .max = 3510000 },
249         .n = { .min = 1, .max = 5 },
250         .m = { .min = 79, .max = 127 },
251         .m1 = { .min = 12, .max = 22 },
252         .m2 = { .min = 5, .max = 9 },
253         .p = { .min = 5, .max = 80 },
254         .p1 = { .min = 1, .max = 8 },
255         .p2 = { .dot_limit = 225000,
256                 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260         .dot = { .min = 25000, .max = 350000 },
261         .vco = { .min = 1760000, .max = 3510000 },
262         .n = { .min = 1, .max = 3 },
263         .m = { .min = 79, .max = 118 },
264         .m1 = { .min = 12, .max = 22 },
265         .m2 = { .min = 5, .max = 9 },
266         .p = { .min = 28, .max = 112 },
267         .p1 = { .min = 2, .max = 8 },
268         .p2 = { .dot_limit = 225000,
269                 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 3 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 14, .max = 56 },
280         .p1 = { .min = 2, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 2 },
290         .m = { .min = 79, .max = 126 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 126 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 42 },
307         .p1 = { .min = 2, .max = 6 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv = {
313          /*
314           * These are the data rate limits (measured in fast clocks)
315           * since those are the strictest limits we have. The fast
316           * clock and actual rate limits are more relaxed, so checking
317           * them would make no difference.
318           */
319         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320         .vco = { .min = 4000000, .max = 6000000 },
321         .n = { .min = 1, .max = 7 },
322         .m1 = { .min = 2, .max = 3 },
323         .m2 = { .min = 11, .max = 156 },
324         .p1 = { .min = 2, .max = 3 },
325         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326 };
327
328 static void vlv_clock(int refclk, intel_clock_t *clock)
329 {
330         clock->m = clock->m1 * clock->m2;
331         clock->p = clock->p1 * clock->p2;
332         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
333         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
334 }
335
336 /**
337  * Returns whether any output on the specified pipe is of the specified type
338  */
339 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
340 {
341         struct drm_device *dev = crtc->dev;
342         struct intel_encoder *encoder;
343
344         for_each_encoder_on_crtc(dev, crtc, encoder)
345                 if (encoder->type == type)
346                         return true;
347
348         return false;
349 }
350
351 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
352                                                 int refclk)
353 {
354         struct drm_device *dev = crtc->dev;
355         const intel_limit_t *limit;
356
357         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
358                 if (intel_is_dual_link_lvds(dev)) {
359                         if (refclk == 100000)
360                                 limit = &intel_limits_ironlake_dual_lvds_100m;
361                         else
362                                 limit = &intel_limits_ironlake_dual_lvds;
363                 } else {
364                         if (refclk == 100000)
365                                 limit = &intel_limits_ironlake_single_lvds_100m;
366                         else
367                                 limit = &intel_limits_ironlake_single_lvds;
368                 }
369         } else
370                 limit = &intel_limits_ironlake_dac;
371
372         return limit;
373 }
374
375 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
376 {
377         struct drm_device *dev = crtc->dev;
378         const intel_limit_t *limit;
379
380         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
381                 if (intel_is_dual_link_lvds(dev))
382                         limit = &intel_limits_g4x_dual_channel_lvds;
383                 else
384                         limit = &intel_limits_g4x_single_channel_lvds;
385         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
386                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
387                 limit = &intel_limits_g4x_hdmi;
388         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
389                 limit = &intel_limits_g4x_sdvo;
390         } else /* The option is for other outputs */
391                 limit = &intel_limits_i9xx_sdvo;
392
393         return limit;
394 }
395
396 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
397 {
398         struct drm_device *dev = crtc->dev;
399         const intel_limit_t *limit;
400
401         if (HAS_PCH_SPLIT(dev))
402                 limit = intel_ironlake_limit(crtc, refclk);
403         else if (IS_G4X(dev)) {
404                 limit = intel_g4x_limit(crtc);
405         } else if (IS_PINEVIEW(dev)) {
406                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407                         limit = &intel_limits_pineview_lvds;
408                 else
409                         limit = &intel_limits_pineview_sdvo;
410         } else if (IS_VALLEYVIEW(dev)) {
411                 limit = &intel_limits_vlv;
412         } else if (!IS_GEN2(dev)) {
413                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
414                         limit = &intel_limits_i9xx_lvds;
415                 else
416                         limit = &intel_limits_i9xx_sdvo;
417         } else {
418                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419                         limit = &intel_limits_i8xx_lvds;
420                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
421                         limit = &intel_limits_i8xx_dvo;
422                 else
423                         limit = &intel_limits_i8xx_dac;
424         }
425         return limit;
426 }
427
428 /* m1 is reserved as 0 in Pineview, n is a ring counter */
429 static void pineview_clock(int refclk, intel_clock_t *clock)
430 {
431         clock->m = clock->m2 + 2;
432         clock->p = clock->p1 * clock->p2;
433         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
434         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
435 }
436
437 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
438 {
439         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
440 }
441
442 static void i9xx_clock(int refclk, intel_clock_t *clock)
443 {
444         clock->m = i9xx_dpll_compute_m(clock);
445         clock->p = clock->p1 * clock->p2;
446         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
447         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
448 }
449
450 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
451 /**
452  * Returns whether the given set of divisors are valid for a given refclk with
453  * the given connectors.
454  */
455
456 static bool intel_PLL_is_valid(struct drm_device *dev,
457                                const intel_limit_t *limit,
458                                const intel_clock_t *clock)
459 {
460         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
461                 INTELPllInvalid("n out of range\n");
462         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
463                 INTELPllInvalid("p1 out of range\n");
464         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
465                 INTELPllInvalid("m2 out of range\n");
466         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
467                 INTELPllInvalid("m1 out of range\n");
468
469         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
470                 if (clock->m1 <= clock->m2)
471                         INTELPllInvalid("m1 <= m2\n");
472
473         if (!IS_VALLEYVIEW(dev)) {
474                 if (clock->p < limit->p.min || limit->p.max < clock->p)
475                         INTELPllInvalid("p out of range\n");
476                 if (clock->m < limit->m.min || limit->m.max < clock->m)
477                         INTELPllInvalid("m out of range\n");
478         }
479
480         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481                 INTELPllInvalid("vco out of range\n");
482         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483          * connector, etc., rather than just a single range.
484          */
485         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486                 INTELPllInvalid("dot out of range\n");
487
488         return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493                     int target, int refclk, intel_clock_t *match_clock,
494                     intel_clock_t *best_clock)
495 {
496         struct drm_device *dev = crtc->dev;
497         intel_clock_t clock;
498         int err = target;
499
500         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501                 /*
502                  * For LVDS just rely on its current settings for dual-channel.
503                  * We haven't figured out how to reliably set up different
504                  * single/dual channel state, if we even can.
505                  */
506                 if (intel_is_dual_link_lvds(dev))
507                         clock.p2 = limit->p2.p2_fast;
508                 else
509                         clock.p2 = limit->p2.p2_slow;
510         } else {
511                 if (target < limit->p2.dot_limit)
512                         clock.p2 = limit->p2.p2_slow;
513                 else
514                         clock.p2 = limit->p2.p2_fast;
515         }
516
517         memset(best_clock, 0, sizeof(*best_clock));
518
519         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520              clock.m1++) {
521                 for (clock.m2 = limit->m2.min;
522                      clock.m2 <= limit->m2.max; clock.m2++) {
523                         if (clock.m2 >= clock.m1)
524                                 break;
525                         for (clock.n = limit->n.min;
526                              clock.n <= limit->n.max; clock.n++) {
527                                 for (clock.p1 = limit->p1.min;
528                                         clock.p1 <= limit->p1.max; clock.p1++) {
529                                         int this_err;
530
531                                         i9xx_clock(refclk, &clock);
532                                         if (!intel_PLL_is_valid(dev, limit,
533                                                                 &clock))
534                                                 continue;
535                                         if (match_clock &&
536                                             clock.p != match_clock->p)
537                                                 continue;
538
539                                         this_err = abs(clock.dot - target);
540                                         if (this_err < err) {
541                                                 *best_clock = clock;
542                                                 err = this_err;
543                                         }
544                                 }
545                         }
546                 }
547         }
548
549         return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554                    int target, int refclk, intel_clock_t *match_clock,
555                    intel_clock_t *best_clock)
556 {
557         struct drm_device *dev = crtc->dev;
558         intel_clock_t clock;
559         int err = target;
560
561         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562                 /*
563                  * For LVDS just rely on its current settings for dual-channel.
564                  * We haven't figured out how to reliably set up different
565                  * single/dual channel state, if we even can.
566                  */
567                 if (intel_is_dual_link_lvds(dev))
568                         clock.p2 = limit->p2.p2_fast;
569                 else
570                         clock.p2 = limit->p2.p2_slow;
571         } else {
572                 if (target < limit->p2.dot_limit)
573                         clock.p2 = limit->p2.p2_slow;
574                 else
575                         clock.p2 = limit->p2.p2_fast;
576         }
577
578         memset(best_clock, 0, sizeof(*best_clock));
579
580         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581              clock.m1++) {
582                 for (clock.m2 = limit->m2.min;
583                      clock.m2 <= limit->m2.max; clock.m2++) {
584                         for (clock.n = limit->n.min;
585                              clock.n <= limit->n.max; clock.n++) {
586                                 for (clock.p1 = limit->p1.min;
587                                         clock.p1 <= limit->p1.max; clock.p1++) {
588                                         int this_err;
589
590                                         pineview_clock(refclk, &clock);
591                                         if (!intel_PLL_is_valid(dev, limit,
592                                                                 &clock))
593                                                 continue;
594                                         if (match_clock &&
595                                             clock.p != match_clock->p)
596                                                 continue;
597
598                                         this_err = abs(clock.dot - target);
599                                         if (this_err < err) {
600                                                 *best_clock = clock;
601                                                 err = this_err;
602                                         }
603                                 }
604                         }
605                 }
606         }
607
608         return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613                    int target, int refclk, intel_clock_t *match_clock,
614                    intel_clock_t *best_clock)
615 {
616         struct drm_device *dev = crtc->dev;
617         intel_clock_t clock;
618         int max_n;
619         bool found;
620         /* approximately equals target * 0.00585 */
621         int err_most = (target >> 8) + (target >> 9);
622         found = false;
623
624         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625                 if (intel_is_dual_link_lvds(dev))
626                         clock.p2 = limit->p2.p2_fast;
627                 else
628                         clock.p2 = limit->p2.p2_slow;
629         } else {
630                 if (target < limit->p2.dot_limit)
631                         clock.p2 = limit->p2.p2_slow;
632                 else
633                         clock.p2 = limit->p2.p2_fast;
634         }
635
636         memset(best_clock, 0, sizeof(*best_clock));
637         max_n = limit->n.max;
638         /* based on hardware requirement, prefer smaller n to precision */
639         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640                 /* based on hardware requirement, prefere larger m1,m2 */
641                 for (clock.m1 = limit->m1.max;
642                      clock.m1 >= limit->m1.min; clock.m1--) {
643                         for (clock.m2 = limit->m2.max;
644                              clock.m2 >= limit->m2.min; clock.m2--) {
645                                 for (clock.p1 = limit->p1.max;
646                                      clock.p1 >= limit->p1.min; clock.p1--) {
647                                         int this_err;
648
649                                         i9xx_clock(refclk, &clock);
650                                         if (!intel_PLL_is_valid(dev, limit,
651                                                                 &clock))
652                                                 continue;
653
654                                         this_err = abs(clock.dot - target);
655                                         if (this_err < err_most) {
656                                                 *best_clock = clock;
657                                                 err_most = this_err;
658                                                 max_n = clock.n;
659                                                 found = true;
660                                         }
661                                 }
662                         }
663                 }
664         }
665         return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670                    int target, int refclk, intel_clock_t *match_clock,
671                    intel_clock_t *best_clock)
672 {
673         struct drm_device *dev = crtc->dev;
674         intel_clock_t clock;
675         unsigned int bestppm = 1000000;
676         /* min update 19.2 MHz */
677         int max_n = min(limit->n.max, refclk / 19200);
678         bool found = false;
679
680         target *= 5; /* fast clock */
681
682         memset(best_clock, 0, sizeof(*best_clock));
683
684         /* based on hardware requirement, prefer smaller n to precision */
685         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
686                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
687                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
688                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
689                                 clock.p = clock.p1 * clock.p2;
690                                 /* based on hardware requirement, prefer bigger m1,m2 values */
691                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
692                                         unsigned int ppm, diff;
693
694                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
695                                                                      refclk * clock.m1);
696
697                                         vlv_clock(refclk, &clock);
698
699                                         if (!intel_PLL_is_valid(dev, limit,
700                                                                 &clock))
701                                                 continue;
702
703                                         diff = abs(clock.dot - target);
704                                         ppm = div_u64(1000000ULL * diff, target);
705
706                                         if (ppm < 100 && clock.p > best_clock->p) {
707                                                 bestppm = 0;
708                                                 *best_clock = clock;
709                                                 found = true;
710                                         }
711
712                                         if (bestppm >= 10 && ppm < bestppm - 10) {
713                                                 bestppm = ppm;
714                                                 *best_clock = clock;
715                                                 found = true;
716                                         }
717                                 }
718                         }
719                 }
720         }
721
722         return found;
723 }
724
725 bool intel_crtc_active(struct drm_crtc *crtc)
726 {
727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
728
729         /* Be paranoid as we can arrive here with only partial
730          * state retrieved from the hardware during setup.
731          *
732          * We can ditch the adjusted_mode.crtc_clock check as soon
733          * as Haswell has gained clock readout/fastboot support.
734          *
735          * We can ditch the crtc->fb check as soon as we can
736          * properly reconstruct framebuffers.
737          */
738         return intel_crtc->active && crtc->fb &&
739                 intel_crtc->config.adjusted_mode.crtc_clock;
740 }
741
742 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
743                                              enum pipe pipe)
744 {
745         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
747
748         return intel_crtc->config.cpu_transcoder;
749 }
750
751 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
752 {
753         struct drm_i915_private *dev_priv = dev->dev_private;
754         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
755
756         frame = I915_READ(frame_reg);
757
758         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
759                 DRM_DEBUG_KMS("vblank wait timed out\n");
760 }
761
762 /**
763  * intel_wait_for_vblank - wait for vblank on a given pipe
764  * @dev: drm device
765  * @pipe: pipe to wait for
766  *
767  * Wait for vblank to occur on a given pipe.  Needed for various bits of
768  * mode setting code.
769  */
770 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
771 {
772         struct drm_i915_private *dev_priv = dev->dev_private;
773         int pipestat_reg = PIPESTAT(pipe);
774
775         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
776                 g4x_wait_for_vblank(dev, pipe);
777                 return;
778         }
779
780         /* Clear existing vblank status. Note this will clear any other
781          * sticky status fields as well.
782          *
783          * This races with i915_driver_irq_handler() with the result
784          * that either function could miss a vblank event.  Here it is not
785          * fatal, as we will either wait upon the next vblank interrupt or
786          * timeout.  Generally speaking intel_wait_for_vblank() is only
787          * called during modeset at which time the GPU should be idle and
788          * should *not* be performing page flips and thus not waiting on
789          * vblanks...
790          * Currently, the result of us stealing a vblank from the irq
791          * handler is that a single frame will be skipped during swapbuffers.
792          */
793         I915_WRITE(pipestat_reg,
794                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
795
796         /* Wait for vblank interrupt bit to set */
797         if (wait_for(I915_READ(pipestat_reg) &
798                      PIPE_VBLANK_INTERRUPT_STATUS,
799                      50))
800                 DRM_DEBUG_KMS("vblank wait timed out\n");
801 }
802
803 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
804 {
805         struct drm_i915_private *dev_priv = dev->dev_private;
806         u32 reg = PIPEDSL(pipe);
807         u32 line1, line2;
808         u32 line_mask;
809
810         if (IS_GEN2(dev))
811                 line_mask = DSL_LINEMASK_GEN2;
812         else
813                 line_mask = DSL_LINEMASK_GEN3;
814
815         line1 = I915_READ(reg) & line_mask;
816         mdelay(5);
817         line2 = I915_READ(reg) & line_mask;
818
819         return line1 == line2;
820 }
821
822 /*
823  * intel_wait_for_pipe_off - wait for pipe to turn off
824  * @dev: drm device
825  * @pipe: pipe to wait for
826  *
827  * After disabling a pipe, we can't wait for vblank in the usual way,
828  * spinning on the vblank interrupt status bit, since we won't actually
829  * see an interrupt when the pipe is disabled.
830  *
831  * On Gen4 and above:
832  *   wait for the pipe register state bit to turn off
833  *
834  * Otherwise:
835  *   wait for the display line value to settle (it usually
836  *   ends up stopping at the start of the next frame).
837  *
838  */
839 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
840 {
841         struct drm_i915_private *dev_priv = dev->dev_private;
842         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
843                                                                       pipe);
844
845         if (INTEL_INFO(dev)->gen >= 4) {
846                 int reg = PIPECONF(cpu_transcoder);
847
848                 /* Wait for the Pipe State to go off */
849                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
850                              100))
851                         WARN(1, "pipe_off wait timed out\n");
852         } else {
853                 /* Wait for the display line to settle */
854                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
855                         WARN(1, "pipe_off wait timed out\n");
856         }
857 }
858
859 /*
860  * ibx_digital_port_connected - is the specified port connected?
861  * @dev_priv: i915 private structure
862  * @port: the port to test
863  *
864  * Returns true if @port is connected, false otherwise.
865  */
866 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
867                                 struct intel_digital_port *port)
868 {
869         u32 bit;
870
871         if (HAS_PCH_IBX(dev_priv->dev)) {
872                 switch(port->port) {
873                 case PORT_B:
874                         bit = SDE_PORTB_HOTPLUG;
875                         break;
876                 case PORT_C:
877                         bit = SDE_PORTC_HOTPLUG;
878                         break;
879                 case PORT_D:
880                         bit = SDE_PORTD_HOTPLUG;
881                         break;
882                 default:
883                         return true;
884                 }
885         } else {
886                 switch(port->port) {
887                 case PORT_B:
888                         bit = SDE_PORTB_HOTPLUG_CPT;
889                         break;
890                 case PORT_C:
891                         bit = SDE_PORTC_HOTPLUG_CPT;
892                         break;
893                 case PORT_D:
894                         bit = SDE_PORTD_HOTPLUG_CPT;
895                         break;
896                 default:
897                         return true;
898                 }
899         }
900
901         return I915_READ(SDEISR) & bit;
902 }
903
904 static const char *state_string(bool enabled)
905 {
906         return enabled ? "on" : "off";
907 }
908
909 /* Only for pre-ILK configs */
910 void assert_pll(struct drm_i915_private *dev_priv,
911                 enum pipe pipe, bool state)
912 {
913         int reg;
914         u32 val;
915         bool cur_state;
916
917         reg = DPLL(pipe);
918         val = I915_READ(reg);
919         cur_state = !!(val & DPLL_VCO_ENABLE);
920         WARN(cur_state != state,
921              "PLL state assertion failure (expected %s, current %s)\n",
922              state_string(state), state_string(cur_state));
923 }
924
925 /* XXX: the dsi pll is shared between MIPI DSI ports */
926 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
927 {
928         u32 val;
929         bool cur_state;
930
931         mutex_lock(&dev_priv->dpio_lock);
932         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
933         mutex_unlock(&dev_priv->dpio_lock);
934
935         cur_state = val & DSI_PLL_VCO_EN;
936         WARN(cur_state != state,
937              "DSI PLL state assertion failure (expected %s, current %s)\n",
938              state_string(state), state_string(cur_state));
939 }
940 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
941 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
942
943 struct intel_shared_dpll *
944 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
945 {
946         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
947
948         if (crtc->config.shared_dpll < 0)
949                 return NULL;
950
951         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
952 }
953
954 /* For ILK+ */
955 void assert_shared_dpll(struct drm_i915_private *dev_priv,
956                         struct intel_shared_dpll *pll,
957                         bool state)
958 {
959         bool cur_state;
960         struct intel_dpll_hw_state hw_state;
961
962         if (HAS_PCH_LPT(dev_priv->dev)) {
963                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
964                 return;
965         }
966
967         if (WARN (!pll,
968                   "asserting DPLL %s with no DPLL\n", state_string(state)))
969                 return;
970
971         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
972         WARN(cur_state != state,
973              "%s assertion failure (expected %s, current %s)\n",
974              pll->name, state_string(state), state_string(cur_state));
975 }
976
977 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
978                           enum pipe pipe, bool state)
979 {
980         int reg;
981         u32 val;
982         bool cur_state;
983         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
984                                                                       pipe);
985
986         if (HAS_DDI(dev_priv->dev)) {
987                 /* DDI does not have a specific FDI_TX register */
988                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
989                 val = I915_READ(reg);
990                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
991         } else {
992                 reg = FDI_TX_CTL(pipe);
993                 val = I915_READ(reg);
994                 cur_state = !!(val & FDI_TX_ENABLE);
995         }
996         WARN(cur_state != state,
997              "FDI TX state assertion failure (expected %s, current %s)\n",
998              state_string(state), state_string(cur_state));
999 }
1000 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1001 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1002
1003 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1004                           enum pipe pipe, bool state)
1005 {
1006         int reg;
1007         u32 val;
1008         bool cur_state;
1009
1010         reg = FDI_RX_CTL(pipe);
1011         val = I915_READ(reg);
1012         cur_state = !!(val & FDI_RX_ENABLE);
1013         WARN(cur_state != state,
1014              "FDI RX state assertion failure (expected %s, current %s)\n",
1015              state_string(state), state_string(cur_state));
1016 }
1017 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1018 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1019
1020 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1021                                       enum pipe pipe)
1022 {
1023         int reg;
1024         u32 val;
1025
1026         /* ILK FDI PLL is always enabled */
1027         if (dev_priv->info->gen == 5)
1028                 return;
1029
1030         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1031         if (HAS_DDI(dev_priv->dev))
1032                 return;
1033
1034         reg = FDI_TX_CTL(pipe);
1035         val = I915_READ(reg);
1036         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1037 }
1038
1039 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1040                        enum pipe pipe, bool state)
1041 {
1042         int reg;
1043         u32 val;
1044         bool cur_state;
1045
1046         reg = FDI_RX_CTL(pipe);
1047         val = I915_READ(reg);
1048         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1049         WARN(cur_state != state,
1050              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1051              state_string(state), state_string(cur_state));
1052 }
1053
1054 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1055                                   enum pipe pipe)
1056 {
1057         int pp_reg, lvds_reg;
1058         u32 val;
1059         enum pipe panel_pipe = PIPE_A;
1060         bool locked = true;
1061
1062         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1063                 pp_reg = PCH_PP_CONTROL;
1064                 lvds_reg = PCH_LVDS;
1065         } else {
1066                 pp_reg = PP_CONTROL;
1067                 lvds_reg = LVDS;
1068         }
1069
1070         val = I915_READ(pp_reg);
1071         if (!(val & PANEL_POWER_ON) ||
1072             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1073                 locked = false;
1074
1075         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1076                 panel_pipe = PIPE_B;
1077
1078         WARN(panel_pipe == pipe && locked,
1079              "panel assertion failure, pipe %c regs locked\n",
1080              pipe_name(pipe));
1081 }
1082
1083 static void assert_cursor(struct drm_i915_private *dev_priv,
1084                           enum pipe pipe, bool state)
1085 {
1086         struct drm_device *dev = dev_priv->dev;
1087         bool cur_state;
1088
1089         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1090                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1091         else if (IS_845G(dev) || IS_I865G(dev))
1092                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1093         else
1094                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1095
1096         WARN(cur_state != state,
1097              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1098              pipe_name(pipe), state_string(state), state_string(cur_state));
1099 }
1100 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1101 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1102
1103 void assert_pipe(struct drm_i915_private *dev_priv,
1104                  enum pipe pipe, bool state)
1105 {
1106         int reg;
1107         u32 val;
1108         bool cur_state;
1109         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1110                                                                       pipe);
1111
1112         /* if we need the pipe A quirk it must be always on */
1113         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1114                 state = true;
1115
1116         if (!intel_display_power_enabled(dev_priv->dev,
1117                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1118                 cur_state = false;
1119         } else {
1120                 reg = PIPECONF(cpu_transcoder);
1121                 val = I915_READ(reg);
1122                 cur_state = !!(val & PIPECONF_ENABLE);
1123         }
1124
1125         WARN(cur_state != state,
1126              "pipe %c assertion failure (expected %s, current %s)\n",
1127              pipe_name(pipe), state_string(state), state_string(cur_state));
1128 }
1129
1130 static void assert_plane(struct drm_i915_private *dev_priv,
1131                          enum plane plane, bool state)
1132 {
1133         int reg;
1134         u32 val;
1135         bool cur_state;
1136
1137         reg = DSPCNTR(plane);
1138         val = I915_READ(reg);
1139         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1140         WARN(cur_state != state,
1141              "plane %c assertion failure (expected %s, current %s)\n",
1142              plane_name(plane), state_string(state), state_string(cur_state));
1143 }
1144
1145 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1146 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1147
1148 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1149                                    enum pipe pipe)
1150 {
1151         struct drm_device *dev = dev_priv->dev;
1152         int reg, i;
1153         u32 val;
1154         int cur_pipe;
1155
1156         /* Primary planes are fixed to pipes on gen4+ */
1157         if (INTEL_INFO(dev)->gen >= 4) {
1158                 reg = DSPCNTR(pipe);
1159                 val = I915_READ(reg);
1160                 WARN((val & DISPLAY_PLANE_ENABLE),
1161                      "plane %c assertion failure, should be disabled but not\n",
1162                      plane_name(pipe));
1163                 return;
1164         }
1165
1166         /* Need to check both planes against the pipe */
1167         for_each_pipe(i) {
1168                 reg = DSPCNTR(i);
1169                 val = I915_READ(reg);
1170                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1171                         DISPPLANE_SEL_PIPE_SHIFT;
1172                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1173                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1174                      plane_name(i), pipe_name(pipe));
1175         }
1176 }
1177
1178 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1179                                     enum pipe pipe)
1180 {
1181         struct drm_device *dev = dev_priv->dev;
1182         int reg, i;
1183         u32 val;
1184
1185         if (IS_VALLEYVIEW(dev)) {
1186                 for (i = 0; i < dev_priv->num_plane; i++) {
1187                         reg = SPCNTR(pipe, i);
1188                         val = I915_READ(reg);
1189                         WARN((val & SP_ENABLE),
1190                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1191                              sprite_name(pipe, i), pipe_name(pipe));
1192                 }
1193         } else if (INTEL_INFO(dev)->gen >= 7) {
1194                 reg = SPRCTL(pipe);
1195                 val = I915_READ(reg);
1196                 WARN((val & SPRITE_ENABLE),
1197                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1198                      plane_name(pipe), pipe_name(pipe));
1199         } else if (INTEL_INFO(dev)->gen >= 5) {
1200                 reg = DVSCNTR(pipe);
1201                 val = I915_READ(reg);
1202                 WARN((val & DVS_ENABLE),
1203                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204                      plane_name(pipe), pipe_name(pipe));
1205         }
1206 }
1207
1208 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1209 {
1210         u32 val;
1211         bool enabled;
1212
1213         if (HAS_PCH_LPT(dev_priv->dev)) {
1214                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1215                 return;
1216         }
1217
1218         val = I915_READ(PCH_DREF_CONTROL);
1219         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1220                             DREF_SUPERSPREAD_SOURCE_MASK));
1221         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1222 }
1223
1224 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1225                                            enum pipe pipe)
1226 {
1227         int reg;
1228         u32 val;
1229         bool enabled;
1230
1231         reg = PCH_TRANSCONF(pipe);
1232         val = I915_READ(reg);
1233         enabled = !!(val & TRANS_ENABLE);
1234         WARN(enabled,
1235              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1236              pipe_name(pipe));
1237 }
1238
1239 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1240                             enum pipe pipe, u32 port_sel, u32 val)
1241 {
1242         if ((val & DP_PORT_EN) == 0)
1243                 return false;
1244
1245         if (HAS_PCH_CPT(dev_priv->dev)) {
1246                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1247                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1248                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1249                         return false;
1250         } else {
1251                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1252                         return false;
1253         }
1254         return true;
1255 }
1256
1257 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1258                               enum pipe pipe, u32 val)
1259 {
1260         if ((val & SDVO_ENABLE) == 0)
1261                 return false;
1262
1263         if (HAS_PCH_CPT(dev_priv->dev)) {
1264                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1265                         return false;
1266         } else {
1267                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1268                         return false;
1269         }
1270         return true;
1271 }
1272
1273 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1274                               enum pipe pipe, u32 val)
1275 {
1276         if ((val & LVDS_PORT_EN) == 0)
1277                 return false;
1278
1279         if (HAS_PCH_CPT(dev_priv->dev)) {
1280                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281                         return false;
1282         } else {
1283                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1284                         return false;
1285         }
1286         return true;
1287 }
1288
1289 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1290                               enum pipe pipe, u32 val)
1291 {
1292         if ((val & ADPA_DAC_ENABLE) == 0)
1293                 return false;
1294         if (HAS_PCH_CPT(dev_priv->dev)) {
1295                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1296                         return false;
1297         } else {
1298                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1299                         return false;
1300         }
1301         return true;
1302 }
1303
1304 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1305                                    enum pipe pipe, int reg, u32 port_sel)
1306 {
1307         u32 val = I915_READ(reg);
1308         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1309              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1310              reg, pipe_name(pipe));
1311
1312         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1313              && (val & DP_PIPEB_SELECT),
1314              "IBX PCH dp port still using transcoder B\n");
1315 }
1316
1317 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1318                                      enum pipe pipe, int reg)
1319 {
1320         u32 val = I915_READ(reg);
1321         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1322              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1323              reg, pipe_name(pipe));
1324
1325         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1326              && (val & SDVO_PIPE_B_SELECT),
1327              "IBX PCH hdmi port still using transcoder B\n");
1328 }
1329
1330 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1331                                       enum pipe pipe)
1332 {
1333         int reg;
1334         u32 val;
1335
1336         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1337         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1338         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1339
1340         reg = PCH_ADPA;
1341         val = I915_READ(reg);
1342         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1343              "PCH VGA enabled on transcoder %c, should be disabled\n",
1344              pipe_name(pipe));
1345
1346         reg = PCH_LVDS;
1347         val = I915_READ(reg);
1348         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1349              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1353         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1354         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1355 }
1356
1357 static void intel_init_dpio(struct drm_device *dev)
1358 {
1359         struct drm_i915_private *dev_priv = dev->dev_private;
1360
1361         if (!IS_VALLEYVIEW(dev))
1362                 return;
1363
1364         DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1365         /*
1366          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1367          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1368          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1369          *   b. The other bits such as sfr settings / modesel may all be set
1370          *      to 0.
1371          *
1372          * This should only be done on init and resume from S3 with both
1373          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1374          */
1375         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1376 }
1377
1378 static void vlv_enable_pll(struct intel_crtc *crtc)
1379 {
1380         struct drm_device *dev = crtc->base.dev;
1381         struct drm_i915_private *dev_priv = dev->dev_private;
1382         int reg = DPLL(crtc->pipe);
1383         u32 dpll = crtc->config.dpll_hw_state.dpll;
1384
1385         assert_pipe_disabled(dev_priv, crtc->pipe);
1386
1387         /* No really, not for ILK+ */
1388         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1389
1390         /* PLL is protected by panel, make sure we can write it */
1391         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1392                 assert_panel_unlocked(dev_priv, crtc->pipe);
1393
1394         I915_WRITE(reg, dpll);
1395         POSTING_READ(reg);
1396         udelay(150);
1397
1398         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1399                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1400
1401         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1402         POSTING_READ(DPLL_MD(crtc->pipe));
1403
1404         /* We do this three times for luck */
1405         I915_WRITE(reg, dpll);
1406         POSTING_READ(reg);
1407         udelay(150); /* wait for warmup */
1408         I915_WRITE(reg, dpll);
1409         POSTING_READ(reg);
1410         udelay(150); /* wait for warmup */
1411         I915_WRITE(reg, dpll);
1412         POSTING_READ(reg);
1413         udelay(150); /* wait for warmup */
1414 }
1415
1416 static void i9xx_enable_pll(struct intel_crtc *crtc)
1417 {
1418         struct drm_device *dev = crtc->base.dev;
1419         struct drm_i915_private *dev_priv = dev->dev_private;
1420         int reg = DPLL(crtc->pipe);
1421         u32 dpll = crtc->config.dpll_hw_state.dpll;
1422
1423         assert_pipe_disabled(dev_priv, crtc->pipe);
1424
1425         /* No really, not for ILK+ */
1426         BUG_ON(dev_priv->info->gen >= 5);
1427
1428         /* PLL is protected by panel, make sure we can write it */
1429         if (IS_MOBILE(dev) && !IS_I830(dev))
1430                 assert_panel_unlocked(dev_priv, crtc->pipe);
1431
1432         I915_WRITE(reg, dpll);
1433
1434         /* Wait for the clocks to stabilize. */
1435         POSTING_READ(reg);
1436         udelay(150);
1437
1438         if (INTEL_INFO(dev)->gen >= 4) {
1439                 I915_WRITE(DPLL_MD(crtc->pipe),
1440                            crtc->config.dpll_hw_state.dpll_md);
1441         } else {
1442                 /* The pixel multiplier can only be updated once the
1443                  * DPLL is enabled and the clocks are stable.
1444                  *
1445                  * So write it again.
1446                  */
1447                 I915_WRITE(reg, dpll);
1448         }
1449
1450         /* We do this three times for luck */
1451         I915_WRITE(reg, dpll);
1452         POSTING_READ(reg);
1453         udelay(150); /* wait for warmup */
1454         I915_WRITE(reg, dpll);
1455         POSTING_READ(reg);
1456         udelay(150); /* wait for warmup */
1457         I915_WRITE(reg, dpll);
1458         POSTING_READ(reg);
1459         udelay(150); /* wait for warmup */
1460 }
1461
1462 /**
1463  * i9xx_disable_pll - disable a PLL
1464  * @dev_priv: i915 private structure
1465  * @pipe: pipe PLL to disable
1466  *
1467  * Disable the PLL for @pipe, making sure the pipe is off first.
1468  *
1469  * Note!  This is for pre-ILK only.
1470  */
1471 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1472 {
1473         /* Don't disable pipe A or pipe A PLLs if needed */
1474         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1475                 return;
1476
1477         /* Make sure the pipe isn't still relying on us */
1478         assert_pipe_disabled(dev_priv, pipe);
1479
1480         I915_WRITE(DPLL(pipe), 0);
1481         POSTING_READ(DPLL(pipe));
1482 }
1483
1484 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1485 {
1486         u32 val = 0;
1487
1488         /* Make sure the pipe isn't still relying on us */
1489         assert_pipe_disabled(dev_priv, pipe);
1490
1491         /* Leave integrated clock source enabled */
1492         if (pipe == PIPE_B)
1493                 val = DPLL_INTEGRATED_CRI_CLK_VLV;
1494         I915_WRITE(DPLL(pipe), val);
1495         POSTING_READ(DPLL(pipe));
1496 }
1497
1498 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1499                 struct intel_digital_port *dport)
1500 {
1501         u32 port_mask;
1502
1503         switch (dport->port) {
1504         case PORT_B:
1505                 port_mask = DPLL_PORTB_READY_MASK;
1506                 break;
1507         case PORT_C:
1508                 port_mask = DPLL_PORTC_READY_MASK;
1509                 break;
1510         default:
1511                 BUG();
1512         }
1513
1514         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1515                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1516                      'B' + dport->port, I915_READ(DPLL(0)));
1517 }
1518
1519 /**
1520  * ironlake_enable_shared_dpll - enable PCH PLL
1521  * @dev_priv: i915 private structure
1522  * @pipe: pipe PLL to enable
1523  *
1524  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1525  * drives the transcoder clock.
1526  */
1527 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1528 {
1529         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1530         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1531
1532         /* PCH PLLs only available on ILK, SNB and IVB */
1533         BUG_ON(dev_priv->info->gen < 5);
1534         if (WARN_ON(pll == NULL))
1535                 return;
1536
1537         if (WARN_ON(pll->refcount == 0))
1538                 return;
1539
1540         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1541                       pll->name, pll->active, pll->on,
1542                       crtc->base.base.id);
1543
1544         if (pll->active++) {
1545                 WARN_ON(!pll->on);
1546                 assert_shared_dpll_enabled(dev_priv, pll);
1547                 return;
1548         }
1549         WARN_ON(pll->on);
1550
1551         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1552         pll->enable(dev_priv, pll);
1553         pll->on = true;
1554 }
1555
1556 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1557 {
1558         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1559         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1560
1561         /* PCH only available on ILK+ */
1562         BUG_ON(dev_priv->info->gen < 5);
1563         if (WARN_ON(pll == NULL))
1564                return;
1565
1566         if (WARN_ON(pll->refcount == 0))
1567                 return;
1568
1569         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1570                       pll->name, pll->active, pll->on,
1571                       crtc->base.base.id);
1572
1573         if (WARN_ON(pll->active == 0)) {
1574                 assert_shared_dpll_disabled(dev_priv, pll);
1575                 return;
1576         }
1577
1578         assert_shared_dpll_enabled(dev_priv, pll);
1579         WARN_ON(!pll->on);
1580         if (--pll->active)
1581                 return;
1582
1583         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1584         pll->disable(dev_priv, pll);
1585         pll->on = false;
1586 }
1587
1588 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1589                                            enum pipe pipe)
1590 {
1591         struct drm_device *dev = dev_priv->dev;
1592         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1594         uint32_t reg, val, pipeconf_val;
1595
1596         /* PCH only available on ILK+ */
1597         BUG_ON(dev_priv->info->gen < 5);
1598
1599         /* Make sure PCH DPLL is enabled */
1600         assert_shared_dpll_enabled(dev_priv,
1601                                    intel_crtc_to_shared_dpll(intel_crtc));
1602
1603         /* FDI must be feeding us bits for PCH ports */
1604         assert_fdi_tx_enabled(dev_priv, pipe);
1605         assert_fdi_rx_enabled(dev_priv, pipe);
1606
1607         if (HAS_PCH_CPT(dev)) {
1608                 /* Workaround: Set the timing override bit before enabling the
1609                  * pch transcoder. */
1610                 reg = TRANS_CHICKEN2(pipe);
1611                 val = I915_READ(reg);
1612                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1613                 I915_WRITE(reg, val);
1614         }
1615
1616         reg = PCH_TRANSCONF(pipe);
1617         val = I915_READ(reg);
1618         pipeconf_val = I915_READ(PIPECONF(pipe));
1619
1620         if (HAS_PCH_IBX(dev_priv->dev)) {
1621                 /*
1622                  * make the BPC in transcoder be consistent with
1623                  * that in pipeconf reg.
1624                  */
1625                 val &= ~PIPECONF_BPC_MASK;
1626                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1627         }
1628
1629         val &= ~TRANS_INTERLACE_MASK;
1630         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1631                 if (HAS_PCH_IBX(dev_priv->dev) &&
1632                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1633                         val |= TRANS_LEGACY_INTERLACED_ILK;
1634                 else
1635                         val |= TRANS_INTERLACED;
1636         else
1637                 val |= TRANS_PROGRESSIVE;
1638
1639         I915_WRITE(reg, val | TRANS_ENABLE);
1640         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1641                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1642 }
1643
1644 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1645                                       enum transcoder cpu_transcoder)
1646 {
1647         u32 val, pipeconf_val;
1648
1649         /* PCH only available on ILK+ */
1650         BUG_ON(dev_priv->info->gen < 5);
1651
1652         /* FDI must be feeding us bits for PCH ports */
1653         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1654         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1655
1656         /* Workaround: set timing override bit. */
1657         val = I915_READ(_TRANSA_CHICKEN2);
1658         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1659         I915_WRITE(_TRANSA_CHICKEN2, val);
1660
1661         val = TRANS_ENABLE;
1662         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1663
1664         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1665             PIPECONF_INTERLACED_ILK)
1666                 val |= TRANS_INTERLACED;
1667         else
1668                 val |= TRANS_PROGRESSIVE;
1669
1670         I915_WRITE(LPT_TRANSCONF, val);
1671         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1672                 DRM_ERROR("Failed to enable PCH transcoder\n");
1673 }
1674
1675 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1676                                             enum pipe pipe)
1677 {
1678         struct drm_device *dev = dev_priv->dev;
1679         uint32_t reg, val;
1680
1681         /* FDI relies on the transcoder */
1682         assert_fdi_tx_disabled(dev_priv, pipe);
1683         assert_fdi_rx_disabled(dev_priv, pipe);
1684
1685         /* Ports must be off as well */
1686         assert_pch_ports_disabled(dev_priv, pipe);
1687
1688         reg = PCH_TRANSCONF(pipe);
1689         val = I915_READ(reg);
1690         val &= ~TRANS_ENABLE;
1691         I915_WRITE(reg, val);
1692         /* wait for PCH transcoder off, transcoder state */
1693         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1694                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1695
1696         if (!HAS_PCH_IBX(dev)) {
1697                 /* Workaround: Clear the timing override chicken bit again. */
1698                 reg = TRANS_CHICKEN2(pipe);
1699                 val = I915_READ(reg);
1700                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1701                 I915_WRITE(reg, val);
1702         }
1703 }
1704
1705 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1706 {
1707         u32 val;
1708
1709         val = I915_READ(LPT_TRANSCONF);
1710         val &= ~TRANS_ENABLE;
1711         I915_WRITE(LPT_TRANSCONF, val);
1712         /* wait for PCH transcoder off, transcoder state */
1713         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1714                 DRM_ERROR("Failed to disable PCH transcoder\n");
1715
1716         /* Workaround: clear timing override bit. */
1717         val = I915_READ(_TRANSA_CHICKEN2);
1718         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1719         I915_WRITE(_TRANSA_CHICKEN2, val);
1720 }
1721
1722 /**
1723  * intel_enable_pipe - enable a pipe, asserting requirements
1724  * @dev_priv: i915 private structure
1725  * @pipe: pipe to enable
1726  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1727  *
1728  * Enable @pipe, making sure that various hardware specific requirements
1729  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1730  *
1731  * @pipe should be %PIPE_A or %PIPE_B.
1732  *
1733  * Will wait until the pipe is actually running (i.e. first vblank) before
1734  * returning.
1735  */
1736 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1737                               bool pch_port, bool dsi)
1738 {
1739         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1740                                                                       pipe);
1741         enum pipe pch_transcoder;
1742         int reg;
1743         u32 val;
1744
1745         assert_planes_disabled(dev_priv, pipe);
1746         assert_cursor_disabled(dev_priv, pipe);
1747         assert_sprites_disabled(dev_priv, pipe);
1748
1749         if (HAS_PCH_LPT(dev_priv->dev))
1750                 pch_transcoder = TRANSCODER_A;
1751         else
1752                 pch_transcoder = pipe;
1753
1754         /*
1755          * A pipe without a PLL won't actually be able to drive bits from
1756          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1757          * need the check.
1758          */
1759         if (!HAS_PCH_SPLIT(dev_priv->dev))
1760                 if (dsi)
1761                         assert_dsi_pll_enabled(dev_priv);
1762                 else
1763                         assert_pll_enabled(dev_priv, pipe);
1764         else {
1765                 if (pch_port) {
1766                         /* if driving the PCH, we need FDI enabled */
1767                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1768                         assert_fdi_tx_pll_enabled(dev_priv,
1769                                                   (enum pipe) cpu_transcoder);
1770                 }
1771                 /* FIXME: assert CPU port conditions for SNB+ */
1772         }
1773
1774         reg = PIPECONF(cpu_transcoder);
1775         val = I915_READ(reg);
1776         if (val & PIPECONF_ENABLE)
1777                 return;
1778
1779         I915_WRITE(reg, val | PIPECONF_ENABLE);
1780         intel_wait_for_vblank(dev_priv->dev, pipe);
1781 }
1782
1783 /**
1784  * intel_disable_pipe - disable a pipe, asserting requirements
1785  * @dev_priv: i915 private structure
1786  * @pipe: pipe to disable
1787  *
1788  * Disable @pipe, making sure that various hardware specific requirements
1789  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1790  *
1791  * @pipe should be %PIPE_A or %PIPE_B.
1792  *
1793  * Will wait until the pipe has shut down before returning.
1794  */
1795 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1796                                enum pipe pipe)
1797 {
1798         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1799                                                                       pipe);
1800         int reg;
1801         u32 val;
1802
1803         /*
1804          * Make sure planes won't keep trying to pump pixels to us,
1805          * or we might hang the display.
1806          */
1807         assert_planes_disabled(dev_priv, pipe);
1808         assert_cursor_disabled(dev_priv, pipe);
1809         assert_sprites_disabled(dev_priv, pipe);
1810
1811         /* Don't disable pipe A or pipe A PLLs if needed */
1812         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1813                 return;
1814
1815         reg = PIPECONF(cpu_transcoder);
1816         val = I915_READ(reg);
1817         if ((val & PIPECONF_ENABLE) == 0)
1818                 return;
1819
1820         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1821         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1822 }
1823
1824 /*
1825  * Plane regs are double buffered, going from enabled->disabled needs a
1826  * trigger in order to latch.  The display address reg provides this.
1827  */
1828 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1829                                enum plane plane)
1830 {
1831         u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1832
1833         I915_WRITE(reg, I915_READ(reg));
1834         POSTING_READ(reg);
1835 }
1836
1837 /**
1838  * intel_enable_primary_plane - enable the primary plane on a given pipe
1839  * @dev_priv: i915 private structure
1840  * @plane: plane to enable
1841  * @pipe: pipe being fed
1842  *
1843  * Enable @plane on @pipe, making sure that @pipe is running first.
1844  */
1845 static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1846                                        enum plane plane, enum pipe pipe)
1847 {
1848         struct intel_crtc *intel_crtc =
1849                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1850         int reg;
1851         u32 val;
1852
1853         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1854         assert_pipe_enabled(dev_priv, pipe);
1855
1856         WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1857
1858         intel_crtc->primary_enabled = true;
1859
1860         reg = DSPCNTR(plane);
1861         val = I915_READ(reg);
1862         if (val & DISPLAY_PLANE_ENABLE)
1863                 return;
1864
1865         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1866         intel_flush_primary_plane(dev_priv, plane);
1867         intel_wait_for_vblank(dev_priv->dev, pipe);
1868 }
1869
1870 /**
1871  * intel_disable_primary_plane - disable the primary plane
1872  * @dev_priv: i915 private structure
1873  * @plane: plane to disable
1874  * @pipe: pipe consuming the data
1875  *
1876  * Disable @plane; should be an independent operation.
1877  */
1878 static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1879                                         enum plane plane, enum pipe pipe)
1880 {
1881         struct intel_crtc *intel_crtc =
1882                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1883         int reg;
1884         u32 val;
1885
1886         WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1887
1888         intel_crtc->primary_enabled = false;
1889
1890         reg = DSPCNTR(plane);
1891         val = I915_READ(reg);
1892         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1893                 return;
1894
1895         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1896         intel_flush_primary_plane(dev_priv, plane);
1897         intel_wait_for_vblank(dev_priv->dev, pipe);
1898 }
1899
1900 static bool need_vtd_wa(struct drm_device *dev)
1901 {
1902 #ifdef CONFIG_INTEL_IOMMU
1903         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1904                 return true;
1905 #endif
1906         return false;
1907 }
1908
1909 int
1910 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1911                            struct drm_i915_gem_object *obj,
1912                            struct intel_ring_buffer *pipelined)
1913 {
1914         struct drm_i915_private *dev_priv = dev->dev_private;
1915         u32 alignment;
1916         int ret;
1917
1918         switch (obj->tiling_mode) {
1919         case I915_TILING_NONE:
1920                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1921                         alignment = 128 * 1024;
1922                 else if (INTEL_INFO(dev)->gen >= 4)
1923                         alignment = 4 * 1024;
1924                 else
1925                         alignment = 64 * 1024;
1926                 break;
1927         case I915_TILING_X:
1928                 /* pin() will align the object as required by fence */
1929                 alignment = 0;
1930                 break;
1931         case I915_TILING_Y:
1932                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1933                 return -EINVAL;
1934         default:
1935                 BUG();
1936         }
1937
1938         /* Note that the w/a also requires 64 PTE of padding following the
1939          * bo. We currently fill all unused PTE with the shadow page and so
1940          * we should always have valid PTE following the scanout preventing
1941          * the VT-d warning.
1942          */
1943         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1944                 alignment = 256 * 1024;
1945
1946         dev_priv->mm.interruptible = false;
1947         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1948         if (ret)
1949                 goto err_interruptible;
1950
1951         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1952          * fence, whereas 965+ only requires a fence if using
1953          * framebuffer compression.  For simplicity, we always install
1954          * a fence as the cost is not that onerous.
1955          */
1956         ret = i915_gem_object_get_fence(obj);
1957         if (ret)
1958                 goto err_unpin;
1959
1960         i915_gem_object_pin_fence(obj);
1961
1962         dev_priv->mm.interruptible = true;
1963         return 0;
1964
1965 err_unpin:
1966         i915_gem_object_unpin_from_display_plane(obj);
1967 err_interruptible:
1968         dev_priv->mm.interruptible = true;
1969         return ret;
1970 }
1971
1972 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1973 {
1974         i915_gem_object_unpin_fence(obj);
1975         i915_gem_object_unpin_from_display_plane(obj);
1976 }
1977
1978 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1979  * is assumed to be a power-of-two. */
1980 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1981                                              unsigned int tiling_mode,
1982                                              unsigned int cpp,
1983                                              unsigned int pitch)
1984 {
1985         if (tiling_mode != I915_TILING_NONE) {
1986                 unsigned int tile_rows, tiles;
1987
1988                 tile_rows = *y / 8;
1989                 *y %= 8;
1990
1991                 tiles = *x / (512/cpp);
1992                 *x %= 512/cpp;
1993
1994                 return tile_rows * pitch * 8 + tiles * 4096;
1995         } else {
1996                 unsigned int offset;
1997
1998                 offset = *y * pitch + *x * cpp;
1999                 *y = 0;
2000                 *x = (offset & 4095) / cpp;
2001                 return offset & -4096;
2002         }
2003 }
2004
2005 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2006                              int x, int y)
2007 {
2008         struct drm_device *dev = crtc->dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2011         struct intel_framebuffer *intel_fb;
2012         struct drm_i915_gem_object *obj;
2013         int plane = intel_crtc->plane;
2014         unsigned long linear_offset;
2015         u32 dspcntr;
2016         u32 reg;
2017
2018         switch (plane) {
2019         case 0:
2020         case 1:
2021                 break;
2022         default:
2023                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2024                 return -EINVAL;
2025         }
2026
2027         intel_fb = to_intel_framebuffer(fb);
2028         obj = intel_fb->obj;
2029
2030         reg = DSPCNTR(plane);
2031         dspcntr = I915_READ(reg);
2032         /* Mask out pixel format bits in case we change it */
2033         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2034         switch (fb->pixel_format) {
2035         case DRM_FORMAT_C8:
2036                 dspcntr |= DISPPLANE_8BPP;
2037                 break;
2038         case DRM_FORMAT_XRGB1555:
2039         case DRM_FORMAT_ARGB1555:
2040                 dspcntr |= DISPPLANE_BGRX555;
2041                 break;
2042         case DRM_FORMAT_RGB565:
2043                 dspcntr |= DISPPLANE_BGRX565;
2044                 break;
2045         case DRM_FORMAT_XRGB8888:
2046         case DRM_FORMAT_ARGB8888:
2047                 dspcntr |= DISPPLANE_BGRX888;
2048                 break;
2049         case DRM_FORMAT_XBGR8888:
2050         case DRM_FORMAT_ABGR8888:
2051                 dspcntr |= DISPPLANE_RGBX888;
2052                 break;
2053         case DRM_FORMAT_XRGB2101010:
2054         case DRM_FORMAT_ARGB2101010:
2055                 dspcntr |= DISPPLANE_BGRX101010;
2056                 break;
2057         case DRM_FORMAT_XBGR2101010:
2058         case DRM_FORMAT_ABGR2101010:
2059                 dspcntr |= DISPPLANE_RGBX101010;
2060                 break;
2061         default:
2062                 BUG();
2063         }
2064
2065         if (INTEL_INFO(dev)->gen >= 4) {
2066                 if (obj->tiling_mode != I915_TILING_NONE)
2067                         dspcntr |= DISPPLANE_TILED;
2068                 else
2069                         dspcntr &= ~DISPPLANE_TILED;
2070         }
2071
2072         if (IS_G4X(dev))
2073                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2074
2075         I915_WRITE(reg, dspcntr);
2076
2077         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2078
2079         if (INTEL_INFO(dev)->gen >= 4) {
2080                 intel_crtc->dspaddr_offset =
2081                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2082                                                        fb->bits_per_pixel / 8,
2083                                                        fb->pitches[0]);
2084                 linear_offset -= intel_crtc->dspaddr_offset;
2085         } else {
2086                 intel_crtc->dspaddr_offset = linear_offset;
2087         }
2088
2089         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2090                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2091                       fb->pitches[0]);
2092         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2093         if (INTEL_INFO(dev)->gen >= 4) {
2094                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2095                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2096                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2097                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2098         } else
2099                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2100         POSTING_READ(reg);
2101
2102         return 0;
2103 }
2104
2105 static int ironlake_update_plane(struct drm_crtc *crtc,
2106                                  struct drm_framebuffer *fb, int x, int y)
2107 {
2108         struct drm_device *dev = crtc->dev;
2109         struct drm_i915_private *dev_priv = dev->dev_private;
2110         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2111         struct intel_framebuffer *intel_fb;
2112         struct drm_i915_gem_object *obj;
2113         int plane = intel_crtc->plane;
2114         unsigned long linear_offset;
2115         u32 dspcntr;
2116         u32 reg;
2117
2118         switch (plane) {
2119         case 0:
2120         case 1:
2121         case 2:
2122                 break;
2123         default:
2124                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2125                 return -EINVAL;
2126         }
2127
2128         intel_fb = to_intel_framebuffer(fb);
2129         obj = intel_fb->obj;
2130
2131         reg = DSPCNTR(plane);
2132         dspcntr = I915_READ(reg);
2133         /* Mask out pixel format bits in case we change it */
2134         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2135         switch (fb->pixel_format) {
2136         case DRM_FORMAT_C8:
2137                 dspcntr |= DISPPLANE_8BPP;
2138                 break;
2139         case DRM_FORMAT_RGB565:
2140                 dspcntr |= DISPPLANE_BGRX565;
2141                 break;
2142         case DRM_FORMAT_XRGB8888:
2143         case DRM_FORMAT_ARGB8888:
2144                 dspcntr |= DISPPLANE_BGRX888;
2145                 break;
2146         case DRM_FORMAT_XBGR8888:
2147         case DRM_FORMAT_ABGR8888:
2148                 dspcntr |= DISPPLANE_RGBX888;
2149                 break;
2150         case DRM_FORMAT_XRGB2101010:
2151         case DRM_FORMAT_ARGB2101010:
2152                 dspcntr |= DISPPLANE_BGRX101010;
2153                 break;
2154         case DRM_FORMAT_XBGR2101010:
2155         case DRM_FORMAT_ABGR2101010:
2156                 dspcntr |= DISPPLANE_RGBX101010;
2157                 break;
2158         default:
2159                 BUG();
2160         }
2161
2162         if (obj->tiling_mode != I915_TILING_NONE)
2163                 dspcntr |= DISPPLANE_TILED;
2164         else
2165                 dspcntr &= ~DISPPLANE_TILED;
2166
2167         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2168                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2169         else
2170                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2171
2172         I915_WRITE(reg, dspcntr);
2173
2174         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2175         intel_crtc->dspaddr_offset =
2176                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2177                                                fb->bits_per_pixel / 8,
2178                                                fb->pitches[0]);
2179         linear_offset -= intel_crtc->dspaddr_offset;
2180
2181         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2182                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2183                       fb->pitches[0]);
2184         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2185         I915_MODIFY_DISPBASE(DSPSURF(plane),
2186                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2187         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2188                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2189         } else {
2190                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2191                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2192         }
2193         POSTING_READ(reg);
2194
2195         return 0;
2196 }
2197
2198 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2199 static int
2200 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2201                            int x, int y, enum mode_set_atomic state)
2202 {
2203         struct drm_device *dev = crtc->dev;
2204         struct drm_i915_private *dev_priv = dev->dev_private;
2205
2206         if (dev_priv->display.disable_fbc)
2207                 dev_priv->display.disable_fbc(dev);
2208         intel_increase_pllclock(crtc);
2209
2210         return dev_priv->display.update_plane(crtc, fb, x, y);
2211 }
2212
2213 void intel_display_handle_reset(struct drm_device *dev)
2214 {
2215         struct drm_i915_private *dev_priv = dev->dev_private;
2216         struct drm_crtc *crtc;
2217
2218         /*
2219          * Flips in the rings have been nuked by the reset,
2220          * so complete all pending flips so that user space
2221          * will get its events and not get stuck.
2222          *
2223          * Also update the base address of all primary
2224          * planes to the the last fb to make sure we're
2225          * showing the correct fb after a reset.
2226          *
2227          * Need to make two loops over the crtcs so that we
2228          * don't try to grab a crtc mutex before the
2229          * pending_flip_queue really got woken up.
2230          */
2231
2232         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2233                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234                 enum plane plane = intel_crtc->plane;
2235
2236                 intel_prepare_page_flip(dev, plane);
2237                 intel_finish_page_flip_plane(dev, plane);
2238         }
2239
2240         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2241                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2242
2243                 mutex_lock(&crtc->mutex);
2244                 if (intel_crtc->active)
2245                         dev_priv->display.update_plane(crtc, crtc->fb,
2246                                                        crtc->x, crtc->y);
2247                 mutex_unlock(&crtc->mutex);
2248         }
2249 }
2250
2251 static int
2252 intel_finish_fb(struct drm_framebuffer *old_fb)
2253 {
2254         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2255         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2256         bool was_interruptible = dev_priv->mm.interruptible;
2257         int ret;
2258
2259         /* Big Hammer, we also need to ensure that any pending
2260          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2261          * current scanout is retired before unpinning the old
2262          * framebuffer.
2263          *
2264          * This should only fail upon a hung GPU, in which case we
2265          * can safely continue.
2266          */
2267         dev_priv->mm.interruptible = false;
2268         ret = i915_gem_object_finish_gpu(obj);
2269         dev_priv->mm.interruptible = was_interruptible;
2270
2271         return ret;
2272 }
2273
2274 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2275 {
2276         struct drm_device *dev = crtc->dev;
2277         struct drm_i915_master_private *master_priv;
2278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2279
2280         if (!dev->primary->master)
2281                 return;
2282
2283         master_priv = dev->primary->master->driver_priv;
2284         if (!master_priv->sarea_priv)
2285                 return;
2286
2287         switch (intel_crtc->pipe) {
2288         case 0:
2289                 master_priv->sarea_priv->pipeA_x = x;
2290                 master_priv->sarea_priv->pipeA_y = y;
2291                 break;
2292         case 1:
2293                 master_priv->sarea_priv->pipeB_x = x;
2294                 master_priv->sarea_priv->pipeB_y = y;
2295                 break;
2296         default:
2297                 break;
2298         }
2299 }
2300
2301 static int
2302 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2303                     struct drm_framebuffer *fb)
2304 {
2305         struct drm_device *dev = crtc->dev;
2306         struct drm_i915_private *dev_priv = dev->dev_private;
2307         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2308         struct drm_framebuffer *old_fb;
2309         int ret;
2310
2311         /* no fb bound */
2312         if (!fb) {
2313                 DRM_ERROR("No FB bound\n");
2314                 return 0;
2315         }
2316
2317         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2318                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2319                           plane_name(intel_crtc->plane),
2320                           INTEL_INFO(dev)->num_pipes);
2321                 return -EINVAL;
2322         }
2323
2324         mutex_lock(&dev->struct_mutex);
2325         ret = intel_pin_and_fence_fb_obj(dev,
2326                                          to_intel_framebuffer(fb)->obj,
2327                                          NULL);
2328         if (ret != 0) {
2329                 mutex_unlock(&dev->struct_mutex);
2330                 DRM_ERROR("pin & fence failed\n");
2331                 return ret;
2332         }
2333
2334         /*
2335          * Update pipe size and adjust fitter if needed: the reason for this is
2336          * that in compute_mode_changes we check the native mode (not the pfit
2337          * mode) to see if we can flip rather than do a full mode set. In the
2338          * fastboot case, we'll flip, but if we don't update the pipesrc and
2339          * pfit state, we'll end up with a big fb scanned out into the wrong
2340          * sized surface.
2341          *
2342          * To fix this properly, we need to hoist the checks up into
2343          * compute_mode_changes (or above), check the actual pfit state and
2344          * whether the platform allows pfit disable with pipe active, and only
2345          * then update the pipesrc and pfit state, even on the flip path.
2346          */
2347         if (i915_fastboot) {
2348                 const struct drm_display_mode *adjusted_mode =
2349                         &intel_crtc->config.adjusted_mode;
2350
2351                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2352                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2353                            (adjusted_mode->crtc_vdisplay - 1));
2354                 if (!intel_crtc->config.pch_pfit.enabled &&
2355                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2356                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2357                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2358                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2359                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2360                 }
2361         }
2362
2363         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2364         if (ret) {
2365                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2366                 mutex_unlock(&dev->struct_mutex);
2367                 DRM_ERROR("failed to update base address\n");
2368                 return ret;
2369         }
2370
2371         old_fb = crtc->fb;
2372         crtc->fb = fb;
2373         crtc->x = x;
2374         crtc->y = y;
2375
2376         if (old_fb) {
2377                 if (intel_crtc->active && old_fb != fb)
2378                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2379                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2380         }
2381
2382         intel_update_fbc(dev);
2383         intel_edp_psr_update(dev);
2384         mutex_unlock(&dev->struct_mutex);
2385
2386         intel_crtc_update_sarea_pos(crtc, x, y);
2387
2388         return 0;
2389 }
2390
2391 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2392 {
2393         struct drm_device *dev = crtc->dev;
2394         struct drm_i915_private *dev_priv = dev->dev_private;
2395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2396         int pipe = intel_crtc->pipe;
2397         u32 reg, temp;
2398
2399         /* enable normal train */
2400         reg = FDI_TX_CTL(pipe);
2401         temp = I915_READ(reg);
2402         if (IS_IVYBRIDGE(dev)) {
2403                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2404                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2405         } else {
2406                 temp &= ~FDI_LINK_TRAIN_NONE;
2407                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2408         }
2409         I915_WRITE(reg, temp);
2410
2411         reg = FDI_RX_CTL(pipe);
2412         temp = I915_READ(reg);
2413         if (HAS_PCH_CPT(dev)) {
2414                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2415                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2416         } else {
2417                 temp &= ~FDI_LINK_TRAIN_NONE;
2418                 temp |= FDI_LINK_TRAIN_NONE;
2419         }
2420         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2421
2422         /* wait one idle pattern time */
2423         POSTING_READ(reg);
2424         udelay(1000);
2425
2426         /* IVB wants error correction enabled */
2427         if (IS_IVYBRIDGE(dev))
2428                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2429                            FDI_FE_ERRC_ENABLE);
2430 }
2431
2432 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2433 {
2434         return crtc->base.enabled && crtc->active &&
2435                 crtc->config.has_pch_encoder;
2436 }
2437
2438 static void ivb_modeset_global_resources(struct drm_device *dev)
2439 {
2440         struct drm_i915_private *dev_priv = dev->dev_private;
2441         struct intel_crtc *pipe_B_crtc =
2442                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2443         struct intel_crtc *pipe_C_crtc =
2444                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2445         uint32_t temp;
2446
2447         /*
2448          * When everything is off disable fdi C so that we could enable fdi B
2449          * with all lanes. Note that we don't care about enabled pipes without
2450          * an enabled pch encoder.
2451          */
2452         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2453             !pipe_has_enabled_pch(pipe_C_crtc)) {
2454                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2455                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2456
2457                 temp = I915_READ(SOUTH_CHICKEN1);
2458                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2459                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2460                 I915_WRITE(SOUTH_CHICKEN1, temp);
2461         }
2462 }
2463
2464 /* The FDI link training functions for ILK/Ibexpeak. */
2465 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2466 {
2467         struct drm_device *dev = crtc->dev;
2468         struct drm_i915_private *dev_priv = dev->dev_private;
2469         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2470         int pipe = intel_crtc->pipe;
2471         int plane = intel_crtc->plane;
2472         u32 reg, temp, tries;
2473
2474         /* FDI needs bits from pipe & plane first */
2475         assert_pipe_enabled(dev_priv, pipe);
2476         assert_plane_enabled(dev_priv, plane);
2477
2478         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2479            for train result */
2480         reg = FDI_RX_IMR(pipe);
2481         temp = I915_READ(reg);
2482         temp &= ~FDI_RX_SYMBOL_LOCK;
2483         temp &= ~FDI_RX_BIT_LOCK;
2484         I915_WRITE(reg, temp);
2485         I915_READ(reg);
2486         udelay(150);
2487
2488         /* enable CPU FDI TX and PCH FDI RX */
2489         reg = FDI_TX_CTL(pipe);
2490         temp = I915_READ(reg);
2491         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2492         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2493         temp &= ~FDI_LINK_TRAIN_NONE;
2494         temp |= FDI_LINK_TRAIN_PATTERN_1;
2495         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2496
2497         reg = FDI_RX_CTL(pipe);
2498         temp = I915_READ(reg);
2499         temp &= ~FDI_LINK_TRAIN_NONE;
2500         temp |= FDI_LINK_TRAIN_PATTERN_1;
2501         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2502
2503         POSTING_READ(reg);
2504         udelay(150);
2505
2506         /* Ironlake workaround, enable clock pointer after FDI enable*/
2507         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2508         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2509                    FDI_RX_PHASE_SYNC_POINTER_EN);
2510
2511         reg = FDI_RX_IIR(pipe);
2512         for (tries = 0; tries < 5; tries++) {
2513                 temp = I915_READ(reg);
2514                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2515
2516                 if ((temp & FDI_RX_BIT_LOCK)) {
2517                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2518                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2519                         break;
2520                 }
2521         }
2522         if (tries == 5)
2523                 DRM_ERROR("FDI train 1 fail!\n");
2524
2525         /* Train 2 */
2526         reg = FDI_TX_CTL(pipe);
2527         temp = I915_READ(reg);
2528         temp &= ~FDI_LINK_TRAIN_NONE;
2529         temp |= FDI_LINK_TRAIN_PATTERN_2;
2530         I915_WRITE(reg, temp);
2531
2532         reg = FDI_RX_CTL(pipe);
2533         temp = I915_READ(reg);
2534         temp &= ~FDI_LINK_TRAIN_NONE;
2535         temp |= FDI_LINK_TRAIN_PATTERN_2;
2536         I915_WRITE(reg, temp);
2537
2538         POSTING_READ(reg);
2539         udelay(150);
2540
2541         reg = FDI_RX_IIR(pipe);
2542         for (tries = 0; tries < 5; tries++) {
2543                 temp = I915_READ(reg);
2544                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2545
2546                 if (temp & FDI_RX_SYMBOL_LOCK) {
2547                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2548                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2549                         break;
2550                 }
2551         }
2552         if (tries == 5)
2553                 DRM_ERROR("FDI train 2 fail!\n");
2554
2555         DRM_DEBUG_KMS("FDI train done\n");
2556
2557 }
2558
2559 static const int snb_b_fdi_train_param[] = {
2560         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2561         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2562         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2563         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2564 };
2565
2566 /* The FDI link training functions for SNB/Cougarpoint. */
2567 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2568 {
2569         struct drm_device *dev = crtc->dev;
2570         struct drm_i915_private *dev_priv = dev->dev_private;
2571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2572         int pipe = intel_crtc->pipe;
2573         u32 reg, temp, i, retry;
2574
2575         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2576            for train result */
2577         reg = FDI_RX_IMR(pipe);
2578         temp = I915_READ(reg);
2579         temp &= ~FDI_RX_SYMBOL_LOCK;
2580         temp &= ~FDI_RX_BIT_LOCK;
2581         I915_WRITE(reg, temp);
2582
2583         POSTING_READ(reg);
2584         udelay(150);
2585
2586         /* enable CPU FDI TX and PCH FDI RX */
2587         reg = FDI_TX_CTL(pipe);
2588         temp = I915_READ(reg);
2589         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2590         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2591         temp &= ~FDI_LINK_TRAIN_NONE;
2592         temp |= FDI_LINK_TRAIN_PATTERN_1;
2593         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2594         /* SNB-B */
2595         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2596         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2597
2598         I915_WRITE(FDI_RX_MISC(pipe),
2599                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2600
2601         reg = FDI_RX_CTL(pipe);
2602         temp = I915_READ(reg);
2603         if (HAS_PCH_CPT(dev)) {
2604                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2605                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2606         } else {
2607                 temp &= ~FDI_LINK_TRAIN_NONE;
2608                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2609         }
2610         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2611
2612         POSTING_READ(reg);
2613         udelay(150);
2614
2615         for (i = 0; i < 4; i++) {
2616                 reg = FDI_TX_CTL(pipe);
2617                 temp = I915_READ(reg);
2618                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2619                 temp |= snb_b_fdi_train_param[i];
2620                 I915_WRITE(reg, temp);
2621
2622                 POSTING_READ(reg);
2623                 udelay(500);
2624
2625                 for (retry = 0; retry < 5; retry++) {
2626                         reg = FDI_RX_IIR(pipe);
2627                         temp = I915_READ(reg);
2628                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2629                         if (temp & FDI_RX_BIT_LOCK) {
2630                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2631                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2632                                 break;
2633                         }
2634                         udelay(50);
2635                 }
2636                 if (retry < 5)
2637                         break;
2638         }
2639         if (i == 4)
2640                 DRM_ERROR("FDI train 1 fail!\n");
2641
2642         /* Train 2 */
2643         reg = FDI_TX_CTL(pipe);
2644         temp = I915_READ(reg);
2645         temp &= ~FDI_LINK_TRAIN_NONE;
2646         temp |= FDI_LINK_TRAIN_PATTERN_2;
2647         if (IS_GEN6(dev)) {
2648                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649                 /* SNB-B */
2650                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2651         }
2652         I915_WRITE(reg, temp);
2653
2654         reg = FDI_RX_CTL(pipe);
2655         temp = I915_READ(reg);
2656         if (HAS_PCH_CPT(dev)) {
2657                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2658                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2659         } else {
2660                 temp &= ~FDI_LINK_TRAIN_NONE;
2661                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2662         }
2663         I915_WRITE(reg, temp);
2664
2665         POSTING_READ(reg);
2666         udelay(150);
2667
2668         for (i = 0; i < 4; i++) {
2669                 reg = FDI_TX_CTL(pipe);
2670                 temp = I915_READ(reg);
2671                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2672                 temp |= snb_b_fdi_train_param[i];
2673                 I915_WRITE(reg, temp);
2674
2675                 POSTING_READ(reg);
2676                 udelay(500);
2677
2678                 for (retry = 0; retry < 5; retry++) {
2679                         reg = FDI_RX_IIR(pipe);
2680                         temp = I915_READ(reg);
2681                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2682                         if (temp & FDI_RX_SYMBOL_LOCK) {
2683                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2684                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2685                                 break;
2686                         }
2687                         udelay(50);
2688                 }
2689                 if (retry < 5)
2690                         break;
2691         }
2692         if (i == 4)
2693                 DRM_ERROR("FDI train 2 fail!\n");
2694
2695         DRM_DEBUG_KMS("FDI train done.\n");
2696 }
2697
2698 /* Manual link training for Ivy Bridge A0 parts */
2699 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2700 {
2701         struct drm_device *dev = crtc->dev;
2702         struct drm_i915_private *dev_priv = dev->dev_private;
2703         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2704         int pipe = intel_crtc->pipe;
2705         u32 reg, temp, i, j;
2706
2707         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2708            for train result */
2709         reg = FDI_RX_IMR(pipe);
2710         temp = I915_READ(reg);
2711         temp &= ~FDI_RX_SYMBOL_LOCK;
2712         temp &= ~FDI_RX_BIT_LOCK;
2713         I915_WRITE(reg, temp);
2714
2715         POSTING_READ(reg);
2716         udelay(150);
2717
2718         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2719                       I915_READ(FDI_RX_IIR(pipe)));
2720
2721         /* Try each vswing and preemphasis setting twice before moving on */
2722         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2723                 /* disable first in case we need to retry */
2724                 reg = FDI_TX_CTL(pipe);
2725                 temp = I915_READ(reg);
2726                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2727                 temp &= ~FDI_TX_ENABLE;
2728                 I915_WRITE(reg, temp);
2729
2730                 reg = FDI_RX_CTL(pipe);
2731                 temp = I915_READ(reg);
2732                 temp &= ~FDI_LINK_TRAIN_AUTO;
2733                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2734                 temp &= ~FDI_RX_ENABLE;
2735                 I915_WRITE(reg, temp);
2736
2737                 /* enable CPU FDI TX and PCH FDI RX */
2738                 reg = FDI_TX_CTL(pipe);
2739                 temp = I915_READ(reg);
2740                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2741                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2742                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2743                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2744                 temp |= snb_b_fdi_train_param[j/2];
2745                 temp |= FDI_COMPOSITE_SYNC;
2746                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2747
2748                 I915_WRITE(FDI_RX_MISC(pipe),
2749                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2750
2751                 reg = FDI_RX_CTL(pipe);
2752                 temp = I915_READ(reg);
2753                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2754                 temp |= FDI_COMPOSITE_SYNC;
2755                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2756
2757                 POSTING_READ(reg);
2758                 udelay(1); /* should be 0.5us */
2759
2760                 for (i = 0; i < 4; i++) {
2761                         reg = FDI_RX_IIR(pipe);
2762                         temp = I915_READ(reg);
2763                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2764
2765                         if (temp & FDI_RX_BIT_LOCK ||
2766                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2767                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2768                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2769                                               i);
2770                                 break;
2771                         }
2772                         udelay(1); /* should be 0.5us */
2773                 }
2774                 if (i == 4) {
2775                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2776                         continue;
2777                 }
2778
2779                 /* Train 2 */
2780                 reg = FDI_TX_CTL(pipe);
2781                 temp = I915_READ(reg);
2782                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2783                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2784                 I915_WRITE(reg, temp);
2785
2786                 reg = FDI_RX_CTL(pipe);
2787                 temp = I915_READ(reg);
2788                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2789                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2790                 I915_WRITE(reg, temp);
2791
2792                 POSTING_READ(reg);
2793                 udelay(2); /* should be 1.5us */
2794
2795                 for (i = 0; i < 4; i++) {
2796                         reg = FDI_RX_IIR(pipe);
2797                         temp = I915_READ(reg);
2798                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2799
2800                         if (temp & FDI_RX_SYMBOL_LOCK ||
2801                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2802                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2803                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2804                                               i);
2805                                 goto train_done;
2806                         }
2807                         udelay(2); /* should be 1.5us */
2808                 }
2809                 if (i == 4)
2810                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2811         }
2812
2813 train_done:
2814         DRM_DEBUG_KMS("FDI train done.\n");
2815 }
2816
2817 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2818 {
2819         struct drm_device *dev = intel_crtc->base.dev;
2820         struct drm_i915_private *dev_priv = dev->dev_private;
2821         int pipe = intel_crtc->pipe;
2822         u32 reg, temp;
2823
2824
2825         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2826         reg = FDI_RX_CTL(pipe);
2827         temp = I915_READ(reg);
2828         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2829         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2830         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2831         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2832
2833         POSTING_READ(reg);
2834         udelay(200);
2835
2836         /* Switch from Rawclk to PCDclk */
2837         temp = I915_READ(reg);
2838         I915_WRITE(reg, temp | FDI_PCDCLK);
2839
2840         POSTING_READ(reg);
2841         udelay(200);
2842
2843         /* Enable CPU FDI TX PLL, always on for Ironlake */
2844         reg = FDI_TX_CTL(pipe);
2845         temp = I915_READ(reg);
2846         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2847                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2848
2849                 POSTING_READ(reg);
2850                 udelay(100);
2851         }
2852 }
2853
2854 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2855 {
2856         struct drm_device *dev = intel_crtc->base.dev;
2857         struct drm_i915_private *dev_priv = dev->dev_private;
2858         int pipe = intel_crtc->pipe;
2859         u32 reg, temp;
2860
2861         /* Switch from PCDclk to Rawclk */
2862         reg = FDI_RX_CTL(pipe);
2863         temp = I915_READ(reg);
2864         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2865
2866         /* Disable CPU FDI TX PLL */
2867         reg = FDI_TX_CTL(pipe);
2868         temp = I915_READ(reg);
2869         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2870
2871         POSTING_READ(reg);
2872         udelay(100);
2873
2874         reg = FDI_RX_CTL(pipe);
2875         temp = I915_READ(reg);
2876         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2877
2878         /* Wait for the clocks to turn off. */
2879         POSTING_READ(reg);
2880         udelay(100);
2881 }
2882
2883 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2884 {
2885         struct drm_device *dev = crtc->dev;
2886         struct drm_i915_private *dev_priv = dev->dev_private;
2887         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2888         int pipe = intel_crtc->pipe;
2889         u32 reg, temp;
2890
2891         /* disable CPU FDI tx and PCH FDI rx */
2892         reg = FDI_TX_CTL(pipe);
2893         temp = I915_READ(reg);
2894         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2895         POSTING_READ(reg);
2896
2897         reg = FDI_RX_CTL(pipe);
2898         temp = I915_READ(reg);
2899         temp &= ~(0x7 << 16);
2900         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2901         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2902
2903         POSTING_READ(reg);
2904         udelay(100);
2905
2906         /* Ironlake workaround, disable clock pointer after downing FDI */
2907         if (HAS_PCH_IBX(dev)) {
2908                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2909         }
2910
2911         /* still set train pattern 1 */
2912         reg = FDI_TX_CTL(pipe);
2913         temp = I915_READ(reg);
2914         temp &= ~FDI_LINK_TRAIN_NONE;
2915         temp |= FDI_LINK_TRAIN_PATTERN_1;
2916         I915_WRITE(reg, temp);
2917
2918         reg = FDI_RX_CTL(pipe);
2919         temp = I915_READ(reg);
2920         if (HAS_PCH_CPT(dev)) {
2921                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2922                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2923         } else {
2924                 temp &= ~FDI_LINK_TRAIN_NONE;
2925                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2926         }
2927         /* BPC in FDI rx is consistent with that in PIPECONF */
2928         temp &= ~(0x07 << 16);
2929         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2930         I915_WRITE(reg, temp);
2931
2932         POSTING_READ(reg);
2933         udelay(100);
2934 }
2935
2936 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2937 {
2938         struct drm_device *dev = crtc->dev;
2939         struct drm_i915_private *dev_priv = dev->dev_private;
2940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2941         unsigned long flags;
2942         bool pending;
2943
2944         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2945             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2946                 return false;
2947
2948         spin_lock_irqsave(&dev->event_lock, flags);
2949         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2950         spin_unlock_irqrestore(&dev->event_lock, flags);
2951
2952         return pending;
2953 }
2954
2955 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2956 {
2957         struct drm_device *dev = crtc->dev;
2958         struct drm_i915_private *dev_priv = dev->dev_private;
2959
2960         if (crtc->fb == NULL)
2961                 return;
2962
2963         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2964
2965         wait_event(dev_priv->pending_flip_queue,
2966                    !intel_crtc_has_pending_flip(crtc));
2967
2968         mutex_lock(&dev->struct_mutex);
2969         intel_finish_fb(crtc->fb);
2970         mutex_unlock(&dev->struct_mutex);
2971 }
2972
2973 /* Program iCLKIP clock to the desired frequency */
2974 static void lpt_program_iclkip(struct drm_crtc *crtc)
2975 {
2976         struct drm_device *dev = crtc->dev;
2977         struct drm_i915_private *dev_priv = dev->dev_private;
2978         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2979         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2980         u32 temp;
2981
2982         mutex_lock(&dev_priv->dpio_lock);
2983
2984         /* It is necessary to ungate the pixclk gate prior to programming
2985          * the divisors, and gate it back when it is done.
2986          */
2987         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2988
2989         /* Disable SSCCTL */
2990         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2991                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2992                                 SBI_SSCCTL_DISABLE,
2993                         SBI_ICLK);
2994
2995         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2996         if (clock == 20000) {
2997                 auxdiv = 1;
2998                 divsel = 0x41;
2999                 phaseinc = 0x20;
3000         } else {
3001                 /* The iCLK virtual clock root frequency is in MHz,
3002                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3003                  * divisors, it is necessary to divide one by another, so we
3004                  * convert the virtual clock precision to KHz here for higher
3005                  * precision.
3006                  */
3007                 u32 iclk_virtual_root_freq = 172800 * 1000;
3008                 u32 iclk_pi_range = 64;
3009                 u32 desired_divisor, msb_divisor_value, pi_value;
3010
3011                 desired_divisor = (iclk_virtual_root_freq / clock);
3012                 msb_divisor_value = desired_divisor / iclk_pi_range;
3013                 pi_value = desired_divisor % iclk_pi_range;
3014
3015                 auxdiv = 0;
3016                 divsel = msb_divisor_value - 2;
3017                 phaseinc = pi_value;
3018         }
3019
3020         /* This should not happen with any sane values */
3021         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3022                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3023         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3024                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3025
3026         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3027                         clock,
3028                         auxdiv,
3029                         divsel,
3030                         phasedir,
3031                         phaseinc);
3032
3033         /* Program SSCDIVINTPHASE6 */
3034         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3035         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3036         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3037         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3038         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3039         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3040         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3041         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3042
3043         /* Program SSCAUXDIV */
3044         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3045         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3046         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3047         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3048
3049         /* Enable modulator and associated divider */
3050         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3051         temp &= ~SBI_SSCCTL_DISABLE;
3052         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3053
3054         /* Wait for initialization time */
3055         udelay(24);
3056
3057         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3058
3059         mutex_unlock(&dev_priv->dpio_lock);
3060 }
3061
3062 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3063                                                 enum pipe pch_transcoder)
3064 {
3065         struct drm_device *dev = crtc->base.dev;
3066         struct drm_i915_private *dev_priv = dev->dev_private;
3067         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3068
3069         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3070                    I915_READ(HTOTAL(cpu_transcoder)));
3071         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3072                    I915_READ(HBLANK(cpu_transcoder)));
3073         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3074                    I915_READ(HSYNC(cpu_transcoder)));
3075
3076         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3077                    I915_READ(VTOTAL(cpu_transcoder)));
3078         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3079                    I915_READ(VBLANK(cpu_transcoder)));
3080         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3081                    I915_READ(VSYNC(cpu_transcoder)));
3082         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3083                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3084 }
3085
3086 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3087 {
3088         struct drm_i915_private *dev_priv = dev->dev_private;
3089         uint32_t temp;
3090
3091         temp = I915_READ(SOUTH_CHICKEN1);
3092         if (temp & FDI_BC_BIFURCATION_SELECT)
3093                 return;
3094
3095         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3096         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3097
3098         temp |= FDI_BC_BIFURCATION_SELECT;
3099         DRM_DEBUG_KMS("enabling fdi C rx\n");
3100         I915_WRITE(SOUTH_CHICKEN1, temp);
3101         POSTING_READ(SOUTH_CHICKEN1);
3102 }
3103
3104 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3105 {
3106         struct drm_device *dev = intel_crtc->base.dev;
3107         struct drm_i915_private *dev_priv = dev->dev_private;
3108
3109         switch (intel_crtc->pipe) {
3110         case PIPE_A:
3111                 break;
3112         case PIPE_B:
3113                 if (intel_crtc->config.fdi_lanes > 2)
3114                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3115                 else
3116                         cpt_enable_fdi_bc_bifurcation(dev);
3117
3118                 break;
3119         case PIPE_C:
3120                 cpt_enable_fdi_bc_bifurcation(dev);
3121
3122                 break;
3123         default:
3124                 BUG();
3125         }
3126 }
3127
3128 /*
3129  * Enable PCH resources required for PCH ports:
3130  *   - PCH PLLs
3131  *   - FDI training & RX/TX
3132  *   - update transcoder timings
3133  *   - DP transcoding bits
3134  *   - transcoder
3135  */
3136 static void ironlake_pch_enable(struct drm_crtc *crtc)
3137 {
3138         struct drm_device *dev = crtc->dev;
3139         struct drm_i915_private *dev_priv = dev->dev_private;
3140         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3141         int pipe = intel_crtc->pipe;
3142         u32 reg, temp;
3143
3144         assert_pch_transcoder_disabled(dev_priv, pipe);
3145
3146         if (IS_IVYBRIDGE(dev))
3147                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3148
3149         /* Write the TU size bits before fdi link training, so that error
3150          * detection works. */
3151         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3152                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3153
3154         /* For PCH output, training FDI link */
3155         dev_priv->display.fdi_link_train(crtc);
3156
3157         /* We need to program the right clock selection before writing the pixel
3158          * mutliplier into the DPLL. */
3159         if (HAS_PCH_CPT(dev)) {
3160                 u32 sel;
3161
3162                 temp = I915_READ(PCH_DPLL_SEL);
3163                 temp |= TRANS_DPLL_ENABLE(pipe);
3164                 sel = TRANS_DPLLB_SEL(pipe);
3165                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3166                         temp |= sel;
3167                 else
3168                         temp &= ~sel;
3169                 I915_WRITE(PCH_DPLL_SEL, temp);
3170         }
3171
3172         /* XXX: pch pll's can be enabled any time before we enable the PCH
3173          * transcoder, and we actually should do this to not upset any PCH
3174          * transcoder that already use the clock when we share it.
3175          *
3176          * Note that enable_shared_dpll tries to do the right thing, but
3177          * get_shared_dpll unconditionally resets the pll - we need that to have
3178          * the right LVDS enable sequence. */
3179         ironlake_enable_shared_dpll(intel_crtc);
3180
3181         /* set transcoder timing, panel must allow it */
3182         assert_panel_unlocked(dev_priv, pipe);
3183         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3184
3185         intel_fdi_normal_train(crtc);
3186
3187         /* For PCH DP, enable TRANS_DP_CTL */
3188         if (HAS_PCH_CPT(dev) &&
3189             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3190              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3191                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3192                 reg = TRANS_DP_CTL(pipe);
3193                 temp = I915_READ(reg);
3194                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3195                           TRANS_DP_SYNC_MASK |
3196                           TRANS_DP_BPC_MASK);
3197                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3198                          TRANS_DP_ENH_FRAMING);
3199                 temp |= bpc << 9; /* same format but at 11:9 */
3200
3201                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3202                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3203                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3204                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3205
3206                 switch (intel_trans_dp_port_sel(crtc)) {
3207                 case PCH_DP_B:
3208                         temp |= TRANS_DP_PORT_SEL_B;
3209                         break;
3210                 case PCH_DP_C:
3211                         temp |= TRANS_DP_PORT_SEL_C;
3212                         break;
3213                 case PCH_DP_D:
3214                         temp |= TRANS_DP_PORT_SEL_D;
3215                         break;
3216                 default:
3217                         BUG();
3218                 }
3219
3220                 I915_WRITE(reg, temp);
3221         }
3222
3223         ironlake_enable_pch_transcoder(dev_priv, pipe);
3224 }
3225
3226 static void lpt_pch_enable(struct drm_crtc *crtc)
3227 {
3228         struct drm_device *dev = crtc->dev;
3229         struct drm_i915_private *dev_priv = dev->dev_private;
3230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3231         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3232
3233         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3234
3235         lpt_program_iclkip(crtc);
3236
3237         /* Set transcoder timing. */
3238         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3239
3240         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3241 }
3242
3243 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3244 {
3245         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3246
3247         if (pll == NULL)
3248                 return;
3249
3250         if (pll->refcount == 0) {
3251                 WARN(1, "bad %s refcount\n", pll->name);
3252                 return;
3253         }
3254
3255         if (--pll->refcount == 0) {
3256                 WARN_ON(pll->on);
3257                 WARN_ON(pll->active);
3258         }
3259
3260         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3261 }
3262
3263 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3264 {
3265         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3266         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3267         enum intel_dpll_id i;
3268
3269         if (pll) {
3270                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3271                               crtc->base.base.id, pll->name);
3272                 intel_put_shared_dpll(crtc);
3273         }
3274
3275         if (HAS_PCH_IBX(dev_priv->dev)) {
3276                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3277                 i = (enum intel_dpll_id) crtc->pipe;
3278                 pll = &dev_priv->shared_dplls[i];
3279
3280                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3281                               crtc->base.base.id, pll->name);
3282
3283                 goto found;
3284         }
3285
3286         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3287                 pll = &dev_priv->shared_dplls[i];
3288
3289                 /* Only want to check enabled timings first */
3290                 if (pll->refcount == 0)
3291                         continue;
3292
3293                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3294                            sizeof(pll->hw_state)) == 0) {
3295                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3296                                       crtc->base.base.id,
3297                                       pll->name, pll->refcount, pll->active);
3298
3299                         goto found;
3300                 }
3301         }
3302
3303         /* Ok no matching timings, maybe there's a free one? */
3304         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3305                 pll = &dev_priv->shared_dplls[i];
3306                 if (pll->refcount == 0) {
3307                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3308                                       crtc->base.base.id, pll->name);
3309                         goto found;
3310                 }
3311         }
3312
3313         return NULL;
3314
3315 found:
3316         crtc->config.shared_dpll = i;
3317         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3318                          pipe_name(crtc->pipe));
3319
3320         if (pll->active == 0) {
3321                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3322                        sizeof(pll->hw_state));
3323
3324                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3325                 WARN_ON(pll->on);
3326                 assert_shared_dpll_disabled(dev_priv, pll);
3327
3328                 pll->mode_set(dev_priv, pll);
3329         }
3330         pll->refcount++;
3331
3332         return pll;
3333 }
3334
3335 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3336 {
3337         struct drm_i915_private *dev_priv = dev->dev_private;
3338         int dslreg = PIPEDSL(pipe);
3339         u32 temp;
3340
3341         temp = I915_READ(dslreg);
3342         udelay(500);
3343         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3344                 if (wait_for(I915_READ(dslreg) != temp, 5))
3345                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3346         }
3347 }
3348
3349 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3350 {
3351         struct drm_device *dev = crtc->base.dev;
3352         struct drm_i915_private *dev_priv = dev->dev_private;
3353         int pipe = crtc->pipe;
3354
3355         if (crtc->config.pch_pfit.enabled) {
3356                 /* Force use of hard-coded filter coefficients
3357                  * as some pre-programmed values are broken,
3358                  * e.g. x201.
3359                  */
3360                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3361                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3362                                                  PF_PIPE_SEL_IVB(pipe));
3363                 else
3364                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3365                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3366                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3367         }
3368 }
3369
3370 static void intel_enable_planes(struct drm_crtc *crtc)
3371 {
3372         struct drm_device *dev = crtc->dev;
3373         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3374         struct intel_plane *intel_plane;
3375
3376         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3377                 if (intel_plane->pipe == pipe)
3378                         intel_plane_restore(&intel_plane->base);
3379 }
3380
3381 static void intel_disable_planes(struct drm_crtc *crtc)
3382 {
3383         struct drm_device *dev = crtc->dev;
3384         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3385         struct intel_plane *intel_plane;
3386
3387         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3388                 if (intel_plane->pipe == pipe)
3389                         intel_plane_disable(&intel_plane->base);
3390 }
3391
3392 void hsw_enable_ips(struct intel_crtc *crtc)
3393 {
3394         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3395
3396         if (!crtc->config.ips_enabled)
3397                 return;
3398
3399         /* We can only enable IPS after we enable a plane and wait for a vblank.
3400          * We guarantee that the plane is enabled by calling intel_enable_ips
3401          * only after intel_enable_plane. And intel_enable_plane already waits
3402          * for a vblank, so all we need to do here is to enable the IPS bit. */
3403         assert_plane_enabled(dev_priv, crtc->plane);
3404         if (IS_BROADWELL(crtc->base.dev)) {
3405                 mutex_lock(&dev_priv->rps.hw_lock);
3406                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3407                 mutex_unlock(&dev_priv->rps.hw_lock);
3408                 /* Quoting Art Runyan: "its not safe to expect any particular
3409                  * value in IPS_CTL bit 31 after enabling IPS through the
3410                  * mailbox." Therefore we need to defer waiting on the state
3411                  * change.
3412                  * TODO: need to fix this for state checker
3413                  */
3414         } else {
3415                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3416                 /* The bit only becomes 1 in the next vblank, so this wait here
3417                  * is essentially intel_wait_for_vblank. If we don't have this
3418                  * and don't wait for vblanks until the end of crtc_enable, then
3419                  * the HW state readout code will complain that the expected
3420                  * IPS_CTL value is not the one we read. */
3421                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3422                         DRM_ERROR("Timed out waiting for IPS enable\n");
3423         }
3424 }
3425
3426 void hsw_disable_ips(struct intel_crtc *crtc)
3427 {
3428         struct drm_device *dev = crtc->base.dev;
3429         struct drm_i915_private *dev_priv = dev->dev_private;
3430
3431         if (!crtc->config.ips_enabled)
3432                 return;
3433
3434         assert_plane_enabled(dev_priv, crtc->plane);
3435         if (IS_BROADWELL(crtc->base.dev)) {
3436                 mutex_lock(&dev_priv->rps.hw_lock);
3437                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3438                 mutex_unlock(&dev_priv->rps.hw_lock);
3439         } else
3440                 I915_WRITE(IPS_CTL, 0);
3441         POSTING_READ(IPS_CTL);
3442
3443         /* We need to wait for a vblank before we can disable the plane. */
3444         intel_wait_for_vblank(dev, crtc->pipe);
3445 }
3446
3447 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3448 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3449 {
3450         struct drm_device *dev = crtc->dev;
3451         struct drm_i915_private *dev_priv = dev->dev_private;
3452         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3453         enum pipe pipe = intel_crtc->pipe;
3454         int palreg = PALETTE(pipe);
3455         int i;
3456         bool reenable_ips = false;
3457
3458         /* The clocks have to be on to load the palette. */
3459         if (!crtc->enabled || !intel_crtc->active)
3460                 return;
3461
3462         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3463                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3464                         assert_dsi_pll_enabled(dev_priv);
3465                 else
3466                         assert_pll_enabled(dev_priv, pipe);
3467         }
3468
3469         /* use legacy palette for Ironlake */
3470         if (HAS_PCH_SPLIT(dev))
3471                 palreg = LGC_PALETTE(pipe);
3472
3473         /* Workaround : Do not read or write the pipe palette/gamma data while
3474          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3475          */
3476         if (intel_crtc->config.ips_enabled &&
3477             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3478              GAMMA_MODE_MODE_SPLIT)) {
3479                 hsw_disable_ips(intel_crtc);
3480                 reenable_ips = true;
3481         }
3482
3483         for (i = 0; i < 256; i++) {
3484                 I915_WRITE(palreg + 4 * i,
3485                            (intel_crtc->lut_r[i] << 16) |
3486                            (intel_crtc->lut_g[i] << 8) |
3487                            intel_crtc->lut_b[i]);
3488         }
3489
3490         if (reenable_ips)
3491                 hsw_enable_ips(intel_crtc);
3492 }
3493
3494 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3495 {
3496         struct drm_device *dev = crtc->dev;
3497         struct drm_i915_private *dev_priv = dev->dev_private;
3498         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3499         struct intel_encoder *encoder;
3500         int pipe = intel_crtc->pipe;
3501         int plane = intel_crtc->plane;
3502
3503         WARN_ON(!crtc->enabled);
3504
3505         if (intel_crtc->active)
3506                 return;
3507
3508         intel_crtc->active = true;
3509
3510         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3511         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3512
3513         for_each_encoder_on_crtc(dev, crtc, encoder)
3514                 if (encoder->pre_enable)
3515                         encoder->pre_enable(encoder);
3516
3517         if (intel_crtc->config.has_pch_encoder) {
3518                 /* Note: FDI PLL enabling _must_ be done before we enable the
3519                  * cpu pipes, hence this is separate from all the other fdi/pch
3520                  * enabling. */
3521                 ironlake_fdi_pll_enable(intel_crtc);
3522         } else {
3523                 assert_fdi_tx_disabled(dev_priv, pipe);
3524                 assert_fdi_rx_disabled(dev_priv, pipe);
3525         }
3526
3527         ironlake_pfit_enable(intel_crtc);
3528
3529         /*
3530          * On ILK+ LUT must be loaded before the pipe is running but with
3531          * clocks enabled
3532          */
3533         intel_crtc_load_lut(crtc);
3534
3535         intel_update_watermarks(crtc);
3536         intel_enable_pipe(dev_priv, pipe,
3537                           intel_crtc->config.has_pch_encoder, false);
3538         intel_enable_primary_plane(dev_priv, plane, pipe);
3539         intel_enable_planes(crtc);
3540         intel_crtc_update_cursor(crtc, true);
3541
3542         if (intel_crtc->config.has_pch_encoder)
3543                 ironlake_pch_enable(crtc);
3544
3545         mutex_lock(&dev->struct_mutex);
3546         intel_update_fbc(dev);
3547         mutex_unlock(&dev->struct_mutex);
3548
3549         for_each_encoder_on_crtc(dev, crtc, encoder)
3550                 encoder->enable(encoder);
3551
3552         if (HAS_PCH_CPT(dev))
3553                 cpt_verify_modeset(dev, intel_crtc->pipe);
3554
3555         /*
3556          * There seems to be a race in PCH platform hw (at least on some
3557          * outputs) where an enabled pipe still completes any pageflip right
3558          * away (as if the pipe is off) instead of waiting for vblank. As soon
3559          * as the first vblank happend, everything works as expected. Hence just
3560          * wait for one vblank before returning to avoid strange things
3561          * happening.
3562          */
3563         intel_wait_for_vblank(dev, intel_crtc->pipe);
3564 }
3565
3566 /* IPS only exists on ULT machines and is tied to pipe A. */
3567 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3568 {
3569         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3570 }
3571
3572 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3573 {
3574         struct drm_device *dev = crtc->dev;
3575         struct drm_i915_private *dev_priv = dev->dev_private;
3576         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3577         int pipe = intel_crtc->pipe;
3578         int plane = intel_crtc->plane;
3579
3580         intel_enable_primary_plane(dev_priv, plane, pipe);
3581         intel_enable_planes(crtc);
3582         intel_crtc_update_cursor(crtc, true);
3583
3584         hsw_enable_ips(intel_crtc);
3585
3586         mutex_lock(&dev->struct_mutex);
3587         intel_update_fbc(dev);
3588         mutex_unlock(&dev->struct_mutex);
3589 }
3590
3591 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3592 {
3593         struct drm_device *dev = crtc->dev;
3594         struct drm_i915_private *dev_priv = dev->dev_private;
3595         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3596         int pipe = intel_crtc->pipe;
3597         int plane = intel_crtc->plane;
3598
3599         intel_crtc_wait_for_pending_flips(crtc);
3600         drm_vblank_off(dev, pipe);
3601
3602         /* FBC must be disabled before disabling the plane on HSW. */
3603         if (dev_priv->fbc.plane == plane)
3604                 intel_disable_fbc(dev);
3605
3606         hsw_disable_ips(intel_crtc);
3607
3608         intel_crtc_update_cursor(crtc, false);
3609         intel_disable_planes(crtc);
3610         intel_disable_primary_plane(dev_priv, plane, pipe);
3611 }
3612
3613 /*
3614  * This implements the workaround described in the "notes" section of the mode
3615  * set sequence documentation. When going from no pipes or single pipe to
3616  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3617  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3618  */
3619 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3620 {
3621         struct drm_device *dev = crtc->base.dev;
3622         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3623
3624         /* We want to get the other_active_crtc only if there's only 1 other
3625          * active crtc. */
3626         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3627                 if (!crtc_it->active || crtc_it == crtc)
3628                         continue;
3629
3630                 if (other_active_crtc)
3631                         return;
3632
3633                 other_active_crtc = crtc_it;
3634         }
3635         if (!other_active_crtc)
3636                 return;
3637
3638         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3639         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3640 }
3641
3642 static void haswell_crtc_enable(struct drm_crtc *crtc)
3643 {
3644         struct drm_device *dev = crtc->dev;
3645         struct drm_i915_private *dev_priv = dev->dev_private;
3646         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3647         struct intel_encoder *encoder;
3648         int pipe = intel_crtc->pipe;
3649
3650         WARN_ON(!crtc->enabled);
3651
3652         if (intel_crtc->active)
3653                 return;
3654
3655         intel_crtc->active = true;
3656
3657         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3658         if (intel_crtc->config.has_pch_encoder)
3659                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3660
3661         if (intel_crtc->config.has_pch_encoder)
3662                 dev_priv->display.fdi_link_train(crtc);
3663
3664         for_each_encoder_on_crtc(dev, crtc, encoder)
3665                 if (encoder->pre_enable)
3666                         encoder->pre_enable(encoder);
3667
3668         intel_ddi_enable_pipe_clock(intel_crtc);
3669
3670         ironlake_pfit_enable(intel_crtc);
3671
3672         /*
3673          * On ILK+ LUT must be loaded before the pipe is running but with
3674          * clocks enabled
3675          */
3676         intel_crtc_load_lut(crtc);
3677
3678         intel_ddi_set_pipe_settings(crtc);
3679         intel_ddi_enable_transcoder_func(crtc);
3680
3681         intel_update_watermarks(crtc);
3682         intel_enable_pipe(dev_priv, pipe,
3683                           intel_crtc->config.has_pch_encoder, false);
3684
3685         if (intel_crtc->config.has_pch_encoder)
3686                 lpt_pch_enable(crtc);
3687
3688         for_each_encoder_on_crtc(dev, crtc, encoder) {
3689                 encoder->enable(encoder);
3690                 intel_opregion_notify_encoder(encoder, true);
3691         }
3692
3693         /* If we change the relative order between pipe/planes enabling, we need
3694          * to change the workaround. */
3695         haswell_mode_set_planes_workaround(intel_crtc);
3696         haswell_crtc_enable_planes(crtc);
3697
3698         /*
3699          * There seems to be a race in PCH platform hw (at least on some
3700          * outputs) where an enabled pipe still completes any pageflip right
3701          * away (as if the pipe is off) instead of waiting for vblank. As soon
3702          * as the first vblank happend, everything works as expected. Hence just
3703          * wait for one vblank before returning to avoid strange things
3704          * happening.
3705          */
3706         intel_wait_for_vblank(dev, intel_crtc->pipe);
3707 }
3708
3709 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3710 {
3711         struct drm_device *dev = crtc->base.dev;
3712         struct drm_i915_private *dev_priv = dev->dev_private;
3713         int pipe = crtc->pipe;
3714
3715         /* To avoid upsetting the power well on haswell only disable the pfit if
3716          * it's in use. The hw state code will make sure we get this right. */
3717         if (crtc->config.pch_pfit.enabled) {
3718                 I915_WRITE(PF_CTL(pipe), 0);
3719                 I915_WRITE(PF_WIN_POS(pipe), 0);
3720                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3721         }
3722 }
3723
3724 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3725 {
3726         struct drm_device *dev = crtc->dev;
3727         struct drm_i915_private *dev_priv = dev->dev_private;
3728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3729         struct intel_encoder *encoder;
3730         int pipe = intel_crtc->pipe;
3731         int plane = intel_crtc->plane;
3732         u32 reg, temp;
3733
3734
3735         if (!intel_crtc->active)
3736                 return;
3737
3738         for_each_encoder_on_crtc(dev, crtc, encoder)
3739                 encoder->disable(encoder);
3740
3741         intel_crtc_wait_for_pending_flips(crtc);
3742         drm_vblank_off(dev, pipe);
3743
3744         if (dev_priv->fbc.plane == plane)
3745                 intel_disable_fbc(dev);
3746
3747         intel_crtc_update_cursor(crtc, false);
3748         intel_disable_planes(crtc);
3749         intel_disable_primary_plane(dev_priv, plane, pipe);
3750
3751         if (intel_crtc->config.has_pch_encoder)
3752                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3753
3754         intel_disable_pipe(dev_priv, pipe);
3755
3756         ironlake_pfit_disable(intel_crtc);
3757
3758         for_each_encoder_on_crtc(dev, crtc, encoder)
3759                 if (encoder->post_disable)
3760                         encoder->post_disable(encoder);
3761
3762         if (intel_crtc->config.has_pch_encoder) {
3763                 ironlake_fdi_disable(crtc);
3764
3765                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3766                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3767
3768                 if (HAS_PCH_CPT(dev)) {
3769                         /* disable TRANS_DP_CTL */
3770                         reg = TRANS_DP_CTL(pipe);
3771                         temp = I915_READ(reg);
3772                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3773                                   TRANS_DP_PORT_SEL_MASK);
3774                         temp |= TRANS_DP_PORT_SEL_NONE;
3775                         I915_WRITE(reg, temp);
3776
3777                         /* disable DPLL_SEL */
3778                         temp = I915_READ(PCH_DPLL_SEL);
3779                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3780                         I915_WRITE(PCH_DPLL_SEL, temp);
3781                 }
3782
3783                 /* disable PCH DPLL */
3784                 intel_disable_shared_dpll(intel_crtc);
3785
3786                 ironlake_fdi_pll_disable(intel_crtc);
3787         }
3788
3789         intel_crtc->active = false;
3790         intel_update_watermarks(crtc);
3791
3792         mutex_lock(&dev->struct_mutex);
3793         intel_update_fbc(dev);
3794         mutex_unlock(&dev->struct_mutex);
3795 }
3796
3797 static void haswell_crtc_disable(struct drm_crtc *crtc)
3798 {
3799         struct drm_device *dev = crtc->dev;
3800         struct drm_i915_private *dev_priv = dev->dev_private;
3801         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3802         struct intel_encoder *encoder;
3803         int pipe = intel_crtc->pipe;
3804         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3805
3806         if (!intel_crtc->active)
3807                 return;
3808
3809         haswell_crtc_disable_planes(crtc);
3810
3811         for_each_encoder_on_crtc(dev, crtc, encoder) {
3812                 intel_opregion_notify_encoder(encoder, false);
3813                 encoder->disable(encoder);
3814         }
3815
3816         if (intel_crtc->config.has_pch_encoder)
3817                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3818         intel_disable_pipe(dev_priv, pipe);
3819
3820         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3821
3822         ironlake_pfit_disable(intel_crtc);
3823
3824         intel_ddi_disable_pipe_clock(intel_crtc);
3825
3826         for_each_encoder_on_crtc(dev, crtc, encoder)
3827                 if (encoder->post_disable)
3828                         encoder->post_disable(encoder);
3829
3830         if (intel_crtc->config.has_pch_encoder) {
3831                 lpt_disable_pch_transcoder(dev_priv);
3832                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3833                 intel_ddi_fdi_disable(crtc);
3834         }
3835
3836         intel_crtc->active = false;
3837         intel_update_watermarks(crtc);
3838
3839         mutex_lock(&dev->struct_mutex);
3840         intel_update_fbc(dev);
3841         mutex_unlock(&dev->struct_mutex);
3842 }
3843
3844 static void ironlake_crtc_off(struct drm_crtc *crtc)
3845 {
3846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3847         intel_put_shared_dpll(intel_crtc);
3848 }
3849
3850 static void haswell_crtc_off(struct drm_crtc *crtc)
3851 {
3852         intel_ddi_put_crtc_pll(crtc);
3853 }
3854
3855 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3856 {
3857         if (!enable && intel_crtc->overlay) {
3858                 struct drm_device *dev = intel_crtc->base.dev;
3859                 struct drm_i915_private *dev_priv = dev->dev_private;
3860
3861                 mutex_lock(&dev->struct_mutex);
3862                 dev_priv->mm.interruptible = false;
3863                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3864                 dev_priv->mm.interruptible = true;
3865                 mutex_unlock(&dev->struct_mutex);
3866         }
3867
3868         /* Let userspace switch the overlay on again. In most cases userspace
3869          * has to recompute where to put it anyway.
3870          */
3871 }
3872
3873 /**
3874  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3875  * cursor plane briefly if not already running after enabling the display
3876  * plane.
3877  * This workaround avoids occasional blank screens when self refresh is
3878  * enabled.
3879  */
3880 static void
3881 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3882 {
3883         u32 cntl = I915_READ(CURCNTR(pipe));
3884
3885         if ((cntl & CURSOR_MODE) == 0) {
3886                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3887
3888                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3889                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3890                 intel_wait_for_vblank(dev_priv->dev, pipe);
3891                 I915_WRITE(CURCNTR(pipe), cntl);
3892                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3893                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3894         }
3895 }
3896
3897 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3898 {
3899         struct drm_device *dev = crtc->base.dev;
3900         struct drm_i915_private *dev_priv = dev->dev_private;
3901         struct intel_crtc_config *pipe_config = &crtc->config;
3902
3903         if (!crtc->config.gmch_pfit.control)
3904                 return;
3905
3906         /*
3907          * The panel fitter should only be adjusted whilst the pipe is disabled,
3908          * according to register description and PRM.
3909          */
3910         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3911         assert_pipe_disabled(dev_priv, crtc->pipe);
3912
3913         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3914         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3915
3916         /* Border color in case we don't scale up to the full screen. Black by
3917          * default, change to something else for debugging. */
3918         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3919 }
3920
3921 int valleyview_get_vco(struct drm_i915_private *dev_priv)
3922 {
3923         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
3924
3925         /* Obtain SKU information */
3926         mutex_lock(&dev_priv->dpio_lock);
3927         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
3928                 CCK_FUSE_HPLL_FREQ_MASK;
3929         mutex_unlock(&dev_priv->dpio_lock);
3930
3931         return vco_freq[hpll_freq];
3932 }
3933
3934 /* Adjust CDclk dividers to allow high res or save power if possible */
3935 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
3936 {
3937         struct drm_i915_private *dev_priv = dev->dev_private;
3938         u32 val, cmd;
3939
3940         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
3941                 cmd = 2;
3942         else if (cdclk == 266)
3943                 cmd = 1;
3944         else
3945                 cmd = 0;
3946
3947         mutex_lock(&dev_priv->rps.hw_lock);
3948         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3949         val &= ~DSPFREQGUAR_MASK;
3950         val |= (cmd << DSPFREQGUAR_SHIFT);
3951         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
3952         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
3953                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
3954                      50)) {
3955                 DRM_ERROR("timed out waiting for CDclk change\n");
3956         }
3957         mutex_unlock(&dev_priv->rps.hw_lock);
3958
3959         if (cdclk == 400) {
3960                 u32 divider, vco;
3961
3962                 vco = valleyview_get_vco(dev_priv);
3963                 divider = ((vco << 1) / cdclk) - 1;
3964
3965                 mutex_lock(&dev_priv->dpio_lock);
3966                 /* adjust cdclk divider */
3967                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
3968                 val &= ~0xf;
3969                 val |= divider;
3970                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
3971                 mutex_unlock(&dev_priv->dpio_lock);
3972         }
3973
3974         mutex_lock(&dev_priv->dpio_lock);
3975         /* adjust self-refresh exit latency value */
3976         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
3977         val &= ~0x7f;
3978
3979         /*
3980          * For high bandwidth configs, we set a higher latency in the bunit
3981          * so that the core display fetch happens in time to avoid underruns.
3982          */
3983         if (cdclk == 400)
3984                 val |= 4500 / 250; /* 4.5 usec */
3985         else
3986                 val |= 3000 / 250; /* 3.0 usec */
3987         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
3988         mutex_unlock(&dev_priv->dpio_lock);
3989
3990         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
3991         intel_i2c_reset(dev);
3992 }
3993
3994 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
3995 {
3996         int cur_cdclk, vco;
3997         int divider;
3998
3999         vco = valleyview_get_vco(dev_priv);
4000
4001         mutex_lock(&dev_priv->dpio_lock);
4002         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4003         mutex_unlock(&dev_priv->dpio_lock);
4004
4005         divider &= 0xf;
4006
4007         cur_cdclk = (vco << 1) / (divider + 1);
4008
4009         return cur_cdclk;
4010 }
4011
4012 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4013                                  int max_pixclk)
4014 {
4015         int cur_cdclk;
4016
4017         cur_cdclk = valleyview_cur_cdclk(dev_priv);
4018
4019         /*
4020          * Really only a few cases to deal with, as only 4 CDclks are supported:
4021          *   200MHz
4022          *   267MHz
4023          *   320MHz
4024          *   400MHz
4025          * So we check to see whether we're above 90% of the lower bin and
4026          * adjust if needed.
4027          */
4028         if (max_pixclk > 288000) {
4029                 return 400;
4030         } else if (max_pixclk > 240000) {
4031                 return 320;
4032         } else
4033                 return 266;
4034         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4035 }
4036
4037 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv,
4038                                  unsigned modeset_pipes,
4039                                  struct intel_crtc_config *pipe_config)
4040 {
4041         struct drm_device *dev = dev_priv->dev;
4042         struct intel_crtc *intel_crtc;
4043         int max_pixclk = 0;
4044
4045         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4046                             base.head) {
4047                 if (modeset_pipes & (1 << intel_crtc->pipe))
4048                         max_pixclk = max(max_pixclk,
4049                                          pipe_config->adjusted_mode.crtc_clock);
4050                 else if (intel_crtc->base.enabled)
4051                         max_pixclk = max(max_pixclk,
4052                                          intel_crtc->config.adjusted_mode.crtc_clock);
4053         }
4054
4055         return max_pixclk;
4056 }
4057
4058 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4059                                             unsigned *prepare_pipes,
4060                                             unsigned modeset_pipes,
4061                                             struct intel_crtc_config *pipe_config)
4062 {
4063         struct drm_i915_private *dev_priv = dev->dev_private;
4064         struct intel_crtc *intel_crtc;
4065         int max_pixclk = intel_mode_max_pixclk(dev_priv, modeset_pipes,
4066                                                pipe_config);
4067         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4068
4069         if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4070                 return;
4071
4072         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4073                             base.head)
4074                 if (intel_crtc->base.enabled)
4075                         *prepare_pipes |= (1 << intel_crtc->pipe);
4076 }
4077
4078 static void valleyview_modeset_global_resources(struct drm_device *dev)
4079 {
4080         struct drm_i915_private *dev_priv = dev->dev_private;
4081         int max_pixclk = intel_mode_max_pixclk(dev_priv, 0, NULL);
4082         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4083         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4084
4085         if (req_cdclk != cur_cdclk)
4086                 valleyview_set_cdclk(dev, req_cdclk);
4087 }
4088
4089 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4090 {
4091         struct drm_device *dev = crtc->dev;
4092         struct drm_i915_private *dev_priv = dev->dev_private;
4093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4094         struct intel_encoder *encoder;
4095         int pipe = intel_crtc->pipe;
4096         int plane = intel_crtc->plane;
4097         bool is_dsi;
4098
4099         WARN_ON(!crtc->enabled);
4100
4101         if (intel_crtc->active)
4102                 return;
4103
4104         intel_crtc->active = true;
4105
4106         for_each_encoder_on_crtc(dev, crtc, encoder)
4107                 if (encoder->pre_pll_enable)
4108                         encoder->pre_pll_enable(encoder);
4109
4110         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4111
4112         if (!is_dsi)
4113                 vlv_enable_pll(intel_crtc);
4114
4115         for_each_encoder_on_crtc(dev, crtc, encoder)
4116                 if (encoder->pre_enable)
4117                         encoder->pre_enable(encoder);
4118
4119         i9xx_pfit_enable(intel_crtc);
4120
4121         intel_crtc_load_lut(crtc);
4122
4123         intel_update_watermarks(crtc);
4124         intel_enable_pipe(dev_priv, pipe, false, is_dsi);
4125         intel_enable_primary_plane(dev_priv, plane, pipe);
4126         intel_enable_planes(crtc);
4127         intel_crtc_update_cursor(crtc, true);
4128
4129         intel_update_fbc(dev);
4130
4131         for_each_encoder_on_crtc(dev, crtc, encoder)
4132                 encoder->enable(encoder);
4133 }
4134
4135 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4136 {
4137         struct drm_device *dev = crtc->dev;
4138         struct drm_i915_private *dev_priv = dev->dev_private;
4139         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4140         struct intel_encoder *encoder;
4141         int pipe = intel_crtc->pipe;
4142         int plane = intel_crtc->plane;
4143
4144         WARN_ON(!crtc->enabled);
4145
4146         if (intel_crtc->active)
4147                 return;
4148
4149         intel_crtc->active = true;
4150
4151         for_each_encoder_on_crtc(dev, crtc, encoder)
4152                 if (encoder->pre_enable)
4153                         encoder->pre_enable(encoder);
4154
4155         i9xx_enable_pll(intel_crtc);
4156
4157         i9xx_pfit_enable(intel_crtc);
4158
4159         intel_crtc_load_lut(crtc);
4160
4161         intel_update_watermarks(crtc);
4162         intel_enable_pipe(dev_priv, pipe, false, false);
4163         intel_enable_primary_plane(dev_priv, plane, pipe);
4164         intel_enable_planes(crtc);
4165         /* The fixup needs to happen before cursor is enabled */
4166         if (IS_G4X(dev))
4167                 g4x_fixup_plane(dev_priv, pipe);
4168         intel_crtc_update_cursor(crtc, true);
4169
4170         /* Give the overlay scaler a chance to enable if it's on this pipe */
4171         intel_crtc_dpms_overlay(intel_crtc, true);
4172
4173         intel_update_fbc(dev);
4174
4175         for_each_encoder_on_crtc(dev, crtc, encoder)
4176                 encoder->enable(encoder);
4177 }
4178
4179 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4180 {
4181         struct drm_device *dev = crtc->base.dev;
4182         struct drm_i915_private *dev_priv = dev->dev_private;
4183
4184         if (!crtc->config.gmch_pfit.control)
4185                 return;
4186
4187         assert_pipe_disabled(dev_priv, crtc->pipe);
4188
4189         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4190                          I915_READ(PFIT_CONTROL));
4191         I915_WRITE(PFIT_CONTROL, 0);
4192 }
4193
4194 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4195 {
4196         struct drm_device *dev = crtc->dev;
4197         struct drm_i915_private *dev_priv = dev->dev_private;
4198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4199         struct intel_encoder *encoder;
4200         int pipe = intel_crtc->pipe;
4201         int plane = intel_crtc->plane;
4202
4203         if (!intel_crtc->active)
4204                 return;
4205
4206         for_each_encoder_on_crtc(dev, crtc, encoder)
4207                 encoder->disable(encoder);
4208
4209         /* Give the overlay scaler a chance to disable if it's on this pipe */
4210         intel_crtc_wait_for_pending_flips(crtc);
4211         drm_vblank_off(dev, pipe);
4212
4213         if (dev_priv->fbc.plane == plane)
4214                 intel_disable_fbc(dev);
4215
4216         intel_crtc_dpms_overlay(intel_crtc, false);
4217         intel_crtc_update_cursor(crtc, false);
4218         intel_disable_planes(crtc);
4219         intel_disable_primary_plane(dev_priv, plane, pipe);
4220
4221         intel_disable_pipe(dev_priv, pipe);
4222
4223         i9xx_pfit_disable(intel_crtc);
4224
4225         for_each_encoder_on_crtc(dev, crtc, encoder)
4226                 if (encoder->post_disable)
4227                         encoder->post_disable(encoder);
4228
4229         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4230                 vlv_disable_pll(dev_priv, pipe);
4231         else if (!IS_VALLEYVIEW(dev))
4232                 i9xx_disable_pll(dev_priv, pipe);
4233
4234         intel_crtc->active = false;
4235         intel_update_watermarks(crtc);
4236
4237         intel_update_fbc(dev);
4238 }
4239
4240 static void i9xx_crtc_off(struct drm_crtc *crtc)
4241 {
4242 }
4243
4244 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4245                                     bool enabled)
4246 {
4247         struct drm_device *dev = crtc->dev;
4248         struct drm_i915_master_private *master_priv;
4249         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4250         int pipe = intel_crtc->pipe;
4251
4252         if (!dev->primary->master)
4253                 return;
4254
4255         master_priv = dev->primary->master->driver_priv;
4256         if (!master_priv->sarea_priv)
4257                 return;
4258
4259         switch (pipe) {
4260         case 0:
4261                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4262                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4263                 break;
4264         case 1:
4265                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4266                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4267                 break;
4268         default:
4269                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4270                 break;
4271         }
4272 }
4273
4274 /**
4275  * Sets the power management mode of the pipe and plane.
4276  */
4277 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4278 {
4279         struct drm_device *dev = crtc->dev;
4280         struct drm_i915_private *dev_priv = dev->dev_private;
4281         struct intel_encoder *intel_encoder;
4282         bool enable = false;
4283
4284         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4285                 enable |= intel_encoder->connectors_active;
4286
4287         if (enable)
4288                 dev_priv->display.crtc_enable(crtc);
4289         else
4290                 dev_priv->display.crtc_disable(crtc);
4291
4292         intel_crtc_update_sarea(crtc, enable);
4293 }
4294
4295 static void intel_crtc_disable(struct drm_crtc *crtc)
4296 {
4297         struct drm_device *dev = crtc->dev;
4298         struct drm_connector *connector;
4299         struct drm_i915_private *dev_priv = dev->dev_private;
4300         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4301
4302         /* crtc should still be enabled when we disable it. */
4303         WARN_ON(!crtc->enabled);
4304
4305         dev_priv->display.crtc_disable(crtc);
4306         intel_crtc->eld_vld = false;
4307         intel_crtc_update_sarea(crtc, false);
4308         dev_priv->display.off(crtc);
4309
4310         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4311         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4312         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4313
4314         if (crtc->fb) {
4315                 mutex_lock(&dev->struct_mutex);
4316                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4317                 mutex_unlock(&dev->struct_mutex);
4318                 crtc->fb = NULL;
4319         }
4320
4321         /* Update computed state. */
4322         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4323                 if (!connector->encoder || !connector->encoder->crtc)
4324                         continue;
4325
4326                 if (connector->encoder->crtc != crtc)
4327                         continue;
4328
4329                 connector->dpms = DRM_MODE_DPMS_OFF;
4330                 to_intel_encoder(connector->encoder)->connectors_active = false;
4331         }
4332 }
4333
4334 void intel_encoder_destroy(struct drm_encoder *encoder)
4335 {
4336         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4337
4338         drm_encoder_cleanup(encoder);
4339         kfree(intel_encoder);
4340 }
4341
4342 /* Simple dpms helper for encoders with just one connector, no cloning and only
4343  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4344  * state of the entire output pipe. */
4345 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4346 {
4347         if (mode == DRM_MODE_DPMS_ON) {
4348                 encoder->connectors_active = true;
4349
4350                 intel_crtc_update_dpms(encoder->base.crtc);
4351         } else {
4352                 encoder->connectors_active = false;
4353
4354                 intel_crtc_update_dpms(encoder->base.crtc);
4355         }
4356 }
4357
4358 /* Cross check the actual hw state with our own modeset state tracking (and it's
4359  * internal consistency). */
4360 static void intel_connector_check_state(struct intel_connector *connector)
4361 {
4362         if (connector->get_hw_state(connector)) {
4363                 struct intel_encoder *encoder = connector->encoder;
4364                 struct drm_crtc *crtc;
4365                 bool encoder_enabled;
4366                 enum pipe pipe;
4367
4368                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4369                               connector->base.base.id,
4370                               drm_get_connector_name(&connector->base));
4371
4372                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4373                      "wrong connector dpms state\n");
4374                 WARN(connector->base.encoder != &encoder->base,
4375                      "active connector not linked to encoder\n");
4376                 WARN(!encoder->connectors_active,
4377                      "encoder->connectors_active not set\n");
4378
4379                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4380                 WARN(!encoder_enabled, "encoder not enabled\n");
4381                 if (WARN_ON(!encoder->base.crtc))
4382                         return;
4383
4384                 crtc = encoder->base.crtc;
4385
4386                 WARN(!crtc->enabled, "crtc not enabled\n");
4387                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4388                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4389                      "encoder active on the wrong pipe\n");
4390         }
4391 }
4392
4393 /* Even simpler default implementation, if there's really no special case to
4394  * consider. */
4395 void intel_connector_dpms(struct drm_connector *connector, int mode)
4396 {
4397         /* All the simple cases only support two dpms states. */
4398         if (mode != DRM_MODE_DPMS_ON)
4399                 mode = DRM_MODE_DPMS_OFF;
4400
4401         if (mode == connector->dpms)
4402                 return;
4403
4404         connector->dpms = mode;
4405
4406         /* Only need to change hw state when actually enabled */
4407         if (connector->encoder)
4408                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4409
4410         intel_modeset_check_state(connector->dev);
4411 }
4412
4413 /* Simple connector->get_hw_state implementation for encoders that support only
4414  * one connector and no cloning and hence the encoder state determines the state
4415  * of the connector. */
4416 bool intel_connector_get_hw_state(struct intel_connector *connector)
4417 {
4418         enum pipe pipe = 0;
4419         struct intel_encoder *encoder = connector->encoder;
4420
4421         return encoder->get_hw_state(encoder, &pipe);
4422 }
4423
4424 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4425                                      struct intel_crtc_config *pipe_config)
4426 {
4427         struct drm_i915_private *dev_priv = dev->dev_private;
4428         struct intel_crtc *pipe_B_crtc =
4429                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4430
4431         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4432                       pipe_name(pipe), pipe_config->fdi_lanes);
4433         if (pipe_config->fdi_lanes > 4) {
4434                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4435                               pipe_name(pipe), pipe_config->fdi_lanes);
4436                 return false;
4437         }
4438
4439         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4440                 if (pipe_config->fdi_lanes > 2) {
4441                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4442                                       pipe_config->fdi_lanes);
4443                         return false;
4444                 } else {
4445                         return true;
4446                 }
4447         }
4448
4449         if (INTEL_INFO(dev)->num_pipes == 2)
4450                 return true;
4451
4452         /* Ivybridge 3 pipe is really complicated */
4453         switch (pipe) {
4454         case PIPE_A:
4455                 return true;
4456         case PIPE_B:
4457                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4458                     pipe_config->fdi_lanes > 2) {
4459                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4460                                       pipe_name(pipe), pipe_config->fdi_lanes);
4461                         return false;
4462                 }
4463                 return true;
4464         case PIPE_C:
4465                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4466                     pipe_B_crtc->config.fdi_lanes <= 2) {
4467                         if (pipe_config->fdi_lanes > 2) {
4468                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4469                                               pipe_name(pipe), pipe_config->fdi_lanes);
4470                                 return false;
4471                         }
4472                 } else {
4473                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4474                         return false;
4475                 }
4476                 return true;
4477         default:
4478                 BUG();
4479         }
4480 }
4481
4482 #define RETRY 1
4483 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4484                                        struct intel_crtc_config *pipe_config)
4485 {
4486         struct drm_device *dev = intel_crtc->base.dev;
4487         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4488         int lane, link_bw, fdi_dotclock;
4489         bool setup_ok, needs_recompute = false;
4490
4491 retry:
4492         /* FDI is a binary signal running at ~2.7GHz, encoding
4493          * each output octet as 10 bits. The actual frequency
4494          * is stored as a divider into a 100MHz clock, and the
4495          * mode pixel clock is stored in units of 1KHz.
4496          * Hence the bw of each lane in terms of the mode signal
4497          * is:
4498          */
4499         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4500
4501         fdi_dotclock = adjusted_mode->crtc_clock;
4502
4503         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4504                                            pipe_config->pipe_bpp);
4505
4506         pipe_config->fdi_lanes = lane;
4507
4508         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4509                                link_bw, &pipe_config->fdi_m_n);
4510
4511         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4512                                             intel_crtc->pipe, pipe_config);
4513         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4514                 pipe_config->pipe_bpp -= 2*3;
4515                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4516                               pipe_config->pipe_bpp);
4517                 needs_recompute = true;
4518                 pipe_config->bw_constrained = true;
4519
4520                 goto retry;
4521         }
4522
4523         if (needs_recompute)
4524                 return RETRY;
4525
4526         return setup_ok ? 0 : -EINVAL;
4527 }
4528
4529 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4530                                    struct intel_crtc_config *pipe_config)
4531 {
4532         pipe_config->ips_enabled = i915_enable_ips &&
4533                                    hsw_crtc_supports_ips(crtc) &&
4534                                    pipe_config->pipe_bpp <= 24;
4535 }
4536
4537 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4538                                      struct intel_crtc_config *pipe_config)
4539 {
4540         struct drm_device *dev = crtc->base.dev;
4541         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4542
4543         /* FIXME should check pixel clock limits on all platforms */
4544         if (INTEL_INFO(dev)->gen < 4) {
4545                 struct drm_i915_private *dev_priv = dev->dev_private;
4546                 int clock_limit =
4547                         dev_priv->display.get_display_clock_speed(dev);
4548
4549                 /*
4550                  * Enable pixel doubling when the dot clock
4551                  * is > 90% of the (display) core speed.
4552                  *
4553                  * GDG double wide on either pipe,
4554                  * otherwise pipe A only.
4555                  */
4556                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4557                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4558                         clock_limit *= 2;
4559                         pipe_config->double_wide = true;
4560                 }
4561
4562                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4563                         return -EINVAL;
4564         }
4565
4566         /*
4567          * Pipe horizontal size must be even in:
4568          * - DVO ganged mode
4569          * - LVDS dual channel mode
4570          * - Double wide pipe
4571          */
4572         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4573              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4574                 pipe_config->pipe_src_w &= ~1;
4575
4576         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4577          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4578          */
4579         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4580                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4581                 return -EINVAL;
4582
4583         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4584                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4585         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4586                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4587                  * for lvds. */
4588                 pipe_config->pipe_bpp = 8*3;
4589         }
4590
4591         if (HAS_IPS(dev))
4592                 hsw_compute_ips_config(crtc, pipe_config);
4593
4594         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4595          * clock survives for now. */
4596         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4597                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4598
4599         if (pipe_config->has_pch_encoder)
4600                 return ironlake_fdi_compute_config(crtc, pipe_config);
4601
4602         return 0;
4603 }
4604
4605 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4606 {
4607         return 400000; /* FIXME */
4608 }
4609
4610 static int i945_get_display_clock_speed(struct drm_device *dev)
4611 {
4612         return 400000;
4613 }
4614
4615 static int i915_get_display_clock_speed(struct drm_device *dev)
4616 {
4617         return 333000;
4618 }
4619
4620 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4621 {
4622         return 200000;
4623 }
4624
4625 static int pnv_get_display_clock_speed(struct drm_device *dev)
4626 {
4627         u16 gcfgc = 0;
4628
4629         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4630
4631         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4632         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4633                 return 267000;
4634         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4635                 return 333000;
4636         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4637                 return 444000;
4638         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4639                 return 200000;
4640         default:
4641                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4642         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4643                 return 133000;
4644         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4645                 return 167000;
4646         }
4647 }
4648
4649 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4650 {
4651         u16 gcfgc = 0;
4652
4653         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4654
4655         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4656                 return 133000;
4657         else {
4658                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4659                 case GC_DISPLAY_CLOCK_333_MHZ:
4660                         return 333000;
4661                 default:
4662                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4663                         return 190000;
4664                 }
4665         }
4666 }
4667
4668 static int i865_get_display_clock_speed(struct drm_device *dev)
4669 {
4670         return 266000;
4671 }
4672
4673 static int i855_get_display_clock_speed(struct drm_device *dev)
4674 {
4675         u16 hpllcc = 0;
4676         /* Assume that the hardware is in the high speed state.  This
4677          * should be the default.
4678          */
4679         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4680         case GC_CLOCK_133_200:
4681         case GC_CLOCK_100_200:
4682                 return 200000;
4683         case GC_CLOCK_166_250:
4684                 return 250000;
4685         case GC_CLOCK_100_133:
4686                 return 133000;
4687         }
4688
4689         /* Shouldn't happen */
4690         return 0;
4691 }
4692
4693 static int i830_get_display_clock_speed(struct drm_device *dev)
4694 {
4695         return 133000;
4696 }
4697
4698 static void
4699 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4700 {
4701         while (*num > DATA_LINK_M_N_MASK ||
4702                *den > DATA_LINK_M_N_MASK) {
4703                 *num >>= 1;
4704                 *den >>= 1;
4705         }
4706 }
4707
4708 static void compute_m_n(unsigned int m, unsigned int n,
4709                         uint32_t *ret_m, uint32_t *ret_n)
4710 {
4711         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4712         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4713         intel_reduce_m_n_ratio(ret_m, ret_n);
4714 }
4715
4716 void
4717 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4718                        int pixel_clock, int link_clock,
4719                        struct intel_link_m_n *m_n)
4720 {
4721         m_n->tu = 64;
4722
4723         compute_m_n(bits_per_pixel * pixel_clock,
4724                     link_clock * nlanes * 8,
4725                     &m_n->gmch_m, &m_n->gmch_n);
4726
4727         compute_m_n(pixel_clock, link_clock,
4728                     &m_n->link_m, &m_n->link_n);
4729 }
4730
4731 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4732 {
4733         if (i915_panel_use_ssc >= 0)
4734                 return i915_panel_use_ssc != 0;
4735         return dev_priv->vbt.lvds_use_ssc
4736                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4737 }
4738
4739 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4740 {
4741         struct drm_device *dev = crtc->dev;
4742         struct drm_i915_private *dev_priv = dev->dev_private;
4743         int refclk;
4744
4745         if (IS_VALLEYVIEW(dev)) {
4746                 refclk = 100000;
4747         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4748             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4749                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4750                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4751                               refclk / 1000);
4752         } else if (!IS_GEN2(dev)) {
4753                 refclk = 96000;
4754         } else {
4755                 refclk = 48000;
4756         }
4757
4758         return refclk;
4759 }
4760
4761 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4762 {
4763         return (1 << dpll->n) << 16 | dpll->m2;
4764 }
4765
4766 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4767 {
4768         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4769 }
4770
4771 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4772                                      intel_clock_t *reduced_clock)
4773 {
4774         struct drm_device *dev = crtc->base.dev;
4775         struct drm_i915_private *dev_priv = dev->dev_private;
4776         int pipe = crtc->pipe;
4777         u32 fp, fp2 = 0;
4778
4779         if (IS_PINEVIEW(dev)) {
4780                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4781                 if (reduced_clock)
4782                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4783         } else {
4784                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4785                 if (reduced_clock)
4786                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4787         }
4788
4789         I915_WRITE(FP0(pipe), fp);
4790         crtc->config.dpll_hw_state.fp0 = fp;
4791
4792         crtc->lowfreq_avail = false;
4793         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4794             reduced_clock && i915_powersave) {
4795                 I915_WRITE(FP1(pipe), fp2);
4796                 crtc->config.dpll_hw_state.fp1 = fp2;
4797                 crtc->lowfreq_avail = true;
4798         } else {
4799                 I915_WRITE(FP1(pipe), fp);
4800                 crtc->config.dpll_hw_state.fp1 = fp;
4801         }
4802 }
4803
4804 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4805                 pipe)
4806 {
4807         u32 reg_val;
4808
4809         /*
4810          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4811          * and set it to a reasonable value instead.
4812          */
4813         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4814         reg_val &= 0xffffff00;
4815         reg_val |= 0x00000030;
4816         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4817
4818         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4819         reg_val &= 0x8cffffff;
4820         reg_val = 0x8c000000;
4821         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4822
4823         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4824         reg_val &= 0xffffff00;
4825         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4826
4827         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4828         reg_val &= 0x00ffffff;
4829         reg_val |= 0xb0000000;
4830         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4831 }
4832
4833 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4834                                          struct intel_link_m_n *m_n)
4835 {
4836         struct drm_device *dev = crtc->base.dev;
4837         struct drm_i915_private *dev_priv = dev->dev_private;
4838         int pipe = crtc->pipe;
4839
4840         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4841         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4842         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4843         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4844 }
4845
4846 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4847                                          struct intel_link_m_n *m_n)
4848 {
4849         struct drm_device *dev = crtc->base.dev;
4850         struct drm_i915_private *dev_priv = dev->dev_private;
4851         int pipe = crtc->pipe;
4852         enum transcoder transcoder = crtc->config.cpu_transcoder;
4853
4854         if (INTEL_INFO(dev)->gen >= 5) {
4855                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4856                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4857                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4858                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4859         } else {
4860                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4861                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4862                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4863                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4864         }
4865 }
4866
4867 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4868 {
4869         if (crtc->config.has_pch_encoder)
4870                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4871         else
4872                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4873 }
4874
4875 static void vlv_update_pll(struct intel_crtc *crtc)
4876 {
4877         struct drm_device *dev = crtc->base.dev;
4878         struct drm_i915_private *dev_priv = dev->dev_private;
4879         int pipe = crtc->pipe;
4880         u32 dpll, mdiv;
4881         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4882         u32 coreclk, reg_val, dpll_md;
4883
4884         mutex_lock(&dev_priv->dpio_lock);
4885
4886         bestn = crtc->config.dpll.n;
4887         bestm1 = crtc->config.dpll.m1;
4888         bestm2 = crtc->config.dpll.m2;
4889         bestp1 = crtc->config.dpll.p1;
4890         bestp2 = crtc->config.dpll.p2;
4891
4892         /* See eDP HDMI DPIO driver vbios notes doc */
4893
4894         /* PLL B needs special handling */
4895         if (pipe)
4896                 vlv_pllb_recal_opamp(dev_priv, pipe);
4897
4898         /* Set up Tx target for periodic Rcomp update */
4899         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
4900
4901         /* Disable target IRef on PLL */
4902         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
4903         reg_val &= 0x00ffffff;
4904         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
4905
4906         /* Disable fast lock */
4907         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
4908
4909         /* Set idtafcrecal before PLL is enabled */
4910         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4911         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4912         mdiv |= ((bestn << DPIO_N_SHIFT));
4913         mdiv |= (1 << DPIO_K_SHIFT);
4914
4915         /*
4916          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4917          * but we don't support that).
4918          * Note: don't use the DAC post divider as it seems unstable.
4919          */
4920         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4921         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4922
4923         mdiv |= DPIO_ENABLE_CALIBRATION;
4924         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4925
4926         /* Set HBR and RBR LPF coefficients */
4927         if (crtc->config.port_clock == 162000 ||
4928             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4929             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4930                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4931                                  0x009f0003);
4932         else
4933                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4934                                  0x00d0000f);
4935
4936         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4937             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4938                 /* Use SSC source */
4939                 if (!pipe)
4940                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4941                                          0x0df40000);
4942                 else
4943                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4944                                          0x0df70000);
4945         } else { /* HDMI or VGA */
4946                 /* Use bend source */
4947                 if (!pipe)
4948                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4949                                          0x0df70000);
4950                 else
4951                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4952                                          0x0df40000);
4953         }
4954
4955         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
4956         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4957         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4958             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4959                 coreclk |= 0x01000000;
4960         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
4961
4962         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
4963
4964         /* Enable DPIO clock input */
4965         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4966                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4967         /* We should never disable this, set it here for state tracking */
4968         if (pipe == PIPE_B)
4969                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4970         dpll |= DPLL_VCO_ENABLE;
4971         crtc->config.dpll_hw_state.dpll = dpll;
4972
4973         dpll_md = (crtc->config.pixel_multiplier - 1)
4974                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4975         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4976
4977         if (crtc->config.has_dp_encoder)
4978                 intel_dp_set_m_n(crtc);
4979
4980         mutex_unlock(&dev_priv->dpio_lock);
4981 }
4982
4983 static void i9xx_update_pll(struct intel_crtc *crtc,
4984                             intel_clock_t *reduced_clock,
4985                             int num_connectors)
4986 {
4987         struct drm_device *dev = crtc->base.dev;
4988         struct drm_i915_private *dev_priv = dev->dev_private;
4989         u32 dpll;
4990         bool is_sdvo;
4991         struct dpll *clock = &crtc->config.dpll;
4992
4993         i9xx_update_pll_dividers(crtc, reduced_clock);
4994
4995         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4996                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4997
4998         dpll = DPLL_VGA_MODE_DIS;
4999
5000         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5001                 dpll |= DPLLB_MODE_LVDS;
5002         else
5003                 dpll |= DPLLB_MODE_DAC_SERIAL;
5004
5005         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5006                 dpll |= (crtc->config.pixel_multiplier - 1)
5007                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5008         }
5009
5010         if (is_sdvo)
5011                 dpll |= DPLL_SDVO_HIGH_SPEED;
5012
5013         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5014                 dpll |= DPLL_SDVO_HIGH_SPEED;
5015
5016         /* compute bitmask from p1 value */
5017         if (IS_PINEVIEW(dev))
5018                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5019         else {
5020                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5021                 if (IS_G4X(dev) && reduced_clock)
5022                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5023         }
5024         switch (clock->p2) {
5025         case 5:
5026                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5027                 break;
5028         case 7:
5029                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5030                 break;
5031         case 10:
5032                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5033                 break;
5034         case 14:
5035                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5036                 break;
5037         }
5038         if (INTEL_INFO(dev)->gen >= 4)
5039                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5040
5041         if (crtc->config.sdvo_tv_clock)
5042                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5043         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5044                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5045                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5046         else
5047                 dpll |= PLL_REF_INPUT_DREFCLK;
5048
5049         dpll |= DPLL_VCO_ENABLE;
5050         crtc->config.dpll_hw_state.dpll = dpll;
5051
5052         if (INTEL_INFO(dev)->gen >= 4) {
5053                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5054                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5055                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5056         }
5057
5058         if (crtc->config.has_dp_encoder)
5059                 intel_dp_set_m_n(crtc);
5060 }
5061
5062 static void i8xx_update_pll(struct intel_crtc *crtc,
5063                             intel_clock_t *reduced_clock,
5064                             int num_connectors)
5065 {
5066         struct drm_device *dev = crtc->base.dev;
5067         struct drm_i915_private *dev_priv = dev->dev_private;
5068         u32 dpll;
5069         struct dpll *clock = &crtc->config.dpll;
5070
5071         i9xx_update_pll_dividers(crtc, reduced_clock);
5072
5073         dpll = DPLL_VGA_MODE_DIS;
5074
5075         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5076                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5077         } else {
5078                 if (clock->p1 == 2)
5079                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5080                 else
5081                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5082                 if (clock->p2 == 4)
5083                         dpll |= PLL_P2_DIVIDE_BY_4;
5084         }
5085
5086         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5087                 dpll |= DPLL_DVO_2X_MODE;
5088
5089         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5090                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5091                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5092         else
5093                 dpll |= PLL_REF_INPUT_DREFCLK;
5094
5095         dpll |= DPLL_VCO_ENABLE;
5096         crtc->config.dpll_hw_state.dpll = dpll;
5097 }
5098
5099 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5100 {
5101         struct drm_device *dev = intel_crtc->base.dev;
5102         struct drm_i915_private *dev_priv = dev->dev_private;
5103         enum pipe pipe = intel_crtc->pipe;
5104         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5105         struct drm_display_mode *adjusted_mode =
5106                 &intel_crtc->config.adjusted_mode;
5107         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
5108
5109         /* We need to be careful not to changed the adjusted mode, for otherwise
5110          * the hw state checker will get angry at the mismatch. */
5111         crtc_vtotal = adjusted_mode->crtc_vtotal;
5112         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5113
5114         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5115                 /* the chip adds 2 halflines automatically */
5116                 crtc_vtotal -= 1;
5117                 crtc_vblank_end -= 1;
5118                 vsyncshift = adjusted_mode->crtc_hsync_start
5119                              - adjusted_mode->crtc_htotal / 2;
5120         } else {
5121                 vsyncshift = 0;
5122         }
5123
5124         if (INTEL_INFO(dev)->gen > 3)
5125                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5126
5127         I915_WRITE(HTOTAL(cpu_transcoder),
5128                    (adjusted_mode->crtc_hdisplay - 1) |
5129                    ((adjusted_mode->crtc_htotal - 1) << 16));
5130         I915_WRITE(HBLANK(cpu_transcoder),
5131                    (adjusted_mode->crtc_hblank_start - 1) |
5132                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5133         I915_WRITE(HSYNC(cpu_transcoder),
5134                    (adjusted_mode->crtc_hsync_start - 1) |
5135                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5136
5137         I915_WRITE(VTOTAL(cpu_transcoder),
5138                    (adjusted_mode->crtc_vdisplay - 1) |
5139                    ((crtc_vtotal - 1) << 16));
5140         I915_WRITE(VBLANK(cpu_transcoder),
5141                    (adjusted_mode->crtc_vblank_start - 1) |
5142                    ((crtc_vblank_end - 1) << 16));
5143         I915_WRITE(VSYNC(cpu_transcoder),
5144                    (adjusted_mode->crtc_vsync_start - 1) |
5145                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5146
5147         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5148          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5149          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5150          * bits. */
5151         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5152             (pipe == PIPE_B || pipe == PIPE_C))
5153                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5154
5155         /* pipesrc controls the size that is scaled from, which should
5156          * always be the user's requested size.
5157          */
5158         I915_WRITE(PIPESRC(pipe),
5159                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5160                    (intel_crtc->config.pipe_src_h - 1));
5161 }
5162
5163 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5164                                    struct intel_crtc_config *pipe_config)
5165 {
5166         struct drm_device *dev = crtc->base.dev;
5167         struct drm_i915_private *dev_priv = dev->dev_private;
5168         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5169         uint32_t tmp;
5170
5171         tmp = I915_READ(HTOTAL(cpu_transcoder));
5172         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5173         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5174         tmp = I915_READ(HBLANK(cpu_transcoder));
5175         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5176         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5177         tmp = I915_READ(HSYNC(cpu_transcoder));
5178         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5179         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5180
5181         tmp = I915_READ(VTOTAL(cpu_transcoder));
5182         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5183         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5184         tmp = I915_READ(VBLANK(cpu_transcoder));
5185         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5186         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5187         tmp = I915_READ(VSYNC(cpu_transcoder));
5188         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5189         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5190
5191         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5192                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5193                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5194                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5195         }
5196
5197         tmp = I915_READ(PIPESRC(crtc->pipe));
5198         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5199         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5200
5201         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5202         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5203 }
5204
5205 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
5206                                              struct intel_crtc_config *pipe_config)
5207 {
5208         struct drm_crtc *crtc = &intel_crtc->base;
5209
5210         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5211         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
5212         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5213         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5214
5215         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5216         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5217         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5218         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5219
5220         crtc->mode.flags = pipe_config->adjusted_mode.flags;
5221
5222         crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
5223         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
5224 }
5225
5226 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5227 {
5228         struct drm_device *dev = intel_crtc->base.dev;
5229         struct drm_i915_private *dev_priv = dev->dev_private;
5230         uint32_t pipeconf;
5231
5232         pipeconf = 0;
5233
5234         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5235             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5236                 pipeconf |= PIPECONF_ENABLE;
5237
5238         if (intel_crtc->config.double_wide)
5239                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5240
5241         /* only g4x and later have fancy bpc/dither controls */
5242         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5243                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5244                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5245                         pipeconf |= PIPECONF_DITHER_EN |
5246                                     PIPECONF_DITHER_TYPE_SP;
5247
5248                 switch (intel_crtc->config.pipe_bpp) {
5249                 case 18:
5250                         pipeconf |= PIPECONF_6BPC;
5251                         break;
5252                 case 24:
5253                         pipeconf |= PIPECONF_8BPC;
5254                         break;
5255                 case 30:
5256                         pipeconf |= PIPECONF_10BPC;
5257                         break;
5258                 default:
5259                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5260                         BUG();
5261                 }
5262         }
5263
5264         if (HAS_PIPE_CXSR(dev)) {
5265                 if (intel_crtc->lowfreq_avail) {
5266                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5267                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5268                 } else {
5269                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5270                 }
5271         }
5272
5273         if (!IS_GEN2(dev) &&
5274             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5275                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5276         else
5277                 pipeconf |= PIPECONF_PROGRESSIVE;
5278
5279         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5280                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5281
5282         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5283         POSTING_READ(PIPECONF(intel_crtc->pipe));
5284 }
5285
5286 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5287                               int x, int y,
5288                               struct drm_framebuffer *fb)
5289 {
5290         struct drm_device *dev = crtc->dev;
5291         struct drm_i915_private *dev_priv = dev->dev_private;
5292         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5293         int pipe = intel_crtc->pipe;
5294         int plane = intel_crtc->plane;
5295         int refclk, num_connectors = 0;
5296         intel_clock_t clock, reduced_clock;
5297         u32 dspcntr;
5298         bool ok, has_reduced_clock = false;
5299         bool is_lvds = false, is_dsi = false;
5300         struct intel_encoder *encoder;
5301         const intel_limit_t *limit;
5302         int ret;
5303
5304         for_each_encoder_on_crtc(dev, crtc, encoder) {
5305                 switch (encoder->type) {
5306                 case INTEL_OUTPUT_LVDS:
5307                         is_lvds = true;
5308                         break;
5309                 case INTEL_OUTPUT_DSI:
5310                         is_dsi = true;
5311                         break;
5312                 }
5313
5314                 num_connectors++;
5315         }
5316
5317         if (is_dsi)
5318                 goto skip_dpll;
5319
5320         if (!intel_crtc->config.clock_set) {
5321                 refclk = i9xx_get_refclk(crtc, num_connectors);
5322
5323                 /*
5324                  * Returns a set of divisors for the desired target clock with
5325                  * the given refclk, or FALSE.  The returned values represent
5326                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5327                  * 2) / p1 / p2.
5328                  */
5329                 limit = intel_limit(crtc, refclk);
5330                 ok = dev_priv->display.find_dpll(limit, crtc,
5331                                                  intel_crtc->config.port_clock,
5332                                                  refclk, NULL, &clock);
5333                 if (!ok) {
5334                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5335                         return -EINVAL;
5336                 }
5337
5338                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5339                         /*
5340                          * Ensure we match the reduced clock's P to the target
5341                          * clock.  If the clocks don't match, we can't switch
5342                          * the display clock by using the FP0/FP1. In such case
5343                          * we will disable the LVDS downclock feature.
5344                          */
5345                         has_reduced_clock =
5346                                 dev_priv->display.find_dpll(limit, crtc,
5347                                                             dev_priv->lvds_downclock,
5348                                                             refclk, &clock,
5349                                                             &reduced_clock);
5350                 }
5351                 /* Compat-code for transition, will disappear. */
5352                 intel_crtc->config.dpll.n = clock.n;
5353                 intel_crtc->config.dpll.m1 = clock.m1;
5354                 intel_crtc->config.dpll.m2 = clock.m2;
5355                 intel_crtc->config.dpll.p1 = clock.p1;
5356                 intel_crtc->config.dpll.p2 = clock.p2;
5357         }
5358
5359         if (IS_GEN2(dev)) {
5360                 i8xx_update_pll(intel_crtc,
5361                                 has_reduced_clock ? &reduced_clock : NULL,
5362                                 num_connectors);
5363         } else if (IS_VALLEYVIEW(dev)) {
5364                 vlv_update_pll(intel_crtc);
5365         } else {
5366                 i9xx_update_pll(intel_crtc,
5367                                 has_reduced_clock ? &reduced_clock : NULL,
5368                                 num_connectors);
5369         }
5370
5371 skip_dpll:
5372         /* Set up the display plane register */
5373         dspcntr = DISPPLANE_GAMMA_ENABLE;
5374
5375         if (!IS_VALLEYVIEW(dev)) {
5376                 if (pipe == 0)
5377                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5378                 else
5379                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5380         }
5381
5382         intel_set_pipe_timings(intel_crtc);
5383
5384         /* pipesrc and dspsize control the size that is scaled from,
5385          * which should always be the user's requested size.
5386          */
5387         I915_WRITE(DSPSIZE(plane),
5388                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5389                    (intel_crtc->config.pipe_src_w - 1));
5390         I915_WRITE(DSPPOS(plane), 0);
5391
5392         i9xx_set_pipeconf(intel_crtc);
5393
5394         I915_WRITE(DSPCNTR(plane), dspcntr);
5395         POSTING_READ(DSPCNTR(plane));
5396
5397         ret = intel_pipe_set_base(crtc, x, y, fb);
5398
5399         return ret;
5400 }
5401
5402 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5403                                  struct intel_crtc_config *pipe_config)
5404 {
5405         struct drm_device *dev = crtc->base.dev;
5406         struct drm_i915_private *dev_priv = dev->dev_private;
5407         uint32_t tmp;
5408
5409         tmp = I915_READ(PFIT_CONTROL);
5410         if (!(tmp & PFIT_ENABLE))
5411                 return;
5412
5413         /* Check whether the pfit is attached to our pipe. */
5414         if (INTEL_INFO(dev)->gen < 4) {
5415                 if (crtc->pipe != PIPE_B)
5416                         return;
5417         } else {
5418                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5419                         return;
5420         }
5421
5422         pipe_config->gmch_pfit.control = tmp;
5423         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5424         if (INTEL_INFO(dev)->gen < 5)
5425                 pipe_config->gmch_pfit.lvds_border_bits =
5426                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5427 }
5428
5429 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5430                                struct intel_crtc_config *pipe_config)
5431 {
5432         struct drm_device *dev = crtc->base.dev;
5433         struct drm_i915_private *dev_priv = dev->dev_private;
5434         int pipe = pipe_config->cpu_transcoder;
5435         intel_clock_t clock;
5436         u32 mdiv;
5437         int refclk = 100000;
5438
5439         mutex_lock(&dev_priv->dpio_lock);
5440         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5441         mutex_unlock(&dev_priv->dpio_lock);
5442
5443         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5444         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5445         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5446         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5447         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5448
5449         vlv_clock(refclk, &clock);
5450
5451         /* clock.dot is the fast clock */
5452         pipe_config->port_clock = clock.dot / 5;
5453 }
5454
5455 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5456                                  struct intel_crtc_config *pipe_config)
5457 {
5458         struct drm_device *dev = crtc->base.dev;
5459         struct drm_i915_private *dev_priv = dev->dev_private;
5460         uint32_t tmp;
5461
5462         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5463         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5464
5465         tmp = I915_READ(PIPECONF(crtc->pipe));
5466         if (!(tmp & PIPECONF_ENABLE))
5467                 return false;
5468
5469         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5470                 switch (tmp & PIPECONF_BPC_MASK) {
5471                 case PIPECONF_6BPC:
5472                         pipe_config->pipe_bpp = 18;
5473                         break;
5474                 case PIPECONF_8BPC:
5475                         pipe_config->pipe_bpp = 24;
5476                         break;
5477                 case PIPECONF_10BPC:
5478                         pipe_config->pipe_bpp = 30;
5479                         break;
5480                 default:
5481                         break;
5482                 }
5483         }
5484
5485         if (INTEL_INFO(dev)->gen < 4)
5486                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5487
5488         intel_get_pipe_timings(crtc, pipe_config);
5489
5490         i9xx_get_pfit_config(crtc, pipe_config);
5491
5492         if (INTEL_INFO(dev)->gen >= 4) {
5493                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5494                 pipe_config->pixel_multiplier =
5495                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5496                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5497                 pipe_config->dpll_hw_state.dpll_md = tmp;
5498         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5499                 tmp = I915_READ(DPLL(crtc->pipe));
5500                 pipe_config->pixel_multiplier =
5501                         ((tmp & SDVO_MULTIPLIER_MASK)
5502                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5503         } else {
5504                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5505                  * port and will be fixed up in the encoder->get_config
5506                  * function. */
5507                 pipe_config->pixel_multiplier = 1;
5508         }
5509         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5510         if (!IS_VALLEYVIEW(dev)) {
5511                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5512                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5513         } else {
5514                 /* Mask out read-only status bits. */
5515                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5516                                                      DPLL_PORTC_READY_MASK |
5517                                                      DPLL_PORTB_READY_MASK);
5518         }
5519
5520         if (IS_VALLEYVIEW(dev))
5521                 vlv_crtc_clock_get(crtc, pipe_config);
5522         else
5523                 i9xx_crtc_clock_get(crtc, pipe_config);
5524
5525         return true;
5526 }
5527
5528 static void ironlake_init_pch_refclk(struct drm_device *dev)
5529 {
5530         struct drm_i915_private *dev_priv = dev->dev_private;
5531         struct drm_mode_config *mode_config = &dev->mode_config;
5532         struct intel_encoder *encoder;
5533         u32 val, final;
5534         bool has_lvds = false;
5535         bool has_cpu_edp = false;
5536         bool has_panel = false;
5537         bool has_ck505 = false;
5538         bool can_ssc = false;
5539
5540         /* We need to take the global config into account */
5541         list_for_each_entry(encoder, &mode_config->encoder_list,
5542                             base.head) {
5543                 switch (encoder->type) {
5544                 case INTEL_OUTPUT_LVDS:
5545                         has_panel = true;
5546                         has_lvds = true;
5547                         break;
5548                 case INTEL_OUTPUT_EDP:
5549                         has_panel = true;
5550                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5551                                 has_cpu_edp = true;
5552                         break;
5553                 }
5554         }
5555
5556         if (HAS_PCH_IBX(dev)) {
5557                 has_ck505 = dev_priv->vbt.display_clock_mode;
5558                 can_ssc = has_ck505;
5559         } else {
5560                 has_ck505 = false;
5561                 can_ssc = true;
5562         }
5563
5564         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5565                       has_panel, has_lvds, has_ck505);
5566
5567         /* Ironlake: try to setup display ref clock before DPLL
5568          * enabling. This is only under driver's control after
5569          * PCH B stepping, previous chipset stepping should be
5570          * ignoring this setting.
5571          */
5572         val = I915_READ(PCH_DREF_CONTROL);
5573
5574         /* As we must carefully and slowly disable/enable each source in turn,
5575          * compute the final state we want first and check if we need to
5576          * make any changes at all.
5577          */
5578         final = val;
5579         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5580         if (has_ck505)
5581                 final |= DREF_NONSPREAD_CK505_ENABLE;
5582         else
5583                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5584
5585         final &= ~DREF_SSC_SOURCE_MASK;
5586         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5587         final &= ~DREF_SSC1_ENABLE;
5588
5589         if (has_panel) {
5590                 final |= DREF_SSC_SOURCE_ENABLE;
5591
5592                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5593                         final |= DREF_SSC1_ENABLE;
5594
5595                 if (has_cpu_edp) {
5596                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5597                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5598                         else
5599                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5600                 } else
5601                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5602         } else {
5603                 final |= DREF_SSC_SOURCE_DISABLE;
5604                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5605         }
5606
5607         if (final == val)
5608                 return;
5609
5610         /* Always enable nonspread source */
5611         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5612
5613         if (has_ck505)
5614                 val |= DREF_NONSPREAD_CK505_ENABLE;
5615         else
5616                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5617
5618         if (has_panel) {
5619                 val &= ~DREF_SSC_SOURCE_MASK;
5620                 val |= DREF_SSC_SOURCE_ENABLE;
5621
5622                 /* SSC must be turned on before enabling the CPU output  */
5623                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5624                         DRM_DEBUG_KMS("Using SSC on panel\n");
5625                         val |= DREF_SSC1_ENABLE;
5626                 } else
5627                         val &= ~DREF_SSC1_ENABLE;
5628
5629                 /* Get SSC going before enabling the outputs */
5630                 I915_WRITE(PCH_DREF_CONTROL, val);
5631                 POSTING_READ(PCH_DREF_CONTROL);
5632                 udelay(200);
5633
5634                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5635
5636                 /* Enable CPU source on CPU attached eDP */
5637                 if (has_cpu_edp) {
5638                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5639                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5640                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5641                         }
5642                         else
5643                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5644                 } else
5645                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5646
5647                 I915_WRITE(PCH_DREF_CONTROL, val);
5648                 POSTING_READ(PCH_DREF_CONTROL);
5649                 udelay(200);
5650         } else {
5651                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5652
5653                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5654
5655                 /* Turn off CPU output */
5656                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5657
5658                 I915_WRITE(PCH_DREF_CONTROL, val);
5659                 POSTING_READ(PCH_DREF_CONTROL);
5660                 udelay(200);
5661
5662                 /* Turn off the SSC source */
5663                 val &= ~DREF_SSC_SOURCE_MASK;
5664                 val |= DREF_SSC_SOURCE_DISABLE;
5665
5666                 /* Turn off SSC1 */
5667                 val &= ~DREF_SSC1_ENABLE;
5668
5669                 I915_WRITE(PCH_DREF_CONTROL, val);
5670                 POSTING_READ(PCH_DREF_CONTROL);
5671                 udelay(200);
5672         }
5673
5674         BUG_ON(val != final);
5675 }
5676
5677 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5678 {
5679         uint32_t tmp;
5680
5681         tmp = I915_READ(SOUTH_CHICKEN2);
5682         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5683         I915_WRITE(SOUTH_CHICKEN2, tmp);
5684
5685         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5686                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5687                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5688
5689         tmp = I915_READ(SOUTH_CHICKEN2);
5690         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5691         I915_WRITE(SOUTH_CHICKEN2, tmp);
5692
5693         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5694                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5695                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5696 }
5697
5698 /* WaMPhyProgramming:hsw */
5699 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5700 {
5701         uint32_t tmp;
5702
5703         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5704         tmp &= ~(0xFF << 24);
5705         tmp |= (0x12 << 24);
5706         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5707
5708         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5709         tmp |= (1 << 11);
5710         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5711
5712         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5713         tmp |= (1 << 11);
5714         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5715
5716         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5717         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5718         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5719
5720         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5721         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5722         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5723
5724         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5725         tmp &= ~(7 << 13);
5726         tmp |= (5 << 13);
5727         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5728
5729         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5730         tmp &= ~(7 << 13);
5731         tmp |= (5 << 13);
5732         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5733
5734         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5735         tmp &= ~0xFF;
5736         tmp |= 0x1C;
5737         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5738
5739         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5740         tmp &= ~0xFF;
5741         tmp |= 0x1C;
5742         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5743
5744         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5745         tmp &= ~(0xFF << 16);
5746         tmp |= (0x1C << 16);
5747         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5748
5749         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5750         tmp &= ~(0xFF << 16);
5751         tmp |= (0x1C << 16);
5752         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5753
5754         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5755         tmp |= (1 << 27);
5756         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5757
5758         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5759         tmp |= (1 << 27);
5760         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5761
5762         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5763         tmp &= ~(0xF << 28);
5764         tmp |= (4 << 28);
5765         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5766
5767         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5768         tmp &= ~(0xF << 28);
5769         tmp |= (4 << 28);
5770         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5771 }
5772
5773 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5774  * Programming" based on the parameters passed:
5775  * - Sequence to enable CLKOUT_DP
5776  * - Sequence to enable CLKOUT_DP without spread
5777  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5778  */
5779 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5780                                  bool with_fdi)
5781 {
5782         struct drm_i915_private *dev_priv = dev->dev_private;
5783         uint32_t reg, tmp;
5784
5785         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5786                 with_spread = true;
5787         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5788                  with_fdi, "LP PCH doesn't have FDI\n"))
5789                 with_fdi = false;
5790
5791         mutex_lock(&dev_priv->dpio_lock);
5792
5793         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5794         tmp &= ~SBI_SSCCTL_DISABLE;
5795         tmp |= SBI_SSCCTL_PATHALT;
5796         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5797
5798         udelay(24);
5799
5800         if (with_spread) {
5801                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5802                 tmp &= ~SBI_SSCCTL_PATHALT;
5803                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5804
5805                 if (with_fdi) {
5806                         lpt_reset_fdi_mphy(dev_priv);
5807                         lpt_program_fdi_mphy(dev_priv);
5808                 }
5809         }
5810
5811         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5812                SBI_GEN0 : SBI_DBUFF0;
5813         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5814         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5815         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5816
5817         mutex_unlock(&dev_priv->dpio_lock);
5818 }
5819
5820 /* Sequence to disable CLKOUT_DP */
5821 static void lpt_disable_clkout_dp(struct drm_device *dev)
5822 {
5823         struct drm_i915_private *dev_priv = dev->dev_private;
5824         uint32_t reg, tmp;
5825
5826         mutex_lock(&dev_priv->dpio_lock);
5827
5828         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5829                SBI_GEN0 : SBI_DBUFF0;
5830         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5831         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5832         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5833
5834         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5835         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5836                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5837                         tmp |= SBI_SSCCTL_PATHALT;
5838                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5839                         udelay(32);
5840                 }
5841                 tmp |= SBI_SSCCTL_DISABLE;
5842                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5843         }
5844
5845         mutex_unlock(&dev_priv->dpio_lock);
5846 }
5847
5848 static void lpt_init_pch_refclk(struct drm_device *dev)
5849 {
5850         struct drm_mode_config *mode_config = &dev->mode_config;
5851         struct intel_encoder *encoder;
5852         bool has_vga = false;
5853
5854         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5855                 switch (encoder->type) {
5856                 case INTEL_OUTPUT_ANALOG:
5857                         has_vga = true;
5858                         break;
5859                 }
5860         }
5861
5862         if (has_vga)
5863                 lpt_enable_clkout_dp(dev, true, true);
5864         else
5865                 lpt_disable_clkout_dp(dev);
5866 }
5867
5868 /*
5869  * Initialize reference clocks when the driver loads
5870  */
5871 void intel_init_pch_refclk(struct drm_device *dev)
5872 {
5873         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5874                 ironlake_init_pch_refclk(dev);
5875         else if (HAS_PCH_LPT(dev))
5876                 lpt_init_pch_refclk(dev);
5877 }
5878
5879 static int ironlake_get_refclk(struct drm_crtc *crtc)
5880 {
5881         struct drm_device *dev = crtc->dev;
5882         struct drm_i915_private *dev_priv = dev->dev_private;
5883         struct intel_encoder *encoder;
5884         int num_connectors = 0;
5885         bool is_lvds = false;
5886
5887         for_each_encoder_on_crtc(dev, crtc, encoder) {
5888                 switch (encoder->type) {
5889                 case INTEL_OUTPUT_LVDS:
5890                         is_lvds = true;
5891                         break;
5892                 }
5893                 num_connectors++;
5894         }
5895
5896         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5897                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5898                               dev_priv->vbt.lvds_ssc_freq);
5899                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5900         }
5901
5902         return 120000;
5903 }
5904
5905 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5906 {
5907         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5908         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5909         int pipe = intel_crtc->pipe;
5910         uint32_t val;
5911
5912         val = 0;
5913
5914         switch (intel_crtc->config.pipe_bpp) {
5915         case 18:
5916                 val |= PIPECONF_6BPC;
5917                 break;
5918         case 24:
5919                 val |= PIPECONF_8BPC;
5920                 break;
5921         case 30:
5922                 val |= PIPECONF_10BPC;
5923                 break;
5924         case 36:
5925                 val |= PIPECONF_12BPC;
5926                 break;
5927         default:
5928                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5929                 BUG();
5930         }
5931
5932         if (intel_crtc->config.dither)
5933                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5934
5935         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5936                 val |= PIPECONF_INTERLACED_ILK;
5937         else
5938                 val |= PIPECONF_PROGRESSIVE;
5939
5940         if (intel_crtc->config.limited_color_range)
5941                 val |= PIPECONF_COLOR_RANGE_SELECT;
5942
5943         I915_WRITE(PIPECONF(pipe), val);
5944         POSTING_READ(PIPECONF(pipe));
5945 }
5946
5947 /*
5948  * Set up the pipe CSC unit.
5949  *
5950  * Currently only full range RGB to limited range RGB conversion
5951  * is supported, but eventually this should handle various
5952  * RGB<->YCbCr scenarios as well.
5953  */
5954 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5955 {
5956         struct drm_device *dev = crtc->dev;
5957         struct drm_i915_private *dev_priv = dev->dev_private;
5958         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5959         int pipe = intel_crtc->pipe;
5960         uint16_t coeff = 0x7800; /* 1.0 */
5961
5962         /*
5963          * TODO: Check what kind of values actually come out of the pipe
5964          * with these coeff/postoff values and adjust to get the best
5965          * accuracy. Perhaps we even need to take the bpc value into
5966          * consideration.
5967          */
5968
5969         if (intel_crtc->config.limited_color_range)
5970                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5971
5972         /*
5973          * GY/GU and RY/RU should be the other way around according
5974          * to BSpec, but reality doesn't agree. Just set them up in
5975          * a way that results in the correct picture.
5976          */
5977         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5978         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5979
5980         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5981         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5982
5983         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5984         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5985
5986         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5987         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5988         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5989
5990         if (INTEL_INFO(dev)->gen > 6) {
5991                 uint16_t postoff = 0;
5992
5993                 if (intel_crtc->config.limited_color_range)
5994                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5995
5996                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5997                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5998                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5999
6000                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6001         } else {
6002                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6003
6004                 if (intel_crtc->config.limited_color_range)
6005                         mode |= CSC_BLACK_SCREEN_OFFSET;
6006
6007                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6008         }
6009 }
6010
6011 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6012 {
6013         struct drm_device *dev = crtc->dev;
6014         struct drm_i915_private *dev_priv = dev->dev_private;
6015         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6016         enum pipe pipe = intel_crtc->pipe;
6017         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6018         uint32_t val;
6019
6020         val = 0;
6021
6022         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6023                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6024
6025         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6026                 val |= PIPECONF_INTERLACED_ILK;
6027         else
6028                 val |= PIPECONF_PROGRESSIVE;
6029
6030         I915_WRITE(PIPECONF(cpu_transcoder), val);
6031         POSTING_READ(PIPECONF(cpu_transcoder));
6032
6033         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6034         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6035
6036         if (IS_BROADWELL(dev)) {
6037                 val = 0;
6038
6039                 switch (intel_crtc->config.pipe_bpp) {
6040                 case 18:
6041                         val |= PIPEMISC_DITHER_6_BPC;
6042                         break;
6043                 case 24:
6044                         val |= PIPEMISC_DITHER_8_BPC;
6045                         break;
6046                 case 30:
6047                         val |= PIPEMISC_DITHER_10_BPC;
6048                         break;
6049                 case 36:
6050                         val |= PIPEMISC_DITHER_12_BPC;
6051                         break;
6052                 default:
6053                         /* Case prevented by pipe_config_set_bpp. */
6054                         BUG();
6055                 }
6056
6057                 if (intel_crtc->config.dither)
6058                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6059
6060                 I915_WRITE(PIPEMISC(pipe), val);
6061         }
6062 }
6063
6064 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6065                                     intel_clock_t *clock,
6066                                     bool *has_reduced_clock,
6067                                     intel_clock_t *reduced_clock)
6068 {
6069         struct drm_device *dev = crtc->dev;
6070         struct drm_i915_private *dev_priv = dev->dev_private;
6071         struct intel_encoder *intel_encoder;
6072         int refclk;
6073         const intel_limit_t *limit;
6074         bool ret, is_lvds = false;
6075
6076         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6077                 switch (intel_encoder->type) {
6078                 case INTEL_OUTPUT_LVDS:
6079                         is_lvds = true;
6080                         break;
6081                 }
6082         }
6083
6084         refclk = ironlake_get_refclk(crtc);
6085
6086         /*
6087          * Returns a set of divisors for the desired target clock with the given
6088          * refclk, or FALSE.  The returned values represent the clock equation:
6089          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6090          */
6091         limit = intel_limit(crtc, refclk);
6092         ret = dev_priv->display.find_dpll(limit, crtc,
6093                                           to_intel_crtc(crtc)->config.port_clock,
6094                                           refclk, NULL, clock);
6095         if (!ret)
6096                 return false;
6097
6098         if (is_lvds && dev_priv->lvds_downclock_avail) {
6099                 /*
6100                  * Ensure we match the reduced clock's P to the target clock.
6101                  * If the clocks don't match, we can't switch the display clock
6102                  * by using the FP0/FP1. In such case we will disable the LVDS
6103                  * downclock feature.
6104                 */
6105                 *has_reduced_clock =
6106                         dev_priv->display.find_dpll(limit, crtc,
6107                                                     dev_priv->lvds_downclock,
6108                                                     refclk, clock,
6109                                                     reduced_clock);
6110         }
6111
6112         return true;
6113 }
6114
6115 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6116 {
6117         /*
6118          * Account for spread spectrum to avoid
6119          * oversubscribing the link. Max center spread
6120          * is 2.5%; use 5% for safety's sake.
6121          */
6122         u32 bps = target_clock * bpp * 21 / 20;
6123         return bps / (link_bw * 8) + 1;
6124 }
6125
6126 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6127 {
6128         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6129 }
6130
6131 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6132                                       u32 *fp,
6133                                       intel_clock_t *reduced_clock, u32 *fp2)
6134 {
6135         struct drm_crtc *crtc = &intel_crtc->base;
6136         struct drm_device *dev = crtc->dev;
6137         struct drm_i915_private *dev_priv = dev->dev_private;
6138         struct intel_encoder *intel_encoder;
6139         uint32_t dpll;
6140         int factor, num_connectors = 0;
6141         bool is_lvds = false, is_sdvo = false;
6142
6143         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6144                 switch (intel_encoder->type) {
6145                 case INTEL_OUTPUT_LVDS:
6146                         is_lvds = true;
6147                         break;
6148                 case INTEL_OUTPUT_SDVO:
6149                 case INTEL_OUTPUT_HDMI:
6150                         is_sdvo = true;
6151                         break;
6152                 }
6153
6154                 num_connectors++;
6155         }
6156
6157         /* Enable autotuning of the PLL clock (if permissible) */
6158         factor = 21;
6159         if (is_lvds) {
6160                 if ((intel_panel_use_ssc(dev_priv) &&
6161                      dev_priv->vbt.lvds_ssc_freq == 100) ||
6162                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6163                         factor = 25;
6164         } else if (intel_crtc->config.sdvo_tv_clock)
6165                 factor = 20;
6166
6167         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6168                 *fp |= FP_CB_TUNE;
6169
6170         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6171                 *fp2 |= FP_CB_TUNE;
6172
6173         dpll = 0;
6174
6175         if (is_lvds)
6176                 dpll |= DPLLB_MODE_LVDS;
6177         else
6178                 dpll |= DPLLB_MODE_DAC_SERIAL;
6179
6180         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6181                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6182
6183         if (is_sdvo)
6184                 dpll |= DPLL_SDVO_HIGH_SPEED;
6185         if (intel_crtc->config.has_dp_encoder)
6186                 dpll |= DPLL_SDVO_HIGH_SPEED;
6187
6188         /* compute bitmask from p1 value */
6189         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6190         /* also FPA1 */
6191         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6192
6193         switch (intel_crtc->config.dpll.p2) {
6194         case 5:
6195                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6196                 break;
6197         case 7:
6198                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6199                 break;
6200         case 10:
6201                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6202                 break;
6203         case 14:
6204                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6205                 break;
6206         }
6207
6208         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6209                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6210         else
6211                 dpll |= PLL_REF_INPUT_DREFCLK;
6212
6213         return dpll | DPLL_VCO_ENABLE;
6214 }
6215
6216 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6217                                   int x, int y,
6218                                   struct drm_framebuffer *fb)
6219 {
6220         struct drm_device *dev = crtc->dev;
6221         struct drm_i915_private *dev_priv = dev->dev_private;
6222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6223         int pipe = intel_crtc->pipe;
6224         int plane = intel_crtc->plane;
6225         int num_connectors = 0;
6226         intel_clock_t clock, reduced_clock;
6227         u32 dpll = 0, fp = 0, fp2 = 0;
6228         bool ok, has_reduced_clock = false;
6229         bool is_lvds = false;
6230         struct intel_encoder *encoder;
6231         struct intel_shared_dpll *pll;
6232         int ret;
6233
6234         for_each_encoder_on_crtc(dev, crtc, encoder) {
6235                 switch (encoder->type) {
6236                 case INTEL_OUTPUT_LVDS:
6237                         is_lvds = true;
6238                         break;
6239                 }
6240
6241                 num_connectors++;
6242         }
6243
6244         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6245              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6246
6247         ok = ironlake_compute_clocks(crtc, &clock,
6248                                      &has_reduced_clock, &reduced_clock);
6249         if (!ok && !intel_crtc->config.clock_set) {
6250                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6251                 return -EINVAL;
6252         }
6253         /* Compat-code for transition, will disappear. */
6254         if (!intel_crtc->config.clock_set) {
6255                 intel_crtc->config.dpll.n = clock.n;
6256                 intel_crtc->config.dpll.m1 = clock.m1;
6257                 intel_crtc->config.dpll.m2 = clock.m2;
6258                 intel_crtc->config.dpll.p1 = clock.p1;
6259                 intel_crtc->config.dpll.p2 = clock.p2;
6260         }
6261
6262         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6263         if (intel_crtc->config.has_pch_encoder) {
6264                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6265                 if (has_reduced_clock)
6266                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6267
6268                 dpll = ironlake_compute_dpll(intel_crtc,
6269                                              &fp, &reduced_clock,
6270                                              has_reduced_clock ? &fp2 : NULL);
6271
6272                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6273                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6274                 if (has_reduced_clock)
6275                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6276                 else
6277                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6278
6279                 pll = intel_get_shared_dpll(intel_crtc);
6280                 if (pll == NULL) {
6281                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6282                                          pipe_name(pipe));
6283                         return -EINVAL;
6284                 }
6285         } else
6286                 intel_put_shared_dpll(intel_crtc);
6287
6288         if (intel_crtc->config.has_dp_encoder)
6289                 intel_dp_set_m_n(intel_crtc);
6290
6291         if (is_lvds && has_reduced_clock && i915_powersave)
6292                 intel_crtc->lowfreq_avail = true;
6293         else
6294                 intel_crtc->lowfreq_avail = false;
6295
6296         intel_set_pipe_timings(intel_crtc);
6297
6298         if (intel_crtc->config.has_pch_encoder) {
6299                 intel_cpu_transcoder_set_m_n(intel_crtc,
6300                                              &intel_crtc->config.fdi_m_n);
6301         }
6302
6303         ironlake_set_pipeconf(crtc);
6304
6305         /* Set up the display plane register */
6306         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6307         POSTING_READ(DSPCNTR(plane));
6308
6309         ret = intel_pipe_set_base(crtc, x, y, fb);
6310
6311         return ret;
6312 }
6313
6314 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6315                                          struct intel_link_m_n *m_n)
6316 {
6317         struct drm_device *dev = crtc->base.dev;
6318         struct drm_i915_private *dev_priv = dev->dev_private;
6319         enum pipe pipe = crtc->pipe;
6320
6321         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6322         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6323         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6324                 & ~TU_SIZE_MASK;
6325         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6326         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6327                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6328 }
6329
6330 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6331                                          enum transcoder transcoder,
6332                                          struct intel_link_m_n *m_n)
6333 {
6334         struct drm_device *dev = crtc->base.dev;
6335         struct drm_i915_private *dev_priv = dev->dev_private;
6336         enum pipe pipe = crtc->pipe;
6337
6338         if (INTEL_INFO(dev)->gen >= 5) {
6339                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6340                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6341                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6342                         & ~TU_SIZE_MASK;
6343                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6344                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6345                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6346         } else {
6347                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6348                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6349                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6350                         & ~TU_SIZE_MASK;
6351                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6352                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6353                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6354         }
6355 }
6356
6357 void intel_dp_get_m_n(struct intel_crtc *crtc,
6358                       struct intel_crtc_config *pipe_config)
6359 {
6360         if (crtc->config.has_pch_encoder)
6361                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6362         else
6363                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6364                                              &pipe_config->dp_m_n);
6365 }
6366
6367 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6368                                         struct intel_crtc_config *pipe_config)
6369 {
6370         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6371                                      &pipe_config->fdi_m_n);
6372 }
6373
6374 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6375                                      struct intel_crtc_config *pipe_config)
6376 {
6377         struct drm_device *dev = crtc->base.dev;
6378         struct drm_i915_private *dev_priv = dev->dev_private;
6379         uint32_t tmp;
6380
6381         tmp = I915_READ(PF_CTL(crtc->pipe));
6382
6383         if (tmp & PF_ENABLE) {
6384                 pipe_config->pch_pfit.enabled = true;
6385                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6386                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6387
6388                 /* We currently do not free assignements of panel fitters on
6389                  * ivb/hsw (since we don't use the higher upscaling modes which
6390                  * differentiates them) so just WARN about this case for now. */
6391                 if (IS_GEN7(dev)) {
6392                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6393                                 PF_PIPE_SEL_IVB(crtc->pipe));
6394                 }
6395         }
6396 }
6397
6398 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6399                                      struct intel_crtc_config *pipe_config)
6400 {
6401         struct drm_device *dev = crtc->base.dev;
6402         struct drm_i915_private *dev_priv = dev->dev_private;
6403         uint32_t tmp;
6404
6405         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6406         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6407
6408         tmp = I915_READ(PIPECONF(crtc->pipe));
6409         if (!(tmp & PIPECONF_ENABLE))
6410                 return false;
6411
6412         switch (tmp & PIPECONF_BPC_MASK) {
6413         case PIPECONF_6BPC:
6414                 pipe_config->pipe_bpp = 18;
6415                 break;
6416         case PIPECONF_8BPC:
6417                 pipe_config->pipe_bpp = 24;
6418                 break;
6419         case PIPECONF_10BPC:
6420                 pipe_config->pipe_bpp = 30;
6421                 break;
6422         case PIPECONF_12BPC:
6423                 pipe_config->pipe_bpp = 36;
6424                 break;
6425         default:
6426                 break;
6427         }
6428
6429         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6430                 struct intel_shared_dpll *pll;
6431
6432                 pipe_config->has_pch_encoder = true;
6433
6434                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6435                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6436                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6437
6438                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6439
6440                 if (HAS_PCH_IBX(dev_priv->dev)) {
6441                         pipe_config->shared_dpll =
6442                                 (enum intel_dpll_id) crtc->pipe;
6443                 } else {
6444                         tmp = I915_READ(PCH_DPLL_SEL);
6445                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6446                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6447                         else
6448                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6449                 }
6450
6451                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6452
6453                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6454                                            &pipe_config->dpll_hw_state));
6455
6456                 tmp = pipe_config->dpll_hw_state.dpll;
6457                 pipe_config->pixel_multiplier =
6458                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6459                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6460
6461                 ironlake_pch_clock_get(crtc, pipe_config);
6462         } else {
6463                 pipe_config->pixel_multiplier = 1;
6464         }
6465
6466         intel_get_pipe_timings(crtc, pipe_config);
6467
6468         ironlake_get_pfit_config(crtc, pipe_config);
6469
6470         return true;
6471 }
6472
6473 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6474 {
6475         struct drm_device *dev = dev_priv->dev;
6476         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6477         struct intel_crtc *crtc;
6478         unsigned long irqflags;
6479         uint32_t val;
6480
6481         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6482                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6483                      pipe_name(crtc->pipe));
6484
6485         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6486         WARN(plls->spll_refcount, "SPLL enabled\n");
6487         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6488         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6489         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6490         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6491              "CPU PWM1 enabled\n");
6492         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6493              "CPU PWM2 enabled\n");
6494         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6495              "PCH PWM1 enabled\n");
6496         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6497              "Utility pin enabled\n");
6498         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6499
6500         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6501         val = I915_READ(DEIMR);
6502         WARN((val & ~DE_PCH_EVENT_IVB) != val,
6503              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6504         val = I915_READ(SDEIMR);
6505         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6506              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6507         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6508 }
6509
6510 /*
6511  * This function implements pieces of two sequences from BSpec:
6512  * - Sequence for display software to disable LCPLL
6513  * - Sequence for display software to allow package C8+
6514  * The steps implemented here are just the steps that actually touch the LCPLL
6515  * register. Callers should take care of disabling all the display engine
6516  * functions, doing the mode unset, fixing interrupts, etc.
6517  */
6518 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6519                               bool switch_to_fclk, bool allow_power_down)
6520 {
6521         uint32_t val;
6522
6523         assert_can_disable_lcpll(dev_priv);
6524
6525         val = I915_READ(LCPLL_CTL);
6526
6527         if (switch_to_fclk) {
6528                 val |= LCPLL_CD_SOURCE_FCLK;
6529                 I915_WRITE(LCPLL_CTL, val);
6530
6531                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6532                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6533                         DRM_ERROR("Switching to FCLK failed\n");
6534
6535                 val = I915_READ(LCPLL_CTL);
6536         }
6537
6538         val |= LCPLL_PLL_DISABLE;
6539         I915_WRITE(LCPLL_CTL, val);
6540         POSTING_READ(LCPLL_CTL);
6541
6542         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6543                 DRM_ERROR("LCPLL still locked\n");
6544
6545         val = I915_READ(D_COMP);
6546         val |= D_COMP_COMP_DISABLE;
6547         mutex_lock(&dev_priv->rps.hw_lock);
6548         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6549                 DRM_ERROR("Failed to disable D_COMP\n");
6550         mutex_unlock(&dev_priv->rps.hw_lock);
6551         POSTING_READ(D_COMP);
6552         ndelay(100);
6553
6554         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6555                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6556
6557         if (allow_power_down) {
6558                 val = I915_READ(LCPLL_CTL);
6559                 val |= LCPLL_POWER_DOWN_ALLOW;
6560                 I915_WRITE(LCPLL_CTL, val);
6561                 POSTING_READ(LCPLL_CTL);
6562         }
6563 }
6564
6565 /*
6566  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6567  * source.
6568  */
6569 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6570 {
6571         uint32_t val;
6572
6573         val = I915_READ(LCPLL_CTL);
6574
6575         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6576                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6577                 return;
6578
6579         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6580          * we'll hang the machine! */
6581         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6582
6583         if (val & LCPLL_POWER_DOWN_ALLOW) {
6584                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6585                 I915_WRITE(LCPLL_CTL, val);
6586                 POSTING_READ(LCPLL_CTL);
6587         }
6588
6589         val = I915_READ(D_COMP);
6590         val |= D_COMP_COMP_FORCE;
6591         val &= ~D_COMP_COMP_DISABLE;
6592         mutex_lock(&dev_priv->rps.hw_lock);
6593         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6594                 DRM_ERROR("Failed to enable D_COMP\n");
6595         mutex_unlock(&dev_priv->rps.hw_lock);
6596         POSTING_READ(D_COMP);
6597
6598         val = I915_READ(LCPLL_CTL);
6599         val &= ~LCPLL_PLL_DISABLE;
6600         I915_WRITE(LCPLL_CTL, val);
6601
6602         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6603                 DRM_ERROR("LCPLL not locked yet\n");
6604
6605         if (val & LCPLL_CD_SOURCE_FCLK) {
6606                 val = I915_READ(LCPLL_CTL);
6607                 val &= ~LCPLL_CD_SOURCE_FCLK;
6608                 I915_WRITE(LCPLL_CTL, val);
6609
6610                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6611                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6612                         DRM_ERROR("Switching back to LCPLL failed\n");
6613         }
6614
6615         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6616 }
6617
6618 void hsw_enable_pc8_work(struct work_struct *__work)
6619 {
6620         struct drm_i915_private *dev_priv =
6621                 container_of(to_delayed_work(__work), struct drm_i915_private,
6622                              pc8.enable_work);
6623         struct drm_device *dev = dev_priv->dev;
6624         uint32_t val;
6625
6626         if (dev_priv->pc8.enabled)
6627                 return;
6628
6629         DRM_DEBUG_KMS("Enabling package C8+\n");
6630
6631         dev_priv->pc8.enabled = true;
6632
6633         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6634                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6635                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6636                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6637         }
6638
6639         lpt_disable_clkout_dp(dev);
6640         hsw_pc8_disable_interrupts(dev);
6641         hsw_disable_lcpll(dev_priv, true, true);
6642 }
6643
6644 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6645 {
6646         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6647         WARN(dev_priv->pc8.disable_count < 1,
6648              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6649
6650         dev_priv->pc8.disable_count--;
6651         if (dev_priv->pc8.disable_count != 0)
6652                 return;
6653
6654         schedule_delayed_work(&dev_priv->pc8.enable_work,
6655                               msecs_to_jiffies(i915_pc8_timeout));
6656 }
6657
6658 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6659 {
6660         struct drm_device *dev = dev_priv->dev;
6661         uint32_t val;
6662
6663         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6664         WARN(dev_priv->pc8.disable_count < 0,
6665              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6666
6667         dev_priv->pc8.disable_count++;
6668         if (dev_priv->pc8.disable_count != 1)
6669                 return;
6670
6671         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6672         if (!dev_priv->pc8.enabled)
6673                 return;
6674
6675         DRM_DEBUG_KMS("Disabling package C8+\n");
6676
6677         hsw_restore_lcpll(dev_priv);
6678         hsw_pc8_restore_interrupts(dev);
6679         lpt_init_pch_refclk(dev);
6680
6681         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6682                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6683                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6684                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6685         }
6686
6687         intel_prepare_ddi(dev);
6688         i915_gem_init_swizzling(dev);
6689         mutex_lock(&dev_priv->rps.hw_lock);
6690         gen6_update_ring_freq(dev);
6691         mutex_unlock(&dev_priv->rps.hw_lock);
6692         dev_priv->pc8.enabled = false;
6693 }
6694
6695 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6696 {
6697         mutex_lock(&dev_priv->pc8.lock);
6698         __hsw_enable_package_c8(dev_priv);
6699         mutex_unlock(&dev_priv->pc8.lock);
6700 }
6701
6702 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6703 {
6704         mutex_lock(&dev_priv->pc8.lock);
6705         __hsw_disable_package_c8(dev_priv);
6706         mutex_unlock(&dev_priv->pc8.lock);
6707 }
6708
6709 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6710 {
6711         struct drm_device *dev = dev_priv->dev;
6712         struct intel_crtc *crtc;
6713         uint32_t val;
6714
6715         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6716                 if (crtc->base.enabled)
6717                         return false;
6718
6719         /* This case is still possible since we have the i915.disable_power_well
6720          * parameter and also the KVMr or something else might be requesting the
6721          * power well. */
6722         val = I915_READ(HSW_PWR_WELL_DRIVER);
6723         if (val != 0) {
6724                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6725                 return false;
6726         }
6727
6728         return true;
6729 }
6730
6731 /* Since we're called from modeset_global_resources there's no way to
6732  * symmetrically increase and decrease the refcount, so we use
6733  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6734  * or not.
6735  */
6736 static void hsw_update_package_c8(struct drm_device *dev)
6737 {
6738         struct drm_i915_private *dev_priv = dev->dev_private;
6739         bool allow;
6740
6741         if (!i915_enable_pc8)
6742                 return;
6743
6744         mutex_lock(&dev_priv->pc8.lock);
6745
6746         allow = hsw_can_enable_package_c8(dev_priv);
6747
6748         if (allow == dev_priv->pc8.requirements_met)
6749                 goto done;
6750
6751         dev_priv->pc8.requirements_met = allow;
6752
6753         if (allow)
6754                 __hsw_enable_package_c8(dev_priv);
6755         else
6756                 __hsw_disable_package_c8(dev_priv);
6757
6758 done:
6759         mutex_unlock(&dev_priv->pc8.lock);
6760 }
6761
6762 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6763 {
6764         mutex_lock(&dev_priv->pc8.lock);
6765         if (!dev_priv->pc8.gpu_idle) {
6766                 dev_priv->pc8.gpu_idle = true;
6767                 __hsw_enable_package_c8(dev_priv);
6768         }
6769         mutex_unlock(&dev_priv->pc8.lock);
6770 }
6771
6772 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6773 {
6774         mutex_lock(&dev_priv->pc8.lock);
6775         if (dev_priv->pc8.gpu_idle) {
6776                 dev_priv->pc8.gpu_idle = false;
6777                 __hsw_disable_package_c8(dev_priv);
6778         }
6779         mutex_unlock(&dev_priv->pc8.lock);
6780 }
6781
6782 #define for_each_power_domain(domain, mask)                             \
6783         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
6784                 if ((1 << (domain)) & (mask))
6785
6786 static unsigned long get_pipe_power_domains(struct drm_device *dev,
6787                                             enum pipe pipe, bool pfit_enabled)
6788 {
6789         unsigned long mask;
6790         enum transcoder transcoder;
6791
6792         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
6793
6794         mask = BIT(POWER_DOMAIN_PIPE(pipe));
6795         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6796         if (pfit_enabled)
6797                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6798
6799         return mask;
6800 }
6801
6802 void intel_display_set_init_power(struct drm_device *dev, bool enable)
6803 {
6804         struct drm_i915_private *dev_priv = dev->dev_private;
6805
6806         if (dev_priv->power_domains.init_power_on == enable)
6807                 return;
6808
6809         if (enable)
6810                 intel_display_power_get(dev, POWER_DOMAIN_INIT);
6811         else
6812                 intel_display_power_put(dev, POWER_DOMAIN_INIT);
6813
6814         dev_priv->power_domains.init_power_on = enable;
6815 }
6816
6817 static void modeset_update_power_wells(struct drm_device *dev)
6818 {
6819         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
6820         struct intel_crtc *crtc;
6821
6822         /*
6823          * First get all needed power domains, then put all unneeded, to avoid
6824          * any unnecessary toggling of the power wells.
6825          */
6826         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6827                 enum intel_display_power_domain domain;
6828
6829                 if (!crtc->base.enabled)
6830                         continue;
6831
6832                 pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
6833                                                 crtc->pipe,
6834                                                 crtc->config.pch_pfit.enabled);
6835
6836                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
6837                         intel_display_power_get(dev, domain);
6838         }
6839
6840         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6841                 enum intel_display_power_domain domain;
6842
6843                 for_each_power_domain(domain, crtc->enabled_power_domains)
6844                         intel_display_power_put(dev, domain);
6845
6846                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
6847         }
6848
6849         intel_display_set_init_power(dev, false);
6850 }
6851
6852 static void haswell_modeset_global_resources(struct drm_device *dev)
6853 {
6854         modeset_update_power_wells(dev);
6855         hsw_update_package_c8(dev);
6856 }
6857
6858 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6859                                  int x, int y,
6860                                  struct drm_framebuffer *fb)
6861 {
6862         struct drm_device *dev = crtc->dev;
6863         struct drm_i915_private *dev_priv = dev->dev_private;
6864         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6865         int plane = intel_crtc->plane;
6866         int ret;
6867
6868         if (!intel_ddi_pll_mode_set(crtc))
6869                 return -EINVAL;
6870
6871         if (intel_crtc->config.has_dp_encoder)
6872                 intel_dp_set_m_n(intel_crtc);
6873
6874         intel_crtc->lowfreq_avail = false;
6875
6876         intel_set_pipe_timings(intel_crtc);
6877
6878         if (intel_crtc->config.has_pch_encoder) {
6879                 intel_cpu_transcoder_set_m_n(intel_crtc,
6880                                              &intel_crtc->config.fdi_m_n);
6881         }
6882
6883         haswell_set_pipeconf(crtc);
6884
6885         intel_set_pipe_csc(crtc);
6886
6887         /* Set up the display plane register */
6888         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6889         POSTING_READ(DSPCNTR(plane));
6890
6891         ret = intel_pipe_set_base(crtc, x, y, fb);
6892
6893         return ret;
6894 }
6895
6896 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6897                                     struct intel_crtc_config *pipe_config)
6898 {
6899         struct drm_device *dev = crtc->base.dev;
6900         struct drm_i915_private *dev_priv = dev->dev_private;
6901         enum intel_display_power_domain pfit_domain;
6902         uint32_t tmp;
6903
6904         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6905         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6906
6907         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6908         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6909                 enum pipe trans_edp_pipe;
6910                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6911                 default:
6912                         WARN(1, "unknown pipe linked to edp transcoder\n");
6913                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6914                 case TRANS_DDI_EDP_INPUT_A_ON:
6915                         trans_edp_pipe = PIPE_A;
6916                         break;
6917                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6918                         trans_edp_pipe = PIPE_B;
6919                         break;
6920                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6921                         trans_edp_pipe = PIPE_C;
6922                         break;
6923                 }
6924
6925                 if (trans_edp_pipe == crtc->pipe)
6926                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6927         }
6928
6929         if (!intel_display_power_enabled(dev,
6930                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6931                 return false;
6932
6933         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6934         if (!(tmp & PIPECONF_ENABLE))
6935                 return false;
6936
6937         /*
6938          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6939          * DDI E. So just check whether this pipe is wired to DDI E and whether
6940          * the PCH transcoder is on.
6941          */
6942         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6943         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6944             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6945                 pipe_config->has_pch_encoder = true;
6946
6947                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6948                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6949                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6950
6951                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6952         }
6953
6954         intel_get_pipe_timings(crtc, pipe_config);
6955
6956         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6957         if (intel_display_power_enabled(dev, pfit_domain))
6958                 ironlake_get_pfit_config(crtc, pipe_config);
6959
6960         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6961                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6962
6963         pipe_config->pixel_multiplier = 1;
6964
6965         return true;
6966 }
6967
6968 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6969                                int x, int y,
6970                                struct drm_framebuffer *fb)
6971 {
6972         struct drm_device *dev = crtc->dev;
6973         struct drm_i915_private *dev_priv = dev->dev_private;
6974         struct intel_encoder *encoder;
6975         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6976         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6977         int pipe = intel_crtc->pipe;
6978         int ret;
6979
6980         drm_vblank_pre_modeset(dev, pipe);
6981
6982         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6983
6984         drm_vblank_post_modeset(dev, pipe);
6985
6986         if (ret != 0)
6987                 return ret;
6988
6989         for_each_encoder_on_crtc(dev, crtc, encoder) {
6990                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6991                         encoder->base.base.id,
6992                         drm_get_encoder_name(&encoder->base),
6993                         mode->base.id, mode->name);
6994                 encoder->mode_set(encoder);
6995         }
6996
6997         return 0;
6998 }
6999
7000 static struct {
7001         int clock;
7002         u32 config;
7003 } hdmi_audio_clock[] = {
7004         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7005         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7006         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7007         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7008         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7009         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7010         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7011         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7012         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7013         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7014 };
7015
7016 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7017 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7018 {
7019         int i;
7020
7021         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7022                 if (mode->clock == hdmi_audio_clock[i].clock)
7023                         break;
7024         }
7025
7026         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7027                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7028                 i = 1;
7029         }
7030
7031         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7032                       hdmi_audio_clock[i].clock,
7033                       hdmi_audio_clock[i].config);
7034
7035         return hdmi_audio_clock[i].config;
7036 }
7037
7038 static bool intel_eld_uptodate(struct drm_connector *connector,
7039                                int reg_eldv, uint32_t bits_eldv,
7040                                int reg_elda, uint32_t bits_elda,
7041                                int reg_edid)
7042 {
7043         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7044         uint8_t *eld = connector->eld;
7045         uint32_t i;
7046
7047         i = I915_READ(reg_eldv);
7048         i &= bits_eldv;
7049
7050         if (!eld[0])
7051                 return !i;
7052
7053         if (!i)
7054                 return false;
7055
7056         i = I915_READ(reg_elda);
7057         i &= ~bits_elda;
7058         I915_WRITE(reg_elda, i);
7059
7060         for (i = 0; i < eld[2]; i++)
7061                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7062                         return false;
7063
7064         return true;
7065 }
7066
7067 static void g4x_write_eld(struct drm_connector *connector,
7068                           struct drm_crtc *crtc,
7069                           struct drm_display_mode *mode)
7070 {
7071         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7072         uint8_t *eld = connector->eld;
7073         uint32_t eldv;
7074         uint32_t len;
7075         uint32_t i;
7076
7077         i = I915_READ(G4X_AUD_VID_DID);
7078
7079         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7080                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7081         else
7082                 eldv = G4X_ELDV_DEVCTG;
7083
7084         if (intel_eld_uptodate(connector,
7085                                G4X_AUD_CNTL_ST, eldv,
7086                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7087                                G4X_HDMIW_HDMIEDID))
7088                 return;
7089
7090         i = I915_READ(G4X_AUD_CNTL_ST);
7091         i &= ~(eldv | G4X_ELD_ADDR);
7092         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7093         I915_WRITE(G4X_AUD_CNTL_ST, i);
7094
7095         if (!eld[0])
7096                 return;
7097
7098         len = min_t(uint8_t, eld[2], len);
7099         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7100         for (i = 0; i < len; i++)
7101                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7102
7103         i = I915_READ(G4X_AUD_CNTL_ST);
7104         i |= eldv;
7105         I915_WRITE(G4X_AUD_CNTL_ST, i);
7106 }
7107
7108 static void haswell_write_eld(struct drm_connector *connector,
7109                               struct drm_crtc *crtc,
7110                               struct drm_display_mode *mode)
7111 {
7112         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7113         uint8_t *eld = connector->eld;
7114         struct drm_device *dev = crtc->dev;
7115         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7116         uint32_t eldv;
7117         uint32_t i;
7118         int len;
7119         int pipe = to_intel_crtc(crtc)->pipe;
7120         int tmp;
7121
7122         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7123         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7124         int aud_config = HSW_AUD_CFG(pipe);
7125         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7126
7127
7128         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7129
7130         /* Audio output enable */
7131         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7132         tmp = I915_READ(aud_cntrl_st2);
7133         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7134         I915_WRITE(aud_cntrl_st2, tmp);
7135
7136         /* Wait for 1 vertical blank */
7137         intel_wait_for_vblank(dev, pipe);
7138
7139         /* Set ELD valid state */
7140         tmp = I915_READ(aud_cntrl_st2);
7141         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7142         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7143         I915_WRITE(aud_cntrl_st2, tmp);
7144         tmp = I915_READ(aud_cntrl_st2);
7145         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7146
7147         /* Enable HDMI mode */
7148         tmp = I915_READ(aud_config);
7149         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7150         /* clear N_programing_enable and N_value_index */
7151         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7152         I915_WRITE(aud_config, tmp);
7153
7154         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7155
7156         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7157         intel_crtc->eld_vld = true;
7158
7159         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7160                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7161                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7162                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7163         } else {
7164                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7165         }
7166
7167         if (intel_eld_uptodate(connector,
7168                                aud_cntrl_st2, eldv,
7169                                aud_cntl_st, IBX_ELD_ADDRESS,
7170                                hdmiw_hdmiedid))
7171                 return;
7172
7173         i = I915_READ(aud_cntrl_st2);
7174         i &= ~eldv;
7175         I915_WRITE(aud_cntrl_st2, i);
7176
7177         if (!eld[0])
7178                 return;
7179
7180         i = I915_READ(aud_cntl_st);
7181         i &= ~IBX_ELD_ADDRESS;
7182         I915_WRITE(aud_cntl_st, i);
7183         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7184         DRM_DEBUG_DRIVER("port num:%d\n", i);
7185
7186         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7187         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7188         for (i = 0; i < len; i++)
7189                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7190
7191         i = I915_READ(aud_cntrl_st2);
7192         i |= eldv;
7193         I915_WRITE(aud_cntrl_st2, i);
7194
7195 }
7196
7197 static void ironlake_write_eld(struct drm_connector *connector,
7198                                struct drm_crtc *crtc,
7199                                struct drm_display_mode *mode)
7200 {
7201         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7202         uint8_t *eld = connector->eld;
7203         uint32_t eldv;
7204         uint32_t i;
7205         int len;
7206         int hdmiw_hdmiedid;
7207         int aud_config;
7208         int aud_cntl_st;
7209         int aud_cntrl_st2;
7210         int pipe = to_intel_crtc(crtc)->pipe;
7211
7212         if (HAS_PCH_IBX(connector->dev)) {
7213                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7214                 aud_config = IBX_AUD_CFG(pipe);
7215                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7216                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7217         } else if (IS_VALLEYVIEW(connector->dev)) {
7218                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7219                 aud_config = VLV_AUD_CFG(pipe);
7220                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7221                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7222         } else {
7223                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7224                 aud_config = CPT_AUD_CFG(pipe);
7225                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7226                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7227         }
7228
7229         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7230
7231         if (IS_VALLEYVIEW(connector->dev))  {
7232                 struct intel_encoder *intel_encoder;
7233                 struct intel_digital_port *intel_dig_port;
7234
7235                 intel_encoder = intel_attached_encoder(connector);
7236                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7237                 i = intel_dig_port->port;
7238         } else {
7239                 i = I915_READ(aud_cntl_st);
7240                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7241                 /* DIP_Port_Select, 0x1 = PortB */
7242         }
7243
7244         if (!i) {
7245                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7246                 /* operate blindly on all ports */
7247                 eldv = IBX_ELD_VALIDB;
7248                 eldv |= IBX_ELD_VALIDB << 4;
7249                 eldv |= IBX_ELD_VALIDB << 8;
7250         } else {
7251                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7252                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7253         }
7254
7255         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7256                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7257                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7258                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7259         } else {
7260                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7261         }
7262
7263         if (intel_eld_uptodate(connector,
7264                                aud_cntrl_st2, eldv,
7265                                aud_cntl_st, IBX_ELD_ADDRESS,
7266                                hdmiw_hdmiedid))
7267                 return;
7268
7269         i = I915_READ(aud_cntrl_st2);
7270         i &= ~eldv;
7271         I915_WRITE(aud_cntrl_st2, i);
7272
7273         if (!eld[0])
7274                 return;
7275
7276         i = I915_READ(aud_cntl_st);
7277         i &= ~IBX_ELD_ADDRESS;
7278         I915_WRITE(aud_cntl_st, i);
7279
7280         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7281         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7282         for (i = 0; i < len; i++)
7283                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7284
7285         i = I915_READ(aud_cntrl_st2);
7286         i |= eldv;
7287         I915_WRITE(aud_cntrl_st2, i);
7288 }
7289
7290 void intel_write_eld(struct drm_encoder *encoder,
7291                      struct drm_display_mode *mode)
7292 {
7293         struct drm_crtc *crtc = encoder->crtc;
7294         struct drm_connector *connector;
7295         struct drm_device *dev = encoder->dev;
7296         struct drm_i915_private *dev_priv = dev->dev_private;
7297
7298         connector = drm_select_eld(encoder, mode);
7299         if (!connector)
7300                 return;
7301
7302         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7303                          connector->base.id,
7304                          drm_get_connector_name(connector),
7305                          connector->encoder->base.id,
7306                          drm_get_encoder_name(connector->encoder));
7307
7308         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7309
7310         if (dev_priv->display.write_eld)
7311                 dev_priv->display.write_eld(connector, crtc, mode);
7312 }
7313
7314 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7315 {
7316         struct drm_device *dev = crtc->dev;
7317         struct drm_i915_private *dev_priv = dev->dev_private;
7318         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7319         bool visible = base != 0;
7320         u32 cntl;
7321
7322         if (intel_crtc->cursor_visible == visible)
7323                 return;
7324
7325         cntl = I915_READ(_CURACNTR);
7326         if (visible) {
7327                 /* On these chipsets we can only modify the base whilst
7328                  * the cursor is disabled.
7329                  */
7330                 I915_WRITE(_CURABASE, base);
7331
7332                 cntl &= ~(CURSOR_FORMAT_MASK);
7333                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7334                 cntl |= CURSOR_ENABLE |
7335                         CURSOR_GAMMA_ENABLE |
7336                         CURSOR_FORMAT_ARGB;
7337         } else
7338                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7339         I915_WRITE(_CURACNTR, cntl);
7340
7341         intel_crtc->cursor_visible = visible;
7342 }
7343
7344 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7345 {
7346         struct drm_device *dev = crtc->dev;
7347         struct drm_i915_private *dev_priv = dev->dev_private;
7348         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7349         int pipe = intel_crtc->pipe;
7350         bool visible = base != 0;
7351
7352         if (intel_crtc->cursor_visible != visible) {
7353                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7354                 if (base) {
7355                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7356                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7357                         cntl |= pipe << 28; /* Connect to correct pipe */
7358                 } else {
7359                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7360                         cntl |= CURSOR_MODE_DISABLE;
7361                 }
7362                 I915_WRITE(CURCNTR(pipe), cntl);
7363
7364                 intel_crtc->cursor_visible = visible;
7365         }
7366         /* and commit changes on next vblank */
7367         I915_WRITE(CURBASE(pipe), base);
7368 }
7369
7370 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7371 {
7372         struct drm_device *dev = crtc->dev;
7373         struct drm_i915_private *dev_priv = dev->dev_private;
7374         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7375         int pipe = intel_crtc->pipe;
7376         bool visible = base != 0;
7377
7378         if (intel_crtc->cursor_visible != visible) {
7379                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7380                 if (base) {
7381                         cntl &= ~CURSOR_MODE;
7382                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7383                 } else {
7384                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7385                         cntl |= CURSOR_MODE_DISABLE;
7386                 }
7387                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7388                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7389                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7390                 }
7391                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7392
7393                 intel_crtc->cursor_visible = visible;
7394         }
7395         /* and commit changes on next vblank */
7396         I915_WRITE(CURBASE_IVB(pipe), base);
7397 }
7398
7399 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7400 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7401                                      bool on)
7402 {
7403         struct drm_device *dev = crtc->dev;
7404         struct drm_i915_private *dev_priv = dev->dev_private;
7405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7406         int pipe = intel_crtc->pipe;
7407         int x = intel_crtc->cursor_x;
7408         int y = intel_crtc->cursor_y;
7409         u32 base = 0, pos = 0;
7410         bool visible;
7411
7412         if (on)
7413                 base = intel_crtc->cursor_addr;
7414
7415         if (x >= intel_crtc->config.pipe_src_w)
7416                 base = 0;
7417
7418         if (y >= intel_crtc->config.pipe_src_h)
7419                 base = 0;
7420
7421         if (x < 0) {
7422                 if (x + intel_crtc->cursor_width <= 0)
7423                         base = 0;
7424
7425                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7426                 x = -x;
7427         }
7428         pos |= x << CURSOR_X_SHIFT;
7429
7430         if (y < 0) {
7431                 if (y + intel_crtc->cursor_height <= 0)
7432                         base = 0;
7433
7434                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7435                 y = -y;
7436         }
7437         pos |= y << CURSOR_Y_SHIFT;
7438
7439         visible = base != 0;
7440         if (!visible && !intel_crtc->cursor_visible)
7441                 return;
7442
7443         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7444                 I915_WRITE(CURPOS_IVB(pipe), pos);
7445                 ivb_update_cursor(crtc, base);
7446         } else {
7447                 I915_WRITE(CURPOS(pipe), pos);
7448                 if (IS_845G(dev) || IS_I865G(dev))
7449                         i845_update_cursor(crtc, base);
7450                 else
7451                         i9xx_update_cursor(crtc, base);
7452         }
7453 }
7454
7455 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7456                                  struct drm_file *file,
7457                                  uint32_t handle,
7458                                  uint32_t width, uint32_t height)
7459 {
7460         struct drm_device *dev = crtc->dev;
7461         struct drm_i915_private *dev_priv = dev->dev_private;
7462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7463         struct drm_i915_gem_object *obj;
7464         uint32_t addr;
7465         int ret;
7466
7467         /* if we want to turn off the cursor ignore width and height */
7468         if (!handle) {
7469                 DRM_DEBUG_KMS("cursor off\n");
7470                 addr = 0;
7471                 obj = NULL;
7472                 mutex_lock(&dev->struct_mutex);
7473                 goto finish;
7474         }
7475
7476         /* Currently we only support 64x64 cursors */
7477         if (width != 64 || height != 64) {
7478                 DRM_ERROR("we currently only support 64x64 cursors\n");
7479                 return -EINVAL;
7480         }
7481
7482         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7483         if (&obj->base == NULL)
7484                 return -ENOENT;
7485
7486         if (obj->base.size < width * height * 4) {
7487                 DRM_ERROR("buffer is to small\n");
7488                 ret = -ENOMEM;
7489                 goto fail;
7490         }
7491
7492         /* we only need to pin inside GTT if cursor is non-phy */
7493         mutex_lock(&dev->struct_mutex);
7494         if (!dev_priv->info->cursor_needs_physical) {
7495                 unsigned alignment;
7496
7497                 if (obj->tiling_mode) {
7498                         DRM_ERROR("cursor cannot be tiled\n");
7499                         ret = -EINVAL;
7500                         goto fail_locked;
7501                 }
7502
7503                 /* Note that the w/a also requires 2 PTE of padding following
7504                  * the bo. We currently fill all unused PTE with the shadow
7505                  * page and so we should always have valid PTE following the
7506                  * cursor preventing the VT-d warning.
7507                  */
7508                 alignment = 0;
7509                 if (need_vtd_wa(dev))
7510                         alignment = 64*1024;
7511
7512                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7513                 if (ret) {
7514                         DRM_ERROR("failed to move cursor bo into the GTT\n");
7515                         goto fail_locked;
7516                 }
7517
7518                 ret = i915_gem_object_put_fence(obj);
7519                 if (ret) {
7520                         DRM_ERROR("failed to release fence for cursor");
7521                         goto fail_unpin;
7522                 }
7523
7524                 addr = i915_gem_obj_ggtt_offset(obj);
7525         } else {
7526                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7527                 ret = i915_gem_attach_phys_object(dev, obj,
7528                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7529                                                   align);
7530                 if (ret) {
7531                         DRM_ERROR("failed to attach phys object\n");
7532                         goto fail_locked;
7533                 }
7534                 addr = obj->phys_obj->handle->busaddr;
7535         }
7536
7537         if (IS_GEN2(dev))
7538                 I915_WRITE(CURSIZE, (height << 12) | width);
7539
7540  finish:
7541         if (intel_crtc->cursor_bo) {
7542                 if (dev_priv->info->cursor_needs_physical) {
7543                         if (intel_crtc->cursor_bo != obj)
7544                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7545                 } else
7546                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7547                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7548         }
7549
7550         mutex_unlock(&dev->struct_mutex);
7551
7552         intel_crtc->cursor_addr = addr;
7553         intel_crtc->cursor_bo = obj;
7554         intel_crtc->cursor_width = width;
7555         intel_crtc->cursor_height = height;
7556
7557         if (intel_crtc->active)
7558                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7559
7560         return 0;
7561 fail_unpin:
7562         i915_gem_object_unpin_from_display_plane(obj);
7563 fail_locked:
7564         mutex_unlock(&dev->struct_mutex);
7565 fail:
7566         drm_gem_object_unreference_unlocked(&obj->base);
7567         return ret;
7568 }
7569
7570 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7571 {
7572         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7573
7574         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7575         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7576
7577         if (intel_crtc->active)
7578                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7579
7580         return 0;
7581 }
7582
7583 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7584                                  u16 *blue, uint32_t start, uint32_t size)
7585 {
7586         int end = (start + size > 256) ? 256 : start + size, i;
7587         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7588
7589         for (i = start; i < end; i++) {
7590                 intel_crtc->lut_r[i] = red[i] >> 8;
7591                 intel_crtc->lut_g[i] = green[i] >> 8;
7592                 intel_crtc->lut_b[i] = blue[i] >> 8;
7593         }
7594
7595         intel_crtc_load_lut(crtc);
7596 }
7597
7598 /* VESA 640x480x72Hz mode to set on the pipe */
7599 static struct drm_display_mode load_detect_mode = {
7600         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7601                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7602 };
7603
7604 static struct drm_framebuffer *
7605 intel_framebuffer_create(struct drm_device *dev,
7606                          struct drm_mode_fb_cmd2 *mode_cmd,
7607                          struct drm_i915_gem_object *obj)
7608 {
7609         struct intel_framebuffer *intel_fb;
7610         int ret;
7611
7612         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7613         if (!intel_fb) {
7614                 drm_gem_object_unreference_unlocked(&obj->base);
7615                 return ERR_PTR(-ENOMEM);
7616         }
7617
7618         ret = i915_mutex_lock_interruptible(dev);
7619         if (ret)
7620                 goto err;
7621
7622         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7623         mutex_unlock(&dev->struct_mutex);
7624         if (ret)
7625                 goto err;
7626
7627         return &intel_fb->base;
7628 err:
7629         drm_gem_object_unreference_unlocked(&obj->base);
7630         kfree(intel_fb);
7631
7632         return ERR_PTR(ret);
7633 }
7634
7635 static u32
7636 intel_framebuffer_pitch_for_width(int width, int bpp)
7637 {
7638         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7639         return ALIGN(pitch, 64);
7640 }
7641
7642 static u32
7643 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7644 {
7645         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7646         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7647 }
7648
7649 static struct drm_framebuffer *
7650 intel_framebuffer_create_for_mode(struct drm_device *dev,
7651                                   struct drm_display_mode *mode,
7652                                   int depth, int bpp)
7653 {
7654         struct drm_i915_gem_object *obj;
7655         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7656
7657         obj = i915_gem_alloc_object(dev,
7658                                     intel_framebuffer_size_for_mode(mode, bpp));
7659         if (obj == NULL)
7660                 return ERR_PTR(-ENOMEM);
7661
7662         mode_cmd.width = mode->hdisplay;
7663         mode_cmd.height = mode->vdisplay;
7664         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7665                                                                 bpp);
7666         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7667
7668         return intel_framebuffer_create(dev, &mode_cmd, obj);
7669 }
7670
7671 static struct drm_framebuffer *
7672 mode_fits_in_fbdev(struct drm_device *dev,
7673                    struct drm_display_mode *mode)
7674 {
7675 #ifdef CONFIG_DRM_I915_FBDEV
7676         struct drm_i915_private *dev_priv = dev->dev_private;
7677         struct drm_i915_gem_object *obj;
7678         struct drm_framebuffer *fb;
7679
7680         if (dev_priv->fbdev == NULL)
7681                 return NULL;
7682
7683         obj = dev_priv->fbdev->ifb.obj;
7684         if (obj == NULL)
7685                 return NULL;
7686
7687         fb = &dev_priv->fbdev->ifb.base;
7688         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7689                                                                fb->bits_per_pixel))
7690                 return NULL;
7691
7692         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7693                 return NULL;
7694
7695         return fb;
7696 #else
7697         return NULL;
7698 #endif
7699 }
7700
7701 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7702                                 struct drm_display_mode *mode,
7703                                 struct intel_load_detect_pipe *old)
7704 {
7705         struct intel_crtc *intel_crtc;
7706         struct intel_encoder *intel_encoder =
7707                 intel_attached_encoder(connector);
7708         struct drm_crtc *possible_crtc;
7709         struct drm_encoder *encoder = &intel_encoder->base;
7710         struct drm_crtc *crtc = NULL;
7711         struct drm_device *dev = encoder->dev;
7712         struct drm_framebuffer *fb;
7713         int i = -1;
7714
7715         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7716                       connector->base.id, drm_get_connector_name(connector),
7717                       encoder->base.id, drm_get_encoder_name(encoder));
7718
7719         /*
7720          * Algorithm gets a little messy:
7721          *
7722          *   - if the connector already has an assigned crtc, use it (but make
7723          *     sure it's on first)
7724          *
7725          *   - try to find the first unused crtc that can drive this connector,
7726          *     and use that if we find one
7727          */
7728
7729         /* See if we already have a CRTC for this connector */
7730         if (encoder->crtc) {
7731                 crtc = encoder->crtc;
7732
7733                 mutex_lock(&crtc->mutex);
7734
7735                 old->dpms_mode = connector->dpms;
7736                 old->load_detect_temp = false;
7737
7738                 /* Make sure the crtc and connector are running */
7739                 if (connector->dpms != DRM_MODE_DPMS_ON)
7740                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7741
7742                 return true;
7743         }
7744
7745         /* Find an unused one (if possible) */
7746         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7747                 i++;
7748                 if (!(encoder->possible_crtcs & (1 << i)))
7749                         continue;
7750                 if (!possible_crtc->enabled) {
7751                         crtc = possible_crtc;
7752                         break;
7753                 }
7754         }
7755
7756         /*
7757          * If we didn't find an unused CRTC, don't use any.
7758          */
7759         if (!crtc) {
7760                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7761                 return false;
7762         }
7763
7764         mutex_lock(&crtc->mutex);
7765         intel_encoder->new_crtc = to_intel_crtc(crtc);
7766         to_intel_connector(connector)->new_encoder = intel_encoder;
7767
7768         intel_crtc = to_intel_crtc(crtc);
7769         old->dpms_mode = connector->dpms;
7770         old->load_detect_temp = true;
7771         old->release_fb = NULL;
7772
7773         if (!mode)
7774                 mode = &load_detect_mode;
7775
7776         /* We need a framebuffer large enough to accommodate all accesses
7777          * that the plane may generate whilst we perform load detection.
7778          * We can not rely on the fbcon either being present (we get called
7779          * during its initialisation to detect all boot displays, or it may
7780          * not even exist) or that it is large enough to satisfy the
7781          * requested mode.
7782          */
7783         fb = mode_fits_in_fbdev(dev, mode);
7784         if (fb == NULL) {
7785                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7786                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7787                 old->release_fb = fb;
7788         } else
7789                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7790         if (IS_ERR(fb)) {
7791                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7792                 mutex_unlock(&crtc->mutex);
7793                 return false;
7794         }
7795
7796         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7797                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7798                 if (old->release_fb)
7799                         old->release_fb->funcs->destroy(old->release_fb);
7800                 mutex_unlock(&crtc->mutex);
7801                 return false;
7802         }
7803
7804         /* let the connector get through one full cycle before testing */
7805         intel_wait_for_vblank(dev, intel_crtc->pipe);
7806         return true;
7807 }
7808
7809 void intel_release_load_detect_pipe(struct drm_connector *connector,
7810                                     struct intel_load_detect_pipe *old)
7811 {
7812         struct intel_encoder *intel_encoder =
7813                 intel_attached_encoder(connector);
7814         struct drm_encoder *encoder = &intel_encoder->base;
7815         struct drm_crtc *crtc = encoder->crtc;
7816
7817         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7818                       connector->base.id, drm_get_connector_name(connector),
7819                       encoder->base.id, drm_get_encoder_name(encoder));
7820
7821         if (old->load_detect_temp) {
7822                 to_intel_connector(connector)->new_encoder = NULL;
7823                 intel_encoder->new_crtc = NULL;
7824                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7825
7826                 if (old->release_fb) {
7827                         drm_framebuffer_unregister_private(old->release_fb);
7828                         drm_framebuffer_unreference(old->release_fb);
7829                 }
7830
7831                 mutex_unlock(&crtc->mutex);
7832                 return;
7833         }
7834
7835         /* Switch crtc and encoder back off if necessary */
7836         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7837                 connector->funcs->dpms(connector, old->dpms_mode);
7838
7839         mutex_unlock(&crtc->mutex);
7840 }
7841
7842 static int i9xx_pll_refclk(struct drm_device *dev,
7843                            const struct intel_crtc_config *pipe_config)
7844 {
7845         struct drm_i915_private *dev_priv = dev->dev_private;
7846         u32 dpll = pipe_config->dpll_hw_state.dpll;
7847
7848         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7849                 return dev_priv->vbt.lvds_ssc_freq * 1000;
7850         else if (HAS_PCH_SPLIT(dev))
7851                 return 120000;
7852         else if (!IS_GEN2(dev))
7853                 return 96000;
7854         else
7855                 return 48000;
7856 }
7857
7858 /* Returns the clock of the currently programmed mode of the given pipe. */
7859 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7860                                 struct intel_crtc_config *pipe_config)
7861 {
7862         struct drm_device *dev = crtc->base.dev;
7863         struct drm_i915_private *dev_priv = dev->dev_private;
7864         int pipe = pipe_config->cpu_transcoder;
7865         u32 dpll = pipe_config->dpll_hw_state.dpll;
7866         u32 fp;
7867         intel_clock_t clock;
7868         int refclk = i9xx_pll_refclk(dev, pipe_config);
7869
7870         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7871                 fp = pipe_config->dpll_hw_state.fp0;
7872         else
7873                 fp = pipe_config->dpll_hw_state.fp1;
7874
7875         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7876         if (IS_PINEVIEW(dev)) {
7877                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7878                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7879         } else {
7880                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7881                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7882         }
7883
7884         if (!IS_GEN2(dev)) {
7885                 if (IS_PINEVIEW(dev))
7886                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7887                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7888                 else
7889                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7890                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7891
7892                 switch (dpll & DPLL_MODE_MASK) {
7893                 case DPLLB_MODE_DAC_SERIAL:
7894                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7895                                 5 : 10;
7896                         break;
7897                 case DPLLB_MODE_LVDS:
7898                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7899                                 7 : 14;
7900                         break;
7901                 default:
7902                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7903                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7904                         return;
7905                 }
7906
7907                 if (IS_PINEVIEW(dev))
7908                         pineview_clock(refclk, &clock);
7909                 else
7910                         i9xx_clock(refclk, &clock);
7911         } else {
7912                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7913
7914                 if (is_lvds) {
7915                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7916                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7917                         clock.p2 = 14;
7918                 } else {
7919                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7920                                 clock.p1 = 2;
7921                         else {
7922                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7923                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7924                         }
7925                         if (dpll & PLL_P2_DIVIDE_BY_4)
7926                                 clock.p2 = 4;
7927                         else
7928                                 clock.p2 = 2;
7929                 }
7930
7931                 i9xx_clock(refclk, &clock);
7932         }
7933
7934         /*
7935          * This value includes pixel_multiplier. We will use
7936          * port_clock to compute adjusted_mode.crtc_clock in the
7937          * encoder's get_config() function.
7938          */
7939         pipe_config->port_clock = clock.dot;
7940 }
7941
7942 int intel_dotclock_calculate(int link_freq,
7943                              const struct intel_link_m_n *m_n)
7944 {
7945         /*
7946          * The calculation for the data clock is:
7947          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7948          * But we want to avoid losing precison if possible, so:
7949          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7950          *
7951          * and the link clock is simpler:
7952          * link_clock = (m * link_clock) / n
7953          */
7954
7955         if (!m_n->link_n)
7956                 return 0;
7957
7958         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7959 }
7960
7961 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7962                                    struct intel_crtc_config *pipe_config)
7963 {
7964         struct drm_device *dev = crtc->base.dev;
7965
7966         /* read out port_clock from the DPLL */
7967         i9xx_crtc_clock_get(crtc, pipe_config);
7968
7969         /*
7970          * This value does not include pixel_multiplier.
7971          * We will check that port_clock and adjusted_mode.crtc_clock
7972          * agree once we know their relationship in the encoder's
7973          * get_config() function.
7974          */
7975         pipe_config->adjusted_mode.crtc_clock =
7976                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7977                                          &pipe_config->fdi_m_n);
7978 }
7979
7980 /** Returns the currently programmed mode of the given pipe. */
7981 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7982                                              struct drm_crtc *crtc)
7983 {
7984         struct drm_i915_private *dev_priv = dev->dev_private;
7985         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7986         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7987         struct drm_display_mode *mode;
7988         struct intel_crtc_config pipe_config;
7989         int htot = I915_READ(HTOTAL(cpu_transcoder));
7990         int hsync = I915_READ(HSYNC(cpu_transcoder));
7991         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7992         int vsync = I915_READ(VSYNC(cpu_transcoder));
7993         enum pipe pipe = intel_crtc->pipe;
7994
7995         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7996         if (!mode)
7997                 return NULL;
7998
7999         /*
8000          * Construct a pipe_config sufficient for getting the clock info
8001          * back out of crtc_clock_get.
8002          *
8003          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8004          * to use a real value here instead.
8005          */
8006         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8007         pipe_config.pixel_multiplier = 1;
8008         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8009         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8010         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8011         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8012
8013         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8014         mode->hdisplay = (htot & 0xffff) + 1;
8015         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8016         mode->hsync_start = (hsync & 0xffff) + 1;
8017         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8018         mode->vdisplay = (vtot & 0xffff) + 1;
8019         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8020         mode->vsync_start = (vsync & 0xffff) + 1;
8021         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8022
8023         drm_mode_set_name(mode);
8024
8025         return mode;
8026 }
8027
8028 static void intel_increase_pllclock(struct drm_crtc *crtc)
8029 {
8030         struct drm_device *dev = crtc->dev;
8031         drm_i915_private_t *dev_priv = dev->dev_private;
8032         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8033         int pipe = intel_crtc->pipe;
8034         int dpll_reg = DPLL(pipe);
8035         int dpll;
8036
8037         if (HAS_PCH_SPLIT(dev))
8038                 return;
8039
8040         if (!dev_priv->lvds_downclock_avail)
8041                 return;
8042
8043         dpll = I915_READ(dpll_reg);
8044         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8045                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8046
8047                 assert_panel_unlocked(dev_priv, pipe);
8048
8049                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8050                 I915_WRITE(dpll_reg, dpll);
8051                 intel_wait_for_vblank(dev, pipe);
8052
8053                 dpll = I915_READ(dpll_reg);
8054                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8055                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8056         }
8057 }
8058
8059 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8060 {
8061         struct drm_device *dev = crtc->dev;
8062         drm_i915_private_t *dev_priv = dev->dev_private;
8063         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8064
8065         if (HAS_PCH_SPLIT(dev))
8066                 return;
8067
8068         if (!dev_priv->lvds_downclock_avail)
8069                 return;
8070
8071         /*
8072          * Since this is called by a timer, we should never get here in
8073          * the manual case.
8074          */
8075         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8076                 int pipe = intel_crtc->pipe;
8077                 int dpll_reg = DPLL(pipe);
8078                 int dpll;
8079
8080                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8081
8082                 assert_panel_unlocked(dev_priv, pipe);
8083
8084                 dpll = I915_READ(dpll_reg);
8085                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8086                 I915_WRITE(dpll_reg, dpll);
8087                 intel_wait_for_vblank(dev, pipe);
8088                 dpll = I915_READ(dpll_reg);
8089                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8090                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8091         }
8092
8093 }
8094
8095 void intel_mark_busy(struct drm_device *dev)
8096 {
8097         struct drm_i915_private *dev_priv = dev->dev_private;
8098
8099         hsw_package_c8_gpu_busy(dev_priv);
8100         i915_update_gfx_val(dev_priv);
8101 }
8102
8103 void intel_mark_idle(struct drm_device *dev)
8104 {
8105         struct drm_i915_private *dev_priv = dev->dev_private;
8106         struct drm_crtc *crtc;
8107
8108         hsw_package_c8_gpu_idle(dev_priv);
8109
8110         if (!i915_powersave)
8111                 return;
8112
8113         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8114                 if (!crtc->fb)
8115                         continue;
8116
8117                 intel_decrease_pllclock(crtc);
8118         }
8119
8120         if (dev_priv->info->gen >= 6)
8121                 gen6_rps_idle(dev->dev_private);
8122 }
8123
8124 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8125                         struct intel_ring_buffer *ring)
8126 {
8127         struct drm_device *dev = obj->base.dev;
8128         struct drm_crtc *crtc;
8129
8130         if (!i915_powersave)
8131                 return;
8132
8133         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8134                 if (!crtc->fb)
8135                         continue;
8136
8137                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
8138                         continue;
8139
8140                 intel_increase_pllclock(crtc);
8141                 if (ring && intel_fbc_enabled(dev))
8142                         ring->fbc_dirty = true;
8143         }
8144 }
8145
8146 static void intel_crtc_destroy(struct drm_crtc *crtc)
8147 {
8148         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8149         struct drm_device *dev = crtc->dev;
8150         struct intel_unpin_work *work;
8151         unsigned long flags;
8152
8153         spin_lock_irqsave(&dev->event_lock, flags);
8154         work = intel_crtc->unpin_work;
8155         intel_crtc->unpin_work = NULL;
8156         spin_unlock_irqrestore(&dev->event_lock, flags);
8157
8158         if (work) {
8159                 cancel_work_sync(&work->work);
8160                 kfree(work);
8161         }
8162
8163         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8164
8165         drm_crtc_cleanup(crtc);
8166
8167         kfree(intel_crtc);
8168 }
8169
8170 static void intel_unpin_work_fn(struct work_struct *__work)
8171 {
8172         struct intel_unpin_work *work =
8173                 container_of(__work, struct intel_unpin_work, work);
8174         struct drm_device *dev = work->crtc->dev;
8175
8176         mutex_lock(&dev->struct_mutex);
8177         intel_unpin_fb_obj(work->old_fb_obj);
8178         drm_gem_object_unreference(&work->pending_flip_obj->base);
8179         drm_gem_object_unreference(&work->old_fb_obj->base);
8180
8181         intel_update_fbc(dev);
8182         mutex_unlock(&dev->struct_mutex);
8183
8184         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8185         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8186
8187         kfree(work);
8188 }
8189
8190 static void do_intel_finish_page_flip(struct drm_device *dev,
8191                                       struct drm_crtc *crtc)
8192 {
8193         drm_i915_private_t *dev_priv = dev->dev_private;
8194         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8195         struct intel_unpin_work *work;
8196         unsigned long flags;
8197
8198         /* Ignore early vblank irqs */
8199         if (intel_crtc == NULL)
8200                 return;
8201
8202         spin_lock_irqsave(&dev->event_lock, flags);
8203         work = intel_crtc->unpin_work;
8204
8205         /* Ensure we don't miss a work->pending update ... */
8206         smp_rmb();
8207
8208         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8209                 spin_unlock_irqrestore(&dev->event_lock, flags);
8210                 return;
8211         }
8212
8213         /* and that the unpin work is consistent wrt ->pending. */
8214         smp_rmb();
8215
8216         intel_crtc->unpin_work = NULL;
8217
8218         if (work->event)
8219                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8220
8221         drm_vblank_put(dev, intel_crtc->pipe);
8222
8223         spin_unlock_irqrestore(&dev->event_lock, flags);
8224
8225         wake_up_all(&dev_priv->pending_flip_queue);
8226
8227         queue_work(dev_priv->wq, &work->work);
8228
8229         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8230 }
8231
8232 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8233 {
8234         drm_i915_private_t *dev_priv = dev->dev_private;
8235         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8236
8237         do_intel_finish_page_flip(dev, crtc);
8238 }
8239
8240 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8241 {
8242         drm_i915_private_t *dev_priv = dev->dev_private;
8243         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8244
8245         do_intel_finish_page_flip(dev, crtc);
8246 }
8247
8248 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8249 {
8250         drm_i915_private_t *dev_priv = dev->dev_private;
8251         struct intel_crtc *intel_crtc =
8252                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8253         unsigned long flags;
8254
8255         /* NB: An MMIO update of the plane base pointer will also
8256          * generate a page-flip completion irq, i.e. every modeset
8257          * is also accompanied by a spurious intel_prepare_page_flip().
8258          */
8259         spin_lock_irqsave(&dev->event_lock, flags);
8260         if (intel_crtc->unpin_work)
8261                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8262         spin_unlock_irqrestore(&dev->event_lock, flags);
8263 }
8264
8265 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8266 {
8267         /* Ensure that the work item is consistent when activating it ... */
8268         smp_wmb();
8269         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8270         /* and that it is marked active as soon as the irq could fire. */
8271         smp_wmb();
8272 }
8273
8274 static int intel_gen2_queue_flip(struct drm_device *dev,
8275                                  struct drm_crtc *crtc,
8276                                  struct drm_framebuffer *fb,
8277                                  struct drm_i915_gem_object *obj,
8278                                  uint32_t flags)
8279 {
8280         struct drm_i915_private *dev_priv = dev->dev_private;
8281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8282         u32 flip_mask;
8283         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8284         int ret;
8285
8286         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8287         if (ret)
8288                 goto err;
8289
8290         ret = intel_ring_begin(ring, 6);
8291         if (ret)
8292                 goto err_unpin;
8293
8294         /* Can't queue multiple flips, so wait for the previous
8295          * one to finish before executing the next.
8296          */
8297         if (intel_crtc->plane)
8298                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8299         else
8300                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8301         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8302         intel_ring_emit(ring, MI_NOOP);
8303         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8304                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8305         intel_ring_emit(ring, fb->pitches[0]);
8306         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8307         intel_ring_emit(ring, 0); /* aux display base address, unused */
8308
8309         intel_mark_page_flip_active(intel_crtc);
8310         __intel_ring_advance(ring);
8311         return 0;
8312
8313 err_unpin:
8314         intel_unpin_fb_obj(obj);
8315 err:
8316         return ret;
8317 }
8318
8319 static int intel_gen3_queue_flip(struct drm_device *dev,
8320                                  struct drm_crtc *crtc,
8321                                  struct drm_framebuffer *fb,
8322                                  struct drm_i915_gem_object *obj,
8323                                  uint32_t flags)
8324 {
8325         struct drm_i915_private *dev_priv = dev->dev_private;
8326         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8327         u32 flip_mask;
8328         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8329         int ret;
8330
8331         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8332         if (ret)
8333                 goto err;
8334
8335         ret = intel_ring_begin(ring, 6);
8336         if (ret)
8337                 goto err_unpin;
8338
8339         if (intel_crtc->plane)
8340                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8341         else
8342                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8343         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8344         intel_ring_emit(ring, MI_NOOP);
8345         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8346                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8347         intel_ring_emit(ring, fb->pitches[0]);
8348         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8349         intel_ring_emit(ring, MI_NOOP);
8350
8351         intel_mark_page_flip_active(intel_crtc);
8352         __intel_ring_advance(ring);
8353         return 0;
8354
8355 err_unpin:
8356         intel_unpin_fb_obj(obj);
8357 err:
8358         return ret;
8359 }
8360
8361 static int intel_gen4_queue_flip(struct drm_device *dev,
8362                                  struct drm_crtc *crtc,
8363                                  struct drm_framebuffer *fb,
8364                                  struct drm_i915_gem_object *obj,
8365                                  uint32_t flags)
8366 {
8367         struct drm_i915_private *dev_priv = dev->dev_private;
8368         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8369         uint32_t pf, pipesrc;
8370         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8371         int ret;
8372
8373         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8374         if (ret)
8375                 goto err;
8376
8377         ret = intel_ring_begin(ring, 4);
8378         if (ret)
8379                 goto err_unpin;
8380
8381         /* i965+ uses the linear or tiled offsets from the
8382          * Display Registers (which do not change across a page-flip)
8383          * so we need only reprogram the base address.
8384          */
8385         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8386                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8387         intel_ring_emit(ring, fb->pitches[0]);
8388         intel_ring_emit(ring,
8389                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8390                         obj->tiling_mode);
8391
8392         /* XXX Enabling the panel-fitter across page-flip is so far
8393          * untested on non-native modes, so ignore it for now.
8394          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8395          */
8396         pf = 0;
8397         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8398         intel_ring_emit(ring, pf | pipesrc);
8399
8400         intel_mark_page_flip_active(intel_crtc);
8401         __intel_ring_advance(ring);
8402         return 0;
8403
8404 err_unpin:
8405         intel_unpin_fb_obj(obj);
8406 err:
8407         return ret;
8408 }
8409
8410 static int intel_gen6_queue_flip(struct drm_device *dev,
8411                                  struct drm_crtc *crtc,
8412                                  struct drm_framebuffer *fb,
8413                                  struct drm_i915_gem_object *obj,
8414                                  uint32_t flags)
8415 {
8416         struct drm_i915_private *dev_priv = dev->dev_private;
8417         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8418         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8419         uint32_t pf, pipesrc;
8420         int ret;
8421
8422         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8423         if (ret)
8424                 goto err;
8425
8426         ret = intel_ring_begin(ring, 4);
8427         if (ret)
8428                 goto err_unpin;
8429
8430         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8431                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8432         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8433         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8434
8435         /* Contrary to the suggestions in the documentation,
8436          * "Enable Panel Fitter" does not seem to be required when page
8437          * flipping with a non-native mode, and worse causes a normal
8438          * modeset to fail.
8439          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8440          */
8441         pf = 0;
8442         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8443         intel_ring_emit(ring, pf | pipesrc);
8444
8445         intel_mark_page_flip_active(intel_crtc);
8446         __intel_ring_advance(ring);
8447         return 0;
8448
8449 err_unpin:
8450         intel_unpin_fb_obj(obj);
8451 err:
8452         return ret;
8453 }
8454
8455 static int intel_gen7_queue_flip(struct drm_device *dev,
8456                                  struct drm_crtc *crtc,
8457                                  struct drm_framebuffer *fb,
8458                                  struct drm_i915_gem_object *obj,
8459                                  uint32_t flags)
8460 {
8461         struct drm_i915_private *dev_priv = dev->dev_private;
8462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8463         struct intel_ring_buffer *ring;
8464         uint32_t plane_bit = 0;
8465         int len, ret;
8466
8467         ring = obj->ring;
8468         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8469                 ring = &dev_priv->ring[BCS];
8470
8471         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8472         if (ret)
8473                 goto err;
8474
8475         switch(intel_crtc->plane) {
8476         case PLANE_A:
8477                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8478                 break;
8479         case PLANE_B:
8480                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8481                 break;
8482         case PLANE_C:
8483                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8484                 break;
8485         default:
8486                 WARN_ONCE(1, "unknown plane in flip command\n");
8487                 ret = -ENODEV;
8488                 goto err_unpin;
8489         }
8490
8491         len = 4;
8492         if (ring->id == RCS)
8493                 len += 6;
8494
8495         ret = intel_ring_begin(ring, len);
8496         if (ret)
8497                 goto err_unpin;
8498
8499         /* Unmask the flip-done completion message. Note that the bspec says that
8500          * we should do this for both the BCS and RCS, and that we must not unmask
8501          * more than one flip event at any time (or ensure that one flip message
8502          * can be sent by waiting for flip-done prior to queueing new flips).
8503          * Experimentation says that BCS works despite DERRMR masking all
8504          * flip-done completion events and that unmasking all planes at once
8505          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8506          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8507          */
8508         if (ring->id == RCS) {
8509                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8510                 intel_ring_emit(ring, DERRMR);
8511                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8512                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8513                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8514                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8515                 intel_ring_emit(ring, DERRMR);
8516                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8517         }
8518
8519         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8520         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8521         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8522         intel_ring_emit(ring, (MI_NOOP));
8523
8524         intel_mark_page_flip_active(intel_crtc);
8525         __intel_ring_advance(ring);
8526         return 0;
8527
8528 err_unpin:
8529         intel_unpin_fb_obj(obj);
8530 err:
8531         return ret;
8532 }
8533
8534 static int intel_default_queue_flip(struct drm_device *dev,
8535                                     struct drm_crtc *crtc,
8536                                     struct drm_framebuffer *fb,
8537                                     struct drm_i915_gem_object *obj,
8538                                     uint32_t flags)
8539 {
8540         return -ENODEV;
8541 }
8542
8543 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8544                                 struct drm_framebuffer *fb,
8545                                 struct drm_pending_vblank_event *event,
8546                                 uint32_t page_flip_flags)
8547 {
8548         struct drm_device *dev = crtc->dev;
8549         struct drm_i915_private *dev_priv = dev->dev_private;
8550         struct drm_framebuffer *old_fb = crtc->fb;
8551         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8553         struct intel_unpin_work *work;
8554         unsigned long flags;
8555         int ret;
8556
8557         /* Can't change pixel format via MI display flips. */
8558         if (fb->pixel_format != crtc->fb->pixel_format)
8559                 return -EINVAL;
8560
8561         /*
8562          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8563          * Note that pitch changes could also affect these register.
8564          */
8565         if (INTEL_INFO(dev)->gen > 3 &&
8566             (fb->offsets[0] != crtc->fb->offsets[0] ||
8567              fb->pitches[0] != crtc->fb->pitches[0]))
8568                 return -EINVAL;
8569
8570         work = kzalloc(sizeof(*work), GFP_KERNEL);
8571         if (work == NULL)
8572                 return -ENOMEM;
8573
8574         work->event = event;
8575         work->crtc = crtc;
8576         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8577         INIT_WORK(&work->work, intel_unpin_work_fn);
8578
8579         ret = drm_vblank_get(dev, intel_crtc->pipe);
8580         if (ret)
8581                 goto free_work;
8582
8583         /* We borrow the event spin lock for protecting unpin_work */
8584         spin_lock_irqsave(&dev->event_lock, flags);
8585         if (intel_crtc->unpin_work) {
8586                 spin_unlock_irqrestore(&dev->event_lock, flags);
8587                 kfree(work);
8588                 drm_vblank_put(dev, intel_crtc->pipe);
8589
8590                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8591                 return -EBUSY;
8592         }
8593         intel_crtc->unpin_work = work;
8594         spin_unlock_irqrestore(&dev->event_lock, flags);
8595
8596         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8597                 flush_workqueue(dev_priv->wq);
8598
8599         ret = i915_mutex_lock_interruptible(dev);
8600         if (ret)
8601                 goto cleanup;
8602
8603         /* Reference the objects for the scheduled work. */
8604         drm_gem_object_reference(&work->old_fb_obj->base);
8605         drm_gem_object_reference(&obj->base);
8606
8607         crtc->fb = fb;
8608
8609         work->pending_flip_obj = obj;
8610
8611         work->enable_stall_check = true;
8612
8613         atomic_inc(&intel_crtc->unpin_work_count);
8614         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8615
8616         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8617         if (ret)
8618                 goto cleanup_pending;
8619
8620         intel_disable_fbc(dev);
8621         intel_mark_fb_busy(obj, NULL);
8622         mutex_unlock(&dev->struct_mutex);
8623
8624         trace_i915_flip_request(intel_crtc->plane, obj);
8625
8626         return 0;
8627
8628 cleanup_pending:
8629         atomic_dec(&intel_crtc->unpin_work_count);
8630         crtc->fb = old_fb;
8631         drm_gem_object_unreference(&work->old_fb_obj->base);
8632         drm_gem_object_unreference(&obj->base);
8633         mutex_unlock(&dev->struct_mutex);
8634
8635 cleanup:
8636         spin_lock_irqsave(&dev->event_lock, flags);
8637         intel_crtc->unpin_work = NULL;
8638         spin_unlock_irqrestore(&dev->event_lock, flags);
8639
8640         drm_vblank_put(dev, intel_crtc->pipe);
8641 free_work:
8642         kfree(work);
8643
8644         return ret;
8645 }
8646
8647 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8648         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8649         .load_lut = intel_crtc_load_lut,
8650 };
8651
8652 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8653                                   struct drm_crtc *crtc)
8654 {
8655         struct drm_device *dev;
8656         struct drm_crtc *tmp;
8657         int crtc_mask = 1;
8658
8659         WARN(!crtc, "checking null crtc?\n");
8660
8661         dev = crtc->dev;
8662
8663         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8664                 if (tmp == crtc)
8665                         break;
8666                 crtc_mask <<= 1;
8667         }
8668
8669         if (encoder->possible_crtcs & crtc_mask)
8670                 return true;
8671         return false;
8672 }
8673
8674 /**
8675  * intel_modeset_update_staged_output_state
8676  *
8677  * Updates the staged output configuration state, e.g. after we've read out the
8678  * current hw state.
8679  */
8680 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8681 {
8682         struct intel_encoder *encoder;
8683         struct intel_connector *connector;
8684
8685         list_for_each_entry(connector, &dev->mode_config.connector_list,
8686                             base.head) {
8687                 connector->new_encoder =
8688                         to_intel_encoder(connector->base.encoder);
8689         }
8690
8691         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8692                             base.head) {
8693                 encoder->new_crtc =
8694                         to_intel_crtc(encoder->base.crtc);
8695         }
8696 }
8697
8698 /**
8699  * intel_modeset_commit_output_state
8700  *
8701  * This function copies the stage display pipe configuration to the real one.
8702  */
8703 static void intel_modeset_commit_output_state(struct drm_device *dev)
8704 {
8705         struct intel_encoder *encoder;
8706         struct intel_connector *connector;
8707
8708         list_for_each_entry(connector, &dev->mode_config.connector_list,
8709                             base.head) {
8710                 connector->base.encoder = &connector->new_encoder->base;
8711         }
8712
8713         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8714                             base.head) {
8715                 encoder->base.crtc = &encoder->new_crtc->base;
8716         }
8717 }
8718
8719 static void
8720 connected_sink_compute_bpp(struct intel_connector * connector,
8721                            struct intel_crtc_config *pipe_config)
8722 {
8723         int bpp = pipe_config->pipe_bpp;
8724
8725         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8726                 connector->base.base.id,
8727                 drm_get_connector_name(&connector->base));
8728
8729         /* Don't use an invalid EDID bpc value */
8730         if (connector->base.display_info.bpc &&
8731             connector->base.display_info.bpc * 3 < bpp) {
8732                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8733                               bpp, connector->base.display_info.bpc*3);
8734                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8735         }
8736
8737         /* Clamp bpp to 8 on screens without EDID 1.4 */
8738         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8739                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8740                               bpp);
8741                 pipe_config->pipe_bpp = 24;
8742         }
8743 }
8744
8745 static int
8746 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8747                           struct drm_framebuffer *fb,
8748                           struct intel_crtc_config *pipe_config)
8749 {
8750         struct drm_device *dev = crtc->base.dev;
8751         struct intel_connector *connector;
8752         int bpp;
8753
8754         switch (fb->pixel_format) {
8755         case DRM_FORMAT_C8:
8756                 bpp = 8*3; /* since we go through a colormap */
8757                 break;
8758         case DRM_FORMAT_XRGB1555:
8759         case DRM_FORMAT_ARGB1555:
8760                 /* checked in intel_framebuffer_init already */
8761                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8762                         return -EINVAL;
8763         case DRM_FORMAT_RGB565:
8764                 bpp = 6*3; /* min is 18bpp */
8765                 break;
8766         case DRM_FORMAT_XBGR8888:
8767         case DRM_FORMAT_ABGR8888:
8768                 /* checked in intel_framebuffer_init already */
8769                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8770                         return -EINVAL;
8771         case DRM_FORMAT_XRGB8888:
8772         case DRM_FORMAT_ARGB8888:
8773                 bpp = 8*3;
8774                 break;
8775         case DRM_FORMAT_XRGB2101010:
8776         case DRM_FORMAT_ARGB2101010:
8777         case DRM_FORMAT_XBGR2101010:
8778         case DRM_FORMAT_ABGR2101010:
8779                 /* checked in intel_framebuffer_init already */
8780                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8781                         return -EINVAL;
8782                 bpp = 10*3;
8783                 break;
8784         /* TODO: gen4+ supports 16 bpc floating point, too. */
8785         default:
8786                 DRM_DEBUG_KMS("unsupported depth\n");
8787                 return -EINVAL;
8788         }
8789
8790         pipe_config->pipe_bpp = bpp;
8791
8792         /* Clamp display bpp to EDID value */
8793         list_for_each_entry(connector, &dev->mode_config.connector_list,
8794                             base.head) {
8795                 if (!connector->new_encoder ||
8796                     connector->new_encoder->new_crtc != crtc)
8797                         continue;
8798
8799                 connected_sink_compute_bpp(connector, pipe_config);
8800         }
8801
8802         return bpp;
8803 }
8804
8805 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8806 {
8807         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8808                         "type: 0x%x flags: 0x%x\n",
8809                 mode->crtc_clock,
8810                 mode->crtc_hdisplay, mode->crtc_hsync_start,
8811                 mode->crtc_hsync_end, mode->crtc_htotal,
8812                 mode->crtc_vdisplay, mode->crtc_vsync_start,
8813                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8814 }
8815
8816 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8817                                    struct intel_crtc_config *pipe_config,
8818                                    const char *context)
8819 {
8820         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8821                       context, pipe_name(crtc->pipe));
8822
8823         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8824         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8825                       pipe_config->pipe_bpp, pipe_config->dither);
8826         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8827                       pipe_config->has_pch_encoder,
8828                       pipe_config->fdi_lanes,
8829                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8830                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8831                       pipe_config->fdi_m_n.tu);
8832         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8833                       pipe_config->has_dp_encoder,
8834                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8835                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8836                       pipe_config->dp_m_n.tu);
8837         DRM_DEBUG_KMS("requested mode:\n");
8838         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8839         DRM_DEBUG_KMS("adjusted mode:\n");
8840         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8841         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8842         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8843         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8844                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8845         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8846                       pipe_config->gmch_pfit.control,
8847                       pipe_config->gmch_pfit.pgm_ratios,
8848                       pipe_config->gmch_pfit.lvds_border_bits);
8849         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8850                       pipe_config->pch_pfit.pos,
8851                       pipe_config->pch_pfit.size,
8852                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8853         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8854         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8855 }
8856
8857 static bool check_encoder_cloning(struct drm_crtc *crtc)
8858 {
8859         int num_encoders = 0;
8860         bool uncloneable_encoders = false;
8861         struct intel_encoder *encoder;
8862
8863         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8864                             base.head) {
8865                 if (&encoder->new_crtc->base != crtc)
8866                         continue;
8867
8868                 num_encoders++;
8869                 if (!encoder->cloneable)
8870                         uncloneable_encoders = true;
8871         }
8872
8873         return !(num_encoders > 1 && uncloneable_encoders);
8874 }
8875
8876 static struct intel_crtc_config *
8877 intel_modeset_pipe_config(struct drm_crtc *crtc,
8878                           struct drm_framebuffer *fb,
8879                           struct drm_display_mode *mode)
8880 {
8881         struct drm_device *dev = crtc->dev;
8882         struct intel_encoder *encoder;
8883         struct intel_crtc_config *pipe_config;
8884         int plane_bpp, ret = -EINVAL;
8885         bool retry = true;
8886
8887         if (!check_encoder_cloning(crtc)) {
8888                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8889                 return ERR_PTR(-EINVAL);
8890         }
8891
8892         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8893         if (!pipe_config)
8894                 return ERR_PTR(-ENOMEM);
8895
8896         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8897         drm_mode_copy(&pipe_config->requested_mode, mode);
8898
8899         pipe_config->cpu_transcoder =
8900                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8901         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8902
8903         /*
8904          * Sanitize sync polarity flags based on requested ones. If neither
8905          * positive or negative polarity is requested, treat this as meaning
8906          * negative polarity.
8907          */
8908         if (!(pipe_config->adjusted_mode.flags &
8909               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8910                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8911
8912         if (!(pipe_config->adjusted_mode.flags &
8913               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8914                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8915
8916         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8917          * plane pixel format and any sink constraints into account. Returns the
8918          * source plane bpp so that dithering can be selected on mismatches
8919          * after encoders and crtc also have had their say. */
8920         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8921                                               fb, pipe_config);
8922         if (plane_bpp < 0)
8923                 goto fail;
8924
8925         /*
8926          * Determine the real pipe dimensions. Note that stereo modes can
8927          * increase the actual pipe size due to the frame doubling and
8928          * insertion of additional space for blanks between the frame. This
8929          * is stored in the crtc timings. We use the requested mode to do this
8930          * computation to clearly distinguish it from the adjusted mode, which
8931          * can be changed by the connectors in the below retry loop.
8932          */
8933         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
8934         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
8935         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
8936
8937 encoder_retry:
8938         /* Ensure the port clock defaults are reset when retrying. */
8939         pipe_config->port_clock = 0;
8940         pipe_config->pixel_multiplier = 1;
8941
8942         /* Fill in default crtc timings, allow encoders to overwrite them. */
8943         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
8944
8945         /* Pass our mode to the connectors and the CRTC to give them a chance to
8946          * adjust it according to limitations or connector properties, and also
8947          * a chance to reject the mode entirely.
8948          */
8949         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8950                             base.head) {
8951
8952                 if (&encoder->new_crtc->base != crtc)
8953                         continue;
8954
8955                 if (!(encoder->compute_config(encoder, pipe_config))) {
8956                         DRM_DEBUG_KMS("Encoder config failure\n");
8957                         goto fail;
8958                 }
8959         }
8960
8961         /* Set default port clock if not overwritten by the encoder. Needs to be
8962          * done afterwards in case the encoder adjusts the mode. */
8963         if (!pipe_config->port_clock)
8964                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
8965                         * pipe_config->pixel_multiplier;
8966
8967         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8968         if (ret < 0) {
8969                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8970                 goto fail;
8971         }
8972
8973         if (ret == RETRY) {
8974                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8975                         ret = -EINVAL;
8976                         goto fail;
8977                 }
8978
8979                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8980                 retry = false;
8981                 goto encoder_retry;
8982         }
8983
8984         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8985         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8986                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8987
8988         return pipe_config;
8989 fail:
8990         kfree(pipe_config);
8991         return ERR_PTR(ret);
8992 }
8993
8994 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8995  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8996 static void
8997 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8998                              unsigned *prepare_pipes, unsigned *disable_pipes)
8999 {
9000         struct intel_crtc *intel_crtc;
9001         struct drm_device *dev = crtc->dev;
9002         struct intel_encoder *encoder;
9003         struct intel_connector *connector;
9004         struct drm_crtc *tmp_crtc;
9005
9006         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9007
9008         /* Check which crtcs have changed outputs connected to them, these need
9009          * to be part of the prepare_pipes mask. We don't (yet) support global
9010          * modeset across multiple crtcs, so modeset_pipes will only have one
9011          * bit set at most. */
9012         list_for_each_entry(connector, &dev->mode_config.connector_list,
9013                             base.head) {
9014                 if (connector->base.encoder == &connector->new_encoder->base)
9015                         continue;
9016
9017                 if (connector->base.encoder) {
9018                         tmp_crtc = connector->base.encoder->crtc;
9019
9020                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9021                 }
9022
9023                 if (connector->new_encoder)
9024                         *prepare_pipes |=
9025                                 1 << connector->new_encoder->new_crtc->pipe;
9026         }
9027
9028         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9029                             base.head) {
9030                 if (encoder->base.crtc == &encoder->new_crtc->base)
9031                         continue;
9032
9033                 if (encoder->base.crtc) {
9034                         tmp_crtc = encoder->base.crtc;
9035
9036                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9037                 }
9038
9039                 if (encoder->new_crtc)
9040                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9041         }
9042
9043         /* Check for any pipes that will be fully disabled ... */
9044         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9045                             base.head) {
9046                 bool used = false;
9047
9048                 /* Don't try to disable disabled crtcs. */
9049                 if (!intel_crtc->base.enabled)
9050                         continue;
9051
9052                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9053                                     base.head) {
9054                         if (encoder->new_crtc == intel_crtc)
9055                                 used = true;
9056                 }
9057
9058                 if (!used)
9059                         *disable_pipes |= 1 << intel_crtc->pipe;
9060         }
9061
9062
9063         /* set_mode is also used to update properties on life display pipes. */
9064         intel_crtc = to_intel_crtc(crtc);
9065         if (crtc->enabled)
9066                 *prepare_pipes |= 1 << intel_crtc->pipe;
9067
9068         /*
9069          * For simplicity do a full modeset on any pipe where the output routing
9070          * changed. We could be more clever, but that would require us to be
9071          * more careful with calling the relevant encoder->mode_set functions.
9072          */
9073         if (*prepare_pipes)
9074                 *modeset_pipes = *prepare_pipes;
9075
9076         /* ... and mask these out. */
9077         *modeset_pipes &= ~(*disable_pipes);
9078         *prepare_pipes &= ~(*disable_pipes);
9079
9080         /*
9081          * HACK: We don't (yet) fully support global modesets. intel_set_config
9082          * obies this rule, but the modeset restore mode of
9083          * intel_modeset_setup_hw_state does not.
9084          */
9085         *modeset_pipes &= 1 << intel_crtc->pipe;
9086         *prepare_pipes &= 1 << intel_crtc->pipe;
9087
9088         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9089                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9090 }
9091
9092 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9093 {
9094         struct drm_encoder *encoder;
9095         struct drm_device *dev = crtc->dev;
9096
9097         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9098                 if (encoder->crtc == crtc)
9099                         return true;
9100
9101         return false;
9102 }
9103
9104 static void
9105 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9106 {
9107         struct intel_encoder *intel_encoder;
9108         struct intel_crtc *intel_crtc;
9109         struct drm_connector *connector;
9110
9111         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9112                             base.head) {
9113                 if (!intel_encoder->base.crtc)
9114                         continue;
9115
9116                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9117
9118                 if (prepare_pipes & (1 << intel_crtc->pipe))
9119                         intel_encoder->connectors_active = false;
9120         }
9121
9122         intel_modeset_commit_output_state(dev);
9123
9124         /* Update computed state. */
9125         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9126                             base.head) {
9127                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
9128         }
9129
9130         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9131                 if (!connector->encoder || !connector->encoder->crtc)
9132                         continue;
9133
9134                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9135
9136                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9137                         struct drm_property *dpms_property =
9138                                 dev->mode_config.dpms_property;
9139
9140                         connector->dpms = DRM_MODE_DPMS_ON;
9141                         drm_object_property_set_value(&connector->base,
9142                                                          dpms_property,
9143                                                          DRM_MODE_DPMS_ON);
9144
9145                         intel_encoder = to_intel_encoder(connector->encoder);
9146                         intel_encoder->connectors_active = true;
9147                 }
9148         }
9149
9150 }
9151
9152 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9153 {
9154         int diff;
9155
9156         if (clock1 == clock2)
9157                 return true;
9158
9159         if (!clock1 || !clock2)
9160                 return false;
9161
9162         diff = abs(clock1 - clock2);
9163
9164         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9165                 return true;
9166
9167         return false;
9168 }
9169
9170 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9171         list_for_each_entry((intel_crtc), \
9172                             &(dev)->mode_config.crtc_list, \
9173                             base.head) \
9174                 if (mask & (1 <<(intel_crtc)->pipe))
9175
9176 static bool
9177 intel_pipe_config_compare(struct drm_device *dev,
9178                           struct intel_crtc_config *current_config,
9179                           struct intel_crtc_config *pipe_config)
9180 {
9181 #define PIPE_CONF_CHECK_X(name) \
9182         if (current_config->name != pipe_config->name) { \
9183                 DRM_ERROR("mismatch in " #name " " \
9184                           "(expected 0x%08x, found 0x%08x)\n", \
9185                           current_config->name, \
9186                           pipe_config->name); \
9187                 return false; \
9188         }
9189
9190 #define PIPE_CONF_CHECK_I(name) \
9191         if (current_config->name != pipe_config->name) { \
9192                 DRM_ERROR("mismatch in " #name " " \
9193                           "(expected %i, found %i)\n", \
9194                           current_config->name, \
9195                           pipe_config->name); \
9196                 return false; \
9197         }
9198
9199 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9200         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9201                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9202                           "(expected %i, found %i)\n", \
9203                           current_config->name & (mask), \
9204                           pipe_config->name & (mask)); \
9205                 return false; \
9206         }
9207
9208 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9209         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9210                 DRM_ERROR("mismatch in " #name " " \
9211                           "(expected %i, found %i)\n", \
9212                           current_config->name, \
9213                           pipe_config->name); \
9214                 return false; \
9215         }
9216
9217 #define PIPE_CONF_QUIRK(quirk)  \
9218         ((current_config->quirks | pipe_config->quirks) & (quirk))
9219
9220         PIPE_CONF_CHECK_I(cpu_transcoder);
9221
9222         PIPE_CONF_CHECK_I(has_pch_encoder);
9223         PIPE_CONF_CHECK_I(fdi_lanes);
9224         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9225         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9226         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9227         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9228         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9229
9230         PIPE_CONF_CHECK_I(has_dp_encoder);
9231         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9232         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9233         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9234         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9235         PIPE_CONF_CHECK_I(dp_m_n.tu);
9236
9237         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9238         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9239         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9240         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9241         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9242         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9243
9244         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9245         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9246         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9247         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9248         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9249         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9250
9251         PIPE_CONF_CHECK_I(pixel_multiplier);
9252
9253         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9254                               DRM_MODE_FLAG_INTERLACE);
9255
9256         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9257                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9258                                       DRM_MODE_FLAG_PHSYNC);
9259                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9260                                       DRM_MODE_FLAG_NHSYNC);
9261                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9262                                       DRM_MODE_FLAG_PVSYNC);
9263                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9264                                       DRM_MODE_FLAG_NVSYNC);
9265         }
9266
9267         PIPE_CONF_CHECK_I(pipe_src_w);
9268         PIPE_CONF_CHECK_I(pipe_src_h);
9269
9270         PIPE_CONF_CHECK_I(gmch_pfit.control);
9271         /* pfit ratios are autocomputed by the hw on gen4+ */
9272         if (INTEL_INFO(dev)->gen < 4)
9273                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9274         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9275         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9276         if (current_config->pch_pfit.enabled) {
9277                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9278                 PIPE_CONF_CHECK_I(pch_pfit.size);
9279         }
9280
9281         PIPE_CONF_CHECK_I(ips_enabled);
9282
9283         PIPE_CONF_CHECK_I(double_wide);
9284
9285         PIPE_CONF_CHECK_I(shared_dpll);
9286         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9287         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9288         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9289         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9290
9291         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9292                 PIPE_CONF_CHECK_I(pipe_bpp);
9293
9294         if (!IS_HASWELL(dev)) {
9295                 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9296                 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9297         }
9298
9299 #undef PIPE_CONF_CHECK_X
9300 #undef PIPE_CONF_CHECK_I
9301 #undef PIPE_CONF_CHECK_FLAGS
9302 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9303 #undef PIPE_CONF_QUIRK
9304
9305         return true;
9306 }
9307
9308 static void
9309 check_connector_state(struct drm_device *dev)
9310 {
9311         struct intel_connector *connector;
9312
9313         list_for_each_entry(connector, &dev->mode_config.connector_list,
9314                             base.head) {
9315                 /* This also checks the encoder/connector hw state with the
9316                  * ->get_hw_state callbacks. */
9317                 intel_connector_check_state(connector);
9318
9319                 WARN(&connector->new_encoder->base != connector->base.encoder,
9320                      "connector's staged encoder doesn't match current encoder\n");
9321         }
9322 }
9323
9324 static void
9325 check_encoder_state(struct drm_device *dev)
9326 {
9327         struct intel_encoder *encoder;
9328         struct intel_connector *connector;
9329
9330         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9331                             base.head) {
9332                 bool enabled = false;
9333                 bool active = false;
9334                 enum pipe pipe, tracked_pipe;
9335
9336                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9337                               encoder->base.base.id,
9338                               drm_get_encoder_name(&encoder->base));
9339
9340                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9341                      "encoder's stage crtc doesn't match current crtc\n");
9342                 WARN(encoder->connectors_active && !encoder->base.crtc,
9343                      "encoder's active_connectors set, but no crtc\n");
9344
9345                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9346                                     base.head) {
9347                         if (connector->base.encoder != &encoder->base)
9348                                 continue;
9349                         enabled = true;
9350                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9351                                 active = true;
9352                 }
9353                 WARN(!!encoder->base.crtc != enabled,
9354                      "encoder's enabled state mismatch "
9355                      "(expected %i, found %i)\n",
9356                      !!encoder->base.crtc, enabled);
9357                 WARN(active && !encoder->base.crtc,
9358                      "active encoder with no crtc\n");
9359
9360                 WARN(encoder->connectors_active != active,
9361                      "encoder's computed active state doesn't match tracked active state "
9362                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9363
9364                 active = encoder->get_hw_state(encoder, &pipe);
9365                 WARN(active != encoder->connectors_active,
9366                      "encoder's hw state doesn't match sw tracking "
9367                      "(expected %i, found %i)\n",
9368                      encoder->connectors_active, active);
9369
9370                 if (!encoder->base.crtc)
9371                         continue;
9372
9373                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9374                 WARN(active && pipe != tracked_pipe,
9375                      "active encoder's pipe doesn't match"
9376                      "(expected %i, found %i)\n",
9377                      tracked_pipe, pipe);
9378
9379         }
9380 }
9381
9382 static void
9383 check_crtc_state(struct drm_device *dev)
9384 {
9385         drm_i915_private_t *dev_priv = dev->dev_private;
9386         struct intel_crtc *crtc;
9387         struct intel_encoder *encoder;
9388         struct intel_crtc_config pipe_config;
9389
9390         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9391                             base.head) {
9392                 bool enabled = false;
9393                 bool active = false;
9394
9395                 memset(&pipe_config, 0, sizeof(pipe_config));
9396
9397                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9398                               crtc->base.base.id);
9399
9400                 WARN(crtc->active && !crtc->base.enabled,
9401                      "active crtc, but not enabled in sw tracking\n");
9402
9403                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9404                                     base.head) {
9405                         if (encoder->base.crtc != &crtc->base)
9406                                 continue;
9407                         enabled = true;
9408                         if (encoder->connectors_active)
9409                                 active = true;
9410                 }
9411
9412                 WARN(active != crtc->active,
9413                      "crtc's computed active state doesn't match tracked active state "
9414                      "(expected %i, found %i)\n", active, crtc->active);
9415                 WARN(enabled != crtc->base.enabled,
9416                      "crtc's computed enabled state doesn't match tracked enabled state "
9417                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9418
9419                 active = dev_priv->display.get_pipe_config(crtc,
9420                                                            &pipe_config);
9421
9422                 /* hw state is inconsistent with the pipe A quirk */
9423                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9424                         active = crtc->active;
9425
9426                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9427                                     base.head) {
9428                         enum pipe pipe;
9429                         if (encoder->base.crtc != &crtc->base)
9430                                 continue;
9431                         if (encoder->get_config &&
9432                             encoder->get_hw_state(encoder, &pipe))
9433                                 encoder->get_config(encoder, &pipe_config);
9434                 }
9435
9436                 WARN(crtc->active != active,
9437                      "crtc active state doesn't match with hw state "
9438                      "(expected %i, found %i)\n", crtc->active, active);
9439
9440                 if (active &&
9441                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9442                         WARN(1, "pipe state doesn't match!\n");
9443                         intel_dump_pipe_config(crtc, &pipe_config,
9444                                                "[hw state]");
9445                         intel_dump_pipe_config(crtc, &crtc->config,
9446                                                "[sw state]");
9447                 }
9448         }
9449 }
9450
9451 static void
9452 check_shared_dpll_state(struct drm_device *dev)
9453 {
9454         drm_i915_private_t *dev_priv = dev->dev_private;
9455         struct intel_crtc *crtc;
9456         struct intel_dpll_hw_state dpll_hw_state;
9457         int i;
9458
9459         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9460                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9461                 int enabled_crtcs = 0, active_crtcs = 0;
9462                 bool active;
9463
9464                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9465
9466                 DRM_DEBUG_KMS("%s\n", pll->name);
9467
9468                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9469
9470                 WARN(pll->active > pll->refcount,
9471                      "more active pll users than references: %i vs %i\n",
9472                      pll->active, pll->refcount);
9473                 WARN(pll->active && !pll->on,
9474                      "pll in active use but not on in sw tracking\n");
9475                 WARN(pll->on && !pll->active,
9476                      "pll in on but not on in use in sw tracking\n");
9477                 WARN(pll->on != active,
9478                      "pll on state mismatch (expected %i, found %i)\n",
9479                      pll->on, active);
9480
9481                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9482                                     base.head) {
9483                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9484                                 enabled_crtcs++;
9485                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9486                                 active_crtcs++;
9487                 }
9488                 WARN(pll->active != active_crtcs,
9489                      "pll active crtcs mismatch (expected %i, found %i)\n",
9490                      pll->active, active_crtcs);
9491                 WARN(pll->refcount != enabled_crtcs,
9492                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9493                      pll->refcount, enabled_crtcs);
9494
9495                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9496                                        sizeof(dpll_hw_state)),
9497                      "pll hw state mismatch\n");
9498         }
9499 }
9500
9501 void
9502 intel_modeset_check_state(struct drm_device *dev)
9503 {
9504         check_connector_state(dev);
9505         check_encoder_state(dev);
9506         check_crtc_state(dev);
9507         check_shared_dpll_state(dev);
9508 }
9509
9510 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9511                                      int dotclock)
9512 {
9513         /*
9514          * FDI already provided one idea for the dotclock.
9515          * Yell if the encoder disagrees.
9516          */
9517         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9518              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9519              pipe_config->adjusted_mode.crtc_clock, dotclock);
9520 }
9521
9522 static int __intel_set_mode(struct drm_crtc *crtc,
9523                             struct drm_display_mode *mode,
9524                             int x, int y, struct drm_framebuffer *fb)
9525 {
9526         struct drm_device *dev = crtc->dev;
9527         drm_i915_private_t *dev_priv = dev->dev_private;
9528         struct drm_display_mode *saved_mode, *saved_hwmode;
9529         struct intel_crtc_config *pipe_config = NULL;
9530         struct intel_crtc *intel_crtc;
9531         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9532         int ret = 0;
9533
9534         saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9535         if (!saved_mode)
9536                 return -ENOMEM;
9537         saved_hwmode = saved_mode + 1;
9538
9539         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9540                                      &prepare_pipes, &disable_pipes);
9541
9542         *saved_hwmode = crtc->hwmode;
9543         *saved_mode = crtc->mode;
9544
9545         /* Hack: Because we don't (yet) support global modeset on multiple
9546          * crtcs, we don't keep track of the new mode for more than one crtc.
9547          * Hence simply check whether any bit is set in modeset_pipes in all the
9548          * pieces of code that are not yet converted to deal with mutliple crtcs
9549          * changing their mode at the same time. */
9550         if (modeset_pipes) {
9551                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9552                 if (IS_ERR(pipe_config)) {
9553                         ret = PTR_ERR(pipe_config);
9554                         pipe_config = NULL;
9555
9556                         goto out;
9557                 }
9558                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9559                                        "[modeset]");
9560         }
9561
9562         /*
9563          * See if the config requires any additional preparation, e.g.
9564          * to adjust global state with pipes off.  We need to do this
9565          * here so we can get the modeset_pipe updated config for the new
9566          * mode set on this crtc.  For other crtcs we need to use the
9567          * adjusted_mode bits in the crtc directly.
9568          */
9569         if (IS_VALLEYVIEW(dev)) {
9570                 valleyview_modeset_global_pipes(dev, &prepare_pipes,
9571                                                 modeset_pipes, pipe_config);
9572
9573                 /* may have added more to prepare_pipes than we should */
9574                 prepare_pipes &= ~disable_pipes;
9575         }
9576
9577         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9578                 intel_crtc_disable(&intel_crtc->base);
9579
9580         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9581                 if (intel_crtc->base.enabled)
9582                         dev_priv->display.crtc_disable(&intel_crtc->base);
9583         }
9584
9585         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9586          * to set it here already despite that we pass it down the callchain.
9587          */
9588         if (modeset_pipes) {
9589                 crtc->mode = *mode;
9590                 /* mode_set/enable/disable functions rely on a correct pipe
9591                  * config. */
9592                 to_intel_crtc(crtc)->config = *pipe_config;
9593         }
9594
9595         /* Only after disabling all output pipelines that will be changed can we
9596          * update the the output configuration. */
9597         intel_modeset_update_state(dev, prepare_pipes);
9598
9599         if (dev_priv->display.modeset_global_resources)
9600                 dev_priv->display.modeset_global_resources(dev);
9601
9602         /* Set up the DPLL and any encoders state that needs to adjust or depend
9603          * on the DPLL.
9604          */
9605         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9606                 ret = intel_crtc_mode_set(&intel_crtc->base,
9607                                           x, y, fb);
9608                 if (ret)
9609                         goto done;
9610         }
9611
9612         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9613         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9614                 dev_priv->display.crtc_enable(&intel_crtc->base);
9615
9616         if (modeset_pipes) {
9617                 /* Store real post-adjustment hardware mode. */
9618                 crtc->hwmode = pipe_config->adjusted_mode;
9619
9620                 /* Calculate and store various constants which
9621                  * are later needed by vblank and swap-completion
9622                  * timestamping. They are derived from true hwmode.
9623                  */
9624                 drm_calc_timestamping_constants(crtc);
9625         }
9626
9627         /* FIXME: add subpixel order */
9628 done:
9629         if (ret && crtc->enabled) {
9630                 crtc->hwmode = *saved_hwmode;
9631                 crtc->mode = *saved_mode;
9632         }
9633
9634 out:
9635         kfree(pipe_config);
9636         kfree(saved_mode);
9637         return ret;
9638 }
9639
9640 static int intel_set_mode(struct drm_crtc *crtc,
9641                           struct drm_display_mode *mode,
9642                           int x, int y, struct drm_framebuffer *fb)
9643 {
9644         int ret;
9645
9646         ret = __intel_set_mode(crtc, mode, x, y, fb);
9647
9648         if (ret == 0)
9649                 intel_modeset_check_state(crtc->dev);
9650
9651         return ret;
9652 }
9653
9654 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9655 {
9656         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9657 }
9658
9659 #undef for_each_intel_crtc_masked
9660
9661 static void intel_set_config_free(struct intel_set_config *config)
9662 {
9663         if (!config)
9664                 return;
9665
9666         kfree(config->save_connector_encoders);
9667         kfree(config->save_encoder_crtcs);
9668         kfree(config);
9669 }
9670
9671 static int intel_set_config_save_state(struct drm_device *dev,
9672                                        struct intel_set_config *config)
9673 {
9674         struct drm_encoder *encoder;
9675         struct drm_connector *connector;
9676         int count;
9677
9678         config->save_encoder_crtcs =
9679                 kcalloc(dev->mode_config.num_encoder,
9680                         sizeof(struct drm_crtc *), GFP_KERNEL);
9681         if (!config->save_encoder_crtcs)
9682                 return -ENOMEM;
9683
9684         config->save_connector_encoders =
9685                 kcalloc(dev->mode_config.num_connector,
9686                         sizeof(struct drm_encoder *), GFP_KERNEL);
9687         if (!config->save_connector_encoders)
9688                 return -ENOMEM;
9689
9690         /* Copy data. Note that driver private data is not affected.
9691          * Should anything bad happen only the expected state is
9692          * restored, not the drivers personal bookkeeping.
9693          */
9694         count = 0;
9695         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9696                 config->save_encoder_crtcs[count++] = encoder->crtc;
9697         }
9698
9699         count = 0;
9700         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9701                 config->save_connector_encoders[count++] = connector->encoder;
9702         }
9703
9704         return 0;
9705 }
9706
9707 static void intel_set_config_restore_state(struct drm_device *dev,
9708                                            struct intel_set_config *config)
9709 {
9710         struct intel_encoder *encoder;
9711         struct intel_connector *connector;
9712         int count;
9713
9714         count = 0;
9715         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9716                 encoder->new_crtc =
9717                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9718         }
9719
9720         count = 0;
9721         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9722                 connector->new_encoder =
9723                         to_intel_encoder(config->save_connector_encoders[count++]);
9724         }
9725 }
9726
9727 static bool
9728 is_crtc_connector_off(struct drm_mode_set *set)
9729 {
9730         int i;
9731
9732         if (set->num_connectors == 0)
9733                 return false;
9734
9735         if (WARN_ON(set->connectors == NULL))
9736                 return false;
9737
9738         for (i = 0; i < set->num_connectors; i++)
9739                 if (set->connectors[i]->encoder &&
9740                     set->connectors[i]->encoder->crtc == set->crtc &&
9741                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9742                         return true;
9743
9744         return false;
9745 }
9746
9747 static void
9748 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9749                                       struct intel_set_config *config)
9750 {
9751
9752         /* We should be able to check here if the fb has the same properties
9753          * and then just flip_or_move it */
9754         if (is_crtc_connector_off(set)) {
9755                 config->mode_changed = true;
9756         } else if (set->crtc->fb != set->fb) {
9757                 /* If we have no fb then treat it as a full mode set */
9758                 if (set->crtc->fb == NULL) {
9759                         struct intel_crtc *intel_crtc =
9760                                 to_intel_crtc(set->crtc);
9761
9762                         if (intel_crtc->active && i915_fastboot) {
9763                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9764                                 config->fb_changed = true;
9765                         } else {
9766                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9767                                 config->mode_changed = true;
9768                         }
9769                 } else if (set->fb == NULL) {
9770                         config->mode_changed = true;
9771                 } else if (set->fb->pixel_format !=
9772                            set->crtc->fb->pixel_format) {
9773                         config->mode_changed = true;
9774                 } else {
9775                         config->fb_changed = true;
9776                 }
9777         }
9778
9779         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9780                 config->fb_changed = true;
9781
9782         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9783                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9784                 drm_mode_debug_printmodeline(&set->crtc->mode);
9785                 drm_mode_debug_printmodeline(set->mode);
9786                 config->mode_changed = true;
9787         }
9788
9789         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9790                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9791 }
9792
9793 static int
9794 intel_modeset_stage_output_state(struct drm_device *dev,
9795                                  struct drm_mode_set *set,
9796                                  struct intel_set_config *config)
9797 {
9798         struct drm_crtc *new_crtc;
9799         struct intel_connector *connector;
9800         struct intel_encoder *encoder;
9801         int ro;
9802
9803         /* The upper layers ensure that we either disable a crtc or have a list
9804          * of connectors. For paranoia, double-check this. */
9805         WARN_ON(!set->fb && (set->num_connectors != 0));
9806         WARN_ON(set->fb && (set->num_connectors == 0));
9807
9808         list_for_each_entry(connector, &dev->mode_config.connector_list,
9809                             base.head) {
9810                 /* Otherwise traverse passed in connector list and get encoders
9811                  * for them. */
9812                 for (ro = 0; ro < set->num_connectors; ro++) {
9813                         if (set->connectors[ro] == &connector->base) {
9814                                 connector->new_encoder = connector->encoder;
9815                                 break;
9816                         }
9817                 }
9818
9819                 /* If we disable the crtc, disable all its connectors. Also, if
9820                  * the connector is on the changing crtc but not on the new
9821                  * connector list, disable it. */
9822                 if ((!set->fb || ro == set->num_connectors) &&
9823                     connector->base.encoder &&
9824                     connector->base.encoder->crtc == set->crtc) {
9825                         connector->new_encoder = NULL;
9826
9827                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9828                                 connector->base.base.id,
9829                                 drm_get_connector_name(&connector->base));
9830                 }
9831
9832
9833                 if (&connector->new_encoder->base != connector->base.encoder) {
9834                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9835                         config->mode_changed = true;
9836                 }
9837         }
9838         /* connector->new_encoder is now updated for all connectors. */
9839
9840         /* Update crtc of enabled connectors. */
9841         list_for_each_entry(connector, &dev->mode_config.connector_list,
9842                             base.head) {
9843                 if (!connector->new_encoder)
9844                         continue;
9845
9846                 new_crtc = connector->new_encoder->base.crtc;
9847
9848                 for (ro = 0; ro < set->num_connectors; ro++) {
9849                         if (set->connectors[ro] == &connector->base)
9850                                 new_crtc = set->crtc;
9851                 }
9852
9853                 /* Make sure the new CRTC will work with the encoder */
9854                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9855                                            new_crtc)) {
9856                         return -EINVAL;
9857                 }
9858                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9859
9860                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9861                         connector->base.base.id,
9862                         drm_get_connector_name(&connector->base),
9863                         new_crtc->base.id);
9864         }
9865
9866         /* Check for any encoders that needs to be disabled. */
9867         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9868                             base.head) {
9869                 list_for_each_entry(connector,
9870                                     &dev->mode_config.connector_list,
9871                                     base.head) {
9872                         if (connector->new_encoder == encoder) {
9873                                 WARN_ON(!connector->new_encoder->new_crtc);
9874
9875                                 goto next_encoder;
9876                         }
9877                 }
9878                 encoder->new_crtc = NULL;
9879 next_encoder:
9880                 /* Only now check for crtc changes so we don't miss encoders
9881                  * that will be disabled. */
9882                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9883                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9884                         config->mode_changed = true;
9885                 }
9886         }
9887         /* Now we've also updated encoder->new_crtc for all encoders. */
9888
9889         return 0;
9890 }
9891
9892 static int intel_crtc_set_config(struct drm_mode_set *set)
9893 {
9894         struct drm_device *dev;
9895         struct drm_mode_set save_set;
9896         struct intel_set_config *config;
9897         int ret;
9898
9899         BUG_ON(!set);
9900         BUG_ON(!set->crtc);
9901         BUG_ON(!set->crtc->helper_private);
9902
9903         /* Enforce sane interface api - has been abused by the fb helper. */
9904         BUG_ON(!set->mode && set->fb);
9905         BUG_ON(set->fb && set->num_connectors == 0);
9906
9907         if (set->fb) {
9908                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9909                                 set->crtc->base.id, set->fb->base.id,
9910                                 (int)set->num_connectors, set->x, set->y);
9911         } else {
9912                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9913         }
9914
9915         dev = set->crtc->dev;
9916
9917         ret = -ENOMEM;
9918         config = kzalloc(sizeof(*config), GFP_KERNEL);
9919         if (!config)
9920                 goto out_config;
9921
9922         ret = intel_set_config_save_state(dev, config);
9923         if (ret)
9924                 goto out_config;
9925
9926         save_set.crtc = set->crtc;
9927         save_set.mode = &set->crtc->mode;
9928         save_set.x = set->crtc->x;
9929         save_set.y = set->crtc->y;
9930         save_set.fb = set->crtc->fb;
9931
9932         /* Compute whether we need a full modeset, only an fb base update or no
9933          * change at all. In the future we might also check whether only the
9934          * mode changed, e.g. for LVDS where we only change the panel fitter in
9935          * such cases. */
9936         intel_set_config_compute_mode_changes(set, config);
9937
9938         ret = intel_modeset_stage_output_state(dev, set, config);
9939         if (ret)
9940                 goto fail;
9941
9942         if (config->mode_changed) {
9943                 ret = intel_set_mode(set->crtc, set->mode,
9944                                      set->x, set->y, set->fb);
9945         } else if (config->fb_changed) {
9946                 intel_crtc_wait_for_pending_flips(set->crtc);
9947
9948                 ret = intel_pipe_set_base(set->crtc,
9949                                           set->x, set->y, set->fb);
9950         }
9951
9952         if (ret) {
9953                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9954                               set->crtc->base.id, ret);
9955 fail:
9956                 intel_set_config_restore_state(dev, config);
9957
9958                 /* Try to restore the config */
9959                 if (config->mode_changed &&
9960                     intel_set_mode(save_set.crtc, save_set.mode,
9961                                    save_set.x, save_set.y, save_set.fb))
9962                         DRM_ERROR("failed to restore config after modeset failure\n");
9963         }
9964
9965 out_config:
9966         intel_set_config_free(config);
9967         return ret;
9968 }
9969
9970 static const struct drm_crtc_funcs intel_crtc_funcs = {
9971         .cursor_set = intel_crtc_cursor_set,
9972         .cursor_move = intel_crtc_cursor_move,
9973         .gamma_set = intel_crtc_gamma_set,
9974         .set_config = intel_crtc_set_config,
9975         .destroy = intel_crtc_destroy,
9976         .page_flip = intel_crtc_page_flip,
9977 };
9978
9979 static void intel_cpu_pll_init(struct drm_device *dev)
9980 {
9981         if (HAS_DDI(dev))
9982                 intel_ddi_pll_init(dev);
9983 }
9984
9985 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9986                                       struct intel_shared_dpll *pll,
9987                                       struct intel_dpll_hw_state *hw_state)
9988 {
9989         uint32_t val;
9990
9991         val = I915_READ(PCH_DPLL(pll->id));
9992         hw_state->dpll = val;
9993         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9994         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9995
9996         return val & DPLL_VCO_ENABLE;
9997 }
9998
9999 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10000                                   struct intel_shared_dpll *pll)
10001 {
10002         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10003         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10004 }
10005
10006 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10007                                 struct intel_shared_dpll *pll)
10008 {
10009         /* PCH refclock must be enabled first */
10010         assert_pch_refclk_enabled(dev_priv);
10011
10012         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10013
10014         /* Wait for the clocks to stabilize. */
10015         POSTING_READ(PCH_DPLL(pll->id));
10016         udelay(150);
10017
10018         /* The pixel multiplier can only be updated once the
10019          * DPLL is enabled and the clocks are stable.
10020          *
10021          * So write it again.
10022          */
10023         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10024         POSTING_READ(PCH_DPLL(pll->id));
10025         udelay(200);
10026 }
10027
10028 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10029                                  struct intel_shared_dpll *pll)
10030 {
10031         struct drm_device *dev = dev_priv->dev;
10032         struct intel_crtc *crtc;
10033
10034         /* Make sure no transcoder isn't still depending on us. */
10035         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10036                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10037                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10038         }
10039
10040         I915_WRITE(PCH_DPLL(pll->id), 0);
10041         POSTING_READ(PCH_DPLL(pll->id));
10042         udelay(200);
10043 }
10044
10045 static char *ibx_pch_dpll_names[] = {
10046         "PCH DPLL A",
10047         "PCH DPLL B",
10048 };
10049
10050 static void ibx_pch_dpll_init(struct drm_device *dev)
10051 {
10052         struct drm_i915_private *dev_priv = dev->dev_private;
10053         int i;
10054
10055         dev_priv->num_shared_dpll = 2;
10056
10057         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10058                 dev_priv->shared_dplls[i].id = i;
10059                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10060                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10061                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10062                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10063                 dev_priv->shared_dplls[i].get_hw_state =
10064                         ibx_pch_dpll_get_hw_state;
10065         }
10066 }
10067
10068 static void intel_shared_dpll_init(struct drm_device *dev)
10069 {
10070         struct drm_i915_private *dev_priv = dev->dev_private;
10071
10072         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10073                 ibx_pch_dpll_init(dev);
10074         else
10075                 dev_priv->num_shared_dpll = 0;
10076
10077         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10078         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
10079                       dev_priv->num_shared_dpll);
10080 }
10081
10082 static void intel_crtc_init(struct drm_device *dev, int pipe)
10083 {
10084         drm_i915_private_t *dev_priv = dev->dev_private;
10085         struct intel_crtc *intel_crtc;
10086         int i;
10087
10088         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10089         if (intel_crtc == NULL)
10090                 return;
10091
10092         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10093
10094         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10095         for (i = 0; i < 256; i++) {
10096                 intel_crtc->lut_r[i] = i;
10097                 intel_crtc->lut_g[i] = i;
10098                 intel_crtc->lut_b[i] = i;
10099         }
10100
10101         /* Swap pipes & planes for FBC on pre-965 */
10102         intel_crtc->pipe = pipe;
10103         intel_crtc->plane = pipe;
10104         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
10105                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10106                 intel_crtc->plane = !pipe;
10107         }
10108
10109         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10110                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10111         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10112         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10113
10114         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10115 }
10116
10117 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10118 {
10119         struct drm_encoder *encoder = connector->base.encoder;
10120
10121         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10122
10123         if (!encoder)
10124                 return INVALID_PIPE;
10125
10126         return to_intel_crtc(encoder->crtc)->pipe;
10127 }
10128
10129 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10130                                 struct drm_file *file)
10131 {
10132         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10133         struct drm_mode_object *drmmode_obj;
10134         struct intel_crtc *crtc;
10135
10136         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10137                 return -ENODEV;
10138
10139         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10140                         DRM_MODE_OBJECT_CRTC);
10141
10142         if (!drmmode_obj) {
10143                 DRM_ERROR("no such CRTC id\n");
10144                 return -ENOENT;
10145         }
10146
10147         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10148         pipe_from_crtc_id->pipe = crtc->pipe;
10149
10150         return 0;
10151 }
10152
10153 static int intel_encoder_clones(struct intel_encoder *encoder)
10154 {
10155         struct drm_device *dev = encoder->base.dev;
10156         struct intel_encoder *source_encoder;
10157         int index_mask = 0;
10158         int entry = 0;
10159
10160         list_for_each_entry(source_encoder,
10161                             &dev->mode_config.encoder_list, base.head) {
10162
10163                 if (encoder == source_encoder)
10164                         index_mask |= (1 << entry);
10165
10166                 /* Intel hw has only one MUX where enocoders could be cloned. */
10167                 if (encoder->cloneable && source_encoder->cloneable)
10168                         index_mask |= (1 << entry);
10169
10170                 entry++;
10171         }
10172
10173         return index_mask;
10174 }
10175
10176 static bool has_edp_a(struct drm_device *dev)
10177 {
10178         struct drm_i915_private *dev_priv = dev->dev_private;
10179
10180         if (!IS_MOBILE(dev))
10181                 return false;
10182
10183         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10184                 return false;
10185
10186         if (IS_GEN5(dev) &&
10187             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
10188                 return false;
10189
10190         return true;
10191 }
10192
10193 static void intel_setup_outputs(struct drm_device *dev)
10194 {
10195         struct drm_i915_private *dev_priv = dev->dev_private;
10196         struct intel_encoder *encoder;
10197         bool dpd_is_edp = false;
10198
10199         intel_lvds_init(dev);
10200
10201         if (!IS_ULT(dev))
10202                 intel_crt_init(dev);
10203
10204         if (HAS_DDI(dev)) {
10205                 int found;
10206
10207                 /* Haswell uses DDI functions to detect digital outputs */
10208                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10209                 /* DDI A only supports eDP */
10210                 if (found)
10211                         intel_ddi_init(dev, PORT_A);
10212
10213                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10214                  * register */
10215                 found = I915_READ(SFUSE_STRAP);
10216
10217                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10218                         intel_ddi_init(dev, PORT_B);
10219                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10220                         intel_ddi_init(dev, PORT_C);
10221                 if (found & SFUSE_STRAP_DDID_DETECTED)
10222                         intel_ddi_init(dev, PORT_D);
10223         } else if (HAS_PCH_SPLIT(dev)) {
10224                 int found;
10225                 dpd_is_edp = intel_dpd_is_edp(dev);
10226
10227                 if (has_edp_a(dev))
10228                         intel_dp_init(dev, DP_A, PORT_A);
10229
10230                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10231                         /* PCH SDVOB multiplex with HDMIB */
10232                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10233                         if (!found)
10234                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10235                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10236                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10237                 }
10238
10239                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10240                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10241
10242                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10243                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10244
10245                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10246                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10247
10248                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10249                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10250         } else if (IS_VALLEYVIEW(dev)) {
10251                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10252                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10253                                         PORT_B);
10254                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10255                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10256                 }
10257
10258                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10259                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10260                                         PORT_C);
10261                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10262                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
10263                                               PORT_C);
10264                 }
10265
10266                 intel_dsi_init(dev);
10267         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10268                 bool found = false;
10269
10270                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10271                         DRM_DEBUG_KMS("probing SDVOB\n");
10272                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10273                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10274                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10275                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10276                         }
10277
10278                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10279                                 intel_dp_init(dev, DP_B, PORT_B);
10280                 }
10281
10282                 /* Before G4X SDVOC doesn't have its own detect register */
10283
10284                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10285                         DRM_DEBUG_KMS("probing SDVOC\n");
10286                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10287                 }
10288
10289                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10290
10291                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10292                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10293                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10294                         }
10295                         if (SUPPORTS_INTEGRATED_DP(dev))
10296                                 intel_dp_init(dev, DP_C, PORT_C);
10297                 }
10298
10299                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10300                     (I915_READ(DP_D) & DP_DETECTED))
10301                         intel_dp_init(dev, DP_D, PORT_D);
10302         } else if (IS_GEN2(dev))
10303                 intel_dvo_init(dev);
10304
10305         if (SUPPORTS_TV(dev))
10306                 intel_tv_init(dev);
10307
10308         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10309                 encoder->base.possible_crtcs = encoder->crtc_mask;
10310                 encoder->base.possible_clones =
10311                         intel_encoder_clones(encoder);
10312         }
10313
10314         intel_init_pch_refclk(dev);
10315
10316         drm_helper_move_panel_connectors_to_head(dev);
10317 }
10318
10319 void intel_framebuffer_fini(struct intel_framebuffer *fb)
10320 {
10321         drm_framebuffer_cleanup(&fb->base);
10322         WARN_ON(!fb->obj->framebuffer_references--);
10323         drm_gem_object_unreference_unlocked(&fb->obj->base);
10324 }
10325
10326 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10327 {
10328         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10329
10330         intel_framebuffer_fini(intel_fb);
10331         kfree(intel_fb);
10332 }
10333
10334 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10335                                                 struct drm_file *file,
10336                                                 unsigned int *handle)
10337 {
10338         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10339         struct drm_i915_gem_object *obj = intel_fb->obj;
10340
10341         return drm_gem_handle_create(file, &obj->base, handle);
10342 }
10343
10344 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10345         .destroy = intel_user_framebuffer_destroy,
10346         .create_handle = intel_user_framebuffer_create_handle,
10347 };
10348
10349 int intel_framebuffer_init(struct drm_device *dev,
10350                            struct intel_framebuffer *intel_fb,
10351                            struct drm_mode_fb_cmd2 *mode_cmd,
10352                            struct drm_i915_gem_object *obj)
10353 {
10354         int aligned_height, tile_height;
10355         int pitch_limit;
10356         int ret;
10357
10358         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10359
10360         if (obj->tiling_mode == I915_TILING_Y) {
10361                 DRM_DEBUG("hardware does not support tiling Y\n");
10362                 return -EINVAL;
10363         }
10364
10365         if (mode_cmd->pitches[0] & 63) {
10366                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10367                           mode_cmd->pitches[0]);
10368                 return -EINVAL;
10369         }
10370
10371         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10372                 pitch_limit = 32*1024;
10373         } else if (INTEL_INFO(dev)->gen >= 4) {
10374                 if (obj->tiling_mode)
10375                         pitch_limit = 16*1024;
10376                 else
10377                         pitch_limit = 32*1024;
10378         } else if (INTEL_INFO(dev)->gen >= 3) {
10379                 if (obj->tiling_mode)
10380                         pitch_limit = 8*1024;
10381                 else
10382                         pitch_limit = 16*1024;
10383         } else
10384                 /* XXX DSPC is limited to 4k tiled */
10385                 pitch_limit = 8*1024;
10386
10387         if (mode_cmd->pitches[0] > pitch_limit) {
10388                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10389                           obj->tiling_mode ? "tiled" : "linear",
10390                           mode_cmd->pitches[0], pitch_limit);
10391                 return -EINVAL;
10392         }
10393
10394         if (obj->tiling_mode != I915_TILING_NONE &&
10395             mode_cmd->pitches[0] != obj->stride) {
10396                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10397                           mode_cmd->pitches[0], obj->stride);
10398                 return -EINVAL;
10399         }
10400
10401         /* Reject formats not supported by any plane early. */
10402         switch (mode_cmd->pixel_format) {
10403         case DRM_FORMAT_C8:
10404         case DRM_FORMAT_RGB565:
10405         case DRM_FORMAT_XRGB8888:
10406         case DRM_FORMAT_ARGB8888:
10407                 break;
10408         case DRM_FORMAT_XRGB1555:
10409         case DRM_FORMAT_ARGB1555:
10410                 if (INTEL_INFO(dev)->gen > 3) {
10411                         DRM_DEBUG("unsupported pixel format: %s\n",
10412                                   drm_get_format_name(mode_cmd->pixel_format));
10413                         return -EINVAL;
10414                 }
10415                 break;
10416         case DRM_FORMAT_XBGR8888:
10417         case DRM_FORMAT_ABGR8888:
10418         case DRM_FORMAT_XRGB2101010:
10419         case DRM_FORMAT_ARGB2101010:
10420         case DRM_FORMAT_XBGR2101010:
10421         case DRM_FORMAT_ABGR2101010:
10422                 if (INTEL_INFO(dev)->gen < 4) {
10423                         DRM_DEBUG("unsupported pixel format: %s\n",
10424                                   drm_get_format_name(mode_cmd->pixel_format));
10425                         return -EINVAL;
10426                 }
10427                 break;
10428         case DRM_FORMAT_YUYV:
10429         case DRM_FORMAT_UYVY:
10430         case DRM_FORMAT_YVYU:
10431         case DRM_FORMAT_VYUY:
10432                 if (INTEL_INFO(dev)->gen < 5) {
10433                         DRM_DEBUG("unsupported pixel format: %s\n",
10434                                   drm_get_format_name(mode_cmd->pixel_format));
10435                         return -EINVAL;
10436                 }
10437                 break;
10438         default:
10439                 DRM_DEBUG("unsupported pixel format: %s\n",
10440                           drm_get_format_name(mode_cmd->pixel_format));
10441                 return -EINVAL;
10442         }
10443
10444         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10445         if (mode_cmd->offsets[0] != 0)
10446                 return -EINVAL;
10447
10448         tile_height = IS_GEN2(dev) ? 16 : 8;
10449         aligned_height = ALIGN(mode_cmd->height,
10450                                obj->tiling_mode ? tile_height : 1);
10451         /* FIXME drm helper for size checks (especially planar formats)? */
10452         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10453                 return -EINVAL;
10454
10455         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10456         intel_fb->obj = obj;
10457         intel_fb->obj->framebuffer_references++;
10458
10459         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10460         if (ret) {
10461                 DRM_ERROR("framebuffer init failed %d\n", ret);
10462                 return ret;
10463         }
10464
10465         return 0;
10466 }
10467
10468 static struct drm_framebuffer *
10469 intel_user_framebuffer_create(struct drm_device *dev,
10470                               struct drm_file *filp,
10471                               struct drm_mode_fb_cmd2 *mode_cmd)
10472 {
10473         struct drm_i915_gem_object *obj;
10474
10475         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10476                                                 mode_cmd->handles[0]));
10477         if (&obj->base == NULL)
10478                 return ERR_PTR(-ENOENT);
10479
10480         return intel_framebuffer_create(dev, mode_cmd, obj);
10481 }
10482
10483 #ifndef CONFIG_DRM_I915_FBDEV
10484 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10485 {
10486 }
10487 #endif
10488
10489 static const struct drm_mode_config_funcs intel_mode_funcs = {
10490         .fb_create = intel_user_framebuffer_create,
10491         .output_poll_changed = intel_fbdev_output_poll_changed,
10492 };
10493
10494 /* Set up chip specific display functions */
10495 static void intel_init_display(struct drm_device *dev)
10496 {
10497         struct drm_i915_private *dev_priv = dev->dev_private;
10498
10499         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10500                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10501         else if (IS_VALLEYVIEW(dev))
10502                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10503         else if (IS_PINEVIEW(dev))
10504                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10505         else
10506                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10507
10508         if (HAS_DDI(dev)) {
10509                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10510                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10511                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10512                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10513                 dev_priv->display.off = haswell_crtc_off;
10514                 dev_priv->display.update_plane = ironlake_update_plane;
10515         } else if (HAS_PCH_SPLIT(dev)) {
10516                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10517                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10518                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10519                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10520                 dev_priv->display.off = ironlake_crtc_off;
10521                 dev_priv->display.update_plane = ironlake_update_plane;
10522         } else if (IS_VALLEYVIEW(dev)) {
10523                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10524                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10525                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10526                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10527                 dev_priv->display.off = i9xx_crtc_off;
10528                 dev_priv->display.update_plane = i9xx_update_plane;
10529         } else {
10530                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10531                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10532                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10533                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10534                 dev_priv->display.off = i9xx_crtc_off;
10535                 dev_priv->display.update_plane = i9xx_update_plane;
10536         }
10537
10538         /* Returns the core display clock speed */
10539         if (IS_VALLEYVIEW(dev))
10540                 dev_priv->display.get_display_clock_speed =
10541                         valleyview_get_display_clock_speed;
10542         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10543                 dev_priv->display.get_display_clock_speed =
10544                         i945_get_display_clock_speed;
10545         else if (IS_I915G(dev))
10546                 dev_priv->display.get_display_clock_speed =
10547                         i915_get_display_clock_speed;
10548         else if (IS_I945GM(dev) || IS_845G(dev))
10549                 dev_priv->display.get_display_clock_speed =
10550                         i9xx_misc_get_display_clock_speed;
10551         else if (IS_PINEVIEW(dev))
10552                 dev_priv->display.get_display_clock_speed =
10553                         pnv_get_display_clock_speed;
10554         else if (IS_I915GM(dev))
10555                 dev_priv->display.get_display_clock_speed =
10556                         i915gm_get_display_clock_speed;
10557         else if (IS_I865G(dev))
10558                 dev_priv->display.get_display_clock_speed =
10559                         i865_get_display_clock_speed;
10560         else if (IS_I85X(dev))
10561                 dev_priv->display.get_display_clock_speed =
10562                         i855_get_display_clock_speed;
10563         else /* 852, 830 */
10564                 dev_priv->display.get_display_clock_speed =
10565                         i830_get_display_clock_speed;
10566
10567         if (HAS_PCH_SPLIT(dev)) {
10568                 if (IS_GEN5(dev)) {
10569                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10570                         dev_priv->display.write_eld = ironlake_write_eld;
10571                 } else if (IS_GEN6(dev)) {
10572                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10573                         dev_priv->display.write_eld = ironlake_write_eld;
10574                 } else if (IS_IVYBRIDGE(dev)) {
10575                         /* FIXME: detect B0+ stepping and use auto training */
10576                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10577                         dev_priv->display.write_eld = ironlake_write_eld;
10578                         dev_priv->display.modeset_global_resources =
10579                                 ivb_modeset_global_resources;
10580                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
10581                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10582                         dev_priv->display.write_eld = haswell_write_eld;
10583                         dev_priv->display.modeset_global_resources =
10584                                 haswell_modeset_global_resources;
10585                 }
10586         } else if (IS_G4X(dev)) {
10587                 dev_priv->display.write_eld = g4x_write_eld;
10588         } else if (IS_VALLEYVIEW(dev)) {
10589                 dev_priv->display.modeset_global_resources =
10590                         valleyview_modeset_global_resources;
10591                 dev_priv->display.write_eld = ironlake_write_eld;
10592         }
10593
10594         /* Default just returns -ENODEV to indicate unsupported */
10595         dev_priv->display.queue_flip = intel_default_queue_flip;
10596
10597         switch (INTEL_INFO(dev)->gen) {
10598         case 2:
10599                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10600                 break;
10601
10602         case 3:
10603                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10604                 break;
10605
10606         case 4:
10607         case 5:
10608                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10609                 break;
10610
10611         case 6:
10612                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10613                 break;
10614         case 7:
10615         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
10616                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10617                 break;
10618         }
10619
10620         intel_panel_init_backlight_funcs(dev);
10621 }
10622
10623 /*
10624  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10625  * resume, or other times.  This quirk makes sure that's the case for
10626  * affected systems.
10627  */
10628 static void quirk_pipea_force(struct drm_device *dev)
10629 {
10630         struct drm_i915_private *dev_priv = dev->dev_private;
10631
10632         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10633         DRM_INFO("applying pipe a force quirk\n");
10634 }
10635
10636 /*
10637  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10638  */
10639 static void quirk_ssc_force_disable(struct drm_device *dev)
10640 {
10641         struct drm_i915_private *dev_priv = dev->dev_private;
10642         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10643         DRM_INFO("applying lvds SSC disable quirk\n");
10644 }
10645
10646 /*
10647  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10648  * brightness value
10649  */
10650 static void quirk_invert_brightness(struct drm_device *dev)
10651 {
10652         struct drm_i915_private *dev_priv = dev->dev_private;
10653         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10654         DRM_INFO("applying inverted panel brightness quirk\n");
10655 }
10656
10657 struct intel_quirk {
10658         int device;
10659         int subsystem_vendor;
10660         int subsystem_device;
10661         void (*hook)(struct drm_device *dev);
10662 };
10663
10664 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10665 struct intel_dmi_quirk {
10666         void (*hook)(struct drm_device *dev);
10667         const struct dmi_system_id (*dmi_id_list)[];
10668 };
10669
10670 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10671 {
10672         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10673         return 1;
10674 }
10675
10676 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10677         {
10678                 .dmi_id_list = &(const struct dmi_system_id[]) {
10679                         {
10680                                 .callback = intel_dmi_reverse_brightness,
10681                                 .ident = "NCR Corporation",
10682                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10683                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
10684                                 },
10685                         },
10686                         { }  /* terminating entry */
10687                 },
10688                 .hook = quirk_invert_brightness,
10689         },
10690 };
10691
10692 static struct intel_quirk intel_quirks[] = {
10693         /* HP Mini needs pipe A force quirk (LP: #322104) */
10694         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10695
10696         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10697         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10698
10699         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10700         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10701
10702         /* 830 needs to leave pipe A & dpll A up */
10703         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10704
10705         /* Lenovo U160 cannot use SSC on LVDS */
10706         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10707
10708         /* Sony Vaio Y cannot use SSC on LVDS */
10709         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10710
10711         /*
10712          * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10713          * seem to use inverted backlight PWM.
10714          */
10715         { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10716 };
10717
10718 static void intel_init_quirks(struct drm_device *dev)
10719 {
10720         struct pci_dev *d = dev->pdev;
10721         int i;
10722
10723         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10724                 struct intel_quirk *q = &intel_quirks[i];
10725
10726                 if (d->device == q->device &&
10727                     (d->subsystem_vendor == q->subsystem_vendor ||
10728                      q->subsystem_vendor == PCI_ANY_ID) &&
10729                     (d->subsystem_device == q->subsystem_device ||
10730                      q->subsystem_device == PCI_ANY_ID))
10731                         q->hook(dev);
10732         }
10733         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10734                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10735                         intel_dmi_quirks[i].hook(dev);
10736         }
10737 }
10738
10739 /* Disable the VGA plane that we never use */
10740 static void i915_disable_vga(struct drm_device *dev)
10741 {
10742         struct drm_i915_private *dev_priv = dev->dev_private;
10743         u8 sr1;
10744         u32 vga_reg = i915_vgacntrl_reg(dev);
10745
10746         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10747         outb(SR01, VGA_SR_INDEX);
10748         sr1 = inb(VGA_SR_DATA);
10749         outb(sr1 | 1<<5, VGA_SR_DATA);
10750         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10751         udelay(300);
10752
10753         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10754         POSTING_READ(vga_reg);
10755 }
10756
10757 void intel_modeset_init_hw(struct drm_device *dev)
10758 {
10759         struct drm_i915_private *dev_priv = dev->dev_private;
10760
10761         intel_prepare_ddi(dev);
10762
10763         intel_init_clock_gating(dev);
10764
10765         /* Enable the CRI clock source so we can get at the display */
10766         if (IS_VALLEYVIEW(dev))
10767                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
10768                            DPLL_INTEGRATED_CRI_CLK_VLV);
10769
10770         intel_init_dpio(dev);
10771
10772         mutex_lock(&dev->struct_mutex);
10773         intel_enable_gt_powersave(dev);
10774         mutex_unlock(&dev->struct_mutex);
10775 }
10776
10777 void intel_modeset_suspend_hw(struct drm_device *dev)
10778 {
10779         intel_suspend_hw(dev);
10780 }
10781
10782 void intel_modeset_init(struct drm_device *dev)
10783 {
10784         struct drm_i915_private *dev_priv = dev->dev_private;
10785         int i, j, ret;
10786
10787         drm_mode_config_init(dev);
10788
10789         dev->mode_config.min_width = 0;
10790         dev->mode_config.min_height = 0;
10791
10792         dev->mode_config.preferred_depth = 24;
10793         dev->mode_config.prefer_shadow = 1;
10794
10795         dev->mode_config.funcs = &intel_mode_funcs;
10796
10797         intel_init_quirks(dev);
10798
10799         intel_init_pm(dev);
10800
10801         if (INTEL_INFO(dev)->num_pipes == 0)
10802                 return;
10803
10804         intel_init_display(dev);
10805
10806         if (IS_GEN2(dev)) {
10807                 dev->mode_config.max_width = 2048;
10808                 dev->mode_config.max_height = 2048;
10809         } else if (IS_GEN3(dev)) {
10810                 dev->mode_config.max_width = 4096;
10811                 dev->mode_config.max_height = 4096;
10812         } else {
10813                 dev->mode_config.max_width = 8192;
10814                 dev->mode_config.max_height = 8192;
10815         }
10816         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10817
10818         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10819                       INTEL_INFO(dev)->num_pipes,
10820                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10821
10822         for_each_pipe(i) {
10823                 intel_crtc_init(dev, i);
10824                 for (j = 0; j < dev_priv->num_plane; j++) {
10825                         ret = intel_plane_init(dev, i, j);
10826                         if (ret)
10827                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10828                                               pipe_name(i), sprite_name(i, j), ret);
10829                 }
10830         }
10831
10832         intel_cpu_pll_init(dev);
10833         intel_shared_dpll_init(dev);
10834
10835         /* Just disable it once at startup */
10836         i915_disable_vga(dev);
10837         intel_setup_outputs(dev);
10838
10839         /* Just in case the BIOS is doing something questionable. */
10840         intel_disable_fbc(dev);
10841 }
10842
10843 static void
10844 intel_connector_break_all_links(struct intel_connector *connector)
10845 {
10846         connector->base.dpms = DRM_MODE_DPMS_OFF;
10847         connector->base.encoder = NULL;
10848         connector->encoder->connectors_active = false;
10849         connector->encoder->base.crtc = NULL;
10850 }
10851
10852 static void intel_enable_pipe_a(struct drm_device *dev)
10853 {
10854         struct intel_connector *connector;
10855         struct drm_connector *crt = NULL;
10856         struct intel_load_detect_pipe load_detect_temp;
10857
10858         /* We can't just switch on the pipe A, we need to set things up with a
10859          * proper mode and output configuration. As a gross hack, enable pipe A
10860          * by enabling the load detect pipe once. */
10861         list_for_each_entry(connector,
10862                             &dev->mode_config.connector_list,
10863                             base.head) {
10864                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10865                         crt = &connector->base;
10866                         break;
10867                 }
10868         }
10869
10870         if (!crt)
10871                 return;
10872
10873         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10874                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10875
10876
10877 }
10878
10879 static bool
10880 intel_check_plane_mapping(struct intel_crtc *crtc)
10881 {
10882         struct drm_device *dev = crtc->base.dev;
10883         struct drm_i915_private *dev_priv = dev->dev_private;
10884         u32 reg, val;
10885
10886         if (INTEL_INFO(dev)->num_pipes == 1)
10887                 return true;
10888
10889         reg = DSPCNTR(!crtc->plane);
10890         val = I915_READ(reg);
10891
10892         if ((val & DISPLAY_PLANE_ENABLE) &&
10893             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10894                 return false;
10895
10896         return true;
10897 }
10898
10899 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10900 {
10901         struct drm_device *dev = crtc->base.dev;
10902         struct drm_i915_private *dev_priv = dev->dev_private;
10903         u32 reg;
10904
10905         /* Clear any frame start delays used for debugging left by the BIOS */
10906         reg = PIPECONF(crtc->config.cpu_transcoder);
10907         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10908
10909         /* We need to sanitize the plane -> pipe mapping first because this will
10910          * disable the crtc (and hence change the state) if it is wrong. Note
10911          * that gen4+ has a fixed plane -> pipe mapping.  */
10912         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10913                 struct intel_connector *connector;
10914                 bool plane;
10915
10916                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10917                               crtc->base.base.id);
10918
10919                 /* Pipe has the wrong plane attached and the plane is active.
10920                  * Temporarily change the plane mapping and disable everything
10921                  * ...  */
10922                 plane = crtc->plane;
10923                 crtc->plane = !plane;
10924                 dev_priv->display.crtc_disable(&crtc->base);
10925                 crtc->plane = plane;
10926
10927                 /* ... and break all links. */
10928                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10929                                     base.head) {
10930                         if (connector->encoder->base.crtc != &crtc->base)
10931                                 continue;
10932
10933                         intel_connector_break_all_links(connector);
10934                 }
10935
10936                 WARN_ON(crtc->active);
10937                 crtc->base.enabled = false;
10938         }
10939
10940         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10941             crtc->pipe == PIPE_A && !crtc->active) {
10942                 /* BIOS forgot to enable pipe A, this mostly happens after
10943                  * resume. Force-enable the pipe to fix this, the update_dpms
10944                  * call below we restore the pipe to the right state, but leave
10945                  * the required bits on. */
10946                 intel_enable_pipe_a(dev);
10947         }
10948
10949         /* Adjust the state of the output pipe according to whether we
10950          * have active connectors/encoders. */
10951         intel_crtc_update_dpms(&crtc->base);
10952
10953         if (crtc->active != crtc->base.enabled) {
10954                 struct intel_encoder *encoder;
10955
10956                 /* This can happen either due to bugs in the get_hw_state
10957                  * functions or because the pipe is force-enabled due to the
10958                  * pipe A quirk. */
10959                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10960                               crtc->base.base.id,
10961                               crtc->base.enabled ? "enabled" : "disabled",
10962                               crtc->active ? "enabled" : "disabled");
10963
10964                 crtc->base.enabled = crtc->active;
10965
10966                 /* Because we only establish the connector -> encoder ->
10967                  * crtc links if something is active, this means the
10968                  * crtc is now deactivated. Break the links. connector
10969                  * -> encoder links are only establish when things are
10970                  *  actually up, hence no need to break them. */
10971                 WARN_ON(crtc->active);
10972
10973                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10974                         WARN_ON(encoder->connectors_active);
10975                         encoder->base.crtc = NULL;
10976                 }
10977         }
10978 }
10979
10980 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10981 {
10982         struct intel_connector *connector;
10983         struct drm_device *dev = encoder->base.dev;
10984
10985         /* We need to check both for a crtc link (meaning that the
10986          * encoder is active and trying to read from a pipe) and the
10987          * pipe itself being active. */
10988         bool has_active_crtc = encoder->base.crtc &&
10989                 to_intel_crtc(encoder->base.crtc)->active;
10990
10991         if (encoder->connectors_active && !has_active_crtc) {
10992                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10993                               encoder->base.base.id,
10994                               drm_get_encoder_name(&encoder->base));
10995
10996                 /* Connector is active, but has no active pipe. This is
10997                  * fallout from our resume register restoring. Disable
10998                  * the encoder manually again. */
10999                 if (encoder->base.crtc) {
11000                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11001                                       encoder->base.base.id,
11002                                       drm_get_encoder_name(&encoder->base));
11003                         encoder->disable(encoder);
11004                 }
11005
11006                 /* Inconsistent output/port/pipe state happens presumably due to
11007                  * a bug in one of the get_hw_state functions. Or someplace else
11008                  * in our code, like the register restore mess on resume. Clamp
11009                  * things to off as a safer default. */
11010                 list_for_each_entry(connector,
11011                                     &dev->mode_config.connector_list,
11012                                     base.head) {
11013                         if (connector->encoder != encoder)
11014                                 continue;
11015
11016                         intel_connector_break_all_links(connector);
11017                 }
11018         }
11019         /* Enabled encoders without active connectors will be fixed in
11020          * the crtc fixup. */
11021 }
11022
11023 void i915_redisable_vga(struct drm_device *dev)
11024 {
11025         struct drm_i915_private *dev_priv = dev->dev_private;
11026         u32 vga_reg = i915_vgacntrl_reg(dev);
11027
11028         /* This function can be called both from intel_modeset_setup_hw_state or
11029          * at a very early point in our resume sequence, where the power well
11030          * structures are not yet restored. Since this function is at a very
11031          * paranoid "someone might have enabled VGA while we were not looking"
11032          * level, just check if the power well is enabled instead of trying to
11033          * follow the "don't touch the power well if we don't need it" policy
11034          * the rest of the driver uses. */
11035         if (HAS_POWER_WELL(dev) &&
11036             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
11037                 return;
11038
11039         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11040                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11041                 i915_disable_vga(dev);
11042         }
11043 }
11044
11045 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11046 {
11047         struct drm_i915_private *dev_priv = dev->dev_private;
11048         enum pipe pipe;
11049         struct intel_crtc *crtc;
11050         struct intel_encoder *encoder;
11051         struct intel_connector *connector;
11052         int i;
11053
11054         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11055                             base.head) {
11056                 memset(&crtc->config, 0, sizeof(crtc->config));
11057
11058                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11059                                                                  &crtc->config);
11060
11061                 crtc->base.enabled = crtc->active;
11062                 crtc->primary_enabled = crtc->active;
11063
11064                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11065                               crtc->base.base.id,
11066                               crtc->active ? "enabled" : "disabled");
11067         }
11068
11069         /* FIXME: Smash this into the new shared dpll infrastructure. */
11070         if (HAS_DDI(dev))
11071                 intel_ddi_setup_hw_pll_state(dev);
11072
11073         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11074                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11075
11076                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11077                 pll->active = 0;
11078                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11079                                     base.head) {
11080                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11081                                 pll->active++;
11082                 }
11083                 pll->refcount = pll->active;
11084
11085                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11086                               pll->name, pll->refcount, pll->on);
11087         }
11088
11089         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11090                             base.head) {
11091                 pipe = 0;
11092
11093                 if (encoder->get_hw_state(encoder, &pipe)) {
11094                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11095                         encoder->base.crtc = &crtc->base;
11096                         if (encoder->get_config)
11097                                 encoder->get_config(encoder, &crtc->config);
11098                 } else {
11099                         encoder->base.crtc = NULL;
11100                 }
11101
11102                 encoder->connectors_active = false;
11103                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11104                               encoder->base.base.id,
11105                               drm_get_encoder_name(&encoder->base),
11106                               encoder->base.crtc ? "enabled" : "disabled",
11107                               pipe_name(pipe));
11108         }
11109
11110         list_for_each_entry(connector, &dev->mode_config.connector_list,
11111                             base.head) {
11112                 if (connector->get_hw_state(connector)) {
11113                         connector->base.dpms = DRM_MODE_DPMS_ON;
11114                         connector->encoder->connectors_active = true;
11115                         connector->base.encoder = &connector->encoder->base;
11116                 } else {
11117                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11118                         connector->base.encoder = NULL;
11119                 }
11120                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11121                               connector->base.base.id,
11122                               drm_get_connector_name(&connector->base),
11123                               connector->base.encoder ? "enabled" : "disabled");
11124         }
11125 }
11126
11127 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11128  * and i915 state tracking structures. */
11129 void intel_modeset_setup_hw_state(struct drm_device *dev,
11130                                   bool force_restore)
11131 {
11132         struct drm_i915_private *dev_priv = dev->dev_private;
11133         enum pipe pipe;
11134         struct intel_crtc *crtc;
11135         struct intel_encoder *encoder;
11136         int i;
11137
11138         intel_modeset_readout_hw_state(dev);
11139
11140         /*
11141          * Now that we have the config, copy it to each CRTC struct
11142          * Note that this could go away if we move to using crtc_config
11143          * checking everywhere.
11144          */
11145         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11146                             base.head) {
11147                 if (crtc->active && i915_fastboot) {
11148                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
11149
11150                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11151                                       crtc->base.base.id);
11152                         drm_mode_debug_printmodeline(&crtc->base.mode);
11153                 }
11154         }
11155
11156         /* HW state is read out, now we need to sanitize this mess. */
11157         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11158                             base.head) {
11159                 intel_sanitize_encoder(encoder);
11160         }
11161
11162         for_each_pipe(pipe) {
11163                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11164                 intel_sanitize_crtc(crtc);
11165                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11166         }
11167
11168         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11169                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11170
11171                 if (!pll->on || pll->active)
11172                         continue;
11173
11174                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11175
11176                 pll->disable(dev_priv, pll);
11177                 pll->on = false;
11178         }
11179
11180         if (IS_HASWELL(dev))
11181                 ilk_wm_get_hw_state(dev);
11182
11183         if (force_restore) {
11184                 i915_redisable_vga(dev);
11185
11186                 /*
11187                  * We need to use raw interfaces for restoring state to avoid
11188                  * checking (bogus) intermediate states.
11189                  */
11190                 for_each_pipe(pipe) {
11191                         struct drm_crtc *crtc =
11192                                 dev_priv->pipe_to_crtc_mapping[pipe];
11193
11194                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11195                                          crtc->fb);
11196                 }
11197         } else {
11198                 intel_modeset_update_staged_output_state(dev);
11199         }
11200
11201         intel_modeset_check_state(dev);
11202
11203         drm_mode_config_reset(dev);
11204 }
11205
11206 void intel_modeset_gem_init(struct drm_device *dev)
11207 {
11208         intel_modeset_init_hw(dev);
11209
11210         intel_setup_overlay(dev);
11211
11212         intel_modeset_setup_hw_state(dev, false);
11213 }
11214
11215 void intel_modeset_cleanup(struct drm_device *dev)
11216 {
11217         struct drm_i915_private *dev_priv = dev->dev_private;
11218         struct drm_crtc *crtc;
11219         struct drm_connector *connector;
11220
11221         /*
11222          * Interrupts and polling as the first thing to avoid creating havoc.
11223          * Too much stuff here (turning of rps, connectors, ...) would
11224          * experience fancy races otherwise.
11225          */
11226         drm_irq_uninstall(dev);
11227         cancel_work_sync(&dev_priv->hotplug_work);
11228         /*
11229          * Due to the hpd irq storm handling the hotplug work can re-arm the
11230          * poll handlers. Hence disable polling after hpd handling is shut down.
11231          */
11232         drm_kms_helper_poll_fini(dev);
11233
11234         mutex_lock(&dev->struct_mutex);
11235
11236         intel_unregister_dsm_handler();
11237
11238         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11239                 /* Skip inactive CRTCs */
11240                 if (!crtc->fb)
11241                         continue;
11242
11243                 intel_increase_pllclock(crtc);
11244         }
11245
11246         intel_disable_fbc(dev);
11247
11248         intel_disable_gt_powersave(dev);
11249
11250         ironlake_teardown_rc6(dev);
11251
11252         mutex_unlock(&dev->struct_mutex);
11253
11254         /* flush any delayed tasks or pending work */
11255         flush_scheduled_work();
11256
11257         /* destroy the backlight and sysfs files before encoders/connectors */
11258         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11259                 intel_panel_destroy_backlight(connector);
11260                 drm_sysfs_connector_remove(connector);
11261         }
11262
11263         drm_mode_config_cleanup(dev);
11264
11265         intel_cleanup_overlay(dev);
11266 }
11267
11268 /*
11269  * Return which encoder is currently attached for connector.
11270  */
11271 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11272 {
11273         return &intel_attached_encoder(connector)->base;
11274 }
11275
11276 void intel_connector_attach_encoder(struct intel_connector *connector,
11277                                     struct intel_encoder *encoder)
11278 {
11279         connector->encoder = encoder;
11280         drm_mode_connector_attach_encoder(&connector->base,
11281                                           &encoder->base);
11282 }
11283
11284 /*
11285  * set vga decode state - true == enable VGA decode
11286  */
11287 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11288 {
11289         struct drm_i915_private *dev_priv = dev->dev_private;
11290         u16 gmch_ctrl;
11291
11292         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
11293         if (state)
11294                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11295         else
11296                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11297         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
11298         return 0;
11299 }
11300
11301 struct intel_display_error_state {
11302
11303         u32 power_well_driver;
11304
11305         int num_transcoders;
11306
11307         struct intel_cursor_error_state {
11308                 u32 control;
11309                 u32 position;
11310                 u32 base;
11311                 u32 size;
11312         } cursor[I915_MAX_PIPES];
11313
11314         struct intel_pipe_error_state {
11315                 u32 source;
11316         } pipe[I915_MAX_PIPES];
11317
11318         struct intel_plane_error_state {
11319                 u32 control;
11320                 u32 stride;
11321                 u32 size;
11322                 u32 pos;
11323                 u32 addr;
11324                 u32 surface;
11325                 u32 tile_offset;
11326         } plane[I915_MAX_PIPES];
11327
11328         struct intel_transcoder_error_state {
11329                 enum transcoder cpu_transcoder;
11330
11331                 u32 conf;
11332
11333                 u32 htotal;
11334                 u32 hblank;
11335                 u32 hsync;
11336                 u32 vtotal;
11337                 u32 vblank;
11338                 u32 vsync;
11339         } transcoder[4];
11340 };
11341
11342 struct intel_display_error_state *
11343 intel_display_capture_error_state(struct drm_device *dev)
11344 {
11345         drm_i915_private_t *dev_priv = dev->dev_private;
11346         struct intel_display_error_state *error;
11347         int transcoders[] = {
11348                 TRANSCODER_A,
11349                 TRANSCODER_B,
11350                 TRANSCODER_C,
11351                 TRANSCODER_EDP,
11352         };
11353         int i;
11354
11355         if (INTEL_INFO(dev)->num_pipes == 0)
11356                 return NULL;
11357
11358         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11359         if (error == NULL)
11360                 return NULL;
11361
11362         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11363                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11364
11365         for_each_pipe(i) {
11366                 if (!intel_display_power_enabled(dev, POWER_DOMAIN_PIPE(i)))
11367                         continue;
11368
11369                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11370                         error->cursor[i].control = I915_READ(CURCNTR(i));
11371                         error->cursor[i].position = I915_READ(CURPOS(i));
11372                         error->cursor[i].base = I915_READ(CURBASE(i));
11373                 } else {
11374                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11375                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11376                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11377                 }
11378
11379                 error->plane[i].control = I915_READ(DSPCNTR(i));
11380                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11381                 if (INTEL_INFO(dev)->gen <= 3) {
11382                         error->plane[i].size = I915_READ(DSPSIZE(i));
11383                         error->plane[i].pos = I915_READ(DSPPOS(i));
11384                 }
11385                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11386                         error->plane[i].addr = I915_READ(DSPADDR(i));
11387                 if (INTEL_INFO(dev)->gen >= 4) {
11388                         error->plane[i].surface = I915_READ(DSPSURF(i));
11389                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11390                 }
11391
11392                 error->pipe[i].source = I915_READ(PIPESRC(i));
11393         }
11394
11395         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11396         if (HAS_DDI(dev_priv->dev))
11397                 error->num_transcoders++; /* Account for eDP. */
11398
11399         for (i = 0; i < error->num_transcoders; i++) {
11400                 enum transcoder cpu_transcoder = transcoders[i];
11401
11402                 if (!intel_display_power_enabled(dev,
11403                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
11404                         continue;
11405
11406                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11407
11408                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11409                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11410                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11411                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11412                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11413                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11414                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11415         }
11416
11417         return error;
11418 }
11419
11420 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11421
11422 void
11423 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11424                                 struct drm_device *dev,
11425                                 struct intel_display_error_state *error)
11426 {
11427         int i;
11428
11429         if (!error)
11430                 return;
11431
11432         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11433         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11434                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11435                            error->power_well_driver);
11436         for_each_pipe(i) {
11437                 err_printf(m, "Pipe [%d]:\n", i);
11438                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
11439
11440                 err_printf(m, "Plane [%d]:\n", i);
11441                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
11442                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
11443                 if (INTEL_INFO(dev)->gen <= 3) {
11444                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
11445                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
11446                 }
11447                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11448                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
11449                 if (INTEL_INFO(dev)->gen >= 4) {
11450                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
11451                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
11452                 }
11453
11454                 err_printf(m, "Cursor [%d]:\n", i);
11455                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
11456                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
11457                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
11458         }
11459
11460         for (i = 0; i < error->num_transcoders; i++) {
11461                 err_printf(m, "CPU transcoder: %c\n",
11462                            transcoder_name(error->transcoder[i].cpu_transcoder));
11463                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
11464                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
11465                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
11466                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
11467                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
11468                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
11469                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
11470         }
11471 }