]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: add lpt_pch_enable
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941                                              enum pipe pipe)
942 {
943         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946         return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 frame, frame_reg = PIPEFRAME(pipe);
953
954         frame = I915_READ(frame_reg);
955
956         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957                 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961  * intel_wait_for_vblank - wait for vblank on a given pipe
962  * @dev: drm device
963  * @pipe: pipe to wait for
964  *
965  * Wait for vblank to occur on a given pipe.  Needed for various bits of
966  * mode setting code.
967  */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         int pipestat_reg = PIPESTAT(pipe);
972
973         if (INTEL_INFO(dev)->gen >= 5) {
974                 ironlake_wait_for_vblank(dev, pipe);
975                 return;
976         }
977
978         /* Clear existing vblank status. Note this will clear any other
979          * sticky status fields as well.
980          *
981          * This races with i915_driver_irq_handler() with the result
982          * that either function could miss a vblank event.  Here it is not
983          * fatal, as we will either wait upon the next vblank interrupt or
984          * timeout.  Generally speaking intel_wait_for_vblank() is only
985          * called during modeset at which time the GPU should be idle and
986          * should *not* be performing page flips and thus not waiting on
987          * vblanks...
988          * Currently, the result of us stealing a vblank from the irq
989          * handler is that a single frame will be skipped during swapbuffers.
990          */
991         I915_WRITE(pipestat_reg,
992                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994         /* Wait for vblank interrupt bit to set */
995         if (wait_for(I915_READ(pipestat_reg) &
996                      PIPE_VBLANK_INTERRUPT_STATUS,
997                      50))
998                 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002  * intel_wait_for_pipe_off - wait for pipe to turn off
1003  * @dev: drm device
1004  * @pipe: pipe to wait for
1005  *
1006  * After disabling a pipe, we can't wait for vblank in the usual way,
1007  * spinning on the vblank interrupt status bit, since we won't actually
1008  * see an interrupt when the pipe is disabled.
1009  *
1010  * On Gen4 and above:
1011  *   wait for the pipe register state bit to turn off
1012  *
1013  * Otherwise:
1014  *   wait for the display line value to settle (it usually
1015  *   ends up stopping at the start of the next frame).
1016  *
1017  */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022                                                                       pipe);
1023
1024         if (INTEL_INFO(dev)->gen >= 4) {
1025                 int reg = PIPECONF(cpu_transcoder);
1026
1027                 /* Wait for the Pipe State to go off */
1028                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029                              100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         } else {
1032                 u32 last_line, line_mask;
1033                 int reg = PIPEDSL(pipe);
1034                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036                 if (IS_GEN2(dev))
1037                         line_mask = DSL_LINEMASK_GEN2;
1038                 else
1039                         line_mask = DSL_LINEMASK_GEN3;
1040
1041                 /* Wait for the display line to settle */
1042                 do {
1043                         last_line = I915_READ(reg) & line_mask;
1044                         mdelay(5);
1045                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046                          time_after(timeout, jiffies));
1047                 if (time_after(jiffies, timeout))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054         return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059                        enum pipe pipe, bool state)
1060 {
1061         int reg;
1062         u32 val;
1063         bool cur_state;
1064
1065         reg = DPLL(pipe);
1066         val = I915_READ(reg);
1067         cur_state = !!(val & DPLL_VCO_ENABLE);
1068         WARN(cur_state != state,
1069              "PLL state assertion failure (expected %s, current %s)\n",
1070              state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077                            struct intel_pch_pll *pll,
1078                            struct intel_crtc *crtc,
1079                            bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         if (HAS_PCH_LPT(dev_priv->dev)) {
1085                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086                 return;
1087         }
1088
1089         if (WARN (!pll,
1090                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091                 return;
1092
1093         val = I915_READ(pll->pll_reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097              pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099         /* Make sure the selected PLL is correctly attached to the transcoder */
1100         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101                 u32 pch_dpll;
1102
1103                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1107                           cur_state, crtc->pipe, pch_dpll)) {
1108                         cur_state = !!(val >> (4*crtc->pipe + 3));
1109                         WARN(cur_state != state,
1110                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1111                              pll->pll_reg == _PCH_DPLL_B,
1112                              state_string(state),
1113                              crtc->pipe,
1114                              val);
1115                 }
1116         }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122                           enum pipe pipe, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (IS_HASWELL(dev_priv->dev)) {
1131                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133                 val = I915_READ(reg);
1134                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135         } else {
1136                 reg = FDI_TX_CTL(pipe);
1137                 val = I915_READ(reg);
1138                 cur_state = !!(val & FDI_TX_ENABLE);
1139         }
1140         WARN(cur_state != state,
1141              "FDI TX state assertion failure (expected %s, current %s)\n",
1142              state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148                           enum pipe pipe, bool state)
1149 {
1150         int reg;
1151         u32 val;
1152         bool cur_state;
1153
1154         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156                         return;
1157         } else {
1158                 reg = FDI_RX_CTL(pipe);
1159                 val = I915_READ(reg);
1160                 cur_state = !!(val & FDI_RX_ENABLE);
1161         }
1162         WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (dev_priv->info->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (IS_HASWELL(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189                                       enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196                 return;
1197         }
1198         reg = FDI_RX_CTL(pipe);
1199         val = I915_READ(reg);
1200         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                                   enum pipe pipe)
1205 {
1206         int pp_reg, lvds_reg;
1207         u32 val;
1208         enum pipe panel_pipe = PIPE_A;
1209         bool locked = true;
1210
1211         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212                 pp_reg = PCH_PP_CONTROL;
1213                 lvds_reg = PCH_LVDS;
1214         } else {
1215                 pp_reg = PP_CONTROL;
1216                 lvds_reg = LVDS;
1217         }
1218
1219         val = I915_READ(pp_reg);
1220         if (!(val & PANEL_POWER_ON) ||
1221             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222                 locked = false;
1223
1224         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225                 panel_pipe = PIPE_B;
1226
1227         WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233                  enum pipe pipe, bool state)
1234 {
1235         int reg;
1236         u32 val;
1237         bool cur_state;
1238         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239                                                                       pipe);
1240
1241         /* if we need the pipe A quirk it must be always on */
1242         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243                 state = true;
1244
1245         reg = PIPECONF(cpu_transcoder);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & PIPECONF_ENABLE);
1248         WARN(cur_state != state,
1249              "pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254                          enum plane plane, bool state)
1255 {
1256         int reg;
1257         u32 val;
1258         bool cur_state;
1259
1260         reg = DSPCNTR(plane);
1261         val = I915_READ(reg);
1262         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263         WARN(cur_state != state,
1264              "plane %c assertion failure (expected %s, current %s)\n",
1265              plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe)
1273 {
1274         int reg, i;
1275         u32 val;
1276         int cur_pipe;
1277
1278         /* Planes are fixed to pipes on ILK+ */
1279         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280                 reg = DSPCNTR(pipe);
1281                 val = I915_READ(reg);
1282                 WARN((val & DISPLAY_PLANE_ENABLE),
1283                      "plane %c assertion failure, should be disabled but not\n",
1284                      plane_name(pipe));
1285                 return;
1286         }
1287
1288         /* Need to check both planes against the pipe */
1289         for (i = 0; i < 2; i++) {
1290                 reg = DSPCNTR(i);
1291                 val = I915_READ(reg);
1292                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293                         DISPPLANE_SEL_PIPE_SHIFT;
1294                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296                      plane_name(i), pipe_name(pipe));
1297         }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302         u32 val;
1303         bool enabled;
1304
1305         if (HAS_PCH_LPT(dev_priv->dev)) {
1306                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307                 return;
1308         }
1309
1310         val = I915_READ(PCH_DREF_CONTROL);
1311         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312                             DREF_SUPERSPREAD_SOURCE_MASK));
1313         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317                                        enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321         bool enabled;
1322
1323         reg = TRANSCONF(pipe);
1324         val = I915_READ(reg);
1325         enabled = !!(val & TRANS_ENABLE);
1326         WARN(enabled,
1327              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328              pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332                             enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334         if ((val & DP_PORT_EN) == 0)
1335                 return false;
1336
1337         if (HAS_PCH_CPT(dev_priv->dev)) {
1338                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341                         return false;
1342         } else {
1343                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344                         return false;
1345         }
1346         return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350                               enum pipe pipe, u32 val)
1351 {
1352         if ((val & PORT_ENABLE) == 0)
1353                 return false;
1354
1355         if (HAS_PCH_CPT(dev_priv->dev)) {
1356                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357                         return false;
1358         } else {
1359                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360                         return false;
1361         }
1362         return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366                               enum pipe pipe, u32 val)
1367 {
1368         if ((val & LVDS_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & ADPA_DAC_ENABLE) == 0)
1385                 return false;
1386         if (HAS_PCH_CPT(dev_priv->dev)) {
1387                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388                         return false;
1389         } else {
1390                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391                         return false;
1392         }
1393         return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397                                    enum pipe pipe, int reg, u32 port_sel)
1398 {
1399         u32 val = I915_READ(reg);
1400         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402              reg, pipe_name(pipe));
1403
1404         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405              && (val & DP_PIPEB_SELECT),
1406              "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410                                      enum pipe pipe, int reg)
1411 {
1412         u32 val = I915_READ(reg);
1413         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415              reg, pipe_name(pipe));
1416
1417         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418              && (val & SDVO_PIPE_B_SELECT),
1419              "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423                                       enum pipe pipe)
1424 {
1425         int reg;
1426         u32 val;
1427
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432         reg = PCH_ADPA;
1433         val = I915_READ(reg);
1434         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435              "PCH VGA enabled on transcoder %c, should be disabled\n",
1436              pipe_name(pipe));
1437
1438         reg = PCH_LVDS;
1439         val = I915_READ(reg);
1440         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442              pipe_name(pipe));
1443
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450  * intel_enable_pll - enable a PLL
1451  * @dev_priv: i915 private structure
1452  * @pipe: pipe PLL to enable
1453  *
1454  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1455  * make sure the PLL reg is writable first though, since the panel write
1456  * protect mechanism may be enabled.
1457  *
1458  * Note!  This is for pre-ILK only.
1459  *
1460  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461  */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464         int reg;
1465         u32 val;
1466
1467         /* No really, not for ILK+ */
1468         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472                 assert_panel_unlocked(dev_priv, pipe);
1473
1474         reg = DPLL(pipe);
1475         val = I915_READ(reg);
1476         val |= DPLL_VCO_ENABLE;
1477
1478         /* We do this three times for luck */
1479         I915_WRITE(reg, val);
1480         POSTING_READ(reg);
1481         udelay(150); /* wait for warmup */
1482         I915_WRITE(reg, val);
1483         POSTING_READ(reg);
1484         udelay(150); /* wait for warmup */
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487         udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491  * intel_disable_pll - disable a PLL
1492  * @dev_priv: i915 private structure
1493  * @pipe: pipe PLL to disable
1494  *
1495  * Disable the PLL for @pipe, making sure the pipe is off first.
1496  *
1497  * Note!  This is for pre-ILK only.
1498  */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501         int reg;
1502         u32 val;
1503
1504         /* Don't disable pipe A or pipe A PLLs if needed */
1505         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506                 return;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         reg = DPLL(pipe);
1512         val = I915_READ(reg);
1513         val &= ~DPLL_VCO_ENABLE;
1514         I915_WRITE(reg, val);
1515         POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522         unsigned long flags;
1523
1524         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528                 goto out_unlock;
1529         }
1530
1531         I915_WRITE(SBI_ADDR,
1532                         (reg << 16));
1533         I915_WRITE(SBI_DATA,
1534                         value);
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRWR);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545 out_unlock:
1546         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552         unsigned long flags;
1553         u32 value = 0;
1554
1555         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557                                 100)) {
1558                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559                 goto out_unlock;
1560         }
1561
1562         I915_WRITE(SBI_ADDR,
1563                         (reg << 16));
1564         I915_WRITE(SBI_CTL_STAT,
1565                         SBI_BUSY |
1566                         SBI_CTL_OP_CRRD);
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571                 goto out_unlock;
1572         }
1573
1574         value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578         return value;
1579 }
1580
1581 /**
1582  * intel_enable_pch_pll - enable PCH PLL
1583  * @dev_priv: i915 private structure
1584  * @pipe: pipe PLL to enable
1585  *
1586  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587  * drives the transcoder clock.
1588  */
1589 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592         struct intel_pch_pll *pll;
1593         int reg;
1594         u32 val;
1595
1596         /* PCH PLLs only available on ILK, SNB and IVB */
1597         BUG_ON(dev_priv->info->gen < 5);
1598         pll = intel_crtc->pch_pll;
1599         if (pll == NULL)
1600                 return;
1601
1602         if (WARN_ON(pll->refcount == 0))
1603                 return;
1604
1605         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606                       pll->pll_reg, pll->active, pll->on,
1607                       intel_crtc->base.base.id);
1608
1609         /* PCH refclock must be enabled first */
1610         assert_pch_refclk_enabled(dev_priv);
1611
1612         if (pll->active++ && pll->on) {
1613                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614                 return;
1615         }
1616
1617         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619         reg = pll->pll_reg;
1620         val = I915_READ(reg);
1621         val |= DPLL_VCO_ENABLE;
1622         I915_WRITE(reg, val);
1623         POSTING_READ(reg);
1624         udelay(200);
1625
1626         pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633         int reg;
1634         u32 val;
1635
1636         /* PCH only available on ILK+ */
1637         BUG_ON(dev_priv->info->gen < 5);
1638         if (pll == NULL)
1639                return;
1640
1641         if (WARN_ON(pll->refcount == 0))
1642                 return;
1643
1644         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645                       pll->pll_reg, pll->active, pll->on,
1646                       intel_crtc->base.base.id);
1647
1648         if (WARN_ON(pll->active == 0)) {
1649                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650                 return;
1651         }
1652
1653         if (--pll->active) {
1654                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655                 return;
1656         }
1657
1658         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660         /* Make sure transcoder isn't still depending on us */
1661         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663         reg = pll->pll_reg;
1664         val = I915_READ(reg);
1665         val &= ~DPLL_VCO_ENABLE;
1666         I915_WRITE(reg, val);
1667         POSTING_READ(reg);
1668         udelay(200);
1669
1670         pll->on = false;
1671 }
1672
1673 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1674                                     enum pipe pipe)
1675 {
1676         int reg;
1677         u32 val, pipeconf_val;
1678         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680         /* PCH only available on ILK+ */
1681         BUG_ON(dev_priv->info->gen < 5);
1682
1683         /* Make sure PCH DPLL is enabled */
1684         assert_pch_pll_enabled(dev_priv,
1685                                to_intel_crtc(crtc)->pch_pll,
1686                                to_intel_crtc(crtc));
1687
1688         /* FDI must be feeding us bits for PCH ports */
1689         assert_fdi_tx_enabled(dev_priv, pipe);
1690         assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694                 return;
1695         }
1696         reg = TRANSCONF(pipe);
1697         val = I915_READ(reg);
1698         pipeconf_val = I915_READ(PIPECONF(pipe));
1699
1700         if (HAS_PCH_IBX(dev_priv->dev)) {
1701                 /*
1702                  * make the BPC in transcoder be consistent with
1703                  * that in pipeconf reg.
1704                  */
1705                 val &= ~PIPE_BPC_MASK;
1706                 val |= pipeconf_val & PIPE_BPC_MASK;
1707         }
1708
1709         val &= ~TRANS_INTERLACE_MASK;
1710         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1711                 if (HAS_PCH_IBX(dev_priv->dev) &&
1712                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713                         val |= TRANS_LEGACY_INTERLACED_ILK;
1714                 else
1715                         val |= TRANS_INTERLACED;
1716         else
1717                 val |= TRANS_PROGRESSIVE;
1718
1719         I915_WRITE(reg, val | TRANS_ENABLE);
1720         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722 }
1723
1724 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1725                                      enum pipe pipe)
1726 {
1727         int reg;
1728         u32 val;
1729
1730         /* FDI relies on the transcoder */
1731         assert_fdi_tx_disabled(dev_priv, pipe);
1732         assert_fdi_rx_disabled(dev_priv, pipe);
1733
1734         /* Ports must be off as well */
1735         assert_pch_ports_disabled(dev_priv, pipe);
1736
1737         reg = TRANSCONF(pipe);
1738         val = I915_READ(reg);
1739         val &= ~TRANS_ENABLE;
1740         I915_WRITE(reg, val);
1741         /* wait for PCH transcoder off, transcoder state */
1742         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1743                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1744 }
1745
1746 /**
1747  * intel_enable_pipe - enable a pipe, asserting requirements
1748  * @dev_priv: i915 private structure
1749  * @pipe: pipe to enable
1750  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1751  *
1752  * Enable @pipe, making sure that various hardware specific requirements
1753  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754  *
1755  * @pipe should be %PIPE_A or %PIPE_B.
1756  *
1757  * Will wait until the pipe is actually running (i.e. first vblank) before
1758  * returning.
1759  */
1760 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761                               bool pch_port)
1762 {
1763         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764                                                                       pipe);
1765         int reg;
1766         u32 val;
1767
1768         /*
1769          * A pipe without a PLL won't actually be able to drive bits from
1770          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1771          * need the check.
1772          */
1773         if (!HAS_PCH_SPLIT(dev_priv->dev))
1774                 assert_pll_enabled(dev_priv, pipe);
1775         else {
1776                 if (pch_port) {
1777                         /* if driving the PCH, we need FDI enabled */
1778                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780                 }
1781                 /* FIXME: assert CPU port conditions for SNB+ */
1782         }
1783
1784         reg = PIPECONF(cpu_transcoder);
1785         val = I915_READ(reg);
1786         if (val & PIPECONF_ENABLE)
1787                 return;
1788
1789         I915_WRITE(reg, val | PIPECONF_ENABLE);
1790         intel_wait_for_vblank(dev_priv->dev, pipe);
1791 }
1792
1793 /**
1794  * intel_disable_pipe - disable a pipe, asserting requirements
1795  * @dev_priv: i915 private structure
1796  * @pipe: pipe to disable
1797  *
1798  * Disable @pipe, making sure that various hardware specific requirements
1799  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800  *
1801  * @pipe should be %PIPE_A or %PIPE_B.
1802  *
1803  * Will wait until the pipe has shut down before returning.
1804  */
1805 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806                                enum pipe pipe)
1807 {
1808         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809                                                                       pipe);
1810         int reg;
1811         u32 val;
1812
1813         /*
1814          * Make sure planes won't keep trying to pump pixels to us,
1815          * or we might hang the display.
1816          */
1817         assert_planes_disabled(dev_priv, pipe);
1818
1819         /* Don't disable pipe A or pipe A PLLs if needed */
1820         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821                 return;
1822
1823         reg = PIPECONF(cpu_transcoder);
1824         val = I915_READ(reg);
1825         if ((val & PIPECONF_ENABLE) == 0)
1826                 return;
1827
1828         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1829         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830 }
1831
1832 /*
1833  * Plane regs are double buffered, going from enabled->disabled needs a
1834  * trigger in order to latch.  The display address reg provides this.
1835  */
1836 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1837                                       enum plane plane)
1838 {
1839         if (dev_priv->info->gen >= 4)
1840                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841         else
1842                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1843 }
1844
1845 /**
1846  * intel_enable_plane - enable a display plane on a given pipe
1847  * @dev_priv: i915 private structure
1848  * @plane: plane to enable
1849  * @pipe: pipe being fed
1850  *
1851  * Enable @plane on @pipe, making sure that @pipe is running first.
1852  */
1853 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1854                                enum plane plane, enum pipe pipe)
1855 {
1856         int reg;
1857         u32 val;
1858
1859         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1860         assert_pipe_enabled(dev_priv, pipe);
1861
1862         reg = DSPCNTR(plane);
1863         val = I915_READ(reg);
1864         if (val & DISPLAY_PLANE_ENABLE)
1865                 return;
1866
1867         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1868         intel_flush_display_plane(dev_priv, plane);
1869         intel_wait_for_vblank(dev_priv->dev, pipe);
1870 }
1871
1872 /**
1873  * intel_disable_plane - disable a display plane
1874  * @dev_priv: i915 private structure
1875  * @plane: plane to disable
1876  * @pipe: pipe consuming the data
1877  *
1878  * Disable @plane; should be an independent operation.
1879  */
1880 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1881                                 enum plane plane, enum pipe pipe)
1882 {
1883         int reg;
1884         u32 val;
1885
1886         reg = DSPCNTR(plane);
1887         val = I915_READ(reg);
1888         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1889                 return;
1890
1891         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1892         intel_flush_display_plane(dev_priv, plane);
1893         intel_wait_for_vblank(dev_priv->dev, pipe);
1894 }
1895
1896 int
1897 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1898                            struct drm_i915_gem_object *obj,
1899                            struct intel_ring_buffer *pipelined)
1900 {
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         u32 alignment;
1903         int ret;
1904
1905         switch (obj->tiling_mode) {
1906         case I915_TILING_NONE:
1907                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1908                         alignment = 128 * 1024;
1909                 else if (INTEL_INFO(dev)->gen >= 4)
1910                         alignment = 4 * 1024;
1911                 else
1912                         alignment = 64 * 1024;
1913                 break;
1914         case I915_TILING_X:
1915                 /* pin() will align the object as required by fence */
1916                 alignment = 0;
1917                 break;
1918         case I915_TILING_Y:
1919                 /* FIXME: Is this true? */
1920                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1921                 return -EINVAL;
1922         default:
1923                 BUG();
1924         }
1925
1926         dev_priv->mm.interruptible = false;
1927         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1928         if (ret)
1929                 goto err_interruptible;
1930
1931         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1932          * fence, whereas 965+ only requires a fence if using
1933          * framebuffer compression.  For simplicity, we always install
1934          * a fence as the cost is not that onerous.
1935          */
1936         ret = i915_gem_object_get_fence(obj);
1937         if (ret)
1938                 goto err_unpin;
1939
1940         i915_gem_object_pin_fence(obj);
1941
1942         dev_priv->mm.interruptible = true;
1943         return 0;
1944
1945 err_unpin:
1946         i915_gem_object_unpin(obj);
1947 err_interruptible:
1948         dev_priv->mm.interruptible = true;
1949         return ret;
1950 }
1951
1952 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1953 {
1954         i915_gem_object_unpin_fence(obj);
1955         i915_gem_object_unpin(obj);
1956 }
1957
1958 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1959  * is assumed to be a power-of-two. */
1960 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1961                                                unsigned int bpp,
1962                                                unsigned int pitch)
1963 {
1964         int tile_rows, tiles;
1965
1966         tile_rows = *y / 8;
1967         *y %= 8;
1968         tiles = *x / (512/bpp);
1969         *x %= 512/bpp;
1970
1971         return tile_rows * pitch * 8 + tiles * 4096;
1972 }
1973
1974 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1975                              int x, int y)
1976 {
1977         struct drm_device *dev = crtc->dev;
1978         struct drm_i915_private *dev_priv = dev->dev_private;
1979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1980         struct intel_framebuffer *intel_fb;
1981         struct drm_i915_gem_object *obj;
1982         int plane = intel_crtc->plane;
1983         unsigned long linear_offset;
1984         u32 dspcntr;
1985         u32 reg;
1986
1987         switch (plane) {
1988         case 0:
1989         case 1:
1990                 break;
1991         default:
1992                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1993                 return -EINVAL;
1994         }
1995
1996         intel_fb = to_intel_framebuffer(fb);
1997         obj = intel_fb->obj;
1998
1999         reg = DSPCNTR(plane);
2000         dspcntr = I915_READ(reg);
2001         /* Mask out pixel format bits in case we change it */
2002         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2003         switch (fb->pixel_format) {
2004         case DRM_FORMAT_C8:
2005                 dspcntr |= DISPPLANE_8BPP;
2006                 break;
2007         case DRM_FORMAT_XRGB1555:
2008         case DRM_FORMAT_ARGB1555:
2009                 dspcntr |= DISPPLANE_BGRX555;
2010                 break;
2011         case DRM_FORMAT_RGB565:
2012                 dspcntr |= DISPPLANE_BGRX565;
2013                 break;
2014         case DRM_FORMAT_XRGB8888:
2015         case DRM_FORMAT_ARGB8888:
2016                 dspcntr |= DISPPLANE_BGRX888;
2017                 break;
2018         case DRM_FORMAT_XBGR8888:
2019         case DRM_FORMAT_ABGR8888:
2020                 dspcntr |= DISPPLANE_RGBX888;
2021                 break;
2022         case DRM_FORMAT_XRGB2101010:
2023         case DRM_FORMAT_ARGB2101010:
2024                 dspcntr |= DISPPLANE_BGRX101010;
2025                 break;
2026         case DRM_FORMAT_XBGR2101010:
2027         case DRM_FORMAT_ABGR2101010:
2028                 dspcntr |= DISPPLANE_RGBX101010;
2029                 break;
2030         default:
2031                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2032                 return -EINVAL;
2033         }
2034
2035         if (INTEL_INFO(dev)->gen >= 4) {
2036                 if (obj->tiling_mode != I915_TILING_NONE)
2037                         dspcntr |= DISPPLANE_TILED;
2038                 else
2039                         dspcntr &= ~DISPPLANE_TILED;
2040         }
2041
2042         I915_WRITE(reg, dspcntr);
2043
2044         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2045
2046         if (INTEL_INFO(dev)->gen >= 4) {
2047                 intel_crtc->dspaddr_offset =
2048                         intel_gen4_compute_offset_xtiled(&x, &y,
2049                                                          fb->bits_per_pixel / 8,
2050                                                          fb->pitches[0]);
2051                 linear_offset -= intel_crtc->dspaddr_offset;
2052         } else {
2053                 intel_crtc->dspaddr_offset = linear_offset;
2054         }
2055
2056         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2057                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2058         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2059         if (INTEL_INFO(dev)->gen >= 4) {
2060                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2061                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2062                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2063                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2064         } else
2065                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2066         POSTING_READ(reg);
2067
2068         return 0;
2069 }
2070
2071 static int ironlake_update_plane(struct drm_crtc *crtc,
2072                                  struct drm_framebuffer *fb, int x, int y)
2073 {
2074         struct drm_device *dev = crtc->dev;
2075         struct drm_i915_private *dev_priv = dev->dev_private;
2076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2077         struct intel_framebuffer *intel_fb;
2078         struct drm_i915_gem_object *obj;
2079         int plane = intel_crtc->plane;
2080         unsigned long linear_offset;
2081         u32 dspcntr;
2082         u32 reg;
2083
2084         switch (plane) {
2085         case 0:
2086         case 1:
2087         case 2:
2088                 break;
2089         default:
2090                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2091                 return -EINVAL;
2092         }
2093
2094         intel_fb = to_intel_framebuffer(fb);
2095         obj = intel_fb->obj;
2096
2097         reg = DSPCNTR(plane);
2098         dspcntr = I915_READ(reg);
2099         /* Mask out pixel format bits in case we change it */
2100         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2101         switch (fb->pixel_format) {
2102         case DRM_FORMAT_C8:
2103                 dspcntr |= DISPPLANE_8BPP;
2104                 break;
2105         case DRM_FORMAT_RGB565:
2106                 dspcntr |= DISPPLANE_BGRX565;
2107                 break;
2108         case DRM_FORMAT_XRGB8888:
2109         case DRM_FORMAT_ARGB8888:
2110                 dspcntr |= DISPPLANE_BGRX888;
2111                 break;
2112         case DRM_FORMAT_XBGR8888:
2113         case DRM_FORMAT_ABGR8888:
2114                 dspcntr |= DISPPLANE_RGBX888;
2115                 break;
2116         case DRM_FORMAT_XRGB2101010:
2117         case DRM_FORMAT_ARGB2101010:
2118                 dspcntr |= DISPPLANE_BGRX101010;
2119                 break;
2120         case DRM_FORMAT_XBGR2101010:
2121         case DRM_FORMAT_ABGR2101010:
2122                 dspcntr |= DISPPLANE_RGBX101010;
2123                 break;
2124         default:
2125                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2126                 return -EINVAL;
2127         }
2128
2129         if (obj->tiling_mode != I915_TILING_NONE)
2130                 dspcntr |= DISPPLANE_TILED;
2131         else
2132                 dspcntr &= ~DISPPLANE_TILED;
2133
2134         /* must disable */
2135         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2136
2137         I915_WRITE(reg, dspcntr);
2138
2139         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2140         intel_crtc->dspaddr_offset =
2141                 intel_gen4_compute_offset_xtiled(&x, &y,
2142                                                  fb->bits_per_pixel / 8,
2143                                                  fb->pitches[0]);
2144         linear_offset -= intel_crtc->dspaddr_offset;
2145
2146         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2147                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2148         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2149         I915_MODIFY_DISPBASE(DSPSURF(plane),
2150                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2151         if (IS_HASWELL(dev)) {
2152                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2153         } else {
2154                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2155                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2156         }
2157         POSTING_READ(reg);
2158
2159         return 0;
2160 }
2161
2162 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2163 static int
2164 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2165                            int x, int y, enum mode_set_atomic state)
2166 {
2167         struct drm_device *dev = crtc->dev;
2168         struct drm_i915_private *dev_priv = dev->dev_private;
2169
2170         if (dev_priv->display.disable_fbc)
2171                 dev_priv->display.disable_fbc(dev);
2172         intel_increase_pllclock(crtc);
2173
2174         return dev_priv->display.update_plane(crtc, fb, x, y);
2175 }
2176
2177 static int
2178 intel_finish_fb(struct drm_framebuffer *old_fb)
2179 {
2180         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2181         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182         bool was_interruptible = dev_priv->mm.interruptible;
2183         int ret;
2184
2185         wait_event(dev_priv->pending_flip_queue,
2186                    atomic_read(&dev_priv->mm.wedged) ||
2187                    atomic_read(&obj->pending_flip) == 0);
2188
2189         /* Big Hammer, we also need to ensure that any pending
2190          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2191          * current scanout is retired before unpinning the old
2192          * framebuffer.
2193          *
2194          * This should only fail upon a hung GPU, in which case we
2195          * can safely continue.
2196          */
2197         dev_priv->mm.interruptible = false;
2198         ret = i915_gem_object_finish_gpu(obj);
2199         dev_priv->mm.interruptible = was_interruptible;
2200
2201         return ret;
2202 }
2203
2204 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2205 {
2206         struct drm_device *dev = crtc->dev;
2207         struct drm_i915_master_private *master_priv;
2208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2209
2210         if (!dev->primary->master)
2211                 return;
2212
2213         master_priv = dev->primary->master->driver_priv;
2214         if (!master_priv->sarea_priv)
2215                 return;
2216
2217         switch (intel_crtc->pipe) {
2218         case 0:
2219                 master_priv->sarea_priv->pipeA_x = x;
2220                 master_priv->sarea_priv->pipeA_y = y;
2221                 break;
2222         case 1:
2223                 master_priv->sarea_priv->pipeB_x = x;
2224                 master_priv->sarea_priv->pipeB_y = y;
2225                 break;
2226         default:
2227                 break;
2228         }
2229 }
2230
2231 static int
2232 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2233                     struct drm_framebuffer *fb)
2234 {
2235         struct drm_device *dev = crtc->dev;
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2238         struct drm_framebuffer *old_fb;
2239         int ret;
2240
2241         /* no fb bound */
2242         if (!fb) {
2243                 DRM_ERROR("No FB bound\n");
2244                 return 0;
2245         }
2246
2247         if(intel_crtc->plane > dev_priv->num_pipe) {
2248                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2249                                 intel_crtc->plane,
2250                                 dev_priv->num_pipe);
2251                 return -EINVAL;
2252         }
2253
2254         mutex_lock(&dev->struct_mutex);
2255         ret = intel_pin_and_fence_fb_obj(dev,
2256                                          to_intel_framebuffer(fb)->obj,
2257                                          NULL);
2258         if (ret != 0) {
2259                 mutex_unlock(&dev->struct_mutex);
2260                 DRM_ERROR("pin & fence failed\n");
2261                 return ret;
2262         }
2263
2264         if (crtc->fb)
2265                 intel_finish_fb(crtc->fb);
2266
2267         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2268         if (ret) {
2269                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2270                 mutex_unlock(&dev->struct_mutex);
2271                 DRM_ERROR("failed to update base address\n");
2272                 return ret;
2273         }
2274
2275         old_fb = crtc->fb;
2276         crtc->fb = fb;
2277         crtc->x = x;
2278         crtc->y = y;
2279
2280         if (old_fb) {
2281                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2282                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2283         }
2284
2285         intel_update_fbc(dev);
2286         mutex_unlock(&dev->struct_mutex);
2287
2288         intel_crtc_update_sarea_pos(crtc, x, y);
2289
2290         return 0;
2291 }
2292
2293 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2294 {
2295         struct drm_device *dev = crtc->dev;
2296         struct drm_i915_private *dev_priv = dev->dev_private;
2297         u32 dpa_ctl;
2298
2299         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2300         dpa_ctl = I915_READ(DP_A);
2301         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2302
2303         if (clock < 200000) {
2304                 u32 temp;
2305                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2306                 /* workaround for 160Mhz:
2307                    1) program 0x4600c bits 15:0 = 0x8124
2308                    2) program 0x46010 bit 0 = 1
2309                    3) program 0x46034 bit 24 = 1
2310                    4) program 0x64000 bit 14 = 1
2311                    */
2312                 temp = I915_READ(0x4600c);
2313                 temp &= 0xffff0000;
2314                 I915_WRITE(0x4600c, temp | 0x8124);
2315
2316                 temp = I915_READ(0x46010);
2317                 I915_WRITE(0x46010, temp | 1);
2318
2319                 temp = I915_READ(0x46034);
2320                 I915_WRITE(0x46034, temp | (1 << 24));
2321         } else {
2322                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2323         }
2324         I915_WRITE(DP_A, dpa_ctl);
2325
2326         POSTING_READ(DP_A);
2327         udelay(500);
2328 }
2329
2330 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2331 {
2332         struct drm_device *dev = crtc->dev;
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2335         int pipe = intel_crtc->pipe;
2336         u32 reg, temp;
2337
2338         /* enable normal train */
2339         reg = FDI_TX_CTL(pipe);
2340         temp = I915_READ(reg);
2341         if (IS_IVYBRIDGE(dev)) {
2342                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2343                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2344         } else {
2345                 temp &= ~FDI_LINK_TRAIN_NONE;
2346                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2347         }
2348         I915_WRITE(reg, temp);
2349
2350         reg = FDI_RX_CTL(pipe);
2351         temp = I915_READ(reg);
2352         if (HAS_PCH_CPT(dev)) {
2353                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2354                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2355         } else {
2356                 temp &= ~FDI_LINK_TRAIN_NONE;
2357                 temp |= FDI_LINK_TRAIN_NONE;
2358         }
2359         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2360
2361         /* wait one idle pattern time */
2362         POSTING_READ(reg);
2363         udelay(1000);
2364
2365         /* IVB wants error correction enabled */
2366         if (IS_IVYBRIDGE(dev))
2367                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2368                            FDI_FE_ERRC_ENABLE);
2369 }
2370
2371 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2372 {
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         u32 flags = I915_READ(SOUTH_CHICKEN1);
2375
2376         flags |= FDI_PHASE_SYNC_OVR(pipe);
2377         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2378         flags |= FDI_PHASE_SYNC_EN(pipe);
2379         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2380         POSTING_READ(SOUTH_CHICKEN1);
2381 }
2382
2383 static void ivb_modeset_global_resources(struct drm_device *dev)
2384 {
2385         struct drm_i915_private *dev_priv = dev->dev_private;
2386         struct intel_crtc *pipe_B_crtc =
2387                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2388         struct intel_crtc *pipe_C_crtc =
2389                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2390         uint32_t temp;
2391
2392         /* When everything is off disable fdi C so that we could enable fdi B
2393          * with all lanes. XXX: This misses the case where a pipe is not using
2394          * any pch resources and so doesn't need any fdi lanes. */
2395         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2396                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2397                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2398
2399                 temp = I915_READ(SOUTH_CHICKEN1);
2400                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2401                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2402                 I915_WRITE(SOUTH_CHICKEN1, temp);
2403         }
2404 }
2405
2406 /* The FDI link training functions for ILK/Ibexpeak. */
2407 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2408 {
2409         struct drm_device *dev = crtc->dev;
2410         struct drm_i915_private *dev_priv = dev->dev_private;
2411         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2412         int pipe = intel_crtc->pipe;
2413         int plane = intel_crtc->plane;
2414         u32 reg, temp, tries;
2415
2416         /* FDI needs bits from pipe & plane first */
2417         assert_pipe_enabled(dev_priv, pipe);
2418         assert_plane_enabled(dev_priv, plane);
2419
2420         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2421            for train result */
2422         reg = FDI_RX_IMR(pipe);
2423         temp = I915_READ(reg);
2424         temp &= ~FDI_RX_SYMBOL_LOCK;
2425         temp &= ~FDI_RX_BIT_LOCK;
2426         I915_WRITE(reg, temp);
2427         I915_READ(reg);
2428         udelay(150);
2429
2430         /* enable CPU FDI TX and PCH FDI RX */
2431         reg = FDI_TX_CTL(pipe);
2432         temp = I915_READ(reg);
2433         temp &= ~(7 << 19);
2434         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2435         temp &= ~FDI_LINK_TRAIN_NONE;
2436         temp |= FDI_LINK_TRAIN_PATTERN_1;
2437         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2438
2439         reg = FDI_RX_CTL(pipe);
2440         temp = I915_READ(reg);
2441         temp &= ~FDI_LINK_TRAIN_NONE;
2442         temp |= FDI_LINK_TRAIN_PATTERN_1;
2443         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2444
2445         POSTING_READ(reg);
2446         udelay(150);
2447
2448         /* Ironlake workaround, enable clock pointer after FDI enable*/
2449         if (HAS_PCH_IBX(dev)) {
2450                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2451                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2452                            FDI_RX_PHASE_SYNC_POINTER_EN);
2453         }
2454
2455         reg = FDI_RX_IIR(pipe);
2456         for (tries = 0; tries < 5; tries++) {
2457                 temp = I915_READ(reg);
2458                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2459
2460                 if ((temp & FDI_RX_BIT_LOCK)) {
2461                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2462                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2463                         break;
2464                 }
2465         }
2466         if (tries == 5)
2467                 DRM_ERROR("FDI train 1 fail!\n");
2468
2469         /* Train 2 */
2470         reg = FDI_TX_CTL(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~FDI_LINK_TRAIN_NONE;
2473         temp |= FDI_LINK_TRAIN_PATTERN_2;
2474         I915_WRITE(reg, temp);
2475
2476         reg = FDI_RX_CTL(pipe);
2477         temp = I915_READ(reg);
2478         temp &= ~FDI_LINK_TRAIN_NONE;
2479         temp |= FDI_LINK_TRAIN_PATTERN_2;
2480         I915_WRITE(reg, temp);
2481
2482         POSTING_READ(reg);
2483         udelay(150);
2484
2485         reg = FDI_RX_IIR(pipe);
2486         for (tries = 0; tries < 5; tries++) {
2487                 temp = I915_READ(reg);
2488                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2489
2490                 if (temp & FDI_RX_SYMBOL_LOCK) {
2491                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2492                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2493                         break;
2494                 }
2495         }
2496         if (tries == 5)
2497                 DRM_ERROR("FDI train 2 fail!\n");
2498
2499         DRM_DEBUG_KMS("FDI train done\n");
2500
2501 }
2502
2503 static const int snb_b_fdi_train_param[] = {
2504         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2505         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2506         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2507         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2508 };
2509
2510 /* The FDI link training functions for SNB/Cougarpoint. */
2511 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2512 {
2513         struct drm_device *dev = crtc->dev;
2514         struct drm_i915_private *dev_priv = dev->dev_private;
2515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2516         int pipe = intel_crtc->pipe;
2517         u32 reg, temp, i, retry;
2518
2519         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2520            for train result */
2521         reg = FDI_RX_IMR(pipe);
2522         temp = I915_READ(reg);
2523         temp &= ~FDI_RX_SYMBOL_LOCK;
2524         temp &= ~FDI_RX_BIT_LOCK;
2525         I915_WRITE(reg, temp);
2526
2527         POSTING_READ(reg);
2528         udelay(150);
2529
2530         /* enable CPU FDI TX and PCH FDI RX */
2531         reg = FDI_TX_CTL(pipe);
2532         temp = I915_READ(reg);
2533         temp &= ~(7 << 19);
2534         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2535         temp &= ~FDI_LINK_TRAIN_NONE;
2536         temp |= FDI_LINK_TRAIN_PATTERN_1;
2537         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2538         /* SNB-B */
2539         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2540         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2541
2542         I915_WRITE(FDI_RX_MISC(pipe),
2543                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2544
2545         reg = FDI_RX_CTL(pipe);
2546         temp = I915_READ(reg);
2547         if (HAS_PCH_CPT(dev)) {
2548                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2549                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2550         } else {
2551                 temp &= ~FDI_LINK_TRAIN_NONE;
2552                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2553         }
2554         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2555
2556         POSTING_READ(reg);
2557         udelay(150);
2558
2559         if (HAS_PCH_CPT(dev))
2560                 cpt_phase_pointer_enable(dev, pipe);
2561
2562         for (i = 0; i < 4; i++) {
2563                 reg = FDI_TX_CTL(pipe);
2564                 temp = I915_READ(reg);
2565                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2566                 temp |= snb_b_fdi_train_param[i];
2567                 I915_WRITE(reg, temp);
2568
2569                 POSTING_READ(reg);
2570                 udelay(500);
2571
2572                 for (retry = 0; retry < 5; retry++) {
2573                         reg = FDI_RX_IIR(pipe);
2574                         temp = I915_READ(reg);
2575                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2576                         if (temp & FDI_RX_BIT_LOCK) {
2577                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2578                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2579                                 break;
2580                         }
2581                         udelay(50);
2582                 }
2583                 if (retry < 5)
2584                         break;
2585         }
2586         if (i == 4)
2587                 DRM_ERROR("FDI train 1 fail!\n");
2588
2589         /* Train 2 */
2590         reg = FDI_TX_CTL(pipe);
2591         temp = I915_READ(reg);
2592         temp &= ~FDI_LINK_TRAIN_NONE;
2593         temp |= FDI_LINK_TRAIN_PATTERN_2;
2594         if (IS_GEN6(dev)) {
2595                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2596                 /* SNB-B */
2597                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2598         }
2599         I915_WRITE(reg, temp);
2600
2601         reg = FDI_RX_CTL(pipe);
2602         temp = I915_READ(reg);
2603         if (HAS_PCH_CPT(dev)) {
2604                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2605                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2606         } else {
2607                 temp &= ~FDI_LINK_TRAIN_NONE;
2608                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2609         }
2610         I915_WRITE(reg, temp);
2611
2612         POSTING_READ(reg);
2613         udelay(150);
2614
2615         for (i = 0; i < 4; i++) {
2616                 reg = FDI_TX_CTL(pipe);
2617                 temp = I915_READ(reg);
2618                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2619                 temp |= snb_b_fdi_train_param[i];
2620                 I915_WRITE(reg, temp);
2621
2622                 POSTING_READ(reg);
2623                 udelay(500);
2624
2625                 for (retry = 0; retry < 5; retry++) {
2626                         reg = FDI_RX_IIR(pipe);
2627                         temp = I915_READ(reg);
2628                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2629                         if (temp & FDI_RX_SYMBOL_LOCK) {
2630                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2631                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2632                                 break;
2633                         }
2634                         udelay(50);
2635                 }
2636                 if (retry < 5)
2637                         break;
2638         }
2639         if (i == 4)
2640                 DRM_ERROR("FDI train 2 fail!\n");
2641
2642         DRM_DEBUG_KMS("FDI train done.\n");
2643 }
2644
2645 /* Manual link training for Ivy Bridge A0 parts */
2646 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2647 {
2648         struct drm_device *dev = crtc->dev;
2649         struct drm_i915_private *dev_priv = dev->dev_private;
2650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651         int pipe = intel_crtc->pipe;
2652         u32 reg, temp, i;
2653
2654         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2655            for train result */
2656         reg = FDI_RX_IMR(pipe);
2657         temp = I915_READ(reg);
2658         temp &= ~FDI_RX_SYMBOL_LOCK;
2659         temp &= ~FDI_RX_BIT_LOCK;
2660         I915_WRITE(reg, temp);
2661
2662         POSTING_READ(reg);
2663         udelay(150);
2664
2665         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2666                       I915_READ(FDI_RX_IIR(pipe)));
2667
2668         /* enable CPU FDI TX and PCH FDI RX */
2669         reg = FDI_TX_CTL(pipe);
2670         temp = I915_READ(reg);
2671         temp &= ~(7 << 19);
2672         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2673         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2674         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2675         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2677         temp |= FDI_COMPOSITE_SYNC;
2678         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2679
2680         I915_WRITE(FDI_RX_MISC(pipe),
2681                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2682
2683         reg = FDI_RX_CTL(pipe);
2684         temp = I915_READ(reg);
2685         temp &= ~FDI_LINK_TRAIN_AUTO;
2686         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2688         temp |= FDI_COMPOSITE_SYNC;
2689         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2690
2691         POSTING_READ(reg);
2692         udelay(150);
2693
2694         if (HAS_PCH_CPT(dev))
2695                 cpt_phase_pointer_enable(dev, pipe);
2696
2697         for (i = 0; i < 4; i++) {
2698                 reg = FDI_TX_CTL(pipe);
2699                 temp = I915_READ(reg);
2700                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2701                 temp |= snb_b_fdi_train_param[i];
2702                 I915_WRITE(reg, temp);
2703
2704                 POSTING_READ(reg);
2705                 udelay(500);
2706
2707                 reg = FDI_RX_IIR(pipe);
2708                 temp = I915_READ(reg);
2709                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2710
2711                 if (temp & FDI_RX_BIT_LOCK ||
2712                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2713                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2714                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2715                         break;
2716                 }
2717         }
2718         if (i == 4)
2719                 DRM_ERROR("FDI train 1 fail!\n");
2720
2721         /* Train 2 */
2722         reg = FDI_TX_CTL(pipe);
2723         temp = I915_READ(reg);
2724         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2725         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2726         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2727         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2728         I915_WRITE(reg, temp);
2729
2730         reg = FDI_RX_CTL(pipe);
2731         temp = I915_READ(reg);
2732         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2733         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2734         I915_WRITE(reg, temp);
2735
2736         POSTING_READ(reg);
2737         udelay(150);
2738
2739         for (i = 0; i < 4; i++) {
2740                 reg = FDI_TX_CTL(pipe);
2741                 temp = I915_READ(reg);
2742                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2743                 temp |= snb_b_fdi_train_param[i];
2744                 I915_WRITE(reg, temp);
2745
2746                 POSTING_READ(reg);
2747                 udelay(500);
2748
2749                 reg = FDI_RX_IIR(pipe);
2750                 temp = I915_READ(reg);
2751                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2752
2753                 if (temp & FDI_RX_SYMBOL_LOCK) {
2754                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2755                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2756                         break;
2757                 }
2758         }
2759         if (i == 4)
2760                 DRM_ERROR("FDI train 2 fail!\n");
2761
2762         DRM_DEBUG_KMS("FDI train done.\n");
2763 }
2764
2765 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2766 {
2767         struct drm_device *dev = intel_crtc->base.dev;
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         int pipe = intel_crtc->pipe;
2770         u32 reg, temp;
2771
2772
2773         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2774         reg = FDI_RX_CTL(pipe);
2775         temp = I915_READ(reg);
2776         temp &= ~((0x7 << 19) | (0x7 << 16));
2777         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2778         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2779         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2780
2781         POSTING_READ(reg);
2782         udelay(200);
2783
2784         /* Switch from Rawclk to PCDclk */
2785         temp = I915_READ(reg);
2786         I915_WRITE(reg, temp | FDI_PCDCLK);
2787
2788         POSTING_READ(reg);
2789         udelay(200);
2790
2791         /* On Haswell, the PLL configuration for ports and pipes is handled
2792          * separately, as part of DDI setup */
2793         if (!IS_HASWELL(dev)) {
2794                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2795                 reg = FDI_TX_CTL(pipe);
2796                 temp = I915_READ(reg);
2797                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2798                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2799
2800                         POSTING_READ(reg);
2801                         udelay(100);
2802                 }
2803         }
2804 }
2805
2806 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2807 {
2808         struct drm_device *dev = intel_crtc->base.dev;
2809         struct drm_i915_private *dev_priv = dev->dev_private;
2810         int pipe = intel_crtc->pipe;
2811         u32 reg, temp;
2812
2813         /* Switch from PCDclk to Rawclk */
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2817
2818         /* Disable CPU FDI TX PLL */
2819         reg = FDI_TX_CTL(pipe);
2820         temp = I915_READ(reg);
2821         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2822
2823         POSTING_READ(reg);
2824         udelay(100);
2825
2826         reg = FDI_RX_CTL(pipe);
2827         temp = I915_READ(reg);
2828         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2829
2830         /* Wait for the clocks to turn off. */
2831         POSTING_READ(reg);
2832         udelay(100);
2833 }
2834
2835 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2836 {
2837         struct drm_i915_private *dev_priv = dev->dev_private;
2838         u32 flags = I915_READ(SOUTH_CHICKEN1);
2839
2840         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2841         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2842         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2843         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2844         POSTING_READ(SOUTH_CHICKEN1);
2845 }
2846 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2847 {
2848         struct drm_device *dev = crtc->dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2851         int pipe = intel_crtc->pipe;
2852         u32 reg, temp;
2853
2854         /* disable CPU FDI tx and PCH FDI rx */
2855         reg = FDI_TX_CTL(pipe);
2856         temp = I915_READ(reg);
2857         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2858         POSTING_READ(reg);
2859
2860         reg = FDI_RX_CTL(pipe);
2861         temp = I915_READ(reg);
2862         temp &= ~(0x7 << 16);
2863         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2864         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2865
2866         POSTING_READ(reg);
2867         udelay(100);
2868
2869         /* Ironlake workaround, disable clock pointer after downing FDI */
2870         if (HAS_PCH_IBX(dev)) {
2871                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2872                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2873                            I915_READ(FDI_RX_CHICKEN(pipe) &
2874                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2875         } else if (HAS_PCH_CPT(dev)) {
2876                 cpt_phase_pointer_disable(dev, pipe);
2877         }
2878
2879         /* still set train pattern 1 */
2880         reg = FDI_TX_CTL(pipe);
2881         temp = I915_READ(reg);
2882         temp &= ~FDI_LINK_TRAIN_NONE;
2883         temp |= FDI_LINK_TRAIN_PATTERN_1;
2884         I915_WRITE(reg, temp);
2885
2886         reg = FDI_RX_CTL(pipe);
2887         temp = I915_READ(reg);
2888         if (HAS_PCH_CPT(dev)) {
2889                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2890                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2891         } else {
2892                 temp &= ~FDI_LINK_TRAIN_NONE;
2893                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2894         }
2895         /* BPC in FDI rx is consistent with that in PIPECONF */
2896         temp &= ~(0x07 << 16);
2897         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2898         I915_WRITE(reg, temp);
2899
2900         POSTING_READ(reg);
2901         udelay(100);
2902 }
2903
2904 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2905 {
2906         struct drm_device *dev = crtc->dev;
2907         struct drm_i915_private *dev_priv = dev->dev_private;
2908         unsigned long flags;
2909         bool pending;
2910
2911         if (atomic_read(&dev_priv->mm.wedged))
2912                 return false;
2913
2914         spin_lock_irqsave(&dev->event_lock, flags);
2915         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2916         spin_unlock_irqrestore(&dev->event_lock, flags);
2917
2918         return pending;
2919 }
2920
2921 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2922 {
2923         struct drm_device *dev = crtc->dev;
2924         struct drm_i915_private *dev_priv = dev->dev_private;
2925
2926         if (crtc->fb == NULL)
2927                 return;
2928
2929         wait_event(dev_priv->pending_flip_queue,
2930                    !intel_crtc_has_pending_flip(crtc));
2931
2932         mutex_lock(&dev->struct_mutex);
2933         intel_finish_fb(crtc->fb);
2934         mutex_unlock(&dev->struct_mutex);
2935 }
2936
2937 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2938 {
2939         struct drm_device *dev = crtc->dev;
2940         struct intel_encoder *intel_encoder;
2941
2942         /*
2943          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2944          * must be driven by its own crtc; no sharing is possible.
2945          */
2946         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2947                 switch (intel_encoder->type) {
2948                 case INTEL_OUTPUT_EDP:
2949                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2950                                 return false;
2951                         continue;
2952                 }
2953         }
2954
2955         return true;
2956 }
2957
2958 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2959 {
2960         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2961 }
2962
2963 /* Program iCLKIP clock to the desired frequency */
2964 static void lpt_program_iclkip(struct drm_crtc *crtc)
2965 {
2966         struct drm_device *dev = crtc->dev;
2967         struct drm_i915_private *dev_priv = dev->dev_private;
2968         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2969         u32 temp;
2970
2971         /* It is necessary to ungate the pixclk gate prior to programming
2972          * the divisors, and gate it back when it is done.
2973          */
2974         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2975
2976         /* Disable SSCCTL */
2977         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2978                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2979                                         SBI_SSCCTL_DISABLE);
2980
2981         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2982         if (crtc->mode.clock == 20000) {
2983                 auxdiv = 1;
2984                 divsel = 0x41;
2985                 phaseinc = 0x20;
2986         } else {
2987                 /* The iCLK virtual clock root frequency is in MHz,
2988                  * but the crtc->mode.clock in in KHz. To get the divisors,
2989                  * it is necessary to divide one by another, so we
2990                  * convert the virtual clock precision to KHz here for higher
2991                  * precision.
2992                  */
2993                 u32 iclk_virtual_root_freq = 172800 * 1000;
2994                 u32 iclk_pi_range = 64;
2995                 u32 desired_divisor, msb_divisor_value, pi_value;
2996
2997                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2998                 msb_divisor_value = desired_divisor / iclk_pi_range;
2999                 pi_value = desired_divisor % iclk_pi_range;
3000
3001                 auxdiv = 0;
3002                 divsel = msb_divisor_value - 2;
3003                 phaseinc = pi_value;
3004         }
3005
3006         /* This should not happen with any sane values */
3007         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3008                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3009         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3010                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3011
3012         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3013                         crtc->mode.clock,
3014                         auxdiv,
3015                         divsel,
3016                         phasedir,
3017                         phaseinc);
3018
3019         /* Program SSCDIVINTPHASE6 */
3020         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3021         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3022         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3023         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3024         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3025         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3026         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3027
3028         intel_sbi_write(dev_priv,
3029                         SBI_SSCDIVINTPHASE6,
3030                         temp);
3031
3032         /* Program SSCAUXDIV */
3033         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3034         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3035         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3036         intel_sbi_write(dev_priv,
3037                         SBI_SSCAUXDIV6,
3038                         temp);
3039
3040
3041         /* Enable modulator and associated divider */
3042         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3043         temp &= ~SBI_SSCCTL_DISABLE;
3044         intel_sbi_write(dev_priv,
3045                         SBI_SSCCTL6,
3046                         temp);
3047
3048         /* Wait for initialization time */
3049         udelay(24);
3050
3051         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3052 }
3053
3054 /*
3055  * Enable PCH resources required for PCH ports:
3056  *   - PCH PLLs
3057  *   - FDI training & RX/TX
3058  *   - update transcoder timings
3059  *   - DP transcoding bits
3060  *   - transcoder
3061  */
3062 static void ironlake_pch_enable(struct drm_crtc *crtc)
3063 {
3064         struct drm_device *dev = crtc->dev;
3065         struct drm_i915_private *dev_priv = dev->dev_private;
3066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3067         int pipe = intel_crtc->pipe;
3068         u32 reg, temp;
3069
3070         assert_transcoder_disabled(dev_priv, pipe);
3071
3072         /* Write the TU size bits before fdi link training, so that error
3073          * detection works. */
3074         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3075                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3076
3077         /* For PCH output, training FDI link */
3078         dev_priv->display.fdi_link_train(crtc);
3079
3080         /* XXX: pch pll's can be enabled any time before we enable the PCH
3081          * transcoder, and we actually should do this to not upset any PCH
3082          * transcoder that already use the clock when we share it.
3083          *
3084          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3085          * unconditionally resets the pll - we need that to have the right LVDS
3086          * enable sequence. */
3087         intel_enable_pch_pll(intel_crtc);
3088
3089         if (HAS_PCH_LPT(dev)) {
3090                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3091                 lpt_program_iclkip(crtc);
3092         } else if (HAS_PCH_CPT(dev)) {
3093                 u32 sel;
3094
3095                 temp = I915_READ(PCH_DPLL_SEL);
3096                 switch (pipe) {
3097                 default:
3098                 case 0:
3099                         temp |= TRANSA_DPLL_ENABLE;
3100                         sel = TRANSA_DPLLB_SEL;
3101                         break;
3102                 case 1:
3103                         temp |= TRANSB_DPLL_ENABLE;
3104                         sel = TRANSB_DPLLB_SEL;
3105                         break;
3106                 case 2:
3107                         temp |= TRANSC_DPLL_ENABLE;
3108                         sel = TRANSC_DPLLB_SEL;
3109                         break;
3110                 }
3111                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3112                         temp |= sel;
3113                 else
3114                         temp &= ~sel;
3115                 I915_WRITE(PCH_DPLL_SEL, temp);
3116         }
3117
3118         /* set transcoder timing, panel must allow it */
3119         assert_panel_unlocked(dev_priv, pipe);
3120         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3121         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3122         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3123
3124         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3125         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3126         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3127         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3128
3129         if (!IS_HASWELL(dev))
3130                 intel_fdi_normal_train(crtc);
3131
3132         /* For PCH DP, enable TRANS_DP_CTL */
3133         if (HAS_PCH_CPT(dev) &&
3134             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3135              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3136                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3137                 reg = TRANS_DP_CTL(pipe);
3138                 temp = I915_READ(reg);
3139                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3140                           TRANS_DP_SYNC_MASK |
3141                           TRANS_DP_BPC_MASK);
3142                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3143                          TRANS_DP_ENH_FRAMING);
3144                 temp |= bpc << 9; /* same format but at 11:9 */
3145
3146                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3147                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3148                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3149                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3150
3151                 switch (intel_trans_dp_port_sel(crtc)) {
3152                 case PCH_DP_B:
3153                         temp |= TRANS_DP_PORT_SEL_B;
3154                         break;
3155                 case PCH_DP_C:
3156                         temp |= TRANS_DP_PORT_SEL_C;
3157                         break;
3158                 case PCH_DP_D:
3159                         temp |= TRANS_DP_PORT_SEL_D;
3160                         break;
3161                 default:
3162                         BUG();
3163                 }
3164
3165                 I915_WRITE(reg, temp);
3166         }
3167
3168         intel_enable_transcoder(dev_priv, pipe);
3169 }
3170
3171 static void lpt_pch_enable(struct drm_crtc *crtc)
3172 {
3173         struct drm_device *dev = crtc->dev;
3174         struct drm_i915_private *dev_priv = dev->dev_private;
3175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3176         int pipe = intel_crtc->pipe;
3177         u32 reg, temp;
3178
3179         assert_transcoder_disabled(dev_priv, pipe);
3180
3181         /* Write the TU size bits before fdi link training, so that error
3182          * detection works. */
3183         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3184                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3185
3186         /* For PCH output, training FDI link */
3187         dev_priv->display.fdi_link_train(crtc);
3188
3189         /* XXX: pch pll's can be enabled any time before we enable the PCH
3190          * transcoder, and we actually should do this to not upset any PCH
3191          * transcoder that already use the clock when we share it.
3192          *
3193          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3194          * unconditionally resets the pll - we need that to have the right LVDS
3195          * enable sequence. */
3196         intel_enable_pch_pll(intel_crtc);
3197
3198         if (HAS_PCH_LPT(dev)) {
3199                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3200                 lpt_program_iclkip(crtc);
3201         } else if (HAS_PCH_CPT(dev)) {
3202                 u32 sel;
3203
3204                 temp = I915_READ(PCH_DPLL_SEL);
3205                 switch (pipe) {
3206                 default:
3207                 case 0:
3208                         temp |= TRANSA_DPLL_ENABLE;
3209                         sel = TRANSA_DPLLB_SEL;
3210                         break;
3211                 case 1:
3212                         temp |= TRANSB_DPLL_ENABLE;
3213                         sel = TRANSB_DPLLB_SEL;
3214                         break;
3215                 case 2:
3216                         temp |= TRANSC_DPLL_ENABLE;
3217                         sel = TRANSC_DPLLB_SEL;
3218                         break;
3219                 }
3220                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3221                         temp |= sel;
3222                 else
3223                         temp &= ~sel;
3224                 I915_WRITE(PCH_DPLL_SEL, temp);
3225         }
3226
3227         /* set transcoder timing, panel must allow it */
3228         assert_panel_unlocked(dev_priv, pipe);
3229         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3230         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3231         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3232
3233         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3234         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3235         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3236         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3237
3238         if (!IS_HASWELL(dev))
3239                 intel_fdi_normal_train(crtc);
3240
3241         /* For PCH DP, enable TRANS_DP_CTL */
3242         if (HAS_PCH_CPT(dev) &&
3243             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3244              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3245                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3246                 reg = TRANS_DP_CTL(pipe);
3247                 temp = I915_READ(reg);
3248                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3249                           TRANS_DP_SYNC_MASK |
3250                           TRANS_DP_BPC_MASK);
3251                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3252                          TRANS_DP_ENH_FRAMING);
3253                 temp |= bpc << 9; /* same format but at 11:9 */
3254
3255                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3256                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3257                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3258                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3259
3260                 switch (intel_trans_dp_port_sel(crtc)) {
3261                 case PCH_DP_B:
3262                         temp |= TRANS_DP_PORT_SEL_B;
3263                         break;
3264                 case PCH_DP_C:
3265                         temp |= TRANS_DP_PORT_SEL_C;
3266                         break;
3267                 case PCH_DP_D:
3268                         temp |= TRANS_DP_PORT_SEL_D;
3269                         break;
3270                 default:
3271                         BUG();
3272                 }
3273
3274                 I915_WRITE(reg, temp);
3275         }
3276
3277         intel_enable_transcoder(dev_priv, pipe);
3278 }
3279
3280 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3281 {
3282         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3283
3284         if (pll == NULL)
3285                 return;
3286
3287         if (pll->refcount == 0) {
3288                 WARN(1, "bad PCH PLL refcount\n");
3289                 return;
3290         }
3291
3292         --pll->refcount;
3293         intel_crtc->pch_pll = NULL;
3294 }
3295
3296 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3297 {
3298         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3299         struct intel_pch_pll *pll;
3300         int i;
3301
3302         pll = intel_crtc->pch_pll;
3303         if (pll) {
3304                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3305                               intel_crtc->base.base.id, pll->pll_reg);
3306                 goto prepare;
3307         }
3308
3309         if (HAS_PCH_IBX(dev_priv->dev)) {
3310                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3311                 i = intel_crtc->pipe;
3312                 pll = &dev_priv->pch_plls[i];
3313
3314                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3315                               intel_crtc->base.base.id, pll->pll_reg);
3316
3317                 goto found;
3318         }
3319
3320         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3321                 pll = &dev_priv->pch_plls[i];
3322
3323                 /* Only want to check enabled timings first */
3324                 if (pll->refcount == 0)
3325                         continue;
3326
3327                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3328                     fp == I915_READ(pll->fp0_reg)) {
3329                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3330                                       intel_crtc->base.base.id,
3331                                       pll->pll_reg, pll->refcount, pll->active);
3332
3333                         goto found;
3334                 }
3335         }
3336
3337         /* Ok no matching timings, maybe there's a free one? */
3338         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3339                 pll = &dev_priv->pch_plls[i];
3340                 if (pll->refcount == 0) {
3341                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3342                                       intel_crtc->base.base.id, pll->pll_reg);
3343                         goto found;
3344                 }
3345         }
3346
3347         return NULL;
3348
3349 found:
3350         intel_crtc->pch_pll = pll;
3351         pll->refcount++;
3352         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3353 prepare: /* separate function? */
3354         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3355
3356         /* Wait for the clocks to stabilize before rewriting the regs */
3357         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3358         POSTING_READ(pll->pll_reg);
3359         udelay(150);
3360
3361         I915_WRITE(pll->fp0_reg, fp);
3362         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3363         pll->on = false;
3364         return pll;
3365 }
3366
3367 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3368 {
3369         struct drm_i915_private *dev_priv = dev->dev_private;
3370         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3371         u32 temp;
3372
3373         temp = I915_READ(dslreg);
3374         udelay(500);
3375         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3376                 /* Without this, mode sets may fail silently on FDI */
3377                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3378                 udelay(250);
3379                 I915_WRITE(tc2reg, 0);
3380                 if (wait_for(I915_READ(dslreg) != temp, 5))
3381                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3382         }
3383 }
3384
3385 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3386 {
3387         struct drm_device *dev = crtc->dev;
3388         struct drm_i915_private *dev_priv = dev->dev_private;
3389         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3390         struct intel_encoder *encoder;
3391         int pipe = intel_crtc->pipe;
3392         int plane = intel_crtc->plane;
3393         u32 temp;
3394         bool is_pch_port;
3395
3396         WARN_ON(!crtc->enabled);
3397
3398         if (intel_crtc->active)
3399                 return;
3400
3401         intel_crtc->active = true;
3402         intel_update_watermarks(dev);
3403
3404         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3405                 temp = I915_READ(PCH_LVDS);
3406                 if ((temp & LVDS_PORT_EN) == 0)
3407                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3408         }
3409
3410         is_pch_port = ironlake_crtc_driving_pch(crtc);
3411
3412         if (is_pch_port) {
3413                 /* Note: FDI PLL enabling _must_ be done before we enable the
3414                  * cpu pipes, hence this is separate from all the other fdi/pch
3415                  * enabling. */
3416                 ironlake_fdi_pll_enable(intel_crtc);
3417         } else {
3418                 assert_fdi_tx_disabled(dev_priv, pipe);
3419                 assert_fdi_rx_disabled(dev_priv, pipe);
3420         }
3421
3422         for_each_encoder_on_crtc(dev, crtc, encoder)
3423                 if (encoder->pre_enable)
3424                         encoder->pre_enable(encoder);
3425
3426         /* Enable panel fitting for LVDS */
3427         if (dev_priv->pch_pf_size &&
3428             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3429                 /* Force use of hard-coded filter coefficients
3430                  * as some pre-programmed values are broken,
3431                  * e.g. x201.
3432                  */
3433                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3434                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3435                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3436         }
3437
3438         /*
3439          * On ILK+ LUT must be loaded before the pipe is running but with
3440          * clocks enabled
3441          */
3442         intel_crtc_load_lut(crtc);
3443
3444         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3445         intel_enable_plane(dev_priv, plane, pipe);
3446
3447         if (is_pch_port)
3448                 ironlake_pch_enable(crtc);
3449
3450         mutex_lock(&dev->struct_mutex);
3451         intel_update_fbc(dev);
3452         mutex_unlock(&dev->struct_mutex);
3453
3454         intel_crtc_update_cursor(crtc, true);
3455
3456         for_each_encoder_on_crtc(dev, crtc, encoder)
3457                 encoder->enable(encoder);
3458
3459         if (HAS_PCH_CPT(dev))
3460                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3461
3462         /*
3463          * There seems to be a race in PCH platform hw (at least on some
3464          * outputs) where an enabled pipe still completes any pageflip right
3465          * away (as if the pipe is off) instead of waiting for vblank. As soon
3466          * as the first vblank happend, everything works as expected. Hence just
3467          * wait for one vblank before returning to avoid strange things
3468          * happening.
3469          */
3470         intel_wait_for_vblank(dev, intel_crtc->pipe);
3471 }
3472
3473 static void haswell_crtc_enable(struct drm_crtc *crtc)
3474 {
3475         struct drm_device *dev = crtc->dev;
3476         struct drm_i915_private *dev_priv = dev->dev_private;
3477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3478         struct intel_encoder *encoder;
3479         int pipe = intel_crtc->pipe;
3480         int plane = intel_crtc->plane;
3481         bool is_pch_port;
3482
3483         WARN_ON(!crtc->enabled);
3484
3485         if (intel_crtc->active)
3486                 return;
3487
3488         intel_crtc->active = true;
3489         intel_update_watermarks(dev);
3490
3491         is_pch_port = haswell_crtc_driving_pch(crtc);
3492
3493         if (is_pch_port)
3494                 ironlake_fdi_pll_enable(intel_crtc);
3495
3496         for_each_encoder_on_crtc(dev, crtc, encoder)
3497                 if (encoder->pre_enable)
3498                         encoder->pre_enable(encoder);
3499
3500         intel_ddi_enable_pipe_clock(intel_crtc);
3501
3502         /* Enable panel fitting for eDP */
3503         if (dev_priv->pch_pf_size && HAS_eDP) {
3504                 /* Force use of hard-coded filter coefficients
3505                  * as some pre-programmed values are broken,
3506                  * e.g. x201.
3507                  */
3508                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3509                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3510                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3511         }
3512
3513         /*
3514          * On ILK+ LUT must be loaded before the pipe is running but with
3515          * clocks enabled
3516          */
3517         intel_crtc_load_lut(crtc);
3518
3519         intel_ddi_set_pipe_settings(crtc);
3520         intel_ddi_enable_pipe_func(crtc);
3521
3522         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3523         intel_enable_plane(dev_priv, plane, pipe);
3524
3525         if (is_pch_port)
3526                 lpt_pch_enable(crtc);
3527
3528         mutex_lock(&dev->struct_mutex);
3529         intel_update_fbc(dev);
3530         mutex_unlock(&dev->struct_mutex);
3531
3532         intel_crtc_update_cursor(crtc, true);
3533
3534         for_each_encoder_on_crtc(dev, crtc, encoder)
3535                 encoder->enable(encoder);
3536
3537         /*
3538          * There seems to be a race in PCH platform hw (at least on some
3539          * outputs) where an enabled pipe still completes any pageflip right
3540          * away (as if the pipe is off) instead of waiting for vblank. As soon
3541          * as the first vblank happend, everything works as expected. Hence just
3542          * wait for one vblank before returning to avoid strange things
3543          * happening.
3544          */
3545         intel_wait_for_vblank(dev, intel_crtc->pipe);
3546 }
3547
3548 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3549 {
3550         struct drm_device *dev = crtc->dev;
3551         struct drm_i915_private *dev_priv = dev->dev_private;
3552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553         struct intel_encoder *encoder;
3554         int pipe = intel_crtc->pipe;
3555         int plane = intel_crtc->plane;
3556         u32 reg, temp;
3557
3558
3559         if (!intel_crtc->active)
3560                 return;
3561
3562         for_each_encoder_on_crtc(dev, crtc, encoder)
3563                 encoder->disable(encoder);
3564
3565         intel_crtc_wait_for_pending_flips(crtc);
3566         drm_vblank_off(dev, pipe);
3567         intel_crtc_update_cursor(crtc, false);
3568
3569         intel_disable_plane(dev_priv, plane, pipe);
3570
3571         if (dev_priv->cfb_plane == plane)
3572                 intel_disable_fbc(dev);
3573
3574         intel_disable_pipe(dev_priv, pipe);
3575
3576         /* Disable PF */
3577         I915_WRITE(PF_CTL(pipe), 0);
3578         I915_WRITE(PF_WIN_SZ(pipe), 0);
3579
3580         for_each_encoder_on_crtc(dev, crtc, encoder)
3581                 if (encoder->post_disable)
3582                         encoder->post_disable(encoder);
3583
3584         ironlake_fdi_disable(crtc);
3585
3586         intel_disable_transcoder(dev_priv, pipe);
3587
3588         if (HAS_PCH_CPT(dev)) {
3589                 /* disable TRANS_DP_CTL */
3590                 reg = TRANS_DP_CTL(pipe);
3591                 temp = I915_READ(reg);
3592                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3593                 temp |= TRANS_DP_PORT_SEL_NONE;
3594                 I915_WRITE(reg, temp);
3595
3596                 /* disable DPLL_SEL */
3597                 temp = I915_READ(PCH_DPLL_SEL);
3598                 switch (pipe) {
3599                 case 0:
3600                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3601                         break;
3602                 case 1:
3603                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3604                         break;
3605                 case 2:
3606                         /* C shares PLL A or B */
3607                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3608                         break;
3609                 default:
3610                         BUG(); /* wtf */
3611                 }
3612                 I915_WRITE(PCH_DPLL_SEL, temp);
3613         }
3614
3615         /* disable PCH DPLL */
3616         intel_disable_pch_pll(intel_crtc);
3617
3618         ironlake_fdi_pll_disable(intel_crtc);
3619
3620         intel_crtc->active = false;
3621         intel_update_watermarks(dev);
3622
3623         mutex_lock(&dev->struct_mutex);
3624         intel_update_fbc(dev);
3625         mutex_unlock(&dev->struct_mutex);
3626 }
3627
3628 static void haswell_crtc_disable(struct drm_crtc *crtc)
3629 {
3630         struct drm_device *dev = crtc->dev;
3631         struct drm_i915_private *dev_priv = dev->dev_private;
3632         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3633         struct intel_encoder *encoder;
3634         int pipe = intel_crtc->pipe;
3635         int plane = intel_crtc->plane;
3636         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3637         bool is_pch_port;
3638
3639         if (!intel_crtc->active)
3640                 return;
3641
3642         is_pch_port = haswell_crtc_driving_pch(crtc);
3643
3644         for_each_encoder_on_crtc(dev, crtc, encoder)
3645                 encoder->disable(encoder);
3646
3647         intel_crtc_wait_for_pending_flips(crtc);
3648         drm_vblank_off(dev, pipe);
3649         intel_crtc_update_cursor(crtc, false);
3650
3651         intel_disable_plane(dev_priv, plane, pipe);
3652
3653         if (dev_priv->cfb_plane == plane)
3654                 intel_disable_fbc(dev);
3655
3656         intel_disable_pipe(dev_priv, pipe);
3657
3658         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3659
3660         /* Disable PF */
3661         I915_WRITE(PF_CTL(pipe), 0);
3662         I915_WRITE(PF_WIN_SZ(pipe), 0);
3663
3664         intel_ddi_disable_pipe_clock(intel_crtc);
3665
3666         for_each_encoder_on_crtc(dev, crtc, encoder)
3667                 if (encoder->post_disable)
3668                         encoder->post_disable(encoder);
3669
3670         if (is_pch_port) {
3671                 ironlake_fdi_disable(crtc);
3672                 intel_disable_transcoder(dev_priv, pipe);
3673                 intel_disable_pch_pll(intel_crtc);
3674                 ironlake_fdi_pll_disable(intel_crtc);
3675         }
3676
3677         intel_crtc->active = false;
3678         intel_update_watermarks(dev);
3679
3680         mutex_lock(&dev->struct_mutex);
3681         intel_update_fbc(dev);
3682         mutex_unlock(&dev->struct_mutex);
3683 }
3684
3685 static void ironlake_crtc_off(struct drm_crtc *crtc)
3686 {
3687         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3688         intel_put_pch_pll(intel_crtc);
3689 }
3690
3691 static void haswell_crtc_off(struct drm_crtc *crtc)
3692 {
3693         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3694
3695         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3696          * start using it. */
3697         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3698
3699         intel_ddi_put_crtc_pll(crtc);
3700 }
3701
3702 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3703 {
3704         if (!enable && intel_crtc->overlay) {
3705                 struct drm_device *dev = intel_crtc->base.dev;
3706                 struct drm_i915_private *dev_priv = dev->dev_private;
3707
3708                 mutex_lock(&dev->struct_mutex);
3709                 dev_priv->mm.interruptible = false;
3710                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3711                 dev_priv->mm.interruptible = true;
3712                 mutex_unlock(&dev->struct_mutex);
3713         }
3714
3715         /* Let userspace switch the overlay on again. In most cases userspace
3716          * has to recompute where to put it anyway.
3717          */
3718 }
3719
3720 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3721 {
3722         struct drm_device *dev = crtc->dev;
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3725         struct intel_encoder *encoder;
3726         int pipe = intel_crtc->pipe;
3727         int plane = intel_crtc->plane;
3728
3729         WARN_ON(!crtc->enabled);
3730
3731         if (intel_crtc->active)
3732                 return;
3733
3734         intel_crtc->active = true;
3735         intel_update_watermarks(dev);
3736
3737         intel_enable_pll(dev_priv, pipe);
3738         intel_enable_pipe(dev_priv, pipe, false);
3739         intel_enable_plane(dev_priv, plane, pipe);
3740
3741         intel_crtc_load_lut(crtc);
3742         intel_update_fbc(dev);
3743
3744         /* Give the overlay scaler a chance to enable if it's on this pipe */
3745         intel_crtc_dpms_overlay(intel_crtc, true);
3746         intel_crtc_update_cursor(crtc, true);
3747
3748         for_each_encoder_on_crtc(dev, crtc, encoder)
3749                 encoder->enable(encoder);
3750 }
3751
3752 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3753 {
3754         struct drm_device *dev = crtc->dev;
3755         struct drm_i915_private *dev_priv = dev->dev_private;
3756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3757         struct intel_encoder *encoder;
3758         int pipe = intel_crtc->pipe;
3759         int plane = intel_crtc->plane;
3760
3761
3762         if (!intel_crtc->active)
3763                 return;
3764
3765         for_each_encoder_on_crtc(dev, crtc, encoder)
3766                 encoder->disable(encoder);
3767
3768         /* Give the overlay scaler a chance to disable if it's on this pipe */
3769         intel_crtc_wait_for_pending_flips(crtc);
3770         drm_vblank_off(dev, pipe);
3771         intel_crtc_dpms_overlay(intel_crtc, false);
3772         intel_crtc_update_cursor(crtc, false);
3773
3774         if (dev_priv->cfb_plane == plane)
3775                 intel_disable_fbc(dev);
3776
3777         intel_disable_plane(dev_priv, plane, pipe);
3778         intel_disable_pipe(dev_priv, pipe);
3779         intel_disable_pll(dev_priv, pipe);
3780
3781         intel_crtc->active = false;
3782         intel_update_fbc(dev);
3783         intel_update_watermarks(dev);
3784 }
3785
3786 static void i9xx_crtc_off(struct drm_crtc *crtc)
3787 {
3788 }
3789
3790 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3791                                     bool enabled)
3792 {
3793         struct drm_device *dev = crtc->dev;
3794         struct drm_i915_master_private *master_priv;
3795         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3796         int pipe = intel_crtc->pipe;
3797
3798         if (!dev->primary->master)
3799                 return;
3800
3801         master_priv = dev->primary->master->driver_priv;
3802         if (!master_priv->sarea_priv)
3803                 return;
3804
3805         switch (pipe) {
3806         case 0:
3807                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3808                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3809                 break;
3810         case 1:
3811                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3812                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3813                 break;
3814         default:
3815                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3816                 break;
3817         }
3818 }
3819
3820 /**
3821  * Sets the power management mode of the pipe and plane.
3822  */
3823 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3824 {
3825         struct drm_device *dev = crtc->dev;
3826         struct drm_i915_private *dev_priv = dev->dev_private;
3827         struct intel_encoder *intel_encoder;
3828         bool enable = false;
3829
3830         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3831                 enable |= intel_encoder->connectors_active;
3832
3833         if (enable)
3834                 dev_priv->display.crtc_enable(crtc);
3835         else
3836                 dev_priv->display.crtc_disable(crtc);
3837
3838         intel_crtc_update_sarea(crtc, enable);
3839 }
3840
3841 static void intel_crtc_noop(struct drm_crtc *crtc)
3842 {
3843 }
3844
3845 static void intel_crtc_disable(struct drm_crtc *crtc)
3846 {
3847         struct drm_device *dev = crtc->dev;
3848         struct drm_connector *connector;
3849         struct drm_i915_private *dev_priv = dev->dev_private;
3850
3851         /* crtc should still be enabled when we disable it. */
3852         WARN_ON(!crtc->enabled);
3853
3854         dev_priv->display.crtc_disable(crtc);
3855         intel_crtc_update_sarea(crtc, false);
3856         dev_priv->display.off(crtc);
3857
3858         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3859         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3860
3861         if (crtc->fb) {
3862                 mutex_lock(&dev->struct_mutex);
3863                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3864                 mutex_unlock(&dev->struct_mutex);
3865                 crtc->fb = NULL;
3866         }
3867
3868         /* Update computed state. */
3869         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3870                 if (!connector->encoder || !connector->encoder->crtc)
3871                         continue;
3872
3873                 if (connector->encoder->crtc != crtc)
3874                         continue;
3875
3876                 connector->dpms = DRM_MODE_DPMS_OFF;
3877                 to_intel_encoder(connector->encoder)->connectors_active = false;
3878         }
3879 }
3880
3881 void intel_modeset_disable(struct drm_device *dev)
3882 {
3883         struct drm_crtc *crtc;
3884
3885         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3886                 if (crtc->enabled)
3887                         intel_crtc_disable(crtc);
3888         }
3889 }
3890
3891 void intel_encoder_noop(struct drm_encoder *encoder)
3892 {
3893 }
3894
3895 void intel_encoder_destroy(struct drm_encoder *encoder)
3896 {
3897         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3898
3899         drm_encoder_cleanup(encoder);
3900         kfree(intel_encoder);
3901 }
3902
3903 /* Simple dpms helper for encodres with just one connector, no cloning and only
3904  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3905  * state of the entire output pipe. */
3906 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3907 {
3908         if (mode == DRM_MODE_DPMS_ON) {
3909                 encoder->connectors_active = true;
3910
3911                 intel_crtc_update_dpms(encoder->base.crtc);
3912         } else {
3913                 encoder->connectors_active = false;
3914
3915                 intel_crtc_update_dpms(encoder->base.crtc);
3916         }
3917 }
3918
3919 /* Cross check the actual hw state with our own modeset state tracking (and it's
3920  * internal consistency). */
3921 static void intel_connector_check_state(struct intel_connector *connector)
3922 {
3923         if (connector->get_hw_state(connector)) {
3924                 struct intel_encoder *encoder = connector->encoder;
3925                 struct drm_crtc *crtc;
3926                 bool encoder_enabled;
3927                 enum pipe pipe;
3928
3929                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3930                               connector->base.base.id,
3931                               drm_get_connector_name(&connector->base));
3932
3933                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3934                      "wrong connector dpms state\n");
3935                 WARN(connector->base.encoder != &encoder->base,
3936                      "active connector not linked to encoder\n");
3937                 WARN(!encoder->connectors_active,
3938                      "encoder->connectors_active not set\n");
3939
3940                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3941                 WARN(!encoder_enabled, "encoder not enabled\n");
3942                 if (WARN_ON(!encoder->base.crtc))
3943                         return;
3944
3945                 crtc = encoder->base.crtc;
3946
3947                 WARN(!crtc->enabled, "crtc not enabled\n");
3948                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3949                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3950                      "encoder active on the wrong pipe\n");
3951         }
3952 }
3953
3954 /* Even simpler default implementation, if there's really no special case to
3955  * consider. */
3956 void intel_connector_dpms(struct drm_connector *connector, int mode)
3957 {
3958         struct intel_encoder *encoder = intel_attached_encoder(connector);
3959
3960         /* All the simple cases only support two dpms states. */
3961         if (mode != DRM_MODE_DPMS_ON)
3962                 mode = DRM_MODE_DPMS_OFF;
3963
3964         if (mode == connector->dpms)
3965                 return;
3966
3967         connector->dpms = mode;
3968
3969         /* Only need to change hw state when actually enabled */
3970         if (encoder->base.crtc)
3971                 intel_encoder_dpms(encoder, mode);
3972         else
3973                 WARN_ON(encoder->connectors_active != false);
3974
3975         intel_modeset_check_state(connector->dev);
3976 }
3977
3978 /* Simple connector->get_hw_state implementation for encoders that support only
3979  * one connector and no cloning and hence the encoder state determines the state
3980  * of the connector. */
3981 bool intel_connector_get_hw_state(struct intel_connector *connector)
3982 {
3983         enum pipe pipe = 0;
3984         struct intel_encoder *encoder = connector->encoder;
3985
3986         return encoder->get_hw_state(encoder, &pipe);
3987 }
3988
3989 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3990                                   const struct drm_display_mode *mode,
3991                                   struct drm_display_mode *adjusted_mode)
3992 {
3993         struct drm_device *dev = crtc->dev;
3994
3995         if (HAS_PCH_SPLIT(dev)) {
3996                 /* FDI link clock is fixed at 2.7G */
3997                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3998                         return false;
3999         }
4000
4001         /* All interlaced capable intel hw wants timings in frames. Note though
4002          * that intel_lvds_mode_fixup does some funny tricks with the crtc
4003          * timings, so we need to be careful not to clobber these.*/
4004         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
4005                 drm_mode_set_crtcinfo(adjusted_mode, 0);
4006
4007         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
4008          * with a hsync front porch of 0.
4009          */
4010         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4011                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4012                 return false;
4013
4014         return true;
4015 }
4016
4017 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4018 {
4019         return 400000; /* FIXME */
4020 }
4021
4022 static int i945_get_display_clock_speed(struct drm_device *dev)
4023 {
4024         return 400000;
4025 }
4026
4027 static int i915_get_display_clock_speed(struct drm_device *dev)
4028 {
4029         return 333000;
4030 }
4031
4032 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4033 {
4034         return 200000;
4035 }
4036
4037 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4038 {
4039         u16 gcfgc = 0;
4040
4041         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4042
4043         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4044                 return 133000;
4045         else {
4046                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4047                 case GC_DISPLAY_CLOCK_333_MHZ:
4048                         return 333000;
4049                 default:
4050                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4051                         return 190000;
4052                 }
4053         }
4054 }
4055
4056 static int i865_get_display_clock_speed(struct drm_device *dev)
4057 {
4058         return 266000;
4059 }
4060
4061 static int i855_get_display_clock_speed(struct drm_device *dev)
4062 {
4063         u16 hpllcc = 0;
4064         /* Assume that the hardware is in the high speed state.  This
4065          * should be the default.
4066          */
4067         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4068         case GC_CLOCK_133_200:
4069         case GC_CLOCK_100_200:
4070                 return 200000;
4071         case GC_CLOCK_166_250:
4072                 return 250000;
4073         case GC_CLOCK_100_133:
4074                 return 133000;
4075         }
4076
4077         /* Shouldn't happen */
4078         return 0;
4079 }
4080
4081 static int i830_get_display_clock_speed(struct drm_device *dev)
4082 {
4083         return 133000;
4084 }
4085
4086 struct fdi_m_n {
4087         u32        tu;
4088         u32        gmch_m;
4089         u32        gmch_n;
4090         u32        link_m;
4091         u32        link_n;
4092 };
4093
4094 static void
4095 fdi_reduce_ratio(u32 *num, u32 *den)
4096 {
4097         while (*num > 0xffffff || *den > 0xffffff) {
4098                 *num >>= 1;
4099                 *den >>= 1;
4100         }
4101 }
4102
4103 static void
4104 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4105                      int link_clock, struct fdi_m_n *m_n)
4106 {
4107         m_n->tu = 64; /* default size */
4108
4109         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4110         m_n->gmch_m = bits_per_pixel * pixel_clock;
4111         m_n->gmch_n = link_clock * nlanes * 8;
4112         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4113
4114         m_n->link_m = pixel_clock;
4115         m_n->link_n = link_clock;
4116         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4117 }
4118
4119 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4120 {
4121         if (i915_panel_use_ssc >= 0)
4122                 return i915_panel_use_ssc != 0;
4123         return dev_priv->lvds_use_ssc
4124                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4125 }
4126
4127 /**
4128  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4129  * @crtc: CRTC structure
4130  * @mode: requested mode
4131  *
4132  * A pipe may be connected to one or more outputs.  Based on the depth of the
4133  * attached framebuffer, choose a good color depth to use on the pipe.
4134  *
4135  * If possible, match the pipe depth to the fb depth.  In some cases, this
4136  * isn't ideal, because the connected output supports a lesser or restricted
4137  * set of depths.  Resolve that here:
4138  *    LVDS typically supports only 6bpc, so clamp down in that case
4139  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4140  *    Displays may support a restricted set as well, check EDID and clamp as
4141  *      appropriate.
4142  *    DP may want to dither down to 6bpc to fit larger modes
4143  *
4144  * RETURNS:
4145  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4146  * true if they don't match).
4147  */
4148 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4149                                          struct drm_framebuffer *fb,
4150                                          unsigned int *pipe_bpp,
4151                                          struct drm_display_mode *mode)
4152 {
4153         struct drm_device *dev = crtc->dev;
4154         struct drm_i915_private *dev_priv = dev->dev_private;
4155         struct drm_connector *connector;
4156         struct intel_encoder *intel_encoder;
4157         unsigned int display_bpc = UINT_MAX, bpc;
4158
4159         /* Walk the encoders & connectors on this crtc, get min bpc */
4160         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4161
4162                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4163                         unsigned int lvds_bpc;
4164
4165                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4166                             LVDS_A3_POWER_UP)
4167                                 lvds_bpc = 8;
4168                         else
4169                                 lvds_bpc = 6;
4170
4171                         if (lvds_bpc < display_bpc) {
4172                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4173                                 display_bpc = lvds_bpc;
4174                         }
4175                         continue;
4176                 }
4177
4178                 /* Not one of the known troublemakers, check the EDID */
4179                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4180                                     head) {
4181                         if (connector->encoder != &intel_encoder->base)
4182                                 continue;
4183
4184                         /* Don't use an invalid EDID bpc value */
4185                         if (connector->display_info.bpc &&
4186                             connector->display_info.bpc < display_bpc) {
4187                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4188                                 display_bpc = connector->display_info.bpc;
4189                         }
4190                 }
4191
4192                 /*
4193                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4194                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4195                  */
4196                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4197                         if (display_bpc > 8 && display_bpc < 12) {
4198                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4199                                 display_bpc = 12;
4200                         } else {
4201                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4202                                 display_bpc = 8;
4203                         }
4204                 }
4205         }
4206
4207         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4208                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4209                 display_bpc = 6;
4210         }
4211
4212         /*
4213          * We could just drive the pipe at the highest bpc all the time and
4214          * enable dithering as needed, but that costs bandwidth.  So choose
4215          * the minimum value that expresses the full color range of the fb but
4216          * also stays within the max display bpc discovered above.
4217          */
4218
4219         switch (fb->depth) {
4220         case 8:
4221                 bpc = 8; /* since we go through a colormap */
4222                 break;
4223         case 15:
4224         case 16:
4225                 bpc = 6; /* min is 18bpp */
4226                 break;
4227         case 24:
4228                 bpc = 8;
4229                 break;
4230         case 30:
4231                 bpc = 10;
4232                 break;
4233         case 48:
4234                 bpc = 12;
4235                 break;
4236         default:
4237                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4238                 bpc = min((unsigned int)8, display_bpc);
4239                 break;
4240         }
4241
4242         display_bpc = min(display_bpc, bpc);
4243
4244         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4245                       bpc, display_bpc);
4246
4247         *pipe_bpp = display_bpc * 3;
4248
4249         return display_bpc != bpc;
4250 }
4251
4252 static int vlv_get_refclk(struct drm_crtc *crtc)
4253 {
4254         struct drm_device *dev = crtc->dev;
4255         struct drm_i915_private *dev_priv = dev->dev_private;
4256         int refclk = 27000; /* for DP & HDMI */
4257
4258         return 100000; /* only one validated so far */
4259
4260         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4261                 refclk = 96000;
4262         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4263                 if (intel_panel_use_ssc(dev_priv))
4264                         refclk = 100000;
4265                 else
4266                         refclk = 96000;
4267         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4268                 refclk = 100000;
4269         }
4270
4271         return refclk;
4272 }
4273
4274 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4275 {
4276         struct drm_device *dev = crtc->dev;
4277         struct drm_i915_private *dev_priv = dev->dev_private;
4278         int refclk;
4279
4280         if (IS_VALLEYVIEW(dev)) {
4281                 refclk = vlv_get_refclk(crtc);
4282         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4283             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4284                 refclk = dev_priv->lvds_ssc_freq * 1000;
4285                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4286                               refclk / 1000);
4287         } else if (!IS_GEN2(dev)) {
4288                 refclk = 96000;
4289         } else {
4290                 refclk = 48000;
4291         }
4292
4293         return refclk;
4294 }
4295
4296 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4297                                       intel_clock_t *clock)
4298 {
4299         /* SDVO TV has fixed PLL values depend on its clock range,
4300            this mirrors vbios setting. */
4301         if (adjusted_mode->clock >= 100000
4302             && adjusted_mode->clock < 140500) {
4303                 clock->p1 = 2;
4304                 clock->p2 = 10;
4305                 clock->n = 3;
4306                 clock->m1 = 16;
4307                 clock->m2 = 8;
4308         } else if (adjusted_mode->clock >= 140500
4309                    && adjusted_mode->clock <= 200000) {
4310                 clock->p1 = 1;
4311                 clock->p2 = 10;
4312                 clock->n = 6;
4313                 clock->m1 = 12;
4314                 clock->m2 = 8;
4315         }
4316 }
4317
4318 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4319                                      intel_clock_t *clock,
4320                                      intel_clock_t *reduced_clock)
4321 {
4322         struct drm_device *dev = crtc->dev;
4323         struct drm_i915_private *dev_priv = dev->dev_private;
4324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4325         int pipe = intel_crtc->pipe;
4326         u32 fp, fp2 = 0;
4327
4328         if (IS_PINEVIEW(dev)) {
4329                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4330                 if (reduced_clock)
4331                         fp2 = (1 << reduced_clock->n) << 16 |
4332                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4333         } else {
4334                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4335                 if (reduced_clock)
4336                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4337                                 reduced_clock->m2;
4338         }
4339
4340         I915_WRITE(FP0(pipe), fp);
4341
4342         intel_crtc->lowfreq_avail = false;
4343         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4344             reduced_clock && i915_powersave) {
4345                 I915_WRITE(FP1(pipe), fp2);
4346                 intel_crtc->lowfreq_avail = true;
4347         } else {
4348                 I915_WRITE(FP1(pipe), fp);
4349         }
4350 }
4351
4352 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4353                               struct drm_display_mode *adjusted_mode)
4354 {
4355         struct drm_device *dev = crtc->dev;
4356         struct drm_i915_private *dev_priv = dev->dev_private;
4357         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4358         int pipe = intel_crtc->pipe;
4359         u32 temp;
4360
4361         temp = I915_READ(LVDS);
4362         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4363         if (pipe == 1) {
4364                 temp |= LVDS_PIPEB_SELECT;
4365         } else {
4366                 temp &= ~LVDS_PIPEB_SELECT;
4367         }
4368         /* set the corresponsding LVDS_BORDER bit */
4369         temp |= dev_priv->lvds_border_bits;
4370         /* Set the B0-B3 data pairs corresponding to whether we're going to
4371          * set the DPLLs for dual-channel mode or not.
4372          */
4373         if (clock->p2 == 7)
4374                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4375         else
4376                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4377
4378         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4379          * appropriately here, but we need to look more thoroughly into how
4380          * panels behave in the two modes.
4381          */
4382         /* set the dithering flag on LVDS as needed */
4383         if (INTEL_INFO(dev)->gen >= 4) {
4384                 if (dev_priv->lvds_dither)
4385                         temp |= LVDS_ENABLE_DITHER;
4386                 else
4387                         temp &= ~LVDS_ENABLE_DITHER;
4388         }
4389         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4390         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4391                 temp |= LVDS_HSYNC_POLARITY;
4392         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4393                 temp |= LVDS_VSYNC_POLARITY;
4394         I915_WRITE(LVDS, temp);
4395 }
4396
4397 static void vlv_update_pll(struct drm_crtc *crtc,
4398                            struct drm_display_mode *mode,
4399                            struct drm_display_mode *adjusted_mode,
4400                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4401                            int num_connectors)
4402 {
4403         struct drm_device *dev = crtc->dev;
4404         struct drm_i915_private *dev_priv = dev->dev_private;
4405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4406         int pipe = intel_crtc->pipe;
4407         u32 dpll, mdiv, pdiv;
4408         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4409         bool is_sdvo;
4410         u32 temp;
4411
4412         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4413                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4414
4415         dpll = DPLL_VGA_MODE_DIS;
4416         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4417         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4418         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4419
4420         I915_WRITE(DPLL(pipe), dpll);
4421         POSTING_READ(DPLL(pipe));
4422
4423         bestn = clock->n;
4424         bestm1 = clock->m1;
4425         bestm2 = clock->m2;
4426         bestp1 = clock->p1;
4427         bestp2 = clock->p2;
4428
4429         /*
4430          * In Valleyview PLL and program lane counter registers are exposed
4431          * through DPIO interface
4432          */
4433         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4434         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4435         mdiv |= ((bestn << DPIO_N_SHIFT));
4436         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4437         mdiv |= (1 << DPIO_K_SHIFT);
4438         mdiv |= DPIO_ENABLE_CALIBRATION;
4439         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4440
4441         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4442
4443         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4444                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4445                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4446                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4447         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4448
4449         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4450
4451         dpll |= DPLL_VCO_ENABLE;
4452         I915_WRITE(DPLL(pipe), dpll);
4453         POSTING_READ(DPLL(pipe));
4454         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4455                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4456
4457         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4458
4459         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4460                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4461
4462         I915_WRITE(DPLL(pipe), dpll);
4463
4464         /* Wait for the clocks to stabilize. */
4465         POSTING_READ(DPLL(pipe));
4466         udelay(150);
4467
4468         temp = 0;
4469         if (is_sdvo) {
4470                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4471                 if (temp > 1)
4472                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4473                 else
4474                         temp = 0;
4475         }
4476         I915_WRITE(DPLL_MD(pipe), temp);
4477         POSTING_READ(DPLL_MD(pipe));
4478
4479         /* Now program lane control registers */
4480         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4481                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4482         {
4483                 temp = 0x1000C4;
4484                 if(pipe == 1)
4485                         temp |= (1 << 21);
4486                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4487         }
4488         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4489         {
4490                 temp = 0x1000C4;
4491                 if(pipe == 1)
4492                         temp |= (1 << 21);
4493                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4494         }
4495 }
4496
4497 static void i9xx_update_pll(struct drm_crtc *crtc,
4498                             struct drm_display_mode *mode,
4499                             struct drm_display_mode *adjusted_mode,
4500                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4501                             int num_connectors)
4502 {
4503         struct drm_device *dev = crtc->dev;
4504         struct drm_i915_private *dev_priv = dev->dev_private;
4505         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4506         int pipe = intel_crtc->pipe;
4507         u32 dpll;
4508         bool is_sdvo;
4509
4510         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4511
4512         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4513                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4514
4515         dpll = DPLL_VGA_MODE_DIS;
4516
4517         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4518                 dpll |= DPLLB_MODE_LVDS;
4519         else
4520                 dpll |= DPLLB_MODE_DAC_SERIAL;
4521         if (is_sdvo) {
4522                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4523                 if (pixel_multiplier > 1) {
4524                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4525                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4526                 }
4527                 dpll |= DPLL_DVO_HIGH_SPEED;
4528         }
4529         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4530                 dpll |= DPLL_DVO_HIGH_SPEED;
4531
4532         /* compute bitmask from p1 value */
4533         if (IS_PINEVIEW(dev))
4534                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4535         else {
4536                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4537                 if (IS_G4X(dev) && reduced_clock)
4538                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4539         }
4540         switch (clock->p2) {
4541         case 5:
4542                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4543                 break;
4544         case 7:
4545                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4546                 break;
4547         case 10:
4548                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4549                 break;
4550         case 14:
4551                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4552                 break;
4553         }
4554         if (INTEL_INFO(dev)->gen >= 4)
4555                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4556
4557         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4558                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4559         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4560                 /* XXX: just matching BIOS for now */
4561                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4562                 dpll |= 3;
4563         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4564                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4565                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4566         else
4567                 dpll |= PLL_REF_INPUT_DREFCLK;
4568
4569         dpll |= DPLL_VCO_ENABLE;
4570         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4571         POSTING_READ(DPLL(pipe));
4572         udelay(150);
4573
4574         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4575          * This is an exception to the general rule that mode_set doesn't turn
4576          * things on.
4577          */
4578         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4579                 intel_update_lvds(crtc, clock, adjusted_mode);
4580
4581         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4582                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4583
4584         I915_WRITE(DPLL(pipe), dpll);
4585
4586         /* Wait for the clocks to stabilize. */
4587         POSTING_READ(DPLL(pipe));
4588         udelay(150);
4589
4590         if (INTEL_INFO(dev)->gen >= 4) {
4591                 u32 temp = 0;
4592                 if (is_sdvo) {
4593                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4594                         if (temp > 1)
4595                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4596                         else
4597                                 temp = 0;
4598                 }
4599                 I915_WRITE(DPLL_MD(pipe), temp);
4600         } else {
4601                 /* The pixel multiplier can only be updated once the
4602                  * DPLL is enabled and the clocks are stable.
4603                  *
4604                  * So write it again.
4605                  */
4606                 I915_WRITE(DPLL(pipe), dpll);
4607         }
4608 }
4609
4610 static void i8xx_update_pll(struct drm_crtc *crtc,
4611                             struct drm_display_mode *adjusted_mode,
4612                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4613                             int num_connectors)
4614 {
4615         struct drm_device *dev = crtc->dev;
4616         struct drm_i915_private *dev_priv = dev->dev_private;
4617         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4618         int pipe = intel_crtc->pipe;
4619         u32 dpll;
4620
4621         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4622
4623         dpll = DPLL_VGA_MODE_DIS;
4624
4625         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4626                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4627         } else {
4628                 if (clock->p1 == 2)
4629                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4630                 else
4631                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4632                 if (clock->p2 == 4)
4633                         dpll |= PLL_P2_DIVIDE_BY_4;
4634         }
4635
4636         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4637                 /* XXX: just matching BIOS for now */
4638                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4639                 dpll |= 3;
4640         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4641                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4642                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4643         else
4644                 dpll |= PLL_REF_INPUT_DREFCLK;
4645
4646         dpll |= DPLL_VCO_ENABLE;
4647         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4648         POSTING_READ(DPLL(pipe));
4649         udelay(150);
4650
4651         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4652          * This is an exception to the general rule that mode_set doesn't turn
4653          * things on.
4654          */
4655         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4656                 intel_update_lvds(crtc, clock, adjusted_mode);
4657
4658         I915_WRITE(DPLL(pipe), dpll);
4659
4660         /* Wait for the clocks to stabilize. */
4661         POSTING_READ(DPLL(pipe));
4662         udelay(150);
4663
4664         /* The pixel multiplier can only be updated once the
4665          * DPLL is enabled and the clocks are stable.
4666          *
4667          * So write it again.
4668          */
4669         I915_WRITE(DPLL(pipe), dpll);
4670 }
4671
4672 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4673                                    struct drm_display_mode *mode,
4674                                    struct drm_display_mode *adjusted_mode)
4675 {
4676         struct drm_device *dev = intel_crtc->base.dev;
4677         struct drm_i915_private *dev_priv = dev->dev_private;
4678         enum pipe pipe = intel_crtc->pipe;
4679         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4680         uint32_t vsyncshift;
4681
4682         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4683                 /* the chip adds 2 halflines automatically */
4684                 adjusted_mode->crtc_vtotal -= 1;
4685                 adjusted_mode->crtc_vblank_end -= 1;
4686                 vsyncshift = adjusted_mode->crtc_hsync_start
4687                              - adjusted_mode->crtc_htotal / 2;
4688         } else {
4689                 vsyncshift = 0;
4690         }
4691
4692         if (INTEL_INFO(dev)->gen > 3)
4693                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4694
4695         I915_WRITE(HTOTAL(cpu_transcoder),
4696                    (adjusted_mode->crtc_hdisplay - 1) |
4697                    ((adjusted_mode->crtc_htotal - 1) << 16));
4698         I915_WRITE(HBLANK(cpu_transcoder),
4699                    (adjusted_mode->crtc_hblank_start - 1) |
4700                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4701         I915_WRITE(HSYNC(cpu_transcoder),
4702                    (adjusted_mode->crtc_hsync_start - 1) |
4703                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4704
4705         I915_WRITE(VTOTAL(cpu_transcoder),
4706                    (adjusted_mode->crtc_vdisplay - 1) |
4707                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4708         I915_WRITE(VBLANK(cpu_transcoder),
4709                    (adjusted_mode->crtc_vblank_start - 1) |
4710                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4711         I915_WRITE(VSYNC(cpu_transcoder),
4712                    (adjusted_mode->crtc_vsync_start - 1) |
4713                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4714
4715         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4716          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4717          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4718          * bits. */
4719         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4720             (pipe == PIPE_B || pipe == PIPE_C))
4721                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4722
4723         /* pipesrc controls the size that is scaled from, which should
4724          * always be the user's requested size.
4725          */
4726         I915_WRITE(PIPESRC(pipe),
4727                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4728 }
4729
4730 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4731                               struct drm_display_mode *mode,
4732                               struct drm_display_mode *adjusted_mode,
4733                               int x, int y,
4734                               struct drm_framebuffer *fb)
4735 {
4736         struct drm_device *dev = crtc->dev;
4737         struct drm_i915_private *dev_priv = dev->dev_private;
4738         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4739         int pipe = intel_crtc->pipe;
4740         int plane = intel_crtc->plane;
4741         int refclk, num_connectors = 0;
4742         intel_clock_t clock, reduced_clock;
4743         u32 dspcntr, pipeconf;
4744         bool ok, has_reduced_clock = false, is_sdvo = false;
4745         bool is_lvds = false, is_tv = false, is_dp = false;
4746         struct intel_encoder *encoder;
4747         const intel_limit_t *limit;
4748         int ret;
4749
4750         for_each_encoder_on_crtc(dev, crtc, encoder) {
4751                 switch (encoder->type) {
4752                 case INTEL_OUTPUT_LVDS:
4753                         is_lvds = true;
4754                         break;
4755                 case INTEL_OUTPUT_SDVO:
4756                 case INTEL_OUTPUT_HDMI:
4757                         is_sdvo = true;
4758                         if (encoder->needs_tv_clock)
4759                                 is_tv = true;
4760                         break;
4761                 case INTEL_OUTPUT_TVOUT:
4762                         is_tv = true;
4763                         break;
4764                 case INTEL_OUTPUT_DISPLAYPORT:
4765                         is_dp = true;
4766                         break;
4767                 }
4768
4769                 num_connectors++;
4770         }
4771
4772         refclk = i9xx_get_refclk(crtc, num_connectors);
4773
4774         /*
4775          * Returns a set of divisors for the desired target clock with the given
4776          * refclk, or FALSE.  The returned values represent the clock equation:
4777          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4778          */
4779         limit = intel_limit(crtc, refclk);
4780         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4781                              &clock);
4782         if (!ok) {
4783                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4784                 return -EINVAL;
4785         }
4786
4787         /* Ensure that the cursor is valid for the new mode before changing... */
4788         intel_crtc_update_cursor(crtc, true);
4789
4790         if (is_lvds && dev_priv->lvds_downclock_avail) {
4791                 /*
4792                  * Ensure we match the reduced clock's P to the target clock.
4793                  * If the clocks don't match, we can't switch the display clock
4794                  * by using the FP0/FP1. In such case we will disable the LVDS
4795                  * downclock feature.
4796                 */
4797                 has_reduced_clock = limit->find_pll(limit, crtc,
4798                                                     dev_priv->lvds_downclock,
4799                                                     refclk,
4800                                                     &clock,
4801                                                     &reduced_clock);
4802         }
4803
4804         if (is_sdvo && is_tv)
4805                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4806
4807         if (IS_GEN2(dev))
4808                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4809                                 has_reduced_clock ? &reduced_clock : NULL,
4810                                 num_connectors);
4811         else if (IS_VALLEYVIEW(dev))
4812                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4813                                 has_reduced_clock ? &reduced_clock : NULL,
4814                                 num_connectors);
4815         else
4816                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4817                                 has_reduced_clock ? &reduced_clock : NULL,
4818                                 num_connectors);
4819
4820         /* setup pipeconf */
4821         pipeconf = I915_READ(PIPECONF(pipe));
4822
4823         /* Set up the display plane register */
4824         dspcntr = DISPPLANE_GAMMA_ENABLE;
4825
4826         if (pipe == 0)
4827                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4828         else
4829                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4830
4831         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4832                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4833                  * core speed.
4834                  *
4835                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4836                  * pipe == 0 check?
4837                  */
4838                 if (mode->clock >
4839                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4840                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4841                 else
4842                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4843         }
4844
4845         /* default to 8bpc */
4846         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4847         if (is_dp) {
4848                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4849                         pipeconf |= PIPECONF_BPP_6 |
4850                                     PIPECONF_DITHER_EN |
4851                                     PIPECONF_DITHER_TYPE_SP;
4852                 }
4853         }
4854
4855         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4856                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4857                         pipeconf |= PIPECONF_BPP_6 |
4858                                         PIPECONF_ENABLE |
4859                                         I965_PIPECONF_ACTIVE;
4860                 }
4861         }
4862
4863         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4864         drm_mode_debug_printmodeline(mode);
4865
4866         if (HAS_PIPE_CXSR(dev)) {
4867                 if (intel_crtc->lowfreq_avail) {
4868                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4869                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4870                 } else {
4871                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4872                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4873                 }
4874         }
4875
4876         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4877         if (!IS_GEN2(dev) &&
4878             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4879                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4880         else
4881                 pipeconf |= PIPECONF_PROGRESSIVE;
4882
4883         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4884
4885         /* pipesrc and dspsize control the size that is scaled from,
4886          * which should always be the user's requested size.
4887          */
4888         I915_WRITE(DSPSIZE(plane),
4889                    ((mode->vdisplay - 1) << 16) |
4890                    (mode->hdisplay - 1));
4891         I915_WRITE(DSPPOS(plane), 0);
4892
4893         I915_WRITE(PIPECONF(pipe), pipeconf);
4894         POSTING_READ(PIPECONF(pipe));
4895         intel_enable_pipe(dev_priv, pipe, false);
4896
4897         intel_wait_for_vblank(dev, pipe);
4898
4899         I915_WRITE(DSPCNTR(plane), dspcntr);
4900         POSTING_READ(DSPCNTR(plane));
4901
4902         ret = intel_pipe_set_base(crtc, x, y, fb);
4903
4904         intel_update_watermarks(dev);
4905
4906         return ret;
4907 }
4908
4909 /*
4910  * Initialize reference clocks when the driver loads
4911  */
4912 void ironlake_init_pch_refclk(struct drm_device *dev)
4913 {
4914         struct drm_i915_private *dev_priv = dev->dev_private;
4915         struct drm_mode_config *mode_config = &dev->mode_config;
4916         struct intel_encoder *encoder;
4917         u32 temp;
4918         bool has_lvds = false;
4919         bool has_cpu_edp = false;
4920         bool has_pch_edp = false;
4921         bool has_panel = false;
4922         bool has_ck505 = false;
4923         bool can_ssc = false;
4924
4925         /* We need to take the global config into account */
4926         list_for_each_entry(encoder, &mode_config->encoder_list,
4927                             base.head) {
4928                 switch (encoder->type) {
4929                 case INTEL_OUTPUT_LVDS:
4930                         has_panel = true;
4931                         has_lvds = true;
4932                         break;
4933                 case INTEL_OUTPUT_EDP:
4934                         has_panel = true;
4935                         if (intel_encoder_is_pch_edp(&encoder->base))
4936                                 has_pch_edp = true;
4937                         else
4938                                 has_cpu_edp = true;
4939                         break;
4940                 }
4941         }
4942
4943         if (HAS_PCH_IBX(dev)) {
4944                 has_ck505 = dev_priv->display_clock_mode;
4945                 can_ssc = has_ck505;
4946         } else {
4947                 has_ck505 = false;
4948                 can_ssc = true;
4949         }
4950
4951         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4952                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4953                       has_ck505);
4954
4955         /* Ironlake: try to setup display ref clock before DPLL
4956          * enabling. This is only under driver's control after
4957          * PCH B stepping, previous chipset stepping should be
4958          * ignoring this setting.
4959          */
4960         temp = I915_READ(PCH_DREF_CONTROL);
4961         /* Always enable nonspread source */
4962         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4963
4964         if (has_ck505)
4965                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4966         else
4967                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4968
4969         if (has_panel) {
4970                 temp &= ~DREF_SSC_SOURCE_MASK;
4971                 temp |= DREF_SSC_SOURCE_ENABLE;
4972
4973                 /* SSC must be turned on before enabling the CPU output  */
4974                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4975                         DRM_DEBUG_KMS("Using SSC on panel\n");
4976                         temp |= DREF_SSC1_ENABLE;
4977                 } else
4978                         temp &= ~DREF_SSC1_ENABLE;
4979
4980                 /* Get SSC going before enabling the outputs */
4981                 I915_WRITE(PCH_DREF_CONTROL, temp);
4982                 POSTING_READ(PCH_DREF_CONTROL);
4983                 udelay(200);
4984
4985                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4986
4987                 /* Enable CPU source on CPU attached eDP */
4988                 if (has_cpu_edp) {
4989                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4990                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4991                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4992                         }
4993                         else
4994                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4995                 } else
4996                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4997
4998                 I915_WRITE(PCH_DREF_CONTROL, temp);
4999                 POSTING_READ(PCH_DREF_CONTROL);
5000                 udelay(200);
5001         } else {
5002                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5003
5004                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5005
5006                 /* Turn off CPU output */
5007                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5008
5009                 I915_WRITE(PCH_DREF_CONTROL, temp);
5010                 POSTING_READ(PCH_DREF_CONTROL);
5011                 udelay(200);
5012
5013                 /* Turn off the SSC source */
5014                 temp &= ~DREF_SSC_SOURCE_MASK;
5015                 temp |= DREF_SSC_SOURCE_DISABLE;
5016
5017                 /* Turn off SSC1 */
5018                 temp &= ~ DREF_SSC1_ENABLE;
5019
5020                 I915_WRITE(PCH_DREF_CONTROL, temp);
5021                 POSTING_READ(PCH_DREF_CONTROL);
5022                 udelay(200);
5023         }
5024 }
5025
5026 static int ironlake_get_refclk(struct drm_crtc *crtc)
5027 {
5028         struct drm_device *dev = crtc->dev;
5029         struct drm_i915_private *dev_priv = dev->dev_private;
5030         struct intel_encoder *encoder;
5031         struct intel_encoder *edp_encoder = NULL;
5032         int num_connectors = 0;
5033         bool is_lvds = false;
5034
5035         for_each_encoder_on_crtc(dev, crtc, encoder) {
5036                 switch (encoder->type) {
5037                 case INTEL_OUTPUT_LVDS:
5038                         is_lvds = true;
5039                         break;
5040                 case INTEL_OUTPUT_EDP:
5041                         edp_encoder = encoder;
5042                         break;
5043                 }
5044                 num_connectors++;
5045         }
5046
5047         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5048                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5049                               dev_priv->lvds_ssc_freq);
5050                 return dev_priv->lvds_ssc_freq * 1000;
5051         }
5052
5053         return 120000;
5054 }
5055
5056 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5057                                   struct drm_display_mode *adjusted_mode,
5058                                   bool dither)
5059 {
5060         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5061         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5062         int pipe = intel_crtc->pipe;
5063         uint32_t val;
5064
5065         val = I915_READ(PIPECONF(pipe));
5066
5067         val &= ~PIPE_BPC_MASK;
5068         switch (intel_crtc->bpp) {
5069         case 18:
5070                 val |= PIPE_6BPC;
5071                 break;
5072         case 24:
5073                 val |= PIPE_8BPC;
5074                 break;
5075         case 30:
5076                 val |= PIPE_10BPC;
5077                 break;
5078         case 36:
5079                 val |= PIPE_12BPC;
5080                 break;
5081         default:
5082                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5083                 BUG();
5084         }
5085
5086         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5087         if (dither)
5088                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5089
5090         val &= ~PIPECONF_INTERLACE_MASK;
5091         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5092                 val |= PIPECONF_INTERLACED_ILK;
5093         else
5094                 val |= PIPECONF_PROGRESSIVE;
5095
5096         I915_WRITE(PIPECONF(pipe), val);
5097         POSTING_READ(PIPECONF(pipe));
5098 }
5099
5100 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5101                                  struct drm_display_mode *adjusted_mode,
5102                                  bool dither)
5103 {
5104         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5105         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5106         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5107         uint32_t val;
5108
5109         val = I915_READ(PIPECONF(cpu_transcoder));
5110
5111         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5112         if (dither)
5113                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5114
5115         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5116         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5117                 val |= PIPECONF_INTERLACED_ILK;
5118         else
5119                 val |= PIPECONF_PROGRESSIVE;
5120
5121         I915_WRITE(PIPECONF(cpu_transcoder), val);
5122         POSTING_READ(PIPECONF(cpu_transcoder));
5123 }
5124
5125 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5126                                     struct drm_display_mode *adjusted_mode,
5127                                     intel_clock_t *clock,
5128                                     bool *has_reduced_clock,
5129                                     intel_clock_t *reduced_clock)
5130 {
5131         struct drm_device *dev = crtc->dev;
5132         struct drm_i915_private *dev_priv = dev->dev_private;
5133         struct intel_encoder *intel_encoder;
5134         int refclk;
5135         const intel_limit_t *limit;
5136         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5137
5138         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5139                 switch (intel_encoder->type) {
5140                 case INTEL_OUTPUT_LVDS:
5141                         is_lvds = true;
5142                         break;
5143                 case INTEL_OUTPUT_SDVO:
5144                 case INTEL_OUTPUT_HDMI:
5145                         is_sdvo = true;
5146                         if (intel_encoder->needs_tv_clock)
5147                                 is_tv = true;
5148                         break;
5149                 case INTEL_OUTPUT_TVOUT:
5150                         is_tv = true;
5151                         break;
5152                 }
5153         }
5154
5155         refclk = ironlake_get_refclk(crtc);
5156
5157         /*
5158          * Returns a set of divisors for the desired target clock with the given
5159          * refclk, or FALSE.  The returned values represent the clock equation:
5160          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5161          */
5162         limit = intel_limit(crtc, refclk);
5163         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5164                               clock);
5165         if (!ret)
5166                 return false;
5167
5168         if (is_lvds && dev_priv->lvds_downclock_avail) {
5169                 /*
5170                  * Ensure we match the reduced clock's P to the target clock.
5171                  * If the clocks don't match, we can't switch the display clock
5172                  * by using the FP0/FP1. In such case we will disable the LVDS
5173                  * downclock feature.
5174                 */
5175                 *has_reduced_clock = limit->find_pll(limit, crtc,
5176                                                      dev_priv->lvds_downclock,
5177                                                      refclk,
5178                                                      clock,
5179                                                      reduced_clock);
5180         }
5181
5182         if (is_sdvo && is_tv)
5183                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5184
5185         return true;
5186 }
5187
5188 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5189 {
5190         struct drm_i915_private *dev_priv = dev->dev_private;
5191         uint32_t temp;
5192
5193         temp = I915_READ(SOUTH_CHICKEN1);
5194         if (temp & FDI_BC_BIFURCATION_SELECT)
5195                 return;
5196
5197         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5198         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5199
5200         temp |= FDI_BC_BIFURCATION_SELECT;
5201         DRM_DEBUG_KMS("enabling fdi C rx\n");
5202         I915_WRITE(SOUTH_CHICKEN1, temp);
5203         POSTING_READ(SOUTH_CHICKEN1);
5204 }
5205
5206 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5207 {
5208         struct drm_device *dev = intel_crtc->base.dev;
5209         struct drm_i915_private *dev_priv = dev->dev_private;
5210         struct intel_crtc *pipe_B_crtc =
5211                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5212
5213         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5214                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5215         if (intel_crtc->fdi_lanes > 4) {
5216                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5217                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5218                 /* Clamp lanes to avoid programming the hw with bogus values. */
5219                 intel_crtc->fdi_lanes = 4;
5220
5221                 return false;
5222         }
5223
5224         if (dev_priv->num_pipe == 2)
5225                 return true;
5226
5227         switch (intel_crtc->pipe) {
5228         case PIPE_A:
5229                 return true;
5230         case PIPE_B:
5231                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5232                     intel_crtc->fdi_lanes > 2) {
5233                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5234                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5235                         /* Clamp lanes to avoid programming the hw with bogus values. */
5236                         intel_crtc->fdi_lanes = 2;
5237
5238                         return false;
5239                 }
5240
5241                 if (intel_crtc->fdi_lanes > 2)
5242                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5243                 else
5244                         cpt_enable_fdi_bc_bifurcation(dev);
5245
5246                 return true;
5247         case PIPE_C:
5248                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5249                         if (intel_crtc->fdi_lanes > 2) {
5250                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5251                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5252                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5253                                 intel_crtc->fdi_lanes = 2;
5254
5255                                 return false;
5256                         }
5257                 } else {
5258                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5259                         return false;
5260                 }
5261
5262                 cpt_enable_fdi_bc_bifurcation(dev);
5263
5264                 return true;
5265         default:
5266                 BUG();
5267         }
5268 }
5269
5270 static void ironlake_set_m_n(struct drm_crtc *crtc,
5271                              struct drm_display_mode *mode,
5272                              struct drm_display_mode *adjusted_mode)
5273 {
5274         struct drm_device *dev = crtc->dev;
5275         struct drm_i915_private *dev_priv = dev->dev_private;
5276         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5277         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5278         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5279         struct fdi_m_n m_n = {0};
5280         int target_clock, pixel_multiplier, lane, link_bw;
5281         bool is_dp = false, is_cpu_edp = false;
5282
5283         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5284                 switch (intel_encoder->type) {
5285                 case INTEL_OUTPUT_DISPLAYPORT:
5286                         is_dp = true;
5287                         break;
5288                 case INTEL_OUTPUT_EDP:
5289                         is_dp = true;
5290                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5291                                 is_cpu_edp = true;
5292                         edp_encoder = intel_encoder;
5293                         break;
5294                 }
5295         }
5296
5297         /* FDI link */
5298         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5299         lane = 0;
5300         /* CPU eDP doesn't require FDI link, so just set DP M/N
5301            according to current link config */
5302         if (is_cpu_edp) {
5303                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5304         } else {
5305                 /* FDI is a binary signal running at ~2.7GHz, encoding
5306                  * each output octet as 10 bits. The actual frequency
5307                  * is stored as a divider into a 100MHz clock, and the
5308                  * mode pixel clock is stored in units of 1KHz.
5309                  * Hence the bw of each lane in terms of the mode signal
5310                  * is:
5311                  */
5312                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5313         }
5314
5315         /* [e]DP over FDI requires target mode clock instead of link clock. */
5316         if (edp_encoder)
5317                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5318         else if (is_dp)
5319                 target_clock = mode->clock;
5320         else
5321                 target_clock = adjusted_mode->clock;
5322
5323         if (!lane) {
5324                 /*
5325                  * Account for spread spectrum to avoid
5326                  * oversubscribing the link. Max center spread
5327                  * is 2.5%; use 5% for safety's sake.
5328                  */
5329                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5330                 lane = bps / (link_bw * 8) + 1;
5331         }
5332
5333         intel_crtc->fdi_lanes = lane;
5334
5335         if (pixel_multiplier > 1)
5336                 link_bw *= pixel_multiplier;
5337         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5338                              &m_n);
5339
5340         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5341         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5342         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5343         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5344 }
5345
5346 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5347                                       struct drm_display_mode *adjusted_mode,
5348                                       intel_clock_t *clock, u32 fp)
5349 {
5350         struct drm_crtc *crtc = &intel_crtc->base;
5351         struct drm_device *dev = crtc->dev;
5352         struct drm_i915_private *dev_priv = dev->dev_private;
5353         struct intel_encoder *intel_encoder;
5354         uint32_t dpll;
5355         int factor, pixel_multiplier, num_connectors = 0;
5356         bool is_lvds = false, is_sdvo = false, is_tv = false;
5357         bool is_dp = false, is_cpu_edp = false;
5358
5359         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5360                 switch (intel_encoder->type) {
5361                 case INTEL_OUTPUT_LVDS:
5362                         is_lvds = true;
5363                         break;
5364                 case INTEL_OUTPUT_SDVO:
5365                 case INTEL_OUTPUT_HDMI:
5366                         is_sdvo = true;
5367                         if (intel_encoder->needs_tv_clock)
5368                                 is_tv = true;
5369                         break;
5370                 case INTEL_OUTPUT_TVOUT:
5371                         is_tv = true;
5372                         break;
5373                 case INTEL_OUTPUT_DISPLAYPORT:
5374                         is_dp = true;
5375                         break;
5376                 case INTEL_OUTPUT_EDP:
5377                         is_dp = true;
5378                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5379                                 is_cpu_edp = true;
5380                         break;
5381                 }
5382
5383                 num_connectors++;
5384         }
5385
5386         /* Enable autotuning of the PLL clock (if permissible) */
5387         factor = 21;
5388         if (is_lvds) {
5389                 if ((intel_panel_use_ssc(dev_priv) &&
5390                      dev_priv->lvds_ssc_freq == 100) ||
5391                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5392                         factor = 25;
5393         } else if (is_sdvo && is_tv)
5394                 factor = 20;
5395
5396         if (clock->m < factor * clock->n)
5397                 fp |= FP_CB_TUNE;
5398
5399         dpll = 0;
5400
5401         if (is_lvds)
5402                 dpll |= DPLLB_MODE_LVDS;
5403         else
5404                 dpll |= DPLLB_MODE_DAC_SERIAL;
5405         if (is_sdvo) {
5406                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5407                 if (pixel_multiplier > 1) {
5408                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5409                 }
5410                 dpll |= DPLL_DVO_HIGH_SPEED;
5411         }
5412         if (is_dp && !is_cpu_edp)
5413                 dpll |= DPLL_DVO_HIGH_SPEED;
5414
5415         /* compute bitmask from p1 value */
5416         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5417         /* also FPA1 */
5418         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5419
5420         switch (clock->p2) {
5421         case 5:
5422                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5423                 break;
5424         case 7:
5425                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5426                 break;
5427         case 10:
5428                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5429                 break;
5430         case 14:
5431                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5432                 break;
5433         }
5434
5435         if (is_sdvo && is_tv)
5436                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5437         else if (is_tv)
5438                 /* XXX: just matching BIOS for now */
5439                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5440                 dpll |= 3;
5441         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5442                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5443         else
5444                 dpll |= PLL_REF_INPUT_DREFCLK;
5445
5446         return dpll;
5447 }
5448
5449 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5450                                   struct drm_display_mode *mode,
5451                                   struct drm_display_mode *adjusted_mode,
5452                                   int x, int y,
5453                                   struct drm_framebuffer *fb)
5454 {
5455         struct drm_device *dev = crtc->dev;
5456         struct drm_i915_private *dev_priv = dev->dev_private;
5457         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5458         int pipe = intel_crtc->pipe;
5459         int plane = intel_crtc->plane;
5460         int num_connectors = 0;
5461         intel_clock_t clock, reduced_clock;
5462         u32 dpll, fp = 0, fp2 = 0;
5463         bool ok, has_reduced_clock = false;
5464         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5465         struct intel_encoder *encoder;
5466         u32 temp;
5467         int ret;
5468         bool dither, fdi_config_ok;
5469
5470         for_each_encoder_on_crtc(dev, crtc, encoder) {
5471                 switch (encoder->type) {
5472                 case INTEL_OUTPUT_LVDS:
5473                         is_lvds = true;
5474                         break;
5475                 case INTEL_OUTPUT_DISPLAYPORT:
5476                         is_dp = true;
5477                         break;
5478                 case INTEL_OUTPUT_EDP:
5479                         is_dp = true;
5480                         if (!intel_encoder_is_pch_edp(&encoder->base))
5481                                 is_cpu_edp = true;
5482                         break;
5483                 }
5484
5485                 num_connectors++;
5486         }
5487
5488         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5489              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5490
5491         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5492                                      &has_reduced_clock, &reduced_clock);
5493         if (!ok) {
5494                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5495                 return -EINVAL;
5496         }
5497
5498         /* Ensure that the cursor is valid for the new mode before changing... */
5499         intel_crtc_update_cursor(crtc, true);
5500
5501         /* determine panel color depth */
5502         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5503                                               adjusted_mode);
5504         if (is_lvds && dev_priv->lvds_dither)
5505                 dither = true;
5506
5507         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5508         if (has_reduced_clock)
5509                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5510                         reduced_clock.m2;
5511
5512         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5513
5514         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5515         drm_mode_debug_printmodeline(mode);
5516
5517         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5518         if (!is_cpu_edp) {
5519                 struct intel_pch_pll *pll;
5520
5521                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5522                 if (pll == NULL) {
5523                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5524                                          pipe);
5525                         return -EINVAL;
5526                 }
5527         } else
5528                 intel_put_pch_pll(intel_crtc);
5529
5530         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5531          * This is an exception to the general rule that mode_set doesn't turn
5532          * things on.
5533          */
5534         if (is_lvds) {
5535                 temp = I915_READ(PCH_LVDS);
5536                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5537                 if (HAS_PCH_CPT(dev)) {
5538                         temp &= ~PORT_TRANS_SEL_MASK;
5539                         temp |= PORT_TRANS_SEL_CPT(pipe);
5540                 } else {
5541                         if (pipe == 1)
5542                                 temp |= LVDS_PIPEB_SELECT;
5543                         else
5544                                 temp &= ~LVDS_PIPEB_SELECT;
5545                 }
5546
5547                 /* set the corresponsding LVDS_BORDER bit */
5548                 temp |= dev_priv->lvds_border_bits;
5549                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5550                  * set the DPLLs for dual-channel mode or not.
5551                  */
5552                 if (clock.p2 == 7)
5553                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5554                 else
5555                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5556
5557                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5558                  * appropriately here, but we need to look more thoroughly into how
5559                  * panels behave in the two modes.
5560                  */
5561                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5562                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5563                         temp |= LVDS_HSYNC_POLARITY;
5564                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5565                         temp |= LVDS_VSYNC_POLARITY;
5566                 I915_WRITE(PCH_LVDS, temp);
5567         }
5568
5569         if (is_dp && !is_cpu_edp) {
5570                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5571         } else {
5572                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5573                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5574                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5575                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5576                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5577         }
5578
5579         if (intel_crtc->pch_pll) {
5580                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5581
5582                 /* Wait for the clocks to stabilize. */
5583                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5584                 udelay(150);
5585
5586                 /* The pixel multiplier can only be updated once the
5587                  * DPLL is enabled and the clocks are stable.
5588                  *
5589                  * So write it again.
5590                  */
5591                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5592         }
5593
5594         intel_crtc->lowfreq_avail = false;
5595         if (intel_crtc->pch_pll) {
5596                 if (is_lvds && has_reduced_clock && i915_powersave) {
5597                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5598                         intel_crtc->lowfreq_avail = true;
5599                 } else {
5600                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5601                 }
5602         }
5603
5604         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5605
5606         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5607          * ironlake_check_fdi_lanes. */
5608         ironlake_set_m_n(crtc, mode, adjusted_mode);
5609
5610         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5611
5612         if (is_cpu_edp)
5613                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5614
5615         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5616
5617         intel_wait_for_vblank(dev, pipe);
5618
5619         /* Set up the display plane register */
5620         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5621         POSTING_READ(DSPCNTR(plane));
5622
5623         ret = intel_pipe_set_base(crtc, x, y, fb);
5624
5625         intel_update_watermarks(dev);
5626
5627         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5628
5629         return fdi_config_ok ? ret : -EINVAL;
5630 }
5631
5632 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5633                                  struct drm_display_mode *mode,
5634                                  struct drm_display_mode *adjusted_mode,
5635                                  int x, int y,
5636                                  struct drm_framebuffer *fb)
5637 {
5638         struct drm_device *dev = crtc->dev;
5639         struct drm_i915_private *dev_priv = dev->dev_private;
5640         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5641         int pipe = intel_crtc->pipe;
5642         int plane = intel_crtc->plane;
5643         int num_connectors = 0;
5644         intel_clock_t clock, reduced_clock;
5645         u32 dpll = 0, fp = 0, fp2 = 0;
5646         bool ok, has_reduced_clock = false;
5647         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5648         struct intel_encoder *encoder;
5649         u32 temp;
5650         int ret;
5651         bool dither;
5652
5653         for_each_encoder_on_crtc(dev, crtc, encoder) {
5654                 switch (encoder->type) {
5655                 case INTEL_OUTPUT_LVDS:
5656                         is_lvds = true;
5657                         break;
5658                 case INTEL_OUTPUT_DISPLAYPORT:
5659                         is_dp = true;
5660                         break;
5661                 case INTEL_OUTPUT_EDP:
5662                         is_dp = true;
5663                         if (!intel_encoder_is_pch_edp(&encoder->base))
5664                                 is_cpu_edp = true;
5665                         break;
5666                 }
5667
5668                 num_connectors++;
5669         }
5670
5671         if (is_cpu_edp)
5672                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5673         else
5674                 intel_crtc->cpu_transcoder = pipe;
5675
5676         /* We are not sure yet this won't happen. */
5677         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5678              INTEL_PCH_TYPE(dev));
5679
5680         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5681              num_connectors, pipe_name(pipe));
5682
5683         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5684                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5685
5686         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5687
5688         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5689                 return -EINVAL;
5690
5691         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5692                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5693                                              &has_reduced_clock,
5694                                              &reduced_clock);
5695                 if (!ok) {
5696                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5697                         return -EINVAL;
5698                 }
5699         }
5700
5701         /* Ensure that the cursor is valid for the new mode before changing... */
5702         intel_crtc_update_cursor(crtc, true);
5703
5704         /* determine panel color depth */
5705         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5706                                               adjusted_mode);
5707         if (is_lvds && dev_priv->lvds_dither)
5708                 dither = true;
5709
5710         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5711         drm_mode_debug_printmodeline(mode);
5712
5713         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5714                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5715                 if (has_reduced_clock)
5716                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5717                               reduced_clock.m2;
5718
5719                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5720                                              fp);
5721
5722                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5723                  * own on pre-Haswell/LPT generation */
5724                 if (!is_cpu_edp) {
5725                         struct intel_pch_pll *pll;
5726
5727                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5728                         if (pll == NULL) {
5729                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5730                                                  pipe);
5731                                 return -EINVAL;
5732                         }
5733                 } else
5734                         intel_put_pch_pll(intel_crtc);
5735
5736                 /* The LVDS pin pair needs to be on before the DPLLs are
5737                  * enabled.  This is an exception to the general rule that
5738                  * mode_set doesn't turn things on.
5739                  */
5740                 if (is_lvds) {
5741                         temp = I915_READ(PCH_LVDS);
5742                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5743                         if (HAS_PCH_CPT(dev)) {
5744                                 temp &= ~PORT_TRANS_SEL_MASK;
5745                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5746                         } else {
5747                                 if (pipe == 1)
5748                                         temp |= LVDS_PIPEB_SELECT;
5749                                 else
5750                                         temp &= ~LVDS_PIPEB_SELECT;
5751                         }
5752
5753                         /* set the corresponsding LVDS_BORDER bit */
5754                         temp |= dev_priv->lvds_border_bits;
5755                         /* Set the B0-B3 data pairs corresponding to whether
5756                          * we're going to set the DPLLs for dual-channel mode or
5757                          * not.
5758                          */
5759                         if (clock.p2 == 7)
5760                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5761                         else
5762                                 temp &= ~(LVDS_B0B3_POWER_UP |
5763                                           LVDS_CLKB_POWER_UP);
5764
5765                         /* It would be nice to set 24 vs 18-bit mode
5766                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5767                          * look more thoroughly into how panels behave in the
5768                          * two modes.
5769                          */
5770                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5771                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5772                                 temp |= LVDS_HSYNC_POLARITY;
5773                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5774                                 temp |= LVDS_VSYNC_POLARITY;
5775                         I915_WRITE(PCH_LVDS, temp);
5776                 }
5777         }
5778
5779         if (is_dp && !is_cpu_edp) {
5780                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5781         } else {
5782                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5783                         /* For non-DP output, clear any trans DP clock recovery
5784                          * setting.*/
5785                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5786                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5787                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5788                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5789                 }
5790         }
5791
5792         intel_crtc->lowfreq_avail = false;
5793         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5794                 if (intel_crtc->pch_pll) {
5795                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5796
5797                         /* Wait for the clocks to stabilize. */
5798                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5799                         udelay(150);
5800
5801                         /* The pixel multiplier can only be updated once the
5802                          * DPLL is enabled and the clocks are stable.
5803                          *
5804                          * So write it again.
5805                          */
5806                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5807                 }
5808
5809                 if (intel_crtc->pch_pll) {
5810                         if (is_lvds && has_reduced_clock && i915_powersave) {
5811                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5812                                 intel_crtc->lowfreq_avail = true;
5813                         } else {
5814                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5815                         }
5816                 }
5817         }
5818
5819         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5820
5821         if (!is_dp || is_cpu_edp)
5822                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5823
5824         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5825                 if (is_cpu_edp)
5826                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5827
5828         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5829
5830         /* Set up the display plane register */
5831         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5832         POSTING_READ(DSPCNTR(plane));
5833
5834         ret = intel_pipe_set_base(crtc, x, y, fb);
5835
5836         intel_update_watermarks(dev);
5837
5838         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5839
5840         return ret;
5841 }
5842
5843 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5844                                struct drm_display_mode *mode,
5845                                struct drm_display_mode *adjusted_mode,
5846                                int x, int y,
5847                                struct drm_framebuffer *fb)
5848 {
5849         struct drm_device *dev = crtc->dev;
5850         struct drm_i915_private *dev_priv = dev->dev_private;
5851         struct drm_encoder_helper_funcs *encoder_funcs;
5852         struct intel_encoder *encoder;
5853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5854         int pipe = intel_crtc->pipe;
5855         int ret;
5856
5857         drm_vblank_pre_modeset(dev, pipe);
5858
5859         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5860                                               x, y, fb);
5861         drm_vblank_post_modeset(dev, pipe);
5862
5863         if (ret != 0)
5864                 return ret;
5865
5866         for_each_encoder_on_crtc(dev, crtc, encoder) {
5867                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5868                         encoder->base.base.id,
5869                         drm_get_encoder_name(&encoder->base),
5870                         mode->base.id, mode->name);
5871                 encoder_funcs = encoder->base.helper_private;
5872                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5873         }
5874
5875         return 0;
5876 }
5877
5878 static bool intel_eld_uptodate(struct drm_connector *connector,
5879                                int reg_eldv, uint32_t bits_eldv,
5880                                int reg_elda, uint32_t bits_elda,
5881                                int reg_edid)
5882 {
5883         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5884         uint8_t *eld = connector->eld;
5885         uint32_t i;
5886
5887         i = I915_READ(reg_eldv);
5888         i &= bits_eldv;
5889
5890         if (!eld[0])
5891                 return !i;
5892
5893         if (!i)
5894                 return false;
5895
5896         i = I915_READ(reg_elda);
5897         i &= ~bits_elda;
5898         I915_WRITE(reg_elda, i);
5899
5900         for (i = 0; i < eld[2]; i++)
5901                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5902                         return false;
5903
5904         return true;
5905 }
5906
5907 static void g4x_write_eld(struct drm_connector *connector,
5908                           struct drm_crtc *crtc)
5909 {
5910         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5911         uint8_t *eld = connector->eld;
5912         uint32_t eldv;
5913         uint32_t len;
5914         uint32_t i;
5915
5916         i = I915_READ(G4X_AUD_VID_DID);
5917
5918         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5919                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5920         else
5921                 eldv = G4X_ELDV_DEVCTG;
5922
5923         if (intel_eld_uptodate(connector,
5924                                G4X_AUD_CNTL_ST, eldv,
5925                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5926                                G4X_HDMIW_HDMIEDID))
5927                 return;
5928
5929         i = I915_READ(G4X_AUD_CNTL_ST);
5930         i &= ~(eldv | G4X_ELD_ADDR);
5931         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5932         I915_WRITE(G4X_AUD_CNTL_ST, i);
5933
5934         if (!eld[0])
5935                 return;
5936
5937         len = min_t(uint8_t, eld[2], len);
5938         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5939         for (i = 0; i < len; i++)
5940                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5941
5942         i = I915_READ(G4X_AUD_CNTL_ST);
5943         i |= eldv;
5944         I915_WRITE(G4X_AUD_CNTL_ST, i);
5945 }
5946
5947 static void haswell_write_eld(struct drm_connector *connector,
5948                                      struct drm_crtc *crtc)
5949 {
5950         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5951         uint8_t *eld = connector->eld;
5952         struct drm_device *dev = crtc->dev;
5953         uint32_t eldv;
5954         uint32_t i;
5955         int len;
5956         int pipe = to_intel_crtc(crtc)->pipe;
5957         int tmp;
5958
5959         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5960         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5961         int aud_config = HSW_AUD_CFG(pipe);
5962         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5963
5964
5965         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5966
5967         /* Audio output enable */
5968         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5969         tmp = I915_READ(aud_cntrl_st2);
5970         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5971         I915_WRITE(aud_cntrl_st2, tmp);
5972
5973         /* Wait for 1 vertical blank */
5974         intel_wait_for_vblank(dev, pipe);
5975
5976         /* Set ELD valid state */
5977         tmp = I915_READ(aud_cntrl_st2);
5978         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5979         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5980         I915_WRITE(aud_cntrl_st2, tmp);
5981         tmp = I915_READ(aud_cntrl_st2);
5982         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5983
5984         /* Enable HDMI mode */
5985         tmp = I915_READ(aud_config);
5986         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5987         /* clear N_programing_enable and N_value_index */
5988         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5989         I915_WRITE(aud_config, tmp);
5990
5991         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5992
5993         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5994
5995         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5996                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5997                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5998                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5999         } else
6000                 I915_WRITE(aud_config, 0);
6001
6002         if (intel_eld_uptodate(connector,
6003                                aud_cntrl_st2, eldv,
6004                                aud_cntl_st, IBX_ELD_ADDRESS,
6005                                hdmiw_hdmiedid))
6006                 return;
6007
6008         i = I915_READ(aud_cntrl_st2);
6009         i &= ~eldv;
6010         I915_WRITE(aud_cntrl_st2, i);
6011
6012         if (!eld[0])
6013                 return;
6014
6015         i = I915_READ(aud_cntl_st);
6016         i &= ~IBX_ELD_ADDRESS;
6017         I915_WRITE(aud_cntl_st, i);
6018         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6019         DRM_DEBUG_DRIVER("port num:%d\n", i);
6020
6021         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6022         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6023         for (i = 0; i < len; i++)
6024                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6025
6026         i = I915_READ(aud_cntrl_st2);
6027         i |= eldv;
6028         I915_WRITE(aud_cntrl_st2, i);
6029
6030 }
6031
6032 static void ironlake_write_eld(struct drm_connector *connector,
6033                                      struct drm_crtc *crtc)
6034 {
6035         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6036         uint8_t *eld = connector->eld;
6037         uint32_t eldv;
6038         uint32_t i;
6039         int len;
6040         int hdmiw_hdmiedid;
6041         int aud_config;
6042         int aud_cntl_st;
6043         int aud_cntrl_st2;
6044         int pipe = to_intel_crtc(crtc)->pipe;
6045
6046         if (HAS_PCH_IBX(connector->dev)) {
6047                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6048                 aud_config = IBX_AUD_CFG(pipe);
6049                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6050                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6051         } else {
6052                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6053                 aud_config = CPT_AUD_CFG(pipe);
6054                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6055                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6056         }
6057
6058         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6059
6060         i = I915_READ(aud_cntl_st);
6061         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6062         if (!i) {
6063                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6064                 /* operate blindly on all ports */
6065                 eldv = IBX_ELD_VALIDB;
6066                 eldv |= IBX_ELD_VALIDB << 4;
6067                 eldv |= IBX_ELD_VALIDB << 8;
6068         } else {
6069                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6070                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6071         }
6072
6073         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6074                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6075                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6076                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6077         } else
6078                 I915_WRITE(aud_config, 0);
6079
6080         if (intel_eld_uptodate(connector,
6081                                aud_cntrl_st2, eldv,
6082                                aud_cntl_st, IBX_ELD_ADDRESS,
6083                                hdmiw_hdmiedid))
6084                 return;
6085
6086         i = I915_READ(aud_cntrl_st2);
6087         i &= ~eldv;
6088         I915_WRITE(aud_cntrl_st2, i);
6089
6090         if (!eld[0])
6091                 return;
6092
6093         i = I915_READ(aud_cntl_st);
6094         i &= ~IBX_ELD_ADDRESS;
6095         I915_WRITE(aud_cntl_st, i);
6096
6097         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6098         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6099         for (i = 0; i < len; i++)
6100                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6101
6102         i = I915_READ(aud_cntrl_st2);
6103         i |= eldv;
6104         I915_WRITE(aud_cntrl_st2, i);
6105 }
6106
6107 void intel_write_eld(struct drm_encoder *encoder,
6108                      struct drm_display_mode *mode)
6109 {
6110         struct drm_crtc *crtc = encoder->crtc;
6111         struct drm_connector *connector;
6112         struct drm_device *dev = encoder->dev;
6113         struct drm_i915_private *dev_priv = dev->dev_private;
6114
6115         connector = drm_select_eld(encoder, mode);
6116         if (!connector)
6117                 return;
6118
6119         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6120                          connector->base.id,
6121                          drm_get_connector_name(connector),
6122                          connector->encoder->base.id,
6123                          drm_get_encoder_name(connector->encoder));
6124
6125         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6126
6127         if (dev_priv->display.write_eld)
6128                 dev_priv->display.write_eld(connector, crtc);
6129 }
6130
6131 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6132 void intel_crtc_load_lut(struct drm_crtc *crtc)
6133 {
6134         struct drm_device *dev = crtc->dev;
6135         struct drm_i915_private *dev_priv = dev->dev_private;
6136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6137         int palreg = PALETTE(intel_crtc->pipe);
6138         int i;
6139
6140         /* The clocks have to be on to load the palette. */
6141         if (!crtc->enabled || !intel_crtc->active)
6142                 return;
6143
6144         /* use legacy palette for Ironlake */
6145         if (HAS_PCH_SPLIT(dev))
6146                 palreg = LGC_PALETTE(intel_crtc->pipe);
6147
6148         for (i = 0; i < 256; i++) {
6149                 I915_WRITE(palreg + 4 * i,
6150                            (intel_crtc->lut_r[i] << 16) |
6151                            (intel_crtc->lut_g[i] << 8) |
6152                            intel_crtc->lut_b[i]);
6153         }
6154 }
6155
6156 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6157 {
6158         struct drm_device *dev = crtc->dev;
6159         struct drm_i915_private *dev_priv = dev->dev_private;
6160         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6161         bool visible = base != 0;
6162         u32 cntl;
6163
6164         if (intel_crtc->cursor_visible == visible)
6165                 return;
6166
6167         cntl = I915_READ(_CURACNTR);
6168         if (visible) {
6169                 /* On these chipsets we can only modify the base whilst
6170                  * the cursor is disabled.
6171                  */
6172                 I915_WRITE(_CURABASE, base);
6173
6174                 cntl &= ~(CURSOR_FORMAT_MASK);
6175                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6176                 cntl |= CURSOR_ENABLE |
6177                         CURSOR_GAMMA_ENABLE |
6178                         CURSOR_FORMAT_ARGB;
6179         } else
6180                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6181         I915_WRITE(_CURACNTR, cntl);
6182
6183         intel_crtc->cursor_visible = visible;
6184 }
6185
6186 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6187 {
6188         struct drm_device *dev = crtc->dev;
6189         struct drm_i915_private *dev_priv = dev->dev_private;
6190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6191         int pipe = intel_crtc->pipe;
6192         bool visible = base != 0;
6193
6194         if (intel_crtc->cursor_visible != visible) {
6195                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6196                 if (base) {
6197                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6198                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6199                         cntl |= pipe << 28; /* Connect to correct pipe */
6200                 } else {
6201                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6202                         cntl |= CURSOR_MODE_DISABLE;
6203                 }
6204                 I915_WRITE(CURCNTR(pipe), cntl);
6205
6206                 intel_crtc->cursor_visible = visible;
6207         }
6208         /* and commit changes on next vblank */
6209         I915_WRITE(CURBASE(pipe), base);
6210 }
6211
6212 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6213 {
6214         struct drm_device *dev = crtc->dev;
6215         struct drm_i915_private *dev_priv = dev->dev_private;
6216         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6217         int pipe = intel_crtc->pipe;
6218         bool visible = base != 0;
6219
6220         if (intel_crtc->cursor_visible != visible) {
6221                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6222                 if (base) {
6223                         cntl &= ~CURSOR_MODE;
6224                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6225                 } else {
6226                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6227                         cntl |= CURSOR_MODE_DISABLE;
6228                 }
6229                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6230
6231                 intel_crtc->cursor_visible = visible;
6232         }
6233         /* and commit changes on next vblank */
6234         I915_WRITE(CURBASE_IVB(pipe), base);
6235 }
6236
6237 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6238 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6239                                      bool on)
6240 {
6241         struct drm_device *dev = crtc->dev;
6242         struct drm_i915_private *dev_priv = dev->dev_private;
6243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6244         int pipe = intel_crtc->pipe;
6245         int x = intel_crtc->cursor_x;
6246         int y = intel_crtc->cursor_y;
6247         u32 base, pos;
6248         bool visible;
6249
6250         pos = 0;
6251
6252         if (on && crtc->enabled && crtc->fb) {
6253                 base = intel_crtc->cursor_addr;
6254                 if (x > (int) crtc->fb->width)
6255                         base = 0;
6256
6257                 if (y > (int) crtc->fb->height)
6258                         base = 0;
6259         } else
6260                 base = 0;
6261
6262         if (x < 0) {
6263                 if (x + intel_crtc->cursor_width < 0)
6264                         base = 0;
6265
6266                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6267                 x = -x;
6268         }
6269         pos |= x << CURSOR_X_SHIFT;
6270
6271         if (y < 0) {
6272                 if (y + intel_crtc->cursor_height < 0)
6273                         base = 0;
6274
6275                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6276                 y = -y;
6277         }
6278         pos |= y << CURSOR_Y_SHIFT;
6279
6280         visible = base != 0;
6281         if (!visible && !intel_crtc->cursor_visible)
6282                 return;
6283
6284         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6285                 I915_WRITE(CURPOS_IVB(pipe), pos);
6286                 ivb_update_cursor(crtc, base);
6287         } else {
6288                 I915_WRITE(CURPOS(pipe), pos);
6289                 if (IS_845G(dev) || IS_I865G(dev))
6290                         i845_update_cursor(crtc, base);
6291                 else
6292                         i9xx_update_cursor(crtc, base);
6293         }
6294 }
6295
6296 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6297                                  struct drm_file *file,
6298                                  uint32_t handle,
6299                                  uint32_t width, uint32_t height)
6300 {
6301         struct drm_device *dev = crtc->dev;
6302         struct drm_i915_private *dev_priv = dev->dev_private;
6303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6304         struct drm_i915_gem_object *obj;
6305         uint32_t addr;
6306         int ret;
6307
6308         /* if we want to turn off the cursor ignore width and height */
6309         if (!handle) {
6310                 DRM_DEBUG_KMS("cursor off\n");
6311                 addr = 0;
6312                 obj = NULL;
6313                 mutex_lock(&dev->struct_mutex);
6314                 goto finish;
6315         }
6316
6317         /* Currently we only support 64x64 cursors */
6318         if (width != 64 || height != 64) {
6319                 DRM_ERROR("we currently only support 64x64 cursors\n");
6320                 return -EINVAL;
6321         }
6322
6323         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6324         if (&obj->base == NULL)
6325                 return -ENOENT;
6326
6327         if (obj->base.size < width * height * 4) {
6328                 DRM_ERROR("buffer is to small\n");
6329                 ret = -ENOMEM;
6330                 goto fail;
6331         }
6332
6333         /* we only need to pin inside GTT if cursor is non-phy */
6334         mutex_lock(&dev->struct_mutex);
6335         if (!dev_priv->info->cursor_needs_physical) {
6336                 if (obj->tiling_mode) {
6337                         DRM_ERROR("cursor cannot be tiled\n");
6338                         ret = -EINVAL;
6339                         goto fail_locked;
6340                 }
6341
6342                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6343                 if (ret) {
6344                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6345                         goto fail_locked;
6346                 }
6347
6348                 ret = i915_gem_object_put_fence(obj);
6349                 if (ret) {
6350                         DRM_ERROR("failed to release fence for cursor");
6351                         goto fail_unpin;
6352                 }
6353
6354                 addr = obj->gtt_offset;
6355         } else {
6356                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6357                 ret = i915_gem_attach_phys_object(dev, obj,
6358                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6359                                                   align);
6360                 if (ret) {
6361                         DRM_ERROR("failed to attach phys object\n");
6362                         goto fail_locked;
6363                 }
6364                 addr = obj->phys_obj->handle->busaddr;
6365         }
6366
6367         if (IS_GEN2(dev))
6368                 I915_WRITE(CURSIZE, (height << 12) | width);
6369
6370  finish:
6371         if (intel_crtc->cursor_bo) {
6372                 if (dev_priv->info->cursor_needs_physical) {
6373                         if (intel_crtc->cursor_bo != obj)
6374                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6375                 } else
6376                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6377                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6378         }
6379
6380         mutex_unlock(&dev->struct_mutex);
6381
6382         intel_crtc->cursor_addr = addr;
6383         intel_crtc->cursor_bo = obj;
6384         intel_crtc->cursor_width = width;
6385         intel_crtc->cursor_height = height;
6386
6387         intel_crtc_update_cursor(crtc, true);
6388
6389         return 0;
6390 fail_unpin:
6391         i915_gem_object_unpin(obj);
6392 fail_locked:
6393         mutex_unlock(&dev->struct_mutex);
6394 fail:
6395         drm_gem_object_unreference_unlocked(&obj->base);
6396         return ret;
6397 }
6398
6399 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6400 {
6401         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6402
6403         intel_crtc->cursor_x = x;
6404         intel_crtc->cursor_y = y;
6405
6406         intel_crtc_update_cursor(crtc, true);
6407
6408         return 0;
6409 }
6410
6411 /** Sets the color ramps on behalf of RandR */
6412 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6413                                  u16 blue, int regno)
6414 {
6415         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6416
6417         intel_crtc->lut_r[regno] = red >> 8;
6418         intel_crtc->lut_g[regno] = green >> 8;
6419         intel_crtc->lut_b[regno] = blue >> 8;
6420 }
6421
6422 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6423                              u16 *blue, int regno)
6424 {
6425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6426
6427         *red = intel_crtc->lut_r[regno] << 8;
6428         *green = intel_crtc->lut_g[regno] << 8;
6429         *blue = intel_crtc->lut_b[regno] << 8;
6430 }
6431
6432 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6433                                  u16 *blue, uint32_t start, uint32_t size)
6434 {
6435         int end = (start + size > 256) ? 256 : start + size, i;
6436         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6437
6438         for (i = start; i < end; i++) {
6439                 intel_crtc->lut_r[i] = red[i] >> 8;
6440                 intel_crtc->lut_g[i] = green[i] >> 8;
6441                 intel_crtc->lut_b[i] = blue[i] >> 8;
6442         }
6443
6444         intel_crtc_load_lut(crtc);
6445 }
6446
6447 /**
6448  * Get a pipe with a simple mode set on it for doing load-based monitor
6449  * detection.
6450  *
6451  * It will be up to the load-detect code to adjust the pipe as appropriate for
6452  * its requirements.  The pipe will be connected to no other encoders.
6453  *
6454  * Currently this code will only succeed if there is a pipe with no encoders
6455  * configured for it.  In the future, it could choose to temporarily disable
6456  * some outputs to free up a pipe for its use.
6457  *
6458  * \return crtc, or NULL if no pipes are available.
6459  */
6460
6461 /* VESA 640x480x72Hz mode to set on the pipe */
6462 static struct drm_display_mode load_detect_mode = {
6463         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6464                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6465 };
6466
6467 static struct drm_framebuffer *
6468 intel_framebuffer_create(struct drm_device *dev,
6469                          struct drm_mode_fb_cmd2 *mode_cmd,
6470                          struct drm_i915_gem_object *obj)
6471 {
6472         struct intel_framebuffer *intel_fb;
6473         int ret;
6474
6475         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6476         if (!intel_fb) {
6477                 drm_gem_object_unreference_unlocked(&obj->base);
6478                 return ERR_PTR(-ENOMEM);
6479         }
6480
6481         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6482         if (ret) {
6483                 drm_gem_object_unreference_unlocked(&obj->base);
6484                 kfree(intel_fb);
6485                 return ERR_PTR(ret);
6486         }
6487
6488         return &intel_fb->base;
6489 }
6490
6491 static u32
6492 intel_framebuffer_pitch_for_width(int width, int bpp)
6493 {
6494         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6495         return ALIGN(pitch, 64);
6496 }
6497
6498 static u32
6499 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6500 {
6501         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6502         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6503 }
6504
6505 static struct drm_framebuffer *
6506 intel_framebuffer_create_for_mode(struct drm_device *dev,
6507                                   struct drm_display_mode *mode,
6508                                   int depth, int bpp)
6509 {
6510         struct drm_i915_gem_object *obj;
6511         struct drm_mode_fb_cmd2 mode_cmd;
6512
6513         obj = i915_gem_alloc_object(dev,
6514                                     intel_framebuffer_size_for_mode(mode, bpp));
6515         if (obj == NULL)
6516                 return ERR_PTR(-ENOMEM);
6517
6518         mode_cmd.width = mode->hdisplay;
6519         mode_cmd.height = mode->vdisplay;
6520         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6521                                                                 bpp);
6522         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6523
6524         return intel_framebuffer_create(dev, &mode_cmd, obj);
6525 }
6526
6527 static struct drm_framebuffer *
6528 mode_fits_in_fbdev(struct drm_device *dev,
6529                    struct drm_display_mode *mode)
6530 {
6531         struct drm_i915_private *dev_priv = dev->dev_private;
6532         struct drm_i915_gem_object *obj;
6533         struct drm_framebuffer *fb;
6534
6535         if (dev_priv->fbdev == NULL)
6536                 return NULL;
6537
6538         obj = dev_priv->fbdev->ifb.obj;
6539         if (obj == NULL)
6540                 return NULL;
6541
6542         fb = &dev_priv->fbdev->ifb.base;
6543         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6544                                                                fb->bits_per_pixel))
6545                 return NULL;
6546
6547         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6548                 return NULL;
6549
6550         return fb;
6551 }
6552
6553 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6554                                 struct drm_display_mode *mode,
6555                                 struct intel_load_detect_pipe *old)
6556 {
6557         struct intel_crtc *intel_crtc;
6558         struct intel_encoder *intel_encoder =
6559                 intel_attached_encoder(connector);
6560         struct drm_crtc *possible_crtc;
6561         struct drm_encoder *encoder = &intel_encoder->base;
6562         struct drm_crtc *crtc = NULL;
6563         struct drm_device *dev = encoder->dev;
6564         struct drm_framebuffer *fb;
6565         int i = -1;
6566
6567         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6568                       connector->base.id, drm_get_connector_name(connector),
6569                       encoder->base.id, drm_get_encoder_name(encoder));
6570
6571         /*
6572          * Algorithm gets a little messy:
6573          *
6574          *   - if the connector already has an assigned crtc, use it (but make
6575          *     sure it's on first)
6576          *
6577          *   - try to find the first unused crtc that can drive this connector,
6578          *     and use that if we find one
6579          */
6580
6581         /* See if we already have a CRTC for this connector */
6582         if (encoder->crtc) {
6583                 crtc = encoder->crtc;
6584
6585                 old->dpms_mode = connector->dpms;
6586                 old->load_detect_temp = false;
6587
6588                 /* Make sure the crtc and connector are running */
6589                 if (connector->dpms != DRM_MODE_DPMS_ON)
6590                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6591
6592                 return true;
6593         }
6594
6595         /* Find an unused one (if possible) */
6596         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6597                 i++;
6598                 if (!(encoder->possible_crtcs & (1 << i)))
6599                         continue;
6600                 if (!possible_crtc->enabled) {
6601                         crtc = possible_crtc;
6602                         break;
6603                 }
6604         }
6605
6606         /*
6607          * If we didn't find an unused CRTC, don't use any.
6608          */
6609         if (!crtc) {
6610                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6611                 return false;
6612         }
6613
6614         intel_encoder->new_crtc = to_intel_crtc(crtc);
6615         to_intel_connector(connector)->new_encoder = intel_encoder;
6616
6617         intel_crtc = to_intel_crtc(crtc);
6618         old->dpms_mode = connector->dpms;
6619         old->load_detect_temp = true;
6620         old->release_fb = NULL;
6621
6622         if (!mode)
6623                 mode = &load_detect_mode;
6624
6625         /* We need a framebuffer large enough to accommodate all accesses
6626          * that the plane may generate whilst we perform load detection.
6627          * We can not rely on the fbcon either being present (we get called
6628          * during its initialisation to detect all boot displays, or it may
6629          * not even exist) or that it is large enough to satisfy the
6630          * requested mode.
6631          */
6632         fb = mode_fits_in_fbdev(dev, mode);
6633         if (fb == NULL) {
6634                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6635                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6636                 old->release_fb = fb;
6637         } else
6638                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6639         if (IS_ERR(fb)) {
6640                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6641                 goto fail;
6642         }
6643
6644         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6645                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6646                 if (old->release_fb)
6647                         old->release_fb->funcs->destroy(old->release_fb);
6648                 goto fail;
6649         }
6650
6651         /* let the connector get through one full cycle before testing */
6652         intel_wait_for_vblank(dev, intel_crtc->pipe);
6653
6654         return true;
6655 fail:
6656         connector->encoder = NULL;
6657         encoder->crtc = NULL;
6658         return false;
6659 }
6660
6661 void intel_release_load_detect_pipe(struct drm_connector *connector,
6662                                     struct intel_load_detect_pipe *old)
6663 {
6664         struct intel_encoder *intel_encoder =
6665                 intel_attached_encoder(connector);
6666         struct drm_encoder *encoder = &intel_encoder->base;
6667
6668         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6669                       connector->base.id, drm_get_connector_name(connector),
6670                       encoder->base.id, drm_get_encoder_name(encoder));
6671
6672         if (old->load_detect_temp) {
6673                 struct drm_crtc *crtc = encoder->crtc;
6674
6675                 to_intel_connector(connector)->new_encoder = NULL;
6676                 intel_encoder->new_crtc = NULL;
6677                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6678
6679                 if (old->release_fb)
6680                         old->release_fb->funcs->destroy(old->release_fb);
6681
6682                 return;
6683         }
6684
6685         /* Switch crtc and encoder back off if necessary */
6686         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6687                 connector->funcs->dpms(connector, old->dpms_mode);
6688 }
6689
6690 /* Returns the clock of the currently programmed mode of the given pipe. */
6691 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6692 {
6693         struct drm_i915_private *dev_priv = dev->dev_private;
6694         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6695         int pipe = intel_crtc->pipe;
6696         u32 dpll = I915_READ(DPLL(pipe));
6697         u32 fp;
6698         intel_clock_t clock;
6699
6700         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6701                 fp = I915_READ(FP0(pipe));
6702         else
6703                 fp = I915_READ(FP1(pipe));
6704
6705         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6706         if (IS_PINEVIEW(dev)) {
6707                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6708                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6709         } else {
6710                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6711                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6712         }
6713
6714         if (!IS_GEN2(dev)) {
6715                 if (IS_PINEVIEW(dev))
6716                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6717                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6718                 else
6719                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6720                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6721
6722                 switch (dpll & DPLL_MODE_MASK) {
6723                 case DPLLB_MODE_DAC_SERIAL:
6724                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6725                                 5 : 10;
6726                         break;
6727                 case DPLLB_MODE_LVDS:
6728                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6729                                 7 : 14;
6730                         break;
6731                 default:
6732                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6733                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6734                         return 0;
6735                 }
6736
6737                 /* XXX: Handle the 100Mhz refclk */
6738                 intel_clock(dev, 96000, &clock);
6739         } else {
6740                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6741
6742                 if (is_lvds) {
6743                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6744                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6745                         clock.p2 = 14;
6746
6747                         if ((dpll & PLL_REF_INPUT_MASK) ==
6748                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6749                                 /* XXX: might not be 66MHz */
6750                                 intel_clock(dev, 66000, &clock);
6751                         } else
6752                                 intel_clock(dev, 48000, &clock);
6753                 } else {
6754                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6755                                 clock.p1 = 2;
6756                         else {
6757                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6758                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6759                         }
6760                         if (dpll & PLL_P2_DIVIDE_BY_4)
6761                                 clock.p2 = 4;
6762                         else
6763                                 clock.p2 = 2;
6764
6765                         intel_clock(dev, 48000, &clock);
6766                 }
6767         }
6768
6769         /* XXX: It would be nice to validate the clocks, but we can't reuse
6770          * i830PllIsValid() because it relies on the xf86_config connector
6771          * configuration being accurate, which it isn't necessarily.
6772          */
6773
6774         return clock.dot;
6775 }
6776
6777 /** Returns the currently programmed mode of the given pipe. */
6778 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6779                                              struct drm_crtc *crtc)
6780 {
6781         struct drm_i915_private *dev_priv = dev->dev_private;
6782         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6783         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6784         struct drm_display_mode *mode;
6785         int htot = I915_READ(HTOTAL(cpu_transcoder));
6786         int hsync = I915_READ(HSYNC(cpu_transcoder));
6787         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6788         int vsync = I915_READ(VSYNC(cpu_transcoder));
6789
6790         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6791         if (!mode)
6792                 return NULL;
6793
6794         mode->clock = intel_crtc_clock_get(dev, crtc);
6795         mode->hdisplay = (htot & 0xffff) + 1;
6796         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6797         mode->hsync_start = (hsync & 0xffff) + 1;
6798         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6799         mode->vdisplay = (vtot & 0xffff) + 1;
6800         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6801         mode->vsync_start = (vsync & 0xffff) + 1;
6802         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6803
6804         drm_mode_set_name(mode);
6805
6806         return mode;
6807 }
6808
6809 static void intel_increase_pllclock(struct drm_crtc *crtc)
6810 {
6811         struct drm_device *dev = crtc->dev;
6812         drm_i915_private_t *dev_priv = dev->dev_private;
6813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6814         int pipe = intel_crtc->pipe;
6815         int dpll_reg = DPLL(pipe);
6816         int dpll;
6817
6818         if (HAS_PCH_SPLIT(dev))
6819                 return;
6820
6821         if (!dev_priv->lvds_downclock_avail)
6822                 return;
6823
6824         dpll = I915_READ(dpll_reg);
6825         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6826                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6827
6828                 assert_panel_unlocked(dev_priv, pipe);
6829
6830                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6831                 I915_WRITE(dpll_reg, dpll);
6832                 intel_wait_for_vblank(dev, pipe);
6833
6834                 dpll = I915_READ(dpll_reg);
6835                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6836                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6837         }
6838 }
6839
6840 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6841 {
6842         struct drm_device *dev = crtc->dev;
6843         drm_i915_private_t *dev_priv = dev->dev_private;
6844         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6845
6846         if (HAS_PCH_SPLIT(dev))
6847                 return;
6848
6849         if (!dev_priv->lvds_downclock_avail)
6850                 return;
6851
6852         /*
6853          * Since this is called by a timer, we should never get here in
6854          * the manual case.
6855          */
6856         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6857                 int pipe = intel_crtc->pipe;
6858                 int dpll_reg = DPLL(pipe);
6859                 int dpll;
6860
6861                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6862
6863                 assert_panel_unlocked(dev_priv, pipe);
6864
6865                 dpll = I915_READ(dpll_reg);
6866                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6867                 I915_WRITE(dpll_reg, dpll);
6868                 intel_wait_for_vblank(dev, pipe);
6869                 dpll = I915_READ(dpll_reg);
6870                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6871                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6872         }
6873
6874 }
6875
6876 void intel_mark_busy(struct drm_device *dev)
6877 {
6878         i915_update_gfx_val(dev->dev_private);
6879 }
6880
6881 void intel_mark_idle(struct drm_device *dev)
6882 {
6883 }
6884
6885 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6886 {
6887         struct drm_device *dev = obj->base.dev;
6888         struct drm_crtc *crtc;
6889
6890         if (!i915_powersave)
6891                 return;
6892
6893         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6894                 if (!crtc->fb)
6895                         continue;
6896
6897                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6898                         intel_increase_pllclock(crtc);
6899         }
6900 }
6901
6902 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6903 {
6904         struct drm_device *dev = obj->base.dev;
6905         struct drm_crtc *crtc;
6906
6907         if (!i915_powersave)
6908                 return;
6909
6910         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6911                 if (!crtc->fb)
6912                         continue;
6913
6914                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6915                         intel_decrease_pllclock(crtc);
6916         }
6917 }
6918
6919 static void intel_crtc_destroy(struct drm_crtc *crtc)
6920 {
6921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6922         struct drm_device *dev = crtc->dev;
6923         struct intel_unpin_work *work;
6924         unsigned long flags;
6925
6926         spin_lock_irqsave(&dev->event_lock, flags);
6927         work = intel_crtc->unpin_work;
6928         intel_crtc->unpin_work = NULL;
6929         spin_unlock_irqrestore(&dev->event_lock, flags);
6930
6931         if (work) {
6932                 cancel_work_sync(&work->work);
6933                 kfree(work);
6934         }
6935
6936         drm_crtc_cleanup(crtc);
6937
6938         kfree(intel_crtc);
6939 }
6940
6941 static void intel_unpin_work_fn(struct work_struct *__work)
6942 {
6943         struct intel_unpin_work *work =
6944                 container_of(__work, struct intel_unpin_work, work);
6945
6946         mutex_lock(&work->dev->struct_mutex);
6947         intel_unpin_fb_obj(work->old_fb_obj);
6948         drm_gem_object_unreference(&work->pending_flip_obj->base);
6949         drm_gem_object_unreference(&work->old_fb_obj->base);
6950
6951         intel_update_fbc(work->dev);
6952         mutex_unlock(&work->dev->struct_mutex);
6953         kfree(work);
6954 }
6955
6956 static void do_intel_finish_page_flip(struct drm_device *dev,
6957                                       struct drm_crtc *crtc)
6958 {
6959         drm_i915_private_t *dev_priv = dev->dev_private;
6960         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6961         struct intel_unpin_work *work;
6962         struct drm_i915_gem_object *obj;
6963         struct drm_pending_vblank_event *e;
6964         struct timeval tvbl;
6965         unsigned long flags;
6966
6967         /* Ignore early vblank irqs */
6968         if (intel_crtc == NULL)
6969                 return;
6970
6971         spin_lock_irqsave(&dev->event_lock, flags);
6972         work = intel_crtc->unpin_work;
6973         if (work == NULL || !work->pending) {
6974                 spin_unlock_irqrestore(&dev->event_lock, flags);
6975                 return;
6976         }
6977
6978         intel_crtc->unpin_work = NULL;
6979
6980         if (work->event) {
6981                 e = work->event;
6982                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6983
6984                 e->event.tv_sec = tvbl.tv_sec;
6985                 e->event.tv_usec = tvbl.tv_usec;
6986
6987                 list_add_tail(&e->base.link,
6988                               &e->base.file_priv->event_list);
6989                 wake_up_interruptible(&e->base.file_priv->event_wait);
6990         }
6991
6992         drm_vblank_put(dev, intel_crtc->pipe);
6993
6994         spin_unlock_irqrestore(&dev->event_lock, flags);
6995
6996         obj = work->old_fb_obj;
6997
6998         atomic_clear_mask(1 << intel_crtc->plane,
6999                           &obj->pending_flip.counter);
7000
7001         wake_up(&dev_priv->pending_flip_queue);
7002         schedule_work(&work->work);
7003
7004         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7005 }
7006
7007 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7008 {
7009         drm_i915_private_t *dev_priv = dev->dev_private;
7010         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7011
7012         do_intel_finish_page_flip(dev, crtc);
7013 }
7014
7015 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7016 {
7017         drm_i915_private_t *dev_priv = dev->dev_private;
7018         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7019
7020         do_intel_finish_page_flip(dev, crtc);
7021 }
7022
7023 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7024 {
7025         drm_i915_private_t *dev_priv = dev->dev_private;
7026         struct intel_crtc *intel_crtc =
7027                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7028         unsigned long flags;
7029
7030         spin_lock_irqsave(&dev->event_lock, flags);
7031         if (intel_crtc->unpin_work) {
7032                 if ((++intel_crtc->unpin_work->pending) > 1)
7033                         DRM_ERROR("Prepared flip multiple times\n");
7034         } else {
7035                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7036         }
7037         spin_unlock_irqrestore(&dev->event_lock, flags);
7038 }
7039
7040 static int intel_gen2_queue_flip(struct drm_device *dev,
7041                                  struct drm_crtc *crtc,
7042                                  struct drm_framebuffer *fb,
7043                                  struct drm_i915_gem_object *obj)
7044 {
7045         struct drm_i915_private *dev_priv = dev->dev_private;
7046         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7047         u32 flip_mask;
7048         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7049         int ret;
7050
7051         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7052         if (ret)
7053                 goto err;
7054
7055         ret = intel_ring_begin(ring, 6);
7056         if (ret)
7057                 goto err_unpin;
7058
7059         /* Can't queue multiple flips, so wait for the previous
7060          * one to finish before executing the next.
7061          */
7062         if (intel_crtc->plane)
7063                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7064         else
7065                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7066         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7067         intel_ring_emit(ring, MI_NOOP);
7068         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7069                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7070         intel_ring_emit(ring, fb->pitches[0]);
7071         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7072         intel_ring_emit(ring, 0); /* aux display base address, unused */
7073         intel_ring_advance(ring);
7074         return 0;
7075
7076 err_unpin:
7077         intel_unpin_fb_obj(obj);
7078 err:
7079         return ret;
7080 }
7081
7082 static int intel_gen3_queue_flip(struct drm_device *dev,
7083                                  struct drm_crtc *crtc,
7084                                  struct drm_framebuffer *fb,
7085                                  struct drm_i915_gem_object *obj)
7086 {
7087         struct drm_i915_private *dev_priv = dev->dev_private;
7088         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7089         u32 flip_mask;
7090         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7091         int ret;
7092
7093         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7094         if (ret)
7095                 goto err;
7096
7097         ret = intel_ring_begin(ring, 6);
7098         if (ret)
7099                 goto err_unpin;
7100
7101         if (intel_crtc->plane)
7102                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7103         else
7104                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7105         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7106         intel_ring_emit(ring, MI_NOOP);
7107         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7108                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7109         intel_ring_emit(ring, fb->pitches[0]);
7110         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7111         intel_ring_emit(ring, MI_NOOP);
7112
7113         intel_ring_advance(ring);
7114         return 0;
7115
7116 err_unpin:
7117         intel_unpin_fb_obj(obj);
7118 err:
7119         return ret;
7120 }
7121
7122 static int intel_gen4_queue_flip(struct drm_device *dev,
7123                                  struct drm_crtc *crtc,
7124                                  struct drm_framebuffer *fb,
7125                                  struct drm_i915_gem_object *obj)
7126 {
7127         struct drm_i915_private *dev_priv = dev->dev_private;
7128         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7129         uint32_t pf, pipesrc;
7130         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7131         int ret;
7132
7133         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7134         if (ret)
7135                 goto err;
7136
7137         ret = intel_ring_begin(ring, 4);
7138         if (ret)
7139                 goto err_unpin;
7140
7141         /* i965+ uses the linear or tiled offsets from the
7142          * Display Registers (which do not change across a page-flip)
7143          * so we need only reprogram the base address.
7144          */
7145         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7146                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7147         intel_ring_emit(ring, fb->pitches[0]);
7148         intel_ring_emit(ring,
7149                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7150                         obj->tiling_mode);
7151
7152         /* XXX Enabling the panel-fitter across page-flip is so far
7153          * untested on non-native modes, so ignore it for now.
7154          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7155          */
7156         pf = 0;
7157         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7158         intel_ring_emit(ring, pf | pipesrc);
7159         intel_ring_advance(ring);
7160         return 0;
7161
7162 err_unpin:
7163         intel_unpin_fb_obj(obj);
7164 err:
7165         return ret;
7166 }
7167
7168 static int intel_gen6_queue_flip(struct drm_device *dev,
7169                                  struct drm_crtc *crtc,
7170                                  struct drm_framebuffer *fb,
7171                                  struct drm_i915_gem_object *obj)
7172 {
7173         struct drm_i915_private *dev_priv = dev->dev_private;
7174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7175         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7176         uint32_t pf, pipesrc;
7177         int ret;
7178
7179         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7180         if (ret)
7181                 goto err;
7182
7183         ret = intel_ring_begin(ring, 4);
7184         if (ret)
7185                 goto err_unpin;
7186
7187         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7188                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7189         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7190         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7191
7192         /* Contrary to the suggestions in the documentation,
7193          * "Enable Panel Fitter" does not seem to be required when page
7194          * flipping with a non-native mode, and worse causes a normal
7195          * modeset to fail.
7196          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7197          */
7198         pf = 0;
7199         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7200         intel_ring_emit(ring, pf | pipesrc);
7201         intel_ring_advance(ring);
7202         return 0;
7203
7204 err_unpin:
7205         intel_unpin_fb_obj(obj);
7206 err:
7207         return ret;
7208 }
7209
7210 /*
7211  * On gen7 we currently use the blit ring because (in early silicon at least)
7212  * the render ring doesn't give us interrpts for page flip completion, which
7213  * means clients will hang after the first flip is queued.  Fortunately the
7214  * blit ring generates interrupts properly, so use it instead.
7215  */
7216 static int intel_gen7_queue_flip(struct drm_device *dev,
7217                                  struct drm_crtc *crtc,
7218                                  struct drm_framebuffer *fb,
7219                                  struct drm_i915_gem_object *obj)
7220 {
7221         struct drm_i915_private *dev_priv = dev->dev_private;
7222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7223         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7224         uint32_t plane_bit = 0;
7225         int ret;
7226
7227         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7228         if (ret)
7229                 goto err;
7230
7231         switch(intel_crtc->plane) {
7232         case PLANE_A:
7233                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7234                 break;
7235         case PLANE_B:
7236                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7237                 break;
7238         case PLANE_C:
7239                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7240                 break;
7241         default:
7242                 WARN_ONCE(1, "unknown plane in flip command\n");
7243                 ret = -ENODEV;
7244                 goto err_unpin;
7245         }
7246
7247         ret = intel_ring_begin(ring, 4);
7248         if (ret)
7249                 goto err_unpin;
7250
7251         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7252         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7253         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7254         intel_ring_emit(ring, (MI_NOOP));
7255         intel_ring_advance(ring);
7256         return 0;
7257
7258 err_unpin:
7259         intel_unpin_fb_obj(obj);
7260 err:
7261         return ret;
7262 }
7263
7264 static int intel_default_queue_flip(struct drm_device *dev,
7265                                     struct drm_crtc *crtc,
7266                                     struct drm_framebuffer *fb,
7267                                     struct drm_i915_gem_object *obj)
7268 {
7269         return -ENODEV;
7270 }
7271
7272 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7273                                 struct drm_framebuffer *fb,
7274                                 struct drm_pending_vblank_event *event)
7275 {
7276         struct drm_device *dev = crtc->dev;
7277         struct drm_i915_private *dev_priv = dev->dev_private;
7278         struct intel_framebuffer *intel_fb;
7279         struct drm_i915_gem_object *obj;
7280         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7281         struct intel_unpin_work *work;
7282         unsigned long flags;
7283         int ret;
7284
7285         /* Can't change pixel format via MI display flips. */
7286         if (fb->pixel_format != crtc->fb->pixel_format)
7287                 return -EINVAL;
7288
7289         /*
7290          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7291          * Note that pitch changes could also affect these register.
7292          */
7293         if (INTEL_INFO(dev)->gen > 3 &&
7294             (fb->offsets[0] != crtc->fb->offsets[0] ||
7295              fb->pitches[0] != crtc->fb->pitches[0]))
7296                 return -EINVAL;
7297
7298         work = kzalloc(sizeof *work, GFP_KERNEL);
7299         if (work == NULL)
7300                 return -ENOMEM;
7301
7302         work->event = event;
7303         work->dev = crtc->dev;
7304         intel_fb = to_intel_framebuffer(crtc->fb);
7305         work->old_fb_obj = intel_fb->obj;
7306         INIT_WORK(&work->work, intel_unpin_work_fn);
7307
7308         ret = drm_vblank_get(dev, intel_crtc->pipe);
7309         if (ret)
7310                 goto free_work;
7311
7312         /* We borrow the event spin lock for protecting unpin_work */
7313         spin_lock_irqsave(&dev->event_lock, flags);
7314         if (intel_crtc->unpin_work) {
7315                 spin_unlock_irqrestore(&dev->event_lock, flags);
7316                 kfree(work);
7317                 drm_vblank_put(dev, intel_crtc->pipe);
7318
7319                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7320                 return -EBUSY;
7321         }
7322         intel_crtc->unpin_work = work;
7323         spin_unlock_irqrestore(&dev->event_lock, flags);
7324
7325         intel_fb = to_intel_framebuffer(fb);
7326         obj = intel_fb->obj;
7327
7328         ret = i915_mutex_lock_interruptible(dev);
7329         if (ret)
7330                 goto cleanup;
7331
7332         /* Reference the objects for the scheduled work. */
7333         drm_gem_object_reference(&work->old_fb_obj->base);
7334         drm_gem_object_reference(&obj->base);
7335
7336         crtc->fb = fb;
7337
7338         work->pending_flip_obj = obj;
7339
7340         work->enable_stall_check = true;
7341
7342         /* Block clients from rendering to the new back buffer until
7343          * the flip occurs and the object is no longer visible.
7344          */
7345         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7346
7347         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7348         if (ret)
7349                 goto cleanup_pending;
7350
7351         intel_disable_fbc(dev);
7352         intel_mark_fb_busy(obj);
7353         mutex_unlock(&dev->struct_mutex);
7354
7355         trace_i915_flip_request(intel_crtc->plane, obj);
7356
7357         return 0;
7358
7359 cleanup_pending:
7360         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7361         drm_gem_object_unreference(&work->old_fb_obj->base);
7362         drm_gem_object_unreference(&obj->base);
7363         mutex_unlock(&dev->struct_mutex);
7364
7365 cleanup:
7366         spin_lock_irqsave(&dev->event_lock, flags);
7367         intel_crtc->unpin_work = NULL;
7368         spin_unlock_irqrestore(&dev->event_lock, flags);
7369
7370         drm_vblank_put(dev, intel_crtc->pipe);
7371 free_work:
7372         kfree(work);
7373
7374         return ret;
7375 }
7376
7377 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7378         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7379         .load_lut = intel_crtc_load_lut,
7380         .disable = intel_crtc_noop,
7381 };
7382
7383 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7384 {
7385         struct intel_encoder *other_encoder;
7386         struct drm_crtc *crtc = &encoder->new_crtc->base;
7387
7388         if (WARN_ON(!crtc))
7389                 return false;
7390
7391         list_for_each_entry(other_encoder,
7392                             &crtc->dev->mode_config.encoder_list,
7393                             base.head) {
7394
7395                 if (&other_encoder->new_crtc->base != crtc ||
7396                     encoder == other_encoder)
7397                         continue;
7398                 else
7399                         return true;
7400         }
7401
7402         return false;
7403 }
7404
7405 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7406                                   struct drm_crtc *crtc)
7407 {
7408         struct drm_device *dev;
7409         struct drm_crtc *tmp;
7410         int crtc_mask = 1;
7411
7412         WARN(!crtc, "checking null crtc?\n");
7413
7414         dev = crtc->dev;
7415
7416         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7417                 if (tmp == crtc)
7418                         break;
7419                 crtc_mask <<= 1;
7420         }
7421
7422         if (encoder->possible_crtcs & crtc_mask)
7423                 return true;
7424         return false;
7425 }
7426
7427 /**
7428  * intel_modeset_update_staged_output_state
7429  *
7430  * Updates the staged output configuration state, e.g. after we've read out the
7431  * current hw state.
7432  */
7433 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7434 {
7435         struct intel_encoder *encoder;
7436         struct intel_connector *connector;
7437
7438         list_for_each_entry(connector, &dev->mode_config.connector_list,
7439                             base.head) {
7440                 connector->new_encoder =
7441                         to_intel_encoder(connector->base.encoder);
7442         }
7443
7444         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7445                             base.head) {
7446                 encoder->new_crtc =
7447                         to_intel_crtc(encoder->base.crtc);
7448         }
7449 }
7450
7451 /**
7452  * intel_modeset_commit_output_state
7453  *
7454  * This function copies the stage display pipe configuration to the real one.
7455  */
7456 static void intel_modeset_commit_output_state(struct drm_device *dev)
7457 {
7458         struct intel_encoder *encoder;
7459         struct intel_connector *connector;
7460
7461         list_for_each_entry(connector, &dev->mode_config.connector_list,
7462                             base.head) {
7463                 connector->base.encoder = &connector->new_encoder->base;
7464         }
7465
7466         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7467                             base.head) {
7468                 encoder->base.crtc = &encoder->new_crtc->base;
7469         }
7470 }
7471
7472 static struct drm_display_mode *
7473 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7474                             struct drm_display_mode *mode)
7475 {
7476         struct drm_device *dev = crtc->dev;
7477         struct drm_display_mode *adjusted_mode;
7478         struct drm_encoder_helper_funcs *encoder_funcs;
7479         struct intel_encoder *encoder;
7480
7481         adjusted_mode = drm_mode_duplicate(dev, mode);
7482         if (!adjusted_mode)
7483                 return ERR_PTR(-ENOMEM);
7484
7485         /* Pass our mode to the connectors and the CRTC to give them a chance to
7486          * adjust it according to limitations or connector properties, and also
7487          * a chance to reject the mode entirely.
7488          */
7489         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7490                             base.head) {
7491
7492                 if (&encoder->new_crtc->base != crtc)
7493                         continue;
7494                 encoder_funcs = encoder->base.helper_private;
7495                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7496                                                 adjusted_mode))) {
7497                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7498                         goto fail;
7499                 }
7500         }
7501
7502         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7503                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7504                 goto fail;
7505         }
7506         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7507
7508         return adjusted_mode;
7509 fail:
7510         drm_mode_destroy(dev, adjusted_mode);
7511         return ERR_PTR(-EINVAL);
7512 }
7513
7514 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7515  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7516 static void
7517 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7518                              unsigned *prepare_pipes, unsigned *disable_pipes)
7519 {
7520         struct intel_crtc *intel_crtc;
7521         struct drm_device *dev = crtc->dev;
7522         struct intel_encoder *encoder;
7523         struct intel_connector *connector;
7524         struct drm_crtc *tmp_crtc;
7525
7526         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7527
7528         /* Check which crtcs have changed outputs connected to them, these need
7529          * to be part of the prepare_pipes mask. We don't (yet) support global
7530          * modeset across multiple crtcs, so modeset_pipes will only have one
7531          * bit set at most. */
7532         list_for_each_entry(connector, &dev->mode_config.connector_list,
7533                             base.head) {
7534                 if (connector->base.encoder == &connector->new_encoder->base)
7535                         continue;
7536
7537                 if (connector->base.encoder) {
7538                         tmp_crtc = connector->base.encoder->crtc;
7539
7540                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7541                 }
7542
7543                 if (connector->new_encoder)
7544                         *prepare_pipes |=
7545                                 1 << connector->new_encoder->new_crtc->pipe;
7546         }
7547
7548         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7549                             base.head) {
7550                 if (encoder->base.crtc == &encoder->new_crtc->base)
7551                         continue;
7552
7553                 if (encoder->base.crtc) {
7554                         tmp_crtc = encoder->base.crtc;
7555
7556                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7557                 }
7558
7559                 if (encoder->new_crtc)
7560                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7561         }
7562
7563         /* Check for any pipes that will be fully disabled ... */
7564         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7565                             base.head) {
7566                 bool used = false;
7567
7568                 /* Don't try to disable disabled crtcs. */
7569                 if (!intel_crtc->base.enabled)
7570                         continue;
7571
7572                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7573                                     base.head) {
7574                         if (encoder->new_crtc == intel_crtc)
7575                                 used = true;
7576                 }
7577
7578                 if (!used)
7579                         *disable_pipes |= 1 << intel_crtc->pipe;
7580         }
7581
7582
7583         /* set_mode is also used to update properties on life display pipes. */
7584         intel_crtc = to_intel_crtc(crtc);
7585         if (crtc->enabled)
7586                 *prepare_pipes |= 1 << intel_crtc->pipe;
7587
7588         /* We only support modeset on one single crtc, hence we need to do that
7589          * only for the passed in crtc iff we change anything else than just
7590          * disable crtcs.
7591          *
7592          * This is actually not true, to be fully compatible with the old crtc
7593          * helper we automatically disable _any_ output (i.e. doesn't need to be
7594          * connected to the crtc we're modesetting on) if it's disconnected.
7595          * Which is a rather nutty api (since changed the output configuration
7596          * without userspace's explicit request can lead to confusion), but
7597          * alas. Hence we currently need to modeset on all pipes we prepare. */
7598         if (*prepare_pipes)
7599                 *modeset_pipes = *prepare_pipes;
7600
7601         /* ... and mask these out. */
7602         *modeset_pipes &= ~(*disable_pipes);
7603         *prepare_pipes &= ~(*disable_pipes);
7604 }
7605
7606 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7607 {
7608         struct drm_encoder *encoder;
7609         struct drm_device *dev = crtc->dev;
7610
7611         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7612                 if (encoder->crtc == crtc)
7613                         return true;
7614
7615         return false;
7616 }
7617
7618 static void
7619 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7620 {
7621         struct intel_encoder *intel_encoder;
7622         struct intel_crtc *intel_crtc;
7623         struct drm_connector *connector;
7624
7625         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7626                             base.head) {
7627                 if (!intel_encoder->base.crtc)
7628                         continue;
7629
7630                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7631
7632                 if (prepare_pipes & (1 << intel_crtc->pipe))
7633                         intel_encoder->connectors_active = false;
7634         }
7635
7636         intel_modeset_commit_output_state(dev);
7637
7638         /* Update computed state. */
7639         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7640                             base.head) {
7641                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7642         }
7643
7644         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7645                 if (!connector->encoder || !connector->encoder->crtc)
7646                         continue;
7647
7648                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7649
7650                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7651                         struct drm_property *dpms_property =
7652                                 dev->mode_config.dpms_property;
7653
7654                         connector->dpms = DRM_MODE_DPMS_ON;
7655                         drm_connector_property_set_value(connector,
7656                                                          dpms_property,
7657                                                          DRM_MODE_DPMS_ON);
7658
7659                         intel_encoder = to_intel_encoder(connector->encoder);
7660                         intel_encoder->connectors_active = true;
7661                 }
7662         }
7663
7664 }
7665
7666 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7667         list_for_each_entry((intel_crtc), \
7668                             &(dev)->mode_config.crtc_list, \
7669                             base.head) \
7670                 if (mask & (1 <<(intel_crtc)->pipe)) \
7671
7672 void
7673 intel_modeset_check_state(struct drm_device *dev)
7674 {
7675         struct intel_crtc *crtc;
7676         struct intel_encoder *encoder;
7677         struct intel_connector *connector;
7678
7679         list_for_each_entry(connector, &dev->mode_config.connector_list,
7680                             base.head) {
7681                 /* This also checks the encoder/connector hw state with the
7682                  * ->get_hw_state callbacks. */
7683                 intel_connector_check_state(connector);
7684
7685                 WARN(&connector->new_encoder->base != connector->base.encoder,
7686                      "connector's staged encoder doesn't match current encoder\n");
7687         }
7688
7689         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7690                             base.head) {
7691                 bool enabled = false;
7692                 bool active = false;
7693                 enum pipe pipe, tracked_pipe;
7694
7695                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7696                               encoder->base.base.id,
7697                               drm_get_encoder_name(&encoder->base));
7698
7699                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7700                      "encoder's stage crtc doesn't match current crtc\n");
7701                 WARN(encoder->connectors_active && !encoder->base.crtc,
7702                      "encoder's active_connectors set, but no crtc\n");
7703
7704                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7705                                     base.head) {
7706                         if (connector->base.encoder != &encoder->base)
7707                                 continue;
7708                         enabled = true;
7709                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7710                                 active = true;
7711                 }
7712                 WARN(!!encoder->base.crtc != enabled,
7713                      "encoder's enabled state mismatch "
7714                      "(expected %i, found %i)\n",
7715                      !!encoder->base.crtc, enabled);
7716                 WARN(active && !encoder->base.crtc,
7717                      "active encoder with no crtc\n");
7718
7719                 WARN(encoder->connectors_active != active,
7720                      "encoder's computed active state doesn't match tracked active state "
7721                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7722
7723                 active = encoder->get_hw_state(encoder, &pipe);
7724                 WARN(active != encoder->connectors_active,
7725                      "encoder's hw state doesn't match sw tracking "
7726                      "(expected %i, found %i)\n",
7727                      encoder->connectors_active, active);
7728
7729                 if (!encoder->base.crtc)
7730                         continue;
7731
7732                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7733                 WARN(active && pipe != tracked_pipe,
7734                      "active encoder's pipe doesn't match"
7735                      "(expected %i, found %i)\n",
7736                      tracked_pipe, pipe);
7737
7738         }
7739
7740         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7741                             base.head) {
7742                 bool enabled = false;
7743                 bool active = false;
7744
7745                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7746                               crtc->base.base.id);
7747
7748                 WARN(crtc->active && !crtc->base.enabled,
7749                      "active crtc, but not enabled in sw tracking\n");
7750
7751                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7752                                     base.head) {
7753                         if (encoder->base.crtc != &crtc->base)
7754                                 continue;
7755                         enabled = true;
7756                         if (encoder->connectors_active)
7757                                 active = true;
7758                 }
7759                 WARN(active != crtc->active,
7760                      "crtc's computed active state doesn't match tracked active state "
7761                      "(expected %i, found %i)\n", active, crtc->active);
7762                 WARN(enabled != crtc->base.enabled,
7763                      "crtc's computed enabled state doesn't match tracked enabled state "
7764                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7765
7766                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7767         }
7768 }
7769
7770 bool intel_set_mode(struct drm_crtc *crtc,
7771                     struct drm_display_mode *mode,
7772                     int x, int y, struct drm_framebuffer *fb)
7773 {
7774         struct drm_device *dev = crtc->dev;
7775         drm_i915_private_t *dev_priv = dev->dev_private;
7776         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7777         struct intel_crtc *intel_crtc;
7778         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7779         bool ret = true;
7780
7781         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7782                                      &prepare_pipes, &disable_pipes);
7783
7784         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7785                       modeset_pipes, prepare_pipes, disable_pipes);
7786
7787         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7788                 intel_crtc_disable(&intel_crtc->base);
7789
7790         saved_hwmode = crtc->hwmode;
7791         saved_mode = crtc->mode;
7792
7793         /* Hack: Because we don't (yet) support global modeset on multiple
7794          * crtcs, we don't keep track of the new mode for more than one crtc.
7795          * Hence simply check whether any bit is set in modeset_pipes in all the
7796          * pieces of code that are not yet converted to deal with mutliple crtcs
7797          * changing their mode at the same time. */
7798         adjusted_mode = NULL;
7799         if (modeset_pipes) {
7800                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7801                 if (IS_ERR(adjusted_mode)) {
7802                         return false;
7803                 }
7804         }
7805
7806         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7807                 if (intel_crtc->base.enabled)
7808                         dev_priv->display.crtc_disable(&intel_crtc->base);
7809         }
7810
7811         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7812          * to set it here already despite that we pass it down the callchain.
7813          */
7814         if (modeset_pipes)
7815                 crtc->mode = *mode;
7816
7817         /* Only after disabling all output pipelines that will be changed can we
7818          * update the the output configuration. */
7819         intel_modeset_update_state(dev, prepare_pipes);
7820
7821         if (dev_priv->display.modeset_global_resources)
7822                 dev_priv->display.modeset_global_resources(dev);
7823
7824         /* Set up the DPLL and any encoders state that needs to adjust or depend
7825          * on the DPLL.
7826          */
7827         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7828                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7829                                            mode, adjusted_mode,
7830                                            x, y, fb);
7831                 if (!ret)
7832                     goto done;
7833         }
7834
7835         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7836         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7837                 dev_priv->display.crtc_enable(&intel_crtc->base);
7838
7839         if (modeset_pipes) {
7840                 /* Store real post-adjustment hardware mode. */
7841                 crtc->hwmode = *adjusted_mode;
7842
7843                 /* Calculate and store various constants which
7844                  * are later needed by vblank and swap-completion
7845                  * timestamping. They are derived from true hwmode.
7846                  */
7847                 drm_calc_timestamping_constants(crtc);
7848         }
7849
7850         /* FIXME: add subpixel order */
7851 done:
7852         drm_mode_destroy(dev, adjusted_mode);
7853         if (!ret && crtc->enabled) {
7854                 crtc->hwmode = saved_hwmode;
7855                 crtc->mode = saved_mode;
7856         } else {
7857                 intel_modeset_check_state(dev);
7858         }
7859
7860         return ret;
7861 }
7862
7863 #undef for_each_intel_crtc_masked
7864
7865 static void intel_set_config_free(struct intel_set_config *config)
7866 {
7867         if (!config)
7868                 return;
7869
7870         kfree(config->save_connector_encoders);
7871         kfree(config->save_encoder_crtcs);
7872         kfree(config);
7873 }
7874
7875 static int intel_set_config_save_state(struct drm_device *dev,
7876                                        struct intel_set_config *config)
7877 {
7878         struct drm_encoder *encoder;
7879         struct drm_connector *connector;
7880         int count;
7881
7882         config->save_encoder_crtcs =
7883                 kcalloc(dev->mode_config.num_encoder,
7884                         sizeof(struct drm_crtc *), GFP_KERNEL);
7885         if (!config->save_encoder_crtcs)
7886                 return -ENOMEM;
7887
7888         config->save_connector_encoders =
7889                 kcalloc(dev->mode_config.num_connector,
7890                         sizeof(struct drm_encoder *), GFP_KERNEL);
7891         if (!config->save_connector_encoders)
7892                 return -ENOMEM;
7893
7894         /* Copy data. Note that driver private data is not affected.
7895          * Should anything bad happen only the expected state is
7896          * restored, not the drivers personal bookkeeping.
7897          */
7898         count = 0;
7899         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7900                 config->save_encoder_crtcs[count++] = encoder->crtc;
7901         }
7902
7903         count = 0;
7904         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7905                 config->save_connector_encoders[count++] = connector->encoder;
7906         }
7907
7908         return 0;
7909 }
7910
7911 static void intel_set_config_restore_state(struct drm_device *dev,
7912                                            struct intel_set_config *config)
7913 {
7914         struct intel_encoder *encoder;
7915         struct intel_connector *connector;
7916         int count;
7917
7918         count = 0;
7919         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7920                 encoder->new_crtc =
7921                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7922         }
7923
7924         count = 0;
7925         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7926                 connector->new_encoder =
7927                         to_intel_encoder(config->save_connector_encoders[count++]);
7928         }
7929 }
7930
7931 static void
7932 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7933                                       struct intel_set_config *config)
7934 {
7935
7936         /* We should be able to check here if the fb has the same properties
7937          * and then just flip_or_move it */
7938         if (set->crtc->fb != set->fb) {
7939                 /* If we have no fb then treat it as a full mode set */
7940                 if (set->crtc->fb == NULL) {
7941                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7942                         config->mode_changed = true;
7943                 } else if (set->fb == NULL) {
7944                         config->mode_changed = true;
7945                 } else if (set->fb->depth != set->crtc->fb->depth) {
7946                         config->mode_changed = true;
7947                 } else if (set->fb->bits_per_pixel !=
7948                            set->crtc->fb->bits_per_pixel) {
7949                         config->mode_changed = true;
7950                 } else
7951                         config->fb_changed = true;
7952         }
7953
7954         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7955                 config->fb_changed = true;
7956
7957         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7958                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7959                 drm_mode_debug_printmodeline(&set->crtc->mode);
7960                 drm_mode_debug_printmodeline(set->mode);
7961                 config->mode_changed = true;
7962         }
7963 }
7964
7965 static int
7966 intel_modeset_stage_output_state(struct drm_device *dev,
7967                                  struct drm_mode_set *set,
7968                                  struct intel_set_config *config)
7969 {
7970         struct drm_crtc *new_crtc;
7971         struct intel_connector *connector;
7972         struct intel_encoder *encoder;
7973         int count, ro;
7974
7975         /* The upper layers ensure that we either disabl a crtc or have a list
7976          * of connectors. For paranoia, double-check this. */
7977         WARN_ON(!set->fb && (set->num_connectors != 0));
7978         WARN_ON(set->fb && (set->num_connectors == 0));
7979
7980         count = 0;
7981         list_for_each_entry(connector, &dev->mode_config.connector_list,
7982                             base.head) {
7983                 /* Otherwise traverse passed in connector list and get encoders
7984                  * for them. */
7985                 for (ro = 0; ro < set->num_connectors; ro++) {
7986                         if (set->connectors[ro] == &connector->base) {
7987                                 connector->new_encoder = connector->encoder;
7988                                 break;
7989                         }
7990                 }
7991
7992                 /* If we disable the crtc, disable all its connectors. Also, if
7993                  * the connector is on the changing crtc but not on the new
7994                  * connector list, disable it. */
7995                 if ((!set->fb || ro == set->num_connectors) &&
7996                     connector->base.encoder &&
7997                     connector->base.encoder->crtc == set->crtc) {
7998                         connector->new_encoder = NULL;
7999
8000                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8001                                 connector->base.base.id,
8002                                 drm_get_connector_name(&connector->base));
8003                 }
8004
8005
8006                 if (&connector->new_encoder->base != connector->base.encoder) {
8007                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8008                         config->mode_changed = true;
8009                 }
8010
8011                 /* Disable all disconnected encoders. */
8012                 if (connector->base.status == connector_status_disconnected)
8013                         connector->new_encoder = NULL;
8014         }
8015         /* connector->new_encoder is now updated for all connectors. */
8016
8017         /* Update crtc of enabled connectors. */
8018         count = 0;
8019         list_for_each_entry(connector, &dev->mode_config.connector_list,
8020                             base.head) {
8021                 if (!connector->new_encoder)
8022                         continue;
8023
8024                 new_crtc = connector->new_encoder->base.crtc;
8025
8026                 for (ro = 0; ro < set->num_connectors; ro++) {
8027                         if (set->connectors[ro] == &connector->base)
8028                                 new_crtc = set->crtc;
8029                 }
8030
8031                 /* Make sure the new CRTC will work with the encoder */
8032                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8033                                            new_crtc)) {
8034                         return -EINVAL;
8035                 }
8036                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8037
8038                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8039                         connector->base.base.id,
8040                         drm_get_connector_name(&connector->base),
8041                         new_crtc->base.id);
8042         }
8043
8044         /* Check for any encoders that needs to be disabled. */
8045         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8046                             base.head) {
8047                 list_for_each_entry(connector,
8048                                     &dev->mode_config.connector_list,
8049                                     base.head) {
8050                         if (connector->new_encoder == encoder) {
8051                                 WARN_ON(!connector->new_encoder->new_crtc);
8052
8053                                 goto next_encoder;
8054                         }
8055                 }
8056                 encoder->new_crtc = NULL;
8057 next_encoder:
8058                 /* Only now check for crtc changes so we don't miss encoders
8059                  * that will be disabled. */
8060                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8061                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8062                         config->mode_changed = true;
8063                 }
8064         }
8065         /* Now we've also updated encoder->new_crtc for all encoders. */
8066
8067         return 0;
8068 }
8069
8070 static int intel_crtc_set_config(struct drm_mode_set *set)
8071 {
8072         struct drm_device *dev;
8073         struct drm_mode_set save_set;
8074         struct intel_set_config *config;
8075         int ret;
8076
8077         BUG_ON(!set);
8078         BUG_ON(!set->crtc);
8079         BUG_ON(!set->crtc->helper_private);
8080
8081         if (!set->mode)
8082                 set->fb = NULL;
8083
8084         /* The fb helper likes to play gross jokes with ->mode_set_config.
8085          * Unfortunately the crtc helper doesn't do much at all for this case,
8086          * so we have to cope with this madness until the fb helper is fixed up. */
8087         if (set->fb && set->num_connectors == 0)
8088                 return 0;
8089
8090         if (set->fb) {
8091                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8092                                 set->crtc->base.id, set->fb->base.id,
8093                                 (int)set->num_connectors, set->x, set->y);
8094         } else {
8095                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8096         }
8097
8098         dev = set->crtc->dev;
8099
8100         ret = -ENOMEM;
8101         config = kzalloc(sizeof(*config), GFP_KERNEL);
8102         if (!config)
8103                 goto out_config;
8104
8105         ret = intel_set_config_save_state(dev, config);
8106         if (ret)
8107                 goto out_config;
8108
8109         save_set.crtc = set->crtc;
8110         save_set.mode = &set->crtc->mode;
8111         save_set.x = set->crtc->x;
8112         save_set.y = set->crtc->y;
8113         save_set.fb = set->crtc->fb;
8114
8115         /* Compute whether we need a full modeset, only an fb base update or no
8116          * change at all. In the future we might also check whether only the
8117          * mode changed, e.g. for LVDS where we only change the panel fitter in
8118          * such cases. */
8119         intel_set_config_compute_mode_changes(set, config);
8120
8121         ret = intel_modeset_stage_output_state(dev, set, config);
8122         if (ret)
8123                 goto fail;
8124
8125         if (config->mode_changed) {
8126                 if (set->mode) {
8127                         DRM_DEBUG_KMS("attempting to set mode from"
8128                                         " userspace\n");
8129                         drm_mode_debug_printmodeline(set->mode);
8130                 }
8131
8132                 if (!intel_set_mode(set->crtc, set->mode,
8133                                     set->x, set->y, set->fb)) {
8134                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8135                                   set->crtc->base.id);
8136                         ret = -EINVAL;
8137                         goto fail;
8138                 }
8139         } else if (config->fb_changed) {
8140                 ret = intel_pipe_set_base(set->crtc,
8141                                           set->x, set->y, set->fb);
8142         }
8143
8144         intel_set_config_free(config);
8145
8146         return 0;
8147
8148 fail:
8149         intel_set_config_restore_state(dev, config);
8150
8151         /* Try to restore the config */
8152         if (config->mode_changed &&
8153             !intel_set_mode(save_set.crtc, save_set.mode,
8154                             save_set.x, save_set.y, save_set.fb))
8155                 DRM_ERROR("failed to restore config after modeset failure\n");
8156
8157 out_config:
8158         intel_set_config_free(config);
8159         return ret;
8160 }
8161
8162 static const struct drm_crtc_funcs intel_crtc_funcs = {
8163         .cursor_set = intel_crtc_cursor_set,
8164         .cursor_move = intel_crtc_cursor_move,
8165         .gamma_set = intel_crtc_gamma_set,
8166         .set_config = intel_crtc_set_config,
8167         .destroy = intel_crtc_destroy,
8168         .page_flip = intel_crtc_page_flip,
8169 };
8170
8171 static void intel_cpu_pll_init(struct drm_device *dev)
8172 {
8173         if (IS_HASWELL(dev))
8174                 intel_ddi_pll_init(dev);
8175 }
8176
8177 static void intel_pch_pll_init(struct drm_device *dev)
8178 {
8179         drm_i915_private_t *dev_priv = dev->dev_private;
8180         int i;
8181
8182         if (dev_priv->num_pch_pll == 0) {
8183                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8184                 return;
8185         }
8186
8187         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8188                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8189                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8190                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8191         }
8192 }
8193
8194 static void intel_crtc_init(struct drm_device *dev, int pipe)
8195 {
8196         drm_i915_private_t *dev_priv = dev->dev_private;
8197         struct intel_crtc *intel_crtc;
8198         int i;
8199
8200         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8201         if (intel_crtc == NULL)
8202                 return;
8203
8204         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8205
8206         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8207         for (i = 0; i < 256; i++) {
8208                 intel_crtc->lut_r[i] = i;
8209                 intel_crtc->lut_g[i] = i;
8210                 intel_crtc->lut_b[i] = i;
8211         }
8212
8213         /* Swap pipes & planes for FBC on pre-965 */
8214         intel_crtc->pipe = pipe;
8215         intel_crtc->plane = pipe;
8216         intel_crtc->cpu_transcoder = pipe;
8217         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8218                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8219                 intel_crtc->plane = !pipe;
8220         }
8221
8222         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8223                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8224         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8225         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8226
8227         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8228
8229         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8230 }
8231
8232 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8233                                 struct drm_file *file)
8234 {
8235         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8236         struct drm_mode_object *drmmode_obj;
8237         struct intel_crtc *crtc;
8238
8239         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8240                 return -ENODEV;
8241
8242         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8243                         DRM_MODE_OBJECT_CRTC);
8244
8245         if (!drmmode_obj) {
8246                 DRM_ERROR("no such CRTC id\n");
8247                 return -EINVAL;
8248         }
8249
8250         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8251         pipe_from_crtc_id->pipe = crtc->pipe;
8252
8253         return 0;
8254 }
8255
8256 static int intel_encoder_clones(struct intel_encoder *encoder)
8257 {
8258         struct drm_device *dev = encoder->base.dev;
8259         struct intel_encoder *source_encoder;
8260         int index_mask = 0;
8261         int entry = 0;
8262
8263         list_for_each_entry(source_encoder,
8264                             &dev->mode_config.encoder_list, base.head) {
8265
8266                 if (encoder == source_encoder)
8267                         index_mask |= (1 << entry);
8268
8269                 /* Intel hw has only one MUX where enocoders could be cloned. */
8270                 if (encoder->cloneable && source_encoder->cloneable)
8271                         index_mask |= (1 << entry);
8272
8273                 entry++;
8274         }
8275
8276         return index_mask;
8277 }
8278
8279 static bool has_edp_a(struct drm_device *dev)
8280 {
8281         struct drm_i915_private *dev_priv = dev->dev_private;
8282
8283         if (!IS_MOBILE(dev))
8284                 return false;
8285
8286         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8287                 return false;
8288
8289         if (IS_GEN5(dev) &&
8290             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8291                 return false;
8292
8293         return true;
8294 }
8295
8296 static void intel_setup_outputs(struct drm_device *dev)
8297 {
8298         struct drm_i915_private *dev_priv = dev->dev_private;
8299         struct intel_encoder *encoder;
8300         bool dpd_is_edp = false;
8301         bool has_lvds;
8302
8303         has_lvds = intel_lvds_init(dev);
8304         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8305                 /* disable the panel fitter on everything but LVDS */
8306                 I915_WRITE(PFIT_CONTROL, 0);
8307         }
8308
8309         if (HAS_PCH_SPLIT(dev)) {
8310                 dpd_is_edp = intel_dpd_is_edp(dev);
8311
8312                 if (has_edp_a(dev))
8313                         intel_dp_init(dev, DP_A, PORT_A);
8314
8315                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8316                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8317         }
8318
8319         intel_crt_init(dev);
8320
8321         if (IS_HASWELL(dev)) {
8322                 int found;
8323
8324                 /* Haswell uses DDI functions to detect digital outputs */
8325                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8326                 /* DDI A only supports eDP */
8327                 if (found)
8328                         intel_ddi_init(dev, PORT_A);
8329
8330                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8331                  * register */
8332                 found = I915_READ(SFUSE_STRAP);
8333
8334                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8335                         intel_ddi_init(dev, PORT_B);
8336                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8337                         intel_ddi_init(dev, PORT_C);
8338                 if (found & SFUSE_STRAP_DDID_DETECTED)
8339                         intel_ddi_init(dev, PORT_D);
8340         } else if (HAS_PCH_SPLIT(dev)) {
8341                 int found;
8342
8343                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8344                         /* PCH SDVOB multiplex with HDMIB */
8345                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8346                         if (!found)
8347                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8348                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8349                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8350                 }
8351
8352                 if (I915_READ(HDMIC) & PORT_DETECTED)
8353                         intel_hdmi_init(dev, HDMIC, PORT_C);
8354
8355                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8356                         intel_hdmi_init(dev, HDMID, PORT_D);
8357
8358                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8359                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8360
8361                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8362                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8363         } else if (IS_VALLEYVIEW(dev)) {
8364                 int found;
8365
8366                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8367                 if (I915_READ(DP_C) & DP_DETECTED)
8368                         intel_dp_init(dev, DP_C, PORT_C);
8369
8370                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8371                         /* SDVOB multiplex with HDMIB */
8372                         found = intel_sdvo_init(dev, SDVOB, true);
8373                         if (!found)
8374                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8375                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8376                                 intel_dp_init(dev, DP_B, PORT_B);
8377                 }
8378
8379                 if (I915_READ(SDVOC) & PORT_DETECTED)
8380                         intel_hdmi_init(dev, SDVOC, PORT_C);
8381
8382         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8383                 bool found = false;
8384
8385                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8386                         DRM_DEBUG_KMS("probing SDVOB\n");
8387                         found = intel_sdvo_init(dev, SDVOB, true);
8388                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8389                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8390                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8391                         }
8392
8393                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8394                                 DRM_DEBUG_KMS("probing DP_B\n");
8395                                 intel_dp_init(dev, DP_B, PORT_B);
8396                         }
8397                 }
8398
8399                 /* Before G4X SDVOC doesn't have its own detect register */
8400
8401                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8402                         DRM_DEBUG_KMS("probing SDVOC\n");
8403                         found = intel_sdvo_init(dev, SDVOC, false);
8404                 }
8405
8406                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8407
8408                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8409                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8410                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8411                         }
8412                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8413                                 DRM_DEBUG_KMS("probing DP_C\n");
8414                                 intel_dp_init(dev, DP_C, PORT_C);
8415                         }
8416                 }
8417
8418                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8419                     (I915_READ(DP_D) & DP_DETECTED)) {
8420                         DRM_DEBUG_KMS("probing DP_D\n");
8421                         intel_dp_init(dev, DP_D, PORT_D);
8422                 }
8423         } else if (IS_GEN2(dev))
8424                 intel_dvo_init(dev);
8425
8426         if (SUPPORTS_TV(dev))
8427                 intel_tv_init(dev);
8428
8429         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8430                 encoder->base.possible_crtcs = encoder->crtc_mask;
8431                 encoder->base.possible_clones =
8432                         intel_encoder_clones(encoder);
8433         }
8434
8435         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8436                 ironlake_init_pch_refclk(dev);
8437 }
8438
8439 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8440 {
8441         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8442
8443         drm_framebuffer_cleanup(fb);
8444         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8445
8446         kfree(intel_fb);
8447 }
8448
8449 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8450                                                 struct drm_file *file,
8451                                                 unsigned int *handle)
8452 {
8453         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8454         struct drm_i915_gem_object *obj = intel_fb->obj;
8455
8456         return drm_gem_handle_create(file, &obj->base, handle);
8457 }
8458
8459 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8460         .destroy = intel_user_framebuffer_destroy,
8461         .create_handle = intel_user_framebuffer_create_handle,
8462 };
8463
8464 int intel_framebuffer_init(struct drm_device *dev,
8465                            struct intel_framebuffer *intel_fb,
8466                            struct drm_mode_fb_cmd2 *mode_cmd,
8467                            struct drm_i915_gem_object *obj)
8468 {
8469         int ret;
8470
8471         if (obj->tiling_mode == I915_TILING_Y)
8472                 return -EINVAL;
8473
8474         if (mode_cmd->pitches[0] & 63)
8475                 return -EINVAL;
8476
8477         /* FIXME <= Gen4 stride limits are bit unclear */
8478         if (mode_cmd->pitches[0] > 32768)
8479                 return -EINVAL;
8480
8481         if (obj->tiling_mode != I915_TILING_NONE &&
8482             mode_cmd->pitches[0] != obj->stride)
8483                 return -EINVAL;
8484
8485         /* Reject formats not supported by any plane early. */
8486         switch (mode_cmd->pixel_format) {
8487         case DRM_FORMAT_C8:
8488         case DRM_FORMAT_RGB565:
8489         case DRM_FORMAT_XRGB8888:
8490         case DRM_FORMAT_ARGB8888:
8491                 break;
8492         case DRM_FORMAT_XRGB1555:
8493         case DRM_FORMAT_ARGB1555:
8494                 if (INTEL_INFO(dev)->gen > 3)
8495                         return -EINVAL;
8496                 break;
8497         case DRM_FORMAT_XBGR8888:
8498         case DRM_FORMAT_ABGR8888:
8499         case DRM_FORMAT_XRGB2101010:
8500         case DRM_FORMAT_ARGB2101010:
8501         case DRM_FORMAT_XBGR2101010:
8502         case DRM_FORMAT_ABGR2101010:
8503                 if (INTEL_INFO(dev)->gen < 4)
8504                         return -EINVAL;
8505                 break;
8506         case DRM_FORMAT_YUYV:
8507         case DRM_FORMAT_UYVY:
8508         case DRM_FORMAT_YVYU:
8509         case DRM_FORMAT_VYUY:
8510                 if (INTEL_INFO(dev)->gen < 6)
8511                         return -EINVAL;
8512                 break;
8513         default:
8514                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8515                 return -EINVAL;
8516         }
8517
8518         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8519         if (mode_cmd->offsets[0] != 0)
8520                 return -EINVAL;
8521
8522         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8523         if (ret) {
8524                 DRM_ERROR("framebuffer init failed %d\n", ret);
8525                 return ret;
8526         }
8527
8528         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8529         intel_fb->obj = obj;
8530         return 0;
8531 }
8532
8533 static struct drm_framebuffer *
8534 intel_user_framebuffer_create(struct drm_device *dev,
8535                               struct drm_file *filp,
8536                               struct drm_mode_fb_cmd2 *mode_cmd)
8537 {
8538         struct drm_i915_gem_object *obj;
8539
8540         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8541                                                 mode_cmd->handles[0]));
8542         if (&obj->base == NULL)
8543                 return ERR_PTR(-ENOENT);
8544
8545         return intel_framebuffer_create(dev, mode_cmd, obj);
8546 }
8547
8548 static const struct drm_mode_config_funcs intel_mode_funcs = {
8549         .fb_create = intel_user_framebuffer_create,
8550         .output_poll_changed = intel_fb_output_poll_changed,
8551 };
8552
8553 /* Set up chip specific display functions */
8554 static void intel_init_display(struct drm_device *dev)
8555 {
8556         struct drm_i915_private *dev_priv = dev->dev_private;
8557
8558         /* We always want a DPMS function */
8559         if (IS_HASWELL(dev)) {
8560                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8561                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8562                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8563                 dev_priv->display.off = haswell_crtc_off;
8564                 dev_priv->display.update_plane = ironlake_update_plane;
8565         } else if (HAS_PCH_SPLIT(dev)) {
8566                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8567                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8568                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8569                 dev_priv->display.off = ironlake_crtc_off;
8570                 dev_priv->display.update_plane = ironlake_update_plane;
8571         } else {
8572                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8573                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8574                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8575                 dev_priv->display.off = i9xx_crtc_off;
8576                 dev_priv->display.update_plane = i9xx_update_plane;
8577         }
8578
8579         /* Returns the core display clock speed */
8580         if (IS_VALLEYVIEW(dev))
8581                 dev_priv->display.get_display_clock_speed =
8582                         valleyview_get_display_clock_speed;
8583         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8584                 dev_priv->display.get_display_clock_speed =
8585                         i945_get_display_clock_speed;
8586         else if (IS_I915G(dev))
8587                 dev_priv->display.get_display_clock_speed =
8588                         i915_get_display_clock_speed;
8589         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8590                 dev_priv->display.get_display_clock_speed =
8591                         i9xx_misc_get_display_clock_speed;
8592         else if (IS_I915GM(dev))
8593                 dev_priv->display.get_display_clock_speed =
8594                         i915gm_get_display_clock_speed;
8595         else if (IS_I865G(dev))
8596                 dev_priv->display.get_display_clock_speed =
8597                         i865_get_display_clock_speed;
8598         else if (IS_I85X(dev))
8599                 dev_priv->display.get_display_clock_speed =
8600                         i855_get_display_clock_speed;
8601         else /* 852, 830 */
8602                 dev_priv->display.get_display_clock_speed =
8603                         i830_get_display_clock_speed;
8604
8605         if (HAS_PCH_SPLIT(dev)) {
8606                 if (IS_GEN5(dev)) {
8607                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8608                         dev_priv->display.write_eld = ironlake_write_eld;
8609                 } else if (IS_GEN6(dev)) {
8610                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8611                         dev_priv->display.write_eld = ironlake_write_eld;
8612                 } else if (IS_IVYBRIDGE(dev)) {
8613                         /* FIXME: detect B0+ stepping and use auto training */
8614                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8615                         dev_priv->display.write_eld = ironlake_write_eld;
8616                         dev_priv->display.modeset_global_resources =
8617                                 ivb_modeset_global_resources;
8618                 } else if (IS_HASWELL(dev)) {
8619                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8620                         dev_priv->display.write_eld = haswell_write_eld;
8621                 } else
8622                         dev_priv->display.update_wm = NULL;
8623         } else if (IS_G4X(dev)) {
8624                 dev_priv->display.write_eld = g4x_write_eld;
8625         }
8626
8627         /* Default just returns -ENODEV to indicate unsupported */
8628         dev_priv->display.queue_flip = intel_default_queue_flip;
8629
8630         switch (INTEL_INFO(dev)->gen) {
8631         case 2:
8632                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8633                 break;
8634
8635         case 3:
8636                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8637                 break;
8638
8639         case 4:
8640         case 5:
8641                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8642                 break;
8643
8644         case 6:
8645                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8646                 break;
8647         case 7:
8648                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8649                 break;
8650         }
8651 }
8652
8653 /*
8654  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8655  * resume, or other times.  This quirk makes sure that's the case for
8656  * affected systems.
8657  */
8658 static void quirk_pipea_force(struct drm_device *dev)
8659 {
8660         struct drm_i915_private *dev_priv = dev->dev_private;
8661
8662         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8663         DRM_INFO("applying pipe a force quirk\n");
8664 }
8665
8666 /*
8667  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8668  */
8669 static void quirk_ssc_force_disable(struct drm_device *dev)
8670 {
8671         struct drm_i915_private *dev_priv = dev->dev_private;
8672         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8673         DRM_INFO("applying lvds SSC disable quirk\n");
8674 }
8675
8676 /*
8677  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8678  * brightness value
8679  */
8680 static void quirk_invert_brightness(struct drm_device *dev)
8681 {
8682         struct drm_i915_private *dev_priv = dev->dev_private;
8683         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8684         DRM_INFO("applying inverted panel brightness quirk\n");
8685 }
8686
8687 struct intel_quirk {
8688         int device;
8689         int subsystem_vendor;
8690         int subsystem_device;
8691         void (*hook)(struct drm_device *dev);
8692 };
8693
8694 static struct intel_quirk intel_quirks[] = {
8695         /* HP Mini needs pipe A force quirk (LP: #322104) */
8696         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8697
8698         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8699         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8700
8701         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8702         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8703
8704         /* 830/845 need to leave pipe A & dpll A up */
8705         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8706         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8707
8708         /* Lenovo U160 cannot use SSC on LVDS */
8709         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8710
8711         /* Sony Vaio Y cannot use SSC on LVDS */
8712         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8713
8714         /* Acer Aspire 5734Z must invert backlight brightness */
8715         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8716 };
8717
8718 static void intel_init_quirks(struct drm_device *dev)
8719 {
8720         struct pci_dev *d = dev->pdev;
8721         int i;
8722
8723         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8724                 struct intel_quirk *q = &intel_quirks[i];
8725
8726                 if (d->device == q->device &&
8727                     (d->subsystem_vendor == q->subsystem_vendor ||
8728                      q->subsystem_vendor == PCI_ANY_ID) &&
8729                     (d->subsystem_device == q->subsystem_device ||
8730                      q->subsystem_device == PCI_ANY_ID))
8731                         q->hook(dev);
8732         }
8733 }
8734
8735 /* Disable the VGA plane that we never use */
8736 static void i915_disable_vga(struct drm_device *dev)
8737 {
8738         struct drm_i915_private *dev_priv = dev->dev_private;
8739         u8 sr1;
8740         u32 vga_reg;
8741
8742         if (HAS_PCH_SPLIT(dev))
8743                 vga_reg = CPU_VGACNTRL;
8744         else
8745                 vga_reg = VGACNTRL;
8746
8747         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8748         outb(SR01, VGA_SR_INDEX);
8749         sr1 = inb(VGA_SR_DATA);
8750         outb(sr1 | 1<<5, VGA_SR_DATA);
8751         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8752         udelay(300);
8753
8754         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8755         POSTING_READ(vga_reg);
8756 }
8757
8758 void intel_modeset_init_hw(struct drm_device *dev)
8759 {
8760         /* We attempt to init the necessary power wells early in the initialization
8761          * time, so the subsystems that expect power to be enabled can work.
8762          */
8763         intel_init_power_wells(dev);
8764
8765         intel_prepare_ddi(dev);
8766
8767         intel_init_clock_gating(dev);
8768
8769         mutex_lock(&dev->struct_mutex);
8770         intel_enable_gt_powersave(dev);
8771         mutex_unlock(&dev->struct_mutex);
8772 }
8773
8774 void intel_modeset_init(struct drm_device *dev)
8775 {
8776         struct drm_i915_private *dev_priv = dev->dev_private;
8777         int i, ret;
8778
8779         drm_mode_config_init(dev);
8780
8781         dev->mode_config.min_width = 0;
8782         dev->mode_config.min_height = 0;
8783
8784         dev->mode_config.preferred_depth = 24;
8785         dev->mode_config.prefer_shadow = 1;
8786
8787         dev->mode_config.funcs = &intel_mode_funcs;
8788
8789         intel_init_quirks(dev);
8790
8791         intel_init_pm(dev);
8792
8793         intel_init_display(dev);
8794
8795         if (IS_GEN2(dev)) {
8796                 dev->mode_config.max_width = 2048;
8797                 dev->mode_config.max_height = 2048;
8798         } else if (IS_GEN3(dev)) {
8799                 dev->mode_config.max_width = 4096;
8800                 dev->mode_config.max_height = 4096;
8801         } else {
8802                 dev->mode_config.max_width = 8192;
8803                 dev->mode_config.max_height = 8192;
8804         }
8805         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8806
8807         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8808                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8809
8810         for (i = 0; i < dev_priv->num_pipe; i++) {
8811                 intel_crtc_init(dev, i);
8812                 ret = intel_plane_init(dev, i);
8813                 if (ret)
8814                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8815         }
8816
8817         intel_cpu_pll_init(dev);
8818         intel_pch_pll_init(dev);
8819
8820         /* Just disable it once at startup */
8821         i915_disable_vga(dev);
8822         intel_setup_outputs(dev);
8823 }
8824
8825 static void
8826 intel_connector_break_all_links(struct intel_connector *connector)
8827 {
8828         connector->base.dpms = DRM_MODE_DPMS_OFF;
8829         connector->base.encoder = NULL;
8830         connector->encoder->connectors_active = false;
8831         connector->encoder->base.crtc = NULL;
8832 }
8833
8834 static void intel_enable_pipe_a(struct drm_device *dev)
8835 {
8836         struct intel_connector *connector;
8837         struct drm_connector *crt = NULL;
8838         struct intel_load_detect_pipe load_detect_temp;
8839
8840         /* We can't just switch on the pipe A, we need to set things up with a
8841          * proper mode and output configuration. As a gross hack, enable pipe A
8842          * by enabling the load detect pipe once. */
8843         list_for_each_entry(connector,
8844                             &dev->mode_config.connector_list,
8845                             base.head) {
8846                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8847                         crt = &connector->base;
8848                         break;
8849                 }
8850         }
8851
8852         if (!crt)
8853                 return;
8854
8855         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8856                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8857
8858
8859 }
8860
8861 static bool
8862 intel_check_plane_mapping(struct intel_crtc *crtc)
8863 {
8864         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8865         u32 reg, val;
8866
8867         if (dev_priv->num_pipe == 1)
8868                 return true;
8869
8870         reg = DSPCNTR(!crtc->plane);
8871         val = I915_READ(reg);
8872
8873         if ((val & DISPLAY_PLANE_ENABLE) &&
8874             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8875                 return false;
8876
8877         return true;
8878 }
8879
8880 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8881 {
8882         struct drm_device *dev = crtc->base.dev;
8883         struct drm_i915_private *dev_priv = dev->dev_private;
8884         u32 reg;
8885
8886         /* Clear any frame start delays used for debugging left by the BIOS */
8887         reg = PIPECONF(crtc->cpu_transcoder);
8888         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8889
8890         /* We need to sanitize the plane -> pipe mapping first because this will
8891          * disable the crtc (and hence change the state) if it is wrong. Note
8892          * that gen4+ has a fixed plane -> pipe mapping.  */
8893         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8894                 struct intel_connector *connector;
8895                 bool plane;
8896
8897                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8898                               crtc->base.base.id);
8899
8900                 /* Pipe has the wrong plane attached and the plane is active.
8901                  * Temporarily change the plane mapping and disable everything
8902                  * ...  */
8903                 plane = crtc->plane;
8904                 crtc->plane = !plane;
8905                 dev_priv->display.crtc_disable(&crtc->base);
8906                 crtc->plane = plane;
8907
8908                 /* ... and break all links. */
8909                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8910                                     base.head) {
8911                         if (connector->encoder->base.crtc != &crtc->base)
8912                                 continue;
8913
8914                         intel_connector_break_all_links(connector);
8915                 }
8916
8917                 WARN_ON(crtc->active);
8918                 crtc->base.enabled = false;
8919         }
8920
8921         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8922             crtc->pipe == PIPE_A && !crtc->active) {
8923                 /* BIOS forgot to enable pipe A, this mostly happens after
8924                  * resume. Force-enable the pipe to fix this, the update_dpms
8925                  * call below we restore the pipe to the right state, but leave
8926                  * the required bits on. */
8927                 intel_enable_pipe_a(dev);
8928         }
8929
8930         /* Adjust the state of the output pipe according to whether we
8931          * have active connectors/encoders. */
8932         intel_crtc_update_dpms(&crtc->base);
8933
8934         if (crtc->active != crtc->base.enabled) {
8935                 struct intel_encoder *encoder;
8936
8937                 /* This can happen either due to bugs in the get_hw_state
8938                  * functions or because the pipe is force-enabled due to the
8939                  * pipe A quirk. */
8940                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8941                               crtc->base.base.id,
8942                               crtc->base.enabled ? "enabled" : "disabled",
8943                               crtc->active ? "enabled" : "disabled");
8944
8945                 crtc->base.enabled = crtc->active;
8946
8947                 /* Because we only establish the connector -> encoder ->
8948                  * crtc links if something is active, this means the
8949                  * crtc is now deactivated. Break the links. connector
8950                  * -> encoder links are only establish when things are
8951                  *  actually up, hence no need to break them. */
8952                 WARN_ON(crtc->active);
8953
8954                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8955                         WARN_ON(encoder->connectors_active);
8956                         encoder->base.crtc = NULL;
8957                 }
8958         }
8959 }
8960
8961 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8962 {
8963         struct intel_connector *connector;
8964         struct drm_device *dev = encoder->base.dev;
8965
8966         /* We need to check both for a crtc link (meaning that the
8967          * encoder is active and trying to read from a pipe) and the
8968          * pipe itself being active. */
8969         bool has_active_crtc = encoder->base.crtc &&
8970                 to_intel_crtc(encoder->base.crtc)->active;
8971
8972         if (encoder->connectors_active && !has_active_crtc) {
8973                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8974                               encoder->base.base.id,
8975                               drm_get_encoder_name(&encoder->base));
8976
8977                 /* Connector is active, but has no active pipe. This is
8978                  * fallout from our resume register restoring. Disable
8979                  * the encoder manually again. */
8980                 if (encoder->base.crtc) {
8981                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8982                                       encoder->base.base.id,
8983                                       drm_get_encoder_name(&encoder->base));
8984                         encoder->disable(encoder);
8985                 }
8986
8987                 /* Inconsistent output/port/pipe state happens presumably due to
8988                  * a bug in one of the get_hw_state functions. Or someplace else
8989                  * in our code, like the register restore mess on resume. Clamp
8990                  * things to off as a safer default. */
8991                 list_for_each_entry(connector,
8992                                     &dev->mode_config.connector_list,
8993                                     base.head) {
8994                         if (connector->encoder != encoder)
8995                                 continue;
8996
8997                         intel_connector_break_all_links(connector);
8998                 }
8999         }
9000         /* Enabled encoders without active connectors will be fixed in
9001          * the crtc fixup. */
9002 }
9003
9004 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9005  * and i915 state tracking structures. */
9006 void intel_modeset_setup_hw_state(struct drm_device *dev)
9007 {
9008         struct drm_i915_private *dev_priv = dev->dev_private;
9009         enum pipe pipe;
9010         u32 tmp;
9011         struct intel_crtc *crtc;
9012         struct intel_encoder *encoder;
9013         struct intel_connector *connector;
9014
9015         if (IS_HASWELL(dev)) {
9016                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9017
9018                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9019                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9020                         case TRANS_DDI_EDP_INPUT_A_ON:
9021                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9022                                 pipe = PIPE_A;
9023                                 break;
9024                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9025                                 pipe = PIPE_B;
9026                                 break;
9027                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9028                                 pipe = PIPE_C;
9029                                 break;
9030                         }
9031
9032                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9033                         crtc->cpu_transcoder = TRANSCODER_EDP;
9034
9035                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9036                                       pipe_name(pipe));
9037                 }
9038         }
9039
9040         for_each_pipe(pipe) {
9041                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9042
9043                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9044                 if (tmp & PIPECONF_ENABLE)
9045                         crtc->active = true;
9046                 else
9047                         crtc->active = false;
9048
9049                 crtc->base.enabled = crtc->active;
9050
9051                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9052                               crtc->base.base.id,
9053                               crtc->active ? "enabled" : "disabled");
9054         }
9055
9056         if (IS_HASWELL(dev))
9057                 intel_ddi_setup_hw_pll_state(dev);
9058
9059         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9060                             base.head) {
9061                 pipe = 0;
9062
9063                 if (encoder->get_hw_state(encoder, &pipe)) {
9064                         encoder->base.crtc =
9065                                 dev_priv->pipe_to_crtc_mapping[pipe];
9066                 } else {
9067                         encoder->base.crtc = NULL;
9068                 }
9069
9070                 encoder->connectors_active = false;
9071                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9072                               encoder->base.base.id,
9073                               drm_get_encoder_name(&encoder->base),
9074                               encoder->base.crtc ? "enabled" : "disabled",
9075                               pipe);
9076         }
9077
9078         list_for_each_entry(connector, &dev->mode_config.connector_list,
9079                             base.head) {
9080                 if (connector->get_hw_state(connector)) {
9081                         connector->base.dpms = DRM_MODE_DPMS_ON;
9082                         connector->encoder->connectors_active = true;
9083                         connector->base.encoder = &connector->encoder->base;
9084                 } else {
9085                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9086                         connector->base.encoder = NULL;
9087                 }
9088                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9089                               connector->base.base.id,
9090                               drm_get_connector_name(&connector->base),
9091                               connector->base.encoder ? "enabled" : "disabled");
9092         }
9093
9094         /* HW state is read out, now we need to sanitize this mess. */
9095         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9096                             base.head) {
9097                 intel_sanitize_encoder(encoder);
9098         }
9099
9100         for_each_pipe(pipe) {
9101                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9102                 intel_sanitize_crtc(crtc);
9103         }
9104
9105         intel_modeset_update_staged_output_state(dev);
9106
9107         intel_modeset_check_state(dev);
9108
9109         drm_mode_config_reset(dev);
9110 }
9111
9112 void intel_modeset_gem_init(struct drm_device *dev)
9113 {
9114         intel_modeset_init_hw(dev);
9115
9116         intel_setup_overlay(dev);
9117
9118         intel_modeset_setup_hw_state(dev);
9119 }
9120
9121 void intel_modeset_cleanup(struct drm_device *dev)
9122 {
9123         struct drm_i915_private *dev_priv = dev->dev_private;
9124         struct drm_crtc *crtc;
9125         struct intel_crtc *intel_crtc;
9126
9127         drm_kms_helper_poll_fini(dev);
9128         mutex_lock(&dev->struct_mutex);
9129
9130         intel_unregister_dsm_handler();
9131
9132
9133         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9134                 /* Skip inactive CRTCs */
9135                 if (!crtc->fb)
9136                         continue;
9137
9138                 intel_crtc = to_intel_crtc(crtc);
9139                 intel_increase_pllclock(crtc);
9140         }
9141
9142         intel_disable_fbc(dev);
9143
9144         intel_disable_gt_powersave(dev);
9145
9146         ironlake_teardown_rc6(dev);
9147
9148         if (IS_VALLEYVIEW(dev))
9149                 vlv_init_dpio(dev);
9150
9151         mutex_unlock(&dev->struct_mutex);
9152
9153         /* Disable the irq before mode object teardown, for the irq might
9154          * enqueue unpin/hotplug work. */
9155         drm_irq_uninstall(dev);
9156         cancel_work_sync(&dev_priv->hotplug_work);
9157         cancel_work_sync(&dev_priv->rps.work);
9158
9159         /* flush any delayed tasks or pending work */
9160         flush_scheduled_work();
9161
9162         drm_mode_config_cleanup(dev);
9163 }
9164
9165 /*
9166  * Return which encoder is currently attached for connector.
9167  */
9168 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9169 {
9170         return &intel_attached_encoder(connector)->base;
9171 }
9172
9173 void intel_connector_attach_encoder(struct intel_connector *connector,
9174                                     struct intel_encoder *encoder)
9175 {
9176         connector->encoder = encoder;
9177         drm_mode_connector_attach_encoder(&connector->base,
9178                                           &encoder->base);
9179 }
9180
9181 /*
9182  * set vga decode state - true == enable VGA decode
9183  */
9184 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9185 {
9186         struct drm_i915_private *dev_priv = dev->dev_private;
9187         u16 gmch_ctrl;
9188
9189         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9190         if (state)
9191                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9192         else
9193                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9194         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9195         return 0;
9196 }
9197
9198 #ifdef CONFIG_DEBUG_FS
9199 #include <linux/seq_file.h>
9200
9201 struct intel_display_error_state {
9202         struct intel_cursor_error_state {
9203                 u32 control;
9204                 u32 position;
9205                 u32 base;
9206                 u32 size;
9207         } cursor[I915_MAX_PIPES];
9208
9209         struct intel_pipe_error_state {
9210                 u32 conf;
9211                 u32 source;
9212
9213                 u32 htotal;
9214                 u32 hblank;
9215                 u32 hsync;
9216                 u32 vtotal;
9217                 u32 vblank;
9218                 u32 vsync;
9219         } pipe[I915_MAX_PIPES];
9220
9221         struct intel_plane_error_state {
9222                 u32 control;
9223                 u32 stride;
9224                 u32 size;
9225                 u32 pos;
9226                 u32 addr;
9227                 u32 surface;
9228                 u32 tile_offset;
9229         } plane[I915_MAX_PIPES];
9230 };
9231
9232 struct intel_display_error_state *
9233 intel_display_capture_error_state(struct drm_device *dev)
9234 {
9235         drm_i915_private_t *dev_priv = dev->dev_private;
9236         struct intel_display_error_state *error;
9237         enum transcoder cpu_transcoder;
9238         int i;
9239
9240         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9241         if (error == NULL)
9242                 return NULL;
9243
9244         for_each_pipe(i) {
9245                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9246
9247                 error->cursor[i].control = I915_READ(CURCNTR(i));
9248                 error->cursor[i].position = I915_READ(CURPOS(i));
9249                 error->cursor[i].base = I915_READ(CURBASE(i));
9250
9251                 error->plane[i].control = I915_READ(DSPCNTR(i));
9252                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9253                 error->plane[i].size = I915_READ(DSPSIZE(i));
9254                 error->plane[i].pos = I915_READ(DSPPOS(i));
9255                 error->plane[i].addr = I915_READ(DSPADDR(i));
9256                 if (INTEL_INFO(dev)->gen >= 4) {
9257                         error->plane[i].surface = I915_READ(DSPSURF(i));
9258                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9259                 }
9260
9261                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9262                 error->pipe[i].source = I915_READ(PIPESRC(i));
9263                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9264                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9265                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9266                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9267                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9268                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9269         }
9270
9271         return error;
9272 }
9273
9274 void
9275 intel_display_print_error_state(struct seq_file *m,
9276                                 struct drm_device *dev,
9277                                 struct intel_display_error_state *error)
9278 {
9279         drm_i915_private_t *dev_priv = dev->dev_private;
9280         int i;
9281
9282         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9283         for_each_pipe(i) {
9284                 seq_printf(m, "Pipe [%d]:\n", i);
9285                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9286                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9287                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9288                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9289                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9290                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9291                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9292                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9293
9294                 seq_printf(m, "Plane [%d]:\n", i);
9295                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9296                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9297                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9298                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9299                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9300                 if (INTEL_INFO(dev)->gen >= 4) {
9301                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9302                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9303                 }
9304
9305                 seq_printf(m, "Cursor [%d]:\n", i);
9306                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9307                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9308                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9309         }
9310 }
9311 #endif