]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Flush using only the correct base address register
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941                                              enum pipe pipe)
942 {
943         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946         return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 frame, frame_reg = PIPEFRAME(pipe);
953
954         frame = I915_READ(frame_reg);
955
956         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957                 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961  * intel_wait_for_vblank - wait for vblank on a given pipe
962  * @dev: drm device
963  * @pipe: pipe to wait for
964  *
965  * Wait for vblank to occur on a given pipe.  Needed for various bits of
966  * mode setting code.
967  */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         int pipestat_reg = PIPESTAT(pipe);
972
973         if (INTEL_INFO(dev)->gen >= 5) {
974                 ironlake_wait_for_vblank(dev, pipe);
975                 return;
976         }
977
978         /* Clear existing vblank status. Note this will clear any other
979          * sticky status fields as well.
980          *
981          * This races with i915_driver_irq_handler() with the result
982          * that either function could miss a vblank event.  Here it is not
983          * fatal, as we will either wait upon the next vblank interrupt or
984          * timeout.  Generally speaking intel_wait_for_vblank() is only
985          * called during modeset at which time the GPU should be idle and
986          * should *not* be performing page flips and thus not waiting on
987          * vblanks...
988          * Currently, the result of us stealing a vblank from the irq
989          * handler is that a single frame will be skipped during swapbuffers.
990          */
991         I915_WRITE(pipestat_reg,
992                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994         /* Wait for vblank interrupt bit to set */
995         if (wait_for(I915_READ(pipestat_reg) &
996                      PIPE_VBLANK_INTERRUPT_STATUS,
997                      50))
998                 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002  * intel_wait_for_pipe_off - wait for pipe to turn off
1003  * @dev: drm device
1004  * @pipe: pipe to wait for
1005  *
1006  * After disabling a pipe, we can't wait for vblank in the usual way,
1007  * spinning on the vblank interrupt status bit, since we won't actually
1008  * see an interrupt when the pipe is disabled.
1009  *
1010  * On Gen4 and above:
1011  *   wait for the pipe register state bit to turn off
1012  *
1013  * Otherwise:
1014  *   wait for the display line value to settle (it usually
1015  *   ends up stopping at the start of the next frame).
1016  *
1017  */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022                                                                       pipe);
1023
1024         if (INTEL_INFO(dev)->gen >= 4) {
1025                 int reg = PIPECONF(cpu_transcoder);
1026
1027                 /* Wait for the Pipe State to go off */
1028                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029                              100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         } else {
1032                 u32 last_line, line_mask;
1033                 int reg = PIPEDSL(pipe);
1034                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036                 if (IS_GEN2(dev))
1037                         line_mask = DSL_LINEMASK_GEN2;
1038                 else
1039                         line_mask = DSL_LINEMASK_GEN3;
1040
1041                 /* Wait for the display line to settle */
1042                 do {
1043                         last_line = I915_READ(reg) & line_mask;
1044                         mdelay(5);
1045                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046                          time_after(timeout, jiffies));
1047                 if (time_after(jiffies, timeout))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054         return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059                        enum pipe pipe, bool state)
1060 {
1061         int reg;
1062         u32 val;
1063         bool cur_state;
1064
1065         reg = DPLL(pipe);
1066         val = I915_READ(reg);
1067         cur_state = !!(val & DPLL_VCO_ENABLE);
1068         WARN(cur_state != state,
1069              "PLL state assertion failure (expected %s, current %s)\n",
1070              state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077                            struct intel_pch_pll *pll,
1078                            struct intel_crtc *crtc,
1079                            bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         if (HAS_PCH_LPT(dev_priv->dev)) {
1085                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086                 return;
1087         }
1088
1089         if (WARN (!pll,
1090                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091                 return;
1092
1093         val = I915_READ(pll->pll_reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097              pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099         /* Make sure the selected PLL is correctly attached to the transcoder */
1100         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101                 u32 pch_dpll;
1102
1103                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1107                           cur_state, crtc->pipe, pch_dpll)) {
1108                         cur_state = !!(val >> (4*crtc->pipe + 3));
1109                         WARN(cur_state != state,
1110                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1111                              pll->pll_reg == _PCH_DPLL_B,
1112                              state_string(state),
1113                              crtc->pipe,
1114                              val);
1115                 }
1116         }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122                           enum pipe pipe, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (IS_HASWELL(dev_priv->dev)) {
1131                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133                 val = I915_READ(reg);
1134                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135         } else {
1136                 reg = FDI_TX_CTL(pipe);
1137                 val = I915_READ(reg);
1138                 cur_state = !!(val & FDI_TX_ENABLE);
1139         }
1140         WARN(cur_state != state,
1141              "FDI TX state assertion failure (expected %s, current %s)\n",
1142              state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148                           enum pipe pipe, bool state)
1149 {
1150         int reg;
1151         u32 val;
1152         bool cur_state;
1153
1154         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156                         return;
1157         } else {
1158                 reg = FDI_RX_CTL(pipe);
1159                 val = I915_READ(reg);
1160                 cur_state = !!(val & FDI_RX_ENABLE);
1161         }
1162         WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (dev_priv->info->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (IS_HASWELL(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189                                       enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196                 return;
1197         }
1198         reg = FDI_RX_CTL(pipe);
1199         val = I915_READ(reg);
1200         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                                   enum pipe pipe)
1205 {
1206         int pp_reg, lvds_reg;
1207         u32 val;
1208         enum pipe panel_pipe = PIPE_A;
1209         bool locked = true;
1210
1211         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212                 pp_reg = PCH_PP_CONTROL;
1213                 lvds_reg = PCH_LVDS;
1214         } else {
1215                 pp_reg = PP_CONTROL;
1216                 lvds_reg = LVDS;
1217         }
1218
1219         val = I915_READ(pp_reg);
1220         if (!(val & PANEL_POWER_ON) ||
1221             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222                 locked = false;
1223
1224         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225                 panel_pipe = PIPE_B;
1226
1227         WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233                  enum pipe pipe, bool state)
1234 {
1235         int reg;
1236         u32 val;
1237         bool cur_state;
1238         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239                                                                       pipe);
1240
1241         /* if we need the pipe A quirk it must be always on */
1242         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243                 state = true;
1244
1245         reg = PIPECONF(cpu_transcoder);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & PIPECONF_ENABLE);
1248         WARN(cur_state != state,
1249              "pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254                          enum plane plane, bool state)
1255 {
1256         int reg;
1257         u32 val;
1258         bool cur_state;
1259
1260         reg = DSPCNTR(plane);
1261         val = I915_READ(reg);
1262         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263         WARN(cur_state != state,
1264              "plane %c assertion failure (expected %s, current %s)\n",
1265              plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe)
1273 {
1274         int reg, i;
1275         u32 val;
1276         int cur_pipe;
1277
1278         /* Planes are fixed to pipes on ILK+ */
1279         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280                 reg = DSPCNTR(pipe);
1281                 val = I915_READ(reg);
1282                 WARN((val & DISPLAY_PLANE_ENABLE),
1283                      "plane %c assertion failure, should be disabled but not\n",
1284                      plane_name(pipe));
1285                 return;
1286         }
1287
1288         /* Need to check both planes against the pipe */
1289         for (i = 0; i < 2; i++) {
1290                 reg = DSPCNTR(i);
1291                 val = I915_READ(reg);
1292                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293                         DISPPLANE_SEL_PIPE_SHIFT;
1294                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296                      plane_name(i), pipe_name(pipe));
1297         }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302         u32 val;
1303         bool enabled;
1304
1305         if (HAS_PCH_LPT(dev_priv->dev)) {
1306                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307                 return;
1308         }
1309
1310         val = I915_READ(PCH_DREF_CONTROL);
1311         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312                             DREF_SUPERSPREAD_SOURCE_MASK));
1313         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317                                        enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321         bool enabled;
1322
1323         reg = TRANSCONF(pipe);
1324         val = I915_READ(reg);
1325         enabled = !!(val & TRANS_ENABLE);
1326         WARN(enabled,
1327              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328              pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332                             enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334         if ((val & DP_PORT_EN) == 0)
1335                 return false;
1336
1337         if (HAS_PCH_CPT(dev_priv->dev)) {
1338                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341                         return false;
1342         } else {
1343                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344                         return false;
1345         }
1346         return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350                               enum pipe pipe, u32 val)
1351 {
1352         if ((val & PORT_ENABLE) == 0)
1353                 return false;
1354
1355         if (HAS_PCH_CPT(dev_priv->dev)) {
1356                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357                         return false;
1358         } else {
1359                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360                         return false;
1361         }
1362         return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366                               enum pipe pipe, u32 val)
1367 {
1368         if ((val & LVDS_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & ADPA_DAC_ENABLE) == 0)
1385                 return false;
1386         if (HAS_PCH_CPT(dev_priv->dev)) {
1387                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388                         return false;
1389         } else {
1390                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391                         return false;
1392         }
1393         return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397                                    enum pipe pipe, int reg, u32 port_sel)
1398 {
1399         u32 val = I915_READ(reg);
1400         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402              reg, pipe_name(pipe));
1403
1404         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405              && (val & DP_PIPEB_SELECT),
1406              "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410                                      enum pipe pipe, int reg)
1411 {
1412         u32 val = I915_READ(reg);
1413         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415              reg, pipe_name(pipe));
1416
1417         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418              && (val & SDVO_PIPE_B_SELECT),
1419              "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423                                       enum pipe pipe)
1424 {
1425         int reg;
1426         u32 val;
1427
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432         reg = PCH_ADPA;
1433         val = I915_READ(reg);
1434         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435              "PCH VGA enabled on transcoder %c, should be disabled\n",
1436              pipe_name(pipe));
1437
1438         reg = PCH_LVDS;
1439         val = I915_READ(reg);
1440         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442              pipe_name(pipe));
1443
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450  * intel_enable_pll - enable a PLL
1451  * @dev_priv: i915 private structure
1452  * @pipe: pipe PLL to enable
1453  *
1454  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1455  * make sure the PLL reg is writable first though, since the panel write
1456  * protect mechanism may be enabled.
1457  *
1458  * Note!  This is for pre-ILK only.
1459  *
1460  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461  */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464         int reg;
1465         u32 val;
1466
1467         /* No really, not for ILK+ */
1468         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472                 assert_panel_unlocked(dev_priv, pipe);
1473
1474         reg = DPLL(pipe);
1475         val = I915_READ(reg);
1476         val |= DPLL_VCO_ENABLE;
1477
1478         /* We do this three times for luck */
1479         I915_WRITE(reg, val);
1480         POSTING_READ(reg);
1481         udelay(150); /* wait for warmup */
1482         I915_WRITE(reg, val);
1483         POSTING_READ(reg);
1484         udelay(150); /* wait for warmup */
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487         udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491  * intel_disable_pll - disable a PLL
1492  * @dev_priv: i915 private structure
1493  * @pipe: pipe PLL to disable
1494  *
1495  * Disable the PLL for @pipe, making sure the pipe is off first.
1496  *
1497  * Note!  This is for pre-ILK only.
1498  */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501         int reg;
1502         u32 val;
1503
1504         /* Don't disable pipe A or pipe A PLLs if needed */
1505         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506                 return;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         reg = DPLL(pipe);
1512         val = I915_READ(reg);
1513         val &= ~DPLL_VCO_ENABLE;
1514         I915_WRITE(reg, val);
1515         POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522         unsigned long flags;
1523
1524         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528                 goto out_unlock;
1529         }
1530
1531         I915_WRITE(SBI_ADDR,
1532                         (reg << 16));
1533         I915_WRITE(SBI_DATA,
1534                         value);
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRWR);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545 out_unlock:
1546         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552         unsigned long flags;
1553         u32 value = 0;
1554
1555         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557                                 100)) {
1558                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559                 goto out_unlock;
1560         }
1561
1562         I915_WRITE(SBI_ADDR,
1563                         (reg << 16));
1564         I915_WRITE(SBI_CTL_STAT,
1565                         SBI_BUSY |
1566                         SBI_CTL_OP_CRRD);
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571                 goto out_unlock;
1572         }
1573
1574         value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578         return value;
1579 }
1580
1581 /**
1582  * intel_enable_pch_pll - enable PCH PLL
1583  * @dev_priv: i915 private structure
1584  * @pipe: pipe PLL to enable
1585  *
1586  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587  * drives the transcoder clock.
1588  */
1589 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592         struct intel_pch_pll *pll;
1593         int reg;
1594         u32 val;
1595
1596         /* PCH PLLs only available on ILK, SNB and IVB */
1597         BUG_ON(dev_priv->info->gen < 5);
1598         pll = intel_crtc->pch_pll;
1599         if (pll == NULL)
1600                 return;
1601
1602         if (WARN_ON(pll->refcount == 0))
1603                 return;
1604
1605         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606                       pll->pll_reg, pll->active, pll->on,
1607                       intel_crtc->base.base.id);
1608
1609         /* PCH refclock must be enabled first */
1610         assert_pch_refclk_enabled(dev_priv);
1611
1612         if (pll->active++ && pll->on) {
1613                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614                 return;
1615         }
1616
1617         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619         reg = pll->pll_reg;
1620         val = I915_READ(reg);
1621         val |= DPLL_VCO_ENABLE;
1622         I915_WRITE(reg, val);
1623         POSTING_READ(reg);
1624         udelay(200);
1625
1626         pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633         int reg;
1634         u32 val;
1635
1636         /* PCH only available on ILK+ */
1637         BUG_ON(dev_priv->info->gen < 5);
1638         if (pll == NULL)
1639                return;
1640
1641         if (WARN_ON(pll->refcount == 0))
1642                 return;
1643
1644         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645                       pll->pll_reg, pll->active, pll->on,
1646                       intel_crtc->base.base.id);
1647
1648         if (WARN_ON(pll->active == 0)) {
1649                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650                 return;
1651         }
1652
1653         if (--pll->active) {
1654                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655                 return;
1656         }
1657
1658         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660         /* Make sure transcoder isn't still depending on us */
1661         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663         reg = pll->pll_reg;
1664         val = I915_READ(reg);
1665         val &= ~DPLL_VCO_ENABLE;
1666         I915_WRITE(reg, val);
1667         POSTING_READ(reg);
1668         udelay(200);
1669
1670         pll->on = false;
1671 }
1672
1673 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1674                                     enum pipe pipe)
1675 {
1676         int reg;
1677         u32 val, pipeconf_val;
1678         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680         /* PCH only available on ILK+ */
1681         BUG_ON(dev_priv->info->gen < 5);
1682
1683         /* Make sure PCH DPLL is enabled */
1684         assert_pch_pll_enabled(dev_priv,
1685                                to_intel_crtc(crtc)->pch_pll,
1686                                to_intel_crtc(crtc));
1687
1688         /* FDI must be feeding us bits for PCH ports */
1689         assert_fdi_tx_enabled(dev_priv, pipe);
1690         assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694                 return;
1695         }
1696         reg = TRANSCONF(pipe);
1697         val = I915_READ(reg);
1698         pipeconf_val = I915_READ(PIPECONF(pipe));
1699
1700         if (HAS_PCH_IBX(dev_priv->dev)) {
1701                 /*
1702                  * make the BPC in transcoder be consistent with
1703                  * that in pipeconf reg.
1704                  */
1705                 val &= ~PIPE_BPC_MASK;
1706                 val |= pipeconf_val & PIPE_BPC_MASK;
1707         }
1708
1709         val &= ~TRANS_INTERLACE_MASK;
1710         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1711                 if (HAS_PCH_IBX(dev_priv->dev) &&
1712                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713                         val |= TRANS_LEGACY_INTERLACED_ILK;
1714                 else
1715                         val |= TRANS_INTERLACED;
1716         else
1717                 val |= TRANS_PROGRESSIVE;
1718
1719         I915_WRITE(reg, val | TRANS_ENABLE);
1720         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722 }
1723
1724 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1725                                      enum pipe pipe)
1726 {
1727         int reg;
1728         u32 val;
1729
1730         /* FDI relies on the transcoder */
1731         assert_fdi_tx_disabled(dev_priv, pipe);
1732         assert_fdi_rx_disabled(dev_priv, pipe);
1733
1734         /* Ports must be off as well */
1735         assert_pch_ports_disabled(dev_priv, pipe);
1736
1737         reg = TRANSCONF(pipe);
1738         val = I915_READ(reg);
1739         val &= ~TRANS_ENABLE;
1740         I915_WRITE(reg, val);
1741         /* wait for PCH transcoder off, transcoder state */
1742         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1743                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1744 }
1745
1746 /**
1747  * intel_enable_pipe - enable a pipe, asserting requirements
1748  * @dev_priv: i915 private structure
1749  * @pipe: pipe to enable
1750  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1751  *
1752  * Enable @pipe, making sure that various hardware specific requirements
1753  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754  *
1755  * @pipe should be %PIPE_A or %PIPE_B.
1756  *
1757  * Will wait until the pipe is actually running (i.e. first vblank) before
1758  * returning.
1759  */
1760 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761                               bool pch_port)
1762 {
1763         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764                                                                       pipe);
1765         int reg;
1766         u32 val;
1767
1768         /*
1769          * A pipe without a PLL won't actually be able to drive bits from
1770          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1771          * need the check.
1772          */
1773         if (!HAS_PCH_SPLIT(dev_priv->dev))
1774                 assert_pll_enabled(dev_priv, pipe);
1775         else {
1776                 if (pch_port) {
1777                         /* if driving the PCH, we need FDI enabled */
1778                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780                 }
1781                 /* FIXME: assert CPU port conditions for SNB+ */
1782         }
1783
1784         reg = PIPECONF(cpu_transcoder);
1785         val = I915_READ(reg);
1786         if (val & PIPECONF_ENABLE)
1787                 return;
1788
1789         I915_WRITE(reg, val | PIPECONF_ENABLE);
1790         intel_wait_for_vblank(dev_priv->dev, pipe);
1791 }
1792
1793 /**
1794  * intel_disable_pipe - disable a pipe, asserting requirements
1795  * @dev_priv: i915 private structure
1796  * @pipe: pipe to disable
1797  *
1798  * Disable @pipe, making sure that various hardware specific requirements
1799  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800  *
1801  * @pipe should be %PIPE_A or %PIPE_B.
1802  *
1803  * Will wait until the pipe has shut down before returning.
1804  */
1805 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806                                enum pipe pipe)
1807 {
1808         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809                                                                       pipe);
1810         int reg;
1811         u32 val;
1812
1813         /*
1814          * Make sure planes won't keep trying to pump pixels to us,
1815          * or we might hang the display.
1816          */
1817         assert_planes_disabled(dev_priv, pipe);
1818
1819         /* Don't disable pipe A or pipe A PLLs if needed */
1820         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821                 return;
1822
1823         reg = PIPECONF(cpu_transcoder);
1824         val = I915_READ(reg);
1825         if ((val & PIPECONF_ENABLE) == 0)
1826                 return;
1827
1828         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1829         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830 }
1831
1832 /*
1833  * Plane regs are double buffered, going from enabled->disabled needs a
1834  * trigger in order to latch.  The display address reg provides this.
1835  */
1836 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1837                                       enum plane plane)
1838 {
1839         if (dev_priv->info->gen >= 4)
1840                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841         else
1842                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1843 }
1844
1845 /**
1846  * intel_enable_plane - enable a display plane on a given pipe
1847  * @dev_priv: i915 private structure
1848  * @plane: plane to enable
1849  * @pipe: pipe being fed
1850  *
1851  * Enable @plane on @pipe, making sure that @pipe is running first.
1852  */
1853 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1854                                enum plane plane, enum pipe pipe)
1855 {
1856         int reg;
1857         u32 val;
1858
1859         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1860         assert_pipe_enabled(dev_priv, pipe);
1861
1862         reg = DSPCNTR(plane);
1863         val = I915_READ(reg);
1864         if (val & DISPLAY_PLANE_ENABLE)
1865                 return;
1866
1867         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1868         intel_flush_display_plane(dev_priv, plane);
1869         intel_wait_for_vblank(dev_priv->dev, pipe);
1870 }
1871
1872 /**
1873  * intel_disable_plane - disable a display plane
1874  * @dev_priv: i915 private structure
1875  * @plane: plane to disable
1876  * @pipe: pipe consuming the data
1877  *
1878  * Disable @plane; should be an independent operation.
1879  */
1880 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1881                                 enum plane plane, enum pipe pipe)
1882 {
1883         int reg;
1884         u32 val;
1885
1886         reg = DSPCNTR(plane);
1887         val = I915_READ(reg);
1888         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1889                 return;
1890
1891         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1892         intel_flush_display_plane(dev_priv, plane);
1893         intel_wait_for_vblank(dev_priv->dev, pipe);
1894 }
1895
1896 int
1897 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1898                            struct drm_i915_gem_object *obj,
1899                            struct intel_ring_buffer *pipelined)
1900 {
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         u32 alignment;
1903         int ret;
1904
1905         switch (obj->tiling_mode) {
1906         case I915_TILING_NONE:
1907                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1908                         alignment = 128 * 1024;
1909                 else if (INTEL_INFO(dev)->gen >= 4)
1910                         alignment = 4 * 1024;
1911                 else
1912                         alignment = 64 * 1024;
1913                 break;
1914         case I915_TILING_X:
1915                 /* pin() will align the object as required by fence */
1916                 alignment = 0;
1917                 break;
1918         case I915_TILING_Y:
1919                 /* FIXME: Is this true? */
1920                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1921                 return -EINVAL;
1922         default:
1923                 BUG();
1924         }
1925
1926         dev_priv->mm.interruptible = false;
1927         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1928         if (ret)
1929                 goto err_interruptible;
1930
1931         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1932          * fence, whereas 965+ only requires a fence if using
1933          * framebuffer compression.  For simplicity, we always install
1934          * a fence as the cost is not that onerous.
1935          */
1936         ret = i915_gem_object_get_fence(obj);
1937         if (ret)
1938                 goto err_unpin;
1939
1940         i915_gem_object_pin_fence(obj);
1941
1942         dev_priv->mm.interruptible = true;
1943         return 0;
1944
1945 err_unpin:
1946         i915_gem_object_unpin(obj);
1947 err_interruptible:
1948         dev_priv->mm.interruptible = true;
1949         return ret;
1950 }
1951
1952 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1953 {
1954         i915_gem_object_unpin_fence(obj);
1955         i915_gem_object_unpin(obj);
1956 }
1957
1958 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1959  * is assumed to be a power-of-two. */
1960 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1961                                                unsigned int bpp,
1962                                                unsigned int pitch)
1963 {
1964         int tile_rows, tiles;
1965
1966         tile_rows = *y / 8;
1967         *y %= 8;
1968         tiles = *x / (512/bpp);
1969         *x %= 512/bpp;
1970
1971         return tile_rows * pitch * 8 + tiles * 4096;
1972 }
1973
1974 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1975                              int x, int y)
1976 {
1977         struct drm_device *dev = crtc->dev;
1978         struct drm_i915_private *dev_priv = dev->dev_private;
1979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1980         struct intel_framebuffer *intel_fb;
1981         struct drm_i915_gem_object *obj;
1982         int plane = intel_crtc->plane;
1983         unsigned long linear_offset;
1984         u32 dspcntr;
1985         u32 reg;
1986
1987         switch (plane) {
1988         case 0:
1989         case 1:
1990                 break;
1991         default:
1992                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1993                 return -EINVAL;
1994         }
1995
1996         intel_fb = to_intel_framebuffer(fb);
1997         obj = intel_fb->obj;
1998
1999         reg = DSPCNTR(plane);
2000         dspcntr = I915_READ(reg);
2001         /* Mask out pixel format bits in case we change it */
2002         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2003         switch (fb->bits_per_pixel) {
2004         case 8:
2005                 dspcntr |= DISPPLANE_8BPP;
2006                 break;
2007         case 16:
2008                 if (fb->depth == 15)
2009                         dspcntr |= DISPPLANE_15_16BPP;
2010                 else
2011                         dspcntr |= DISPPLANE_16BPP;
2012                 break;
2013         case 24:
2014         case 32:
2015                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2016                 break;
2017         default:
2018                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2019                 return -EINVAL;
2020         }
2021         if (INTEL_INFO(dev)->gen >= 4) {
2022                 if (obj->tiling_mode != I915_TILING_NONE)
2023                         dspcntr |= DISPPLANE_TILED;
2024                 else
2025                         dspcntr &= ~DISPPLANE_TILED;
2026         }
2027
2028         I915_WRITE(reg, dspcntr);
2029
2030         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2031
2032         if (INTEL_INFO(dev)->gen >= 4) {
2033                 intel_crtc->dspaddr_offset =
2034                         intel_gen4_compute_offset_xtiled(&x, &y,
2035                                                          fb->bits_per_pixel / 8,
2036                                                          fb->pitches[0]);
2037                 linear_offset -= intel_crtc->dspaddr_offset;
2038         } else {
2039                 intel_crtc->dspaddr_offset = linear_offset;
2040         }
2041
2042         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2043                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2044         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2045         if (INTEL_INFO(dev)->gen >= 4) {
2046                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2047                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2048                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2049                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2050         } else
2051                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2052         POSTING_READ(reg);
2053
2054         return 0;
2055 }
2056
2057 static int ironlake_update_plane(struct drm_crtc *crtc,
2058                                  struct drm_framebuffer *fb, int x, int y)
2059 {
2060         struct drm_device *dev = crtc->dev;
2061         struct drm_i915_private *dev_priv = dev->dev_private;
2062         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2063         struct intel_framebuffer *intel_fb;
2064         struct drm_i915_gem_object *obj;
2065         int plane = intel_crtc->plane;
2066         unsigned long linear_offset;
2067         u32 dspcntr;
2068         u32 reg;
2069
2070         switch (plane) {
2071         case 0:
2072         case 1:
2073         case 2:
2074                 break;
2075         default:
2076                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2077                 return -EINVAL;
2078         }
2079
2080         intel_fb = to_intel_framebuffer(fb);
2081         obj = intel_fb->obj;
2082
2083         reg = DSPCNTR(plane);
2084         dspcntr = I915_READ(reg);
2085         /* Mask out pixel format bits in case we change it */
2086         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2087         switch (fb->bits_per_pixel) {
2088         case 8:
2089                 dspcntr |= DISPPLANE_8BPP;
2090                 break;
2091         case 16:
2092                 if (fb->depth != 16)
2093                         return -EINVAL;
2094
2095                 dspcntr |= DISPPLANE_16BPP;
2096                 break;
2097         case 24:
2098         case 32:
2099                 if (fb->depth == 24)
2100                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2101                 else if (fb->depth == 30)
2102                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2103                 else
2104                         return -EINVAL;
2105                 break;
2106         default:
2107                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2108                 return -EINVAL;
2109         }
2110
2111         if (obj->tiling_mode != I915_TILING_NONE)
2112                 dspcntr |= DISPPLANE_TILED;
2113         else
2114                 dspcntr &= ~DISPPLANE_TILED;
2115
2116         /* must disable */
2117         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2118
2119         I915_WRITE(reg, dspcntr);
2120
2121         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2122         intel_crtc->dspaddr_offset =
2123                 intel_gen4_compute_offset_xtiled(&x, &y,
2124                                                  fb->bits_per_pixel / 8,
2125                                                  fb->pitches[0]);
2126         linear_offset -= intel_crtc->dspaddr_offset;
2127
2128         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2129                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2130         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2131         I915_MODIFY_DISPBASE(DSPSURF(plane),
2132                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2133         if (IS_HASWELL(dev)) {
2134                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2135         } else {
2136                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2137                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2138         }
2139         POSTING_READ(reg);
2140
2141         return 0;
2142 }
2143
2144 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2145 static int
2146 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2147                            int x, int y, enum mode_set_atomic state)
2148 {
2149         struct drm_device *dev = crtc->dev;
2150         struct drm_i915_private *dev_priv = dev->dev_private;
2151
2152         if (dev_priv->display.disable_fbc)
2153                 dev_priv->display.disable_fbc(dev);
2154         intel_increase_pllclock(crtc);
2155
2156         return dev_priv->display.update_plane(crtc, fb, x, y);
2157 }
2158
2159 static int
2160 intel_finish_fb(struct drm_framebuffer *old_fb)
2161 {
2162         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2163         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2164         bool was_interruptible = dev_priv->mm.interruptible;
2165         int ret;
2166
2167         wait_event(dev_priv->pending_flip_queue,
2168                    atomic_read(&dev_priv->mm.wedged) ||
2169                    atomic_read(&obj->pending_flip) == 0);
2170
2171         /* Big Hammer, we also need to ensure that any pending
2172          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2173          * current scanout is retired before unpinning the old
2174          * framebuffer.
2175          *
2176          * This should only fail upon a hung GPU, in which case we
2177          * can safely continue.
2178          */
2179         dev_priv->mm.interruptible = false;
2180         ret = i915_gem_object_finish_gpu(obj);
2181         dev_priv->mm.interruptible = was_interruptible;
2182
2183         return ret;
2184 }
2185
2186 static int
2187 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2188                     struct drm_framebuffer *fb)
2189 {
2190         struct drm_device *dev = crtc->dev;
2191         struct drm_i915_private *dev_priv = dev->dev_private;
2192         struct drm_i915_master_private *master_priv;
2193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2194         struct drm_framebuffer *old_fb;
2195         int ret;
2196
2197         /* no fb bound */
2198         if (!fb) {
2199                 DRM_ERROR("No FB bound\n");
2200                 return 0;
2201         }
2202
2203         if(intel_crtc->plane > dev_priv->num_pipe) {
2204                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2205                                 intel_crtc->plane,
2206                                 dev_priv->num_pipe);
2207                 return -EINVAL;
2208         }
2209
2210         mutex_lock(&dev->struct_mutex);
2211         ret = intel_pin_and_fence_fb_obj(dev,
2212                                          to_intel_framebuffer(fb)->obj,
2213                                          NULL);
2214         if (ret != 0) {
2215                 mutex_unlock(&dev->struct_mutex);
2216                 DRM_ERROR("pin & fence failed\n");
2217                 return ret;
2218         }
2219
2220         if (crtc->fb)
2221                 intel_finish_fb(crtc->fb);
2222
2223         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2224         if (ret) {
2225                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2226                 mutex_unlock(&dev->struct_mutex);
2227                 DRM_ERROR("failed to update base address\n");
2228                 return ret;
2229         }
2230
2231         old_fb = crtc->fb;
2232         crtc->fb = fb;
2233         crtc->x = x;
2234         crtc->y = y;
2235
2236         if (old_fb) {
2237                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2238                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2239         }
2240
2241         intel_update_fbc(dev);
2242         mutex_unlock(&dev->struct_mutex);
2243
2244         if (!dev->primary->master)
2245                 return 0;
2246
2247         master_priv = dev->primary->master->driver_priv;
2248         if (!master_priv->sarea_priv)
2249                 return 0;
2250
2251         if (intel_crtc->pipe) {
2252                 master_priv->sarea_priv->pipeB_x = x;
2253                 master_priv->sarea_priv->pipeB_y = y;
2254         } else {
2255                 master_priv->sarea_priv->pipeA_x = x;
2256                 master_priv->sarea_priv->pipeA_y = y;
2257         }
2258
2259         return 0;
2260 }
2261
2262 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2263 {
2264         struct drm_device *dev = crtc->dev;
2265         struct drm_i915_private *dev_priv = dev->dev_private;
2266         u32 dpa_ctl;
2267
2268         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2269         dpa_ctl = I915_READ(DP_A);
2270         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2271
2272         if (clock < 200000) {
2273                 u32 temp;
2274                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2275                 /* workaround for 160Mhz:
2276                    1) program 0x4600c bits 15:0 = 0x8124
2277                    2) program 0x46010 bit 0 = 1
2278                    3) program 0x46034 bit 24 = 1
2279                    4) program 0x64000 bit 14 = 1
2280                    */
2281                 temp = I915_READ(0x4600c);
2282                 temp &= 0xffff0000;
2283                 I915_WRITE(0x4600c, temp | 0x8124);
2284
2285                 temp = I915_READ(0x46010);
2286                 I915_WRITE(0x46010, temp | 1);
2287
2288                 temp = I915_READ(0x46034);
2289                 I915_WRITE(0x46034, temp | (1 << 24));
2290         } else {
2291                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2292         }
2293         I915_WRITE(DP_A, dpa_ctl);
2294
2295         POSTING_READ(DP_A);
2296         udelay(500);
2297 }
2298
2299 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2300 {
2301         struct drm_device *dev = crtc->dev;
2302         struct drm_i915_private *dev_priv = dev->dev_private;
2303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2304         int pipe = intel_crtc->pipe;
2305         u32 reg, temp;
2306
2307         /* enable normal train */
2308         reg = FDI_TX_CTL(pipe);
2309         temp = I915_READ(reg);
2310         if (IS_IVYBRIDGE(dev)) {
2311                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2312                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2313         } else {
2314                 temp &= ~FDI_LINK_TRAIN_NONE;
2315                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2316         }
2317         I915_WRITE(reg, temp);
2318
2319         reg = FDI_RX_CTL(pipe);
2320         temp = I915_READ(reg);
2321         if (HAS_PCH_CPT(dev)) {
2322                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2323                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2324         } else {
2325                 temp &= ~FDI_LINK_TRAIN_NONE;
2326                 temp |= FDI_LINK_TRAIN_NONE;
2327         }
2328         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2329
2330         /* wait one idle pattern time */
2331         POSTING_READ(reg);
2332         udelay(1000);
2333
2334         /* IVB wants error correction enabled */
2335         if (IS_IVYBRIDGE(dev))
2336                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2337                            FDI_FE_ERRC_ENABLE);
2338 }
2339
2340 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2341 {
2342         struct drm_i915_private *dev_priv = dev->dev_private;
2343         u32 flags = I915_READ(SOUTH_CHICKEN1);
2344
2345         flags |= FDI_PHASE_SYNC_OVR(pipe);
2346         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2347         flags |= FDI_PHASE_SYNC_EN(pipe);
2348         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2349         POSTING_READ(SOUTH_CHICKEN1);
2350 }
2351
2352 static void ivb_modeset_global_resources(struct drm_device *dev)
2353 {
2354         struct drm_i915_private *dev_priv = dev->dev_private;
2355         struct intel_crtc *pipe_B_crtc =
2356                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2357         struct intel_crtc *pipe_C_crtc =
2358                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2359         uint32_t temp;
2360
2361         /* When everything is off disable fdi C so that we could enable fdi B
2362          * with all lanes. XXX: This misses the case where a pipe is not using
2363          * any pch resources and so doesn't need any fdi lanes. */
2364         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2365                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2366                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2367
2368                 temp = I915_READ(SOUTH_CHICKEN1);
2369                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2370                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2371                 I915_WRITE(SOUTH_CHICKEN1, temp);
2372         }
2373 }
2374
2375 /* The FDI link training functions for ILK/Ibexpeak. */
2376 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2377 {
2378         struct drm_device *dev = crtc->dev;
2379         struct drm_i915_private *dev_priv = dev->dev_private;
2380         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2381         int pipe = intel_crtc->pipe;
2382         int plane = intel_crtc->plane;
2383         u32 reg, temp, tries;
2384
2385         /* FDI needs bits from pipe & plane first */
2386         assert_pipe_enabled(dev_priv, pipe);
2387         assert_plane_enabled(dev_priv, plane);
2388
2389         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2390            for train result */
2391         reg = FDI_RX_IMR(pipe);
2392         temp = I915_READ(reg);
2393         temp &= ~FDI_RX_SYMBOL_LOCK;
2394         temp &= ~FDI_RX_BIT_LOCK;
2395         I915_WRITE(reg, temp);
2396         I915_READ(reg);
2397         udelay(150);
2398
2399         /* enable CPU FDI TX and PCH FDI RX */
2400         reg = FDI_TX_CTL(pipe);
2401         temp = I915_READ(reg);
2402         temp &= ~(7 << 19);
2403         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2404         temp &= ~FDI_LINK_TRAIN_NONE;
2405         temp |= FDI_LINK_TRAIN_PATTERN_1;
2406         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2407
2408         reg = FDI_RX_CTL(pipe);
2409         temp = I915_READ(reg);
2410         temp &= ~FDI_LINK_TRAIN_NONE;
2411         temp |= FDI_LINK_TRAIN_PATTERN_1;
2412         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2413
2414         POSTING_READ(reg);
2415         udelay(150);
2416
2417         /* Ironlake workaround, enable clock pointer after FDI enable*/
2418         if (HAS_PCH_IBX(dev)) {
2419                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2420                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2421                            FDI_RX_PHASE_SYNC_POINTER_EN);
2422         }
2423
2424         reg = FDI_RX_IIR(pipe);
2425         for (tries = 0; tries < 5; tries++) {
2426                 temp = I915_READ(reg);
2427                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2428
2429                 if ((temp & FDI_RX_BIT_LOCK)) {
2430                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2431                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2432                         break;
2433                 }
2434         }
2435         if (tries == 5)
2436                 DRM_ERROR("FDI train 1 fail!\n");
2437
2438         /* Train 2 */
2439         reg = FDI_TX_CTL(pipe);
2440         temp = I915_READ(reg);
2441         temp &= ~FDI_LINK_TRAIN_NONE;
2442         temp |= FDI_LINK_TRAIN_PATTERN_2;
2443         I915_WRITE(reg, temp);
2444
2445         reg = FDI_RX_CTL(pipe);
2446         temp = I915_READ(reg);
2447         temp &= ~FDI_LINK_TRAIN_NONE;
2448         temp |= FDI_LINK_TRAIN_PATTERN_2;
2449         I915_WRITE(reg, temp);
2450
2451         POSTING_READ(reg);
2452         udelay(150);
2453
2454         reg = FDI_RX_IIR(pipe);
2455         for (tries = 0; tries < 5; tries++) {
2456                 temp = I915_READ(reg);
2457                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2458
2459                 if (temp & FDI_RX_SYMBOL_LOCK) {
2460                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2461                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2462                         break;
2463                 }
2464         }
2465         if (tries == 5)
2466                 DRM_ERROR("FDI train 2 fail!\n");
2467
2468         DRM_DEBUG_KMS("FDI train done\n");
2469
2470 }
2471
2472 static const int snb_b_fdi_train_param[] = {
2473         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2474         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2475         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2476         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2477 };
2478
2479 /* The FDI link training functions for SNB/Cougarpoint. */
2480 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2481 {
2482         struct drm_device *dev = crtc->dev;
2483         struct drm_i915_private *dev_priv = dev->dev_private;
2484         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2485         int pipe = intel_crtc->pipe;
2486         u32 reg, temp, i, retry;
2487
2488         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2489            for train result */
2490         reg = FDI_RX_IMR(pipe);
2491         temp = I915_READ(reg);
2492         temp &= ~FDI_RX_SYMBOL_LOCK;
2493         temp &= ~FDI_RX_BIT_LOCK;
2494         I915_WRITE(reg, temp);
2495
2496         POSTING_READ(reg);
2497         udelay(150);
2498
2499         /* enable CPU FDI TX and PCH FDI RX */
2500         reg = FDI_TX_CTL(pipe);
2501         temp = I915_READ(reg);
2502         temp &= ~(7 << 19);
2503         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2504         temp &= ~FDI_LINK_TRAIN_NONE;
2505         temp |= FDI_LINK_TRAIN_PATTERN_1;
2506         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2507         /* SNB-B */
2508         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2509         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2510
2511         I915_WRITE(FDI_RX_MISC(pipe),
2512                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2513
2514         reg = FDI_RX_CTL(pipe);
2515         temp = I915_READ(reg);
2516         if (HAS_PCH_CPT(dev)) {
2517                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2518                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2519         } else {
2520                 temp &= ~FDI_LINK_TRAIN_NONE;
2521                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2522         }
2523         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2524
2525         POSTING_READ(reg);
2526         udelay(150);
2527
2528         if (HAS_PCH_CPT(dev))
2529                 cpt_phase_pointer_enable(dev, pipe);
2530
2531         for (i = 0; i < 4; i++) {
2532                 reg = FDI_TX_CTL(pipe);
2533                 temp = I915_READ(reg);
2534                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2535                 temp |= snb_b_fdi_train_param[i];
2536                 I915_WRITE(reg, temp);
2537
2538                 POSTING_READ(reg);
2539                 udelay(500);
2540
2541                 for (retry = 0; retry < 5; retry++) {
2542                         reg = FDI_RX_IIR(pipe);
2543                         temp = I915_READ(reg);
2544                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2545                         if (temp & FDI_RX_BIT_LOCK) {
2546                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2547                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2548                                 break;
2549                         }
2550                         udelay(50);
2551                 }
2552                 if (retry < 5)
2553                         break;
2554         }
2555         if (i == 4)
2556                 DRM_ERROR("FDI train 1 fail!\n");
2557
2558         /* Train 2 */
2559         reg = FDI_TX_CTL(pipe);
2560         temp = I915_READ(reg);
2561         temp &= ~FDI_LINK_TRAIN_NONE;
2562         temp |= FDI_LINK_TRAIN_PATTERN_2;
2563         if (IS_GEN6(dev)) {
2564                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2565                 /* SNB-B */
2566                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2567         }
2568         I915_WRITE(reg, temp);
2569
2570         reg = FDI_RX_CTL(pipe);
2571         temp = I915_READ(reg);
2572         if (HAS_PCH_CPT(dev)) {
2573                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2574                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2575         } else {
2576                 temp &= ~FDI_LINK_TRAIN_NONE;
2577                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2578         }
2579         I915_WRITE(reg, temp);
2580
2581         POSTING_READ(reg);
2582         udelay(150);
2583
2584         for (i = 0; i < 4; i++) {
2585                 reg = FDI_TX_CTL(pipe);
2586                 temp = I915_READ(reg);
2587                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2588                 temp |= snb_b_fdi_train_param[i];
2589                 I915_WRITE(reg, temp);
2590
2591                 POSTING_READ(reg);
2592                 udelay(500);
2593
2594                 for (retry = 0; retry < 5; retry++) {
2595                         reg = FDI_RX_IIR(pipe);
2596                         temp = I915_READ(reg);
2597                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2598                         if (temp & FDI_RX_SYMBOL_LOCK) {
2599                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2600                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2601                                 break;
2602                         }
2603                         udelay(50);
2604                 }
2605                 if (retry < 5)
2606                         break;
2607         }
2608         if (i == 4)
2609                 DRM_ERROR("FDI train 2 fail!\n");
2610
2611         DRM_DEBUG_KMS("FDI train done.\n");
2612 }
2613
2614 /* Manual link training for Ivy Bridge A0 parts */
2615 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2616 {
2617         struct drm_device *dev = crtc->dev;
2618         struct drm_i915_private *dev_priv = dev->dev_private;
2619         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2620         int pipe = intel_crtc->pipe;
2621         u32 reg, temp, i;
2622
2623         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2624            for train result */
2625         reg = FDI_RX_IMR(pipe);
2626         temp = I915_READ(reg);
2627         temp &= ~FDI_RX_SYMBOL_LOCK;
2628         temp &= ~FDI_RX_BIT_LOCK;
2629         I915_WRITE(reg, temp);
2630
2631         POSTING_READ(reg);
2632         udelay(150);
2633
2634         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2635                       I915_READ(FDI_RX_IIR(pipe)));
2636
2637         /* enable CPU FDI TX and PCH FDI RX */
2638         reg = FDI_TX_CTL(pipe);
2639         temp = I915_READ(reg);
2640         temp &= ~(7 << 19);
2641         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2642         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2643         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2644         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2646         temp |= FDI_COMPOSITE_SYNC;
2647         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2648
2649         I915_WRITE(FDI_RX_MISC(pipe),
2650                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2651
2652         reg = FDI_RX_CTL(pipe);
2653         temp = I915_READ(reg);
2654         temp &= ~FDI_LINK_TRAIN_AUTO;
2655         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2656         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2657         temp |= FDI_COMPOSITE_SYNC;
2658         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2659
2660         POSTING_READ(reg);
2661         udelay(150);
2662
2663         if (HAS_PCH_CPT(dev))
2664                 cpt_phase_pointer_enable(dev, pipe);
2665
2666         for (i = 0; i < 4; i++) {
2667                 reg = FDI_TX_CTL(pipe);
2668                 temp = I915_READ(reg);
2669                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2670                 temp |= snb_b_fdi_train_param[i];
2671                 I915_WRITE(reg, temp);
2672
2673                 POSTING_READ(reg);
2674                 udelay(500);
2675
2676                 reg = FDI_RX_IIR(pipe);
2677                 temp = I915_READ(reg);
2678                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2679
2680                 if (temp & FDI_RX_BIT_LOCK ||
2681                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2682                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2683                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2684                         break;
2685                 }
2686         }
2687         if (i == 4)
2688                 DRM_ERROR("FDI train 1 fail!\n");
2689
2690         /* Train 2 */
2691         reg = FDI_TX_CTL(pipe);
2692         temp = I915_READ(reg);
2693         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2694         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2695         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2696         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2697         I915_WRITE(reg, temp);
2698
2699         reg = FDI_RX_CTL(pipe);
2700         temp = I915_READ(reg);
2701         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2702         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2703         I915_WRITE(reg, temp);
2704
2705         POSTING_READ(reg);
2706         udelay(150);
2707
2708         for (i = 0; i < 4; i++) {
2709                 reg = FDI_TX_CTL(pipe);
2710                 temp = I915_READ(reg);
2711                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2712                 temp |= snb_b_fdi_train_param[i];
2713                 I915_WRITE(reg, temp);
2714
2715                 POSTING_READ(reg);
2716                 udelay(500);
2717
2718                 reg = FDI_RX_IIR(pipe);
2719                 temp = I915_READ(reg);
2720                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2721
2722                 if (temp & FDI_RX_SYMBOL_LOCK) {
2723                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2724                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2725                         break;
2726                 }
2727         }
2728         if (i == 4)
2729                 DRM_ERROR("FDI train 2 fail!\n");
2730
2731         DRM_DEBUG_KMS("FDI train done.\n");
2732 }
2733
2734 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2735 {
2736         struct drm_device *dev = intel_crtc->base.dev;
2737         struct drm_i915_private *dev_priv = dev->dev_private;
2738         int pipe = intel_crtc->pipe;
2739         u32 reg, temp;
2740
2741
2742         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2743         reg = FDI_RX_CTL(pipe);
2744         temp = I915_READ(reg);
2745         temp &= ~((0x7 << 19) | (0x7 << 16));
2746         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2747         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2748         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2749
2750         POSTING_READ(reg);
2751         udelay(200);
2752
2753         /* Switch from Rawclk to PCDclk */
2754         temp = I915_READ(reg);
2755         I915_WRITE(reg, temp | FDI_PCDCLK);
2756
2757         POSTING_READ(reg);
2758         udelay(200);
2759
2760         /* On Haswell, the PLL configuration for ports and pipes is handled
2761          * separately, as part of DDI setup */
2762         if (!IS_HASWELL(dev)) {
2763                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2764                 reg = FDI_TX_CTL(pipe);
2765                 temp = I915_READ(reg);
2766                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2767                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2768
2769                         POSTING_READ(reg);
2770                         udelay(100);
2771                 }
2772         }
2773 }
2774
2775 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2776 {
2777         struct drm_device *dev = intel_crtc->base.dev;
2778         struct drm_i915_private *dev_priv = dev->dev_private;
2779         int pipe = intel_crtc->pipe;
2780         u32 reg, temp;
2781
2782         /* Switch from PCDclk to Rawclk */
2783         reg = FDI_RX_CTL(pipe);
2784         temp = I915_READ(reg);
2785         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2786
2787         /* Disable CPU FDI TX PLL */
2788         reg = FDI_TX_CTL(pipe);
2789         temp = I915_READ(reg);
2790         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2791
2792         POSTING_READ(reg);
2793         udelay(100);
2794
2795         reg = FDI_RX_CTL(pipe);
2796         temp = I915_READ(reg);
2797         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2798
2799         /* Wait for the clocks to turn off. */
2800         POSTING_READ(reg);
2801         udelay(100);
2802 }
2803
2804 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2805 {
2806         struct drm_i915_private *dev_priv = dev->dev_private;
2807         u32 flags = I915_READ(SOUTH_CHICKEN1);
2808
2809         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2810         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2811         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2812         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2813         POSTING_READ(SOUTH_CHICKEN1);
2814 }
2815 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2816 {
2817         struct drm_device *dev = crtc->dev;
2818         struct drm_i915_private *dev_priv = dev->dev_private;
2819         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2820         int pipe = intel_crtc->pipe;
2821         u32 reg, temp;
2822
2823         /* disable CPU FDI tx and PCH FDI rx */
2824         reg = FDI_TX_CTL(pipe);
2825         temp = I915_READ(reg);
2826         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2827         POSTING_READ(reg);
2828
2829         reg = FDI_RX_CTL(pipe);
2830         temp = I915_READ(reg);
2831         temp &= ~(0x7 << 16);
2832         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2833         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2834
2835         POSTING_READ(reg);
2836         udelay(100);
2837
2838         /* Ironlake workaround, disable clock pointer after downing FDI */
2839         if (HAS_PCH_IBX(dev)) {
2840                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2841                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2842                            I915_READ(FDI_RX_CHICKEN(pipe) &
2843                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2844         } else if (HAS_PCH_CPT(dev)) {
2845                 cpt_phase_pointer_disable(dev, pipe);
2846         }
2847
2848         /* still set train pattern 1 */
2849         reg = FDI_TX_CTL(pipe);
2850         temp = I915_READ(reg);
2851         temp &= ~FDI_LINK_TRAIN_NONE;
2852         temp |= FDI_LINK_TRAIN_PATTERN_1;
2853         I915_WRITE(reg, temp);
2854
2855         reg = FDI_RX_CTL(pipe);
2856         temp = I915_READ(reg);
2857         if (HAS_PCH_CPT(dev)) {
2858                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2859                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2860         } else {
2861                 temp &= ~FDI_LINK_TRAIN_NONE;
2862                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2863         }
2864         /* BPC in FDI rx is consistent with that in PIPECONF */
2865         temp &= ~(0x07 << 16);
2866         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2867         I915_WRITE(reg, temp);
2868
2869         POSTING_READ(reg);
2870         udelay(100);
2871 }
2872
2873 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2874 {
2875         struct drm_device *dev = crtc->dev;
2876         struct drm_i915_private *dev_priv = dev->dev_private;
2877         unsigned long flags;
2878         bool pending;
2879
2880         if (atomic_read(&dev_priv->mm.wedged))
2881                 return false;
2882
2883         spin_lock_irqsave(&dev->event_lock, flags);
2884         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2885         spin_unlock_irqrestore(&dev->event_lock, flags);
2886
2887         return pending;
2888 }
2889
2890 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2891 {
2892         struct drm_device *dev = crtc->dev;
2893         struct drm_i915_private *dev_priv = dev->dev_private;
2894
2895         if (crtc->fb == NULL)
2896                 return;
2897
2898         wait_event(dev_priv->pending_flip_queue,
2899                    !intel_crtc_has_pending_flip(crtc));
2900
2901         mutex_lock(&dev->struct_mutex);
2902         intel_finish_fb(crtc->fb);
2903         mutex_unlock(&dev->struct_mutex);
2904 }
2905
2906 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2907 {
2908         struct drm_device *dev = crtc->dev;
2909         struct intel_encoder *intel_encoder;
2910
2911         /*
2912          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2913          * must be driven by its own crtc; no sharing is possible.
2914          */
2915         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2916                 switch (intel_encoder->type) {
2917                 case INTEL_OUTPUT_EDP:
2918                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2919                                 return false;
2920                         continue;
2921                 }
2922         }
2923
2924         return true;
2925 }
2926
2927 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2928 {
2929         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2930 }
2931
2932 /* Program iCLKIP clock to the desired frequency */
2933 static void lpt_program_iclkip(struct drm_crtc *crtc)
2934 {
2935         struct drm_device *dev = crtc->dev;
2936         struct drm_i915_private *dev_priv = dev->dev_private;
2937         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2938         u32 temp;
2939
2940         /* It is necessary to ungate the pixclk gate prior to programming
2941          * the divisors, and gate it back when it is done.
2942          */
2943         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2944
2945         /* Disable SSCCTL */
2946         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2947                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2948                                         SBI_SSCCTL_DISABLE);
2949
2950         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2951         if (crtc->mode.clock == 20000) {
2952                 auxdiv = 1;
2953                 divsel = 0x41;
2954                 phaseinc = 0x20;
2955         } else {
2956                 /* The iCLK virtual clock root frequency is in MHz,
2957                  * but the crtc->mode.clock in in KHz. To get the divisors,
2958                  * it is necessary to divide one by another, so we
2959                  * convert the virtual clock precision to KHz here for higher
2960                  * precision.
2961                  */
2962                 u32 iclk_virtual_root_freq = 172800 * 1000;
2963                 u32 iclk_pi_range = 64;
2964                 u32 desired_divisor, msb_divisor_value, pi_value;
2965
2966                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2967                 msb_divisor_value = desired_divisor / iclk_pi_range;
2968                 pi_value = desired_divisor % iclk_pi_range;
2969
2970                 auxdiv = 0;
2971                 divsel = msb_divisor_value - 2;
2972                 phaseinc = pi_value;
2973         }
2974
2975         /* This should not happen with any sane values */
2976         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2977                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2978         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2979                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2980
2981         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2982                         crtc->mode.clock,
2983                         auxdiv,
2984                         divsel,
2985                         phasedir,
2986                         phaseinc);
2987
2988         /* Program SSCDIVINTPHASE6 */
2989         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2990         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2991         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2992         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2993         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2994         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2995         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2996
2997         intel_sbi_write(dev_priv,
2998                         SBI_SSCDIVINTPHASE6,
2999                         temp);
3000
3001         /* Program SSCAUXDIV */
3002         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3003         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3004         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3005         intel_sbi_write(dev_priv,
3006                         SBI_SSCAUXDIV6,
3007                         temp);
3008
3009
3010         /* Enable modulator and associated divider */
3011         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3012         temp &= ~SBI_SSCCTL_DISABLE;
3013         intel_sbi_write(dev_priv,
3014                         SBI_SSCCTL6,
3015                         temp);
3016
3017         /* Wait for initialization time */
3018         udelay(24);
3019
3020         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3021 }
3022
3023 /*
3024  * Enable PCH resources required for PCH ports:
3025  *   - PCH PLLs
3026  *   - FDI training & RX/TX
3027  *   - update transcoder timings
3028  *   - DP transcoding bits
3029  *   - transcoder
3030  */
3031 static void ironlake_pch_enable(struct drm_crtc *crtc)
3032 {
3033         struct drm_device *dev = crtc->dev;
3034         struct drm_i915_private *dev_priv = dev->dev_private;
3035         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3036         int pipe = intel_crtc->pipe;
3037         u32 reg, temp;
3038
3039         assert_transcoder_disabled(dev_priv, pipe);
3040
3041         /* Write the TU size bits before fdi link training, so that error
3042          * detection works. */
3043         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3044                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3045
3046         /* For PCH output, training FDI link */
3047         dev_priv->display.fdi_link_train(crtc);
3048
3049         /* XXX: pch pll's can be enabled any time before we enable the PCH
3050          * transcoder, and we actually should do this to not upset any PCH
3051          * transcoder that already use the clock when we share it.
3052          *
3053          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3054          * unconditionally resets the pll - we need that to have the right LVDS
3055          * enable sequence. */
3056         intel_enable_pch_pll(intel_crtc);
3057
3058         if (HAS_PCH_LPT(dev)) {
3059                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3060                 lpt_program_iclkip(crtc);
3061         } else if (HAS_PCH_CPT(dev)) {
3062                 u32 sel;
3063
3064                 temp = I915_READ(PCH_DPLL_SEL);
3065                 switch (pipe) {
3066                 default:
3067                 case 0:
3068                         temp |= TRANSA_DPLL_ENABLE;
3069                         sel = TRANSA_DPLLB_SEL;
3070                         break;
3071                 case 1:
3072                         temp |= TRANSB_DPLL_ENABLE;
3073                         sel = TRANSB_DPLLB_SEL;
3074                         break;
3075                 case 2:
3076                         temp |= TRANSC_DPLL_ENABLE;
3077                         sel = TRANSC_DPLLB_SEL;
3078                         break;
3079                 }
3080                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3081                         temp |= sel;
3082                 else
3083                         temp &= ~sel;
3084                 I915_WRITE(PCH_DPLL_SEL, temp);
3085         }
3086
3087         /* set transcoder timing, panel must allow it */
3088         assert_panel_unlocked(dev_priv, pipe);
3089         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3090         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3091         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3092
3093         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3094         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3095         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3096         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3097
3098         if (!IS_HASWELL(dev))
3099                 intel_fdi_normal_train(crtc);
3100
3101         /* For PCH DP, enable TRANS_DP_CTL */
3102         if (HAS_PCH_CPT(dev) &&
3103             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3104              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3105                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3106                 reg = TRANS_DP_CTL(pipe);
3107                 temp = I915_READ(reg);
3108                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3109                           TRANS_DP_SYNC_MASK |
3110                           TRANS_DP_BPC_MASK);
3111                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3112                          TRANS_DP_ENH_FRAMING);
3113                 temp |= bpc << 9; /* same format but at 11:9 */
3114
3115                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3116                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3117                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3118                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3119
3120                 switch (intel_trans_dp_port_sel(crtc)) {
3121                 case PCH_DP_B:
3122                         temp |= TRANS_DP_PORT_SEL_B;
3123                         break;
3124                 case PCH_DP_C:
3125                         temp |= TRANS_DP_PORT_SEL_C;
3126                         break;
3127                 case PCH_DP_D:
3128                         temp |= TRANS_DP_PORT_SEL_D;
3129                         break;
3130                 default:
3131                         BUG();
3132                 }
3133
3134                 I915_WRITE(reg, temp);
3135         }
3136
3137         intel_enable_transcoder(dev_priv, pipe);
3138 }
3139
3140 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3141 {
3142         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3143
3144         if (pll == NULL)
3145                 return;
3146
3147         if (pll->refcount == 0) {
3148                 WARN(1, "bad PCH PLL refcount\n");
3149                 return;
3150         }
3151
3152         --pll->refcount;
3153         intel_crtc->pch_pll = NULL;
3154 }
3155
3156 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3157 {
3158         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3159         struct intel_pch_pll *pll;
3160         int i;
3161
3162         pll = intel_crtc->pch_pll;
3163         if (pll) {
3164                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3165                               intel_crtc->base.base.id, pll->pll_reg);
3166                 goto prepare;
3167         }
3168
3169         if (HAS_PCH_IBX(dev_priv->dev)) {
3170                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3171                 i = intel_crtc->pipe;
3172                 pll = &dev_priv->pch_plls[i];
3173
3174                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3175                               intel_crtc->base.base.id, pll->pll_reg);
3176
3177                 goto found;
3178         }
3179
3180         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3181                 pll = &dev_priv->pch_plls[i];
3182
3183                 /* Only want to check enabled timings first */
3184                 if (pll->refcount == 0)
3185                         continue;
3186
3187                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3188                     fp == I915_READ(pll->fp0_reg)) {
3189                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3190                                       intel_crtc->base.base.id,
3191                                       pll->pll_reg, pll->refcount, pll->active);
3192
3193                         goto found;
3194                 }
3195         }
3196
3197         /* Ok no matching timings, maybe there's a free one? */
3198         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3199                 pll = &dev_priv->pch_plls[i];
3200                 if (pll->refcount == 0) {
3201                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3202                                       intel_crtc->base.base.id, pll->pll_reg);
3203                         goto found;
3204                 }
3205         }
3206
3207         return NULL;
3208
3209 found:
3210         intel_crtc->pch_pll = pll;
3211         pll->refcount++;
3212         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3213 prepare: /* separate function? */
3214         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3215
3216         /* Wait for the clocks to stabilize before rewriting the regs */
3217         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3218         POSTING_READ(pll->pll_reg);
3219         udelay(150);
3220
3221         I915_WRITE(pll->fp0_reg, fp);
3222         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3223         pll->on = false;
3224         return pll;
3225 }
3226
3227 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3228 {
3229         struct drm_i915_private *dev_priv = dev->dev_private;
3230         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3231         u32 temp;
3232
3233         temp = I915_READ(dslreg);
3234         udelay(500);
3235         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3236                 /* Without this, mode sets may fail silently on FDI */
3237                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3238                 udelay(250);
3239                 I915_WRITE(tc2reg, 0);
3240                 if (wait_for(I915_READ(dslreg) != temp, 5))
3241                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3242         }
3243 }
3244
3245 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3246 {
3247         struct drm_device *dev = crtc->dev;
3248         struct drm_i915_private *dev_priv = dev->dev_private;
3249         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3250         struct intel_encoder *encoder;
3251         int pipe = intel_crtc->pipe;
3252         int plane = intel_crtc->plane;
3253         u32 temp;
3254         bool is_pch_port;
3255
3256         WARN_ON(!crtc->enabled);
3257
3258         if (intel_crtc->active)
3259                 return;
3260
3261         intel_crtc->active = true;
3262         intel_update_watermarks(dev);
3263
3264         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3265                 temp = I915_READ(PCH_LVDS);
3266                 if ((temp & LVDS_PORT_EN) == 0)
3267                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3268         }
3269
3270         is_pch_port = ironlake_crtc_driving_pch(crtc);
3271
3272         if (is_pch_port) {
3273                 /* Note: FDI PLL enabling _must_ be done before we enable the
3274                  * cpu pipes, hence this is separate from all the other fdi/pch
3275                  * enabling. */
3276                 ironlake_fdi_pll_enable(intel_crtc);
3277         } else {
3278                 assert_fdi_tx_disabled(dev_priv, pipe);
3279                 assert_fdi_rx_disabled(dev_priv, pipe);
3280         }
3281
3282         for_each_encoder_on_crtc(dev, crtc, encoder)
3283                 if (encoder->pre_enable)
3284                         encoder->pre_enable(encoder);
3285
3286         /* Enable panel fitting for LVDS */
3287         if (dev_priv->pch_pf_size &&
3288             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3289                 /* Force use of hard-coded filter coefficients
3290                  * as some pre-programmed values are broken,
3291                  * e.g. x201.
3292                  */
3293                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3294                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3295                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3296         }
3297
3298         /*
3299          * On ILK+ LUT must be loaded before the pipe is running but with
3300          * clocks enabled
3301          */
3302         intel_crtc_load_lut(crtc);
3303
3304         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3305         intel_enable_plane(dev_priv, plane, pipe);
3306
3307         if (is_pch_port)
3308                 ironlake_pch_enable(crtc);
3309
3310         mutex_lock(&dev->struct_mutex);
3311         intel_update_fbc(dev);
3312         mutex_unlock(&dev->struct_mutex);
3313
3314         intel_crtc_update_cursor(crtc, true);
3315
3316         for_each_encoder_on_crtc(dev, crtc, encoder)
3317                 encoder->enable(encoder);
3318
3319         if (HAS_PCH_CPT(dev))
3320                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3321
3322         /*
3323          * There seems to be a race in PCH platform hw (at least on some
3324          * outputs) where an enabled pipe still completes any pageflip right
3325          * away (as if the pipe is off) instead of waiting for vblank. As soon
3326          * as the first vblank happend, everything works as expected. Hence just
3327          * wait for one vblank before returning to avoid strange things
3328          * happening.
3329          */
3330         intel_wait_for_vblank(dev, intel_crtc->pipe);
3331 }
3332
3333 static void haswell_crtc_enable(struct drm_crtc *crtc)
3334 {
3335         struct drm_device *dev = crtc->dev;
3336         struct drm_i915_private *dev_priv = dev->dev_private;
3337         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3338         struct intel_encoder *encoder;
3339         int pipe = intel_crtc->pipe;
3340         int plane = intel_crtc->plane;
3341         bool is_pch_port;
3342
3343         WARN_ON(!crtc->enabled);
3344
3345         if (intel_crtc->active)
3346                 return;
3347
3348         intel_crtc->active = true;
3349         intel_update_watermarks(dev);
3350
3351         is_pch_port = haswell_crtc_driving_pch(crtc);
3352
3353         if (is_pch_port)
3354                 ironlake_fdi_pll_enable(intel_crtc);
3355
3356         for_each_encoder_on_crtc(dev, crtc, encoder)
3357                 if (encoder->pre_enable)
3358                         encoder->pre_enable(encoder);
3359
3360         intel_ddi_enable_pipe_clock(intel_crtc);
3361
3362         /* Enable panel fitting for eDP */
3363         if (dev_priv->pch_pf_size && HAS_eDP) {
3364                 /* Force use of hard-coded filter coefficients
3365                  * as some pre-programmed values are broken,
3366                  * e.g. x201.
3367                  */
3368                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3369                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3370                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3371         }
3372
3373         /*
3374          * On ILK+ LUT must be loaded before the pipe is running but with
3375          * clocks enabled
3376          */
3377         intel_crtc_load_lut(crtc);
3378
3379         intel_ddi_set_pipe_settings(crtc);
3380         intel_ddi_enable_pipe_func(crtc);
3381
3382         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3383         intel_enable_plane(dev_priv, plane, pipe);
3384
3385         if (is_pch_port)
3386                 ironlake_pch_enable(crtc);
3387
3388         mutex_lock(&dev->struct_mutex);
3389         intel_update_fbc(dev);
3390         mutex_unlock(&dev->struct_mutex);
3391
3392         intel_crtc_update_cursor(crtc, true);
3393
3394         for_each_encoder_on_crtc(dev, crtc, encoder)
3395                 encoder->enable(encoder);
3396
3397         /*
3398          * There seems to be a race in PCH platform hw (at least on some
3399          * outputs) where an enabled pipe still completes any pageflip right
3400          * away (as if the pipe is off) instead of waiting for vblank. As soon
3401          * as the first vblank happend, everything works as expected. Hence just
3402          * wait for one vblank before returning to avoid strange things
3403          * happening.
3404          */
3405         intel_wait_for_vblank(dev, intel_crtc->pipe);
3406 }
3407
3408 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3409 {
3410         struct drm_device *dev = crtc->dev;
3411         struct drm_i915_private *dev_priv = dev->dev_private;
3412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3413         struct intel_encoder *encoder;
3414         int pipe = intel_crtc->pipe;
3415         int plane = intel_crtc->plane;
3416         u32 reg, temp;
3417
3418
3419         if (!intel_crtc->active)
3420                 return;
3421
3422         for_each_encoder_on_crtc(dev, crtc, encoder)
3423                 encoder->disable(encoder);
3424
3425         intel_crtc_wait_for_pending_flips(crtc);
3426         drm_vblank_off(dev, pipe);
3427         intel_crtc_update_cursor(crtc, false);
3428
3429         intel_disable_plane(dev_priv, plane, pipe);
3430
3431         if (dev_priv->cfb_plane == plane)
3432                 intel_disable_fbc(dev);
3433
3434         intel_disable_pipe(dev_priv, pipe);
3435
3436         /* Disable PF */
3437         I915_WRITE(PF_CTL(pipe), 0);
3438         I915_WRITE(PF_WIN_SZ(pipe), 0);
3439
3440         for_each_encoder_on_crtc(dev, crtc, encoder)
3441                 if (encoder->post_disable)
3442                         encoder->post_disable(encoder);
3443
3444         ironlake_fdi_disable(crtc);
3445
3446         intel_disable_transcoder(dev_priv, pipe);
3447
3448         if (HAS_PCH_CPT(dev)) {
3449                 /* disable TRANS_DP_CTL */
3450                 reg = TRANS_DP_CTL(pipe);
3451                 temp = I915_READ(reg);
3452                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3453                 temp |= TRANS_DP_PORT_SEL_NONE;
3454                 I915_WRITE(reg, temp);
3455
3456                 /* disable DPLL_SEL */
3457                 temp = I915_READ(PCH_DPLL_SEL);
3458                 switch (pipe) {
3459                 case 0:
3460                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3461                         break;
3462                 case 1:
3463                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3464                         break;
3465                 case 2:
3466                         /* C shares PLL A or B */
3467                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3468                         break;
3469                 default:
3470                         BUG(); /* wtf */
3471                 }
3472                 I915_WRITE(PCH_DPLL_SEL, temp);
3473         }
3474
3475         /* disable PCH DPLL */
3476         intel_disable_pch_pll(intel_crtc);
3477
3478         ironlake_fdi_pll_disable(intel_crtc);
3479
3480         intel_crtc->active = false;
3481         intel_update_watermarks(dev);
3482
3483         mutex_lock(&dev->struct_mutex);
3484         intel_update_fbc(dev);
3485         mutex_unlock(&dev->struct_mutex);
3486 }
3487
3488 static void haswell_crtc_disable(struct drm_crtc *crtc)
3489 {
3490         struct drm_device *dev = crtc->dev;
3491         struct drm_i915_private *dev_priv = dev->dev_private;
3492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3493         struct intel_encoder *encoder;
3494         int pipe = intel_crtc->pipe;
3495         int plane = intel_crtc->plane;
3496         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3497         bool is_pch_port;
3498
3499         if (!intel_crtc->active)
3500                 return;
3501
3502         is_pch_port = haswell_crtc_driving_pch(crtc);
3503
3504         for_each_encoder_on_crtc(dev, crtc, encoder)
3505                 encoder->disable(encoder);
3506
3507         intel_crtc_wait_for_pending_flips(crtc);
3508         drm_vblank_off(dev, pipe);
3509         intel_crtc_update_cursor(crtc, false);
3510
3511         intel_disable_plane(dev_priv, plane, pipe);
3512
3513         if (dev_priv->cfb_plane == plane)
3514                 intel_disable_fbc(dev);
3515
3516         intel_disable_pipe(dev_priv, pipe);
3517
3518         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3519
3520         /* Disable PF */
3521         I915_WRITE(PF_CTL(pipe), 0);
3522         I915_WRITE(PF_WIN_SZ(pipe), 0);
3523
3524         intel_ddi_disable_pipe_clock(intel_crtc);
3525
3526         for_each_encoder_on_crtc(dev, crtc, encoder)
3527                 if (encoder->post_disable)
3528                         encoder->post_disable(encoder);
3529
3530         if (is_pch_port) {
3531                 ironlake_fdi_disable(crtc);
3532                 intel_disable_transcoder(dev_priv, pipe);
3533                 intel_disable_pch_pll(intel_crtc);
3534                 ironlake_fdi_pll_disable(intel_crtc);
3535         }
3536
3537         intel_crtc->active = false;
3538         intel_update_watermarks(dev);
3539
3540         mutex_lock(&dev->struct_mutex);
3541         intel_update_fbc(dev);
3542         mutex_unlock(&dev->struct_mutex);
3543 }
3544
3545 static void ironlake_crtc_off(struct drm_crtc *crtc)
3546 {
3547         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3548         intel_put_pch_pll(intel_crtc);
3549 }
3550
3551 static void haswell_crtc_off(struct drm_crtc *crtc)
3552 {
3553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3554
3555         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3556          * start using it. */
3557         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3558
3559         intel_ddi_put_crtc_pll(crtc);
3560 }
3561
3562 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3563 {
3564         if (!enable && intel_crtc->overlay) {
3565                 struct drm_device *dev = intel_crtc->base.dev;
3566                 struct drm_i915_private *dev_priv = dev->dev_private;
3567
3568                 mutex_lock(&dev->struct_mutex);
3569                 dev_priv->mm.interruptible = false;
3570                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3571                 dev_priv->mm.interruptible = true;
3572                 mutex_unlock(&dev->struct_mutex);
3573         }
3574
3575         /* Let userspace switch the overlay on again. In most cases userspace
3576          * has to recompute where to put it anyway.
3577          */
3578 }
3579
3580 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3581 {
3582         struct drm_device *dev = crtc->dev;
3583         struct drm_i915_private *dev_priv = dev->dev_private;
3584         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3585         struct intel_encoder *encoder;
3586         int pipe = intel_crtc->pipe;
3587         int plane = intel_crtc->plane;
3588
3589         WARN_ON(!crtc->enabled);
3590
3591         if (intel_crtc->active)
3592                 return;
3593
3594         intel_crtc->active = true;
3595         intel_update_watermarks(dev);
3596
3597         intel_enable_pll(dev_priv, pipe);
3598         intel_enable_pipe(dev_priv, pipe, false);
3599         intel_enable_plane(dev_priv, plane, pipe);
3600
3601         intel_crtc_load_lut(crtc);
3602         intel_update_fbc(dev);
3603
3604         /* Give the overlay scaler a chance to enable if it's on this pipe */
3605         intel_crtc_dpms_overlay(intel_crtc, true);
3606         intel_crtc_update_cursor(crtc, true);
3607
3608         for_each_encoder_on_crtc(dev, crtc, encoder)
3609                 encoder->enable(encoder);
3610 }
3611
3612 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3613 {
3614         struct drm_device *dev = crtc->dev;
3615         struct drm_i915_private *dev_priv = dev->dev_private;
3616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617         struct intel_encoder *encoder;
3618         int pipe = intel_crtc->pipe;
3619         int plane = intel_crtc->plane;
3620
3621
3622         if (!intel_crtc->active)
3623                 return;
3624
3625         for_each_encoder_on_crtc(dev, crtc, encoder)
3626                 encoder->disable(encoder);
3627
3628         /* Give the overlay scaler a chance to disable if it's on this pipe */
3629         intel_crtc_wait_for_pending_flips(crtc);
3630         drm_vblank_off(dev, pipe);
3631         intel_crtc_dpms_overlay(intel_crtc, false);
3632         intel_crtc_update_cursor(crtc, false);
3633
3634         if (dev_priv->cfb_plane == plane)
3635                 intel_disable_fbc(dev);
3636
3637         intel_disable_plane(dev_priv, plane, pipe);
3638         intel_disable_pipe(dev_priv, pipe);
3639         intel_disable_pll(dev_priv, pipe);
3640
3641         intel_crtc->active = false;
3642         intel_update_fbc(dev);
3643         intel_update_watermarks(dev);
3644 }
3645
3646 static void i9xx_crtc_off(struct drm_crtc *crtc)
3647 {
3648 }
3649
3650 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3651                                     bool enabled)
3652 {
3653         struct drm_device *dev = crtc->dev;
3654         struct drm_i915_master_private *master_priv;
3655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3656         int pipe = intel_crtc->pipe;
3657
3658         if (!dev->primary->master)
3659                 return;
3660
3661         master_priv = dev->primary->master->driver_priv;
3662         if (!master_priv->sarea_priv)
3663                 return;
3664
3665         switch (pipe) {
3666         case 0:
3667                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3668                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3669                 break;
3670         case 1:
3671                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3672                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3673                 break;
3674         default:
3675                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3676                 break;
3677         }
3678 }
3679
3680 /**
3681  * Sets the power management mode of the pipe and plane.
3682  */
3683 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3684 {
3685         struct drm_device *dev = crtc->dev;
3686         struct drm_i915_private *dev_priv = dev->dev_private;
3687         struct intel_encoder *intel_encoder;
3688         bool enable = false;
3689
3690         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3691                 enable |= intel_encoder->connectors_active;
3692
3693         if (enable)
3694                 dev_priv->display.crtc_enable(crtc);
3695         else
3696                 dev_priv->display.crtc_disable(crtc);
3697
3698         intel_crtc_update_sarea(crtc, enable);
3699 }
3700
3701 static void intel_crtc_noop(struct drm_crtc *crtc)
3702 {
3703 }
3704
3705 static void intel_crtc_disable(struct drm_crtc *crtc)
3706 {
3707         struct drm_device *dev = crtc->dev;
3708         struct drm_connector *connector;
3709         struct drm_i915_private *dev_priv = dev->dev_private;
3710
3711         /* crtc should still be enabled when we disable it. */
3712         WARN_ON(!crtc->enabled);
3713
3714         dev_priv->display.crtc_disable(crtc);
3715         intel_crtc_update_sarea(crtc, false);
3716         dev_priv->display.off(crtc);
3717
3718         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3719         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3720
3721         if (crtc->fb) {
3722                 mutex_lock(&dev->struct_mutex);
3723                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3724                 mutex_unlock(&dev->struct_mutex);
3725                 crtc->fb = NULL;
3726         }
3727
3728         /* Update computed state. */
3729         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3730                 if (!connector->encoder || !connector->encoder->crtc)
3731                         continue;
3732
3733                 if (connector->encoder->crtc != crtc)
3734                         continue;
3735
3736                 connector->dpms = DRM_MODE_DPMS_OFF;
3737                 to_intel_encoder(connector->encoder)->connectors_active = false;
3738         }
3739 }
3740
3741 void intel_modeset_disable(struct drm_device *dev)
3742 {
3743         struct drm_crtc *crtc;
3744
3745         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3746                 if (crtc->enabled)
3747                         intel_crtc_disable(crtc);
3748         }
3749 }
3750
3751 void intel_encoder_noop(struct drm_encoder *encoder)
3752 {
3753 }
3754
3755 void intel_encoder_destroy(struct drm_encoder *encoder)
3756 {
3757         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3758
3759         drm_encoder_cleanup(encoder);
3760         kfree(intel_encoder);
3761 }
3762
3763 /* Simple dpms helper for encodres with just one connector, no cloning and only
3764  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3765  * state of the entire output pipe. */
3766 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3767 {
3768         if (mode == DRM_MODE_DPMS_ON) {
3769                 encoder->connectors_active = true;
3770
3771                 intel_crtc_update_dpms(encoder->base.crtc);
3772         } else {
3773                 encoder->connectors_active = false;
3774
3775                 intel_crtc_update_dpms(encoder->base.crtc);
3776         }
3777 }
3778
3779 /* Cross check the actual hw state with our own modeset state tracking (and it's
3780  * internal consistency). */
3781 static void intel_connector_check_state(struct intel_connector *connector)
3782 {
3783         if (connector->get_hw_state(connector)) {
3784                 struct intel_encoder *encoder = connector->encoder;
3785                 struct drm_crtc *crtc;
3786                 bool encoder_enabled;
3787                 enum pipe pipe;
3788
3789                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3790                               connector->base.base.id,
3791                               drm_get_connector_name(&connector->base));
3792
3793                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3794                      "wrong connector dpms state\n");
3795                 WARN(connector->base.encoder != &encoder->base,
3796                      "active connector not linked to encoder\n");
3797                 WARN(!encoder->connectors_active,
3798                      "encoder->connectors_active not set\n");
3799
3800                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3801                 WARN(!encoder_enabled, "encoder not enabled\n");
3802                 if (WARN_ON(!encoder->base.crtc))
3803                         return;
3804
3805                 crtc = encoder->base.crtc;
3806
3807                 WARN(!crtc->enabled, "crtc not enabled\n");
3808                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3809                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3810                      "encoder active on the wrong pipe\n");
3811         }
3812 }
3813
3814 /* Even simpler default implementation, if there's really no special case to
3815  * consider. */
3816 void intel_connector_dpms(struct drm_connector *connector, int mode)
3817 {
3818         struct intel_encoder *encoder = intel_attached_encoder(connector);
3819
3820         /* All the simple cases only support two dpms states. */
3821         if (mode != DRM_MODE_DPMS_ON)
3822                 mode = DRM_MODE_DPMS_OFF;
3823
3824         if (mode == connector->dpms)
3825                 return;
3826
3827         connector->dpms = mode;
3828
3829         /* Only need to change hw state when actually enabled */
3830         if (encoder->base.crtc)
3831                 intel_encoder_dpms(encoder, mode);
3832         else
3833                 WARN_ON(encoder->connectors_active != false);
3834
3835         intel_modeset_check_state(connector->dev);
3836 }
3837
3838 /* Simple connector->get_hw_state implementation for encoders that support only
3839  * one connector and no cloning and hence the encoder state determines the state
3840  * of the connector. */
3841 bool intel_connector_get_hw_state(struct intel_connector *connector)
3842 {
3843         enum pipe pipe = 0;
3844         struct intel_encoder *encoder = connector->encoder;
3845
3846         return encoder->get_hw_state(encoder, &pipe);
3847 }
3848
3849 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3850                                   const struct drm_display_mode *mode,
3851                                   struct drm_display_mode *adjusted_mode)
3852 {
3853         struct drm_device *dev = crtc->dev;
3854
3855         if (HAS_PCH_SPLIT(dev)) {
3856                 /* FDI link clock is fixed at 2.7G */
3857                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3858                         return false;
3859         }
3860
3861         /* All interlaced capable intel hw wants timings in frames. Note though
3862          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3863          * timings, so we need to be careful not to clobber these.*/
3864         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3865                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3866
3867         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3868          * with a hsync front porch of 0.
3869          */
3870         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3871                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3872                 return false;
3873
3874         return true;
3875 }
3876
3877 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3878 {
3879         return 400000; /* FIXME */
3880 }
3881
3882 static int i945_get_display_clock_speed(struct drm_device *dev)
3883 {
3884         return 400000;
3885 }
3886
3887 static int i915_get_display_clock_speed(struct drm_device *dev)
3888 {
3889         return 333000;
3890 }
3891
3892 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3893 {
3894         return 200000;
3895 }
3896
3897 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3898 {
3899         u16 gcfgc = 0;
3900
3901         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3902
3903         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3904                 return 133000;
3905         else {
3906                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3907                 case GC_DISPLAY_CLOCK_333_MHZ:
3908                         return 333000;
3909                 default:
3910                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3911                         return 190000;
3912                 }
3913         }
3914 }
3915
3916 static int i865_get_display_clock_speed(struct drm_device *dev)
3917 {
3918         return 266000;
3919 }
3920
3921 static int i855_get_display_clock_speed(struct drm_device *dev)
3922 {
3923         u16 hpllcc = 0;
3924         /* Assume that the hardware is in the high speed state.  This
3925          * should be the default.
3926          */
3927         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3928         case GC_CLOCK_133_200:
3929         case GC_CLOCK_100_200:
3930                 return 200000;
3931         case GC_CLOCK_166_250:
3932                 return 250000;
3933         case GC_CLOCK_100_133:
3934                 return 133000;
3935         }
3936
3937         /* Shouldn't happen */
3938         return 0;
3939 }
3940
3941 static int i830_get_display_clock_speed(struct drm_device *dev)
3942 {
3943         return 133000;
3944 }
3945
3946 struct fdi_m_n {
3947         u32        tu;
3948         u32        gmch_m;
3949         u32        gmch_n;
3950         u32        link_m;
3951         u32        link_n;
3952 };
3953
3954 static void
3955 fdi_reduce_ratio(u32 *num, u32 *den)
3956 {
3957         while (*num > 0xffffff || *den > 0xffffff) {
3958                 *num >>= 1;
3959                 *den >>= 1;
3960         }
3961 }
3962
3963 static void
3964 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3965                      int link_clock, struct fdi_m_n *m_n)
3966 {
3967         m_n->tu = 64; /* default size */
3968
3969         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3970         m_n->gmch_m = bits_per_pixel * pixel_clock;
3971         m_n->gmch_n = link_clock * nlanes * 8;
3972         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3973
3974         m_n->link_m = pixel_clock;
3975         m_n->link_n = link_clock;
3976         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3977 }
3978
3979 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3980 {
3981         if (i915_panel_use_ssc >= 0)
3982                 return i915_panel_use_ssc != 0;
3983         return dev_priv->lvds_use_ssc
3984                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3985 }
3986
3987 /**
3988  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3989  * @crtc: CRTC structure
3990  * @mode: requested mode
3991  *
3992  * A pipe may be connected to one or more outputs.  Based on the depth of the
3993  * attached framebuffer, choose a good color depth to use on the pipe.
3994  *
3995  * If possible, match the pipe depth to the fb depth.  In some cases, this
3996  * isn't ideal, because the connected output supports a lesser or restricted
3997  * set of depths.  Resolve that here:
3998  *    LVDS typically supports only 6bpc, so clamp down in that case
3999  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4000  *    Displays may support a restricted set as well, check EDID and clamp as
4001  *      appropriate.
4002  *    DP may want to dither down to 6bpc to fit larger modes
4003  *
4004  * RETURNS:
4005  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4006  * true if they don't match).
4007  */
4008 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4009                                          struct drm_framebuffer *fb,
4010                                          unsigned int *pipe_bpp,
4011                                          struct drm_display_mode *mode)
4012 {
4013         struct drm_device *dev = crtc->dev;
4014         struct drm_i915_private *dev_priv = dev->dev_private;
4015         struct drm_connector *connector;
4016         struct intel_encoder *intel_encoder;
4017         unsigned int display_bpc = UINT_MAX, bpc;
4018
4019         /* Walk the encoders & connectors on this crtc, get min bpc */
4020         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4021
4022                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4023                         unsigned int lvds_bpc;
4024
4025                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4026                             LVDS_A3_POWER_UP)
4027                                 lvds_bpc = 8;
4028                         else
4029                                 lvds_bpc = 6;
4030
4031                         if (lvds_bpc < display_bpc) {
4032                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4033                                 display_bpc = lvds_bpc;
4034                         }
4035                         continue;
4036                 }
4037
4038                 /* Not one of the known troublemakers, check the EDID */
4039                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4040                                     head) {
4041                         if (connector->encoder != &intel_encoder->base)
4042                                 continue;
4043
4044                         /* Don't use an invalid EDID bpc value */
4045                         if (connector->display_info.bpc &&
4046                             connector->display_info.bpc < display_bpc) {
4047                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4048                                 display_bpc = connector->display_info.bpc;
4049                         }
4050                 }
4051
4052                 /*
4053                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4054                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4055                  */
4056                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4057                         if (display_bpc > 8 && display_bpc < 12) {
4058                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4059                                 display_bpc = 12;
4060                         } else {
4061                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4062                                 display_bpc = 8;
4063                         }
4064                 }
4065         }
4066
4067         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4068                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4069                 display_bpc = 6;
4070         }
4071
4072         /*
4073          * We could just drive the pipe at the highest bpc all the time and
4074          * enable dithering as needed, but that costs bandwidth.  So choose
4075          * the minimum value that expresses the full color range of the fb but
4076          * also stays within the max display bpc discovered above.
4077          */
4078
4079         switch (fb->depth) {
4080         case 8:
4081                 bpc = 8; /* since we go through a colormap */
4082                 break;
4083         case 15:
4084         case 16:
4085                 bpc = 6; /* min is 18bpp */
4086                 break;
4087         case 24:
4088                 bpc = 8;
4089                 break;
4090         case 30:
4091                 bpc = 10;
4092                 break;
4093         case 48:
4094                 bpc = 12;
4095                 break;
4096         default:
4097                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4098                 bpc = min((unsigned int)8, display_bpc);
4099                 break;
4100         }
4101
4102         display_bpc = min(display_bpc, bpc);
4103
4104         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4105                       bpc, display_bpc);
4106
4107         *pipe_bpp = display_bpc * 3;
4108
4109         return display_bpc != bpc;
4110 }
4111
4112 static int vlv_get_refclk(struct drm_crtc *crtc)
4113 {
4114         struct drm_device *dev = crtc->dev;
4115         struct drm_i915_private *dev_priv = dev->dev_private;
4116         int refclk = 27000; /* for DP & HDMI */
4117
4118         return 100000; /* only one validated so far */
4119
4120         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4121                 refclk = 96000;
4122         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4123                 if (intel_panel_use_ssc(dev_priv))
4124                         refclk = 100000;
4125                 else
4126                         refclk = 96000;
4127         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4128                 refclk = 100000;
4129         }
4130
4131         return refclk;
4132 }
4133
4134 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4135 {
4136         struct drm_device *dev = crtc->dev;
4137         struct drm_i915_private *dev_priv = dev->dev_private;
4138         int refclk;
4139
4140         if (IS_VALLEYVIEW(dev)) {
4141                 refclk = vlv_get_refclk(crtc);
4142         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4143             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4144                 refclk = dev_priv->lvds_ssc_freq * 1000;
4145                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4146                               refclk / 1000);
4147         } else if (!IS_GEN2(dev)) {
4148                 refclk = 96000;
4149         } else {
4150                 refclk = 48000;
4151         }
4152
4153         return refclk;
4154 }
4155
4156 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4157                                       intel_clock_t *clock)
4158 {
4159         /* SDVO TV has fixed PLL values depend on its clock range,
4160            this mirrors vbios setting. */
4161         if (adjusted_mode->clock >= 100000
4162             && adjusted_mode->clock < 140500) {
4163                 clock->p1 = 2;
4164                 clock->p2 = 10;
4165                 clock->n = 3;
4166                 clock->m1 = 16;
4167                 clock->m2 = 8;
4168         } else if (adjusted_mode->clock >= 140500
4169                    && adjusted_mode->clock <= 200000) {
4170                 clock->p1 = 1;
4171                 clock->p2 = 10;
4172                 clock->n = 6;
4173                 clock->m1 = 12;
4174                 clock->m2 = 8;
4175         }
4176 }
4177
4178 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4179                                      intel_clock_t *clock,
4180                                      intel_clock_t *reduced_clock)
4181 {
4182         struct drm_device *dev = crtc->dev;
4183         struct drm_i915_private *dev_priv = dev->dev_private;
4184         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4185         int pipe = intel_crtc->pipe;
4186         u32 fp, fp2 = 0;
4187
4188         if (IS_PINEVIEW(dev)) {
4189                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4190                 if (reduced_clock)
4191                         fp2 = (1 << reduced_clock->n) << 16 |
4192                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4193         } else {
4194                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4195                 if (reduced_clock)
4196                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4197                                 reduced_clock->m2;
4198         }
4199
4200         I915_WRITE(FP0(pipe), fp);
4201
4202         intel_crtc->lowfreq_avail = false;
4203         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4204             reduced_clock && i915_powersave) {
4205                 I915_WRITE(FP1(pipe), fp2);
4206                 intel_crtc->lowfreq_avail = true;
4207         } else {
4208                 I915_WRITE(FP1(pipe), fp);
4209         }
4210 }
4211
4212 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4213                               struct drm_display_mode *adjusted_mode)
4214 {
4215         struct drm_device *dev = crtc->dev;
4216         struct drm_i915_private *dev_priv = dev->dev_private;
4217         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4218         int pipe = intel_crtc->pipe;
4219         u32 temp;
4220
4221         temp = I915_READ(LVDS);
4222         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4223         if (pipe == 1) {
4224                 temp |= LVDS_PIPEB_SELECT;
4225         } else {
4226                 temp &= ~LVDS_PIPEB_SELECT;
4227         }
4228         /* set the corresponsding LVDS_BORDER bit */
4229         temp |= dev_priv->lvds_border_bits;
4230         /* Set the B0-B3 data pairs corresponding to whether we're going to
4231          * set the DPLLs for dual-channel mode or not.
4232          */
4233         if (clock->p2 == 7)
4234                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4235         else
4236                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4237
4238         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4239          * appropriately here, but we need to look more thoroughly into how
4240          * panels behave in the two modes.
4241          */
4242         /* set the dithering flag on LVDS as needed */
4243         if (INTEL_INFO(dev)->gen >= 4) {
4244                 if (dev_priv->lvds_dither)
4245                         temp |= LVDS_ENABLE_DITHER;
4246                 else
4247                         temp &= ~LVDS_ENABLE_DITHER;
4248         }
4249         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4250         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4251                 temp |= LVDS_HSYNC_POLARITY;
4252         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4253                 temp |= LVDS_VSYNC_POLARITY;
4254         I915_WRITE(LVDS, temp);
4255 }
4256
4257 static void vlv_update_pll(struct drm_crtc *crtc,
4258                            struct drm_display_mode *mode,
4259                            struct drm_display_mode *adjusted_mode,
4260                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4261                            int num_connectors)
4262 {
4263         struct drm_device *dev = crtc->dev;
4264         struct drm_i915_private *dev_priv = dev->dev_private;
4265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4266         int pipe = intel_crtc->pipe;
4267         u32 dpll, mdiv, pdiv;
4268         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4269         bool is_sdvo;
4270         u32 temp;
4271
4272         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4273                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4274
4275         dpll = DPLL_VGA_MODE_DIS;
4276         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4277         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4278         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4279
4280         I915_WRITE(DPLL(pipe), dpll);
4281         POSTING_READ(DPLL(pipe));
4282
4283         bestn = clock->n;
4284         bestm1 = clock->m1;
4285         bestm2 = clock->m2;
4286         bestp1 = clock->p1;
4287         bestp2 = clock->p2;
4288
4289         /*
4290          * In Valleyview PLL and program lane counter registers are exposed
4291          * through DPIO interface
4292          */
4293         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4294         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4295         mdiv |= ((bestn << DPIO_N_SHIFT));
4296         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4297         mdiv |= (1 << DPIO_K_SHIFT);
4298         mdiv |= DPIO_ENABLE_CALIBRATION;
4299         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4300
4301         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4302
4303         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4304                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4305                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4306                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4307         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4308
4309         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4310
4311         dpll |= DPLL_VCO_ENABLE;
4312         I915_WRITE(DPLL(pipe), dpll);
4313         POSTING_READ(DPLL(pipe));
4314         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4315                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4316
4317         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4318
4319         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4320                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4321
4322         I915_WRITE(DPLL(pipe), dpll);
4323
4324         /* Wait for the clocks to stabilize. */
4325         POSTING_READ(DPLL(pipe));
4326         udelay(150);
4327
4328         temp = 0;
4329         if (is_sdvo) {
4330                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4331                 if (temp > 1)
4332                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4333                 else
4334                         temp = 0;
4335         }
4336         I915_WRITE(DPLL_MD(pipe), temp);
4337         POSTING_READ(DPLL_MD(pipe));
4338
4339         /* Now program lane control registers */
4340         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4341                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4342         {
4343                 temp = 0x1000C4;
4344                 if(pipe == 1)
4345                         temp |= (1 << 21);
4346                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4347         }
4348         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4349         {
4350                 temp = 0x1000C4;
4351                 if(pipe == 1)
4352                         temp |= (1 << 21);
4353                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4354         }
4355 }
4356
4357 static void i9xx_update_pll(struct drm_crtc *crtc,
4358                             struct drm_display_mode *mode,
4359                             struct drm_display_mode *adjusted_mode,
4360                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4361                             int num_connectors)
4362 {
4363         struct drm_device *dev = crtc->dev;
4364         struct drm_i915_private *dev_priv = dev->dev_private;
4365         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4366         int pipe = intel_crtc->pipe;
4367         u32 dpll;
4368         bool is_sdvo;
4369
4370         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4371
4372         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4373                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4374
4375         dpll = DPLL_VGA_MODE_DIS;
4376
4377         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4378                 dpll |= DPLLB_MODE_LVDS;
4379         else
4380                 dpll |= DPLLB_MODE_DAC_SERIAL;
4381         if (is_sdvo) {
4382                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4383                 if (pixel_multiplier > 1) {
4384                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4385                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4386                 }
4387                 dpll |= DPLL_DVO_HIGH_SPEED;
4388         }
4389         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4390                 dpll |= DPLL_DVO_HIGH_SPEED;
4391
4392         /* compute bitmask from p1 value */
4393         if (IS_PINEVIEW(dev))
4394                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4395         else {
4396                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4397                 if (IS_G4X(dev) && reduced_clock)
4398                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4399         }
4400         switch (clock->p2) {
4401         case 5:
4402                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4403                 break;
4404         case 7:
4405                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4406                 break;
4407         case 10:
4408                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4409                 break;
4410         case 14:
4411                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4412                 break;
4413         }
4414         if (INTEL_INFO(dev)->gen >= 4)
4415                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4416
4417         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4418                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4419         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4420                 /* XXX: just matching BIOS for now */
4421                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4422                 dpll |= 3;
4423         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4424                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4425                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4426         else
4427                 dpll |= PLL_REF_INPUT_DREFCLK;
4428
4429         dpll |= DPLL_VCO_ENABLE;
4430         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4431         POSTING_READ(DPLL(pipe));
4432         udelay(150);
4433
4434         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4435          * This is an exception to the general rule that mode_set doesn't turn
4436          * things on.
4437          */
4438         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4439                 intel_update_lvds(crtc, clock, adjusted_mode);
4440
4441         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4442                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4443
4444         I915_WRITE(DPLL(pipe), dpll);
4445
4446         /* Wait for the clocks to stabilize. */
4447         POSTING_READ(DPLL(pipe));
4448         udelay(150);
4449
4450         if (INTEL_INFO(dev)->gen >= 4) {
4451                 u32 temp = 0;
4452                 if (is_sdvo) {
4453                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4454                         if (temp > 1)
4455                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4456                         else
4457                                 temp = 0;
4458                 }
4459                 I915_WRITE(DPLL_MD(pipe), temp);
4460         } else {
4461                 /* The pixel multiplier can only be updated once the
4462                  * DPLL is enabled and the clocks are stable.
4463                  *
4464                  * So write it again.
4465                  */
4466                 I915_WRITE(DPLL(pipe), dpll);
4467         }
4468 }
4469
4470 static void i8xx_update_pll(struct drm_crtc *crtc,
4471                             struct drm_display_mode *adjusted_mode,
4472                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4473                             int num_connectors)
4474 {
4475         struct drm_device *dev = crtc->dev;
4476         struct drm_i915_private *dev_priv = dev->dev_private;
4477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4478         int pipe = intel_crtc->pipe;
4479         u32 dpll;
4480
4481         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4482
4483         dpll = DPLL_VGA_MODE_DIS;
4484
4485         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4486                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4487         } else {
4488                 if (clock->p1 == 2)
4489                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4490                 else
4491                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4492                 if (clock->p2 == 4)
4493                         dpll |= PLL_P2_DIVIDE_BY_4;
4494         }
4495
4496         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4497                 /* XXX: just matching BIOS for now */
4498                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4499                 dpll |= 3;
4500         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4501                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4502                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4503         else
4504                 dpll |= PLL_REF_INPUT_DREFCLK;
4505
4506         dpll |= DPLL_VCO_ENABLE;
4507         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4508         POSTING_READ(DPLL(pipe));
4509         udelay(150);
4510
4511         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4512          * This is an exception to the general rule that mode_set doesn't turn
4513          * things on.
4514          */
4515         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4516                 intel_update_lvds(crtc, clock, adjusted_mode);
4517
4518         I915_WRITE(DPLL(pipe), dpll);
4519
4520         /* Wait for the clocks to stabilize. */
4521         POSTING_READ(DPLL(pipe));
4522         udelay(150);
4523
4524         /* The pixel multiplier can only be updated once the
4525          * DPLL is enabled and the clocks are stable.
4526          *
4527          * So write it again.
4528          */
4529         I915_WRITE(DPLL(pipe), dpll);
4530 }
4531
4532 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4533                                    struct drm_display_mode *mode,
4534                                    struct drm_display_mode *adjusted_mode)
4535 {
4536         struct drm_device *dev = intel_crtc->base.dev;
4537         struct drm_i915_private *dev_priv = dev->dev_private;
4538         enum pipe pipe = intel_crtc->pipe;
4539         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4540         uint32_t vsyncshift;
4541
4542         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4543                 /* the chip adds 2 halflines automatically */
4544                 adjusted_mode->crtc_vtotal -= 1;
4545                 adjusted_mode->crtc_vblank_end -= 1;
4546                 vsyncshift = adjusted_mode->crtc_hsync_start
4547                              - adjusted_mode->crtc_htotal / 2;
4548         } else {
4549                 vsyncshift = 0;
4550         }
4551
4552         if (INTEL_INFO(dev)->gen > 3)
4553                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4554
4555         I915_WRITE(HTOTAL(cpu_transcoder),
4556                    (adjusted_mode->crtc_hdisplay - 1) |
4557                    ((adjusted_mode->crtc_htotal - 1) << 16));
4558         I915_WRITE(HBLANK(cpu_transcoder),
4559                    (adjusted_mode->crtc_hblank_start - 1) |
4560                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4561         I915_WRITE(HSYNC(cpu_transcoder),
4562                    (adjusted_mode->crtc_hsync_start - 1) |
4563                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4564
4565         I915_WRITE(VTOTAL(cpu_transcoder),
4566                    (adjusted_mode->crtc_vdisplay - 1) |
4567                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4568         I915_WRITE(VBLANK(cpu_transcoder),
4569                    (adjusted_mode->crtc_vblank_start - 1) |
4570                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4571         I915_WRITE(VSYNC(cpu_transcoder),
4572                    (adjusted_mode->crtc_vsync_start - 1) |
4573                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4574
4575         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4576          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4577          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4578          * bits. */
4579         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4580             (pipe == PIPE_B || pipe == PIPE_C))
4581                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4582
4583         /* pipesrc controls the size that is scaled from, which should
4584          * always be the user's requested size.
4585          */
4586         I915_WRITE(PIPESRC(pipe),
4587                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4588 }
4589
4590 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4591                               struct drm_display_mode *mode,
4592                               struct drm_display_mode *adjusted_mode,
4593                               int x, int y,
4594                               struct drm_framebuffer *fb)
4595 {
4596         struct drm_device *dev = crtc->dev;
4597         struct drm_i915_private *dev_priv = dev->dev_private;
4598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4599         int pipe = intel_crtc->pipe;
4600         int plane = intel_crtc->plane;
4601         int refclk, num_connectors = 0;
4602         intel_clock_t clock, reduced_clock;
4603         u32 dspcntr, pipeconf;
4604         bool ok, has_reduced_clock = false, is_sdvo = false;
4605         bool is_lvds = false, is_tv = false, is_dp = false;
4606         struct intel_encoder *encoder;
4607         const intel_limit_t *limit;
4608         int ret;
4609
4610         for_each_encoder_on_crtc(dev, crtc, encoder) {
4611                 switch (encoder->type) {
4612                 case INTEL_OUTPUT_LVDS:
4613                         is_lvds = true;
4614                         break;
4615                 case INTEL_OUTPUT_SDVO:
4616                 case INTEL_OUTPUT_HDMI:
4617                         is_sdvo = true;
4618                         if (encoder->needs_tv_clock)
4619                                 is_tv = true;
4620                         break;
4621                 case INTEL_OUTPUT_TVOUT:
4622                         is_tv = true;
4623                         break;
4624                 case INTEL_OUTPUT_DISPLAYPORT:
4625                         is_dp = true;
4626                         break;
4627                 }
4628
4629                 num_connectors++;
4630         }
4631
4632         refclk = i9xx_get_refclk(crtc, num_connectors);
4633
4634         /*
4635          * Returns a set of divisors for the desired target clock with the given
4636          * refclk, or FALSE.  The returned values represent the clock equation:
4637          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4638          */
4639         limit = intel_limit(crtc, refclk);
4640         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4641                              &clock);
4642         if (!ok) {
4643                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4644                 return -EINVAL;
4645         }
4646
4647         /* Ensure that the cursor is valid for the new mode before changing... */
4648         intel_crtc_update_cursor(crtc, true);
4649
4650         if (is_lvds && dev_priv->lvds_downclock_avail) {
4651                 /*
4652                  * Ensure we match the reduced clock's P to the target clock.
4653                  * If the clocks don't match, we can't switch the display clock
4654                  * by using the FP0/FP1. In such case we will disable the LVDS
4655                  * downclock feature.
4656                 */
4657                 has_reduced_clock = limit->find_pll(limit, crtc,
4658                                                     dev_priv->lvds_downclock,
4659                                                     refclk,
4660                                                     &clock,
4661                                                     &reduced_clock);
4662         }
4663
4664         if (is_sdvo && is_tv)
4665                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4666
4667         if (IS_GEN2(dev))
4668                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4669                                 has_reduced_clock ? &reduced_clock : NULL,
4670                                 num_connectors);
4671         else if (IS_VALLEYVIEW(dev))
4672                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4673                                 has_reduced_clock ? &reduced_clock : NULL,
4674                                 num_connectors);
4675         else
4676                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4677                                 has_reduced_clock ? &reduced_clock : NULL,
4678                                 num_connectors);
4679
4680         /* setup pipeconf */
4681         pipeconf = I915_READ(PIPECONF(pipe));
4682
4683         /* Set up the display plane register */
4684         dspcntr = DISPPLANE_GAMMA_ENABLE;
4685
4686         if (pipe == 0)
4687                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4688         else
4689                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4690
4691         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4692                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4693                  * core speed.
4694                  *
4695                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4696                  * pipe == 0 check?
4697                  */
4698                 if (mode->clock >
4699                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4700                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4701                 else
4702                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4703         }
4704
4705         /* default to 8bpc */
4706         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4707         if (is_dp) {
4708                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4709                         pipeconf |= PIPECONF_BPP_6 |
4710                                     PIPECONF_DITHER_EN |
4711                                     PIPECONF_DITHER_TYPE_SP;
4712                 }
4713         }
4714
4715         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4716                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4717                         pipeconf |= PIPECONF_BPP_6 |
4718                                         PIPECONF_ENABLE |
4719                                         I965_PIPECONF_ACTIVE;
4720                 }
4721         }
4722
4723         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4724         drm_mode_debug_printmodeline(mode);
4725
4726         if (HAS_PIPE_CXSR(dev)) {
4727                 if (intel_crtc->lowfreq_avail) {
4728                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4729                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4730                 } else {
4731                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4732                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4733                 }
4734         }
4735
4736         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4737         if (!IS_GEN2(dev) &&
4738             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4739                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4740         else
4741                 pipeconf |= PIPECONF_PROGRESSIVE;
4742
4743         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4744
4745         /* pipesrc and dspsize control the size that is scaled from,
4746          * which should always be the user's requested size.
4747          */
4748         I915_WRITE(DSPSIZE(plane),
4749                    ((mode->vdisplay - 1) << 16) |
4750                    (mode->hdisplay - 1));
4751         I915_WRITE(DSPPOS(plane), 0);
4752
4753         I915_WRITE(PIPECONF(pipe), pipeconf);
4754         POSTING_READ(PIPECONF(pipe));
4755         intel_enable_pipe(dev_priv, pipe, false);
4756
4757         intel_wait_for_vblank(dev, pipe);
4758
4759         I915_WRITE(DSPCNTR(plane), dspcntr);
4760         POSTING_READ(DSPCNTR(plane));
4761
4762         ret = intel_pipe_set_base(crtc, x, y, fb);
4763
4764         intel_update_watermarks(dev);
4765
4766         return ret;
4767 }
4768
4769 /*
4770  * Initialize reference clocks when the driver loads
4771  */
4772 void ironlake_init_pch_refclk(struct drm_device *dev)
4773 {
4774         struct drm_i915_private *dev_priv = dev->dev_private;
4775         struct drm_mode_config *mode_config = &dev->mode_config;
4776         struct intel_encoder *encoder;
4777         u32 temp;
4778         bool has_lvds = false;
4779         bool has_cpu_edp = false;
4780         bool has_pch_edp = false;
4781         bool has_panel = false;
4782         bool has_ck505 = false;
4783         bool can_ssc = false;
4784
4785         /* We need to take the global config into account */
4786         list_for_each_entry(encoder, &mode_config->encoder_list,
4787                             base.head) {
4788                 switch (encoder->type) {
4789                 case INTEL_OUTPUT_LVDS:
4790                         has_panel = true;
4791                         has_lvds = true;
4792                         break;
4793                 case INTEL_OUTPUT_EDP:
4794                         has_panel = true;
4795                         if (intel_encoder_is_pch_edp(&encoder->base))
4796                                 has_pch_edp = true;
4797                         else
4798                                 has_cpu_edp = true;
4799                         break;
4800                 }
4801         }
4802
4803         if (HAS_PCH_IBX(dev)) {
4804                 has_ck505 = dev_priv->display_clock_mode;
4805                 can_ssc = has_ck505;
4806         } else {
4807                 has_ck505 = false;
4808                 can_ssc = true;
4809         }
4810
4811         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4812                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4813                       has_ck505);
4814
4815         /* Ironlake: try to setup display ref clock before DPLL
4816          * enabling. This is only under driver's control after
4817          * PCH B stepping, previous chipset stepping should be
4818          * ignoring this setting.
4819          */
4820         temp = I915_READ(PCH_DREF_CONTROL);
4821         /* Always enable nonspread source */
4822         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4823
4824         if (has_ck505)
4825                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4826         else
4827                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4828
4829         if (has_panel) {
4830                 temp &= ~DREF_SSC_SOURCE_MASK;
4831                 temp |= DREF_SSC_SOURCE_ENABLE;
4832
4833                 /* SSC must be turned on before enabling the CPU output  */
4834                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4835                         DRM_DEBUG_KMS("Using SSC on panel\n");
4836                         temp |= DREF_SSC1_ENABLE;
4837                 } else
4838                         temp &= ~DREF_SSC1_ENABLE;
4839
4840                 /* Get SSC going before enabling the outputs */
4841                 I915_WRITE(PCH_DREF_CONTROL, temp);
4842                 POSTING_READ(PCH_DREF_CONTROL);
4843                 udelay(200);
4844
4845                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4846
4847                 /* Enable CPU source on CPU attached eDP */
4848                 if (has_cpu_edp) {
4849                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4850                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4851                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4852                         }
4853                         else
4854                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4855                 } else
4856                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4857
4858                 I915_WRITE(PCH_DREF_CONTROL, temp);
4859                 POSTING_READ(PCH_DREF_CONTROL);
4860                 udelay(200);
4861         } else {
4862                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4863
4864                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4865
4866                 /* Turn off CPU output */
4867                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4868
4869                 I915_WRITE(PCH_DREF_CONTROL, temp);
4870                 POSTING_READ(PCH_DREF_CONTROL);
4871                 udelay(200);
4872
4873                 /* Turn off the SSC source */
4874                 temp &= ~DREF_SSC_SOURCE_MASK;
4875                 temp |= DREF_SSC_SOURCE_DISABLE;
4876
4877                 /* Turn off SSC1 */
4878                 temp &= ~ DREF_SSC1_ENABLE;
4879
4880                 I915_WRITE(PCH_DREF_CONTROL, temp);
4881                 POSTING_READ(PCH_DREF_CONTROL);
4882                 udelay(200);
4883         }
4884 }
4885
4886 static int ironlake_get_refclk(struct drm_crtc *crtc)
4887 {
4888         struct drm_device *dev = crtc->dev;
4889         struct drm_i915_private *dev_priv = dev->dev_private;
4890         struct intel_encoder *encoder;
4891         struct intel_encoder *edp_encoder = NULL;
4892         int num_connectors = 0;
4893         bool is_lvds = false;
4894
4895         for_each_encoder_on_crtc(dev, crtc, encoder) {
4896                 switch (encoder->type) {
4897                 case INTEL_OUTPUT_LVDS:
4898                         is_lvds = true;
4899                         break;
4900                 case INTEL_OUTPUT_EDP:
4901                         edp_encoder = encoder;
4902                         break;
4903                 }
4904                 num_connectors++;
4905         }
4906
4907         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4908                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4909                               dev_priv->lvds_ssc_freq);
4910                 return dev_priv->lvds_ssc_freq * 1000;
4911         }
4912
4913         return 120000;
4914 }
4915
4916 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4917                                   struct drm_display_mode *adjusted_mode,
4918                                   bool dither)
4919 {
4920         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4922         int pipe = intel_crtc->pipe;
4923         uint32_t val;
4924
4925         val = I915_READ(PIPECONF(pipe));
4926
4927         val &= ~PIPE_BPC_MASK;
4928         switch (intel_crtc->bpp) {
4929         case 18:
4930                 val |= PIPE_6BPC;
4931                 break;
4932         case 24:
4933                 val |= PIPE_8BPC;
4934                 break;
4935         case 30:
4936                 val |= PIPE_10BPC;
4937                 break;
4938         case 36:
4939                 val |= PIPE_12BPC;
4940                 break;
4941         default:
4942                 /* Case prevented by intel_choose_pipe_bpp_dither. */
4943                 BUG();
4944         }
4945
4946         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4947         if (dither)
4948                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4949
4950         val &= ~PIPECONF_INTERLACE_MASK;
4951         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4952                 val |= PIPECONF_INTERLACED_ILK;
4953         else
4954                 val |= PIPECONF_PROGRESSIVE;
4955
4956         I915_WRITE(PIPECONF(pipe), val);
4957         POSTING_READ(PIPECONF(pipe));
4958 }
4959
4960 static void haswell_set_pipeconf(struct drm_crtc *crtc,
4961                                  struct drm_display_mode *adjusted_mode,
4962                                  bool dither)
4963 {
4964         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4966         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4967         uint32_t val;
4968
4969         val = I915_READ(PIPECONF(cpu_transcoder));
4970
4971         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4972         if (dither)
4973                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4974
4975         val &= ~PIPECONF_INTERLACE_MASK_HSW;
4976         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4977                 val |= PIPECONF_INTERLACED_ILK;
4978         else
4979                 val |= PIPECONF_PROGRESSIVE;
4980
4981         I915_WRITE(PIPECONF(cpu_transcoder), val);
4982         POSTING_READ(PIPECONF(cpu_transcoder));
4983 }
4984
4985 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4986                                     struct drm_display_mode *adjusted_mode,
4987                                     intel_clock_t *clock,
4988                                     bool *has_reduced_clock,
4989                                     intel_clock_t *reduced_clock)
4990 {
4991         struct drm_device *dev = crtc->dev;
4992         struct drm_i915_private *dev_priv = dev->dev_private;
4993         struct intel_encoder *intel_encoder;
4994         int refclk;
4995         const intel_limit_t *limit;
4996         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4997
4998         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4999                 switch (intel_encoder->type) {
5000                 case INTEL_OUTPUT_LVDS:
5001                         is_lvds = true;
5002                         break;
5003                 case INTEL_OUTPUT_SDVO:
5004                 case INTEL_OUTPUT_HDMI:
5005                         is_sdvo = true;
5006                         if (intel_encoder->needs_tv_clock)
5007                                 is_tv = true;
5008                         break;
5009                 case INTEL_OUTPUT_TVOUT:
5010                         is_tv = true;
5011                         break;
5012                 }
5013         }
5014
5015         refclk = ironlake_get_refclk(crtc);
5016
5017         /*
5018          * Returns a set of divisors for the desired target clock with the given
5019          * refclk, or FALSE.  The returned values represent the clock equation:
5020          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5021          */
5022         limit = intel_limit(crtc, refclk);
5023         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5024                               clock);
5025         if (!ret)
5026                 return false;
5027
5028         if (is_lvds && dev_priv->lvds_downclock_avail) {
5029                 /*
5030                  * Ensure we match the reduced clock's P to the target clock.
5031                  * If the clocks don't match, we can't switch the display clock
5032                  * by using the FP0/FP1. In such case we will disable the LVDS
5033                  * downclock feature.
5034                 */
5035                 *has_reduced_clock = limit->find_pll(limit, crtc,
5036                                                      dev_priv->lvds_downclock,
5037                                                      refclk,
5038                                                      clock,
5039                                                      reduced_clock);
5040         }
5041
5042         if (is_sdvo && is_tv)
5043                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5044
5045         return true;
5046 }
5047
5048 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5049 {
5050         struct drm_i915_private *dev_priv = dev->dev_private;
5051         uint32_t temp;
5052
5053         temp = I915_READ(SOUTH_CHICKEN1);
5054         if (temp & FDI_BC_BIFURCATION_SELECT)
5055                 return;
5056
5057         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5058         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5059
5060         temp |= FDI_BC_BIFURCATION_SELECT;
5061         DRM_DEBUG_KMS("enabling fdi C rx\n");
5062         I915_WRITE(SOUTH_CHICKEN1, temp);
5063         POSTING_READ(SOUTH_CHICKEN1);
5064 }
5065
5066 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5067 {
5068         struct drm_device *dev = intel_crtc->base.dev;
5069         struct drm_i915_private *dev_priv = dev->dev_private;
5070         struct intel_crtc *pipe_B_crtc =
5071                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5072
5073         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5074                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5075         if (intel_crtc->fdi_lanes > 4) {
5076                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5077                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5078                 /* Clamp lanes to avoid programming the hw with bogus values. */
5079                 intel_crtc->fdi_lanes = 4;
5080
5081                 return false;
5082         }
5083
5084         if (dev_priv->num_pipe == 2)
5085                 return true;
5086
5087         switch (intel_crtc->pipe) {
5088         case PIPE_A:
5089                 return true;
5090         case PIPE_B:
5091                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5092                     intel_crtc->fdi_lanes > 2) {
5093                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5094                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5095                         /* Clamp lanes to avoid programming the hw with bogus values. */
5096                         intel_crtc->fdi_lanes = 2;
5097
5098                         return false;
5099                 }
5100
5101                 if (intel_crtc->fdi_lanes > 2)
5102                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5103                 else
5104                         cpt_enable_fdi_bc_bifurcation(dev);
5105
5106                 return true;
5107         case PIPE_C:
5108                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5109                         if (intel_crtc->fdi_lanes > 2) {
5110                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5111                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5112                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5113                                 intel_crtc->fdi_lanes = 2;
5114
5115                                 return false;
5116                         }
5117                 } else {
5118                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5119                         return false;
5120                 }
5121
5122                 cpt_enable_fdi_bc_bifurcation(dev);
5123
5124                 return true;
5125         default:
5126                 BUG();
5127         }
5128 }
5129
5130 static void ironlake_set_m_n(struct drm_crtc *crtc,
5131                              struct drm_display_mode *mode,
5132                              struct drm_display_mode *adjusted_mode)
5133 {
5134         struct drm_device *dev = crtc->dev;
5135         struct drm_i915_private *dev_priv = dev->dev_private;
5136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5137         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5138         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5139         struct fdi_m_n m_n = {0};
5140         int target_clock, pixel_multiplier, lane, link_bw;
5141         bool is_dp = false, is_cpu_edp = false;
5142
5143         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5144                 switch (intel_encoder->type) {
5145                 case INTEL_OUTPUT_DISPLAYPORT:
5146                         is_dp = true;
5147                         break;
5148                 case INTEL_OUTPUT_EDP:
5149                         is_dp = true;
5150                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5151                                 is_cpu_edp = true;
5152                         edp_encoder = intel_encoder;
5153                         break;
5154                 }
5155         }
5156
5157         /* FDI link */
5158         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5159         lane = 0;
5160         /* CPU eDP doesn't require FDI link, so just set DP M/N
5161            according to current link config */
5162         if (is_cpu_edp) {
5163                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5164         } else {
5165                 /* FDI is a binary signal running at ~2.7GHz, encoding
5166                  * each output octet as 10 bits. The actual frequency
5167                  * is stored as a divider into a 100MHz clock, and the
5168                  * mode pixel clock is stored in units of 1KHz.
5169                  * Hence the bw of each lane in terms of the mode signal
5170                  * is:
5171                  */
5172                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5173         }
5174
5175         /* [e]DP over FDI requires target mode clock instead of link clock. */
5176         if (edp_encoder)
5177                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5178         else if (is_dp)
5179                 target_clock = mode->clock;
5180         else
5181                 target_clock = adjusted_mode->clock;
5182
5183         if (!lane) {
5184                 /*
5185                  * Account for spread spectrum to avoid
5186                  * oversubscribing the link. Max center spread
5187                  * is 2.5%; use 5% for safety's sake.
5188                  */
5189                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5190                 lane = bps / (link_bw * 8) + 1;
5191         }
5192
5193         intel_crtc->fdi_lanes = lane;
5194
5195         if (pixel_multiplier > 1)
5196                 link_bw *= pixel_multiplier;
5197         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5198                              &m_n);
5199
5200         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5201         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5202         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5203         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5204 }
5205
5206 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5207                                       struct drm_display_mode *adjusted_mode,
5208                                       intel_clock_t *clock, u32 fp)
5209 {
5210         struct drm_crtc *crtc = &intel_crtc->base;
5211         struct drm_device *dev = crtc->dev;
5212         struct drm_i915_private *dev_priv = dev->dev_private;
5213         struct intel_encoder *intel_encoder;
5214         uint32_t dpll;
5215         int factor, pixel_multiplier, num_connectors = 0;
5216         bool is_lvds = false, is_sdvo = false, is_tv = false;
5217         bool is_dp = false, is_cpu_edp = false;
5218
5219         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5220                 switch (intel_encoder->type) {
5221                 case INTEL_OUTPUT_LVDS:
5222                         is_lvds = true;
5223                         break;
5224                 case INTEL_OUTPUT_SDVO:
5225                 case INTEL_OUTPUT_HDMI:
5226                         is_sdvo = true;
5227                         if (intel_encoder->needs_tv_clock)
5228                                 is_tv = true;
5229                         break;
5230                 case INTEL_OUTPUT_TVOUT:
5231                         is_tv = true;
5232                         break;
5233                 case INTEL_OUTPUT_DISPLAYPORT:
5234                         is_dp = true;
5235                         break;
5236                 case INTEL_OUTPUT_EDP:
5237                         is_dp = true;
5238                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5239                                 is_cpu_edp = true;
5240                         break;
5241                 }
5242
5243                 num_connectors++;
5244         }
5245
5246         /* Enable autotuning of the PLL clock (if permissible) */
5247         factor = 21;
5248         if (is_lvds) {
5249                 if ((intel_panel_use_ssc(dev_priv) &&
5250                      dev_priv->lvds_ssc_freq == 100) ||
5251                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5252                         factor = 25;
5253         } else if (is_sdvo && is_tv)
5254                 factor = 20;
5255
5256         if (clock->m < factor * clock->n)
5257                 fp |= FP_CB_TUNE;
5258
5259         dpll = 0;
5260
5261         if (is_lvds)
5262                 dpll |= DPLLB_MODE_LVDS;
5263         else
5264                 dpll |= DPLLB_MODE_DAC_SERIAL;
5265         if (is_sdvo) {
5266                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5267                 if (pixel_multiplier > 1) {
5268                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5269                 }
5270                 dpll |= DPLL_DVO_HIGH_SPEED;
5271         }
5272         if (is_dp && !is_cpu_edp)
5273                 dpll |= DPLL_DVO_HIGH_SPEED;
5274
5275         /* compute bitmask from p1 value */
5276         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5277         /* also FPA1 */
5278         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5279
5280         switch (clock->p2) {
5281         case 5:
5282                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5283                 break;
5284         case 7:
5285                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5286                 break;
5287         case 10:
5288                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5289                 break;
5290         case 14:
5291                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5292                 break;
5293         }
5294
5295         if (is_sdvo && is_tv)
5296                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5297         else if (is_tv)
5298                 /* XXX: just matching BIOS for now */
5299                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5300                 dpll |= 3;
5301         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5302                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5303         else
5304                 dpll |= PLL_REF_INPUT_DREFCLK;
5305
5306         return dpll;
5307 }
5308
5309 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5310                                   struct drm_display_mode *mode,
5311                                   struct drm_display_mode *adjusted_mode,
5312                                   int x, int y,
5313                                   struct drm_framebuffer *fb)
5314 {
5315         struct drm_device *dev = crtc->dev;
5316         struct drm_i915_private *dev_priv = dev->dev_private;
5317         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5318         int pipe = intel_crtc->pipe;
5319         int plane = intel_crtc->plane;
5320         int num_connectors = 0;
5321         intel_clock_t clock, reduced_clock;
5322         u32 dpll, fp = 0, fp2 = 0;
5323         bool ok, has_reduced_clock = false;
5324         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5325         struct intel_encoder *encoder;
5326         u32 temp;
5327         int ret;
5328         bool dither, fdi_config_ok;
5329
5330         for_each_encoder_on_crtc(dev, crtc, encoder) {
5331                 switch (encoder->type) {
5332                 case INTEL_OUTPUT_LVDS:
5333                         is_lvds = true;
5334                         break;
5335                 case INTEL_OUTPUT_DISPLAYPORT:
5336                         is_dp = true;
5337                         break;
5338                 case INTEL_OUTPUT_EDP:
5339                         is_dp = true;
5340                         if (!intel_encoder_is_pch_edp(&encoder->base))
5341                                 is_cpu_edp = true;
5342                         break;
5343                 }
5344
5345                 num_connectors++;
5346         }
5347
5348         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5349              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5350
5351         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5352                                      &has_reduced_clock, &reduced_clock);
5353         if (!ok) {
5354                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5355                 return -EINVAL;
5356         }
5357
5358         /* Ensure that the cursor is valid for the new mode before changing... */
5359         intel_crtc_update_cursor(crtc, true);
5360
5361         /* determine panel color depth */
5362         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5363                                               adjusted_mode);
5364         if (is_lvds && dev_priv->lvds_dither)
5365                 dither = true;
5366
5367         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5368         if (has_reduced_clock)
5369                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5370                         reduced_clock.m2;
5371
5372         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5373
5374         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5375         drm_mode_debug_printmodeline(mode);
5376
5377         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5378         if (!is_cpu_edp) {
5379                 struct intel_pch_pll *pll;
5380
5381                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5382                 if (pll == NULL) {
5383                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5384                                          pipe);
5385                         return -EINVAL;
5386                 }
5387         } else
5388                 intel_put_pch_pll(intel_crtc);
5389
5390         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5391          * This is an exception to the general rule that mode_set doesn't turn
5392          * things on.
5393          */
5394         if (is_lvds) {
5395                 temp = I915_READ(PCH_LVDS);
5396                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5397                 if (HAS_PCH_CPT(dev)) {
5398                         temp &= ~PORT_TRANS_SEL_MASK;
5399                         temp |= PORT_TRANS_SEL_CPT(pipe);
5400                 } else {
5401                         if (pipe == 1)
5402                                 temp |= LVDS_PIPEB_SELECT;
5403                         else
5404                                 temp &= ~LVDS_PIPEB_SELECT;
5405                 }
5406
5407                 /* set the corresponsding LVDS_BORDER bit */
5408                 temp |= dev_priv->lvds_border_bits;
5409                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5410                  * set the DPLLs for dual-channel mode or not.
5411                  */
5412                 if (clock.p2 == 7)
5413                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5414                 else
5415                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5416
5417                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5418                  * appropriately here, but we need to look more thoroughly into how
5419                  * panels behave in the two modes.
5420                  */
5421                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5422                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5423                         temp |= LVDS_HSYNC_POLARITY;
5424                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5425                         temp |= LVDS_VSYNC_POLARITY;
5426                 I915_WRITE(PCH_LVDS, temp);
5427         }
5428
5429         if (is_dp && !is_cpu_edp) {
5430                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5431         } else {
5432                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5433                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5434                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5435                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5436                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5437         }
5438
5439         if (intel_crtc->pch_pll) {
5440                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5441
5442                 /* Wait for the clocks to stabilize. */
5443                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5444                 udelay(150);
5445
5446                 /* The pixel multiplier can only be updated once the
5447                  * DPLL is enabled and the clocks are stable.
5448                  *
5449                  * So write it again.
5450                  */
5451                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5452         }
5453
5454         intel_crtc->lowfreq_avail = false;
5455         if (intel_crtc->pch_pll) {
5456                 if (is_lvds && has_reduced_clock && i915_powersave) {
5457                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5458                         intel_crtc->lowfreq_avail = true;
5459                 } else {
5460                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5461                 }
5462         }
5463
5464         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5465
5466         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5467          * ironlake_check_fdi_lanes. */
5468         ironlake_set_m_n(crtc, mode, adjusted_mode);
5469
5470         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5471
5472         if (is_cpu_edp)
5473                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5474
5475         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5476
5477         intel_wait_for_vblank(dev, pipe);
5478
5479         /* Set up the display plane register */
5480         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5481         POSTING_READ(DSPCNTR(plane));
5482
5483         ret = intel_pipe_set_base(crtc, x, y, fb);
5484
5485         intel_update_watermarks(dev);
5486
5487         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5488
5489         return fdi_config_ok ? ret : -EINVAL;
5490 }
5491
5492 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5493                                  struct drm_display_mode *mode,
5494                                  struct drm_display_mode *adjusted_mode,
5495                                  int x, int y,
5496                                  struct drm_framebuffer *fb)
5497 {
5498         struct drm_device *dev = crtc->dev;
5499         struct drm_i915_private *dev_priv = dev->dev_private;
5500         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5501         int pipe = intel_crtc->pipe;
5502         int plane = intel_crtc->plane;
5503         int num_connectors = 0;
5504         intel_clock_t clock, reduced_clock;
5505         u32 dpll = 0, fp = 0, fp2 = 0;
5506         bool ok, has_reduced_clock = false;
5507         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5508         struct intel_encoder *encoder;
5509         u32 temp;
5510         int ret;
5511         bool dither;
5512
5513         for_each_encoder_on_crtc(dev, crtc, encoder) {
5514                 switch (encoder->type) {
5515                 case INTEL_OUTPUT_LVDS:
5516                         is_lvds = true;
5517                         break;
5518                 case INTEL_OUTPUT_DISPLAYPORT:
5519                         is_dp = true;
5520                         break;
5521                 case INTEL_OUTPUT_EDP:
5522                         is_dp = true;
5523                         if (!intel_encoder_is_pch_edp(&encoder->base))
5524                                 is_cpu_edp = true;
5525                         break;
5526                 }
5527
5528                 num_connectors++;
5529         }
5530
5531         if (is_cpu_edp)
5532                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5533         else
5534                 intel_crtc->cpu_transcoder = pipe;
5535
5536         /* We are not sure yet this won't happen. */
5537         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5538              INTEL_PCH_TYPE(dev));
5539
5540         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5541              num_connectors, pipe_name(pipe));
5542
5543         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5544                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5545
5546         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5547
5548         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5549                 return -EINVAL;
5550
5551         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5552                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5553                                              &has_reduced_clock,
5554                                              &reduced_clock);
5555                 if (!ok) {
5556                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5557                         return -EINVAL;
5558                 }
5559         }
5560
5561         /* Ensure that the cursor is valid for the new mode before changing... */
5562         intel_crtc_update_cursor(crtc, true);
5563
5564         /* determine panel color depth */
5565         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5566                                               adjusted_mode);
5567         if (is_lvds && dev_priv->lvds_dither)
5568                 dither = true;
5569
5570         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5571         drm_mode_debug_printmodeline(mode);
5572
5573         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5574                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5575                 if (has_reduced_clock)
5576                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5577                               reduced_clock.m2;
5578
5579                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5580                                              fp);
5581
5582                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5583                  * own on pre-Haswell/LPT generation */
5584                 if (!is_cpu_edp) {
5585                         struct intel_pch_pll *pll;
5586
5587                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5588                         if (pll == NULL) {
5589                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5590                                                  pipe);
5591                                 return -EINVAL;
5592                         }
5593                 } else
5594                         intel_put_pch_pll(intel_crtc);
5595
5596                 /* The LVDS pin pair needs to be on before the DPLLs are
5597                  * enabled.  This is an exception to the general rule that
5598                  * mode_set doesn't turn things on.
5599                  */
5600                 if (is_lvds) {
5601                         temp = I915_READ(PCH_LVDS);
5602                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5603                         if (HAS_PCH_CPT(dev)) {
5604                                 temp &= ~PORT_TRANS_SEL_MASK;
5605                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5606                         } else {
5607                                 if (pipe == 1)
5608                                         temp |= LVDS_PIPEB_SELECT;
5609                                 else
5610                                         temp &= ~LVDS_PIPEB_SELECT;
5611                         }
5612
5613                         /* set the corresponsding LVDS_BORDER bit */
5614                         temp |= dev_priv->lvds_border_bits;
5615                         /* Set the B0-B3 data pairs corresponding to whether
5616                          * we're going to set the DPLLs for dual-channel mode or
5617                          * not.
5618                          */
5619                         if (clock.p2 == 7)
5620                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5621                         else
5622                                 temp &= ~(LVDS_B0B3_POWER_UP |
5623                                           LVDS_CLKB_POWER_UP);
5624
5625                         /* It would be nice to set 24 vs 18-bit mode
5626                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5627                          * look more thoroughly into how panels behave in the
5628                          * two modes.
5629                          */
5630                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5631                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5632                                 temp |= LVDS_HSYNC_POLARITY;
5633                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5634                                 temp |= LVDS_VSYNC_POLARITY;
5635                         I915_WRITE(PCH_LVDS, temp);
5636                 }
5637         }
5638
5639         if (is_dp && !is_cpu_edp) {
5640                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5641         } else {
5642                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5643                         /* For non-DP output, clear any trans DP clock recovery
5644                          * setting.*/
5645                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5646                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5647                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5648                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5649                 }
5650         }
5651
5652         intel_crtc->lowfreq_avail = false;
5653         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5654                 if (intel_crtc->pch_pll) {
5655                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5656
5657                         /* Wait for the clocks to stabilize. */
5658                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5659                         udelay(150);
5660
5661                         /* The pixel multiplier can only be updated once the
5662                          * DPLL is enabled and the clocks are stable.
5663                          *
5664                          * So write it again.
5665                          */
5666                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5667                 }
5668
5669                 if (intel_crtc->pch_pll) {
5670                         if (is_lvds && has_reduced_clock && i915_powersave) {
5671                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5672                                 intel_crtc->lowfreq_avail = true;
5673                         } else {
5674                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5675                         }
5676                 }
5677         }
5678
5679         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5680
5681         if (!is_dp || is_cpu_edp)
5682                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5683
5684         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5685                 if (is_cpu_edp)
5686                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5687
5688         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5689
5690         /* Set up the display plane register */
5691         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5692         POSTING_READ(DSPCNTR(plane));
5693
5694         ret = intel_pipe_set_base(crtc, x, y, fb);
5695
5696         intel_update_watermarks(dev);
5697
5698         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5699
5700         return ret;
5701 }
5702
5703 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5704                                struct drm_display_mode *mode,
5705                                struct drm_display_mode *adjusted_mode,
5706                                int x, int y,
5707                                struct drm_framebuffer *fb)
5708 {
5709         struct drm_device *dev = crtc->dev;
5710         struct drm_i915_private *dev_priv = dev->dev_private;
5711         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5712         int pipe = intel_crtc->pipe;
5713         int ret;
5714
5715         drm_vblank_pre_modeset(dev, pipe);
5716
5717         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5718                                               x, y, fb);
5719         drm_vblank_post_modeset(dev, pipe);
5720
5721         return ret;
5722 }
5723
5724 static bool intel_eld_uptodate(struct drm_connector *connector,
5725                                int reg_eldv, uint32_t bits_eldv,
5726                                int reg_elda, uint32_t bits_elda,
5727                                int reg_edid)
5728 {
5729         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5730         uint8_t *eld = connector->eld;
5731         uint32_t i;
5732
5733         i = I915_READ(reg_eldv);
5734         i &= bits_eldv;
5735
5736         if (!eld[0])
5737                 return !i;
5738
5739         if (!i)
5740                 return false;
5741
5742         i = I915_READ(reg_elda);
5743         i &= ~bits_elda;
5744         I915_WRITE(reg_elda, i);
5745
5746         for (i = 0; i < eld[2]; i++)
5747                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5748                         return false;
5749
5750         return true;
5751 }
5752
5753 static void g4x_write_eld(struct drm_connector *connector,
5754                           struct drm_crtc *crtc)
5755 {
5756         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5757         uint8_t *eld = connector->eld;
5758         uint32_t eldv;
5759         uint32_t len;
5760         uint32_t i;
5761
5762         i = I915_READ(G4X_AUD_VID_DID);
5763
5764         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5765                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5766         else
5767                 eldv = G4X_ELDV_DEVCTG;
5768
5769         if (intel_eld_uptodate(connector,
5770                                G4X_AUD_CNTL_ST, eldv,
5771                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5772                                G4X_HDMIW_HDMIEDID))
5773                 return;
5774
5775         i = I915_READ(G4X_AUD_CNTL_ST);
5776         i &= ~(eldv | G4X_ELD_ADDR);
5777         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5778         I915_WRITE(G4X_AUD_CNTL_ST, i);
5779
5780         if (!eld[0])
5781                 return;
5782
5783         len = min_t(uint8_t, eld[2], len);
5784         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5785         for (i = 0; i < len; i++)
5786                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5787
5788         i = I915_READ(G4X_AUD_CNTL_ST);
5789         i |= eldv;
5790         I915_WRITE(G4X_AUD_CNTL_ST, i);
5791 }
5792
5793 static void haswell_write_eld(struct drm_connector *connector,
5794                                      struct drm_crtc *crtc)
5795 {
5796         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5797         uint8_t *eld = connector->eld;
5798         struct drm_device *dev = crtc->dev;
5799         uint32_t eldv;
5800         uint32_t i;
5801         int len;
5802         int pipe = to_intel_crtc(crtc)->pipe;
5803         int tmp;
5804
5805         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5806         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5807         int aud_config = HSW_AUD_CFG(pipe);
5808         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5809
5810
5811         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5812
5813         /* Audio output enable */
5814         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5815         tmp = I915_READ(aud_cntrl_st2);
5816         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5817         I915_WRITE(aud_cntrl_st2, tmp);
5818
5819         /* Wait for 1 vertical blank */
5820         intel_wait_for_vblank(dev, pipe);
5821
5822         /* Set ELD valid state */
5823         tmp = I915_READ(aud_cntrl_st2);
5824         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5825         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5826         I915_WRITE(aud_cntrl_st2, tmp);
5827         tmp = I915_READ(aud_cntrl_st2);
5828         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5829
5830         /* Enable HDMI mode */
5831         tmp = I915_READ(aud_config);
5832         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5833         /* clear N_programing_enable and N_value_index */
5834         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5835         I915_WRITE(aud_config, tmp);
5836
5837         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5838
5839         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5840
5841         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5842                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5843                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5844                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5845         } else
5846                 I915_WRITE(aud_config, 0);
5847
5848         if (intel_eld_uptodate(connector,
5849                                aud_cntrl_st2, eldv,
5850                                aud_cntl_st, IBX_ELD_ADDRESS,
5851                                hdmiw_hdmiedid))
5852                 return;
5853
5854         i = I915_READ(aud_cntrl_st2);
5855         i &= ~eldv;
5856         I915_WRITE(aud_cntrl_st2, i);
5857
5858         if (!eld[0])
5859                 return;
5860
5861         i = I915_READ(aud_cntl_st);
5862         i &= ~IBX_ELD_ADDRESS;
5863         I915_WRITE(aud_cntl_st, i);
5864         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5865         DRM_DEBUG_DRIVER("port num:%d\n", i);
5866
5867         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5868         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5869         for (i = 0; i < len; i++)
5870                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5871
5872         i = I915_READ(aud_cntrl_st2);
5873         i |= eldv;
5874         I915_WRITE(aud_cntrl_st2, i);
5875
5876 }
5877
5878 static void ironlake_write_eld(struct drm_connector *connector,
5879                                      struct drm_crtc *crtc)
5880 {
5881         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5882         uint8_t *eld = connector->eld;
5883         uint32_t eldv;
5884         uint32_t i;
5885         int len;
5886         int hdmiw_hdmiedid;
5887         int aud_config;
5888         int aud_cntl_st;
5889         int aud_cntrl_st2;
5890         int pipe = to_intel_crtc(crtc)->pipe;
5891
5892         if (HAS_PCH_IBX(connector->dev)) {
5893                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5894                 aud_config = IBX_AUD_CFG(pipe);
5895                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5896                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5897         } else {
5898                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5899                 aud_config = CPT_AUD_CFG(pipe);
5900                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5901                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5902         }
5903
5904         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5905
5906         i = I915_READ(aud_cntl_st);
5907         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5908         if (!i) {
5909                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5910                 /* operate blindly on all ports */
5911                 eldv = IBX_ELD_VALIDB;
5912                 eldv |= IBX_ELD_VALIDB << 4;
5913                 eldv |= IBX_ELD_VALIDB << 8;
5914         } else {
5915                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5916                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5917         }
5918
5919         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5920                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5921                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5922                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5923         } else
5924                 I915_WRITE(aud_config, 0);
5925
5926         if (intel_eld_uptodate(connector,
5927                                aud_cntrl_st2, eldv,
5928                                aud_cntl_st, IBX_ELD_ADDRESS,
5929                                hdmiw_hdmiedid))
5930                 return;
5931
5932         i = I915_READ(aud_cntrl_st2);
5933         i &= ~eldv;
5934         I915_WRITE(aud_cntrl_st2, i);
5935
5936         if (!eld[0])
5937                 return;
5938
5939         i = I915_READ(aud_cntl_st);
5940         i &= ~IBX_ELD_ADDRESS;
5941         I915_WRITE(aud_cntl_st, i);
5942
5943         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5944         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5945         for (i = 0; i < len; i++)
5946                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5947
5948         i = I915_READ(aud_cntrl_st2);
5949         i |= eldv;
5950         I915_WRITE(aud_cntrl_st2, i);
5951 }
5952
5953 void intel_write_eld(struct drm_encoder *encoder,
5954                      struct drm_display_mode *mode)
5955 {
5956         struct drm_crtc *crtc = encoder->crtc;
5957         struct drm_connector *connector;
5958         struct drm_device *dev = encoder->dev;
5959         struct drm_i915_private *dev_priv = dev->dev_private;
5960
5961         connector = drm_select_eld(encoder, mode);
5962         if (!connector)
5963                 return;
5964
5965         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5966                          connector->base.id,
5967                          drm_get_connector_name(connector),
5968                          connector->encoder->base.id,
5969                          drm_get_encoder_name(connector->encoder));
5970
5971         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5972
5973         if (dev_priv->display.write_eld)
5974                 dev_priv->display.write_eld(connector, crtc);
5975 }
5976
5977 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5978 void intel_crtc_load_lut(struct drm_crtc *crtc)
5979 {
5980         struct drm_device *dev = crtc->dev;
5981         struct drm_i915_private *dev_priv = dev->dev_private;
5982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5983         int palreg = PALETTE(intel_crtc->pipe);
5984         int i;
5985
5986         /* The clocks have to be on to load the palette. */
5987         if (!crtc->enabled || !intel_crtc->active)
5988                 return;
5989
5990         /* use legacy palette for Ironlake */
5991         if (HAS_PCH_SPLIT(dev))
5992                 palreg = LGC_PALETTE(intel_crtc->pipe);
5993
5994         for (i = 0; i < 256; i++) {
5995                 I915_WRITE(palreg + 4 * i,
5996                            (intel_crtc->lut_r[i] << 16) |
5997                            (intel_crtc->lut_g[i] << 8) |
5998                            intel_crtc->lut_b[i]);
5999         }
6000 }
6001
6002 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6003 {
6004         struct drm_device *dev = crtc->dev;
6005         struct drm_i915_private *dev_priv = dev->dev_private;
6006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6007         bool visible = base != 0;
6008         u32 cntl;
6009
6010         if (intel_crtc->cursor_visible == visible)
6011                 return;
6012
6013         cntl = I915_READ(_CURACNTR);
6014         if (visible) {
6015                 /* On these chipsets we can only modify the base whilst
6016                  * the cursor is disabled.
6017                  */
6018                 I915_WRITE(_CURABASE, base);
6019
6020                 cntl &= ~(CURSOR_FORMAT_MASK);
6021                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6022                 cntl |= CURSOR_ENABLE |
6023                         CURSOR_GAMMA_ENABLE |
6024                         CURSOR_FORMAT_ARGB;
6025         } else
6026                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6027         I915_WRITE(_CURACNTR, cntl);
6028
6029         intel_crtc->cursor_visible = visible;
6030 }
6031
6032 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6033 {
6034         struct drm_device *dev = crtc->dev;
6035         struct drm_i915_private *dev_priv = dev->dev_private;
6036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6037         int pipe = intel_crtc->pipe;
6038         bool visible = base != 0;
6039
6040         if (intel_crtc->cursor_visible != visible) {
6041                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6042                 if (base) {
6043                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6044                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6045                         cntl |= pipe << 28; /* Connect to correct pipe */
6046                 } else {
6047                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6048                         cntl |= CURSOR_MODE_DISABLE;
6049                 }
6050                 I915_WRITE(CURCNTR(pipe), cntl);
6051
6052                 intel_crtc->cursor_visible = visible;
6053         }
6054         /* and commit changes on next vblank */
6055         I915_WRITE(CURBASE(pipe), base);
6056 }
6057
6058 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6059 {
6060         struct drm_device *dev = crtc->dev;
6061         struct drm_i915_private *dev_priv = dev->dev_private;
6062         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6063         int pipe = intel_crtc->pipe;
6064         bool visible = base != 0;
6065
6066         if (intel_crtc->cursor_visible != visible) {
6067                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6068                 if (base) {
6069                         cntl &= ~CURSOR_MODE;
6070                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6071                 } else {
6072                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6073                         cntl |= CURSOR_MODE_DISABLE;
6074                 }
6075                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6076
6077                 intel_crtc->cursor_visible = visible;
6078         }
6079         /* and commit changes on next vblank */
6080         I915_WRITE(CURBASE_IVB(pipe), base);
6081 }
6082
6083 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6084 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6085                                      bool on)
6086 {
6087         struct drm_device *dev = crtc->dev;
6088         struct drm_i915_private *dev_priv = dev->dev_private;
6089         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6090         int pipe = intel_crtc->pipe;
6091         int x = intel_crtc->cursor_x;
6092         int y = intel_crtc->cursor_y;
6093         u32 base, pos;
6094         bool visible;
6095
6096         pos = 0;
6097
6098         if (on && crtc->enabled && crtc->fb) {
6099                 base = intel_crtc->cursor_addr;
6100                 if (x > (int) crtc->fb->width)
6101                         base = 0;
6102
6103                 if (y > (int) crtc->fb->height)
6104                         base = 0;
6105         } else
6106                 base = 0;
6107
6108         if (x < 0) {
6109                 if (x + intel_crtc->cursor_width < 0)
6110                         base = 0;
6111
6112                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6113                 x = -x;
6114         }
6115         pos |= x << CURSOR_X_SHIFT;
6116
6117         if (y < 0) {
6118                 if (y + intel_crtc->cursor_height < 0)
6119                         base = 0;
6120
6121                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6122                 y = -y;
6123         }
6124         pos |= y << CURSOR_Y_SHIFT;
6125
6126         visible = base != 0;
6127         if (!visible && !intel_crtc->cursor_visible)
6128                 return;
6129
6130         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6131                 I915_WRITE(CURPOS_IVB(pipe), pos);
6132                 ivb_update_cursor(crtc, base);
6133         } else {
6134                 I915_WRITE(CURPOS(pipe), pos);
6135                 if (IS_845G(dev) || IS_I865G(dev))
6136                         i845_update_cursor(crtc, base);
6137                 else
6138                         i9xx_update_cursor(crtc, base);
6139         }
6140 }
6141
6142 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6143                                  struct drm_file *file,
6144                                  uint32_t handle,
6145                                  uint32_t width, uint32_t height)
6146 {
6147         struct drm_device *dev = crtc->dev;
6148         struct drm_i915_private *dev_priv = dev->dev_private;
6149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6150         struct drm_i915_gem_object *obj;
6151         uint32_t addr;
6152         int ret;
6153
6154         /* if we want to turn off the cursor ignore width and height */
6155         if (!handle) {
6156                 DRM_DEBUG_KMS("cursor off\n");
6157                 addr = 0;
6158                 obj = NULL;
6159                 mutex_lock(&dev->struct_mutex);
6160                 goto finish;
6161         }
6162
6163         /* Currently we only support 64x64 cursors */
6164         if (width != 64 || height != 64) {
6165                 DRM_ERROR("we currently only support 64x64 cursors\n");
6166                 return -EINVAL;
6167         }
6168
6169         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6170         if (&obj->base == NULL)
6171                 return -ENOENT;
6172
6173         if (obj->base.size < width * height * 4) {
6174                 DRM_ERROR("buffer is to small\n");
6175                 ret = -ENOMEM;
6176                 goto fail;
6177         }
6178
6179         /* we only need to pin inside GTT if cursor is non-phy */
6180         mutex_lock(&dev->struct_mutex);
6181         if (!dev_priv->info->cursor_needs_physical) {
6182                 if (obj->tiling_mode) {
6183                         DRM_ERROR("cursor cannot be tiled\n");
6184                         ret = -EINVAL;
6185                         goto fail_locked;
6186                 }
6187
6188                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6189                 if (ret) {
6190                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6191                         goto fail_locked;
6192                 }
6193
6194                 ret = i915_gem_object_put_fence(obj);
6195                 if (ret) {
6196                         DRM_ERROR("failed to release fence for cursor");
6197                         goto fail_unpin;
6198                 }
6199
6200                 addr = obj->gtt_offset;
6201         } else {
6202                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6203                 ret = i915_gem_attach_phys_object(dev, obj,
6204                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6205                                                   align);
6206                 if (ret) {
6207                         DRM_ERROR("failed to attach phys object\n");
6208                         goto fail_locked;
6209                 }
6210                 addr = obj->phys_obj->handle->busaddr;
6211         }
6212
6213         if (IS_GEN2(dev))
6214                 I915_WRITE(CURSIZE, (height << 12) | width);
6215
6216  finish:
6217         if (intel_crtc->cursor_bo) {
6218                 if (dev_priv->info->cursor_needs_physical) {
6219                         if (intel_crtc->cursor_bo != obj)
6220                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6221                 } else
6222                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6223                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6224         }
6225
6226         mutex_unlock(&dev->struct_mutex);
6227
6228         intel_crtc->cursor_addr = addr;
6229         intel_crtc->cursor_bo = obj;
6230         intel_crtc->cursor_width = width;
6231         intel_crtc->cursor_height = height;
6232
6233         intel_crtc_update_cursor(crtc, true);
6234
6235         return 0;
6236 fail_unpin:
6237         i915_gem_object_unpin(obj);
6238 fail_locked:
6239         mutex_unlock(&dev->struct_mutex);
6240 fail:
6241         drm_gem_object_unreference_unlocked(&obj->base);
6242         return ret;
6243 }
6244
6245 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6246 {
6247         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6248
6249         intel_crtc->cursor_x = x;
6250         intel_crtc->cursor_y = y;
6251
6252         intel_crtc_update_cursor(crtc, true);
6253
6254         return 0;
6255 }
6256
6257 /** Sets the color ramps on behalf of RandR */
6258 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6259                                  u16 blue, int regno)
6260 {
6261         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6262
6263         intel_crtc->lut_r[regno] = red >> 8;
6264         intel_crtc->lut_g[regno] = green >> 8;
6265         intel_crtc->lut_b[regno] = blue >> 8;
6266 }
6267
6268 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6269                              u16 *blue, int regno)
6270 {
6271         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6272
6273         *red = intel_crtc->lut_r[regno] << 8;
6274         *green = intel_crtc->lut_g[regno] << 8;
6275         *blue = intel_crtc->lut_b[regno] << 8;
6276 }
6277
6278 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6279                                  u16 *blue, uint32_t start, uint32_t size)
6280 {
6281         int end = (start + size > 256) ? 256 : start + size, i;
6282         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6283
6284         for (i = start; i < end; i++) {
6285                 intel_crtc->lut_r[i] = red[i] >> 8;
6286                 intel_crtc->lut_g[i] = green[i] >> 8;
6287                 intel_crtc->lut_b[i] = blue[i] >> 8;
6288         }
6289
6290         intel_crtc_load_lut(crtc);
6291 }
6292
6293 /**
6294  * Get a pipe with a simple mode set on it for doing load-based monitor
6295  * detection.
6296  *
6297  * It will be up to the load-detect code to adjust the pipe as appropriate for
6298  * its requirements.  The pipe will be connected to no other encoders.
6299  *
6300  * Currently this code will only succeed if there is a pipe with no encoders
6301  * configured for it.  In the future, it could choose to temporarily disable
6302  * some outputs to free up a pipe for its use.
6303  *
6304  * \return crtc, or NULL if no pipes are available.
6305  */
6306
6307 /* VESA 640x480x72Hz mode to set on the pipe */
6308 static struct drm_display_mode load_detect_mode = {
6309         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6310                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6311 };
6312
6313 static struct drm_framebuffer *
6314 intel_framebuffer_create(struct drm_device *dev,
6315                          struct drm_mode_fb_cmd2 *mode_cmd,
6316                          struct drm_i915_gem_object *obj)
6317 {
6318         struct intel_framebuffer *intel_fb;
6319         int ret;
6320
6321         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6322         if (!intel_fb) {
6323                 drm_gem_object_unreference_unlocked(&obj->base);
6324                 return ERR_PTR(-ENOMEM);
6325         }
6326
6327         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6328         if (ret) {
6329                 drm_gem_object_unreference_unlocked(&obj->base);
6330                 kfree(intel_fb);
6331                 return ERR_PTR(ret);
6332         }
6333
6334         return &intel_fb->base;
6335 }
6336
6337 static u32
6338 intel_framebuffer_pitch_for_width(int width, int bpp)
6339 {
6340         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6341         return ALIGN(pitch, 64);
6342 }
6343
6344 static u32
6345 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6346 {
6347         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6348         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6349 }
6350
6351 static struct drm_framebuffer *
6352 intel_framebuffer_create_for_mode(struct drm_device *dev,
6353                                   struct drm_display_mode *mode,
6354                                   int depth, int bpp)
6355 {
6356         struct drm_i915_gem_object *obj;
6357         struct drm_mode_fb_cmd2 mode_cmd;
6358
6359         obj = i915_gem_alloc_object(dev,
6360                                     intel_framebuffer_size_for_mode(mode, bpp));
6361         if (obj == NULL)
6362                 return ERR_PTR(-ENOMEM);
6363
6364         mode_cmd.width = mode->hdisplay;
6365         mode_cmd.height = mode->vdisplay;
6366         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6367                                                                 bpp);
6368         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6369
6370         return intel_framebuffer_create(dev, &mode_cmd, obj);
6371 }
6372
6373 static struct drm_framebuffer *
6374 mode_fits_in_fbdev(struct drm_device *dev,
6375                    struct drm_display_mode *mode)
6376 {
6377         struct drm_i915_private *dev_priv = dev->dev_private;
6378         struct drm_i915_gem_object *obj;
6379         struct drm_framebuffer *fb;
6380
6381         if (dev_priv->fbdev == NULL)
6382                 return NULL;
6383
6384         obj = dev_priv->fbdev->ifb.obj;
6385         if (obj == NULL)
6386                 return NULL;
6387
6388         fb = &dev_priv->fbdev->ifb.base;
6389         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6390                                                                fb->bits_per_pixel))
6391                 return NULL;
6392
6393         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6394                 return NULL;
6395
6396         return fb;
6397 }
6398
6399 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6400                                 struct drm_display_mode *mode,
6401                                 struct intel_load_detect_pipe *old)
6402 {
6403         struct intel_crtc *intel_crtc;
6404         struct intel_encoder *intel_encoder =
6405                 intel_attached_encoder(connector);
6406         struct drm_crtc *possible_crtc;
6407         struct drm_encoder *encoder = &intel_encoder->base;
6408         struct drm_crtc *crtc = NULL;
6409         struct drm_device *dev = encoder->dev;
6410         struct drm_framebuffer *fb;
6411         int i = -1;
6412
6413         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6414                       connector->base.id, drm_get_connector_name(connector),
6415                       encoder->base.id, drm_get_encoder_name(encoder));
6416
6417         /*
6418          * Algorithm gets a little messy:
6419          *
6420          *   - if the connector already has an assigned crtc, use it (but make
6421          *     sure it's on first)
6422          *
6423          *   - try to find the first unused crtc that can drive this connector,
6424          *     and use that if we find one
6425          */
6426
6427         /* See if we already have a CRTC for this connector */
6428         if (encoder->crtc) {
6429                 crtc = encoder->crtc;
6430
6431                 old->dpms_mode = connector->dpms;
6432                 old->load_detect_temp = false;
6433
6434                 /* Make sure the crtc and connector are running */
6435                 if (connector->dpms != DRM_MODE_DPMS_ON)
6436                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6437
6438                 return true;
6439         }
6440
6441         /* Find an unused one (if possible) */
6442         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6443                 i++;
6444                 if (!(encoder->possible_crtcs & (1 << i)))
6445                         continue;
6446                 if (!possible_crtc->enabled) {
6447                         crtc = possible_crtc;
6448                         break;
6449                 }
6450         }
6451
6452         /*
6453          * If we didn't find an unused CRTC, don't use any.
6454          */
6455         if (!crtc) {
6456                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6457                 return false;
6458         }
6459
6460         intel_encoder->new_crtc = to_intel_crtc(crtc);
6461         to_intel_connector(connector)->new_encoder = intel_encoder;
6462
6463         intel_crtc = to_intel_crtc(crtc);
6464         old->dpms_mode = connector->dpms;
6465         old->load_detect_temp = true;
6466         old->release_fb = NULL;
6467
6468         if (!mode)
6469                 mode = &load_detect_mode;
6470
6471         /* We need a framebuffer large enough to accommodate all accesses
6472          * that the plane may generate whilst we perform load detection.
6473          * We can not rely on the fbcon either being present (we get called
6474          * during its initialisation to detect all boot displays, or it may
6475          * not even exist) or that it is large enough to satisfy the
6476          * requested mode.
6477          */
6478         fb = mode_fits_in_fbdev(dev, mode);
6479         if (fb == NULL) {
6480                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6481                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6482                 old->release_fb = fb;
6483         } else
6484                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6485         if (IS_ERR(fb)) {
6486                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6487                 goto fail;
6488         }
6489
6490         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6491                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6492                 if (old->release_fb)
6493                         old->release_fb->funcs->destroy(old->release_fb);
6494                 goto fail;
6495         }
6496
6497         /* let the connector get through one full cycle before testing */
6498         intel_wait_for_vblank(dev, intel_crtc->pipe);
6499
6500         return true;
6501 fail:
6502         connector->encoder = NULL;
6503         encoder->crtc = NULL;
6504         return false;
6505 }
6506
6507 void intel_release_load_detect_pipe(struct drm_connector *connector,
6508                                     struct intel_load_detect_pipe *old)
6509 {
6510         struct intel_encoder *intel_encoder =
6511                 intel_attached_encoder(connector);
6512         struct drm_encoder *encoder = &intel_encoder->base;
6513
6514         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6515                       connector->base.id, drm_get_connector_name(connector),
6516                       encoder->base.id, drm_get_encoder_name(encoder));
6517
6518         if (old->load_detect_temp) {
6519                 struct drm_crtc *crtc = encoder->crtc;
6520
6521                 to_intel_connector(connector)->new_encoder = NULL;
6522                 intel_encoder->new_crtc = NULL;
6523                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6524
6525                 if (old->release_fb)
6526                         old->release_fb->funcs->destroy(old->release_fb);
6527
6528                 return;
6529         }
6530
6531         /* Switch crtc and encoder back off if necessary */
6532         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6533                 connector->funcs->dpms(connector, old->dpms_mode);
6534 }
6535
6536 /* Returns the clock of the currently programmed mode of the given pipe. */
6537 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6538 {
6539         struct drm_i915_private *dev_priv = dev->dev_private;
6540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6541         int pipe = intel_crtc->pipe;
6542         u32 dpll = I915_READ(DPLL(pipe));
6543         u32 fp;
6544         intel_clock_t clock;
6545
6546         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6547                 fp = I915_READ(FP0(pipe));
6548         else
6549                 fp = I915_READ(FP1(pipe));
6550
6551         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6552         if (IS_PINEVIEW(dev)) {
6553                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6554                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6555         } else {
6556                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6557                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6558         }
6559
6560         if (!IS_GEN2(dev)) {
6561                 if (IS_PINEVIEW(dev))
6562                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6563                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6564                 else
6565                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6566                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6567
6568                 switch (dpll & DPLL_MODE_MASK) {
6569                 case DPLLB_MODE_DAC_SERIAL:
6570                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6571                                 5 : 10;
6572                         break;
6573                 case DPLLB_MODE_LVDS:
6574                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6575                                 7 : 14;
6576                         break;
6577                 default:
6578                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6579                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6580                         return 0;
6581                 }
6582
6583                 /* XXX: Handle the 100Mhz refclk */
6584                 intel_clock(dev, 96000, &clock);
6585         } else {
6586                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6587
6588                 if (is_lvds) {
6589                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6590                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6591                         clock.p2 = 14;
6592
6593                         if ((dpll & PLL_REF_INPUT_MASK) ==
6594                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6595                                 /* XXX: might not be 66MHz */
6596                                 intel_clock(dev, 66000, &clock);
6597                         } else
6598                                 intel_clock(dev, 48000, &clock);
6599                 } else {
6600                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6601                                 clock.p1 = 2;
6602                         else {
6603                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6604                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6605                         }
6606                         if (dpll & PLL_P2_DIVIDE_BY_4)
6607                                 clock.p2 = 4;
6608                         else
6609                                 clock.p2 = 2;
6610
6611                         intel_clock(dev, 48000, &clock);
6612                 }
6613         }
6614
6615         /* XXX: It would be nice to validate the clocks, but we can't reuse
6616          * i830PllIsValid() because it relies on the xf86_config connector
6617          * configuration being accurate, which it isn't necessarily.
6618          */
6619
6620         return clock.dot;
6621 }
6622
6623 /** Returns the currently programmed mode of the given pipe. */
6624 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6625                                              struct drm_crtc *crtc)
6626 {
6627         struct drm_i915_private *dev_priv = dev->dev_private;
6628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6629         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6630         struct drm_display_mode *mode;
6631         int htot = I915_READ(HTOTAL(cpu_transcoder));
6632         int hsync = I915_READ(HSYNC(cpu_transcoder));
6633         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6634         int vsync = I915_READ(VSYNC(cpu_transcoder));
6635
6636         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6637         if (!mode)
6638                 return NULL;
6639
6640         mode->clock = intel_crtc_clock_get(dev, crtc);
6641         mode->hdisplay = (htot & 0xffff) + 1;
6642         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6643         mode->hsync_start = (hsync & 0xffff) + 1;
6644         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6645         mode->vdisplay = (vtot & 0xffff) + 1;
6646         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6647         mode->vsync_start = (vsync & 0xffff) + 1;
6648         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6649
6650         drm_mode_set_name(mode);
6651
6652         return mode;
6653 }
6654
6655 static void intel_increase_pllclock(struct drm_crtc *crtc)
6656 {
6657         struct drm_device *dev = crtc->dev;
6658         drm_i915_private_t *dev_priv = dev->dev_private;
6659         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6660         int pipe = intel_crtc->pipe;
6661         int dpll_reg = DPLL(pipe);
6662         int dpll;
6663
6664         if (HAS_PCH_SPLIT(dev))
6665                 return;
6666
6667         if (!dev_priv->lvds_downclock_avail)
6668                 return;
6669
6670         dpll = I915_READ(dpll_reg);
6671         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6672                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6673
6674                 assert_panel_unlocked(dev_priv, pipe);
6675
6676                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6677                 I915_WRITE(dpll_reg, dpll);
6678                 intel_wait_for_vblank(dev, pipe);
6679
6680                 dpll = I915_READ(dpll_reg);
6681                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6682                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6683         }
6684 }
6685
6686 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6687 {
6688         struct drm_device *dev = crtc->dev;
6689         drm_i915_private_t *dev_priv = dev->dev_private;
6690         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6691
6692         if (HAS_PCH_SPLIT(dev))
6693                 return;
6694
6695         if (!dev_priv->lvds_downclock_avail)
6696                 return;
6697
6698         /*
6699          * Since this is called by a timer, we should never get here in
6700          * the manual case.
6701          */
6702         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6703                 int pipe = intel_crtc->pipe;
6704                 int dpll_reg = DPLL(pipe);
6705                 int dpll;
6706
6707                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6708
6709                 assert_panel_unlocked(dev_priv, pipe);
6710
6711                 dpll = I915_READ(dpll_reg);
6712                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6713                 I915_WRITE(dpll_reg, dpll);
6714                 intel_wait_for_vblank(dev, pipe);
6715                 dpll = I915_READ(dpll_reg);
6716                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6717                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6718         }
6719
6720 }
6721
6722 void intel_mark_busy(struct drm_device *dev)
6723 {
6724         i915_update_gfx_val(dev->dev_private);
6725 }
6726
6727 void intel_mark_idle(struct drm_device *dev)
6728 {
6729 }
6730
6731 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6732 {
6733         struct drm_device *dev = obj->base.dev;
6734         struct drm_crtc *crtc;
6735
6736         if (!i915_powersave)
6737                 return;
6738
6739         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6740                 if (!crtc->fb)
6741                         continue;
6742
6743                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6744                         intel_increase_pllclock(crtc);
6745         }
6746 }
6747
6748 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6749 {
6750         struct drm_device *dev = obj->base.dev;
6751         struct drm_crtc *crtc;
6752
6753         if (!i915_powersave)
6754                 return;
6755
6756         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6757                 if (!crtc->fb)
6758                         continue;
6759
6760                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6761                         intel_decrease_pllclock(crtc);
6762         }
6763 }
6764
6765 static void intel_crtc_destroy(struct drm_crtc *crtc)
6766 {
6767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6768         struct drm_device *dev = crtc->dev;
6769         struct intel_unpin_work *work;
6770         unsigned long flags;
6771
6772         spin_lock_irqsave(&dev->event_lock, flags);
6773         work = intel_crtc->unpin_work;
6774         intel_crtc->unpin_work = NULL;
6775         spin_unlock_irqrestore(&dev->event_lock, flags);
6776
6777         if (work) {
6778                 cancel_work_sync(&work->work);
6779                 kfree(work);
6780         }
6781
6782         drm_crtc_cleanup(crtc);
6783
6784         kfree(intel_crtc);
6785 }
6786
6787 static void intel_unpin_work_fn(struct work_struct *__work)
6788 {
6789         struct intel_unpin_work *work =
6790                 container_of(__work, struct intel_unpin_work, work);
6791
6792         mutex_lock(&work->dev->struct_mutex);
6793         intel_unpin_fb_obj(work->old_fb_obj);
6794         drm_gem_object_unreference(&work->pending_flip_obj->base);
6795         drm_gem_object_unreference(&work->old_fb_obj->base);
6796
6797         intel_update_fbc(work->dev);
6798         mutex_unlock(&work->dev->struct_mutex);
6799         kfree(work);
6800 }
6801
6802 static void do_intel_finish_page_flip(struct drm_device *dev,
6803                                       struct drm_crtc *crtc)
6804 {
6805         drm_i915_private_t *dev_priv = dev->dev_private;
6806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6807         struct intel_unpin_work *work;
6808         struct drm_i915_gem_object *obj;
6809         struct drm_pending_vblank_event *e;
6810         struct timeval tvbl;
6811         unsigned long flags;
6812
6813         /* Ignore early vblank irqs */
6814         if (intel_crtc == NULL)
6815                 return;
6816
6817         spin_lock_irqsave(&dev->event_lock, flags);
6818         work = intel_crtc->unpin_work;
6819         if (work == NULL || !work->pending) {
6820                 spin_unlock_irqrestore(&dev->event_lock, flags);
6821                 return;
6822         }
6823
6824         intel_crtc->unpin_work = NULL;
6825
6826         if (work->event) {
6827                 e = work->event;
6828                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6829
6830                 e->event.tv_sec = tvbl.tv_sec;
6831                 e->event.tv_usec = tvbl.tv_usec;
6832
6833                 list_add_tail(&e->base.link,
6834                               &e->base.file_priv->event_list);
6835                 wake_up_interruptible(&e->base.file_priv->event_wait);
6836         }
6837
6838         drm_vblank_put(dev, intel_crtc->pipe);
6839
6840         spin_unlock_irqrestore(&dev->event_lock, flags);
6841
6842         obj = work->old_fb_obj;
6843
6844         atomic_clear_mask(1 << intel_crtc->plane,
6845                           &obj->pending_flip.counter);
6846
6847         wake_up(&dev_priv->pending_flip_queue);
6848         schedule_work(&work->work);
6849
6850         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6851 }
6852
6853 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6854 {
6855         drm_i915_private_t *dev_priv = dev->dev_private;
6856         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6857
6858         do_intel_finish_page_flip(dev, crtc);
6859 }
6860
6861 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6862 {
6863         drm_i915_private_t *dev_priv = dev->dev_private;
6864         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6865
6866         do_intel_finish_page_flip(dev, crtc);
6867 }
6868
6869 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6870 {
6871         drm_i915_private_t *dev_priv = dev->dev_private;
6872         struct intel_crtc *intel_crtc =
6873                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6874         unsigned long flags;
6875
6876         spin_lock_irqsave(&dev->event_lock, flags);
6877         if (intel_crtc->unpin_work) {
6878                 if ((++intel_crtc->unpin_work->pending) > 1)
6879                         DRM_ERROR("Prepared flip multiple times\n");
6880         } else {
6881                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6882         }
6883         spin_unlock_irqrestore(&dev->event_lock, flags);
6884 }
6885
6886 static int intel_gen2_queue_flip(struct drm_device *dev,
6887                                  struct drm_crtc *crtc,
6888                                  struct drm_framebuffer *fb,
6889                                  struct drm_i915_gem_object *obj)
6890 {
6891         struct drm_i915_private *dev_priv = dev->dev_private;
6892         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6893         u32 flip_mask;
6894         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6895         int ret;
6896
6897         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6898         if (ret)
6899                 goto err;
6900
6901         ret = intel_ring_begin(ring, 6);
6902         if (ret)
6903                 goto err_unpin;
6904
6905         /* Can't queue multiple flips, so wait for the previous
6906          * one to finish before executing the next.
6907          */
6908         if (intel_crtc->plane)
6909                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6910         else
6911                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6912         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6913         intel_ring_emit(ring, MI_NOOP);
6914         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6915                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6916         intel_ring_emit(ring, fb->pitches[0]);
6917         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6918         intel_ring_emit(ring, 0); /* aux display base address, unused */
6919         intel_ring_advance(ring);
6920         return 0;
6921
6922 err_unpin:
6923         intel_unpin_fb_obj(obj);
6924 err:
6925         return ret;
6926 }
6927
6928 static int intel_gen3_queue_flip(struct drm_device *dev,
6929                                  struct drm_crtc *crtc,
6930                                  struct drm_framebuffer *fb,
6931                                  struct drm_i915_gem_object *obj)
6932 {
6933         struct drm_i915_private *dev_priv = dev->dev_private;
6934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6935         u32 flip_mask;
6936         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6937         int ret;
6938
6939         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6940         if (ret)
6941                 goto err;
6942
6943         ret = intel_ring_begin(ring, 6);
6944         if (ret)
6945                 goto err_unpin;
6946
6947         if (intel_crtc->plane)
6948                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6949         else
6950                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6951         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6952         intel_ring_emit(ring, MI_NOOP);
6953         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6954                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6955         intel_ring_emit(ring, fb->pitches[0]);
6956         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6957         intel_ring_emit(ring, MI_NOOP);
6958
6959         intel_ring_advance(ring);
6960         return 0;
6961
6962 err_unpin:
6963         intel_unpin_fb_obj(obj);
6964 err:
6965         return ret;
6966 }
6967
6968 static int intel_gen4_queue_flip(struct drm_device *dev,
6969                                  struct drm_crtc *crtc,
6970                                  struct drm_framebuffer *fb,
6971                                  struct drm_i915_gem_object *obj)
6972 {
6973         struct drm_i915_private *dev_priv = dev->dev_private;
6974         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6975         uint32_t pf, pipesrc;
6976         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6977         int ret;
6978
6979         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6980         if (ret)
6981                 goto err;
6982
6983         ret = intel_ring_begin(ring, 4);
6984         if (ret)
6985                 goto err_unpin;
6986
6987         /* i965+ uses the linear or tiled offsets from the
6988          * Display Registers (which do not change across a page-flip)
6989          * so we need only reprogram the base address.
6990          */
6991         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6992                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6993         intel_ring_emit(ring, fb->pitches[0]);
6994         intel_ring_emit(ring,
6995                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6996                         obj->tiling_mode);
6997
6998         /* XXX Enabling the panel-fitter across page-flip is so far
6999          * untested on non-native modes, so ignore it for now.
7000          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7001          */
7002         pf = 0;
7003         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7004         intel_ring_emit(ring, pf | pipesrc);
7005         intel_ring_advance(ring);
7006         return 0;
7007
7008 err_unpin:
7009         intel_unpin_fb_obj(obj);
7010 err:
7011         return ret;
7012 }
7013
7014 static int intel_gen6_queue_flip(struct drm_device *dev,
7015                                  struct drm_crtc *crtc,
7016                                  struct drm_framebuffer *fb,
7017                                  struct drm_i915_gem_object *obj)
7018 {
7019         struct drm_i915_private *dev_priv = dev->dev_private;
7020         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7021         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7022         uint32_t pf, pipesrc;
7023         int ret;
7024
7025         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7026         if (ret)
7027                 goto err;
7028
7029         ret = intel_ring_begin(ring, 4);
7030         if (ret)
7031                 goto err_unpin;
7032
7033         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7034                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7035         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7036         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7037
7038         /* Contrary to the suggestions in the documentation,
7039          * "Enable Panel Fitter" does not seem to be required when page
7040          * flipping with a non-native mode, and worse causes a normal
7041          * modeset to fail.
7042          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7043          */
7044         pf = 0;
7045         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7046         intel_ring_emit(ring, pf | pipesrc);
7047         intel_ring_advance(ring);
7048         return 0;
7049
7050 err_unpin:
7051         intel_unpin_fb_obj(obj);
7052 err:
7053         return ret;
7054 }
7055
7056 /*
7057  * On gen7 we currently use the blit ring because (in early silicon at least)
7058  * the render ring doesn't give us interrpts for page flip completion, which
7059  * means clients will hang after the first flip is queued.  Fortunately the
7060  * blit ring generates interrupts properly, so use it instead.
7061  */
7062 static int intel_gen7_queue_flip(struct drm_device *dev,
7063                                  struct drm_crtc *crtc,
7064                                  struct drm_framebuffer *fb,
7065                                  struct drm_i915_gem_object *obj)
7066 {
7067         struct drm_i915_private *dev_priv = dev->dev_private;
7068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7069         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7070         uint32_t plane_bit = 0;
7071         int ret;
7072
7073         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7074         if (ret)
7075                 goto err;
7076
7077         switch(intel_crtc->plane) {
7078         case PLANE_A:
7079                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7080                 break;
7081         case PLANE_B:
7082                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7083                 break;
7084         case PLANE_C:
7085                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7086                 break;
7087         default:
7088                 WARN_ONCE(1, "unknown plane in flip command\n");
7089                 ret = -ENODEV;
7090                 goto err_unpin;
7091         }
7092
7093         ret = intel_ring_begin(ring, 4);
7094         if (ret)
7095                 goto err_unpin;
7096
7097         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7098         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7099         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7100         intel_ring_emit(ring, (MI_NOOP));
7101         intel_ring_advance(ring);
7102         return 0;
7103
7104 err_unpin:
7105         intel_unpin_fb_obj(obj);
7106 err:
7107         return ret;
7108 }
7109
7110 static int intel_default_queue_flip(struct drm_device *dev,
7111                                     struct drm_crtc *crtc,
7112                                     struct drm_framebuffer *fb,
7113                                     struct drm_i915_gem_object *obj)
7114 {
7115         return -ENODEV;
7116 }
7117
7118 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7119                                 struct drm_framebuffer *fb,
7120                                 struct drm_pending_vblank_event *event)
7121 {
7122         struct drm_device *dev = crtc->dev;
7123         struct drm_i915_private *dev_priv = dev->dev_private;
7124         struct intel_framebuffer *intel_fb;
7125         struct drm_i915_gem_object *obj;
7126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7127         struct intel_unpin_work *work;
7128         unsigned long flags;
7129         int ret;
7130
7131         /* Can't change pixel format via MI display flips. */
7132         if (fb->pixel_format != crtc->fb->pixel_format)
7133                 return -EINVAL;
7134
7135         /*
7136          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7137          * Note that pitch changes could also affect these register.
7138          */
7139         if (INTEL_INFO(dev)->gen > 3 &&
7140             (fb->offsets[0] != crtc->fb->offsets[0] ||
7141              fb->pitches[0] != crtc->fb->pitches[0]))
7142                 return -EINVAL;
7143
7144         work = kzalloc(sizeof *work, GFP_KERNEL);
7145         if (work == NULL)
7146                 return -ENOMEM;
7147
7148         work->event = event;
7149         work->dev = crtc->dev;
7150         intel_fb = to_intel_framebuffer(crtc->fb);
7151         work->old_fb_obj = intel_fb->obj;
7152         INIT_WORK(&work->work, intel_unpin_work_fn);
7153
7154         ret = drm_vblank_get(dev, intel_crtc->pipe);
7155         if (ret)
7156                 goto free_work;
7157
7158         /* We borrow the event spin lock for protecting unpin_work */
7159         spin_lock_irqsave(&dev->event_lock, flags);
7160         if (intel_crtc->unpin_work) {
7161                 spin_unlock_irqrestore(&dev->event_lock, flags);
7162                 kfree(work);
7163                 drm_vblank_put(dev, intel_crtc->pipe);
7164
7165                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7166                 return -EBUSY;
7167         }
7168         intel_crtc->unpin_work = work;
7169         spin_unlock_irqrestore(&dev->event_lock, flags);
7170
7171         intel_fb = to_intel_framebuffer(fb);
7172         obj = intel_fb->obj;
7173
7174         ret = i915_mutex_lock_interruptible(dev);
7175         if (ret)
7176                 goto cleanup;
7177
7178         /* Reference the objects for the scheduled work. */
7179         drm_gem_object_reference(&work->old_fb_obj->base);
7180         drm_gem_object_reference(&obj->base);
7181
7182         crtc->fb = fb;
7183
7184         work->pending_flip_obj = obj;
7185
7186         work->enable_stall_check = true;
7187
7188         /* Block clients from rendering to the new back buffer until
7189          * the flip occurs and the object is no longer visible.
7190          */
7191         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7192
7193         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7194         if (ret)
7195                 goto cleanup_pending;
7196
7197         intel_disable_fbc(dev);
7198         intel_mark_fb_busy(obj);
7199         mutex_unlock(&dev->struct_mutex);
7200
7201         trace_i915_flip_request(intel_crtc->plane, obj);
7202
7203         return 0;
7204
7205 cleanup_pending:
7206         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7207         drm_gem_object_unreference(&work->old_fb_obj->base);
7208         drm_gem_object_unreference(&obj->base);
7209         mutex_unlock(&dev->struct_mutex);
7210
7211 cleanup:
7212         spin_lock_irqsave(&dev->event_lock, flags);
7213         intel_crtc->unpin_work = NULL;
7214         spin_unlock_irqrestore(&dev->event_lock, flags);
7215
7216         drm_vblank_put(dev, intel_crtc->pipe);
7217 free_work:
7218         kfree(work);
7219
7220         return ret;
7221 }
7222
7223 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7224         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7225         .load_lut = intel_crtc_load_lut,
7226         .disable = intel_crtc_noop,
7227 };
7228
7229 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7230 {
7231         struct intel_encoder *other_encoder;
7232         struct drm_crtc *crtc = &encoder->new_crtc->base;
7233
7234         if (WARN_ON(!crtc))
7235                 return false;
7236
7237         list_for_each_entry(other_encoder,
7238                             &crtc->dev->mode_config.encoder_list,
7239                             base.head) {
7240
7241                 if (&other_encoder->new_crtc->base != crtc ||
7242                     encoder == other_encoder)
7243                         continue;
7244                 else
7245                         return true;
7246         }
7247
7248         return false;
7249 }
7250
7251 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7252                                   struct drm_crtc *crtc)
7253 {
7254         struct drm_device *dev;
7255         struct drm_crtc *tmp;
7256         int crtc_mask = 1;
7257
7258         WARN(!crtc, "checking null crtc?\n");
7259
7260         dev = crtc->dev;
7261
7262         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7263                 if (tmp == crtc)
7264                         break;
7265                 crtc_mask <<= 1;
7266         }
7267
7268         if (encoder->possible_crtcs & crtc_mask)
7269                 return true;
7270         return false;
7271 }
7272
7273 /**
7274  * intel_modeset_update_staged_output_state
7275  *
7276  * Updates the staged output configuration state, e.g. after we've read out the
7277  * current hw state.
7278  */
7279 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7280 {
7281         struct intel_encoder *encoder;
7282         struct intel_connector *connector;
7283
7284         list_for_each_entry(connector, &dev->mode_config.connector_list,
7285                             base.head) {
7286                 connector->new_encoder =
7287                         to_intel_encoder(connector->base.encoder);
7288         }
7289
7290         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7291                             base.head) {
7292                 encoder->new_crtc =
7293                         to_intel_crtc(encoder->base.crtc);
7294         }
7295 }
7296
7297 /**
7298  * intel_modeset_commit_output_state
7299  *
7300  * This function copies the stage display pipe configuration to the real one.
7301  */
7302 static void intel_modeset_commit_output_state(struct drm_device *dev)
7303 {
7304         struct intel_encoder *encoder;
7305         struct intel_connector *connector;
7306
7307         list_for_each_entry(connector, &dev->mode_config.connector_list,
7308                             base.head) {
7309                 connector->base.encoder = &connector->new_encoder->base;
7310         }
7311
7312         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7313                             base.head) {
7314                 encoder->base.crtc = &encoder->new_crtc->base;
7315         }
7316 }
7317
7318 static struct drm_display_mode *
7319 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7320                             struct drm_display_mode *mode)
7321 {
7322         struct drm_device *dev = crtc->dev;
7323         struct drm_display_mode *adjusted_mode;
7324         struct drm_encoder_helper_funcs *encoder_funcs;
7325         struct intel_encoder *encoder;
7326
7327         adjusted_mode = drm_mode_duplicate(dev, mode);
7328         if (!adjusted_mode)
7329                 return ERR_PTR(-ENOMEM);
7330
7331         /* Pass our mode to the connectors and the CRTC to give them a chance to
7332          * adjust it according to limitations or connector properties, and also
7333          * a chance to reject the mode entirely.
7334          */
7335         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7336                             base.head) {
7337
7338                 if (&encoder->new_crtc->base != crtc)
7339                         continue;
7340                 encoder_funcs = encoder->base.helper_private;
7341                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7342                                                 adjusted_mode))) {
7343                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7344                         goto fail;
7345                 }
7346         }
7347
7348         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7349                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7350                 goto fail;
7351         }
7352         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7353
7354         return adjusted_mode;
7355 fail:
7356         drm_mode_destroy(dev, adjusted_mode);
7357         return ERR_PTR(-EINVAL);
7358 }
7359
7360 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7361  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7362 static void
7363 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7364                              unsigned *prepare_pipes, unsigned *disable_pipes)
7365 {
7366         struct intel_crtc *intel_crtc;
7367         struct drm_device *dev = crtc->dev;
7368         struct intel_encoder *encoder;
7369         struct intel_connector *connector;
7370         struct drm_crtc *tmp_crtc;
7371
7372         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7373
7374         /* Check which crtcs have changed outputs connected to them, these need
7375          * to be part of the prepare_pipes mask. We don't (yet) support global
7376          * modeset across multiple crtcs, so modeset_pipes will only have one
7377          * bit set at most. */
7378         list_for_each_entry(connector, &dev->mode_config.connector_list,
7379                             base.head) {
7380                 if (connector->base.encoder == &connector->new_encoder->base)
7381                         continue;
7382
7383                 if (connector->base.encoder) {
7384                         tmp_crtc = connector->base.encoder->crtc;
7385
7386                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7387                 }
7388
7389                 if (connector->new_encoder)
7390                         *prepare_pipes |=
7391                                 1 << connector->new_encoder->new_crtc->pipe;
7392         }
7393
7394         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7395                             base.head) {
7396                 if (encoder->base.crtc == &encoder->new_crtc->base)
7397                         continue;
7398
7399                 if (encoder->base.crtc) {
7400                         tmp_crtc = encoder->base.crtc;
7401
7402                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7403                 }
7404
7405                 if (encoder->new_crtc)
7406                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7407         }
7408
7409         /* Check for any pipes that will be fully disabled ... */
7410         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7411                             base.head) {
7412                 bool used = false;
7413
7414                 /* Don't try to disable disabled crtcs. */
7415                 if (!intel_crtc->base.enabled)
7416                         continue;
7417
7418                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7419                                     base.head) {
7420                         if (encoder->new_crtc == intel_crtc)
7421                                 used = true;
7422                 }
7423
7424                 if (!used)
7425                         *disable_pipes |= 1 << intel_crtc->pipe;
7426         }
7427
7428
7429         /* set_mode is also used to update properties on life display pipes. */
7430         intel_crtc = to_intel_crtc(crtc);
7431         if (crtc->enabled)
7432                 *prepare_pipes |= 1 << intel_crtc->pipe;
7433
7434         /* We only support modeset on one single crtc, hence we need to do that
7435          * only for the passed in crtc iff we change anything else than just
7436          * disable crtcs.
7437          *
7438          * This is actually not true, to be fully compatible with the old crtc
7439          * helper we automatically disable _any_ output (i.e. doesn't need to be
7440          * connected to the crtc we're modesetting on) if it's disconnected.
7441          * Which is a rather nutty api (since changed the output configuration
7442          * without userspace's explicit request can lead to confusion), but
7443          * alas. Hence we currently need to modeset on all pipes we prepare. */
7444         if (*prepare_pipes)
7445                 *modeset_pipes = *prepare_pipes;
7446
7447         /* ... and mask these out. */
7448         *modeset_pipes &= ~(*disable_pipes);
7449         *prepare_pipes &= ~(*disable_pipes);
7450 }
7451
7452 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7453 {
7454         struct drm_encoder *encoder;
7455         struct drm_device *dev = crtc->dev;
7456
7457         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7458                 if (encoder->crtc == crtc)
7459                         return true;
7460
7461         return false;
7462 }
7463
7464 static void
7465 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7466 {
7467         struct intel_encoder *intel_encoder;
7468         struct intel_crtc *intel_crtc;
7469         struct drm_connector *connector;
7470
7471         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7472                             base.head) {
7473                 if (!intel_encoder->base.crtc)
7474                         continue;
7475
7476                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7477
7478                 if (prepare_pipes & (1 << intel_crtc->pipe))
7479                         intel_encoder->connectors_active = false;
7480         }
7481
7482         intel_modeset_commit_output_state(dev);
7483
7484         /* Update computed state. */
7485         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7486                             base.head) {
7487                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7488         }
7489
7490         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7491                 if (!connector->encoder || !connector->encoder->crtc)
7492                         continue;
7493
7494                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7495
7496                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7497                         struct drm_property *dpms_property =
7498                                 dev->mode_config.dpms_property;
7499
7500                         connector->dpms = DRM_MODE_DPMS_ON;
7501                         drm_connector_property_set_value(connector,
7502                                                          dpms_property,
7503                                                          DRM_MODE_DPMS_ON);
7504
7505                         intel_encoder = to_intel_encoder(connector->encoder);
7506                         intel_encoder->connectors_active = true;
7507                 }
7508         }
7509
7510 }
7511
7512 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7513         list_for_each_entry((intel_crtc), \
7514                             &(dev)->mode_config.crtc_list, \
7515                             base.head) \
7516                 if (mask & (1 <<(intel_crtc)->pipe)) \
7517
7518 void
7519 intel_modeset_check_state(struct drm_device *dev)
7520 {
7521         struct intel_crtc *crtc;
7522         struct intel_encoder *encoder;
7523         struct intel_connector *connector;
7524
7525         list_for_each_entry(connector, &dev->mode_config.connector_list,
7526                             base.head) {
7527                 /* This also checks the encoder/connector hw state with the
7528                  * ->get_hw_state callbacks. */
7529                 intel_connector_check_state(connector);
7530
7531                 WARN(&connector->new_encoder->base != connector->base.encoder,
7532                      "connector's staged encoder doesn't match current encoder\n");
7533         }
7534
7535         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7536                             base.head) {
7537                 bool enabled = false;
7538                 bool active = false;
7539                 enum pipe pipe, tracked_pipe;
7540
7541                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7542                               encoder->base.base.id,
7543                               drm_get_encoder_name(&encoder->base));
7544
7545                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7546                      "encoder's stage crtc doesn't match current crtc\n");
7547                 WARN(encoder->connectors_active && !encoder->base.crtc,
7548                      "encoder's active_connectors set, but no crtc\n");
7549
7550                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7551                                     base.head) {
7552                         if (connector->base.encoder != &encoder->base)
7553                                 continue;
7554                         enabled = true;
7555                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7556                                 active = true;
7557                 }
7558                 WARN(!!encoder->base.crtc != enabled,
7559                      "encoder's enabled state mismatch "
7560                      "(expected %i, found %i)\n",
7561                      !!encoder->base.crtc, enabled);
7562                 WARN(active && !encoder->base.crtc,
7563                      "active encoder with no crtc\n");
7564
7565                 WARN(encoder->connectors_active != active,
7566                      "encoder's computed active state doesn't match tracked active state "
7567                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7568
7569                 active = encoder->get_hw_state(encoder, &pipe);
7570                 WARN(active != encoder->connectors_active,
7571                      "encoder's hw state doesn't match sw tracking "
7572                      "(expected %i, found %i)\n",
7573                      encoder->connectors_active, active);
7574
7575                 if (!encoder->base.crtc)
7576                         continue;
7577
7578                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7579                 WARN(active && pipe != tracked_pipe,
7580                      "active encoder's pipe doesn't match"
7581                      "(expected %i, found %i)\n",
7582                      tracked_pipe, pipe);
7583
7584         }
7585
7586         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7587                             base.head) {
7588                 bool enabled = false;
7589                 bool active = false;
7590
7591                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7592                               crtc->base.base.id);
7593
7594                 WARN(crtc->active && !crtc->base.enabled,
7595                      "active crtc, but not enabled in sw tracking\n");
7596
7597                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7598                                     base.head) {
7599                         if (encoder->base.crtc != &crtc->base)
7600                                 continue;
7601                         enabled = true;
7602                         if (encoder->connectors_active)
7603                                 active = true;
7604                 }
7605                 WARN(active != crtc->active,
7606                      "crtc's computed active state doesn't match tracked active state "
7607                      "(expected %i, found %i)\n", active, crtc->active);
7608                 WARN(enabled != crtc->base.enabled,
7609                      "crtc's computed enabled state doesn't match tracked enabled state "
7610                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7611
7612                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7613         }
7614 }
7615
7616 bool intel_set_mode(struct drm_crtc *crtc,
7617                     struct drm_display_mode *mode,
7618                     int x, int y, struct drm_framebuffer *fb)
7619 {
7620         struct drm_device *dev = crtc->dev;
7621         drm_i915_private_t *dev_priv = dev->dev_private;
7622         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7623         struct drm_encoder_helper_funcs *encoder_funcs;
7624         struct drm_encoder *encoder;
7625         struct intel_crtc *intel_crtc;
7626         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7627         bool ret = true;
7628
7629         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7630                                      &prepare_pipes, &disable_pipes);
7631
7632         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7633                       modeset_pipes, prepare_pipes, disable_pipes);
7634
7635         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7636                 intel_crtc_disable(&intel_crtc->base);
7637
7638         saved_hwmode = crtc->hwmode;
7639         saved_mode = crtc->mode;
7640
7641         /* Hack: Because we don't (yet) support global modeset on multiple
7642          * crtcs, we don't keep track of the new mode for more than one crtc.
7643          * Hence simply check whether any bit is set in modeset_pipes in all the
7644          * pieces of code that are not yet converted to deal with mutliple crtcs
7645          * changing their mode at the same time. */
7646         adjusted_mode = NULL;
7647         if (modeset_pipes) {
7648                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7649                 if (IS_ERR(adjusted_mode)) {
7650                         return false;
7651                 }
7652         }
7653
7654         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7655                 if (intel_crtc->base.enabled)
7656                         dev_priv->display.crtc_disable(&intel_crtc->base);
7657         }
7658
7659         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7660          * to set it here already despite that we pass it down the callchain.
7661          */
7662         if (modeset_pipes)
7663                 crtc->mode = *mode;
7664
7665         /* Only after disabling all output pipelines that will be changed can we
7666          * update the the output configuration. */
7667         intel_modeset_update_state(dev, prepare_pipes);
7668
7669         if (dev_priv->display.modeset_global_resources)
7670                 dev_priv->display.modeset_global_resources(dev);
7671
7672         /* Set up the DPLL and any encoders state that needs to adjust or depend
7673          * on the DPLL.
7674          */
7675         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7676                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7677                                            mode, adjusted_mode,
7678                                            x, y, fb);
7679                 if (!ret)
7680                     goto done;
7681
7682                 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7683
7684                         if (encoder->crtc != &intel_crtc->base)
7685                                 continue;
7686
7687                         DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7688                                 encoder->base.id, drm_get_encoder_name(encoder),
7689                                 mode->base.id, mode->name);
7690                         encoder_funcs = encoder->helper_private;
7691                         encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7692                 }
7693         }
7694
7695         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7696         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7697                 dev_priv->display.crtc_enable(&intel_crtc->base);
7698
7699         if (modeset_pipes) {
7700                 /* Store real post-adjustment hardware mode. */
7701                 crtc->hwmode = *adjusted_mode;
7702
7703                 /* Calculate and store various constants which
7704                  * are later needed by vblank and swap-completion
7705                  * timestamping. They are derived from true hwmode.
7706                  */
7707                 drm_calc_timestamping_constants(crtc);
7708         }
7709
7710         /* FIXME: add subpixel order */
7711 done:
7712         drm_mode_destroy(dev, adjusted_mode);
7713         if (!ret && crtc->enabled) {
7714                 crtc->hwmode = saved_hwmode;
7715                 crtc->mode = saved_mode;
7716         } else {
7717                 intel_modeset_check_state(dev);
7718         }
7719
7720         return ret;
7721 }
7722
7723 #undef for_each_intel_crtc_masked
7724
7725 static void intel_set_config_free(struct intel_set_config *config)
7726 {
7727         if (!config)
7728                 return;
7729
7730         kfree(config->save_connector_encoders);
7731         kfree(config->save_encoder_crtcs);
7732         kfree(config);
7733 }
7734
7735 static int intel_set_config_save_state(struct drm_device *dev,
7736                                        struct intel_set_config *config)
7737 {
7738         struct drm_encoder *encoder;
7739         struct drm_connector *connector;
7740         int count;
7741
7742         config->save_encoder_crtcs =
7743                 kcalloc(dev->mode_config.num_encoder,
7744                         sizeof(struct drm_crtc *), GFP_KERNEL);
7745         if (!config->save_encoder_crtcs)
7746                 return -ENOMEM;
7747
7748         config->save_connector_encoders =
7749                 kcalloc(dev->mode_config.num_connector,
7750                         sizeof(struct drm_encoder *), GFP_KERNEL);
7751         if (!config->save_connector_encoders)
7752                 return -ENOMEM;
7753
7754         /* Copy data. Note that driver private data is not affected.
7755          * Should anything bad happen only the expected state is
7756          * restored, not the drivers personal bookkeeping.
7757          */
7758         count = 0;
7759         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7760                 config->save_encoder_crtcs[count++] = encoder->crtc;
7761         }
7762
7763         count = 0;
7764         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7765                 config->save_connector_encoders[count++] = connector->encoder;
7766         }
7767
7768         return 0;
7769 }
7770
7771 static void intel_set_config_restore_state(struct drm_device *dev,
7772                                            struct intel_set_config *config)
7773 {
7774         struct intel_encoder *encoder;
7775         struct intel_connector *connector;
7776         int count;
7777
7778         count = 0;
7779         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7780                 encoder->new_crtc =
7781                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7782         }
7783
7784         count = 0;
7785         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7786                 connector->new_encoder =
7787                         to_intel_encoder(config->save_connector_encoders[count++]);
7788         }
7789 }
7790
7791 static void
7792 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7793                                       struct intel_set_config *config)
7794 {
7795
7796         /* We should be able to check here if the fb has the same properties
7797          * and then just flip_or_move it */
7798         if (set->crtc->fb != set->fb) {
7799                 /* If we have no fb then treat it as a full mode set */
7800                 if (set->crtc->fb == NULL) {
7801                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7802                         config->mode_changed = true;
7803                 } else if (set->fb == NULL) {
7804                         config->mode_changed = true;
7805                 } else if (set->fb->depth != set->crtc->fb->depth) {
7806                         config->mode_changed = true;
7807                 } else if (set->fb->bits_per_pixel !=
7808                            set->crtc->fb->bits_per_pixel) {
7809                         config->mode_changed = true;
7810                 } else
7811                         config->fb_changed = true;
7812         }
7813
7814         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7815                 config->fb_changed = true;
7816
7817         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7818                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7819                 drm_mode_debug_printmodeline(&set->crtc->mode);
7820                 drm_mode_debug_printmodeline(set->mode);
7821                 config->mode_changed = true;
7822         }
7823 }
7824
7825 static int
7826 intel_modeset_stage_output_state(struct drm_device *dev,
7827                                  struct drm_mode_set *set,
7828                                  struct intel_set_config *config)
7829 {
7830         struct drm_crtc *new_crtc;
7831         struct intel_connector *connector;
7832         struct intel_encoder *encoder;
7833         int count, ro;
7834
7835         /* The upper layers ensure that we either disabl a crtc or have a list
7836          * of connectors. For paranoia, double-check this. */
7837         WARN_ON(!set->fb && (set->num_connectors != 0));
7838         WARN_ON(set->fb && (set->num_connectors == 0));
7839
7840         count = 0;
7841         list_for_each_entry(connector, &dev->mode_config.connector_list,
7842                             base.head) {
7843                 /* Otherwise traverse passed in connector list and get encoders
7844                  * for them. */
7845                 for (ro = 0; ro < set->num_connectors; ro++) {
7846                         if (set->connectors[ro] == &connector->base) {
7847                                 connector->new_encoder = connector->encoder;
7848                                 break;
7849                         }
7850                 }
7851
7852                 /* If we disable the crtc, disable all its connectors. Also, if
7853                  * the connector is on the changing crtc but not on the new
7854                  * connector list, disable it. */
7855                 if ((!set->fb || ro == set->num_connectors) &&
7856                     connector->base.encoder &&
7857                     connector->base.encoder->crtc == set->crtc) {
7858                         connector->new_encoder = NULL;
7859
7860                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7861                                 connector->base.base.id,
7862                                 drm_get_connector_name(&connector->base));
7863                 }
7864
7865
7866                 if (&connector->new_encoder->base != connector->base.encoder) {
7867                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7868                         config->mode_changed = true;
7869                 }
7870
7871                 /* Disable all disconnected encoders. */
7872                 if (connector->base.status == connector_status_disconnected)
7873                         connector->new_encoder = NULL;
7874         }
7875         /* connector->new_encoder is now updated for all connectors. */
7876
7877         /* Update crtc of enabled connectors. */
7878         count = 0;
7879         list_for_each_entry(connector, &dev->mode_config.connector_list,
7880                             base.head) {
7881                 if (!connector->new_encoder)
7882                         continue;
7883
7884                 new_crtc = connector->new_encoder->base.crtc;
7885
7886                 for (ro = 0; ro < set->num_connectors; ro++) {
7887                         if (set->connectors[ro] == &connector->base)
7888                                 new_crtc = set->crtc;
7889                 }
7890
7891                 /* Make sure the new CRTC will work with the encoder */
7892                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7893                                            new_crtc)) {
7894                         return -EINVAL;
7895                 }
7896                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7897
7898                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7899                         connector->base.base.id,
7900                         drm_get_connector_name(&connector->base),
7901                         new_crtc->base.id);
7902         }
7903
7904         /* Check for any encoders that needs to be disabled. */
7905         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7906                             base.head) {
7907                 list_for_each_entry(connector,
7908                                     &dev->mode_config.connector_list,
7909                                     base.head) {
7910                         if (connector->new_encoder == encoder) {
7911                                 WARN_ON(!connector->new_encoder->new_crtc);
7912
7913                                 goto next_encoder;
7914                         }
7915                 }
7916                 encoder->new_crtc = NULL;
7917 next_encoder:
7918                 /* Only now check for crtc changes so we don't miss encoders
7919                  * that will be disabled. */
7920                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7921                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7922                         config->mode_changed = true;
7923                 }
7924         }
7925         /* Now we've also updated encoder->new_crtc for all encoders. */
7926
7927         return 0;
7928 }
7929
7930 static int intel_crtc_set_config(struct drm_mode_set *set)
7931 {
7932         struct drm_device *dev;
7933         struct drm_mode_set save_set;
7934         struct intel_set_config *config;
7935         int ret;
7936
7937         BUG_ON(!set);
7938         BUG_ON(!set->crtc);
7939         BUG_ON(!set->crtc->helper_private);
7940
7941         if (!set->mode)
7942                 set->fb = NULL;
7943
7944         /* The fb helper likes to play gross jokes with ->mode_set_config.
7945          * Unfortunately the crtc helper doesn't do much at all for this case,
7946          * so we have to cope with this madness until the fb helper is fixed up. */
7947         if (set->fb && set->num_connectors == 0)
7948                 return 0;
7949
7950         if (set->fb) {
7951                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7952                                 set->crtc->base.id, set->fb->base.id,
7953                                 (int)set->num_connectors, set->x, set->y);
7954         } else {
7955                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7956         }
7957
7958         dev = set->crtc->dev;
7959
7960         ret = -ENOMEM;
7961         config = kzalloc(sizeof(*config), GFP_KERNEL);
7962         if (!config)
7963                 goto out_config;
7964
7965         ret = intel_set_config_save_state(dev, config);
7966         if (ret)
7967                 goto out_config;
7968
7969         save_set.crtc = set->crtc;
7970         save_set.mode = &set->crtc->mode;
7971         save_set.x = set->crtc->x;
7972         save_set.y = set->crtc->y;
7973         save_set.fb = set->crtc->fb;
7974
7975         /* Compute whether we need a full modeset, only an fb base update or no
7976          * change at all. In the future we might also check whether only the
7977          * mode changed, e.g. for LVDS where we only change the panel fitter in
7978          * such cases. */
7979         intel_set_config_compute_mode_changes(set, config);
7980
7981         ret = intel_modeset_stage_output_state(dev, set, config);
7982         if (ret)
7983                 goto fail;
7984
7985         if (config->mode_changed) {
7986                 if (set->mode) {
7987                         DRM_DEBUG_KMS("attempting to set mode from"
7988                                         " userspace\n");
7989                         drm_mode_debug_printmodeline(set->mode);
7990                 }
7991
7992                 if (!intel_set_mode(set->crtc, set->mode,
7993                                     set->x, set->y, set->fb)) {
7994                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7995                                   set->crtc->base.id);
7996                         ret = -EINVAL;
7997                         goto fail;
7998                 }
7999         } else if (config->fb_changed) {
8000                 ret = intel_pipe_set_base(set->crtc,
8001                                           set->x, set->y, set->fb);
8002         }
8003
8004         intel_set_config_free(config);
8005
8006         return 0;
8007
8008 fail:
8009         intel_set_config_restore_state(dev, config);
8010
8011         /* Try to restore the config */
8012         if (config->mode_changed &&
8013             !intel_set_mode(save_set.crtc, save_set.mode,
8014                             save_set.x, save_set.y, save_set.fb))
8015                 DRM_ERROR("failed to restore config after modeset failure\n");
8016
8017 out_config:
8018         intel_set_config_free(config);
8019         return ret;
8020 }
8021
8022 static const struct drm_crtc_funcs intel_crtc_funcs = {
8023         .cursor_set = intel_crtc_cursor_set,
8024         .cursor_move = intel_crtc_cursor_move,
8025         .gamma_set = intel_crtc_gamma_set,
8026         .set_config = intel_crtc_set_config,
8027         .destroy = intel_crtc_destroy,
8028         .page_flip = intel_crtc_page_flip,
8029 };
8030
8031 static void intel_cpu_pll_init(struct drm_device *dev)
8032 {
8033         if (IS_HASWELL(dev))
8034                 intel_ddi_pll_init(dev);
8035 }
8036
8037 static void intel_pch_pll_init(struct drm_device *dev)
8038 {
8039         drm_i915_private_t *dev_priv = dev->dev_private;
8040         int i;
8041
8042         if (dev_priv->num_pch_pll == 0) {
8043                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8044                 return;
8045         }
8046
8047         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8048                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8049                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8050                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8051         }
8052 }
8053
8054 static void intel_crtc_init(struct drm_device *dev, int pipe)
8055 {
8056         drm_i915_private_t *dev_priv = dev->dev_private;
8057         struct intel_crtc *intel_crtc;
8058         int i;
8059
8060         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8061         if (intel_crtc == NULL)
8062                 return;
8063
8064         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8065
8066         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8067         for (i = 0; i < 256; i++) {
8068                 intel_crtc->lut_r[i] = i;
8069                 intel_crtc->lut_g[i] = i;
8070                 intel_crtc->lut_b[i] = i;
8071         }
8072
8073         /* Swap pipes & planes for FBC on pre-965 */
8074         intel_crtc->pipe = pipe;
8075         intel_crtc->plane = pipe;
8076         intel_crtc->cpu_transcoder = pipe;
8077         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8078                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8079                 intel_crtc->plane = !pipe;
8080         }
8081
8082         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8083                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8084         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8085         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8086
8087         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8088
8089         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8090 }
8091
8092 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8093                                 struct drm_file *file)
8094 {
8095         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8096         struct drm_mode_object *drmmode_obj;
8097         struct intel_crtc *crtc;
8098
8099         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8100                 return -ENODEV;
8101
8102         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8103                         DRM_MODE_OBJECT_CRTC);
8104
8105         if (!drmmode_obj) {
8106                 DRM_ERROR("no such CRTC id\n");
8107                 return -EINVAL;
8108         }
8109
8110         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8111         pipe_from_crtc_id->pipe = crtc->pipe;
8112
8113         return 0;
8114 }
8115
8116 static int intel_encoder_clones(struct intel_encoder *encoder)
8117 {
8118         struct drm_device *dev = encoder->base.dev;
8119         struct intel_encoder *source_encoder;
8120         int index_mask = 0;
8121         int entry = 0;
8122
8123         list_for_each_entry(source_encoder,
8124                             &dev->mode_config.encoder_list, base.head) {
8125
8126                 if (encoder == source_encoder)
8127                         index_mask |= (1 << entry);
8128
8129                 /* Intel hw has only one MUX where enocoders could be cloned. */
8130                 if (encoder->cloneable && source_encoder->cloneable)
8131                         index_mask |= (1 << entry);
8132
8133                 entry++;
8134         }
8135
8136         return index_mask;
8137 }
8138
8139 static bool has_edp_a(struct drm_device *dev)
8140 {
8141         struct drm_i915_private *dev_priv = dev->dev_private;
8142
8143         if (!IS_MOBILE(dev))
8144                 return false;
8145
8146         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8147                 return false;
8148
8149         if (IS_GEN5(dev) &&
8150             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8151                 return false;
8152
8153         return true;
8154 }
8155
8156 static void intel_setup_outputs(struct drm_device *dev)
8157 {
8158         struct drm_i915_private *dev_priv = dev->dev_private;
8159         struct intel_encoder *encoder;
8160         bool dpd_is_edp = false;
8161         bool has_lvds;
8162
8163         has_lvds = intel_lvds_init(dev);
8164         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8165                 /* disable the panel fitter on everything but LVDS */
8166                 I915_WRITE(PFIT_CONTROL, 0);
8167         }
8168
8169         if (HAS_PCH_SPLIT(dev)) {
8170                 dpd_is_edp = intel_dpd_is_edp(dev);
8171
8172                 if (has_edp_a(dev))
8173                         intel_dp_init(dev, DP_A, PORT_A);
8174
8175                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8176                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8177         }
8178
8179         intel_crt_init(dev);
8180
8181         if (IS_HASWELL(dev)) {
8182                 int found;
8183
8184                 /* Haswell uses DDI functions to detect digital outputs */
8185                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8186                 /* DDI A only supports eDP */
8187                 if (found)
8188                         intel_ddi_init(dev, PORT_A);
8189
8190                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8191                  * register */
8192                 found = I915_READ(SFUSE_STRAP);
8193
8194                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8195                         intel_ddi_init(dev, PORT_B);
8196                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8197                         intel_ddi_init(dev, PORT_C);
8198                 if (found & SFUSE_STRAP_DDID_DETECTED)
8199                         intel_ddi_init(dev, PORT_D);
8200         } else if (HAS_PCH_SPLIT(dev)) {
8201                 int found;
8202
8203                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8204                         /* PCH SDVOB multiplex with HDMIB */
8205                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8206                         if (!found)
8207                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8208                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8209                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8210                 }
8211
8212                 if (I915_READ(HDMIC) & PORT_DETECTED)
8213                         intel_hdmi_init(dev, HDMIC, PORT_C);
8214
8215                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8216                         intel_hdmi_init(dev, HDMID, PORT_D);
8217
8218                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8219                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8220
8221                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8222                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8223         } else if (IS_VALLEYVIEW(dev)) {
8224                 int found;
8225
8226                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8227                 if (I915_READ(DP_C) & DP_DETECTED)
8228                         intel_dp_init(dev, DP_C, PORT_C);
8229
8230                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8231                         /* SDVOB multiplex with HDMIB */
8232                         found = intel_sdvo_init(dev, SDVOB, true);
8233                         if (!found)
8234                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8235                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8236                                 intel_dp_init(dev, DP_B, PORT_B);
8237                 }
8238
8239                 if (I915_READ(SDVOC) & PORT_DETECTED)
8240                         intel_hdmi_init(dev, SDVOC, PORT_C);
8241
8242         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8243                 bool found = false;
8244
8245                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8246                         DRM_DEBUG_KMS("probing SDVOB\n");
8247                         found = intel_sdvo_init(dev, SDVOB, true);
8248                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8249                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8250                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8251                         }
8252
8253                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8254                                 DRM_DEBUG_KMS("probing DP_B\n");
8255                                 intel_dp_init(dev, DP_B, PORT_B);
8256                         }
8257                 }
8258
8259                 /* Before G4X SDVOC doesn't have its own detect register */
8260
8261                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8262                         DRM_DEBUG_KMS("probing SDVOC\n");
8263                         found = intel_sdvo_init(dev, SDVOC, false);
8264                 }
8265
8266                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8267
8268                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8269                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8270                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8271                         }
8272                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8273                                 DRM_DEBUG_KMS("probing DP_C\n");
8274                                 intel_dp_init(dev, DP_C, PORT_C);
8275                         }
8276                 }
8277
8278                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8279                     (I915_READ(DP_D) & DP_DETECTED)) {
8280                         DRM_DEBUG_KMS("probing DP_D\n");
8281                         intel_dp_init(dev, DP_D, PORT_D);
8282                 }
8283         } else if (IS_GEN2(dev))
8284                 intel_dvo_init(dev);
8285
8286         if (SUPPORTS_TV(dev))
8287                 intel_tv_init(dev);
8288
8289         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8290                 encoder->base.possible_crtcs = encoder->crtc_mask;
8291                 encoder->base.possible_clones =
8292                         intel_encoder_clones(encoder);
8293         }
8294
8295         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8296                 ironlake_init_pch_refclk(dev);
8297 }
8298
8299 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8300 {
8301         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8302
8303         drm_framebuffer_cleanup(fb);
8304         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8305
8306         kfree(intel_fb);
8307 }
8308
8309 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8310                                                 struct drm_file *file,
8311                                                 unsigned int *handle)
8312 {
8313         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8314         struct drm_i915_gem_object *obj = intel_fb->obj;
8315
8316         return drm_gem_handle_create(file, &obj->base, handle);
8317 }
8318
8319 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8320         .destroy = intel_user_framebuffer_destroy,
8321         .create_handle = intel_user_framebuffer_create_handle,
8322 };
8323
8324 int intel_framebuffer_init(struct drm_device *dev,
8325                            struct intel_framebuffer *intel_fb,
8326                            struct drm_mode_fb_cmd2 *mode_cmd,
8327                            struct drm_i915_gem_object *obj)
8328 {
8329         int ret;
8330
8331         if (obj->tiling_mode == I915_TILING_Y)
8332                 return -EINVAL;
8333
8334         if (mode_cmd->pitches[0] & 63)
8335                 return -EINVAL;
8336
8337         switch (mode_cmd->pixel_format) {
8338         case DRM_FORMAT_RGB332:
8339         case DRM_FORMAT_RGB565:
8340         case DRM_FORMAT_XRGB8888:
8341         case DRM_FORMAT_XBGR8888:
8342         case DRM_FORMAT_ARGB8888:
8343         case DRM_FORMAT_XRGB2101010:
8344         case DRM_FORMAT_ARGB2101010:
8345                 /* RGB formats are common across chipsets */
8346                 break;
8347         case DRM_FORMAT_YUYV:
8348         case DRM_FORMAT_UYVY:
8349         case DRM_FORMAT_YVYU:
8350         case DRM_FORMAT_VYUY:
8351                 break;
8352         default:
8353                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8354                                 mode_cmd->pixel_format);
8355                 return -EINVAL;
8356         }
8357
8358         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8359         if (ret) {
8360                 DRM_ERROR("framebuffer init failed %d\n", ret);
8361                 return ret;
8362         }
8363
8364         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8365         intel_fb->obj = obj;
8366         return 0;
8367 }
8368
8369 static struct drm_framebuffer *
8370 intel_user_framebuffer_create(struct drm_device *dev,
8371                               struct drm_file *filp,
8372                               struct drm_mode_fb_cmd2 *mode_cmd)
8373 {
8374         struct drm_i915_gem_object *obj;
8375
8376         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8377                                                 mode_cmd->handles[0]));
8378         if (&obj->base == NULL)
8379                 return ERR_PTR(-ENOENT);
8380
8381         return intel_framebuffer_create(dev, mode_cmd, obj);
8382 }
8383
8384 static const struct drm_mode_config_funcs intel_mode_funcs = {
8385         .fb_create = intel_user_framebuffer_create,
8386         .output_poll_changed = intel_fb_output_poll_changed,
8387 };
8388
8389 /* Set up chip specific display functions */
8390 static void intel_init_display(struct drm_device *dev)
8391 {
8392         struct drm_i915_private *dev_priv = dev->dev_private;
8393
8394         /* We always want a DPMS function */
8395         if (IS_HASWELL(dev)) {
8396                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8397                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8398                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8399                 dev_priv->display.off = haswell_crtc_off;
8400                 dev_priv->display.update_plane = ironlake_update_plane;
8401         } else if (HAS_PCH_SPLIT(dev)) {
8402                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8403                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8404                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8405                 dev_priv->display.off = ironlake_crtc_off;
8406                 dev_priv->display.update_plane = ironlake_update_plane;
8407         } else {
8408                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8409                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8410                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8411                 dev_priv->display.off = i9xx_crtc_off;
8412                 dev_priv->display.update_plane = i9xx_update_plane;
8413         }
8414
8415         /* Returns the core display clock speed */
8416         if (IS_VALLEYVIEW(dev))
8417                 dev_priv->display.get_display_clock_speed =
8418                         valleyview_get_display_clock_speed;
8419         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8420                 dev_priv->display.get_display_clock_speed =
8421                         i945_get_display_clock_speed;
8422         else if (IS_I915G(dev))
8423                 dev_priv->display.get_display_clock_speed =
8424                         i915_get_display_clock_speed;
8425         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8426                 dev_priv->display.get_display_clock_speed =
8427                         i9xx_misc_get_display_clock_speed;
8428         else if (IS_I915GM(dev))
8429                 dev_priv->display.get_display_clock_speed =
8430                         i915gm_get_display_clock_speed;
8431         else if (IS_I865G(dev))
8432                 dev_priv->display.get_display_clock_speed =
8433                         i865_get_display_clock_speed;
8434         else if (IS_I85X(dev))
8435                 dev_priv->display.get_display_clock_speed =
8436                         i855_get_display_clock_speed;
8437         else /* 852, 830 */
8438                 dev_priv->display.get_display_clock_speed =
8439                         i830_get_display_clock_speed;
8440
8441         if (HAS_PCH_SPLIT(dev)) {
8442                 if (IS_GEN5(dev)) {
8443                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8444                         dev_priv->display.write_eld = ironlake_write_eld;
8445                 } else if (IS_GEN6(dev)) {
8446                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8447                         dev_priv->display.write_eld = ironlake_write_eld;
8448                 } else if (IS_IVYBRIDGE(dev)) {
8449                         /* FIXME: detect B0+ stepping and use auto training */
8450                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8451                         dev_priv->display.write_eld = ironlake_write_eld;
8452                         dev_priv->display.modeset_global_resources =
8453                                 ivb_modeset_global_resources;
8454                 } else if (IS_HASWELL(dev)) {
8455                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8456                         dev_priv->display.write_eld = haswell_write_eld;
8457                 } else
8458                         dev_priv->display.update_wm = NULL;
8459         } else if (IS_G4X(dev)) {
8460                 dev_priv->display.write_eld = g4x_write_eld;
8461         }
8462
8463         /* Default just returns -ENODEV to indicate unsupported */
8464         dev_priv->display.queue_flip = intel_default_queue_flip;
8465
8466         switch (INTEL_INFO(dev)->gen) {
8467         case 2:
8468                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8469                 break;
8470
8471         case 3:
8472                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8473                 break;
8474
8475         case 4:
8476         case 5:
8477                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8478                 break;
8479
8480         case 6:
8481                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8482                 break;
8483         case 7:
8484                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8485                 break;
8486         }
8487 }
8488
8489 /*
8490  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8491  * resume, or other times.  This quirk makes sure that's the case for
8492  * affected systems.
8493  */
8494 static void quirk_pipea_force(struct drm_device *dev)
8495 {
8496         struct drm_i915_private *dev_priv = dev->dev_private;
8497
8498         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8499         DRM_INFO("applying pipe a force quirk\n");
8500 }
8501
8502 /*
8503  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8504  */
8505 static void quirk_ssc_force_disable(struct drm_device *dev)
8506 {
8507         struct drm_i915_private *dev_priv = dev->dev_private;
8508         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8509         DRM_INFO("applying lvds SSC disable quirk\n");
8510 }
8511
8512 /*
8513  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8514  * brightness value
8515  */
8516 static void quirk_invert_brightness(struct drm_device *dev)
8517 {
8518         struct drm_i915_private *dev_priv = dev->dev_private;
8519         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8520         DRM_INFO("applying inverted panel brightness quirk\n");
8521 }
8522
8523 struct intel_quirk {
8524         int device;
8525         int subsystem_vendor;
8526         int subsystem_device;
8527         void (*hook)(struct drm_device *dev);
8528 };
8529
8530 static struct intel_quirk intel_quirks[] = {
8531         /* HP Mini needs pipe A force quirk (LP: #322104) */
8532         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8533
8534         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8535         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8536
8537         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8538         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8539
8540         /* 830/845 need to leave pipe A & dpll A up */
8541         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8542         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8543
8544         /* Lenovo U160 cannot use SSC on LVDS */
8545         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8546
8547         /* Sony Vaio Y cannot use SSC on LVDS */
8548         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8549
8550         /* Acer Aspire 5734Z must invert backlight brightness */
8551         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8552 };
8553
8554 static void intel_init_quirks(struct drm_device *dev)
8555 {
8556         struct pci_dev *d = dev->pdev;
8557         int i;
8558
8559         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8560                 struct intel_quirk *q = &intel_quirks[i];
8561
8562                 if (d->device == q->device &&
8563                     (d->subsystem_vendor == q->subsystem_vendor ||
8564                      q->subsystem_vendor == PCI_ANY_ID) &&
8565                     (d->subsystem_device == q->subsystem_device ||
8566                      q->subsystem_device == PCI_ANY_ID))
8567                         q->hook(dev);
8568         }
8569 }
8570
8571 /* Disable the VGA plane that we never use */
8572 static void i915_disable_vga(struct drm_device *dev)
8573 {
8574         struct drm_i915_private *dev_priv = dev->dev_private;
8575         u8 sr1;
8576         u32 vga_reg;
8577
8578         if (HAS_PCH_SPLIT(dev))
8579                 vga_reg = CPU_VGACNTRL;
8580         else
8581                 vga_reg = VGACNTRL;
8582
8583         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8584         outb(SR01, VGA_SR_INDEX);
8585         sr1 = inb(VGA_SR_DATA);
8586         outb(sr1 | 1<<5, VGA_SR_DATA);
8587         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8588         udelay(300);
8589
8590         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8591         POSTING_READ(vga_reg);
8592 }
8593
8594 void intel_modeset_init_hw(struct drm_device *dev)
8595 {
8596         /* We attempt to init the necessary power wells early in the initialization
8597          * time, so the subsystems that expect power to be enabled can work.
8598          */
8599         intel_init_power_wells(dev);
8600
8601         intel_prepare_ddi(dev);
8602
8603         intel_init_clock_gating(dev);
8604
8605         mutex_lock(&dev->struct_mutex);
8606         intel_enable_gt_powersave(dev);
8607         mutex_unlock(&dev->struct_mutex);
8608 }
8609
8610 void intel_modeset_init(struct drm_device *dev)
8611 {
8612         struct drm_i915_private *dev_priv = dev->dev_private;
8613         int i, ret;
8614
8615         drm_mode_config_init(dev);
8616
8617         dev->mode_config.min_width = 0;
8618         dev->mode_config.min_height = 0;
8619
8620         dev->mode_config.preferred_depth = 24;
8621         dev->mode_config.prefer_shadow = 1;
8622
8623         dev->mode_config.funcs = &intel_mode_funcs;
8624
8625         intel_init_quirks(dev);
8626
8627         intel_init_pm(dev);
8628
8629         intel_init_display(dev);
8630
8631         if (IS_GEN2(dev)) {
8632                 dev->mode_config.max_width = 2048;
8633                 dev->mode_config.max_height = 2048;
8634         } else if (IS_GEN3(dev)) {
8635                 dev->mode_config.max_width = 4096;
8636                 dev->mode_config.max_height = 4096;
8637         } else {
8638                 dev->mode_config.max_width = 8192;
8639                 dev->mode_config.max_height = 8192;
8640         }
8641         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8642
8643         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8644                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8645
8646         for (i = 0; i < dev_priv->num_pipe; i++) {
8647                 intel_crtc_init(dev, i);
8648                 ret = intel_plane_init(dev, i);
8649                 if (ret)
8650                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8651         }
8652
8653         intel_cpu_pll_init(dev);
8654         intel_pch_pll_init(dev);
8655
8656         /* Just disable it once at startup */
8657         i915_disable_vga(dev);
8658         intel_setup_outputs(dev);
8659 }
8660
8661 static void
8662 intel_connector_break_all_links(struct intel_connector *connector)
8663 {
8664         connector->base.dpms = DRM_MODE_DPMS_OFF;
8665         connector->base.encoder = NULL;
8666         connector->encoder->connectors_active = false;
8667         connector->encoder->base.crtc = NULL;
8668 }
8669
8670 static void intel_enable_pipe_a(struct drm_device *dev)
8671 {
8672         struct intel_connector *connector;
8673         struct drm_connector *crt = NULL;
8674         struct intel_load_detect_pipe load_detect_temp;
8675
8676         /* We can't just switch on the pipe A, we need to set things up with a
8677          * proper mode and output configuration. As a gross hack, enable pipe A
8678          * by enabling the load detect pipe once. */
8679         list_for_each_entry(connector,
8680                             &dev->mode_config.connector_list,
8681                             base.head) {
8682                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8683                         crt = &connector->base;
8684                         break;
8685                 }
8686         }
8687
8688         if (!crt)
8689                 return;
8690
8691         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8692                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8693
8694
8695 }
8696
8697 static bool
8698 intel_check_plane_mapping(struct intel_crtc *crtc)
8699 {
8700         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8701         u32 reg, val;
8702
8703         if (dev_priv->num_pipe == 1)
8704                 return true;
8705
8706         reg = DSPCNTR(!crtc->plane);
8707         val = I915_READ(reg);
8708
8709         if ((val & DISPLAY_PLANE_ENABLE) &&
8710             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8711                 return false;
8712
8713         return true;
8714 }
8715
8716 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8717 {
8718         struct drm_device *dev = crtc->base.dev;
8719         struct drm_i915_private *dev_priv = dev->dev_private;
8720         u32 reg;
8721
8722         /* Clear any frame start delays used for debugging left by the BIOS */
8723         reg = PIPECONF(crtc->cpu_transcoder);
8724         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8725
8726         /* We need to sanitize the plane -> pipe mapping first because this will
8727          * disable the crtc (and hence change the state) if it is wrong. Note
8728          * that gen4+ has a fixed plane -> pipe mapping.  */
8729         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8730                 struct intel_connector *connector;
8731                 bool plane;
8732
8733                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8734                               crtc->base.base.id);
8735
8736                 /* Pipe has the wrong plane attached and the plane is active.
8737                  * Temporarily change the plane mapping and disable everything
8738                  * ...  */
8739                 plane = crtc->plane;
8740                 crtc->plane = !plane;
8741                 dev_priv->display.crtc_disable(&crtc->base);
8742                 crtc->plane = plane;
8743
8744                 /* ... and break all links. */
8745                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8746                                     base.head) {
8747                         if (connector->encoder->base.crtc != &crtc->base)
8748                                 continue;
8749
8750                         intel_connector_break_all_links(connector);
8751                 }
8752
8753                 WARN_ON(crtc->active);
8754                 crtc->base.enabled = false;
8755         }
8756
8757         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8758             crtc->pipe == PIPE_A && !crtc->active) {
8759                 /* BIOS forgot to enable pipe A, this mostly happens after
8760                  * resume. Force-enable the pipe to fix this, the update_dpms
8761                  * call below we restore the pipe to the right state, but leave
8762                  * the required bits on. */
8763                 intel_enable_pipe_a(dev);
8764         }
8765
8766         /* Adjust the state of the output pipe according to whether we
8767          * have active connectors/encoders. */
8768         intel_crtc_update_dpms(&crtc->base);
8769
8770         if (crtc->active != crtc->base.enabled) {
8771                 struct intel_encoder *encoder;
8772
8773                 /* This can happen either due to bugs in the get_hw_state
8774                  * functions or because the pipe is force-enabled due to the
8775                  * pipe A quirk. */
8776                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8777                               crtc->base.base.id,
8778                               crtc->base.enabled ? "enabled" : "disabled",
8779                               crtc->active ? "enabled" : "disabled");
8780
8781                 crtc->base.enabled = crtc->active;
8782
8783                 /* Because we only establish the connector -> encoder ->
8784                  * crtc links if something is active, this means the
8785                  * crtc is now deactivated. Break the links. connector
8786                  * -> encoder links are only establish when things are
8787                  *  actually up, hence no need to break them. */
8788                 WARN_ON(crtc->active);
8789
8790                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8791                         WARN_ON(encoder->connectors_active);
8792                         encoder->base.crtc = NULL;
8793                 }
8794         }
8795 }
8796
8797 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8798 {
8799         struct intel_connector *connector;
8800         struct drm_device *dev = encoder->base.dev;
8801
8802         /* We need to check both for a crtc link (meaning that the
8803          * encoder is active and trying to read from a pipe) and the
8804          * pipe itself being active. */
8805         bool has_active_crtc = encoder->base.crtc &&
8806                 to_intel_crtc(encoder->base.crtc)->active;
8807
8808         if (encoder->connectors_active && !has_active_crtc) {
8809                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8810                               encoder->base.base.id,
8811                               drm_get_encoder_name(&encoder->base));
8812
8813                 /* Connector is active, but has no active pipe. This is
8814                  * fallout from our resume register restoring. Disable
8815                  * the encoder manually again. */
8816                 if (encoder->base.crtc) {
8817                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8818                                       encoder->base.base.id,
8819                                       drm_get_encoder_name(&encoder->base));
8820                         encoder->disable(encoder);
8821                 }
8822
8823                 /* Inconsistent output/port/pipe state happens presumably due to
8824                  * a bug in one of the get_hw_state functions. Or someplace else
8825                  * in our code, like the register restore mess on resume. Clamp
8826                  * things to off as a safer default. */
8827                 list_for_each_entry(connector,
8828                                     &dev->mode_config.connector_list,
8829                                     base.head) {
8830                         if (connector->encoder != encoder)
8831                                 continue;
8832
8833                         intel_connector_break_all_links(connector);
8834                 }
8835         }
8836         /* Enabled encoders without active connectors will be fixed in
8837          * the crtc fixup. */
8838 }
8839
8840 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8841  * and i915 state tracking structures. */
8842 void intel_modeset_setup_hw_state(struct drm_device *dev)
8843 {
8844         struct drm_i915_private *dev_priv = dev->dev_private;
8845         enum pipe pipe;
8846         u32 tmp;
8847         struct intel_crtc *crtc;
8848         struct intel_encoder *encoder;
8849         struct intel_connector *connector;
8850
8851         if (IS_HASWELL(dev)) {
8852                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8853
8854                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8855                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8856                         case TRANS_DDI_EDP_INPUT_A_ON:
8857                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8858                                 pipe = PIPE_A;
8859                                 break;
8860                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8861                                 pipe = PIPE_B;
8862                                 break;
8863                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8864                                 pipe = PIPE_C;
8865                                 break;
8866                         }
8867
8868                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8869                         crtc->cpu_transcoder = TRANSCODER_EDP;
8870
8871                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8872                                       pipe_name(pipe));
8873                 }
8874         }
8875
8876         for_each_pipe(pipe) {
8877                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8878
8879                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8880                 if (tmp & PIPECONF_ENABLE)
8881                         crtc->active = true;
8882                 else
8883                         crtc->active = false;
8884
8885                 crtc->base.enabled = crtc->active;
8886
8887                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8888                               crtc->base.base.id,
8889                               crtc->active ? "enabled" : "disabled");
8890         }
8891
8892         if (IS_HASWELL(dev))
8893                 intel_ddi_setup_hw_pll_state(dev);
8894
8895         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8896                             base.head) {
8897                 pipe = 0;
8898
8899                 if (encoder->get_hw_state(encoder, &pipe)) {
8900                         encoder->base.crtc =
8901                                 dev_priv->pipe_to_crtc_mapping[pipe];
8902                 } else {
8903                         encoder->base.crtc = NULL;
8904                 }
8905
8906                 encoder->connectors_active = false;
8907                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8908                               encoder->base.base.id,
8909                               drm_get_encoder_name(&encoder->base),
8910                               encoder->base.crtc ? "enabled" : "disabled",
8911                               pipe);
8912         }
8913
8914         list_for_each_entry(connector, &dev->mode_config.connector_list,
8915                             base.head) {
8916                 if (connector->get_hw_state(connector)) {
8917                         connector->base.dpms = DRM_MODE_DPMS_ON;
8918                         connector->encoder->connectors_active = true;
8919                         connector->base.encoder = &connector->encoder->base;
8920                 } else {
8921                         connector->base.dpms = DRM_MODE_DPMS_OFF;
8922                         connector->base.encoder = NULL;
8923                 }
8924                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8925                               connector->base.base.id,
8926                               drm_get_connector_name(&connector->base),
8927                               connector->base.encoder ? "enabled" : "disabled");
8928         }
8929
8930         /* HW state is read out, now we need to sanitize this mess. */
8931         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8932                             base.head) {
8933                 intel_sanitize_encoder(encoder);
8934         }
8935
8936         for_each_pipe(pipe) {
8937                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8938                 intel_sanitize_crtc(crtc);
8939         }
8940
8941         intel_modeset_update_staged_output_state(dev);
8942
8943         intel_modeset_check_state(dev);
8944
8945         drm_mode_config_reset(dev);
8946 }
8947
8948 void intel_modeset_gem_init(struct drm_device *dev)
8949 {
8950         intel_modeset_init_hw(dev);
8951
8952         intel_setup_overlay(dev);
8953
8954         intel_modeset_setup_hw_state(dev);
8955 }
8956
8957 void intel_modeset_cleanup(struct drm_device *dev)
8958 {
8959         struct drm_i915_private *dev_priv = dev->dev_private;
8960         struct drm_crtc *crtc;
8961         struct intel_crtc *intel_crtc;
8962
8963         drm_kms_helper_poll_fini(dev);
8964         mutex_lock(&dev->struct_mutex);
8965
8966         intel_unregister_dsm_handler();
8967
8968
8969         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8970                 /* Skip inactive CRTCs */
8971                 if (!crtc->fb)
8972                         continue;
8973
8974                 intel_crtc = to_intel_crtc(crtc);
8975                 intel_increase_pllclock(crtc);
8976         }
8977
8978         intel_disable_fbc(dev);
8979
8980         intel_disable_gt_powersave(dev);
8981
8982         ironlake_teardown_rc6(dev);
8983
8984         if (IS_VALLEYVIEW(dev))
8985                 vlv_init_dpio(dev);
8986
8987         mutex_unlock(&dev->struct_mutex);
8988
8989         /* Disable the irq before mode object teardown, for the irq might
8990          * enqueue unpin/hotplug work. */
8991         drm_irq_uninstall(dev);
8992         cancel_work_sync(&dev_priv->hotplug_work);
8993         cancel_work_sync(&dev_priv->rps.work);
8994
8995         /* flush any delayed tasks or pending work */
8996         flush_scheduled_work();
8997
8998         drm_mode_config_cleanup(dev);
8999 }
9000
9001 /*
9002  * Return which encoder is currently attached for connector.
9003  */
9004 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9005 {
9006         return &intel_attached_encoder(connector)->base;
9007 }
9008
9009 void intel_connector_attach_encoder(struct intel_connector *connector,
9010                                     struct intel_encoder *encoder)
9011 {
9012         connector->encoder = encoder;
9013         drm_mode_connector_attach_encoder(&connector->base,
9014                                           &encoder->base);
9015 }
9016
9017 /*
9018  * set vga decode state - true == enable VGA decode
9019  */
9020 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9021 {
9022         struct drm_i915_private *dev_priv = dev->dev_private;
9023         u16 gmch_ctrl;
9024
9025         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9026         if (state)
9027                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9028         else
9029                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9030         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9031         return 0;
9032 }
9033
9034 #ifdef CONFIG_DEBUG_FS
9035 #include <linux/seq_file.h>
9036
9037 struct intel_display_error_state {
9038         struct intel_cursor_error_state {
9039                 u32 control;
9040                 u32 position;
9041                 u32 base;
9042                 u32 size;
9043         } cursor[I915_MAX_PIPES];
9044
9045         struct intel_pipe_error_state {
9046                 u32 conf;
9047                 u32 source;
9048
9049                 u32 htotal;
9050                 u32 hblank;
9051                 u32 hsync;
9052                 u32 vtotal;
9053                 u32 vblank;
9054                 u32 vsync;
9055         } pipe[I915_MAX_PIPES];
9056
9057         struct intel_plane_error_state {
9058                 u32 control;
9059                 u32 stride;
9060                 u32 size;
9061                 u32 pos;
9062                 u32 addr;
9063                 u32 surface;
9064                 u32 tile_offset;
9065         } plane[I915_MAX_PIPES];
9066 };
9067
9068 struct intel_display_error_state *
9069 intel_display_capture_error_state(struct drm_device *dev)
9070 {
9071         drm_i915_private_t *dev_priv = dev->dev_private;
9072         struct intel_display_error_state *error;
9073         enum transcoder cpu_transcoder;
9074         int i;
9075
9076         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9077         if (error == NULL)
9078                 return NULL;
9079
9080         for_each_pipe(i) {
9081                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9082
9083                 error->cursor[i].control = I915_READ(CURCNTR(i));
9084                 error->cursor[i].position = I915_READ(CURPOS(i));
9085                 error->cursor[i].base = I915_READ(CURBASE(i));
9086
9087                 error->plane[i].control = I915_READ(DSPCNTR(i));
9088                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9089                 error->plane[i].size = I915_READ(DSPSIZE(i));
9090                 error->plane[i].pos = I915_READ(DSPPOS(i));
9091                 error->plane[i].addr = I915_READ(DSPADDR(i));
9092                 if (INTEL_INFO(dev)->gen >= 4) {
9093                         error->plane[i].surface = I915_READ(DSPSURF(i));
9094                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9095                 }
9096
9097                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9098                 error->pipe[i].source = I915_READ(PIPESRC(i));
9099                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9100                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9101                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9102                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9103                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9104                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9105         }
9106
9107         return error;
9108 }
9109
9110 void
9111 intel_display_print_error_state(struct seq_file *m,
9112                                 struct drm_device *dev,
9113                                 struct intel_display_error_state *error)
9114 {
9115         drm_i915_private_t *dev_priv = dev->dev_private;
9116         int i;
9117
9118         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9119         for_each_pipe(i) {
9120                 seq_printf(m, "Pipe [%d]:\n", i);
9121                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9122                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9123                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9124                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9125                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9126                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9127                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9128                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9129
9130                 seq_printf(m, "Plane [%d]:\n", i);
9131                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9132                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9133                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9134                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9135                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9136                 if (INTEL_INFO(dev)->gen >= 4) {
9137                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9138                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9139                 }
9140
9141                 seq_printf(m, "Cursor [%d]:\n", i);
9142                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9143                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9144                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9145         }
9146 }
9147 #endif