]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: don't assert_panel_unlocked on LPT
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941                                              enum pipe pipe)
942 {
943         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946         return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 frame, frame_reg = PIPEFRAME(pipe);
953
954         frame = I915_READ(frame_reg);
955
956         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957                 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961  * intel_wait_for_vblank - wait for vblank on a given pipe
962  * @dev: drm device
963  * @pipe: pipe to wait for
964  *
965  * Wait for vblank to occur on a given pipe.  Needed for various bits of
966  * mode setting code.
967  */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         int pipestat_reg = PIPESTAT(pipe);
972
973         if (INTEL_INFO(dev)->gen >= 5) {
974                 ironlake_wait_for_vblank(dev, pipe);
975                 return;
976         }
977
978         /* Clear existing vblank status. Note this will clear any other
979          * sticky status fields as well.
980          *
981          * This races with i915_driver_irq_handler() with the result
982          * that either function could miss a vblank event.  Here it is not
983          * fatal, as we will either wait upon the next vblank interrupt or
984          * timeout.  Generally speaking intel_wait_for_vblank() is only
985          * called during modeset at which time the GPU should be idle and
986          * should *not* be performing page flips and thus not waiting on
987          * vblanks...
988          * Currently, the result of us stealing a vblank from the irq
989          * handler is that a single frame will be skipped during swapbuffers.
990          */
991         I915_WRITE(pipestat_reg,
992                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994         /* Wait for vblank interrupt bit to set */
995         if (wait_for(I915_READ(pipestat_reg) &
996                      PIPE_VBLANK_INTERRUPT_STATUS,
997                      50))
998                 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002  * intel_wait_for_pipe_off - wait for pipe to turn off
1003  * @dev: drm device
1004  * @pipe: pipe to wait for
1005  *
1006  * After disabling a pipe, we can't wait for vblank in the usual way,
1007  * spinning on the vblank interrupt status bit, since we won't actually
1008  * see an interrupt when the pipe is disabled.
1009  *
1010  * On Gen4 and above:
1011  *   wait for the pipe register state bit to turn off
1012  *
1013  * Otherwise:
1014  *   wait for the display line value to settle (it usually
1015  *   ends up stopping at the start of the next frame).
1016  *
1017  */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022                                                                       pipe);
1023
1024         if (INTEL_INFO(dev)->gen >= 4) {
1025                 int reg = PIPECONF(cpu_transcoder);
1026
1027                 /* Wait for the Pipe State to go off */
1028                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029                              100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         } else {
1032                 u32 last_line, line_mask;
1033                 int reg = PIPEDSL(pipe);
1034                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036                 if (IS_GEN2(dev))
1037                         line_mask = DSL_LINEMASK_GEN2;
1038                 else
1039                         line_mask = DSL_LINEMASK_GEN3;
1040
1041                 /* Wait for the display line to settle */
1042                 do {
1043                         last_line = I915_READ(reg) & line_mask;
1044                         mdelay(5);
1045                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046                          time_after(timeout, jiffies));
1047                 if (time_after(jiffies, timeout))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054         return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059                        enum pipe pipe, bool state)
1060 {
1061         int reg;
1062         u32 val;
1063         bool cur_state;
1064
1065         reg = DPLL(pipe);
1066         val = I915_READ(reg);
1067         cur_state = !!(val & DPLL_VCO_ENABLE);
1068         WARN(cur_state != state,
1069              "PLL state assertion failure (expected %s, current %s)\n",
1070              state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077                            struct intel_pch_pll *pll,
1078                            struct intel_crtc *crtc,
1079                            bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         if (HAS_PCH_LPT(dev_priv->dev)) {
1085                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086                 return;
1087         }
1088
1089         if (WARN (!pll,
1090                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091                 return;
1092
1093         val = I915_READ(pll->pll_reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097              pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099         /* Make sure the selected PLL is correctly attached to the transcoder */
1100         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101                 u32 pch_dpll;
1102
1103                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1107                           cur_state, crtc->pipe, pch_dpll)) {
1108                         cur_state = !!(val >> (4*crtc->pipe + 3));
1109                         WARN(cur_state != state,
1110                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1111                              pll->pll_reg == _PCH_DPLL_B,
1112                              state_string(state),
1113                              crtc->pipe,
1114                              val);
1115                 }
1116         }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122                           enum pipe pipe, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (IS_HASWELL(dev_priv->dev)) {
1131                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133                 val = I915_READ(reg);
1134                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135         } else {
1136                 reg = FDI_TX_CTL(pipe);
1137                 val = I915_READ(reg);
1138                 cur_state = !!(val & FDI_TX_ENABLE);
1139         }
1140         WARN(cur_state != state,
1141              "FDI TX state assertion failure (expected %s, current %s)\n",
1142              state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148                           enum pipe pipe, bool state)
1149 {
1150         int reg;
1151         u32 val;
1152         bool cur_state;
1153
1154         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156                         return;
1157         } else {
1158                 reg = FDI_RX_CTL(pipe);
1159                 val = I915_READ(reg);
1160                 cur_state = !!(val & FDI_RX_ENABLE);
1161         }
1162         WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (dev_priv->info->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (IS_HASWELL(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189                                       enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196                 return;
1197         }
1198         reg = FDI_RX_CTL(pipe);
1199         val = I915_READ(reg);
1200         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                                   enum pipe pipe)
1205 {
1206         int pp_reg, lvds_reg;
1207         u32 val;
1208         enum pipe panel_pipe = PIPE_A;
1209         bool locked = true;
1210
1211         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212                 pp_reg = PCH_PP_CONTROL;
1213                 lvds_reg = PCH_LVDS;
1214         } else {
1215                 pp_reg = PP_CONTROL;
1216                 lvds_reg = LVDS;
1217         }
1218
1219         val = I915_READ(pp_reg);
1220         if (!(val & PANEL_POWER_ON) ||
1221             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222                 locked = false;
1223
1224         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225                 panel_pipe = PIPE_B;
1226
1227         WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233                  enum pipe pipe, bool state)
1234 {
1235         int reg;
1236         u32 val;
1237         bool cur_state;
1238         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239                                                                       pipe);
1240
1241         /* if we need the pipe A quirk it must be always on */
1242         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243                 state = true;
1244
1245         reg = PIPECONF(cpu_transcoder);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & PIPECONF_ENABLE);
1248         WARN(cur_state != state,
1249              "pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254                          enum plane plane, bool state)
1255 {
1256         int reg;
1257         u32 val;
1258         bool cur_state;
1259
1260         reg = DSPCNTR(plane);
1261         val = I915_READ(reg);
1262         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263         WARN(cur_state != state,
1264              "plane %c assertion failure (expected %s, current %s)\n",
1265              plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe)
1273 {
1274         int reg, i;
1275         u32 val;
1276         int cur_pipe;
1277
1278         /* Planes are fixed to pipes on ILK+ */
1279         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280                 reg = DSPCNTR(pipe);
1281                 val = I915_READ(reg);
1282                 WARN((val & DISPLAY_PLANE_ENABLE),
1283                      "plane %c assertion failure, should be disabled but not\n",
1284                      plane_name(pipe));
1285                 return;
1286         }
1287
1288         /* Need to check both planes against the pipe */
1289         for (i = 0; i < 2; i++) {
1290                 reg = DSPCNTR(i);
1291                 val = I915_READ(reg);
1292                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293                         DISPPLANE_SEL_PIPE_SHIFT;
1294                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296                      plane_name(i), pipe_name(pipe));
1297         }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302         u32 val;
1303         bool enabled;
1304
1305         if (HAS_PCH_LPT(dev_priv->dev)) {
1306                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307                 return;
1308         }
1309
1310         val = I915_READ(PCH_DREF_CONTROL);
1311         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312                             DREF_SUPERSPREAD_SOURCE_MASK));
1313         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317                                        enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321         bool enabled;
1322
1323         reg = TRANSCONF(pipe);
1324         val = I915_READ(reg);
1325         enabled = !!(val & TRANS_ENABLE);
1326         WARN(enabled,
1327              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328              pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332                             enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334         if ((val & DP_PORT_EN) == 0)
1335                 return false;
1336
1337         if (HAS_PCH_CPT(dev_priv->dev)) {
1338                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341                         return false;
1342         } else {
1343                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344                         return false;
1345         }
1346         return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350                               enum pipe pipe, u32 val)
1351 {
1352         if ((val & PORT_ENABLE) == 0)
1353                 return false;
1354
1355         if (HAS_PCH_CPT(dev_priv->dev)) {
1356                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357                         return false;
1358         } else {
1359                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360                         return false;
1361         }
1362         return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366                               enum pipe pipe, u32 val)
1367 {
1368         if ((val & LVDS_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & ADPA_DAC_ENABLE) == 0)
1385                 return false;
1386         if (HAS_PCH_CPT(dev_priv->dev)) {
1387                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388                         return false;
1389         } else {
1390                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391                         return false;
1392         }
1393         return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397                                    enum pipe pipe, int reg, u32 port_sel)
1398 {
1399         u32 val = I915_READ(reg);
1400         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402              reg, pipe_name(pipe));
1403
1404         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405              && (val & DP_PIPEB_SELECT),
1406              "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410                                      enum pipe pipe, int reg)
1411 {
1412         u32 val = I915_READ(reg);
1413         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415              reg, pipe_name(pipe));
1416
1417         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418              && (val & SDVO_PIPE_B_SELECT),
1419              "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423                                       enum pipe pipe)
1424 {
1425         int reg;
1426         u32 val;
1427
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432         reg = PCH_ADPA;
1433         val = I915_READ(reg);
1434         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435              "PCH VGA enabled on transcoder %c, should be disabled\n",
1436              pipe_name(pipe));
1437
1438         reg = PCH_LVDS;
1439         val = I915_READ(reg);
1440         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442              pipe_name(pipe));
1443
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450  * intel_enable_pll - enable a PLL
1451  * @dev_priv: i915 private structure
1452  * @pipe: pipe PLL to enable
1453  *
1454  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1455  * make sure the PLL reg is writable first though, since the panel write
1456  * protect mechanism may be enabled.
1457  *
1458  * Note!  This is for pre-ILK only.
1459  *
1460  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461  */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464         int reg;
1465         u32 val;
1466
1467         /* No really, not for ILK+ */
1468         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472                 assert_panel_unlocked(dev_priv, pipe);
1473
1474         reg = DPLL(pipe);
1475         val = I915_READ(reg);
1476         val |= DPLL_VCO_ENABLE;
1477
1478         /* We do this three times for luck */
1479         I915_WRITE(reg, val);
1480         POSTING_READ(reg);
1481         udelay(150); /* wait for warmup */
1482         I915_WRITE(reg, val);
1483         POSTING_READ(reg);
1484         udelay(150); /* wait for warmup */
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487         udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491  * intel_disable_pll - disable a PLL
1492  * @dev_priv: i915 private structure
1493  * @pipe: pipe PLL to disable
1494  *
1495  * Disable the PLL for @pipe, making sure the pipe is off first.
1496  *
1497  * Note!  This is for pre-ILK only.
1498  */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501         int reg;
1502         u32 val;
1503
1504         /* Don't disable pipe A or pipe A PLLs if needed */
1505         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506                 return;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         reg = DPLL(pipe);
1512         val = I915_READ(reg);
1513         val &= ~DPLL_VCO_ENABLE;
1514         I915_WRITE(reg, val);
1515         POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522         unsigned long flags;
1523
1524         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528                 goto out_unlock;
1529         }
1530
1531         I915_WRITE(SBI_ADDR,
1532                         (reg << 16));
1533         I915_WRITE(SBI_DATA,
1534                         value);
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRWR);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545 out_unlock:
1546         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552         unsigned long flags;
1553         u32 value = 0;
1554
1555         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557                                 100)) {
1558                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559                 goto out_unlock;
1560         }
1561
1562         I915_WRITE(SBI_ADDR,
1563                         (reg << 16));
1564         I915_WRITE(SBI_CTL_STAT,
1565                         SBI_BUSY |
1566                         SBI_CTL_OP_CRRD);
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571                 goto out_unlock;
1572         }
1573
1574         value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578         return value;
1579 }
1580
1581 /**
1582  * ironlake_enable_pch_pll - enable PCH PLL
1583  * @dev_priv: i915 private structure
1584  * @pipe: pipe PLL to enable
1585  *
1586  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587  * drives the transcoder clock.
1588  */
1589 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592         struct intel_pch_pll *pll;
1593         int reg;
1594         u32 val;
1595
1596         /* PCH PLLs only available on ILK, SNB and IVB */
1597         BUG_ON(dev_priv->info->gen < 5);
1598         pll = intel_crtc->pch_pll;
1599         if (pll == NULL)
1600                 return;
1601
1602         if (WARN_ON(pll->refcount == 0))
1603                 return;
1604
1605         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606                       pll->pll_reg, pll->active, pll->on,
1607                       intel_crtc->base.base.id);
1608
1609         /* PCH refclock must be enabled first */
1610         assert_pch_refclk_enabled(dev_priv);
1611
1612         if (pll->active++ && pll->on) {
1613                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614                 return;
1615         }
1616
1617         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619         reg = pll->pll_reg;
1620         val = I915_READ(reg);
1621         val |= DPLL_VCO_ENABLE;
1622         I915_WRITE(reg, val);
1623         POSTING_READ(reg);
1624         udelay(200);
1625
1626         pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633         int reg;
1634         u32 val;
1635
1636         /* PCH only available on ILK+ */
1637         BUG_ON(dev_priv->info->gen < 5);
1638         if (pll == NULL)
1639                return;
1640
1641         if (WARN_ON(pll->refcount == 0))
1642                 return;
1643
1644         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645                       pll->pll_reg, pll->active, pll->on,
1646                       intel_crtc->base.base.id);
1647
1648         if (WARN_ON(pll->active == 0)) {
1649                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650                 return;
1651         }
1652
1653         if (--pll->active) {
1654                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655                 return;
1656         }
1657
1658         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660         /* Make sure transcoder isn't still depending on us */
1661         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663         reg = pll->pll_reg;
1664         val = I915_READ(reg);
1665         val &= ~DPLL_VCO_ENABLE;
1666         I915_WRITE(reg, val);
1667         POSTING_READ(reg);
1668         udelay(200);
1669
1670         pll->on = false;
1671 }
1672
1673 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1674                                     enum pipe pipe)
1675 {
1676         int reg;
1677         u32 val, pipeconf_val;
1678         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680         /* PCH only available on ILK+ */
1681         BUG_ON(dev_priv->info->gen < 5);
1682
1683         /* Make sure PCH DPLL is enabled */
1684         assert_pch_pll_enabled(dev_priv,
1685                                to_intel_crtc(crtc)->pch_pll,
1686                                to_intel_crtc(crtc));
1687
1688         /* FDI must be feeding us bits for PCH ports */
1689         assert_fdi_tx_enabled(dev_priv, pipe);
1690         assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694                 return;
1695         }
1696         reg = TRANSCONF(pipe);
1697         val = I915_READ(reg);
1698         pipeconf_val = I915_READ(PIPECONF(pipe));
1699
1700         if (HAS_PCH_IBX(dev_priv->dev)) {
1701                 /*
1702                  * make the BPC in transcoder be consistent with
1703                  * that in pipeconf reg.
1704                  */
1705                 val &= ~PIPE_BPC_MASK;
1706                 val |= pipeconf_val & PIPE_BPC_MASK;
1707         }
1708
1709         val &= ~TRANS_INTERLACE_MASK;
1710         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1711                 if (HAS_PCH_IBX(dev_priv->dev) &&
1712                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713                         val |= TRANS_LEGACY_INTERLACED_ILK;
1714                 else
1715                         val |= TRANS_INTERLACED;
1716         else
1717                 val |= TRANS_PROGRESSIVE;
1718
1719         I915_WRITE(reg, val | TRANS_ENABLE);
1720         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722 }
1723
1724 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1725                                      enum pipe pipe)
1726 {
1727         int reg;
1728         u32 val;
1729
1730         /* FDI relies on the transcoder */
1731         assert_fdi_tx_disabled(dev_priv, pipe);
1732         assert_fdi_rx_disabled(dev_priv, pipe);
1733
1734         /* Ports must be off as well */
1735         assert_pch_ports_disabled(dev_priv, pipe);
1736
1737         reg = TRANSCONF(pipe);
1738         val = I915_READ(reg);
1739         val &= ~TRANS_ENABLE;
1740         I915_WRITE(reg, val);
1741         /* wait for PCH transcoder off, transcoder state */
1742         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1743                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1744 }
1745
1746 /**
1747  * intel_enable_pipe - enable a pipe, asserting requirements
1748  * @dev_priv: i915 private structure
1749  * @pipe: pipe to enable
1750  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1751  *
1752  * Enable @pipe, making sure that various hardware specific requirements
1753  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754  *
1755  * @pipe should be %PIPE_A or %PIPE_B.
1756  *
1757  * Will wait until the pipe is actually running (i.e. first vblank) before
1758  * returning.
1759  */
1760 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761                               bool pch_port)
1762 {
1763         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764                                                                       pipe);
1765         int reg;
1766         u32 val;
1767
1768         /*
1769          * A pipe without a PLL won't actually be able to drive bits from
1770          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1771          * need the check.
1772          */
1773         if (!HAS_PCH_SPLIT(dev_priv->dev))
1774                 assert_pll_enabled(dev_priv, pipe);
1775         else {
1776                 if (pch_port) {
1777                         /* if driving the PCH, we need FDI enabled */
1778                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780                 }
1781                 /* FIXME: assert CPU port conditions for SNB+ */
1782         }
1783
1784         reg = PIPECONF(cpu_transcoder);
1785         val = I915_READ(reg);
1786         if (val & PIPECONF_ENABLE)
1787                 return;
1788
1789         I915_WRITE(reg, val | PIPECONF_ENABLE);
1790         intel_wait_for_vblank(dev_priv->dev, pipe);
1791 }
1792
1793 /**
1794  * intel_disable_pipe - disable a pipe, asserting requirements
1795  * @dev_priv: i915 private structure
1796  * @pipe: pipe to disable
1797  *
1798  * Disable @pipe, making sure that various hardware specific requirements
1799  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800  *
1801  * @pipe should be %PIPE_A or %PIPE_B.
1802  *
1803  * Will wait until the pipe has shut down before returning.
1804  */
1805 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806                                enum pipe pipe)
1807 {
1808         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809                                                                       pipe);
1810         int reg;
1811         u32 val;
1812
1813         /*
1814          * Make sure planes won't keep trying to pump pixels to us,
1815          * or we might hang the display.
1816          */
1817         assert_planes_disabled(dev_priv, pipe);
1818
1819         /* Don't disable pipe A or pipe A PLLs if needed */
1820         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821                 return;
1822
1823         reg = PIPECONF(cpu_transcoder);
1824         val = I915_READ(reg);
1825         if ((val & PIPECONF_ENABLE) == 0)
1826                 return;
1827
1828         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1829         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830 }
1831
1832 /*
1833  * Plane regs are double buffered, going from enabled->disabled needs a
1834  * trigger in order to latch.  The display address reg provides this.
1835  */
1836 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1837                                       enum plane plane)
1838 {
1839         if (dev_priv->info->gen >= 4)
1840                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841         else
1842                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1843 }
1844
1845 /**
1846  * intel_enable_plane - enable a display plane on a given pipe
1847  * @dev_priv: i915 private structure
1848  * @plane: plane to enable
1849  * @pipe: pipe being fed
1850  *
1851  * Enable @plane on @pipe, making sure that @pipe is running first.
1852  */
1853 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1854                                enum plane plane, enum pipe pipe)
1855 {
1856         int reg;
1857         u32 val;
1858
1859         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1860         assert_pipe_enabled(dev_priv, pipe);
1861
1862         reg = DSPCNTR(plane);
1863         val = I915_READ(reg);
1864         if (val & DISPLAY_PLANE_ENABLE)
1865                 return;
1866
1867         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1868         intel_flush_display_plane(dev_priv, plane);
1869         intel_wait_for_vblank(dev_priv->dev, pipe);
1870 }
1871
1872 /**
1873  * intel_disable_plane - disable a display plane
1874  * @dev_priv: i915 private structure
1875  * @plane: plane to disable
1876  * @pipe: pipe consuming the data
1877  *
1878  * Disable @plane; should be an independent operation.
1879  */
1880 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1881                                 enum plane plane, enum pipe pipe)
1882 {
1883         int reg;
1884         u32 val;
1885
1886         reg = DSPCNTR(plane);
1887         val = I915_READ(reg);
1888         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1889                 return;
1890
1891         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1892         intel_flush_display_plane(dev_priv, plane);
1893         intel_wait_for_vblank(dev_priv->dev, pipe);
1894 }
1895
1896 int
1897 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1898                            struct drm_i915_gem_object *obj,
1899                            struct intel_ring_buffer *pipelined)
1900 {
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         u32 alignment;
1903         int ret;
1904
1905         switch (obj->tiling_mode) {
1906         case I915_TILING_NONE:
1907                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1908                         alignment = 128 * 1024;
1909                 else if (INTEL_INFO(dev)->gen >= 4)
1910                         alignment = 4 * 1024;
1911                 else
1912                         alignment = 64 * 1024;
1913                 break;
1914         case I915_TILING_X:
1915                 /* pin() will align the object as required by fence */
1916                 alignment = 0;
1917                 break;
1918         case I915_TILING_Y:
1919                 /* FIXME: Is this true? */
1920                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1921                 return -EINVAL;
1922         default:
1923                 BUG();
1924         }
1925
1926         dev_priv->mm.interruptible = false;
1927         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1928         if (ret)
1929                 goto err_interruptible;
1930
1931         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1932          * fence, whereas 965+ only requires a fence if using
1933          * framebuffer compression.  For simplicity, we always install
1934          * a fence as the cost is not that onerous.
1935          */
1936         ret = i915_gem_object_get_fence(obj);
1937         if (ret)
1938                 goto err_unpin;
1939
1940         i915_gem_object_pin_fence(obj);
1941
1942         dev_priv->mm.interruptible = true;
1943         return 0;
1944
1945 err_unpin:
1946         i915_gem_object_unpin(obj);
1947 err_interruptible:
1948         dev_priv->mm.interruptible = true;
1949         return ret;
1950 }
1951
1952 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1953 {
1954         i915_gem_object_unpin_fence(obj);
1955         i915_gem_object_unpin(obj);
1956 }
1957
1958 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1959  * is assumed to be a power-of-two. */
1960 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1961                                                unsigned int bpp,
1962                                                unsigned int pitch)
1963 {
1964         int tile_rows, tiles;
1965
1966         tile_rows = *y / 8;
1967         *y %= 8;
1968         tiles = *x / (512/bpp);
1969         *x %= 512/bpp;
1970
1971         return tile_rows * pitch * 8 + tiles * 4096;
1972 }
1973
1974 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1975                              int x, int y)
1976 {
1977         struct drm_device *dev = crtc->dev;
1978         struct drm_i915_private *dev_priv = dev->dev_private;
1979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1980         struct intel_framebuffer *intel_fb;
1981         struct drm_i915_gem_object *obj;
1982         int plane = intel_crtc->plane;
1983         unsigned long linear_offset;
1984         u32 dspcntr;
1985         u32 reg;
1986
1987         switch (plane) {
1988         case 0:
1989         case 1:
1990                 break;
1991         default:
1992                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1993                 return -EINVAL;
1994         }
1995
1996         intel_fb = to_intel_framebuffer(fb);
1997         obj = intel_fb->obj;
1998
1999         reg = DSPCNTR(plane);
2000         dspcntr = I915_READ(reg);
2001         /* Mask out pixel format bits in case we change it */
2002         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2003         switch (fb->pixel_format) {
2004         case DRM_FORMAT_C8:
2005                 dspcntr |= DISPPLANE_8BPP;
2006                 break;
2007         case DRM_FORMAT_XRGB1555:
2008         case DRM_FORMAT_ARGB1555:
2009                 dspcntr |= DISPPLANE_BGRX555;
2010                 break;
2011         case DRM_FORMAT_RGB565:
2012                 dspcntr |= DISPPLANE_BGRX565;
2013                 break;
2014         case DRM_FORMAT_XRGB8888:
2015         case DRM_FORMAT_ARGB8888:
2016                 dspcntr |= DISPPLANE_BGRX888;
2017                 break;
2018         case DRM_FORMAT_XBGR8888:
2019         case DRM_FORMAT_ABGR8888:
2020                 dspcntr |= DISPPLANE_RGBX888;
2021                 break;
2022         case DRM_FORMAT_XRGB2101010:
2023         case DRM_FORMAT_ARGB2101010:
2024                 dspcntr |= DISPPLANE_BGRX101010;
2025                 break;
2026         case DRM_FORMAT_XBGR2101010:
2027         case DRM_FORMAT_ABGR2101010:
2028                 dspcntr |= DISPPLANE_RGBX101010;
2029                 break;
2030         default:
2031                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2032                 return -EINVAL;
2033         }
2034
2035         if (INTEL_INFO(dev)->gen >= 4) {
2036                 if (obj->tiling_mode != I915_TILING_NONE)
2037                         dspcntr |= DISPPLANE_TILED;
2038                 else
2039                         dspcntr &= ~DISPPLANE_TILED;
2040         }
2041
2042         I915_WRITE(reg, dspcntr);
2043
2044         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2045
2046         if (INTEL_INFO(dev)->gen >= 4) {
2047                 intel_crtc->dspaddr_offset =
2048                         intel_gen4_compute_offset_xtiled(&x, &y,
2049                                                          fb->bits_per_pixel / 8,
2050                                                          fb->pitches[0]);
2051                 linear_offset -= intel_crtc->dspaddr_offset;
2052         } else {
2053                 intel_crtc->dspaddr_offset = linear_offset;
2054         }
2055
2056         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2057                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2058         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2059         if (INTEL_INFO(dev)->gen >= 4) {
2060                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2061                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2062                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2063                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2064         } else
2065                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2066         POSTING_READ(reg);
2067
2068         return 0;
2069 }
2070
2071 static int ironlake_update_plane(struct drm_crtc *crtc,
2072                                  struct drm_framebuffer *fb, int x, int y)
2073 {
2074         struct drm_device *dev = crtc->dev;
2075         struct drm_i915_private *dev_priv = dev->dev_private;
2076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2077         struct intel_framebuffer *intel_fb;
2078         struct drm_i915_gem_object *obj;
2079         int plane = intel_crtc->plane;
2080         unsigned long linear_offset;
2081         u32 dspcntr;
2082         u32 reg;
2083
2084         switch (plane) {
2085         case 0:
2086         case 1:
2087         case 2:
2088                 break;
2089         default:
2090                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2091                 return -EINVAL;
2092         }
2093
2094         intel_fb = to_intel_framebuffer(fb);
2095         obj = intel_fb->obj;
2096
2097         reg = DSPCNTR(plane);
2098         dspcntr = I915_READ(reg);
2099         /* Mask out pixel format bits in case we change it */
2100         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2101         switch (fb->pixel_format) {
2102         case DRM_FORMAT_C8:
2103                 dspcntr |= DISPPLANE_8BPP;
2104                 break;
2105         case DRM_FORMAT_RGB565:
2106                 dspcntr |= DISPPLANE_BGRX565;
2107                 break;
2108         case DRM_FORMAT_XRGB8888:
2109         case DRM_FORMAT_ARGB8888:
2110                 dspcntr |= DISPPLANE_BGRX888;
2111                 break;
2112         case DRM_FORMAT_XBGR8888:
2113         case DRM_FORMAT_ABGR8888:
2114                 dspcntr |= DISPPLANE_RGBX888;
2115                 break;
2116         case DRM_FORMAT_XRGB2101010:
2117         case DRM_FORMAT_ARGB2101010:
2118                 dspcntr |= DISPPLANE_BGRX101010;
2119                 break;
2120         case DRM_FORMAT_XBGR2101010:
2121         case DRM_FORMAT_ABGR2101010:
2122                 dspcntr |= DISPPLANE_RGBX101010;
2123                 break;
2124         default:
2125                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2126                 return -EINVAL;
2127         }
2128
2129         if (obj->tiling_mode != I915_TILING_NONE)
2130                 dspcntr |= DISPPLANE_TILED;
2131         else
2132                 dspcntr &= ~DISPPLANE_TILED;
2133
2134         /* must disable */
2135         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2136
2137         I915_WRITE(reg, dspcntr);
2138
2139         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2140         intel_crtc->dspaddr_offset =
2141                 intel_gen4_compute_offset_xtiled(&x, &y,
2142                                                  fb->bits_per_pixel / 8,
2143                                                  fb->pitches[0]);
2144         linear_offset -= intel_crtc->dspaddr_offset;
2145
2146         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2147                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2148         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2149         I915_MODIFY_DISPBASE(DSPSURF(plane),
2150                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2151         if (IS_HASWELL(dev)) {
2152                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2153         } else {
2154                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2155                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2156         }
2157         POSTING_READ(reg);
2158
2159         return 0;
2160 }
2161
2162 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2163 static int
2164 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2165                            int x, int y, enum mode_set_atomic state)
2166 {
2167         struct drm_device *dev = crtc->dev;
2168         struct drm_i915_private *dev_priv = dev->dev_private;
2169
2170         if (dev_priv->display.disable_fbc)
2171                 dev_priv->display.disable_fbc(dev);
2172         intel_increase_pllclock(crtc);
2173
2174         return dev_priv->display.update_plane(crtc, fb, x, y);
2175 }
2176
2177 static int
2178 intel_finish_fb(struct drm_framebuffer *old_fb)
2179 {
2180         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2181         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182         bool was_interruptible = dev_priv->mm.interruptible;
2183         int ret;
2184
2185         wait_event(dev_priv->pending_flip_queue,
2186                    atomic_read(&dev_priv->mm.wedged) ||
2187                    atomic_read(&obj->pending_flip) == 0);
2188
2189         /* Big Hammer, we also need to ensure that any pending
2190          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2191          * current scanout is retired before unpinning the old
2192          * framebuffer.
2193          *
2194          * This should only fail upon a hung GPU, in which case we
2195          * can safely continue.
2196          */
2197         dev_priv->mm.interruptible = false;
2198         ret = i915_gem_object_finish_gpu(obj);
2199         dev_priv->mm.interruptible = was_interruptible;
2200
2201         return ret;
2202 }
2203
2204 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2205 {
2206         struct drm_device *dev = crtc->dev;
2207         struct drm_i915_master_private *master_priv;
2208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2209
2210         if (!dev->primary->master)
2211                 return;
2212
2213         master_priv = dev->primary->master->driver_priv;
2214         if (!master_priv->sarea_priv)
2215                 return;
2216
2217         switch (intel_crtc->pipe) {
2218         case 0:
2219                 master_priv->sarea_priv->pipeA_x = x;
2220                 master_priv->sarea_priv->pipeA_y = y;
2221                 break;
2222         case 1:
2223                 master_priv->sarea_priv->pipeB_x = x;
2224                 master_priv->sarea_priv->pipeB_y = y;
2225                 break;
2226         default:
2227                 break;
2228         }
2229 }
2230
2231 static int
2232 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2233                     struct drm_framebuffer *fb)
2234 {
2235         struct drm_device *dev = crtc->dev;
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2238         struct drm_framebuffer *old_fb;
2239         int ret;
2240
2241         /* no fb bound */
2242         if (!fb) {
2243                 DRM_ERROR("No FB bound\n");
2244                 return 0;
2245         }
2246
2247         if(intel_crtc->plane > dev_priv->num_pipe) {
2248                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2249                                 intel_crtc->plane,
2250                                 dev_priv->num_pipe);
2251                 return -EINVAL;
2252         }
2253
2254         mutex_lock(&dev->struct_mutex);
2255         ret = intel_pin_and_fence_fb_obj(dev,
2256                                          to_intel_framebuffer(fb)->obj,
2257                                          NULL);
2258         if (ret != 0) {
2259                 mutex_unlock(&dev->struct_mutex);
2260                 DRM_ERROR("pin & fence failed\n");
2261                 return ret;
2262         }
2263
2264         if (crtc->fb)
2265                 intel_finish_fb(crtc->fb);
2266
2267         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2268         if (ret) {
2269                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2270                 mutex_unlock(&dev->struct_mutex);
2271                 DRM_ERROR("failed to update base address\n");
2272                 return ret;
2273         }
2274
2275         old_fb = crtc->fb;
2276         crtc->fb = fb;
2277         crtc->x = x;
2278         crtc->y = y;
2279
2280         if (old_fb) {
2281                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2282                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2283         }
2284
2285         intel_update_fbc(dev);
2286         mutex_unlock(&dev->struct_mutex);
2287
2288         intel_crtc_update_sarea_pos(crtc, x, y);
2289
2290         return 0;
2291 }
2292
2293 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2294 {
2295         struct drm_device *dev = crtc->dev;
2296         struct drm_i915_private *dev_priv = dev->dev_private;
2297         u32 dpa_ctl;
2298
2299         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2300         dpa_ctl = I915_READ(DP_A);
2301         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2302
2303         if (clock < 200000) {
2304                 u32 temp;
2305                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2306                 /* workaround for 160Mhz:
2307                    1) program 0x4600c bits 15:0 = 0x8124
2308                    2) program 0x46010 bit 0 = 1
2309                    3) program 0x46034 bit 24 = 1
2310                    4) program 0x64000 bit 14 = 1
2311                    */
2312                 temp = I915_READ(0x4600c);
2313                 temp &= 0xffff0000;
2314                 I915_WRITE(0x4600c, temp | 0x8124);
2315
2316                 temp = I915_READ(0x46010);
2317                 I915_WRITE(0x46010, temp | 1);
2318
2319                 temp = I915_READ(0x46034);
2320                 I915_WRITE(0x46034, temp | (1 << 24));
2321         } else {
2322                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2323         }
2324         I915_WRITE(DP_A, dpa_ctl);
2325
2326         POSTING_READ(DP_A);
2327         udelay(500);
2328 }
2329
2330 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2331 {
2332         struct drm_device *dev = crtc->dev;
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2335         int pipe = intel_crtc->pipe;
2336         u32 reg, temp;
2337
2338         /* enable normal train */
2339         reg = FDI_TX_CTL(pipe);
2340         temp = I915_READ(reg);
2341         if (IS_IVYBRIDGE(dev)) {
2342                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2343                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2344         } else {
2345                 temp &= ~FDI_LINK_TRAIN_NONE;
2346                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2347         }
2348         I915_WRITE(reg, temp);
2349
2350         reg = FDI_RX_CTL(pipe);
2351         temp = I915_READ(reg);
2352         if (HAS_PCH_CPT(dev)) {
2353                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2354                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2355         } else {
2356                 temp &= ~FDI_LINK_TRAIN_NONE;
2357                 temp |= FDI_LINK_TRAIN_NONE;
2358         }
2359         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2360
2361         /* wait one idle pattern time */
2362         POSTING_READ(reg);
2363         udelay(1000);
2364
2365         /* IVB wants error correction enabled */
2366         if (IS_IVYBRIDGE(dev))
2367                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2368                            FDI_FE_ERRC_ENABLE);
2369 }
2370
2371 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2372 {
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         u32 flags = I915_READ(SOUTH_CHICKEN1);
2375
2376         flags |= FDI_PHASE_SYNC_OVR(pipe);
2377         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2378         flags |= FDI_PHASE_SYNC_EN(pipe);
2379         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2380         POSTING_READ(SOUTH_CHICKEN1);
2381 }
2382
2383 static void ivb_modeset_global_resources(struct drm_device *dev)
2384 {
2385         struct drm_i915_private *dev_priv = dev->dev_private;
2386         struct intel_crtc *pipe_B_crtc =
2387                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2388         struct intel_crtc *pipe_C_crtc =
2389                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2390         uint32_t temp;
2391
2392         /* When everything is off disable fdi C so that we could enable fdi B
2393          * with all lanes. XXX: This misses the case where a pipe is not using
2394          * any pch resources and so doesn't need any fdi lanes. */
2395         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2396                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2397                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2398
2399                 temp = I915_READ(SOUTH_CHICKEN1);
2400                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2401                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2402                 I915_WRITE(SOUTH_CHICKEN1, temp);
2403         }
2404 }
2405
2406 /* The FDI link training functions for ILK/Ibexpeak. */
2407 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2408 {
2409         struct drm_device *dev = crtc->dev;
2410         struct drm_i915_private *dev_priv = dev->dev_private;
2411         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2412         int pipe = intel_crtc->pipe;
2413         int plane = intel_crtc->plane;
2414         u32 reg, temp, tries;
2415
2416         /* FDI needs bits from pipe & plane first */
2417         assert_pipe_enabled(dev_priv, pipe);
2418         assert_plane_enabled(dev_priv, plane);
2419
2420         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2421            for train result */
2422         reg = FDI_RX_IMR(pipe);
2423         temp = I915_READ(reg);
2424         temp &= ~FDI_RX_SYMBOL_LOCK;
2425         temp &= ~FDI_RX_BIT_LOCK;
2426         I915_WRITE(reg, temp);
2427         I915_READ(reg);
2428         udelay(150);
2429
2430         /* enable CPU FDI TX and PCH FDI RX */
2431         reg = FDI_TX_CTL(pipe);
2432         temp = I915_READ(reg);
2433         temp &= ~(7 << 19);
2434         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2435         temp &= ~FDI_LINK_TRAIN_NONE;
2436         temp |= FDI_LINK_TRAIN_PATTERN_1;
2437         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2438
2439         reg = FDI_RX_CTL(pipe);
2440         temp = I915_READ(reg);
2441         temp &= ~FDI_LINK_TRAIN_NONE;
2442         temp |= FDI_LINK_TRAIN_PATTERN_1;
2443         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2444
2445         POSTING_READ(reg);
2446         udelay(150);
2447
2448         /* Ironlake workaround, enable clock pointer after FDI enable*/
2449         if (HAS_PCH_IBX(dev)) {
2450                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2451                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2452                            FDI_RX_PHASE_SYNC_POINTER_EN);
2453         }
2454
2455         reg = FDI_RX_IIR(pipe);
2456         for (tries = 0; tries < 5; tries++) {
2457                 temp = I915_READ(reg);
2458                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2459
2460                 if ((temp & FDI_RX_BIT_LOCK)) {
2461                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2462                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2463                         break;
2464                 }
2465         }
2466         if (tries == 5)
2467                 DRM_ERROR("FDI train 1 fail!\n");
2468
2469         /* Train 2 */
2470         reg = FDI_TX_CTL(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~FDI_LINK_TRAIN_NONE;
2473         temp |= FDI_LINK_TRAIN_PATTERN_2;
2474         I915_WRITE(reg, temp);
2475
2476         reg = FDI_RX_CTL(pipe);
2477         temp = I915_READ(reg);
2478         temp &= ~FDI_LINK_TRAIN_NONE;
2479         temp |= FDI_LINK_TRAIN_PATTERN_2;
2480         I915_WRITE(reg, temp);
2481
2482         POSTING_READ(reg);
2483         udelay(150);
2484
2485         reg = FDI_RX_IIR(pipe);
2486         for (tries = 0; tries < 5; tries++) {
2487                 temp = I915_READ(reg);
2488                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2489
2490                 if (temp & FDI_RX_SYMBOL_LOCK) {
2491                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2492                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2493                         break;
2494                 }
2495         }
2496         if (tries == 5)
2497                 DRM_ERROR("FDI train 2 fail!\n");
2498
2499         DRM_DEBUG_KMS("FDI train done\n");
2500
2501 }
2502
2503 static const int snb_b_fdi_train_param[] = {
2504         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2505         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2506         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2507         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2508 };
2509
2510 /* The FDI link training functions for SNB/Cougarpoint. */
2511 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2512 {
2513         struct drm_device *dev = crtc->dev;
2514         struct drm_i915_private *dev_priv = dev->dev_private;
2515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2516         int pipe = intel_crtc->pipe;
2517         u32 reg, temp, i, retry;
2518
2519         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2520            for train result */
2521         reg = FDI_RX_IMR(pipe);
2522         temp = I915_READ(reg);
2523         temp &= ~FDI_RX_SYMBOL_LOCK;
2524         temp &= ~FDI_RX_BIT_LOCK;
2525         I915_WRITE(reg, temp);
2526
2527         POSTING_READ(reg);
2528         udelay(150);
2529
2530         /* enable CPU FDI TX and PCH FDI RX */
2531         reg = FDI_TX_CTL(pipe);
2532         temp = I915_READ(reg);
2533         temp &= ~(7 << 19);
2534         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2535         temp &= ~FDI_LINK_TRAIN_NONE;
2536         temp |= FDI_LINK_TRAIN_PATTERN_1;
2537         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2538         /* SNB-B */
2539         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2540         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2541
2542         I915_WRITE(FDI_RX_MISC(pipe),
2543                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2544
2545         reg = FDI_RX_CTL(pipe);
2546         temp = I915_READ(reg);
2547         if (HAS_PCH_CPT(dev)) {
2548                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2549                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2550         } else {
2551                 temp &= ~FDI_LINK_TRAIN_NONE;
2552                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2553         }
2554         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2555
2556         POSTING_READ(reg);
2557         udelay(150);
2558
2559         if (HAS_PCH_CPT(dev))
2560                 cpt_phase_pointer_enable(dev, pipe);
2561
2562         for (i = 0; i < 4; i++) {
2563                 reg = FDI_TX_CTL(pipe);
2564                 temp = I915_READ(reg);
2565                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2566                 temp |= snb_b_fdi_train_param[i];
2567                 I915_WRITE(reg, temp);
2568
2569                 POSTING_READ(reg);
2570                 udelay(500);
2571
2572                 for (retry = 0; retry < 5; retry++) {
2573                         reg = FDI_RX_IIR(pipe);
2574                         temp = I915_READ(reg);
2575                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2576                         if (temp & FDI_RX_BIT_LOCK) {
2577                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2578                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2579                                 break;
2580                         }
2581                         udelay(50);
2582                 }
2583                 if (retry < 5)
2584                         break;
2585         }
2586         if (i == 4)
2587                 DRM_ERROR("FDI train 1 fail!\n");
2588
2589         /* Train 2 */
2590         reg = FDI_TX_CTL(pipe);
2591         temp = I915_READ(reg);
2592         temp &= ~FDI_LINK_TRAIN_NONE;
2593         temp |= FDI_LINK_TRAIN_PATTERN_2;
2594         if (IS_GEN6(dev)) {
2595                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2596                 /* SNB-B */
2597                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2598         }
2599         I915_WRITE(reg, temp);
2600
2601         reg = FDI_RX_CTL(pipe);
2602         temp = I915_READ(reg);
2603         if (HAS_PCH_CPT(dev)) {
2604                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2605                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2606         } else {
2607                 temp &= ~FDI_LINK_TRAIN_NONE;
2608                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2609         }
2610         I915_WRITE(reg, temp);
2611
2612         POSTING_READ(reg);
2613         udelay(150);
2614
2615         for (i = 0; i < 4; i++) {
2616                 reg = FDI_TX_CTL(pipe);
2617                 temp = I915_READ(reg);
2618                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2619                 temp |= snb_b_fdi_train_param[i];
2620                 I915_WRITE(reg, temp);
2621
2622                 POSTING_READ(reg);
2623                 udelay(500);
2624
2625                 for (retry = 0; retry < 5; retry++) {
2626                         reg = FDI_RX_IIR(pipe);
2627                         temp = I915_READ(reg);
2628                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2629                         if (temp & FDI_RX_SYMBOL_LOCK) {
2630                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2631                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2632                                 break;
2633                         }
2634                         udelay(50);
2635                 }
2636                 if (retry < 5)
2637                         break;
2638         }
2639         if (i == 4)
2640                 DRM_ERROR("FDI train 2 fail!\n");
2641
2642         DRM_DEBUG_KMS("FDI train done.\n");
2643 }
2644
2645 /* Manual link training for Ivy Bridge A0 parts */
2646 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2647 {
2648         struct drm_device *dev = crtc->dev;
2649         struct drm_i915_private *dev_priv = dev->dev_private;
2650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651         int pipe = intel_crtc->pipe;
2652         u32 reg, temp, i;
2653
2654         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2655            for train result */
2656         reg = FDI_RX_IMR(pipe);
2657         temp = I915_READ(reg);
2658         temp &= ~FDI_RX_SYMBOL_LOCK;
2659         temp &= ~FDI_RX_BIT_LOCK;
2660         I915_WRITE(reg, temp);
2661
2662         POSTING_READ(reg);
2663         udelay(150);
2664
2665         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2666                       I915_READ(FDI_RX_IIR(pipe)));
2667
2668         /* enable CPU FDI TX and PCH FDI RX */
2669         reg = FDI_TX_CTL(pipe);
2670         temp = I915_READ(reg);
2671         temp &= ~(7 << 19);
2672         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2673         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2674         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2675         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2677         temp |= FDI_COMPOSITE_SYNC;
2678         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2679
2680         I915_WRITE(FDI_RX_MISC(pipe),
2681                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2682
2683         reg = FDI_RX_CTL(pipe);
2684         temp = I915_READ(reg);
2685         temp &= ~FDI_LINK_TRAIN_AUTO;
2686         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2688         temp |= FDI_COMPOSITE_SYNC;
2689         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2690
2691         POSTING_READ(reg);
2692         udelay(150);
2693
2694         if (HAS_PCH_CPT(dev))
2695                 cpt_phase_pointer_enable(dev, pipe);
2696
2697         for (i = 0; i < 4; i++) {
2698                 reg = FDI_TX_CTL(pipe);
2699                 temp = I915_READ(reg);
2700                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2701                 temp |= snb_b_fdi_train_param[i];
2702                 I915_WRITE(reg, temp);
2703
2704                 POSTING_READ(reg);
2705                 udelay(500);
2706
2707                 reg = FDI_RX_IIR(pipe);
2708                 temp = I915_READ(reg);
2709                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2710
2711                 if (temp & FDI_RX_BIT_LOCK ||
2712                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2713                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2714                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2715                         break;
2716                 }
2717         }
2718         if (i == 4)
2719                 DRM_ERROR("FDI train 1 fail!\n");
2720
2721         /* Train 2 */
2722         reg = FDI_TX_CTL(pipe);
2723         temp = I915_READ(reg);
2724         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2725         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2726         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2727         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2728         I915_WRITE(reg, temp);
2729
2730         reg = FDI_RX_CTL(pipe);
2731         temp = I915_READ(reg);
2732         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2733         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2734         I915_WRITE(reg, temp);
2735
2736         POSTING_READ(reg);
2737         udelay(150);
2738
2739         for (i = 0; i < 4; i++) {
2740                 reg = FDI_TX_CTL(pipe);
2741                 temp = I915_READ(reg);
2742                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2743                 temp |= snb_b_fdi_train_param[i];
2744                 I915_WRITE(reg, temp);
2745
2746                 POSTING_READ(reg);
2747                 udelay(500);
2748
2749                 reg = FDI_RX_IIR(pipe);
2750                 temp = I915_READ(reg);
2751                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2752
2753                 if (temp & FDI_RX_SYMBOL_LOCK) {
2754                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2755                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2756                         break;
2757                 }
2758         }
2759         if (i == 4)
2760                 DRM_ERROR("FDI train 2 fail!\n");
2761
2762         DRM_DEBUG_KMS("FDI train done.\n");
2763 }
2764
2765 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2766 {
2767         struct drm_device *dev = intel_crtc->base.dev;
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         int pipe = intel_crtc->pipe;
2770         u32 reg, temp;
2771
2772
2773         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2774         reg = FDI_RX_CTL(pipe);
2775         temp = I915_READ(reg);
2776         temp &= ~((0x7 << 19) | (0x7 << 16));
2777         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2778         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2779         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2780
2781         POSTING_READ(reg);
2782         udelay(200);
2783
2784         /* Switch from Rawclk to PCDclk */
2785         temp = I915_READ(reg);
2786         I915_WRITE(reg, temp | FDI_PCDCLK);
2787
2788         POSTING_READ(reg);
2789         udelay(200);
2790
2791         /* On Haswell, the PLL configuration for ports and pipes is handled
2792          * separately, as part of DDI setup */
2793         if (!IS_HASWELL(dev)) {
2794                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2795                 reg = FDI_TX_CTL(pipe);
2796                 temp = I915_READ(reg);
2797                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2798                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2799
2800                         POSTING_READ(reg);
2801                         udelay(100);
2802                 }
2803         }
2804 }
2805
2806 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2807 {
2808         struct drm_device *dev = intel_crtc->base.dev;
2809         struct drm_i915_private *dev_priv = dev->dev_private;
2810         int pipe = intel_crtc->pipe;
2811         u32 reg, temp;
2812
2813         /* Switch from PCDclk to Rawclk */
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2817
2818         /* Disable CPU FDI TX PLL */
2819         reg = FDI_TX_CTL(pipe);
2820         temp = I915_READ(reg);
2821         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2822
2823         POSTING_READ(reg);
2824         udelay(100);
2825
2826         reg = FDI_RX_CTL(pipe);
2827         temp = I915_READ(reg);
2828         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2829
2830         /* Wait for the clocks to turn off. */
2831         POSTING_READ(reg);
2832         udelay(100);
2833 }
2834
2835 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2836 {
2837         struct drm_i915_private *dev_priv = dev->dev_private;
2838         u32 flags = I915_READ(SOUTH_CHICKEN1);
2839
2840         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2841         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2842         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2843         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2844         POSTING_READ(SOUTH_CHICKEN1);
2845 }
2846 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2847 {
2848         struct drm_device *dev = crtc->dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2851         int pipe = intel_crtc->pipe;
2852         u32 reg, temp;
2853
2854         /* disable CPU FDI tx and PCH FDI rx */
2855         reg = FDI_TX_CTL(pipe);
2856         temp = I915_READ(reg);
2857         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2858         POSTING_READ(reg);
2859
2860         reg = FDI_RX_CTL(pipe);
2861         temp = I915_READ(reg);
2862         temp &= ~(0x7 << 16);
2863         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2864         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2865
2866         POSTING_READ(reg);
2867         udelay(100);
2868
2869         /* Ironlake workaround, disable clock pointer after downing FDI */
2870         if (HAS_PCH_IBX(dev)) {
2871                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2872                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2873                            I915_READ(FDI_RX_CHICKEN(pipe) &
2874                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2875         } else if (HAS_PCH_CPT(dev)) {
2876                 cpt_phase_pointer_disable(dev, pipe);
2877         }
2878
2879         /* still set train pattern 1 */
2880         reg = FDI_TX_CTL(pipe);
2881         temp = I915_READ(reg);
2882         temp &= ~FDI_LINK_TRAIN_NONE;
2883         temp |= FDI_LINK_TRAIN_PATTERN_1;
2884         I915_WRITE(reg, temp);
2885
2886         reg = FDI_RX_CTL(pipe);
2887         temp = I915_READ(reg);
2888         if (HAS_PCH_CPT(dev)) {
2889                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2890                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2891         } else {
2892                 temp &= ~FDI_LINK_TRAIN_NONE;
2893                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2894         }
2895         /* BPC in FDI rx is consistent with that in PIPECONF */
2896         temp &= ~(0x07 << 16);
2897         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2898         I915_WRITE(reg, temp);
2899
2900         POSTING_READ(reg);
2901         udelay(100);
2902 }
2903
2904 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2905 {
2906         struct drm_device *dev = crtc->dev;
2907         struct drm_i915_private *dev_priv = dev->dev_private;
2908         unsigned long flags;
2909         bool pending;
2910
2911         if (atomic_read(&dev_priv->mm.wedged))
2912                 return false;
2913
2914         spin_lock_irqsave(&dev->event_lock, flags);
2915         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2916         spin_unlock_irqrestore(&dev->event_lock, flags);
2917
2918         return pending;
2919 }
2920
2921 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2922 {
2923         struct drm_device *dev = crtc->dev;
2924         struct drm_i915_private *dev_priv = dev->dev_private;
2925
2926         if (crtc->fb == NULL)
2927                 return;
2928
2929         wait_event(dev_priv->pending_flip_queue,
2930                    !intel_crtc_has_pending_flip(crtc));
2931
2932         mutex_lock(&dev->struct_mutex);
2933         intel_finish_fb(crtc->fb);
2934         mutex_unlock(&dev->struct_mutex);
2935 }
2936
2937 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2938 {
2939         struct drm_device *dev = crtc->dev;
2940         struct intel_encoder *intel_encoder;
2941
2942         /*
2943          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2944          * must be driven by its own crtc; no sharing is possible.
2945          */
2946         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2947                 switch (intel_encoder->type) {
2948                 case INTEL_OUTPUT_EDP:
2949                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2950                                 return false;
2951                         continue;
2952                 }
2953         }
2954
2955         return true;
2956 }
2957
2958 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2959 {
2960         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2961 }
2962
2963 /* Program iCLKIP clock to the desired frequency */
2964 static void lpt_program_iclkip(struct drm_crtc *crtc)
2965 {
2966         struct drm_device *dev = crtc->dev;
2967         struct drm_i915_private *dev_priv = dev->dev_private;
2968         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2969         u32 temp;
2970
2971         /* It is necessary to ungate the pixclk gate prior to programming
2972          * the divisors, and gate it back when it is done.
2973          */
2974         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2975
2976         /* Disable SSCCTL */
2977         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2978                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2979                                         SBI_SSCCTL_DISABLE);
2980
2981         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2982         if (crtc->mode.clock == 20000) {
2983                 auxdiv = 1;
2984                 divsel = 0x41;
2985                 phaseinc = 0x20;
2986         } else {
2987                 /* The iCLK virtual clock root frequency is in MHz,
2988                  * but the crtc->mode.clock in in KHz. To get the divisors,
2989                  * it is necessary to divide one by another, so we
2990                  * convert the virtual clock precision to KHz here for higher
2991                  * precision.
2992                  */
2993                 u32 iclk_virtual_root_freq = 172800 * 1000;
2994                 u32 iclk_pi_range = 64;
2995                 u32 desired_divisor, msb_divisor_value, pi_value;
2996
2997                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2998                 msb_divisor_value = desired_divisor / iclk_pi_range;
2999                 pi_value = desired_divisor % iclk_pi_range;
3000
3001                 auxdiv = 0;
3002                 divsel = msb_divisor_value - 2;
3003                 phaseinc = pi_value;
3004         }
3005
3006         /* This should not happen with any sane values */
3007         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3008                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3009         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3010                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3011
3012         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3013                         crtc->mode.clock,
3014                         auxdiv,
3015                         divsel,
3016                         phasedir,
3017                         phaseinc);
3018
3019         /* Program SSCDIVINTPHASE6 */
3020         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3021         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3022         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3023         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3024         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3025         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3026         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3027
3028         intel_sbi_write(dev_priv,
3029                         SBI_SSCDIVINTPHASE6,
3030                         temp);
3031
3032         /* Program SSCAUXDIV */
3033         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3034         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3035         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3036         intel_sbi_write(dev_priv,
3037                         SBI_SSCAUXDIV6,
3038                         temp);
3039
3040
3041         /* Enable modulator and associated divider */
3042         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3043         temp &= ~SBI_SSCCTL_DISABLE;
3044         intel_sbi_write(dev_priv,
3045                         SBI_SSCCTL6,
3046                         temp);
3047
3048         /* Wait for initialization time */
3049         udelay(24);
3050
3051         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3052 }
3053
3054 /*
3055  * Enable PCH resources required for PCH ports:
3056  *   - PCH PLLs
3057  *   - FDI training & RX/TX
3058  *   - update transcoder timings
3059  *   - DP transcoding bits
3060  *   - transcoder
3061  */
3062 static void ironlake_pch_enable(struct drm_crtc *crtc)
3063 {
3064         struct drm_device *dev = crtc->dev;
3065         struct drm_i915_private *dev_priv = dev->dev_private;
3066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3067         int pipe = intel_crtc->pipe;
3068         u32 reg, temp;
3069
3070         assert_transcoder_disabled(dev_priv, pipe);
3071
3072         /* Write the TU size bits before fdi link training, so that error
3073          * detection works. */
3074         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3075                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3076
3077         /* For PCH output, training FDI link */
3078         dev_priv->display.fdi_link_train(crtc);
3079
3080         /* XXX: pch pll's can be enabled any time before we enable the PCH
3081          * transcoder, and we actually should do this to not upset any PCH
3082          * transcoder that already use the clock when we share it.
3083          *
3084          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3085          * unconditionally resets the pll - we need that to have the right LVDS
3086          * enable sequence. */
3087         ironlake_enable_pch_pll(intel_crtc);
3088
3089         if (HAS_PCH_CPT(dev)) {
3090                 u32 sel;
3091
3092                 temp = I915_READ(PCH_DPLL_SEL);
3093                 switch (pipe) {
3094                 default:
3095                 case 0:
3096                         temp |= TRANSA_DPLL_ENABLE;
3097                         sel = TRANSA_DPLLB_SEL;
3098                         break;
3099                 case 1:
3100                         temp |= TRANSB_DPLL_ENABLE;
3101                         sel = TRANSB_DPLLB_SEL;
3102                         break;
3103                 case 2:
3104                         temp |= TRANSC_DPLL_ENABLE;
3105                         sel = TRANSC_DPLLB_SEL;
3106                         break;
3107                 }
3108                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3109                         temp |= sel;
3110                 else
3111                         temp &= ~sel;
3112                 I915_WRITE(PCH_DPLL_SEL, temp);
3113         }
3114
3115         /* set transcoder timing, panel must allow it */
3116         assert_panel_unlocked(dev_priv, pipe);
3117         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3118         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3119         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3120
3121         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3122         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3123         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3124         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3125
3126         intel_fdi_normal_train(crtc);
3127
3128         /* For PCH DP, enable TRANS_DP_CTL */
3129         if (HAS_PCH_CPT(dev) &&
3130             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3131              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3132                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3133                 reg = TRANS_DP_CTL(pipe);
3134                 temp = I915_READ(reg);
3135                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3136                           TRANS_DP_SYNC_MASK |
3137                           TRANS_DP_BPC_MASK);
3138                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3139                          TRANS_DP_ENH_FRAMING);
3140                 temp |= bpc << 9; /* same format but at 11:9 */
3141
3142                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3143                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3144                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3145                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3146
3147                 switch (intel_trans_dp_port_sel(crtc)) {
3148                 case PCH_DP_B:
3149                         temp |= TRANS_DP_PORT_SEL_B;
3150                         break;
3151                 case PCH_DP_C:
3152                         temp |= TRANS_DP_PORT_SEL_C;
3153                         break;
3154                 case PCH_DP_D:
3155                         temp |= TRANS_DP_PORT_SEL_D;
3156                         break;
3157                 default:
3158                         BUG();
3159                 }
3160
3161                 I915_WRITE(reg, temp);
3162         }
3163
3164         intel_enable_transcoder(dev_priv, pipe);
3165 }
3166
3167 static void lpt_pch_enable(struct drm_crtc *crtc)
3168 {
3169         struct drm_device *dev = crtc->dev;
3170         struct drm_i915_private *dev_priv = dev->dev_private;
3171         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3172         int pipe = intel_crtc->pipe;
3173
3174         assert_transcoder_disabled(dev_priv, pipe);
3175
3176         /* Write the TU size bits before fdi link training, so that error
3177          * detection works. */
3178         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3179                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3180
3181         /* For PCH output, training FDI link */
3182         dev_priv->display.fdi_link_train(crtc);
3183
3184         lpt_program_iclkip(crtc);
3185
3186         /* Set transcoder timing. */
3187         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3188         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3189         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3190
3191         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3192         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3193         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3194         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3195
3196         intel_enable_transcoder(dev_priv, pipe);
3197 }
3198
3199 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3200 {
3201         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3202
3203         if (pll == NULL)
3204                 return;
3205
3206         if (pll->refcount == 0) {
3207                 WARN(1, "bad PCH PLL refcount\n");
3208                 return;
3209         }
3210
3211         --pll->refcount;
3212         intel_crtc->pch_pll = NULL;
3213 }
3214
3215 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3216 {
3217         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3218         struct intel_pch_pll *pll;
3219         int i;
3220
3221         pll = intel_crtc->pch_pll;
3222         if (pll) {
3223                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3224                               intel_crtc->base.base.id, pll->pll_reg);
3225                 goto prepare;
3226         }
3227
3228         if (HAS_PCH_IBX(dev_priv->dev)) {
3229                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3230                 i = intel_crtc->pipe;
3231                 pll = &dev_priv->pch_plls[i];
3232
3233                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3234                               intel_crtc->base.base.id, pll->pll_reg);
3235
3236                 goto found;
3237         }
3238
3239         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3240                 pll = &dev_priv->pch_plls[i];
3241
3242                 /* Only want to check enabled timings first */
3243                 if (pll->refcount == 0)
3244                         continue;
3245
3246                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3247                     fp == I915_READ(pll->fp0_reg)) {
3248                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3249                                       intel_crtc->base.base.id,
3250                                       pll->pll_reg, pll->refcount, pll->active);
3251
3252                         goto found;
3253                 }
3254         }
3255
3256         /* Ok no matching timings, maybe there's a free one? */
3257         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3258                 pll = &dev_priv->pch_plls[i];
3259                 if (pll->refcount == 0) {
3260                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3261                                       intel_crtc->base.base.id, pll->pll_reg);
3262                         goto found;
3263                 }
3264         }
3265
3266         return NULL;
3267
3268 found:
3269         intel_crtc->pch_pll = pll;
3270         pll->refcount++;
3271         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3272 prepare: /* separate function? */
3273         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3274
3275         /* Wait for the clocks to stabilize before rewriting the regs */
3276         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3277         POSTING_READ(pll->pll_reg);
3278         udelay(150);
3279
3280         I915_WRITE(pll->fp0_reg, fp);
3281         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3282         pll->on = false;
3283         return pll;
3284 }
3285
3286 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3287 {
3288         struct drm_i915_private *dev_priv = dev->dev_private;
3289         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3290         u32 temp;
3291
3292         temp = I915_READ(dslreg);
3293         udelay(500);
3294         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3295                 /* Without this, mode sets may fail silently on FDI */
3296                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3297                 udelay(250);
3298                 I915_WRITE(tc2reg, 0);
3299                 if (wait_for(I915_READ(dslreg) != temp, 5))
3300                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3301         }
3302 }
3303
3304 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3305 {
3306         struct drm_device *dev = crtc->dev;
3307         struct drm_i915_private *dev_priv = dev->dev_private;
3308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3309         struct intel_encoder *encoder;
3310         int pipe = intel_crtc->pipe;
3311         int plane = intel_crtc->plane;
3312         u32 temp;
3313         bool is_pch_port;
3314
3315         WARN_ON(!crtc->enabled);
3316
3317         if (intel_crtc->active)
3318                 return;
3319
3320         intel_crtc->active = true;
3321         intel_update_watermarks(dev);
3322
3323         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3324                 temp = I915_READ(PCH_LVDS);
3325                 if ((temp & LVDS_PORT_EN) == 0)
3326                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3327         }
3328
3329         is_pch_port = ironlake_crtc_driving_pch(crtc);
3330
3331         if (is_pch_port) {
3332                 /* Note: FDI PLL enabling _must_ be done before we enable the
3333                  * cpu pipes, hence this is separate from all the other fdi/pch
3334                  * enabling. */
3335                 ironlake_fdi_pll_enable(intel_crtc);
3336         } else {
3337                 assert_fdi_tx_disabled(dev_priv, pipe);
3338                 assert_fdi_rx_disabled(dev_priv, pipe);
3339         }
3340
3341         for_each_encoder_on_crtc(dev, crtc, encoder)
3342                 if (encoder->pre_enable)
3343                         encoder->pre_enable(encoder);
3344
3345         /* Enable panel fitting for LVDS */
3346         if (dev_priv->pch_pf_size &&
3347             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3348                 /* Force use of hard-coded filter coefficients
3349                  * as some pre-programmed values are broken,
3350                  * e.g. x201.
3351                  */
3352                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3353                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3354                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3355         }
3356
3357         /*
3358          * On ILK+ LUT must be loaded before the pipe is running but with
3359          * clocks enabled
3360          */
3361         intel_crtc_load_lut(crtc);
3362
3363         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3364         intel_enable_plane(dev_priv, plane, pipe);
3365
3366         if (is_pch_port)
3367                 ironlake_pch_enable(crtc);
3368
3369         mutex_lock(&dev->struct_mutex);
3370         intel_update_fbc(dev);
3371         mutex_unlock(&dev->struct_mutex);
3372
3373         intel_crtc_update_cursor(crtc, true);
3374
3375         for_each_encoder_on_crtc(dev, crtc, encoder)
3376                 encoder->enable(encoder);
3377
3378         if (HAS_PCH_CPT(dev))
3379                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3380
3381         /*
3382          * There seems to be a race in PCH platform hw (at least on some
3383          * outputs) where an enabled pipe still completes any pageflip right
3384          * away (as if the pipe is off) instead of waiting for vblank. As soon
3385          * as the first vblank happend, everything works as expected. Hence just
3386          * wait for one vblank before returning to avoid strange things
3387          * happening.
3388          */
3389         intel_wait_for_vblank(dev, intel_crtc->pipe);
3390 }
3391
3392 static void haswell_crtc_enable(struct drm_crtc *crtc)
3393 {
3394         struct drm_device *dev = crtc->dev;
3395         struct drm_i915_private *dev_priv = dev->dev_private;
3396         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3397         struct intel_encoder *encoder;
3398         int pipe = intel_crtc->pipe;
3399         int plane = intel_crtc->plane;
3400         bool is_pch_port;
3401
3402         WARN_ON(!crtc->enabled);
3403
3404         if (intel_crtc->active)
3405                 return;
3406
3407         intel_crtc->active = true;
3408         intel_update_watermarks(dev);
3409
3410         is_pch_port = haswell_crtc_driving_pch(crtc);
3411
3412         if (is_pch_port)
3413                 ironlake_fdi_pll_enable(intel_crtc);
3414
3415         for_each_encoder_on_crtc(dev, crtc, encoder)
3416                 if (encoder->pre_enable)
3417                         encoder->pre_enable(encoder);
3418
3419         intel_ddi_enable_pipe_clock(intel_crtc);
3420
3421         /* Enable panel fitting for eDP */
3422         if (dev_priv->pch_pf_size && HAS_eDP) {
3423                 /* Force use of hard-coded filter coefficients
3424                  * as some pre-programmed values are broken,
3425                  * e.g. x201.
3426                  */
3427                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3428                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3429                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3430         }
3431
3432         /*
3433          * On ILK+ LUT must be loaded before the pipe is running but with
3434          * clocks enabled
3435          */
3436         intel_crtc_load_lut(crtc);
3437
3438         intel_ddi_set_pipe_settings(crtc);
3439         intel_ddi_enable_pipe_func(crtc);
3440
3441         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3442         intel_enable_plane(dev_priv, plane, pipe);
3443
3444         if (is_pch_port)
3445                 lpt_pch_enable(crtc);
3446
3447         mutex_lock(&dev->struct_mutex);
3448         intel_update_fbc(dev);
3449         mutex_unlock(&dev->struct_mutex);
3450
3451         intel_crtc_update_cursor(crtc, true);
3452
3453         for_each_encoder_on_crtc(dev, crtc, encoder)
3454                 encoder->enable(encoder);
3455
3456         /*
3457          * There seems to be a race in PCH platform hw (at least on some
3458          * outputs) where an enabled pipe still completes any pageflip right
3459          * away (as if the pipe is off) instead of waiting for vblank. As soon
3460          * as the first vblank happend, everything works as expected. Hence just
3461          * wait for one vblank before returning to avoid strange things
3462          * happening.
3463          */
3464         intel_wait_for_vblank(dev, intel_crtc->pipe);
3465 }
3466
3467 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3468 {
3469         struct drm_device *dev = crtc->dev;
3470         struct drm_i915_private *dev_priv = dev->dev_private;
3471         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3472         struct intel_encoder *encoder;
3473         int pipe = intel_crtc->pipe;
3474         int plane = intel_crtc->plane;
3475         u32 reg, temp;
3476
3477
3478         if (!intel_crtc->active)
3479                 return;
3480
3481         for_each_encoder_on_crtc(dev, crtc, encoder)
3482                 encoder->disable(encoder);
3483
3484         intel_crtc_wait_for_pending_flips(crtc);
3485         drm_vblank_off(dev, pipe);
3486         intel_crtc_update_cursor(crtc, false);
3487
3488         intel_disable_plane(dev_priv, plane, pipe);
3489
3490         if (dev_priv->cfb_plane == plane)
3491                 intel_disable_fbc(dev);
3492
3493         intel_disable_pipe(dev_priv, pipe);
3494
3495         /* Disable PF */
3496         I915_WRITE(PF_CTL(pipe), 0);
3497         I915_WRITE(PF_WIN_SZ(pipe), 0);
3498
3499         for_each_encoder_on_crtc(dev, crtc, encoder)
3500                 if (encoder->post_disable)
3501                         encoder->post_disable(encoder);
3502
3503         ironlake_fdi_disable(crtc);
3504
3505         intel_disable_transcoder(dev_priv, pipe);
3506
3507         if (HAS_PCH_CPT(dev)) {
3508                 /* disable TRANS_DP_CTL */
3509                 reg = TRANS_DP_CTL(pipe);
3510                 temp = I915_READ(reg);
3511                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3512                 temp |= TRANS_DP_PORT_SEL_NONE;
3513                 I915_WRITE(reg, temp);
3514
3515                 /* disable DPLL_SEL */
3516                 temp = I915_READ(PCH_DPLL_SEL);
3517                 switch (pipe) {
3518                 case 0:
3519                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3520                         break;
3521                 case 1:
3522                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3523                         break;
3524                 case 2:
3525                         /* C shares PLL A or B */
3526                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3527                         break;
3528                 default:
3529                         BUG(); /* wtf */
3530                 }
3531                 I915_WRITE(PCH_DPLL_SEL, temp);
3532         }
3533
3534         /* disable PCH DPLL */
3535         intel_disable_pch_pll(intel_crtc);
3536
3537         ironlake_fdi_pll_disable(intel_crtc);
3538
3539         intel_crtc->active = false;
3540         intel_update_watermarks(dev);
3541
3542         mutex_lock(&dev->struct_mutex);
3543         intel_update_fbc(dev);
3544         mutex_unlock(&dev->struct_mutex);
3545 }
3546
3547 static void haswell_crtc_disable(struct drm_crtc *crtc)
3548 {
3549         struct drm_device *dev = crtc->dev;
3550         struct drm_i915_private *dev_priv = dev->dev_private;
3551         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3552         struct intel_encoder *encoder;
3553         int pipe = intel_crtc->pipe;
3554         int plane = intel_crtc->plane;
3555         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3556         bool is_pch_port;
3557
3558         if (!intel_crtc->active)
3559                 return;
3560
3561         is_pch_port = haswell_crtc_driving_pch(crtc);
3562
3563         for_each_encoder_on_crtc(dev, crtc, encoder)
3564                 encoder->disable(encoder);
3565
3566         intel_crtc_wait_for_pending_flips(crtc);
3567         drm_vblank_off(dev, pipe);
3568         intel_crtc_update_cursor(crtc, false);
3569
3570         intel_disable_plane(dev_priv, plane, pipe);
3571
3572         if (dev_priv->cfb_plane == plane)
3573                 intel_disable_fbc(dev);
3574
3575         intel_disable_pipe(dev_priv, pipe);
3576
3577         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3578
3579         /* Disable PF */
3580         I915_WRITE(PF_CTL(pipe), 0);
3581         I915_WRITE(PF_WIN_SZ(pipe), 0);
3582
3583         intel_ddi_disable_pipe_clock(intel_crtc);
3584
3585         for_each_encoder_on_crtc(dev, crtc, encoder)
3586                 if (encoder->post_disable)
3587                         encoder->post_disable(encoder);
3588
3589         if (is_pch_port) {
3590                 ironlake_fdi_disable(crtc);
3591                 intel_disable_transcoder(dev_priv, pipe);
3592                 intel_disable_pch_pll(intel_crtc);
3593                 ironlake_fdi_pll_disable(intel_crtc);
3594         }
3595
3596         intel_crtc->active = false;
3597         intel_update_watermarks(dev);
3598
3599         mutex_lock(&dev->struct_mutex);
3600         intel_update_fbc(dev);
3601         mutex_unlock(&dev->struct_mutex);
3602 }
3603
3604 static void ironlake_crtc_off(struct drm_crtc *crtc)
3605 {
3606         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3607         intel_put_pch_pll(intel_crtc);
3608 }
3609
3610 static void haswell_crtc_off(struct drm_crtc *crtc)
3611 {
3612         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3613
3614         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3615          * start using it. */
3616         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3617
3618         intel_ddi_put_crtc_pll(crtc);
3619 }
3620
3621 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3622 {
3623         if (!enable && intel_crtc->overlay) {
3624                 struct drm_device *dev = intel_crtc->base.dev;
3625                 struct drm_i915_private *dev_priv = dev->dev_private;
3626
3627                 mutex_lock(&dev->struct_mutex);
3628                 dev_priv->mm.interruptible = false;
3629                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3630                 dev_priv->mm.interruptible = true;
3631                 mutex_unlock(&dev->struct_mutex);
3632         }
3633
3634         /* Let userspace switch the overlay on again. In most cases userspace
3635          * has to recompute where to put it anyway.
3636          */
3637 }
3638
3639 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3640 {
3641         struct drm_device *dev = crtc->dev;
3642         struct drm_i915_private *dev_priv = dev->dev_private;
3643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3644         struct intel_encoder *encoder;
3645         int pipe = intel_crtc->pipe;
3646         int plane = intel_crtc->plane;
3647
3648         WARN_ON(!crtc->enabled);
3649
3650         if (intel_crtc->active)
3651                 return;
3652
3653         intel_crtc->active = true;
3654         intel_update_watermarks(dev);
3655
3656         intel_enable_pll(dev_priv, pipe);
3657         intel_enable_pipe(dev_priv, pipe, false);
3658         intel_enable_plane(dev_priv, plane, pipe);
3659
3660         intel_crtc_load_lut(crtc);
3661         intel_update_fbc(dev);
3662
3663         /* Give the overlay scaler a chance to enable if it's on this pipe */
3664         intel_crtc_dpms_overlay(intel_crtc, true);
3665         intel_crtc_update_cursor(crtc, true);
3666
3667         for_each_encoder_on_crtc(dev, crtc, encoder)
3668                 encoder->enable(encoder);
3669 }
3670
3671 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3672 {
3673         struct drm_device *dev = crtc->dev;
3674         struct drm_i915_private *dev_priv = dev->dev_private;
3675         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3676         struct intel_encoder *encoder;
3677         int pipe = intel_crtc->pipe;
3678         int plane = intel_crtc->plane;
3679
3680
3681         if (!intel_crtc->active)
3682                 return;
3683
3684         for_each_encoder_on_crtc(dev, crtc, encoder)
3685                 encoder->disable(encoder);
3686
3687         /* Give the overlay scaler a chance to disable if it's on this pipe */
3688         intel_crtc_wait_for_pending_flips(crtc);
3689         drm_vblank_off(dev, pipe);
3690         intel_crtc_dpms_overlay(intel_crtc, false);
3691         intel_crtc_update_cursor(crtc, false);
3692
3693         if (dev_priv->cfb_plane == plane)
3694                 intel_disable_fbc(dev);
3695
3696         intel_disable_plane(dev_priv, plane, pipe);
3697         intel_disable_pipe(dev_priv, pipe);
3698         intel_disable_pll(dev_priv, pipe);
3699
3700         intel_crtc->active = false;
3701         intel_update_fbc(dev);
3702         intel_update_watermarks(dev);
3703 }
3704
3705 static void i9xx_crtc_off(struct drm_crtc *crtc)
3706 {
3707 }
3708
3709 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3710                                     bool enabled)
3711 {
3712         struct drm_device *dev = crtc->dev;
3713         struct drm_i915_master_private *master_priv;
3714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3715         int pipe = intel_crtc->pipe;
3716
3717         if (!dev->primary->master)
3718                 return;
3719
3720         master_priv = dev->primary->master->driver_priv;
3721         if (!master_priv->sarea_priv)
3722                 return;
3723
3724         switch (pipe) {
3725         case 0:
3726                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3727                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3728                 break;
3729         case 1:
3730                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3731                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3732                 break;
3733         default:
3734                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3735                 break;
3736         }
3737 }
3738
3739 /**
3740  * Sets the power management mode of the pipe and plane.
3741  */
3742 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3743 {
3744         struct drm_device *dev = crtc->dev;
3745         struct drm_i915_private *dev_priv = dev->dev_private;
3746         struct intel_encoder *intel_encoder;
3747         bool enable = false;
3748
3749         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3750                 enable |= intel_encoder->connectors_active;
3751
3752         if (enable)
3753                 dev_priv->display.crtc_enable(crtc);
3754         else
3755                 dev_priv->display.crtc_disable(crtc);
3756
3757         intel_crtc_update_sarea(crtc, enable);
3758 }
3759
3760 static void intel_crtc_noop(struct drm_crtc *crtc)
3761 {
3762 }
3763
3764 static void intel_crtc_disable(struct drm_crtc *crtc)
3765 {
3766         struct drm_device *dev = crtc->dev;
3767         struct drm_connector *connector;
3768         struct drm_i915_private *dev_priv = dev->dev_private;
3769
3770         /* crtc should still be enabled when we disable it. */
3771         WARN_ON(!crtc->enabled);
3772
3773         dev_priv->display.crtc_disable(crtc);
3774         intel_crtc_update_sarea(crtc, false);
3775         dev_priv->display.off(crtc);
3776
3777         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3778         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3779
3780         if (crtc->fb) {
3781                 mutex_lock(&dev->struct_mutex);
3782                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3783                 mutex_unlock(&dev->struct_mutex);
3784                 crtc->fb = NULL;
3785         }
3786
3787         /* Update computed state. */
3788         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3789                 if (!connector->encoder || !connector->encoder->crtc)
3790                         continue;
3791
3792                 if (connector->encoder->crtc != crtc)
3793                         continue;
3794
3795                 connector->dpms = DRM_MODE_DPMS_OFF;
3796                 to_intel_encoder(connector->encoder)->connectors_active = false;
3797         }
3798 }
3799
3800 void intel_modeset_disable(struct drm_device *dev)
3801 {
3802         struct drm_crtc *crtc;
3803
3804         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3805                 if (crtc->enabled)
3806                         intel_crtc_disable(crtc);
3807         }
3808 }
3809
3810 void intel_encoder_noop(struct drm_encoder *encoder)
3811 {
3812 }
3813
3814 void intel_encoder_destroy(struct drm_encoder *encoder)
3815 {
3816         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3817
3818         drm_encoder_cleanup(encoder);
3819         kfree(intel_encoder);
3820 }
3821
3822 /* Simple dpms helper for encodres with just one connector, no cloning and only
3823  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3824  * state of the entire output pipe. */
3825 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3826 {
3827         if (mode == DRM_MODE_DPMS_ON) {
3828                 encoder->connectors_active = true;
3829
3830                 intel_crtc_update_dpms(encoder->base.crtc);
3831         } else {
3832                 encoder->connectors_active = false;
3833
3834                 intel_crtc_update_dpms(encoder->base.crtc);
3835         }
3836 }
3837
3838 /* Cross check the actual hw state with our own modeset state tracking (and it's
3839  * internal consistency). */
3840 static void intel_connector_check_state(struct intel_connector *connector)
3841 {
3842         if (connector->get_hw_state(connector)) {
3843                 struct intel_encoder *encoder = connector->encoder;
3844                 struct drm_crtc *crtc;
3845                 bool encoder_enabled;
3846                 enum pipe pipe;
3847
3848                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3849                               connector->base.base.id,
3850                               drm_get_connector_name(&connector->base));
3851
3852                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3853                      "wrong connector dpms state\n");
3854                 WARN(connector->base.encoder != &encoder->base,
3855                      "active connector not linked to encoder\n");
3856                 WARN(!encoder->connectors_active,
3857                      "encoder->connectors_active not set\n");
3858
3859                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3860                 WARN(!encoder_enabled, "encoder not enabled\n");
3861                 if (WARN_ON(!encoder->base.crtc))
3862                         return;
3863
3864                 crtc = encoder->base.crtc;
3865
3866                 WARN(!crtc->enabled, "crtc not enabled\n");
3867                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3868                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3869                      "encoder active on the wrong pipe\n");
3870         }
3871 }
3872
3873 /* Even simpler default implementation, if there's really no special case to
3874  * consider. */
3875 void intel_connector_dpms(struct drm_connector *connector, int mode)
3876 {
3877         struct intel_encoder *encoder = intel_attached_encoder(connector);
3878
3879         /* All the simple cases only support two dpms states. */
3880         if (mode != DRM_MODE_DPMS_ON)
3881                 mode = DRM_MODE_DPMS_OFF;
3882
3883         if (mode == connector->dpms)
3884                 return;
3885
3886         connector->dpms = mode;
3887
3888         /* Only need to change hw state when actually enabled */
3889         if (encoder->base.crtc)
3890                 intel_encoder_dpms(encoder, mode);
3891         else
3892                 WARN_ON(encoder->connectors_active != false);
3893
3894         intel_modeset_check_state(connector->dev);
3895 }
3896
3897 /* Simple connector->get_hw_state implementation for encoders that support only
3898  * one connector and no cloning and hence the encoder state determines the state
3899  * of the connector. */
3900 bool intel_connector_get_hw_state(struct intel_connector *connector)
3901 {
3902         enum pipe pipe = 0;
3903         struct intel_encoder *encoder = connector->encoder;
3904
3905         return encoder->get_hw_state(encoder, &pipe);
3906 }
3907
3908 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3909                                   const struct drm_display_mode *mode,
3910                                   struct drm_display_mode *adjusted_mode)
3911 {
3912         struct drm_device *dev = crtc->dev;
3913
3914         if (HAS_PCH_SPLIT(dev)) {
3915                 /* FDI link clock is fixed at 2.7G */
3916                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3917                         return false;
3918         }
3919
3920         /* All interlaced capable intel hw wants timings in frames. Note though
3921          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3922          * timings, so we need to be careful not to clobber these.*/
3923         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3924                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3925
3926         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3927          * with a hsync front porch of 0.
3928          */
3929         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3930                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3931                 return false;
3932
3933         return true;
3934 }
3935
3936 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3937 {
3938         return 400000; /* FIXME */
3939 }
3940
3941 static int i945_get_display_clock_speed(struct drm_device *dev)
3942 {
3943         return 400000;
3944 }
3945
3946 static int i915_get_display_clock_speed(struct drm_device *dev)
3947 {
3948         return 333000;
3949 }
3950
3951 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3952 {
3953         return 200000;
3954 }
3955
3956 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3957 {
3958         u16 gcfgc = 0;
3959
3960         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3961
3962         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3963                 return 133000;
3964         else {
3965                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3966                 case GC_DISPLAY_CLOCK_333_MHZ:
3967                         return 333000;
3968                 default:
3969                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3970                         return 190000;
3971                 }
3972         }
3973 }
3974
3975 static int i865_get_display_clock_speed(struct drm_device *dev)
3976 {
3977         return 266000;
3978 }
3979
3980 static int i855_get_display_clock_speed(struct drm_device *dev)
3981 {
3982         u16 hpllcc = 0;
3983         /* Assume that the hardware is in the high speed state.  This
3984          * should be the default.
3985          */
3986         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3987         case GC_CLOCK_133_200:
3988         case GC_CLOCK_100_200:
3989                 return 200000;
3990         case GC_CLOCK_166_250:
3991                 return 250000;
3992         case GC_CLOCK_100_133:
3993                 return 133000;
3994         }
3995
3996         /* Shouldn't happen */
3997         return 0;
3998 }
3999
4000 static int i830_get_display_clock_speed(struct drm_device *dev)
4001 {
4002         return 133000;
4003 }
4004
4005 struct fdi_m_n {
4006         u32        tu;
4007         u32        gmch_m;
4008         u32        gmch_n;
4009         u32        link_m;
4010         u32        link_n;
4011 };
4012
4013 static void
4014 fdi_reduce_ratio(u32 *num, u32 *den)
4015 {
4016         while (*num > 0xffffff || *den > 0xffffff) {
4017                 *num >>= 1;
4018                 *den >>= 1;
4019         }
4020 }
4021
4022 static void
4023 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4024                      int link_clock, struct fdi_m_n *m_n)
4025 {
4026         m_n->tu = 64; /* default size */
4027
4028         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4029         m_n->gmch_m = bits_per_pixel * pixel_clock;
4030         m_n->gmch_n = link_clock * nlanes * 8;
4031         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4032
4033         m_n->link_m = pixel_clock;
4034         m_n->link_n = link_clock;
4035         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4036 }
4037
4038 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4039 {
4040         if (i915_panel_use_ssc >= 0)
4041                 return i915_panel_use_ssc != 0;
4042         return dev_priv->lvds_use_ssc
4043                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4044 }
4045
4046 /**
4047  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4048  * @crtc: CRTC structure
4049  * @mode: requested mode
4050  *
4051  * A pipe may be connected to one or more outputs.  Based on the depth of the
4052  * attached framebuffer, choose a good color depth to use on the pipe.
4053  *
4054  * If possible, match the pipe depth to the fb depth.  In some cases, this
4055  * isn't ideal, because the connected output supports a lesser or restricted
4056  * set of depths.  Resolve that here:
4057  *    LVDS typically supports only 6bpc, so clamp down in that case
4058  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4059  *    Displays may support a restricted set as well, check EDID and clamp as
4060  *      appropriate.
4061  *    DP may want to dither down to 6bpc to fit larger modes
4062  *
4063  * RETURNS:
4064  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4065  * true if they don't match).
4066  */
4067 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4068                                          struct drm_framebuffer *fb,
4069                                          unsigned int *pipe_bpp,
4070                                          struct drm_display_mode *mode)
4071 {
4072         struct drm_device *dev = crtc->dev;
4073         struct drm_i915_private *dev_priv = dev->dev_private;
4074         struct drm_connector *connector;
4075         struct intel_encoder *intel_encoder;
4076         unsigned int display_bpc = UINT_MAX, bpc;
4077
4078         /* Walk the encoders & connectors on this crtc, get min bpc */
4079         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4080
4081                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4082                         unsigned int lvds_bpc;
4083
4084                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4085                             LVDS_A3_POWER_UP)
4086                                 lvds_bpc = 8;
4087                         else
4088                                 lvds_bpc = 6;
4089
4090                         if (lvds_bpc < display_bpc) {
4091                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4092                                 display_bpc = lvds_bpc;
4093                         }
4094                         continue;
4095                 }
4096
4097                 /* Not one of the known troublemakers, check the EDID */
4098                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4099                                     head) {
4100                         if (connector->encoder != &intel_encoder->base)
4101                                 continue;
4102
4103                         /* Don't use an invalid EDID bpc value */
4104                         if (connector->display_info.bpc &&
4105                             connector->display_info.bpc < display_bpc) {
4106                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4107                                 display_bpc = connector->display_info.bpc;
4108                         }
4109                 }
4110
4111                 /*
4112                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4113                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4114                  */
4115                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4116                         if (display_bpc > 8 && display_bpc < 12) {
4117                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4118                                 display_bpc = 12;
4119                         } else {
4120                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4121                                 display_bpc = 8;
4122                         }
4123                 }
4124         }
4125
4126         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4127                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4128                 display_bpc = 6;
4129         }
4130
4131         /*
4132          * We could just drive the pipe at the highest bpc all the time and
4133          * enable dithering as needed, but that costs bandwidth.  So choose
4134          * the minimum value that expresses the full color range of the fb but
4135          * also stays within the max display bpc discovered above.
4136          */
4137
4138         switch (fb->depth) {
4139         case 8:
4140                 bpc = 8; /* since we go through a colormap */
4141                 break;
4142         case 15:
4143         case 16:
4144                 bpc = 6; /* min is 18bpp */
4145                 break;
4146         case 24:
4147                 bpc = 8;
4148                 break;
4149         case 30:
4150                 bpc = 10;
4151                 break;
4152         case 48:
4153                 bpc = 12;
4154                 break;
4155         default:
4156                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4157                 bpc = min((unsigned int)8, display_bpc);
4158                 break;
4159         }
4160
4161         display_bpc = min(display_bpc, bpc);
4162
4163         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4164                       bpc, display_bpc);
4165
4166         *pipe_bpp = display_bpc * 3;
4167
4168         return display_bpc != bpc;
4169 }
4170
4171 static int vlv_get_refclk(struct drm_crtc *crtc)
4172 {
4173         struct drm_device *dev = crtc->dev;
4174         struct drm_i915_private *dev_priv = dev->dev_private;
4175         int refclk = 27000; /* for DP & HDMI */
4176
4177         return 100000; /* only one validated so far */
4178
4179         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4180                 refclk = 96000;
4181         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4182                 if (intel_panel_use_ssc(dev_priv))
4183                         refclk = 100000;
4184                 else
4185                         refclk = 96000;
4186         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4187                 refclk = 100000;
4188         }
4189
4190         return refclk;
4191 }
4192
4193 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4194 {
4195         struct drm_device *dev = crtc->dev;
4196         struct drm_i915_private *dev_priv = dev->dev_private;
4197         int refclk;
4198
4199         if (IS_VALLEYVIEW(dev)) {
4200                 refclk = vlv_get_refclk(crtc);
4201         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4202             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4203                 refclk = dev_priv->lvds_ssc_freq * 1000;
4204                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4205                               refclk / 1000);
4206         } else if (!IS_GEN2(dev)) {
4207                 refclk = 96000;
4208         } else {
4209                 refclk = 48000;
4210         }
4211
4212         return refclk;
4213 }
4214
4215 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4216                                       intel_clock_t *clock)
4217 {
4218         /* SDVO TV has fixed PLL values depend on its clock range,
4219            this mirrors vbios setting. */
4220         if (adjusted_mode->clock >= 100000
4221             && adjusted_mode->clock < 140500) {
4222                 clock->p1 = 2;
4223                 clock->p2 = 10;
4224                 clock->n = 3;
4225                 clock->m1 = 16;
4226                 clock->m2 = 8;
4227         } else if (adjusted_mode->clock >= 140500
4228                    && adjusted_mode->clock <= 200000) {
4229                 clock->p1 = 1;
4230                 clock->p2 = 10;
4231                 clock->n = 6;
4232                 clock->m1 = 12;
4233                 clock->m2 = 8;
4234         }
4235 }
4236
4237 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4238                                      intel_clock_t *clock,
4239                                      intel_clock_t *reduced_clock)
4240 {
4241         struct drm_device *dev = crtc->dev;
4242         struct drm_i915_private *dev_priv = dev->dev_private;
4243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4244         int pipe = intel_crtc->pipe;
4245         u32 fp, fp2 = 0;
4246
4247         if (IS_PINEVIEW(dev)) {
4248                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4249                 if (reduced_clock)
4250                         fp2 = (1 << reduced_clock->n) << 16 |
4251                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4252         } else {
4253                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4254                 if (reduced_clock)
4255                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4256                                 reduced_clock->m2;
4257         }
4258
4259         I915_WRITE(FP0(pipe), fp);
4260
4261         intel_crtc->lowfreq_avail = false;
4262         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4263             reduced_clock && i915_powersave) {
4264                 I915_WRITE(FP1(pipe), fp2);
4265                 intel_crtc->lowfreq_avail = true;
4266         } else {
4267                 I915_WRITE(FP1(pipe), fp);
4268         }
4269 }
4270
4271 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4272                               struct drm_display_mode *adjusted_mode)
4273 {
4274         struct drm_device *dev = crtc->dev;
4275         struct drm_i915_private *dev_priv = dev->dev_private;
4276         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4277         int pipe = intel_crtc->pipe;
4278         u32 temp;
4279
4280         temp = I915_READ(LVDS);
4281         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4282         if (pipe == 1) {
4283                 temp |= LVDS_PIPEB_SELECT;
4284         } else {
4285                 temp &= ~LVDS_PIPEB_SELECT;
4286         }
4287         /* set the corresponsding LVDS_BORDER bit */
4288         temp |= dev_priv->lvds_border_bits;
4289         /* Set the B0-B3 data pairs corresponding to whether we're going to
4290          * set the DPLLs for dual-channel mode or not.
4291          */
4292         if (clock->p2 == 7)
4293                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4294         else
4295                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4296
4297         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4298          * appropriately here, but we need to look more thoroughly into how
4299          * panels behave in the two modes.
4300          */
4301         /* set the dithering flag on LVDS as needed */
4302         if (INTEL_INFO(dev)->gen >= 4) {
4303                 if (dev_priv->lvds_dither)
4304                         temp |= LVDS_ENABLE_DITHER;
4305                 else
4306                         temp &= ~LVDS_ENABLE_DITHER;
4307         }
4308         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4309         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4310                 temp |= LVDS_HSYNC_POLARITY;
4311         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4312                 temp |= LVDS_VSYNC_POLARITY;
4313         I915_WRITE(LVDS, temp);
4314 }
4315
4316 static void vlv_update_pll(struct drm_crtc *crtc,
4317                            struct drm_display_mode *mode,
4318                            struct drm_display_mode *adjusted_mode,
4319                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4320                            int num_connectors)
4321 {
4322         struct drm_device *dev = crtc->dev;
4323         struct drm_i915_private *dev_priv = dev->dev_private;
4324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4325         int pipe = intel_crtc->pipe;
4326         u32 dpll, mdiv, pdiv;
4327         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4328         bool is_sdvo;
4329         u32 temp;
4330
4331         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4332                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4333
4334         dpll = DPLL_VGA_MODE_DIS;
4335         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4336         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4337         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4338
4339         I915_WRITE(DPLL(pipe), dpll);
4340         POSTING_READ(DPLL(pipe));
4341
4342         bestn = clock->n;
4343         bestm1 = clock->m1;
4344         bestm2 = clock->m2;
4345         bestp1 = clock->p1;
4346         bestp2 = clock->p2;
4347
4348         /*
4349          * In Valleyview PLL and program lane counter registers are exposed
4350          * through DPIO interface
4351          */
4352         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4353         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4354         mdiv |= ((bestn << DPIO_N_SHIFT));
4355         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4356         mdiv |= (1 << DPIO_K_SHIFT);
4357         mdiv |= DPIO_ENABLE_CALIBRATION;
4358         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4359
4360         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4361
4362         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4363                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4364                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4365                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4366         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4367
4368         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4369
4370         dpll |= DPLL_VCO_ENABLE;
4371         I915_WRITE(DPLL(pipe), dpll);
4372         POSTING_READ(DPLL(pipe));
4373         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4374                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4375
4376         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4377
4378         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4379                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4380
4381         I915_WRITE(DPLL(pipe), dpll);
4382
4383         /* Wait for the clocks to stabilize. */
4384         POSTING_READ(DPLL(pipe));
4385         udelay(150);
4386
4387         temp = 0;
4388         if (is_sdvo) {
4389                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4390                 if (temp > 1)
4391                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4392                 else
4393                         temp = 0;
4394         }
4395         I915_WRITE(DPLL_MD(pipe), temp);
4396         POSTING_READ(DPLL_MD(pipe));
4397
4398         /* Now program lane control registers */
4399         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4400                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4401         {
4402                 temp = 0x1000C4;
4403                 if(pipe == 1)
4404                         temp |= (1 << 21);
4405                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4406         }
4407         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4408         {
4409                 temp = 0x1000C4;
4410                 if(pipe == 1)
4411                         temp |= (1 << 21);
4412                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4413         }
4414 }
4415
4416 static void i9xx_update_pll(struct drm_crtc *crtc,
4417                             struct drm_display_mode *mode,
4418                             struct drm_display_mode *adjusted_mode,
4419                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4420                             int num_connectors)
4421 {
4422         struct drm_device *dev = crtc->dev;
4423         struct drm_i915_private *dev_priv = dev->dev_private;
4424         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4425         int pipe = intel_crtc->pipe;
4426         u32 dpll;
4427         bool is_sdvo;
4428
4429         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4430
4431         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4432                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4433
4434         dpll = DPLL_VGA_MODE_DIS;
4435
4436         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4437                 dpll |= DPLLB_MODE_LVDS;
4438         else
4439                 dpll |= DPLLB_MODE_DAC_SERIAL;
4440         if (is_sdvo) {
4441                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4442                 if (pixel_multiplier > 1) {
4443                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4444                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4445                 }
4446                 dpll |= DPLL_DVO_HIGH_SPEED;
4447         }
4448         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4449                 dpll |= DPLL_DVO_HIGH_SPEED;
4450
4451         /* compute bitmask from p1 value */
4452         if (IS_PINEVIEW(dev))
4453                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4454         else {
4455                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4456                 if (IS_G4X(dev) && reduced_clock)
4457                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4458         }
4459         switch (clock->p2) {
4460         case 5:
4461                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4462                 break;
4463         case 7:
4464                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4465                 break;
4466         case 10:
4467                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4468                 break;
4469         case 14:
4470                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4471                 break;
4472         }
4473         if (INTEL_INFO(dev)->gen >= 4)
4474                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4475
4476         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4477                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4478         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4479                 /* XXX: just matching BIOS for now */
4480                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4481                 dpll |= 3;
4482         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4483                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4484                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4485         else
4486                 dpll |= PLL_REF_INPUT_DREFCLK;
4487
4488         dpll |= DPLL_VCO_ENABLE;
4489         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4490         POSTING_READ(DPLL(pipe));
4491         udelay(150);
4492
4493         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4494          * This is an exception to the general rule that mode_set doesn't turn
4495          * things on.
4496          */
4497         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4498                 intel_update_lvds(crtc, clock, adjusted_mode);
4499
4500         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4501                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4502
4503         I915_WRITE(DPLL(pipe), dpll);
4504
4505         /* Wait for the clocks to stabilize. */
4506         POSTING_READ(DPLL(pipe));
4507         udelay(150);
4508
4509         if (INTEL_INFO(dev)->gen >= 4) {
4510                 u32 temp = 0;
4511                 if (is_sdvo) {
4512                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4513                         if (temp > 1)
4514                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4515                         else
4516                                 temp = 0;
4517                 }
4518                 I915_WRITE(DPLL_MD(pipe), temp);
4519         } else {
4520                 /* The pixel multiplier can only be updated once the
4521                  * DPLL is enabled and the clocks are stable.
4522                  *
4523                  * So write it again.
4524                  */
4525                 I915_WRITE(DPLL(pipe), dpll);
4526         }
4527 }
4528
4529 static void i8xx_update_pll(struct drm_crtc *crtc,
4530                             struct drm_display_mode *adjusted_mode,
4531                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4532                             int num_connectors)
4533 {
4534         struct drm_device *dev = crtc->dev;
4535         struct drm_i915_private *dev_priv = dev->dev_private;
4536         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4537         int pipe = intel_crtc->pipe;
4538         u32 dpll;
4539
4540         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4541
4542         dpll = DPLL_VGA_MODE_DIS;
4543
4544         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4545                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4546         } else {
4547                 if (clock->p1 == 2)
4548                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4549                 else
4550                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4551                 if (clock->p2 == 4)
4552                         dpll |= PLL_P2_DIVIDE_BY_4;
4553         }
4554
4555         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4556                 /* XXX: just matching BIOS for now */
4557                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4558                 dpll |= 3;
4559         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4560                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4561                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4562         else
4563                 dpll |= PLL_REF_INPUT_DREFCLK;
4564
4565         dpll |= DPLL_VCO_ENABLE;
4566         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4567         POSTING_READ(DPLL(pipe));
4568         udelay(150);
4569
4570         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4571          * This is an exception to the general rule that mode_set doesn't turn
4572          * things on.
4573          */
4574         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4575                 intel_update_lvds(crtc, clock, adjusted_mode);
4576
4577         I915_WRITE(DPLL(pipe), dpll);
4578
4579         /* Wait for the clocks to stabilize. */
4580         POSTING_READ(DPLL(pipe));
4581         udelay(150);
4582
4583         /* The pixel multiplier can only be updated once the
4584          * DPLL is enabled and the clocks are stable.
4585          *
4586          * So write it again.
4587          */
4588         I915_WRITE(DPLL(pipe), dpll);
4589 }
4590
4591 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4592                                    struct drm_display_mode *mode,
4593                                    struct drm_display_mode *adjusted_mode)
4594 {
4595         struct drm_device *dev = intel_crtc->base.dev;
4596         struct drm_i915_private *dev_priv = dev->dev_private;
4597         enum pipe pipe = intel_crtc->pipe;
4598         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4599         uint32_t vsyncshift;
4600
4601         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4602                 /* the chip adds 2 halflines automatically */
4603                 adjusted_mode->crtc_vtotal -= 1;
4604                 adjusted_mode->crtc_vblank_end -= 1;
4605                 vsyncshift = adjusted_mode->crtc_hsync_start
4606                              - adjusted_mode->crtc_htotal / 2;
4607         } else {
4608                 vsyncshift = 0;
4609         }
4610
4611         if (INTEL_INFO(dev)->gen > 3)
4612                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4613
4614         I915_WRITE(HTOTAL(cpu_transcoder),
4615                    (adjusted_mode->crtc_hdisplay - 1) |
4616                    ((adjusted_mode->crtc_htotal - 1) << 16));
4617         I915_WRITE(HBLANK(cpu_transcoder),
4618                    (adjusted_mode->crtc_hblank_start - 1) |
4619                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4620         I915_WRITE(HSYNC(cpu_transcoder),
4621                    (adjusted_mode->crtc_hsync_start - 1) |
4622                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4623
4624         I915_WRITE(VTOTAL(cpu_transcoder),
4625                    (adjusted_mode->crtc_vdisplay - 1) |
4626                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4627         I915_WRITE(VBLANK(cpu_transcoder),
4628                    (adjusted_mode->crtc_vblank_start - 1) |
4629                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4630         I915_WRITE(VSYNC(cpu_transcoder),
4631                    (adjusted_mode->crtc_vsync_start - 1) |
4632                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4633
4634         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4635          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4636          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4637          * bits. */
4638         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4639             (pipe == PIPE_B || pipe == PIPE_C))
4640                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4641
4642         /* pipesrc controls the size that is scaled from, which should
4643          * always be the user's requested size.
4644          */
4645         I915_WRITE(PIPESRC(pipe),
4646                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4647 }
4648
4649 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4650                               struct drm_display_mode *mode,
4651                               struct drm_display_mode *adjusted_mode,
4652                               int x, int y,
4653                               struct drm_framebuffer *fb)
4654 {
4655         struct drm_device *dev = crtc->dev;
4656         struct drm_i915_private *dev_priv = dev->dev_private;
4657         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4658         int pipe = intel_crtc->pipe;
4659         int plane = intel_crtc->plane;
4660         int refclk, num_connectors = 0;
4661         intel_clock_t clock, reduced_clock;
4662         u32 dspcntr, pipeconf;
4663         bool ok, has_reduced_clock = false, is_sdvo = false;
4664         bool is_lvds = false, is_tv = false, is_dp = false;
4665         struct intel_encoder *encoder;
4666         const intel_limit_t *limit;
4667         int ret;
4668
4669         for_each_encoder_on_crtc(dev, crtc, encoder) {
4670                 switch (encoder->type) {
4671                 case INTEL_OUTPUT_LVDS:
4672                         is_lvds = true;
4673                         break;
4674                 case INTEL_OUTPUT_SDVO:
4675                 case INTEL_OUTPUT_HDMI:
4676                         is_sdvo = true;
4677                         if (encoder->needs_tv_clock)
4678                                 is_tv = true;
4679                         break;
4680                 case INTEL_OUTPUT_TVOUT:
4681                         is_tv = true;
4682                         break;
4683                 case INTEL_OUTPUT_DISPLAYPORT:
4684                         is_dp = true;
4685                         break;
4686                 }
4687
4688                 num_connectors++;
4689         }
4690
4691         refclk = i9xx_get_refclk(crtc, num_connectors);
4692
4693         /*
4694          * Returns a set of divisors for the desired target clock with the given
4695          * refclk, or FALSE.  The returned values represent the clock equation:
4696          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4697          */
4698         limit = intel_limit(crtc, refclk);
4699         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4700                              &clock);
4701         if (!ok) {
4702                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4703                 return -EINVAL;
4704         }
4705
4706         /* Ensure that the cursor is valid for the new mode before changing... */
4707         intel_crtc_update_cursor(crtc, true);
4708
4709         if (is_lvds && dev_priv->lvds_downclock_avail) {
4710                 /*
4711                  * Ensure we match the reduced clock's P to the target clock.
4712                  * If the clocks don't match, we can't switch the display clock
4713                  * by using the FP0/FP1. In such case we will disable the LVDS
4714                  * downclock feature.
4715                 */
4716                 has_reduced_clock = limit->find_pll(limit, crtc,
4717                                                     dev_priv->lvds_downclock,
4718                                                     refclk,
4719                                                     &clock,
4720                                                     &reduced_clock);
4721         }
4722
4723         if (is_sdvo && is_tv)
4724                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4725
4726         if (IS_GEN2(dev))
4727                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4728                                 has_reduced_clock ? &reduced_clock : NULL,
4729                                 num_connectors);
4730         else if (IS_VALLEYVIEW(dev))
4731                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4732                                 has_reduced_clock ? &reduced_clock : NULL,
4733                                 num_connectors);
4734         else
4735                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4736                                 has_reduced_clock ? &reduced_clock : NULL,
4737                                 num_connectors);
4738
4739         /* setup pipeconf */
4740         pipeconf = I915_READ(PIPECONF(pipe));
4741
4742         /* Set up the display plane register */
4743         dspcntr = DISPPLANE_GAMMA_ENABLE;
4744
4745         if (pipe == 0)
4746                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4747         else
4748                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4749
4750         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4751                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4752                  * core speed.
4753                  *
4754                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4755                  * pipe == 0 check?
4756                  */
4757                 if (mode->clock >
4758                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4759                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4760                 else
4761                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4762         }
4763
4764         /* default to 8bpc */
4765         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4766         if (is_dp) {
4767                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4768                         pipeconf |= PIPECONF_BPP_6 |
4769                                     PIPECONF_DITHER_EN |
4770                                     PIPECONF_DITHER_TYPE_SP;
4771                 }
4772         }
4773
4774         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4775                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4776                         pipeconf |= PIPECONF_BPP_6 |
4777                                         PIPECONF_ENABLE |
4778                                         I965_PIPECONF_ACTIVE;
4779                 }
4780         }
4781
4782         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4783         drm_mode_debug_printmodeline(mode);
4784
4785         if (HAS_PIPE_CXSR(dev)) {
4786                 if (intel_crtc->lowfreq_avail) {
4787                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4788                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4789                 } else {
4790                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4791                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4792                 }
4793         }
4794
4795         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4796         if (!IS_GEN2(dev) &&
4797             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4798                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4799         else
4800                 pipeconf |= PIPECONF_PROGRESSIVE;
4801
4802         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4803
4804         /* pipesrc and dspsize control the size that is scaled from,
4805          * which should always be the user's requested size.
4806          */
4807         I915_WRITE(DSPSIZE(plane),
4808                    ((mode->vdisplay - 1) << 16) |
4809                    (mode->hdisplay - 1));
4810         I915_WRITE(DSPPOS(plane), 0);
4811
4812         I915_WRITE(PIPECONF(pipe), pipeconf);
4813         POSTING_READ(PIPECONF(pipe));
4814         intel_enable_pipe(dev_priv, pipe, false);
4815
4816         intel_wait_for_vblank(dev, pipe);
4817
4818         I915_WRITE(DSPCNTR(plane), dspcntr);
4819         POSTING_READ(DSPCNTR(plane));
4820
4821         ret = intel_pipe_set_base(crtc, x, y, fb);
4822
4823         intel_update_watermarks(dev);
4824
4825         return ret;
4826 }
4827
4828 /*
4829  * Initialize reference clocks when the driver loads
4830  */
4831 void ironlake_init_pch_refclk(struct drm_device *dev)
4832 {
4833         struct drm_i915_private *dev_priv = dev->dev_private;
4834         struct drm_mode_config *mode_config = &dev->mode_config;
4835         struct intel_encoder *encoder;
4836         u32 temp;
4837         bool has_lvds = false;
4838         bool has_cpu_edp = false;
4839         bool has_pch_edp = false;
4840         bool has_panel = false;
4841         bool has_ck505 = false;
4842         bool can_ssc = false;
4843
4844         /* We need to take the global config into account */
4845         list_for_each_entry(encoder, &mode_config->encoder_list,
4846                             base.head) {
4847                 switch (encoder->type) {
4848                 case INTEL_OUTPUT_LVDS:
4849                         has_panel = true;
4850                         has_lvds = true;
4851                         break;
4852                 case INTEL_OUTPUT_EDP:
4853                         has_panel = true;
4854                         if (intel_encoder_is_pch_edp(&encoder->base))
4855                                 has_pch_edp = true;
4856                         else
4857                                 has_cpu_edp = true;
4858                         break;
4859                 }
4860         }
4861
4862         if (HAS_PCH_IBX(dev)) {
4863                 has_ck505 = dev_priv->display_clock_mode;
4864                 can_ssc = has_ck505;
4865         } else {
4866                 has_ck505 = false;
4867                 can_ssc = true;
4868         }
4869
4870         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4871                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4872                       has_ck505);
4873
4874         /* Ironlake: try to setup display ref clock before DPLL
4875          * enabling. This is only under driver's control after
4876          * PCH B stepping, previous chipset stepping should be
4877          * ignoring this setting.
4878          */
4879         temp = I915_READ(PCH_DREF_CONTROL);
4880         /* Always enable nonspread source */
4881         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4882
4883         if (has_ck505)
4884                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4885         else
4886                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4887
4888         if (has_panel) {
4889                 temp &= ~DREF_SSC_SOURCE_MASK;
4890                 temp |= DREF_SSC_SOURCE_ENABLE;
4891
4892                 /* SSC must be turned on before enabling the CPU output  */
4893                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4894                         DRM_DEBUG_KMS("Using SSC on panel\n");
4895                         temp |= DREF_SSC1_ENABLE;
4896                 } else
4897                         temp &= ~DREF_SSC1_ENABLE;
4898
4899                 /* Get SSC going before enabling the outputs */
4900                 I915_WRITE(PCH_DREF_CONTROL, temp);
4901                 POSTING_READ(PCH_DREF_CONTROL);
4902                 udelay(200);
4903
4904                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4905
4906                 /* Enable CPU source on CPU attached eDP */
4907                 if (has_cpu_edp) {
4908                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4909                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4910                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4911                         }
4912                         else
4913                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4914                 } else
4915                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4916
4917                 I915_WRITE(PCH_DREF_CONTROL, temp);
4918                 POSTING_READ(PCH_DREF_CONTROL);
4919                 udelay(200);
4920         } else {
4921                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4922
4923                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4924
4925                 /* Turn off CPU output */
4926                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4927
4928                 I915_WRITE(PCH_DREF_CONTROL, temp);
4929                 POSTING_READ(PCH_DREF_CONTROL);
4930                 udelay(200);
4931
4932                 /* Turn off the SSC source */
4933                 temp &= ~DREF_SSC_SOURCE_MASK;
4934                 temp |= DREF_SSC_SOURCE_DISABLE;
4935
4936                 /* Turn off SSC1 */
4937                 temp &= ~ DREF_SSC1_ENABLE;
4938
4939                 I915_WRITE(PCH_DREF_CONTROL, temp);
4940                 POSTING_READ(PCH_DREF_CONTROL);
4941                 udelay(200);
4942         }
4943 }
4944
4945 static int ironlake_get_refclk(struct drm_crtc *crtc)
4946 {
4947         struct drm_device *dev = crtc->dev;
4948         struct drm_i915_private *dev_priv = dev->dev_private;
4949         struct intel_encoder *encoder;
4950         struct intel_encoder *edp_encoder = NULL;
4951         int num_connectors = 0;
4952         bool is_lvds = false;
4953
4954         for_each_encoder_on_crtc(dev, crtc, encoder) {
4955                 switch (encoder->type) {
4956                 case INTEL_OUTPUT_LVDS:
4957                         is_lvds = true;
4958                         break;
4959                 case INTEL_OUTPUT_EDP:
4960                         edp_encoder = encoder;
4961                         break;
4962                 }
4963                 num_connectors++;
4964         }
4965
4966         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4967                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4968                               dev_priv->lvds_ssc_freq);
4969                 return dev_priv->lvds_ssc_freq * 1000;
4970         }
4971
4972         return 120000;
4973 }
4974
4975 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4976                                   struct drm_display_mode *adjusted_mode,
4977                                   bool dither)
4978 {
4979         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4980         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4981         int pipe = intel_crtc->pipe;
4982         uint32_t val;
4983
4984         val = I915_READ(PIPECONF(pipe));
4985
4986         val &= ~PIPE_BPC_MASK;
4987         switch (intel_crtc->bpp) {
4988         case 18:
4989                 val |= PIPE_6BPC;
4990                 break;
4991         case 24:
4992                 val |= PIPE_8BPC;
4993                 break;
4994         case 30:
4995                 val |= PIPE_10BPC;
4996                 break;
4997         case 36:
4998                 val |= PIPE_12BPC;
4999                 break;
5000         default:
5001                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5002                 BUG();
5003         }
5004
5005         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5006         if (dither)
5007                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5008
5009         val &= ~PIPECONF_INTERLACE_MASK;
5010         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5011                 val |= PIPECONF_INTERLACED_ILK;
5012         else
5013                 val |= PIPECONF_PROGRESSIVE;
5014
5015         I915_WRITE(PIPECONF(pipe), val);
5016         POSTING_READ(PIPECONF(pipe));
5017 }
5018
5019 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5020                                  struct drm_display_mode *adjusted_mode,
5021                                  bool dither)
5022 {
5023         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5025         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5026         uint32_t val;
5027
5028         val = I915_READ(PIPECONF(cpu_transcoder));
5029
5030         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5031         if (dither)
5032                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5033
5034         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5035         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5036                 val |= PIPECONF_INTERLACED_ILK;
5037         else
5038                 val |= PIPECONF_PROGRESSIVE;
5039
5040         I915_WRITE(PIPECONF(cpu_transcoder), val);
5041         POSTING_READ(PIPECONF(cpu_transcoder));
5042 }
5043
5044 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5045                                     struct drm_display_mode *adjusted_mode,
5046                                     intel_clock_t *clock,
5047                                     bool *has_reduced_clock,
5048                                     intel_clock_t *reduced_clock)
5049 {
5050         struct drm_device *dev = crtc->dev;
5051         struct drm_i915_private *dev_priv = dev->dev_private;
5052         struct intel_encoder *intel_encoder;
5053         int refclk;
5054         const intel_limit_t *limit;
5055         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5056
5057         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5058                 switch (intel_encoder->type) {
5059                 case INTEL_OUTPUT_LVDS:
5060                         is_lvds = true;
5061                         break;
5062                 case INTEL_OUTPUT_SDVO:
5063                 case INTEL_OUTPUT_HDMI:
5064                         is_sdvo = true;
5065                         if (intel_encoder->needs_tv_clock)
5066                                 is_tv = true;
5067                         break;
5068                 case INTEL_OUTPUT_TVOUT:
5069                         is_tv = true;
5070                         break;
5071                 }
5072         }
5073
5074         refclk = ironlake_get_refclk(crtc);
5075
5076         /*
5077          * Returns a set of divisors for the desired target clock with the given
5078          * refclk, or FALSE.  The returned values represent the clock equation:
5079          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5080          */
5081         limit = intel_limit(crtc, refclk);
5082         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5083                               clock);
5084         if (!ret)
5085                 return false;
5086
5087         if (is_lvds && dev_priv->lvds_downclock_avail) {
5088                 /*
5089                  * Ensure we match the reduced clock's P to the target clock.
5090                  * If the clocks don't match, we can't switch the display clock
5091                  * by using the FP0/FP1. In such case we will disable the LVDS
5092                  * downclock feature.
5093                 */
5094                 *has_reduced_clock = limit->find_pll(limit, crtc,
5095                                                      dev_priv->lvds_downclock,
5096                                                      refclk,
5097                                                      clock,
5098                                                      reduced_clock);
5099         }
5100
5101         if (is_sdvo && is_tv)
5102                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5103
5104         return true;
5105 }
5106
5107 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5108 {
5109         struct drm_i915_private *dev_priv = dev->dev_private;
5110         uint32_t temp;
5111
5112         temp = I915_READ(SOUTH_CHICKEN1);
5113         if (temp & FDI_BC_BIFURCATION_SELECT)
5114                 return;
5115
5116         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5117         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5118
5119         temp |= FDI_BC_BIFURCATION_SELECT;
5120         DRM_DEBUG_KMS("enabling fdi C rx\n");
5121         I915_WRITE(SOUTH_CHICKEN1, temp);
5122         POSTING_READ(SOUTH_CHICKEN1);
5123 }
5124
5125 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5126 {
5127         struct drm_device *dev = intel_crtc->base.dev;
5128         struct drm_i915_private *dev_priv = dev->dev_private;
5129         struct intel_crtc *pipe_B_crtc =
5130                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5131
5132         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5133                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5134         if (intel_crtc->fdi_lanes > 4) {
5135                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5136                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5137                 /* Clamp lanes to avoid programming the hw with bogus values. */
5138                 intel_crtc->fdi_lanes = 4;
5139
5140                 return false;
5141         }
5142
5143         if (dev_priv->num_pipe == 2)
5144                 return true;
5145
5146         switch (intel_crtc->pipe) {
5147         case PIPE_A:
5148                 return true;
5149         case PIPE_B:
5150                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5151                     intel_crtc->fdi_lanes > 2) {
5152                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5153                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5154                         /* Clamp lanes to avoid programming the hw with bogus values. */
5155                         intel_crtc->fdi_lanes = 2;
5156
5157                         return false;
5158                 }
5159
5160                 if (intel_crtc->fdi_lanes > 2)
5161                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5162                 else
5163                         cpt_enable_fdi_bc_bifurcation(dev);
5164
5165                 return true;
5166         case PIPE_C:
5167                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5168                         if (intel_crtc->fdi_lanes > 2) {
5169                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5170                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5171                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5172                                 intel_crtc->fdi_lanes = 2;
5173
5174                                 return false;
5175                         }
5176                 } else {
5177                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5178                         return false;
5179                 }
5180
5181                 cpt_enable_fdi_bc_bifurcation(dev);
5182
5183                 return true;
5184         default:
5185                 BUG();
5186         }
5187 }
5188
5189 static void ironlake_set_m_n(struct drm_crtc *crtc,
5190                              struct drm_display_mode *mode,
5191                              struct drm_display_mode *adjusted_mode)
5192 {
5193         struct drm_device *dev = crtc->dev;
5194         struct drm_i915_private *dev_priv = dev->dev_private;
5195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5196         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5197         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5198         struct fdi_m_n m_n = {0};
5199         int target_clock, pixel_multiplier, lane, link_bw;
5200         bool is_dp = false, is_cpu_edp = false;
5201
5202         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5203                 switch (intel_encoder->type) {
5204                 case INTEL_OUTPUT_DISPLAYPORT:
5205                         is_dp = true;
5206                         break;
5207                 case INTEL_OUTPUT_EDP:
5208                         is_dp = true;
5209                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5210                                 is_cpu_edp = true;
5211                         edp_encoder = intel_encoder;
5212                         break;
5213                 }
5214         }
5215
5216         /* FDI link */
5217         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5218         lane = 0;
5219         /* CPU eDP doesn't require FDI link, so just set DP M/N
5220            according to current link config */
5221         if (is_cpu_edp) {
5222                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5223         } else {
5224                 /* FDI is a binary signal running at ~2.7GHz, encoding
5225                  * each output octet as 10 bits. The actual frequency
5226                  * is stored as a divider into a 100MHz clock, and the
5227                  * mode pixel clock is stored in units of 1KHz.
5228                  * Hence the bw of each lane in terms of the mode signal
5229                  * is:
5230                  */
5231                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5232         }
5233
5234         /* [e]DP over FDI requires target mode clock instead of link clock. */
5235         if (edp_encoder)
5236                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5237         else if (is_dp)
5238                 target_clock = mode->clock;
5239         else
5240                 target_clock = adjusted_mode->clock;
5241
5242         if (!lane) {
5243                 /*
5244                  * Account for spread spectrum to avoid
5245                  * oversubscribing the link. Max center spread
5246                  * is 2.5%; use 5% for safety's sake.
5247                  */
5248                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5249                 lane = bps / (link_bw * 8) + 1;
5250         }
5251
5252         intel_crtc->fdi_lanes = lane;
5253
5254         if (pixel_multiplier > 1)
5255                 link_bw *= pixel_multiplier;
5256         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5257                              &m_n);
5258
5259         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5260         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5261         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5262         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5263 }
5264
5265 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5266                                       struct drm_display_mode *adjusted_mode,
5267                                       intel_clock_t *clock, u32 fp)
5268 {
5269         struct drm_crtc *crtc = &intel_crtc->base;
5270         struct drm_device *dev = crtc->dev;
5271         struct drm_i915_private *dev_priv = dev->dev_private;
5272         struct intel_encoder *intel_encoder;
5273         uint32_t dpll;
5274         int factor, pixel_multiplier, num_connectors = 0;
5275         bool is_lvds = false, is_sdvo = false, is_tv = false;
5276         bool is_dp = false, is_cpu_edp = false;
5277
5278         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5279                 switch (intel_encoder->type) {
5280                 case INTEL_OUTPUT_LVDS:
5281                         is_lvds = true;
5282                         break;
5283                 case INTEL_OUTPUT_SDVO:
5284                 case INTEL_OUTPUT_HDMI:
5285                         is_sdvo = true;
5286                         if (intel_encoder->needs_tv_clock)
5287                                 is_tv = true;
5288                         break;
5289                 case INTEL_OUTPUT_TVOUT:
5290                         is_tv = true;
5291                         break;
5292                 case INTEL_OUTPUT_DISPLAYPORT:
5293                         is_dp = true;
5294                         break;
5295                 case INTEL_OUTPUT_EDP:
5296                         is_dp = true;
5297                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5298                                 is_cpu_edp = true;
5299                         break;
5300                 }
5301
5302                 num_connectors++;
5303         }
5304
5305         /* Enable autotuning of the PLL clock (if permissible) */
5306         factor = 21;
5307         if (is_lvds) {
5308                 if ((intel_panel_use_ssc(dev_priv) &&
5309                      dev_priv->lvds_ssc_freq == 100) ||
5310                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5311                         factor = 25;
5312         } else if (is_sdvo && is_tv)
5313                 factor = 20;
5314
5315         if (clock->m < factor * clock->n)
5316                 fp |= FP_CB_TUNE;
5317
5318         dpll = 0;
5319
5320         if (is_lvds)
5321                 dpll |= DPLLB_MODE_LVDS;
5322         else
5323                 dpll |= DPLLB_MODE_DAC_SERIAL;
5324         if (is_sdvo) {
5325                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5326                 if (pixel_multiplier > 1) {
5327                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5328                 }
5329                 dpll |= DPLL_DVO_HIGH_SPEED;
5330         }
5331         if (is_dp && !is_cpu_edp)
5332                 dpll |= DPLL_DVO_HIGH_SPEED;
5333
5334         /* compute bitmask from p1 value */
5335         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5336         /* also FPA1 */
5337         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5338
5339         switch (clock->p2) {
5340         case 5:
5341                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5342                 break;
5343         case 7:
5344                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5345                 break;
5346         case 10:
5347                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5348                 break;
5349         case 14:
5350                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5351                 break;
5352         }
5353
5354         if (is_sdvo && is_tv)
5355                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5356         else if (is_tv)
5357                 /* XXX: just matching BIOS for now */
5358                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5359                 dpll |= 3;
5360         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5361                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5362         else
5363                 dpll |= PLL_REF_INPUT_DREFCLK;
5364
5365         return dpll;
5366 }
5367
5368 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5369                                   struct drm_display_mode *mode,
5370                                   struct drm_display_mode *adjusted_mode,
5371                                   int x, int y,
5372                                   struct drm_framebuffer *fb)
5373 {
5374         struct drm_device *dev = crtc->dev;
5375         struct drm_i915_private *dev_priv = dev->dev_private;
5376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5377         int pipe = intel_crtc->pipe;
5378         int plane = intel_crtc->plane;
5379         int num_connectors = 0;
5380         intel_clock_t clock, reduced_clock;
5381         u32 dpll, fp = 0, fp2 = 0;
5382         bool ok, has_reduced_clock = false;
5383         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5384         struct intel_encoder *encoder;
5385         u32 temp;
5386         int ret;
5387         bool dither, fdi_config_ok;
5388
5389         for_each_encoder_on_crtc(dev, crtc, encoder) {
5390                 switch (encoder->type) {
5391                 case INTEL_OUTPUT_LVDS:
5392                         is_lvds = true;
5393                         break;
5394                 case INTEL_OUTPUT_DISPLAYPORT:
5395                         is_dp = true;
5396                         break;
5397                 case INTEL_OUTPUT_EDP:
5398                         is_dp = true;
5399                         if (!intel_encoder_is_pch_edp(&encoder->base))
5400                                 is_cpu_edp = true;
5401                         break;
5402                 }
5403
5404                 num_connectors++;
5405         }
5406
5407         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5408              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5409
5410         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5411                                      &has_reduced_clock, &reduced_clock);
5412         if (!ok) {
5413                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5414                 return -EINVAL;
5415         }
5416
5417         /* Ensure that the cursor is valid for the new mode before changing... */
5418         intel_crtc_update_cursor(crtc, true);
5419
5420         /* determine panel color depth */
5421         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5422                                               adjusted_mode);
5423         if (is_lvds && dev_priv->lvds_dither)
5424                 dither = true;
5425
5426         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5427         if (has_reduced_clock)
5428                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5429                         reduced_clock.m2;
5430
5431         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5432
5433         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5434         drm_mode_debug_printmodeline(mode);
5435
5436         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5437         if (!is_cpu_edp) {
5438                 struct intel_pch_pll *pll;
5439
5440                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5441                 if (pll == NULL) {
5442                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5443                                          pipe);
5444                         return -EINVAL;
5445                 }
5446         } else
5447                 intel_put_pch_pll(intel_crtc);
5448
5449         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5450          * This is an exception to the general rule that mode_set doesn't turn
5451          * things on.
5452          */
5453         if (is_lvds) {
5454                 temp = I915_READ(PCH_LVDS);
5455                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5456                 if (HAS_PCH_CPT(dev)) {
5457                         temp &= ~PORT_TRANS_SEL_MASK;
5458                         temp |= PORT_TRANS_SEL_CPT(pipe);
5459                 } else {
5460                         if (pipe == 1)
5461                                 temp |= LVDS_PIPEB_SELECT;
5462                         else
5463                                 temp &= ~LVDS_PIPEB_SELECT;
5464                 }
5465
5466                 /* set the corresponsding LVDS_BORDER bit */
5467                 temp |= dev_priv->lvds_border_bits;
5468                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5469                  * set the DPLLs for dual-channel mode or not.
5470                  */
5471                 if (clock.p2 == 7)
5472                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5473                 else
5474                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5475
5476                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5477                  * appropriately here, but we need to look more thoroughly into how
5478                  * panels behave in the two modes.
5479                  */
5480                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5481                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5482                         temp |= LVDS_HSYNC_POLARITY;
5483                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5484                         temp |= LVDS_VSYNC_POLARITY;
5485                 I915_WRITE(PCH_LVDS, temp);
5486         }
5487
5488         if (is_dp && !is_cpu_edp) {
5489                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5490         } else {
5491                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5492                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5493                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5494                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5495                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5496         }
5497
5498         if (intel_crtc->pch_pll) {
5499                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5500
5501                 /* Wait for the clocks to stabilize. */
5502                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5503                 udelay(150);
5504
5505                 /* The pixel multiplier can only be updated once the
5506                  * DPLL is enabled and the clocks are stable.
5507                  *
5508                  * So write it again.
5509                  */
5510                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5511         }
5512
5513         intel_crtc->lowfreq_avail = false;
5514         if (intel_crtc->pch_pll) {
5515                 if (is_lvds && has_reduced_clock && i915_powersave) {
5516                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5517                         intel_crtc->lowfreq_avail = true;
5518                 } else {
5519                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5520                 }
5521         }
5522
5523         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5524
5525         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5526          * ironlake_check_fdi_lanes. */
5527         ironlake_set_m_n(crtc, mode, adjusted_mode);
5528
5529         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5530
5531         if (is_cpu_edp)
5532                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5533
5534         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5535
5536         intel_wait_for_vblank(dev, pipe);
5537
5538         /* Set up the display plane register */
5539         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5540         POSTING_READ(DSPCNTR(plane));
5541
5542         ret = intel_pipe_set_base(crtc, x, y, fb);
5543
5544         intel_update_watermarks(dev);
5545
5546         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5547
5548         return fdi_config_ok ? ret : -EINVAL;
5549 }
5550
5551 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5552                                  struct drm_display_mode *mode,
5553                                  struct drm_display_mode *adjusted_mode,
5554                                  int x, int y,
5555                                  struct drm_framebuffer *fb)
5556 {
5557         struct drm_device *dev = crtc->dev;
5558         struct drm_i915_private *dev_priv = dev->dev_private;
5559         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5560         int pipe = intel_crtc->pipe;
5561         int plane = intel_crtc->plane;
5562         int num_connectors = 0;
5563         intel_clock_t clock, reduced_clock;
5564         u32 dpll = 0, fp = 0, fp2 = 0;
5565         bool ok, has_reduced_clock = false;
5566         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5567         struct intel_encoder *encoder;
5568         u32 temp;
5569         int ret;
5570         bool dither;
5571
5572         for_each_encoder_on_crtc(dev, crtc, encoder) {
5573                 switch (encoder->type) {
5574                 case INTEL_OUTPUT_LVDS:
5575                         is_lvds = true;
5576                         break;
5577                 case INTEL_OUTPUT_DISPLAYPORT:
5578                         is_dp = true;
5579                         break;
5580                 case INTEL_OUTPUT_EDP:
5581                         is_dp = true;
5582                         if (!intel_encoder_is_pch_edp(&encoder->base))
5583                                 is_cpu_edp = true;
5584                         break;
5585                 }
5586
5587                 num_connectors++;
5588         }
5589
5590         if (is_cpu_edp)
5591                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5592         else
5593                 intel_crtc->cpu_transcoder = pipe;
5594
5595         /* We are not sure yet this won't happen. */
5596         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5597              INTEL_PCH_TYPE(dev));
5598
5599         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5600              num_connectors, pipe_name(pipe));
5601
5602         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5603                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5604
5605         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5606
5607         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5608                 return -EINVAL;
5609
5610         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5611                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5612                                              &has_reduced_clock,
5613                                              &reduced_clock);
5614                 if (!ok) {
5615                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5616                         return -EINVAL;
5617                 }
5618         }
5619
5620         /* Ensure that the cursor is valid for the new mode before changing... */
5621         intel_crtc_update_cursor(crtc, true);
5622
5623         /* determine panel color depth */
5624         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5625                                               adjusted_mode);
5626         if (is_lvds && dev_priv->lvds_dither)
5627                 dither = true;
5628
5629         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5630         drm_mode_debug_printmodeline(mode);
5631
5632         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5633                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5634                 if (has_reduced_clock)
5635                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5636                               reduced_clock.m2;
5637
5638                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5639                                              fp);
5640
5641                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5642                  * own on pre-Haswell/LPT generation */
5643                 if (!is_cpu_edp) {
5644                         struct intel_pch_pll *pll;
5645
5646                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5647                         if (pll == NULL) {
5648                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5649                                                  pipe);
5650                                 return -EINVAL;
5651                         }
5652                 } else
5653                         intel_put_pch_pll(intel_crtc);
5654
5655                 /* The LVDS pin pair needs to be on before the DPLLs are
5656                  * enabled.  This is an exception to the general rule that
5657                  * mode_set doesn't turn things on.
5658                  */
5659                 if (is_lvds) {
5660                         temp = I915_READ(PCH_LVDS);
5661                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5662                         if (HAS_PCH_CPT(dev)) {
5663                                 temp &= ~PORT_TRANS_SEL_MASK;
5664                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5665                         } else {
5666                                 if (pipe == 1)
5667                                         temp |= LVDS_PIPEB_SELECT;
5668                                 else
5669                                         temp &= ~LVDS_PIPEB_SELECT;
5670                         }
5671
5672                         /* set the corresponsding LVDS_BORDER bit */
5673                         temp |= dev_priv->lvds_border_bits;
5674                         /* Set the B0-B3 data pairs corresponding to whether
5675                          * we're going to set the DPLLs for dual-channel mode or
5676                          * not.
5677                          */
5678                         if (clock.p2 == 7)
5679                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5680                         else
5681                                 temp &= ~(LVDS_B0B3_POWER_UP |
5682                                           LVDS_CLKB_POWER_UP);
5683
5684                         /* It would be nice to set 24 vs 18-bit mode
5685                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5686                          * look more thoroughly into how panels behave in the
5687                          * two modes.
5688                          */
5689                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5690                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5691                                 temp |= LVDS_HSYNC_POLARITY;
5692                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5693                                 temp |= LVDS_VSYNC_POLARITY;
5694                         I915_WRITE(PCH_LVDS, temp);
5695                 }
5696         }
5697
5698         if (is_dp && !is_cpu_edp) {
5699                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5700         } else {
5701                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5702                         /* For non-DP output, clear any trans DP clock recovery
5703                          * setting.*/
5704                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5705                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5706                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5707                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5708                 }
5709         }
5710
5711         intel_crtc->lowfreq_avail = false;
5712         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5713                 if (intel_crtc->pch_pll) {
5714                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5715
5716                         /* Wait for the clocks to stabilize. */
5717                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5718                         udelay(150);
5719
5720                         /* The pixel multiplier can only be updated once the
5721                          * DPLL is enabled and the clocks are stable.
5722                          *
5723                          * So write it again.
5724                          */
5725                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5726                 }
5727
5728                 if (intel_crtc->pch_pll) {
5729                         if (is_lvds && has_reduced_clock && i915_powersave) {
5730                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5731                                 intel_crtc->lowfreq_avail = true;
5732                         } else {
5733                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5734                         }
5735                 }
5736         }
5737
5738         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5739
5740         if (!is_dp || is_cpu_edp)
5741                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5742
5743         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5744                 if (is_cpu_edp)
5745                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5746
5747         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5748
5749         /* Set up the display plane register */
5750         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5751         POSTING_READ(DSPCNTR(plane));
5752
5753         ret = intel_pipe_set_base(crtc, x, y, fb);
5754
5755         intel_update_watermarks(dev);
5756
5757         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5758
5759         return ret;
5760 }
5761
5762 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5763                                struct drm_display_mode *mode,
5764                                struct drm_display_mode *adjusted_mode,
5765                                int x, int y,
5766                                struct drm_framebuffer *fb)
5767 {
5768         struct drm_device *dev = crtc->dev;
5769         struct drm_i915_private *dev_priv = dev->dev_private;
5770         struct drm_encoder_helper_funcs *encoder_funcs;
5771         struct intel_encoder *encoder;
5772         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5773         int pipe = intel_crtc->pipe;
5774         int ret;
5775
5776         drm_vblank_pre_modeset(dev, pipe);
5777
5778         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5779                                               x, y, fb);
5780         drm_vblank_post_modeset(dev, pipe);
5781
5782         if (ret != 0)
5783                 return ret;
5784
5785         for_each_encoder_on_crtc(dev, crtc, encoder) {
5786                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5787                         encoder->base.base.id,
5788                         drm_get_encoder_name(&encoder->base),
5789                         mode->base.id, mode->name);
5790                 encoder_funcs = encoder->base.helper_private;
5791                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5792         }
5793
5794         return 0;
5795 }
5796
5797 static bool intel_eld_uptodate(struct drm_connector *connector,
5798                                int reg_eldv, uint32_t bits_eldv,
5799                                int reg_elda, uint32_t bits_elda,
5800                                int reg_edid)
5801 {
5802         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5803         uint8_t *eld = connector->eld;
5804         uint32_t i;
5805
5806         i = I915_READ(reg_eldv);
5807         i &= bits_eldv;
5808
5809         if (!eld[0])
5810                 return !i;
5811
5812         if (!i)
5813                 return false;
5814
5815         i = I915_READ(reg_elda);
5816         i &= ~bits_elda;
5817         I915_WRITE(reg_elda, i);
5818
5819         for (i = 0; i < eld[2]; i++)
5820                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5821                         return false;
5822
5823         return true;
5824 }
5825
5826 static void g4x_write_eld(struct drm_connector *connector,
5827                           struct drm_crtc *crtc)
5828 {
5829         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5830         uint8_t *eld = connector->eld;
5831         uint32_t eldv;
5832         uint32_t len;
5833         uint32_t i;
5834
5835         i = I915_READ(G4X_AUD_VID_DID);
5836
5837         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5838                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5839         else
5840                 eldv = G4X_ELDV_DEVCTG;
5841
5842         if (intel_eld_uptodate(connector,
5843                                G4X_AUD_CNTL_ST, eldv,
5844                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5845                                G4X_HDMIW_HDMIEDID))
5846                 return;
5847
5848         i = I915_READ(G4X_AUD_CNTL_ST);
5849         i &= ~(eldv | G4X_ELD_ADDR);
5850         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5851         I915_WRITE(G4X_AUD_CNTL_ST, i);
5852
5853         if (!eld[0])
5854                 return;
5855
5856         len = min_t(uint8_t, eld[2], len);
5857         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5858         for (i = 0; i < len; i++)
5859                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5860
5861         i = I915_READ(G4X_AUD_CNTL_ST);
5862         i |= eldv;
5863         I915_WRITE(G4X_AUD_CNTL_ST, i);
5864 }
5865
5866 static void haswell_write_eld(struct drm_connector *connector,
5867                                      struct drm_crtc *crtc)
5868 {
5869         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5870         uint8_t *eld = connector->eld;
5871         struct drm_device *dev = crtc->dev;
5872         uint32_t eldv;
5873         uint32_t i;
5874         int len;
5875         int pipe = to_intel_crtc(crtc)->pipe;
5876         int tmp;
5877
5878         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5879         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5880         int aud_config = HSW_AUD_CFG(pipe);
5881         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5882
5883
5884         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5885
5886         /* Audio output enable */
5887         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5888         tmp = I915_READ(aud_cntrl_st2);
5889         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5890         I915_WRITE(aud_cntrl_st2, tmp);
5891
5892         /* Wait for 1 vertical blank */
5893         intel_wait_for_vblank(dev, pipe);
5894
5895         /* Set ELD valid state */
5896         tmp = I915_READ(aud_cntrl_st2);
5897         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5898         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5899         I915_WRITE(aud_cntrl_st2, tmp);
5900         tmp = I915_READ(aud_cntrl_st2);
5901         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5902
5903         /* Enable HDMI mode */
5904         tmp = I915_READ(aud_config);
5905         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5906         /* clear N_programing_enable and N_value_index */
5907         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5908         I915_WRITE(aud_config, tmp);
5909
5910         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5911
5912         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5913
5914         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5915                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5916                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5917                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5918         } else
5919                 I915_WRITE(aud_config, 0);
5920
5921         if (intel_eld_uptodate(connector,
5922                                aud_cntrl_st2, eldv,
5923                                aud_cntl_st, IBX_ELD_ADDRESS,
5924                                hdmiw_hdmiedid))
5925                 return;
5926
5927         i = I915_READ(aud_cntrl_st2);
5928         i &= ~eldv;
5929         I915_WRITE(aud_cntrl_st2, i);
5930
5931         if (!eld[0])
5932                 return;
5933
5934         i = I915_READ(aud_cntl_st);
5935         i &= ~IBX_ELD_ADDRESS;
5936         I915_WRITE(aud_cntl_st, i);
5937         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5938         DRM_DEBUG_DRIVER("port num:%d\n", i);
5939
5940         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5941         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5942         for (i = 0; i < len; i++)
5943                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5944
5945         i = I915_READ(aud_cntrl_st2);
5946         i |= eldv;
5947         I915_WRITE(aud_cntrl_st2, i);
5948
5949 }
5950
5951 static void ironlake_write_eld(struct drm_connector *connector,
5952                                      struct drm_crtc *crtc)
5953 {
5954         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5955         uint8_t *eld = connector->eld;
5956         uint32_t eldv;
5957         uint32_t i;
5958         int len;
5959         int hdmiw_hdmiedid;
5960         int aud_config;
5961         int aud_cntl_st;
5962         int aud_cntrl_st2;
5963         int pipe = to_intel_crtc(crtc)->pipe;
5964
5965         if (HAS_PCH_IBX(connector->dev)) {
5966                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5967                 aud_config = IBX_AUD_CFG(pipe);
5968                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5969                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5970         } else {
5971                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5972                 aud_config = CPT_AUD_CFG(pipe);
5973                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5974                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5975         }
5976
5977         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5978
5979         i = I915_READ(aud_cntl_st);
5980         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5981         if (!i) {
5982                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5983                 /* operate blindly on all ports */
5984                 eldv = IBX_ELD_VALIDB;
5985                 eldv |= IBX_ELD_VALIDB << 4;
5986                 eldv |= IBX_ELD_VALIDB << 8;
5987         } else {
5988                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5989                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5990         }
5991
5992         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5993                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5994                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5995                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5996         } else
5997                 I915_WRITE(aud_config, 0);
5998
5999         if (intel_eld_uptodate(connector,
6000                                aud_cntrl_st2, eldv,
6001                                aud_cntl_st, IBX_ELD_ADDRESS,
6002                                hdmiw_hdmiedid))
6003                 return;
6004
6005         i = I915_READ(aud_cntrl_st2);
6006         i &= ~eldv;
6007         I915_WRITE(aud_cntrl_st2, i);
6008
6009         if (!eld[0])
6010                 return;
6011
6012         i = I915_READ(aud_cntl_st);
6013         i &= ~IBX_ELD_ADDRESS;
6014         I915_WRITE(aud_cntl_st, i);
6015
6016         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6017         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6018         for (i = 0; i < len; i++)
6019                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6020
6021         i = I915_READ(aud_cntrl_st2);
6022         i |= eldv;
6023         I915_WRITE(aud_cntrl_st2, i);
6024 }
6025
6026 void intel_write_eld(struct drm_encoder *encoder,
6027                      struct drm_display_mode *mode)
6028 {
6029         struct drm_crtc *crtc = encoder->crtc;
6030         struct drm_connector *connector;
6031         struct drm_device *dev = encoder->dev;
6032         struct drm_i915_private *dev_priv = dev->dev_private;
6033
6034         connector = drm_select_eld(encoder, mode);
6035         if (!connector)
6036                 return;
6037
6038         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6039                          connector->base.id,
6040                          drm_get_connector_name(connector),
6041                          connector->encoder->base.id,
6042                          drm_get_encoder_name(connector->encoder));
6043
6044         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6045
6046         if (dev_priv->display.write_eld)
6047                 dev_priv->display.write_eld(connector, crtc);
6048 }
6049
6050 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6051 void intel_crtc_load_lut(struct drm_crtc *crtc)
6052 {
6053         struct drm_device *dev = crtc->dev;
6054         struct drm_i915_private *dev_priv = dev->dev_private;
6055         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6056         int palreg = PALETTE(intel_crtc->pipe);
6057         int i;
6058
6059         /* The clocks have to be on to load the palette. */
6060         if (!crtc->enabled || !intel_crtc->active)
6061                 return;
6062
6063         /* use legacy palette for Ironlake */
6064         if (HAS_PCH_SPLIT(dev))
6065                 palreg = LGC_PALETTE(intel_crtc->pipe);
6066
6067         for (i = 0; i < 256; i++) {
6068                 I915_WRITE(palreg + 4 * i,
6069                            (intel_crtc->lut_r[i] << 16) |
6070                            (intel_crtc->lut_g[i] << 8) |
6071                            intel_crtc->lut_b[i]);
6072         }
6073 }
6074
6075 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6076 {
6077         struct drm_device *dev = crtc->dev;
6078         struct drm_i915_private *dev_priv = dev->dev_private;
6079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6080         bool visible = base != 0;
6081         u32 cntl;
6082
6083         if (intel_crtc->cursor_visible == visible)
6084                 return;
6085
6086         cntl = I915_READ(_CURACNTR);
6087         if (visible) {
6088                 /* On these chipsets we can only modify the base whilst
6089                  * the cursor is disabled.
6090                  */
6091                 I915_WRITE(_CURABASE, base);
6092
6093                 cntl &= ~(CURSOR_FORMAT_MASK);
6094                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6095                 cntl |= CURSOR_ENABLE |
6096                         CURSOR_GAMMA_ENABLE |
6097                         CURSOR_FORMAT_ARGB;
6098         } else
6099                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6100         I915_WRITE(_CURACNTR, cntl);
6101
6102         intel_crtc->cursor_visible = visible;
6103 }
6104
6105 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6106 {
6107         struct drm_device *dev = crtc->dev;
6108         struct drm_i915_private *dev_priv = dev->dev_private;
6109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6110         int pipe = intel_crtc->pipe;
6111         bool visible = base != 0;
6112
6113         if (intel_crtc->cursor_visible != visible) {
6114                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6115                 if (base) {
6116                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6117                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6118                         cntl |= pipe << 28; /* Connect to correct pipe */
6119                 } else {
6120                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6121                         cntl |= CURSOR_MODE_DISABLE;
6122                 }
6123                 I915_WRITE(CURCNTR(pipe), cntl);
6124
6125                 intel_crtc->cursor_visible = visible;
6126         }
6127         /* and commit changes on next vblank */
6128         I915_WRITE(CURBASE(pipe), base);
6129 }
6130
6131 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6132 {
6133         struct drm_device *dev = crtc->dev;
6134         struct drm_i915_private *dev_priv = dev->dev_private;
6135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6136         int pipe = intel_crtc->pipe;
6137         bool visible = base != 0;
6138
6139         if (intel_crtc->cursor_visible != visible) {
6140                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6141                 if (base) {
6142                         cntl &= ~CURSOR_MODE;
6143                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6144                 } else {
6145                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6146                         cntl |= CURSOR_MODE_DISABLE;
6147                 }
6148                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6149
6150                 intel_crtc->cursor_visible = visible;
6151         }
6152         /* and commit changes on next vblank */
6153         I915_WRITE(CURBASE_IVB(pipe), base);
6154 }
6155
6156 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6157 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6158                                      bool on)
6159 {
6160         struct drm_device *dev = crtc->dev;
6161         struct drm_i915_private *dev_priv = dev->dev_private;
6162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6163         int pipe = intel_crtc->pipe;
6164         int x = intel_crtc->cursor_x;
6165         int y = intel_crtc->cursor_y;
6166         u32 base, pos;
6167         bool visible;
6168
6169         pos = 0;
6170
6171         if (on && crtc->enabled && crtc->fb) {
6172                 base = intel_crtc->cursor_addr;
6173                 if (x > (int) crtc->fb->width)
6174                         base = 0;
6175
6176                 if (y > (int) crtc->fb->height)
6177                         base = 0;
6178         } else
6179                 base = 0;
6180
6181         if (x < 0) {
6182                 if (x + intel_crtc->cursor_width < 0)
6183                         base = 0;
6184
6185                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6186                 x = -x;
6187         }
6188         pos |= x << CURSOR_X_SHIFT;
6189
6190         if (y < 0) {
6191                 if (y + intel_crtc->cursor_height < 0)
6192                         base = 0;
6193
6194                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6195                 y = -y;
6196         }
6197         pos |= y << CURSOR_Y_SHIFT;
6198
6199         visible = base != 0;
6200         if (!visible && !intel_crtc->cursor_visible)
6201                 return;
6202
6203         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6204                 I915_WRITE(CURPOS_IVB(pipe), pos);
6205                 ivb_update_cursor(crtc, base);
6206         } else {
6207                 I915_WRITE(CURPOS(pipe), pos);
6208                 if (IS_845G(dev) || IS_I865G(dev))
6209                         i845_update_cursor(crtc, base);
6210                 else
6211                         i9xx_update_cursor(crtc, base);
6212         }
6213 }
6214
6215 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6216                                  struct drm_file *file,
6217                                  uint32_t handle,
6218                                  uint32_t width, uint32_t height)
6219 {
6220         struct drm_device *dev = crtc->dev;
6221         struct drm_i915_private *dev_priv = dev->dev_private;
6222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6223         struct drm_i915_gem_object *obj;
6224         uint32_t addr;
6225         int ret;
6226
6227         /* if we want to turn off the cursor ignore width and height */
6228         if (!handle) {
6229                 DRM_DEBUG_KMS("cursor off\n");
6230                 addr = 0;
6231                 obj = NULL;
6232                 mutex_lock(&dev->struct_mutex);
6233                 goto finish;
6234         }
6235
6236         /* Currently we only support 64x64 cursors */
6237         if (width != 64 || height != 64) {
6238                 DRM_ERROR("we currently only support 64x64 cursors\n");
6239                 return -EINVAL;
6240         }
6241
6242         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6243         if (&obj->base == NULL)
6244                 return -ENOENT;
6245
6246         if (obj->base.size < width * height * 4) {
6247                 DRM_ERROR("buffer is to small\n");
6248                 ret = -ENOMEM;
6249                 goto fail;
6250         }
6251
6252         /* we only need to pin inside GTT if cursor is non-phy */
6253         mutex_lock(&dev->struct_mutex);
6254         if (!dev_priv->info->cursor_needs_physical) {
6255                 if (obj->tiling_mode) {
6256                         DRM_ERROR("cursor cannot be tiled\n");
6257                         ret = -EINVAL;
6258                         goto fail_locked;
6259                 }
6260
6261                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6262                 if (ret) {
6263                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6264                         goto fail_locked;
6265                 }
6266
6267                 ret = i915_gem_object_put_fence(obj);
6268                 if (ret) {
6269                         DRM_ERROR("failed to release fence for cursor");
6270                         goto fail_unpin;
6271                 }
6272
6273                 addr = obj->gtt_offset;
6274         } else {
6275                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6276                 ret = i915_gem_attach_phys_object(dev, obj,
6277                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6278                                                   align);
6279                 if (ret) {
6280                         DRM_ERROR("failed to attach phys object\n");
6281                         goto fail_locked;
6282                 }
6283                 addr = obj->phys_obj->handle->busaddr;
6284         }
6285
6286         if (IS_GEN2(dev))
6287                 I915_WRITE(CURSIZE, (height << 12) | width);
6288
6289  finish:
6290         if (intel_crtc->cursor_bo) {
6291                 if (dev_priv->info->cursor_needs_physical) {
6292                         if (intel_crtc->cursor_bo != obj)
6293                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6294                 } else
6295                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6296                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6297         }
6298
6299         mutex_unlock(&dev->struct_mutex);
6300
6301         intel_crtc->cursor_addr = addr;
6302         intel_crtc->cursor_bo = obj;
6303         intel_crtc->cursor_width = width;
6304         intel_crtc->cursor_height = height;
6305
6306         intel_crtc_update_cursor(crtc, true);
6307
6308         return 0;
6309 fail_unpin:
6310         i915_gem_object_unpin(obj);
6311 fail_locked:
6312         mutex_unlock(&dev->struct_mutex);
6313 fail:
6314         drm_gem_object_unreference_unlocked(&obj->base);
6315         return ret;
6316 }
6317
6318 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6319 {
6320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6321
6322         intel_crtc->cursor_x = x;
6323         intel_crtc->cursor_y = y;
6324
6325         intel_crtc_update_cursor(crtc, true);
6326
6327         return 0;
6328 }
6329
6330 /** Sets the color ramps on behalf of RandR */
6331 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6332                                  u16 blue, int regno)
6333 {
6334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6335
6336         intel_crtc->lut_r[regno] = red >> 8;
6337         intel_crtc->lut_g[regno] = green >> 8;
6338         intel_crtc->lut_b[regno] = blue >> 8;
6339 }
6340
6341 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6342                              u16 *blue, int regno)
6343 {
6344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6345
6346         *red = intel_crtc->lut_r[regno] << 8;
6347         *green = intel_crtc->lut_g[regno] << 8;
6348         *blue = intel_crtc->lut_b[regno] << 8;
6349 }
6350
6351 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6352                                  u16 *blue, uint32_t start, uint32_t size)
6353 {
6354         int end = (start + size > 256) ? 256 : start + size, i;
6355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6356
6357         for (i = start; i < end; i++) {
6358                 intel_crtc->lut_r[i] = red[i] >> 8;
6359                 intel_crtc->lut_g[i] = green[i] >> 8;
6360                 intel_crtc->lut_b[i] = blue[i] >> 8;
6361         }
6362
6363         intel_crtc_load_lut(crtc);
6364 }
6365
6366 /**
6367  * Get a pipe with a simple mode set on it for doing load-based monitor
6368  * detection.
6369  *
6370  * It will be up to the load-detect code to adjust the pipe as appropriate for
6371  * its requirements.  The pipe will be connected to no other encoders.
6372  *
6373  * Currently this code will only succeed if there is a pipe with no encoders
6374  * configured for it.  In the future, it could choose to temporarily disable
6375  * some outputs to free up a pipe for its use.
6376  *
6377  * \return crtc, or NULL if no pipes are available.
6378  */
6379
6380 /* VESA 640x480x72Hz mode to set on the pipe */
6381 static struct drm_display_mode load_detect_mode = {
6382         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6383                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6384 };
6385
6386 static struct drm_framebuffer *
6387 intel_framebuffer_create(struct drm_device *dev,
6388                          struct drm_mode_fb_cmd2 *mode_cmd,
6389                          struct drm_i915_gem_object *obj)
6390 {
6391         struct intel_framebuffer *intel_fb;
6392         int ret;
6393
6394         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6395         if (!intel_fb) {
6396                 drm_gem_object_unreference_unlocked(&obj->base);
6397                 return ERR_PTR(-ENOMEM);
6398         }
6399
6400         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6401         if (ret) {
6402                 drm_gem_object_unreference_unlocked(&obj->base);
6403                 kfree(intel_fb);
6404                 return ERR_PTR(ret);
6405         }
6406
6407         return &intel_fb->base;
6408 }
6409
6410 static u32
6411 intel_framebuffer_pitch_for_width(int width, int bpp)
6412 {
6413         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6414         return ALIGN(pitch, 64);
6415 }
6416
6417 static u32
6418 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6419 {
6420         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6421         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6422 }
6423
6424 static struct drm_framebuffer *
6425 intel_framebuffer_create_for_mode(struct drm_device *dev,
6426                                   struct drm_display_mode *mode,
6427                                   int depth, int bpp)
6428 {
6429         struct drm_i915_gem_object *obj;
6430         struct drm_mode_fb_cmd2 mode_cmd;
6431
6432         obj = i915_gem_alloc_object(dev,
6433                                     intel_framebuffer_size_for_mode(mode, bpp));
6434         if (obj == NULL)
6435                 return ERR_PTR(-ENOMEM);
6436
6437         mode_cmd.width = mode->hdisplay;
6438         mode_cmd.height = mode->vdisplay;
6439         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6440                                                                 bpp);
6441         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6442
6443         return intel_framebuffer_create(dev, &mode_cmd, obj);
6444 }
6445
6446 static struct drm_framebuffer *
6447 mode_fits_in_fbdev(struct drm_device *dev,
6448                    struct drm_display_mode *mode)
6449 {
6450         struct drm_i915_private *dev_priv = dev->dev_private;
6451         struct drm_i915_gem_object *obj;
6452         struct drm_framebuffer *fb;
6453
6454         if (dev_priv->fbdev == NULL)
6455                 return NULL;
6456
6457         obj = dev_priv->fbdev->ifb.obj;
6458         if (obj == NULL)
6459                 return NULL;
6460
6461         fb = &dev_priv->fbdev->ifb.base;
6462         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6463                                                                fb->bits_per_pixel))
6464                 return NULL;
6465
6466         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6467                 return NULL;
6468
6469         return fb;
6470 }
6471
6472 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6473                                 struct drm_display_mode *mode,
6474                                 struct intel_load_detect_pipe *old)
6475 {
6476         struct intel_crtc *intel_crtc;
6477         struct intel_encoder *intel_encoder =
6478                 intel_attached_encoder(connector);
6479         struct drm_crtc *possible_crtc;
6480         struct drm_encoder *encoder = &intel_encoder->base;
6481         struct drm_crtc *crtc = NULL;
6482         struct drm_device *dev = encoder->dev;
6483         struct drm_framebuffer *fb;
6484         int i = -1;
6485
6486         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6487                       connector->base.id, drm_get_connector_name(connector),
6488                       encoder->base.id, drm_get_encoder_name(encoder));
6489
6490         /*
6491          * Algorithm gets a little messy:
6492          *
6493          *   - if the connector already has an assigned crtc, use it (but make
6494          *     sure it's on first)
6495          *
6496          *   - try to find the first unused crtc that can drive this connector,
6497          *     and use that if we find one
6498          */
6499
6500         /* See if we already have a CRTC for this connector */
6501         if (encoder->crtc) {
6502                 crtc = encoder->crtc;
6503
6504                 old->dpms_mode = connector->dpms;
6505                 old->load_detect_temp = false;
6506
6507                 /* Make sure the crtc and connector are running */
6508                 if (connector->dpms != DRM_MODE_DPMS_ON)
6509                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6510
6511                 return true;
6512         }
6513
6514         /* Find an unused one (if possible) */
6515         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6516                 i++;
6517                 if (!(encoder->possible_crtcs & (1 << i)))
6518                         continue;
6519                 if (!possible_crtc->enabled) {
6520                         crtc = possible_crtc;
6521                         break;
6522                 }
6523         }
6524
6525         /*
6526          * If we didn't find an unused CRTC, don't use any.
6527          */
6528         if (!crtc) {
6529                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6530                 return false;
6531         }
6532
6533         intel_encoder->new_crtc = to_intel_crtc(crtc);
6534         to_intel_connector(connector)->new_encoder = intel_encoder;
6535
6536         intel_crtc = to_intel_crtc(crtc);
6537         old->dpms_mode = connector->dpms;
6538         old->load_detect_temp = true;
6539         old->release_fb = NULL;
6540
6541         if (!mode)
6542                 mode = &load_detect_mode;
6543
6544         /* We need a framebuffer large enough to accommodate all accesses
6545          * that the plane may generate whilst we perform load detection.
6546          * We can not rely on the fbcon either being present (we get called
6547          * during its initialisation to detect all boot displays, or it may
6548          * not even exist) or that it is large enough to satisfy the
6549          * requested mode.
6550          */
6551         fb = mode_fits_in_fbdev(dev, mode);
6552         if (fb == NULL) {
6553                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6554                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6555                 old->release_fb = fb;
6556         } else
6557                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6558         if (IS_ERR(fb)) {
6559                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6560                 goto fail;
6561         }
6562
6563         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6564                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6565                 if (old->release_fb)
6566                         old->release_fb->funcs->destroy(old->release_fb);
6567                 goto fail;
6568         }
6569
6570         /* let the connector get through one full cycle before testing */
6571         intel_wait_for_vblank(dev, intel_crtc->pipe);
6572
6573         return true;
6574 fail:
6575         connector->encoder = NULL;
6576         encoder->crtc = NULL;
6577         return false;
6578 }
6579
6580 void intel_release_load_detect_pipe(struct drm_connector *connector,
6581                                     struct intel_load_detect_pipe *old)
6582 {
6583         struct intel_encoder *intel_encoder =
6584                 intel_attached_encoder(connector);
6585         struct drm_encoder *encoder = &intel_encoder->base;
6586
6587         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6588                       connector->base.id, drm_get_connector_name(connector),
6589                       encoder->base.id, drm_get_encoder_name(encoder));
6590
6591         if (old->load_detect_temp) {
6592                 struct drm_crtc *crtc = encoder->crtc;
6593
6594                 to_intel_connector(connector)->new_encoder = NULL;
6595                 intel_encoder->new_crtc = NULL;
6596                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6597
6598                 if (old->release_fb)
6599                         old->release_fb->funcs->destroy(old->release_fb);
6600
6601                 return;
6602         }
6603
6604         /* Switch crtc and encoder back off if necessary */
6605         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6606                 connector->funcs->dpms(connector, old->dpms_mode);
6607 }
6608
6609 /* Returns the clock of the currently programmed mode of the given pipe. */
6610 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6611 {
6612         struct drm_i915_private *dev_priv = dev->dev_private;
6613         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6614         int pipe = intel_crtc->pipe;
6615         u32 dpll = I915_READ(DPLL(pipe));
6616         u32 fp;
6617         intel_clock_t clock;
6618
6619         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6620                 fp = I915_READ(FP0(pipe));
6621         else
6622                 fp = I915_READ(FP1(pipe));
6623
6624         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6625         if (IS_PINEVIEW(dev)) {
6626                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6627                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6628         } else {
6629                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6630                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6631         }
6632
6633         if (!IS_GEN2(dev)) {
6634                 if (IS_PINEVIEW(dev))
6635                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6636                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6637                 else
6638                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6639                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6640
6641                 switch (dpll & DPLL_MODE_MASK) {
6642                 case DPLLB_MODE_DAC_SERIAL:
6643                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6644                                 5 : 10;
6645                         break;
6646                 case DPLLB_MODE_LVDS:
6647                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6648                                 7 : 14;
6649                         break;
6650                 default:
6651                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6652                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6653                         return 0;
6654                 }
6655
6656                 /* XXX: Handle the 100Mhz refclk */
6657                 intel_clock(dev, 96000, &clock);
6658         } else {
6659                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6660
6661                 if (is_lvds) {
6662                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6663                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6664                         clock.p2 = 14;
6665
6666                         if ((dpll & PLL_REF_INPUT_MASK) ==
6667                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6668                                 /* XXX: might not be 66MHz */
6669                                 intel_clock(dev, 66000, &clock);
6670                         } else
6671                                 intel_clock(dev, 48000, &clock);
6672                 } else {
6673                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6674                                 clock.p1 = 2;
6675                         else {
6676                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6677                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6678                         }
6679                         if (dpll & PLL_P2_DIVIDE_BY_4)
6680                                 clock.p2 = 4;
6681                         else
6682                                 clock.p2 = 2;
6683
6684                         intel_clock(dev, 48000, &clock);
6685                 }
6686         }
6687
6688         /* XXX: It would be nice to validate the clocks, but we can't reuse
6689          * i830PllIsValid() because it relies on the xf86_config connector
6690          * configuration being accurate, which it isn't necessarily.
6691          */
6692
6693         return clock.dot;
6694 }
6695
6696 /** Returns the currently programmed mode of the given pipe. */
6697 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6698                                              struct drm_crtc *crtc)
6699 {
6700         struct drm_i915_private *dev_priv = dev->dev_private;
6701         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6702         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6703         struct drm_display_mode *mode;
6704         int htot = I915_READ(HTOTAL(cpu_transcoder));
6705         int hsync = I915_READ(HSYNC(cpu_transcoder));
6706         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6707         int vsync = I915_READ(VSYNC(cpu_transcoder));
6708
6709         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6710         if (!mode)
6711                 return NULL;
6712
6713         mode->clock = intel_crtc_clock_get(dev, crtc);
6714         mode->hdisplay = (htot & 0xffff) + 1;
6715         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6716         mode->hsync_start = (hsync & 0xffff) + 1;
6717         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6718         mode->vdisplay = (vtot & 0xffff) + 1;
6719         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6720         mode->vsync_start = (vsync & 0xffff) + 1;
6721         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6722
6723         drm_mode_set_name(mode);
6724
6725         return mode;
6726 }
6727
6728 static void intel_increase_pllclock(struct drm_crtc *crtc)
6729 {
6730         struct drm_device *dev = crtc->dev;
6731         drm_i915_private_t *dev_priv = dev->dev_private;
6732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6733         int pipe = intel_crtc->pipe;
6734         int dpll_reg = DPLL(pipe);
6735         int dpll;
6736
6737         if (HAS_PCH_SPLIT(dev))
6738                 return;
6739
6740         if (!dev_priv->lvds_downclock_avail)
6741                 return;
6742
6743         dpll = I915_READ(dpll_reg);
6744         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6745                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6746
6747                 assert_panel_unlocked(dev_priv, pipe);
6748
6749                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6750                 I915_WRITE(dpll_reg, dpll);
6751                 intel_wait_for_vblank(dev, pipe);
6752
6753                 dpll = I915_READ(dpll_reg);
6754                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6755                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6756         }
6757 }
6758
6759 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6760 {
6761         struct drm_device *dev = crtc->dev;
6762         drm_i915_private_t *dev_priv = dev->dev_private;
6763         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6764
6765         if (HAS_PCH_SPLIT(dev))
6766                 return;
6767
6768         if (!dev_priv->lvds_downclock_avail)
6769                 return;
6770
6771         /*
6772          * Since this is called by a timer, we should never get here in
6773          * the manual case.
6774          */
6775         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6776                 int pipe = intel_crtc->pipe;
6777                 int dpll_reg = DPLL(pipe);
6778                 int dpll;
6779
6780                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6781
6782                 assert_panel_unlocked(dev_priv, pipe);
6783
6784                 dpll = I915_READ(dpll_reg);
6785                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6786                 I915_WRITE(dpll_reg, dpll);
6787                 intel_wait_for_vblank(dev, pipe);
6788                 dpll = I915_READ(dpll_reg);
6789                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6790                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6791         }
6792
6793 }
6794
6795 void intel_mark_busy(struct drm_device *dev)
6796 {
6797         i915_update_gfx_val(dev->dev_private);
6798 }
6799
6800 void intel_mark_idle(struct drm_device *dev)
6801 {
6802 }
6803
6804 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6805 {
6806         struct drm_device *dev = obj->base.dev;
6807         struct drm_crtc *crtc;
6808
6809         if (!i915_powersave)
6810                 return;
6811
6812         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6813                 if (!crtc->fb)
6814                         continue;
6815
6816                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6817                         intel_increase_pllclock(crtc);
6818         }
6819 }
6820
6821 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6822 {
6823         struct drm_device *dev = obj->base.dev;
6824         struct drm_crtc *crtc;
6825
6826         if (!i915_powersave)
6827                 return;
6828
6829         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6830                 if (!crtc->fb)
6831                         continue;
6832
6833                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6834                         intel_decrease_pllclock(crtc);
6835         }
6836 }
6837
6838 static void intel_crtc_destroy(struct drm_crtc *crtc)
6839 {
6840         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6841         struct drm_device *dev = crtc->dev;
6842         struct intel_unpin_work *work;
6843         unsigned long flags;
6844
6845         spin_lock_irqsave(&dev->event_lock, flags);
6846         work = intel_crtc->unpin_work;
6847         intel_crtc->unpin_work = NULL;
6848         spin_unlock_irqrestore(&dev->event_lock, flags);
6849
6850         if (work) {
6851                 cancel_work_sync(&work->work);
6852                 kfree(work);
6853         }
6854
6855         drm_crtc_cleanup(crtc);
6856
6857         kfree(intel_crtc);
6858 }
6859
6860 static void intel_unpin_work_fn(struct work_struct *__work)
6861 {
6862         struct intel_unpin_work *work =
6863                 container_of(__work, struct intel_unpin_work, work);
6864
6865         mutex_lock(&work->dev->struct_mutex);
6866         intel_unpin_fb_obj(work->old_fb_obj);
6867         drm_gem_object_unreference(&work->pending_flip_obj->base);
6868         drm_gem_object_unreference(&work->old_fb_obj->base);
6869
6870         intel_update_fbc(work->dev);
6871         mutex_unlock(&work->dev->struct_mutex);
6872         kfree(work);
6873 }
6874
6875 static void do_intel_finish_page_flip(struct drm_device *dev,
6876                                       struct drm_crtc *crtc)
6877 {
6878         drm_i915_private_t *dev_priv = dev->dev_private;
6879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6880         struct intel_unpin_work *work;
6881         struct drm_i915_gem_object *obj;
6882         struct drm_pending_vblank_event *e;
6883         struct timeval tvbl;
6884         unsigned long flags;
6885
6886         /* Ignore early vblank irqs */
6887         if (intel_crtc == NULL)
6888                 return;
6889
6890         spin_lock_irqsave(&dev->event_lock, flags);
6891         work = intel_crtc->unpin_work;
6892         if (work == NULL || !work->pending) {
6893                 spin_unlock_irqrestore(&dev->event_lock, flags);
6894                 return;
6895         }
6896
6897         intel_crtc->unpin_work = NULL;
6898
6899         if (work->event) {
6900                 e = work->event;
6901                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6902
6903                 e->event.tv_sec = tvbl.tv_sec;
6904                 e->event.tv_usec = tvbl.tv_usec;
6905
6906                 list_add_tail(&e->base.link,
6907                               &e->base.file_priv->event_list);
6908                 wake_up_interruptible(&e->base.file_priv->event_wait);
6909         }
6910
6911         drm_vblank_put(dev, intel_crtc->pipe);
6912
6913         spin_unlock_irqrestore(&dev->event_lock, flags);
6914
6915         obj = work->old_fb_obj;
6916
6917         atomic_clear_mask(1 << intel_crtc->plane,
6918                           &obj->pending_flip.counter);
6919
6920         wake_up(&dev_priv->pending_flip_queue);
6921         schedule_work(&work->work);
6922
6923         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6924 }
6925
6926 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6927 {
6928         drm_i915_private_t *dev_priv = dev->dev_private;
6929         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6930
6931         do_intel_finish_page_flip(dev, crtc);
6932 }
6933
6934 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6935 {
6936         drm_i915_private_t *dev_priv = dev->dev_private;
6937         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6938
6939         do_intel_finish_page_flip(dev, crtc);
6940 }
6941
6942 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6943 {
6944         drm_i915_private_t *dev_priv = dev->dev_private;
6945         struct intel_crtc *intel_crtc =
6946                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6947         unsigned long flags;
6948
6949         spin_lock_irqsave(&dev->event_lock, flags);
6950         if (intel_crtc->unpin_work) {
6951                 if ((++intel_crtc->unpin_work->pending) > 1)
6952                         DRM_ERROR("Prepared flip multiple times\n");
6953         } else {
6954                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6955         }
6956         spin_unlock_irqrestore(&dev->event_lock, flags);
6957 }
6958
6959 static int intel_gen2_queue_flip(struct drm_device *dev,
6960                                  struct drm_crtc *crtc,
6961                                  struct drm_framebuffer *fb,
6962                                  struct drm_i915_gem_object *obj)
6963 {
6964         struct drm_i915_private *dev_priv = dev->dev_private;
6965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6966         u32 flip_mask;
6967         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6968         int ret;
6969
6970         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6971         if (ret)
6972                 goto err;
6973
6974         ret = intel_ring_begin(ring, 6);
6975         if (ret)
6976                 goto err_unpin;
6977
6978         /* Can't queue multiple flips, so wait for the previous
6979          * one to finish before executing the next.
6980          */
6981         if (intel_crtc->plane)
6982                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6983         else
6984                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6985         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6986         intel_ring_emit(ring, MI_NOOP);
6987         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6988                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6989         intel_ring_emit(ring, fb->pitches[0]);
6990         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6991         intel_ring_emit(ring, 0); /* aux display base address, unused */
6992         intel_ring_advance(ring);
6993         return 0;
6994
6995 err_unpin:
6996         intel_unpin_fb_obj(obj);
6997 err:
6998         return ret;
6999 }
7000
7001 static int intel_gen3_queue_flip(struct drm_device *dev,
7002                                  struct drm_crtc *crtc,
7003                                  struct drm_framebuffer *fb,
7004                                  struct drm_i915_gem_object *obj)
7005 {
7006         struct drm_i915_private *dev_priv = dev->dev_private;
7007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7008         u32 flip_mask;
7009         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7010         int ret;
7011
7012         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7013         if (ret)
7014                 goto err;
7015
7016         ret = intel_ring_begin(ring, 6);
7017         if (ret)
7018                 goto err_unpin;
7019
7020         if (intel_crtc->plane)
7021                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7022         else
7023                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7024         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7025         intel_ring_emit(ring, MI_NOOP);
7026         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7027                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7028         intel_ring_emit(ring, fb->pitches[0]);
7029         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7030         intel_ring_emit(ring, MI_NOOP);
7031
7032         intel_ring_advance(ring);
7033         return 0;
7034
7035 err_unpin:
7036         intel_unpin_fb_obj(obj);
7037 err:
7038         return ret;
7039 }
7040
7041 static int intel_gen4_queue_flip(struct drm_device *dev,
7042                                  struct drm_crtc *crtc,
7043                                  struct drm_framebuffer *fb,
7044                                  struct drm_i915_gem_object *obj)
7045 {
7046         struct drm_i915_private *dev_priv = dev->dev_private;
7047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7048         uint32_t pf, pipesrc;
7049         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7050         int ret;
7051
7052         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7053         if (ret)
7054                 goto err;
7055
7056         ret = intel_ring_begin(ring, 4);
7057         if (ret)
7058                 goto err_unpin;
7059
7060         /* i965+ uses the linear or tiled offsets from the
7061          * Display Registers (which do not change across a page-flip)
7062          * so we need only reprogram the base address.
7063          */
7064         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7065                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7066         intel_ring_emit(ring, fb->pitches[0]);
7067         intel_ring_emit(ring,
7068                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7069                         obj->tiling_mode);
7070
7071         /* XXX Enabling the panel-fitter across page-flip is so far
7072          * untested on non-native modes, so ignore it for now.
7073          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7074          */
7075         pf = 0;
7076         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7077         intel_ring_emit(ring, pf | pipesrc);
7078         intel_ring_advance(ring);
7079         return 0;
7080
7081 err_unpin:
7082         intel_unpin_fb_obj(obj);
7083 err:
7084         return ret;
7085 }
7086
7087 static int intel_gen6_queue_flip(struct drm_device *dev,
7088                                  struct drm_crtc *crtc,
7089                                  struct drm_framebuffer *fb,
7090                                  struct drm_i915_gem_object *obj)
7091 {
7092         struct drm_i915_private *dev_priv = dev->dev_private;
7093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7094         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7095         uint32_t pf, pipesrc;
7096         int ret;
7097
7098         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7099         if (ret)
7100                 goto err;
7101
7102         ret = intel_ring_begin(ring, 4);
7103         if (ret)
7104                 goto err_unpin;
7105
7106         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7107                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7108         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7109         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7110
7111         /* Contrary to the suggestions in the documentation,
7112          * "Enable Panel Fitter" does not seem to be required when page
7113          * flipping with a non-native mode, and worse causes a normal
7114          * modeset to fail.
7115          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7116          */
7117         pf = 0;
7118         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7119         intel_ring_emit(ring, pf | pipesrc);
7120         intel_ring_advance(ring);
7121         return 0;
7122
7123 err_unpin:
7124         intel_unpin_fb_obj(obj);
7125 err:
7126         return ret;
7127 }
7128
7129 /*
7130  * On gen7 we currently use the blit ring because (in early silicon at least)
7131  * the render ring doesn't give us interrpts for page flip completion, which
7132  * means clients will hang after the first flip is queued.  Fortunately the
7133  * blit ring generates interrupts properly, so use it instead.
7134  */
7135 static int intel_gen7_queue_flip(struct drm_device *dev,
7136                                  struct drm_crtc *crtc,
7137                                  struct drm_framebuffer *fb,
7138                                  struct drm_i915_gem_object *obj)
7139 {
7140         struct drm_i915_private *dev_priv = dev->dev_private;
7141         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7142         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7143         uint32_t plane_bit = 0;
7144         int ret;
7145
7146         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7147         if (ret)
7148                 goto err;
7149
7150         switch(intel_crtc->plane) {
7151         case PLANE_A:
7152                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7153                 break;
7154         case PLANE_B:
7155                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7156                 break;
7157         case PLANE_C:
7158                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7159                 break;
7160         default:
7161                 WARN_ONCE(1, "unknown plane in flip command\n");
7162                 ret = -ENODEV;
7163                 goto err_unpin;
7164         }
7165
7166         ret = intel_ring_begin(ring, 4);
7167         if (ret)
7168                 goto err_unpin;
7169
7170         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7171         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7172         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7173         intel_ring_emit(ring, (MI_NOOP));
7174         intel_ring_advance(ring);
7175         return 0;
7176
7177 err_unpin:
7178         intel_unpin_fb_obj(obj);
7179 err:
7180         return ret;
7181 }
7182
7183 static int intel_default_queue_flip(struct drm_device *dev,
7184                                     struct drm_crtc *crtc,
7185                                     struct drm_framebuffer *fb,
7186                                     struct drm_i915_gem_object *obj)
7187 {
7188         return -ENODEV;
7189 }
7190
7191 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7192                                 struct drm_framebuffer *fb,
7193                                 struct drm_pending_vblank_event *event)
7194 {
7195         struct drm_device *dev = crtc->dev;
7196         struct drm_i915_private *dev_priv = dev->dev_private;
7197         struct intel_framebuffer *intel_fb;
7198         struct drm_i915_gem_object *obj;
7199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7200         struct intel_unpin_work *work;
7201         unsigned long flags;
7202         int ret;
7203
7204         /* Can't change pixel format via MI display flips. */
7205         if (fb->pixel_format != crtc->fb->pixel_format)
7206                 return -EINVAL;
7207
7208         /*
7209          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7210          * Note that pitch changes could also affect these register.
7211          */
7212         if (INTEL_INFO(dev)->gen > 3 &&
7213             (fb->offsets[0] != crtc->fb->offsets[0] ||
7214              fb->pitches[0] != crtc->fb->pitches[0]))
7215                 return -EINVAL;
7216
7217         work = kzalloc(sizeof *work, GFP_KERNEL);
7218         if (work == NULL)
7219                 return -ENOMEM;
7220
7221         work->event = event;
7222         work->dev = crtc->dev;
7223         intel_fb = to_intel_framebuffer(crtc->fb);
7224         work->old_fb_obj = intel_fb->obj;
7225         INIT_WORK(&work->work, intel_unpin_work_fn);
7226
7227         ret = drm_vblank_get(dev, intel_crtc->pipe);
7228         if (ret)
7229                 goto free_work;
7230
7231         /* We borrow the event spin lock for protecting unpin_work */
7232         spin_lock_irqsave(&dev->event_lock, flags);
7233         if (intel_crtc->unpin_work) {
7234                 spin_unlock_irqrestore(&dev->event_lock, flags);
7235                 kfree(work);
7236                 drm_vblank_put(dev, intel_crtc->pipe);
7237
7238                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7239                 return -EBUSY;
7240         }
7241         intel_crtc->unpin_work = work;
7242         spin_unlock_irqrestore(&dev->event_lock, flags);
7243
7244         intel_fb = to_intel_framebuffer(fb);
7245         obj = intel_fb->obj;
7246
7247         ret = i915_mutex_lock_interruptible(dev);
7248         if (ret)
7249                 goto cleanup;
7250
7251         /* Reference the objects for the scheduled work. */
7252         drm_gem_object_reference(&work->old_fb_obj->base);
7253         drm_gem_object_reference(&obj->base);
7254
7255         crtc->fb = fb;
7256
7257         work->pending_flip_obj = obj;
7258
7259         work->enable_stall_check = true;
7260
7261         /* Block clients from rendering to the new back buffer until
7262          * the flip occurs and the object is no longer visible.
7263          */
7264         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7265
7266         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7267         if (ret)
7268                 goto cleanup_pending;
7269
7270         intel_disable_fbc(dev);
7271         intel_mark_fb_busy(obj);
7272         mutex_unlock(&dev->struct_mutex);
7273
7274         trace_i915_flip_request(intel_crtc->plane, obj);
7275
7276         return 0;
7277
7278 cleanup_pending:
7279         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7280         drm_gem_object_unreference(&work->old_fb_obj->base);
7281         drm_gem_object_unreference(&obj->base);
7282         mutex_unlock(&dev->struct_mutex);
7283
7284 cleanup:
7285         spin_lock_irqsave(&dev->event_lock, flags);
7286         intel_crtc->unpin_work = NULL;
7287         spin_unlock_irqrestore(&dev->event_lock, flags);
7288
7289         drm_vblank_put(dev, intel_crtc->pipe);
7290 free_work:
7291         kfree(work);
7292
7293         return ret;
7294 }
7295
7296 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7297         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7298         .load_lut = intel_crtc_load_lut,
7299         .disable = intel_crtc_noop,
7300 };
7301
7302 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7303 {
7304         struct intel_encoder *other_encoder;
7305         struct drm_crtc *crtc = &encoder->new_crtc->base;
7306
7307         if (WARN_ON(!crtc))
7308                 return false;
7309
7310         list_for_each_entry(other_encoder,
7311                             &crtc->dev->mode_config.encoder_list,
7312                             base.head) {
7313
7314                 if (&other_encoder->new_crtc->base != crtc ||
7315                     encoder == other_encoder)
7316                         continue;
7317                 else
7318                         return true;
7319         }
7320
7321         return false;
7322 }
7323
7324 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7325                                   struct drm_crtc *crtc)
7326 {
7327         struct drm_device *dev;
7328         struct drm_crtc *tmp;
7329         int crtc_mask = 1;
7330
7331         WARN(!crtc, "checking null crtc?\n");
7332
7333         dev = crtc->dev;
7334
7335         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7336                 if (tmp == crtc)
7337                         break;
7338                 crtc_mask <<= 1;
7339         }
7340
7341         if (encoder->possible_crtcs & crtc_mask)
7342                 return true;
7343         return false;
7344 }
7345
7346 /**
7347  * intel_modeset_update_staged_output_state
7348  *
7349  * Updates the staged output configuration state, e.g. after we've read out the
7350  * current hw state.
7351  */
7352 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7353 {
7354         struct intel_encoder *encoder;
7355         struct intel_connector *connector;
7356
7357         list_for_each_entry(connector, &dev->mode_config.connector_list,
7358                             base.head) {
7359                 connector->new_encoder =
7360                         to_intel_encoder(connector->base.encoder);
7361         }
7362
7363         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7364                             base.head) {
7365                 encoder->new_crtc =
7366                         to_intel_crtc(encoder->base.crtc);
7367         }
7368 }
7369
7370 /**
7371  * intel_modeset_commit_output_state
7372  *
7373  * This function copies the stage display pipe configuration to the real one.
7374  */
7375 static void intel_modeset_commit_output_state(struct drm_device *dev)
7376 {
7377         struct intel_encoder *encoder;
7378         struct intel_connector *connector;
7379
7380         list_for_each_entry(connector, &dev->mode_config.connector_list,
7381                             base.head) {
7382                 connector->base.encoder = &connector->new_encoder->base;
7383         }
7384
7385         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7386                             base.head) {
7387                 encoder->base.crtc = &encoder->new_crtc->base;
7388         }
7389 }
7390
7391 static struct drm_display_mode *
7392 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7393                             struct drm_display_mode *mode)
7394 {
7395         struct drm_device *dev = crtc->dev;
7396         struct drm_display_mode *adjusted_mode;
7397         struct drm_encoder_helper_funcs *encoder_funcs;
7398         struct intel_encoder *encoder;
7399
7400         adjusted_mode = drm_mode_duplicate(dev, mode);
7401         if (!adjusted_mode)
7402                 return ERR_PTR(-ENOMEM);
7403
7404         /* Pass our mode to the connectors and the CRTC to give them a chance to
7405          * adjust it according to limitations or connector properties, and also
7406          * a chance to reject the mode entirely.
7407          */
7408         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7409                             base.head) {
7410
7411                 if (&encoder->new_crtc->base != crtc)
7412                         continue;
7413                 encoder_funcs = encoder->base.helper_private;
7414                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7415                                                 adjusted_mode))) {
7416                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7417                         goto fail;
7418                 }
7419         }
7420
7421         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7422                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7423                 goto fail;
7424         }
7425         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7426
7427         return adjusted_mode;
7428 fail:
7429         drm_mode_destroy(dev, adjusted_mode);
7430         return ERR_PTR(-EINVAL);
7431 }
7432
7433 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7434  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7435 static void
7436 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7437                              unsigned *prepare_pipes, unsigned *disable_pipes)
7438 {
7439         struct intel_crtc *intel_crtc;
7440         struct drm_device *dev = crtc->dev;
7441         struct intel_encoder *encoder;
7442         struct intel_connector *connector;
7443         struct drm_crtc *tmp_crtc;
7444
7445         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7446
7447         /* Check which crtcs have changed outputs connected to them, these need
7448          * to be part of the prepare_pipes mask. We don't (yet) support global
7449          * modeset across multiple crtcs, so modeset_pipes will only have one
7450          * bit set at most. */
7451         list_for_each_entry(connector, &dev->mode_config.connector_list,
7452                             base.head) {
7453                 if (connector->base.encoder == &connector->new_encoder->base)
7454                         continue;
7455
7456                 if (connector->base.encoder) {
7457                         tmp_crtc = connector->base.encoder->crtc;
7458
7459                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7460                 }
7461
7462                 if (connector->new_encoder)
7463                         *prepare_pipes |=
7464                                 1 << connector->new_encoder->new_crtc->pipe;
7465         }
7466
7467         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7468                             base.head) {
7469                 if (encoder->base.crtc == &encoder->new_crtc->base)
7470                         continue;
7471
7472                 if (encoder->base.crtc) {
7473                         tmp_crtc = encoder->base.crtc;
7474
7475                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7476                 }
7477
7478                 if (encoder->new_crtc)
7479                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7480         }
7481
7482         /* Check for any pipes that will be fully disabled ... */
7483         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7484                             base.head) {
7485                 bool used = false;
7486
7487                 /* Don't try to disable disabled crtcs. */
7488                 if (!intel_crtc->base.enabled)
7489                         continue;
7490
7491                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7492                                     base.head) {
7493                         if (encoder->new_crtc == intel_crtc)
7494                                 used = true;
7495                 }
7496
7497                 if (!used)
7498                         *disable_pipes |= 1 << intel_crtc->pipe;
7499         }
7500
7501
7502         /* set_mode is also used to update properties on life display pipes. */
7503         intel_crtc = to_intel_crtc(crtc);
7504         if (crtc->enabled)
7505                 *prepare_pipes |= 1 << intel_crtc->pipe;
7506
7507         /* We only support modeset on one single crtc, hence we need to do that
7508          * only for the passed in crtc iff we change anything else than just
7509          * disable crtcs.
7510          *
7511          * This is actually not true, to be fully compatible with the old crtc
7512          * helper we automatically disable _any_ output (i.e. doesn't need to be
7513          * connected to the crtc we're modesetting on) if it's disconnected.
7514          * Which is a rather nutty api (since changed the output configuration
7515          * without userspace's explicit request can lead to confusion), but
7516          * alas. Hence we currently need to modeset on all pipes we prepare. */
7517         if (*prepare_pipes)
7518                 *modeset_pipes = *prepare_pipes;
7519
7520         /* ... and mask these out. */
7521         *modeset_pipes &= ~(*disable_pipes);
7522         *prepare_pipes &= ~(*disable_pipes);
7523 }
7524
7525 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7526 {
7527         struct drm_encoder *encoder;
7528         struct drm_device *dev = crtc->dev;
7529
7530         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7531                 if (encoder->crtc == crtc)
7532                         return true;
7533
7534         return false;
7535 }
7536
7537 static void
7538 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7539 {
7540         struct intel_encoder *intel_encoder;
7541         struct intel_crtc *intel_crtc;
7542         struct drm_connector *connector;
7543
7544         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7545                             base.head) {
7546                 if (!intel_encoder->base.crtc)
7547                         continue;
7548
7549                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7550
7551                 if (prepare_pipes & (1 << intel_crtc->pipe))
7552                         intel_encoder->connectors_active = false;
7553         }
7554
7555         intel_modeset_commit_output_state(dev);
7556
7557         /* Update computed state. */
7558         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7559                             base.head) {
7560                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7561         }
7562
7563         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7564                 if (!connector->encoder || !connector->encoder->crtc)
7565                         continue;
7566
7567                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7568
7569                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7570                         struct drm_property *dpms_property =
7571                                 dev->mode_config.dpms_property;
7572
7573                         connector->dpms = DRM_MODE_DPMS_ON;
7574                         drm_connector_property_set_value(connector,
7575                                                          dpms_property,
7576                                                          DRM_MODE_DPMS_ON);
7577
7578                         intel_encoder = to_intel_encoder(connector->encoder);
7579                         intel_encoder->connectors_active = true;
7580                 }
7581         }
7582
7583 }
7584
7585 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7586         list_for_each_entry((intel_crtc), \
7587                             &(dev)->mode_config.crtc_list, \
7588                             base.head) \
7589                 if (mask & (1 <<(intel_crtc)->pipe)) \
7590
7591 void
7592 intel_modeset_check_state(struct drm_device *dev)
7593 {
7594         struct intel_crtc *crtc;
7595         struct intel_encoder *encoder;
7596         struct intel_connector *connector;
7597
7598         list_for_each_entry(connector, &dev->mode_config.connector_list,
7599                             base.head) {
7600                 /* This also checks the encoder/connector hw state with the
7601                  * ->get_hw_state callbacks. */
7602                 intel_connector_check_state(connector);
7603
7604                 WARN(&connector->new_encoder->base != connector->base.encoder,
7605                      "connector's staged encoder doesn't match current encoder\n");
7606         }
7607
7608         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7609                             base.head) {
7610                 bool enabled = false;
7611                 bool active = false;
7612                 enum pipe pipe, tracked_pipe;
7613
7614                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7615                               encoder->base.base.id,
7616                               drm_get_encoder_name(&encoder->base));
7617
7618                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7619                      "encoder's stage crtc doesn't match current crtc\n");
7620                 WARN(encoder->connectors_active && !encoder->base.crtc,
7621                      "encoder's active_connectors set, but no crtc\n");
7622
7623                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7624                                     base.head) {
7625                         if (connector->base.encoder != &encoder->base)
7626                                 continue;
7627                         enabled = true;
7628                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7629                                 active = true;
7630                 }
7631                 WARN(!!encoder->base.crtc != enabled,
7632                      "encoder's enabled state mismatch "
7633                      "(expected %i, found %i)\n",
7634                      !!encoder->base.crtc, enabled);
7635                 WARN(active && !encoder->base.crtc,
7636                      "active encoder with no crtc\n");
7637
7638                 WARN(encoder->connectors_active != active,
7639                      "encoder's computed active state doesn't match tracked active state "
7640                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7641
7642                 active = encoder->get_hw_state(encoder, &pipe);
7643                 WARN(active != encoder->connectors_active,
7644                      "encoder's hw state doesn't match sw tracking "
7645                      "(expected %i, found %i)\n",
7646                      encoder->connectors_active, active);
7647
7648                 if (!encoder->base.crtc)
7649                         continue;
7650
7651                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7652                 WARN(active && pipe != tracked_pipe,
7653                      "active encoder's pipe doesn't match"
7654                      "(expected %i, found %i)\n",
7655                      tracked_pipe, pipe);
7656
7657         }
7658
7659         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7660                             base.head) {
7661                 bool enabled = false;
7662                 bool active = false;
7663
7664                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7665                               crtc->base.base.id);
7666
7667                 WARN(crtc->active && !crtc->base.enabled,
7668                      "active crtc, but not enabled in sw tracking\n");
7669
7670                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7671                                     base.head) {
7672                         if (encoder->base.crtc != &crtc->base)
7673                                 continue;
7674                         enabled = true;
7675                         if (encoder->connectors_active)
7676                                 active = true;
7677                 }
7678                 WARN(active != crtc->active,
7679                      "crtc's computed active state doesn't match tracked active state "
7680                      "(expected %i, found %i)\n", active, crtc->active);
7681                 WARN(enabled != crtc->base.enabled,
7682                      "crtc's computed enabled state doesn't match tracked enabled state "
7683                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7684
7685                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7686         }
7687 }
7688
7689 bool intel_set_mode(struct drm_crtc *crtc,
7690                     struct drm_display_mode *mode,
7691                     int x, int y, struct drm_framebuffer *fb)
7692 {
7693         struct drm_device *dev = crtc->dev;
7694         drm_i915_private_t *dev_priv = dev->dev_private;
7695         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7696         struct intel_crtc *intel_crtc;
7697         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7698         bool ret = true;
7699
7700         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7701                                      &prepare_pipes, &disable_pipes);
7702
7703         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7704                       modeset_pipes, prepare_pipes, disable_pipes);
7705
7706         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7707                 intel_crtc_disable(&intel_crtc->base);
7708
7709         saved_hwmode = crtc->hwmode;
7710         saved_mode = crtc->mode;
7711
7712         /* Hack: Because we don't (yet) support global modeset on multiple
7713          * crtcs, we don't keep track of the new mode for more than one crtc.
7714          * Hence simply check whether any bit is set in modeset_pipes in all the
7715          * pieces of code that are not yet converted to deal with mutliple crtcs
7716          * changing their mode at the same time. */
7717         adjusted_mode = NULL;
7718         if (modeset_pipes) {
7719                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7720                 if (IS_ERR(adjusted_mode)) {
7721                         return false;
7722                 }
7723         }
7724
7725         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7726                 if (intel_crtc->base.enabled)
7727                         dev_priv->display.crtc_disable(&intel_crtc->base);
7728         }
7729
7730         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7731          * to set it here already despite that we pass it down the callchain.
7732          */
7733         if (modeset_pipes)
7734                 crtc->mode = *mode;
7735
7736         /* Only after disabling all output pipelines that will be changed can we
7737          * update the the output configuration. */
7738         intel_modeset_update_state(dev, prepare_pipes);
7739
7740         if (dev_priv->display.modeset_global_resources)
7741                 dev_priv->display.modeset_global_resources(dev);
7742
7743         /* Set up the DPLL and any encoders state that needs to adjust or depend
7744          * on the DPLL.
7745          */
7746         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7747                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7748                                            mode, adjusted_mode,
7749                                            x, y, fb);
7750                 if (!ret)
7751                     goto done;
7752         }
7753
7754         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7755         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7756                 dev_priv->display.crtc_enable(&intel_crtc->base);
7757
7758         if (modeset_pipes) {
7759                 /* Store real post-adjustment hardware mode. */
7760                 crtc->hwmode = *adjusted_mode;
7761
7762                 /* Calculate and store various constants which
7763                  * are later needed by vblank and swap-completion
7764                  * timestamping. They are derived from true hwmode.
7765                  */
7766                 drm_calc_timestamping_constants(crtc);
7767         }
7768
7769         /* FIXME: add subpixel order */
7770 done:
7771         drm_mode_destroy(dev, adjusted_mode);
7772         if (!ret && crtc->enabled) {
7773                 crtc->hwmode = saved_hwmode;
7774                 crtc->mode = saved_mode;
7775         } else {
7776                 intel_modeset_check_state(dev);
7777         }
7778
7779         return ret;
7780 }
7781
7782 #undef for_each_intel_crtc_masked
7783
7784 static void intel_set_config_free(struct intel_set_config *config)
7785 {
7786         if (!config)
7787                 return;
7788
7789         kfree(config->save_connector_encoders);
7790         kfree(config->save_encoder_crtcs);
7791         kfree(config);
7792 }
7793
7794 static int intel_set_config_save_state(struct drm_device *dev,
7795                                        struct intel_set_config *config)
7796 {
7797         struct drm_encoder *encoder;
7798         struct drm_connector *connector;
7799         int count;
7800
7801         config->save_encoder_crtcs =
7802                 kcalloc(dev->mode_config.num_encoder,
7803                         sizeof(struct drm_crtc *), GFP_KERNEL);
7804         if (!config->save_encoder_crtcs)
7805                 return -ENOMEM;
7806
7807         config->save_connector_encoders =
7808                 kcalloc(dev->mode_config.num_connector,
7809                         sizeof(struct drm_encoder *), GFP_KERNEL);
7810         if (!config->save_connector_encoders)
7811                 return -ENOMEM;
7812
7813         /* Copy data. Note that driver private data is not affected.
7814          * Should anything bad happen only the expected state is
7815          * restored, not the drivers personal bookkeeping.
7816          */
7817         count = 0;
7818         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7819                 config->save_encoder_crtcs[count++] = encoder->crtc;
7820         }
7821
7822         count = 0;
7823         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7824                 config->save_connector_encoders[count++] = connector->encoder;
7825         }
7826
7827         return 0;
7828 }
7829
7830 static void intel_set_config_restore_state(struct drm_device *dev,
7831                                            struct intel_set_config *config)
7832 {
7833         struct intel_encoder *encoder;
7834         struct intel_connector *connector;
7835         int count;
7836
7837         count = 0;
7838         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7839                 encoder->new_crtc =
7840                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7841         }
7842
7843         count = 0;
7844         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7845                 connector->new_encoder =
7846                         to_intel_encoder(config->save_connector_encoders[count++]);
7847         }
7848 }
7849
7850 static void
7851 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7852                                       struct intel_set_config *config)
7853 {
7854
7855         /* We should be able to check here if the fb has the same properties
7856          * and then just flip_or_move it */
7857         if (set->crtc->fb != set->fb) {
7858                 /* If we have no fb then treat it as a full mode set */
7859                 if (set->crtc->fb == NULL) {
7860                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7861                         config->mode_changed = true;
7862                 } else if (set->fb == NULL) {
7863                         config->mode_changed = true;
7864                 } else if (set->fb->depth != set->crtc->fb->depth) {
7865                         config->mode_changed = true;
7866                 } else if (set->fb->bits_per_pixel !=
7867                            set->crtc->fb->bits_per_pixel) {
7868                         config->mode_changed = true;
7869                 } else
7870                         config->fb_changed = true;
7871         }
7872
7873         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7874                 config->fb_changed = true;
7875
7876         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7877                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7878                 drm_mode_debug_printmodeline(&set->crtc->mode);
7879                 drm_mode_debug_printmodeline(set->mode);
7880                 config->mode_changed = true;
7881         }
7882 }
7883
7884 static int
7885 intel_modeset_stage_output_state(struct drm_device *dev,
7886                                  struct drm_mode_set *set,
7887                                  struct intel_set_config *config)
7888 {
7889         struct drm_crtc *new_crtc;
7890         struct intel_connector *connector;
7891         struct intel_encoder *encoder;
7892         int count, ro;
7893
7894         /* The upper layers ensure that we either disabl a crtc or have a list
7895          * of connectors. For paranoia, double-check this. */
7896         WARN_ON(!set->fb && (set->num_connectors != 0));
7897         WARN_ON(set->fb && (set->num_connectors == 0));
7898
7899         count = 0;
7900         list_for_each_entry(connector, &dev->mode_config.connector_list,
7901                             base.head) {
7902                 /* Otherwise traverse passed in connector list and get encoders
7903                  * for them. */
7904                 for (ro = 0; ro < set->num_connectors; ro++) {
7905                         if (set->connectors[ro] == &connector->base) {
7906                                 connector->new_encoder = connector->encoder;
7907                                 break;
7908                         }
7909                 }
7910
7911                 /* If we disable the crtc, disable all its connectors. Also, if
7912                  * the connector is on the changing crtc but not on the new
7913                  * connector list, disable it. */
7914                 if ((!set->fb || ro == set->num_connectors) &&
7915                     connector->base.encoder &&
7916                     connector->base.encoder->crtc == set->crtc) {
7917                         connector->new_encoder = NULL;
7918
7919                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7920                                 connector->base.base.id,
7921                                 drm_get_connector_name(&connector->base));
7922                 }
7923
7924
7925                 if (&connector->new_encoder->base != connector->base.encoder) {
7926                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7927                         config->mode_changed = true;
7928                 }
7929
7930                 /* Disable all disconnected encoders. */
7931                 if (connector->base.status == connector_status_disconnected)
7932                         connector->new_encoder = NULL;
7933         }
7934         /* connector->new_encoder is now updated for all connectors. */
7935
7936         /* Update crtc of enabled connectors. */
7937         count = 0;
7938         list_for_each_entry(connector, &dev->mode_config.connector_list,
7939                             base.head) {
7940                 if (!connector->new_encoder)
7941                         continue;
7942
7943                 new_crtc = connector->new_encoder->base.crtc;
7944
7945                 for (ro = 0; ro < set->num_connectors; ro++) {
7946                         if (set->connectors[ro] == &connector->base)
7947                                 new_crtc = set->crtc;
7948                 }
7949
7950                 /* Make sure the new CRTC will work with the encoder */
7951                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7952                                            new_crtc)) {
7953                         return -EINVAL;
7954                 }
7955                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7956
7957                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7958                         connector->base.base.id,
7959                         drm_get_connector_name(&connector->base),
7960                         new_crtc->base.id);
7961         }
7962
7963         /* Check for any encoders that needs to be disabled. */
7964         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7965                             base.head) {
7966                 list_for_each_entry(connector,
7967                                     &dev->mode_config.connector_list,
7968                                     base.head) {
7969                         if (connector->new_encoder == encoder) {
7970                                 WARN_ON(!connector->new_encoder->new_crtc);
7971
7972                                 goto next_encoder;
7973                         }
7974                 }
7975                 encoder->new_crtc = NULL;
7976 next_encoder:
7977                 /* Only now check for crtc changes so we don't miss encoders
7978                  * that will be disabled. */
7979                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7980                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7981                         config->mode_changed = true;
7982                 }
7983         }
7984         /* Now we've also updated encoder->new_crtc for all encoders. */
7985
7986         return 0;
7987 }
7988
7989 static int intel_crtc_set_config(struct drm_mode_set *set)
7990 {
7991         struct drm_device *dev;
7992         struct drm_mode_set save_set;
7993         struct intel_set_config *config;
7994         int ret;
7995
7996         BUG_ON(!set);
7997         BUG_ON(!set->crtc);
7998         BUG_ON(!set->crtc->helper_private);
7999
8000         if (!set->mode)
8001                 set->fb = NULL;
8002
8003         /* The fb helper likes to play gross jokes with ->mode_set_config.
8004          * Unfortunately the crtc helper doesn't do much at all for this case,
8005          * so we have to cope with this madness until the fb helper is fixed up. */
8006         if (set->fb && set->num_connectors == 0)
8007                 return 0;
8008
8009         if (set->fb) {
8010                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8011                                 set->crtc->base.id, set->fb->base.id,
8012                                 (int)set->num_connectors, set->x, set->y);
8013         } else {
8014                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8015         }
8016
8017         dev = set->crtc->dev;
8018
8019         ret = -ENOMEM;
8020         config = kzalloc(sizeof(*config), GFP_KERNEL);
8021         if (!config)
8022                 goto out_config;
8023
8024         ret = intel_set_config_save_state(dev, config);
8025         if (ret)
8026                 goto out_config;
8027
8028         save_set.crtc = set->crtc;
8029         save_set.mode = &set->crtc->mode;
8030         save_set.x = set->crtc->x;
8031         save_set.y = set->crtc->y;
8032         save_set.fb = set->crtc->fb;
8033
8034         /* Compute whether we need a full modeset, only an fb base update or no
8035          * change at all. In the future we might also check whether only the
8036          * mode changed, e.g. for LVDS where we only change the panel fitter in
8037          * such cases. */
8038         intel_set_config_compute_mode_changes(set, config);
8039
8040         ret = intel_modeset_stage_output_state(dev, set, config);
8041         if (ret)
8042                 goto fail;
8043
8044         if (config->mode_changed) {
8045                 if (set->mode) {
8046                         DRM_DEBUG_KMS("attempting to set mode from"
8047                                         " userspace\n");
8048                         drm_mode_debug_printmodeline(set->mode);
8049                 }
8050
8051                 if (!intel_set_mode(set->crtc, set->mode,
8052                                     set->x, set->y, set->fb)) {
8053                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8054                                   set->crtc->base.id);
8055                         ret = -EINVAL;
8056                         goto fail;
8057                 }
8058         } else if (config->fb_changed) {
8059                 ret = intel_pipe_set_base(set->crtc,
8060                                           set->x, set->y, set->fb);
8061         }
8062
8063         intel_set_config_free(config);
8064
8065         return 0;
8066
8067 fail:
8068         intel_set_config_restore_state(dev, config);
8069
8070         /* Try to restore the config */
8071         if (config->mode_changed &&
8072             !intel_set_mode(save_set.crtc, save_set.mode,
8073                             save_set.x, save_set.y, save_set.fb))
8074                 DRM_ERROR("failed to restore config after modeset failure\n");
8075
8076 out_config:
8077         intel_set_config_free(config);
8078         return ret;
8079 }
8080
8081 static const struct drm_crtc_funcs intel_crtc_funcs = {
8082         .cursor_set = intel_crtc_cursor_set,
8083         .cursor_move = intel_crtc_cursor_move,
8084         .gamma_set = intel_crtc_gamma_set,
8085         .set_config = intel_crtc_set_config,
8086         .destroy = intel_crtc_destroy,
8087         .page_flip = intel_crtc_page_flip,
8088 };
8089
8090 static void intel_cpu_pll_init(struct drm_device *dev)
8091 {
8092         if (IS_HASWELL(dev))
8093                 intel_ddi_pll_init(dev);
8094 }
8095
8096 static void intel_pch_pll_init(struct drm_device *dev)
8097 {
8098         drm_i915_private_t *dev_priv = dev->dev_private;
8099         int i;
8100
8101         if (dev_priv->num_pch_pll == 0) {
8102                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8103                 return;
8104         }
8105
8106         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8107                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8108                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8109                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8110         }
8111 }
8112
8113 static void intel_crtc_init(struct drm_device *dev, int pipe)
8114 {
8115         drm_i915_private_t *dev_priv = dev->dev_private;
8116         struct intel_crtc *intel_crtc;
8117         int i;
8118
8119         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8120         if (intel_crtc == NULL)
8121                 return;
8122
8123         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8124
8125         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8126         for (i = 0; i < 256; i++) {
8127                 intel_crtc->lut_r[i] = i;
8128                 intel_crtc->lut_g[i] = i;
8129                 intel_crtc->lut_b[i] = i;
8130         }
8131
8132         /* Swap pipes & planes for FBC on pre-965 */
8133         intel_crtc->pipe = pipe;
8134         intel_crtc->plane = pipe;
8135         intel_crtc->cpu_transcoder = pipe;
8136         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8137                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8138                 intel_crtc->plane = !pipe;
8139         }
8140
8141         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8142                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8143         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8144         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8145
8146         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8147
8148         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8149 }
8150
8151 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8152                                 struct drm_file *file)
8153 {
8154         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8155         struct drm_mode_object *drmmode_obj;
8156         struct intel_crtc *crtc;
8157
8158         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8159                 return -ENODEV;
8160
8161         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8162                         DRM_MODE_OBJECT_CRTC);
8163
8164         if (!drmmode_obj) {
8165                 DRM_ERROR("no such CRTC id\n");
8166                 return -EINVAL;
8167         }
8168
8169         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8170         pipe_from_crtc_id->pipe = crtc->pipe;
8171
8172         return 0;
8173 }
8174
8175 static int intel_encoder_clones(struct intel_encoder *encoder)
8176 {
8177         struct drm_device *dev = encoder->base.dev;
8178         struct intel_encoder *source_encoder;
8179         int index_mask = 0;
8180         int entry = 0;
8181
8182         list_for_each_entry(source_encoder,
8183                             &dev->mode_config.encoder_list, base.head) {
8184
8185                 if (encoder == source_encoder)
8186                         index_mask |= (1 << entry);
8187
8188                 /* Intel hw has only one MUX where enocoders could be cloned. */
8189                 if (encoder->cloneable && source_encoder->cloneable)
8190                         index_mask |= (1 << entry);
8191
8192                 entry++;
8193         }
8194
8195         return index_mask;
8196 }
8197
8198 static bool has_edp_a(struct drm_device *dev)
8199 {
8200         struct drm_i915_private *dev_priv = dev->dev_private;
8201
8202         if (!IS_MOBILE(dev))
8203                 return false;
8204
8205         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8206                 return false;
8207
8208         if (IS_GEN5(dev) &&
8209             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8210                 return false;
8211
8212         return true;
8213 }
8214
8215 static void intel_setup_outputs(struct drm_device *dev)
8216 {
8217         struct drm_i915_private *dev_priv = dev->dev_private;
8218         struct intel_encoder *encoder;
8219         bool dpd_is_edp = false;
8220         bool has_lvds;
8221
8222         has_lvds = intel_lvds_init(dev);
8223         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8224                 /* disable the panel fitter on everything but LVDS */
8225                 I915_WRITE(PFIT_CONTROL, 0);
8226         }
8227
8228         if (HAS_PCH_SPLIT(dev)) {
8229                 dpd_is_edp = intel_dpd_is_edp(dev);
8230
8231                 if (has_edp_a(dev))
8232                         intel_dp_init(dev, DP_A, PORT_A);
8233
8234                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8235                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8236         }
8237
8238         intel_crt_init(dev);
8239
8240         if (IS_HASWELL(dev)) {
8241                 int found;
8242
8243                 /* Haswell uses DDI functions to detect digital outputs */
8244                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8245                 /* DDI A only supports eDP */
8246                 if (found)
8247                         intel_ddi_init(dev, PORT_A);
8248
8249                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8250                  * register */
8251                 found = I915_READ(SFUSE_STRAP);
8252
8253                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8254                         intel_ddi_init(dev, PORT_B);
8255                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8256                         intel_ddi_init(dev, PORT_C);
8257                 if (found & SFUSE_STRAP_DDID_DETECTED)
8258                         intel_ddi_init(dev, PORT_D);
8259         } else if (HAS_PCH_SPLIT(dev)) {
8260                 int found;
8261
8262                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8263                         /* PCH SDVOB multiplex with HDMIB */
8264                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8265                         if (!found)
8266                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8267                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8268                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8269                 }
8270
8271                 if (I915_READ(HDMIC) & PORT_DETECTED)
8272                         intel_hdmi_init(dev, HDMIC, PORT_C);
8273
8274                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8275                         intel_hdmi_init(dev, HDMID, PORT_D);
8276
8277                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8278                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8279
8280                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8281                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8282         } else if (IS_VALLEYVIEW(dev)) {
8283                 int found;
8284
8285                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8286                 if (I915_READ(DP_C) & DP_DETECTED)
8287                         intel_dp_init(dev, DP_C, PORT_C);
8288
8289                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8290                         /* SDVOB multiplex with HDMIB */
8291                         found = intel_sdvo_init(dev, SDVOB, true);
8292                         if (!found)
8293                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8294                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8295                                 intel_dp_init(dev, DP_B, PORT_B);
8296                 }
8297
8298                 if (I915_READ(SDVOC) & PORT_DETECTED)
8299                         intel_hdmi_init(dev, SDVOC, PORT_C);
8300
8301         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8302                 bool found = false;
8303
8304                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8305                         DRM_DEBUG_KMS("probing SDVOB\n");
8306                         found = intel_sdvo_init(dev, SDVOB, true);
8307                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8308                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8309                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8310                         }
8311
8312                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8313                                 DRM_DEBUG_KMS("probing DP_B\n");
8314                                 intel_dp_init(dev, DP_B, PORT_B);
8315                         }
8316                 }
8317
8318                 /* Before G4X SDVOC doesn't have its own detect register */
8319
8320                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8321                         DRM_DEBUG_KMS("probing SDVOC\n");
8322                         found = intel_sdvo_init(dev, SDVOC, false);
8323                 }
8324
8325                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8326
8327                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8328                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8329                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8330                         }
8331                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8332                                 DRM_DEBUG_KMS("probing DP_C\n");
8333                                 intel_dp_init(dev, DP_C, PORT_C);
8334                         }
8335                 }
8336
8337                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8338                     (I915_READ(DP_D) & DP_DETECTED)) {
8339                         DRM_DEBUG_KMS("probing DP_D\n");
8340                         intel_dp_init(dev, DP_D, PORT_D);
8341                 }
8342         } else if (IS_GEN2(dev))
8343                 intel_dvo_init(dev);
8344
8345         if (SUPPORTS_TV(dev))
8346                 intel_tv_init(dev);
8347
8348         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8349                 encoder->base.possible_crtcs = encoder->crtc_mask;
8350                 encoder->base.possible_clones =
8351                         intel_encoder_clones(encoder);
8352         }
8353
8354         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8355                 ironlake_init_pch_refclk(dev);
8356 }
8357
8358 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8359 {
8360         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8361
8362         drm_framebuffer_cleanup(fb);
8363         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8364
8365         kfree(intel_fb);
8366 }
8367
8368 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8369                                                 struct drm_file *file,
8370                                                 unsigned int *handle)
8371 {
8372         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8373         struct drm_i915_gem_object *obj = intel_fb->obj;
8374
8375         return drm_gem_handle_create(file, &obj->base, handle);
8376 }
8377
8378 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8379         .destroy = intel_user_framebuffer_destroy,
8380         .create_handle = intel_user_framebuffer_create_handle,
8381 };
8382
8383 int intel_framebuffer_init(struct drm_device *dev,
8384                            struct intel_framebuffer *intel_fb,
8385                            struct drm_mode_fb_cmd2 *mode_cmd,
8386                            struct drm_i915_gem_object *obj)
8387 {
8388         int ret;
8389
8390         if (obj->tiling_mode == I915_TILING_Y)
8391                 return -EINVAL;
8392
8393         if (mode_cmd->pitches[0] & 63)
8394                 return -EINVAL;
8395
8396         /* FIXME <= Gen4 stride limits are bit unclear */
8397         if (mode_cmd->pitches[0] > 32768)
8398                 return -EINVAL;
8399
8400         if (obj->tiling_mode != I915_TILING_NONE &&
8401             mode_cmd->pitches[0] != obj->stride)
8402                 return -EINVAL;
8403
8404         /* Reject formats not supported by any plane early. */
8405         switch (mode_cmd->pixel_format) {
8406         case DRM_FORMAT_C8:
8407         case DRM_FORMAT_RGB565:
8408         case DRM_FORMAT_XRGB8888:
8409         case DRM_FORMAT_ARGB8888:
8410                 break;
8411         case DRM_FORMAT_XRGB1555:
8412         case DRM_FORMAT_ARGB1555:
8413                 if (INTEL_INFO(dev)->gen > 3)
8414                         return -EINVAL;
8415                 break;
8416         case DRM_FORMAT_XBGR8888:
8417         case DRM_FORMAT_ABGR8888:
8418         case DRM_FORMAT_XRGB2101010:
8419         case DRM_FORMAT_ARGB2101010:
8420         case DRM_FORMAT_XBGR2101010:
8421         case DRM_FORMAT_ABGR2101010:
8422                 if (INTEL_INFO(dev)->gen < 4)
8423                         return -EINVAL;
8424                 break;
8425         case DRM_FORMAT_YUYV:
8426         case DRM_FORMAT_UYVY:
8427         case DRM_FORMAT_YVYU:
8428         case DRM_FORMAT_VYUY:
8429                 if (INTEL_INFO(dev)->gen < 6)
8430                         return -EINVAL;
8431                 break;
8432         default:
8433                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8434                 return -EINVAL;
8435         }
8436
8437         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8438         if (mode_cmd->offsets[0] != 0)
8439                 return -EINVAL;
8440
8441         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8442         if (ret) {
8443                 DRM_ERROR("framebuffer init failed %d\n", ret);
8444                 return ret;
8445         }
8446
8447         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8448         intel_fb->obj = obj;
8449         return 0;
8450 }
8451
8452 static struct drm_framebuffer *
8453 intel_user_framebuffer_create(struct drm_device *dev,
8454                               struct drm_file *filp,
8455                               struct drm_mode_fb_cmd2 *mode_cmd)
8456 {
8457         struct drm_i915_gem_object *obj;
8458
8459         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8460                                                 mode_cmd->handles[0]));
8461         if (&obj->base == NULL)
8462                 return ERR_PTR(-ENOENT);
8463
8464         return intel_framebuffer_create(dev, mode_cmd, obj);
8465 }
8466
8467 static const struct drm_mode_config_funcs intel_mode_funcs = {
8468         .fb_create = intel_user_framebuffer_create,
8469         .output_poll_changed = intel_fb_output_poll_changed,
8470 };
8471
8472 /* Set up chip specific display functions */
8473 static void intel_init_display(struct drm_device *dev)
8474 {
8475         struct drm_i915_private *dev_priv = dev->dev_private;
8476
8477         /* We always want a DPMS function */
8478         if (IS_HASWELL(dev)) {
8479                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8480                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8481                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8482                 dev_priv->display.off = haswell_crtc_off;
8483                 dev_priv->display.update_plane = ironlake_update_plane;
8484         } else if (HAS_PCH_SPLIT(dev)) {
8485                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8486                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8487                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8488                 dev_priv->display.off = ironlake_crtc_off;
8489                 dev_priv->display.update_plane = ironlake_update_plane;
8490         } else {
8491                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8492                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8493                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8494                 dev_priv->display.off = i9xx_crtc_off;
8495                 dev_priv->display.update_plane = i9xx_update_plane;
8496         }
8497
8498         /* Returns the core display clock speed */
8499         if (IS_VALLEYVIEW(dev))
8500                 dev_priv->display.get_display_clock_speed =
8501                         valleyview_get_display_clock_speed;
8502         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8503                 dev_priv->display.get_display_clock_speed =
8504                         i945_get_display_clock_speed;
8505         else if (IS_I915G(dev))
8506                 dev_priv->display.get_display_clock_speed =
8507                         i915_get_display_clock_speed;
8508         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8509                 dev_priv->display.get_display_clock_speed =
8510                         i9xx_misc_get_display_clock_speed;
8511         else if (IS_I915GM(dev))
8512                 dev_priv->display.get_display_clock_speed =
8513                         i915gm_get_display_clock_speed;
8514         else if (IS_I865G(dev))
8515                 dev_priv->display.get_display_clock_speed =
8516                         i865_get_display_clock_speed;
8517         else if (IS_I85X(dev))
8518                 dev_priv->display.get_display_clock_speed =
8519                         i855_get_display_clock_speed;
8520         else /* 852, 830 */
8521                 dev_priv->display.get_display_clock_speed =
8522                         i830_get_display_clock_speed;
8523
8524         if (HAS_PCH_SPLIT(dev)) {
8525                 if (IS_GEN5(dev)) {
8526                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8527                         dev_priv->display.write_eld = ironlake_write_eld;
8528                 } else if (IS_GEN6(dev)) {
8529                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8530                         dev_priv->display.write_eld = ironlake_write_eld;
8531                 } else if (IS_IVYBRIDGE(dev)) {
8532                         /* FIXME: detect B0+ stepping and use auto training */
8533                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8534                         dev_priv->display.write_eld = ironlake_write_eld;
8535                         dev_priv->display.modeset_global_resources =
8536                                 ivb_modeset_global_resources;
8537                 } else if (IS_HASWELL(dev)) {
8538                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8539                         dev_priv->display.write_eld = haswell_write_eld;
8540                 } else
8541                         dev_priv->display.update_wm = NULL;
8542         } else if (IS_G4X(dev)) {
8543                 dev_priv->display.write_eld = g4x_write_eld;
8544         }
8545
8546         /* Default just returns -ENODEV to indicate unsupported */
8547         dev_priv->display.queue_flip = intel_default_queue_flip;
8548
8549         switch (INTEL_INFO(dev)->gen) {
8550         case 2:
8551                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8552                 break;
8553
8554         case 3:
8555                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8556                 break;
8557
8558         case 4:
8559         case 5:
8560                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8561                 break;
8562
8563         case 6:
8564                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8565                 break;
8566         case 7:
8567                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8568                 break;
8569         }
8570 }
8571
8572 /*
8573  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8574  * resume, or other times.  This quirk makes sure that's the case for
8575  * affected systems.
8576  */
8577 static void quirk_pipea_force(struct drm_device *dev)
8578 {
8579         struct drm_i915_private *dev_priv = dev->dev_private;
8580
8581         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8582         DRM_INFO("applying pipe a force quirk\n");
8583 }
8584
8585 /*
8586  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8587  */
8588 static void quirk_ssc_force_disable(struct drm_device *dev)
8589 {
8590         struct drm_i915_private *dev_priv = dev->dev_private;
8591         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8592         DRM_INFO("applying lvds SSC disable quirk\n");
8593 }
8594
8595 /*
8596  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8597  * brightness value
8598  */
8599 static void quirk_invert_brightness(struct drm_device *dev)
8600 {
8601         struct drm_i915_private *dev_priv = dev->dev_private;
8602         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8603         DRM_INFO("applying inverted panel brightness quirk\n");
8604 }
8605
8606 struct intel_quirk {
8607         int device;
8608         int subsystem_vendor;
8609         int subsystem_device;
8610         void (*hook)(struct drm_device *dev);
8611 };
8612
8613 static struct intel_quirk intel_quirks[] = {
8614         /* HP Mini needs pipe A force quirk (LP: #322104) */
8615         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8616
8617         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8618         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8619
8620         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8621         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8622
8623         /* 830/845 need to leave pipe A & dpll A up */
8624         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8625         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8626
8627         /* Lenovo U160 cannot use SSC on LVDS */
8628         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8629
8630         /* Sony Vaio Y cannot use SSC on LVDS */
8631         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8632
8633         /* Acer Aspire 5734Z must invert backlight brightness */
8634         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8635 };
8636
8637 static void intel_init_quirks(struct drm_device *dev)
8638 {
8639         struct pci_dev *d = dev->pdev;
8640         int i;
8641
8642         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8643                 struct intel_quirk *q = &intel_quirks[i];
8644
8645                 if (d->device == q->device &&
8646                     (d->subsystem_vendor == q->subsystem_vendor ||
8647                      q->subsystem_vendor == PCI_ANY_ID) &&
8648                     (d->subsystem_device == q->subsystem_device ||
8649                      q->subsystem_device == PCI_ANY_ID))
8650                         q->hook(dev);
8651         }
8652 }
8653
8654 /* Disable the VGA plane that we never use */
8655 static void i915_disable_vga(struct drm_device *dev)
8656 {
8657         struct drm_i915_private *dev_priv = dev->dev_private;
8658         u8 sr1;
8659         u32 vga_reg;
8660
8661         if (HAS_PCH_SPLIT(dev))
8662                 vga_reg = CPU_VGACNTRL;
8663         else
8664                 vga_reg = VGACNTRL;
8665
8666         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8667         outb(SR01, VGA_SR_INDEX);
8668         sr1 = inb(VGA_SR_DATA);
8669         outb(sr1 | 1<<5, VGA_SR_DATA);
8670         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8671         udelay(300);
8672
8673         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8674         POSTING_READ(vga_reg);
8675 }
8676
8677 void intel_modeset_init_hw(struct drm_device *dev)
8678 {
8679         /* We attempt to init the necessary power wells early in the initialization
8680          * time, so the subsystems that expect power to be enabled can work.
8681          */
8682         intel_init_power_wells(dev);
8683
8684         intel_prepare_ddi(dev);
8685
8686         intel_init_clock_gating(dev);
8687
8688         mutex_lock(&dev->struct_mutex);
8689         intel_enable_gt_powersave(dev);
8690         mutex_unlock(&dev->struct_mutex);
8691 }
8692
8693 void intel_modeset_init(struct drm_device *dev)
8694 {
8695         struct drm_i915_private *dev_priv = dev->dev_private;
8696         int i, ret;
8697
8698         drm_mode_config_init(dev);
8699
8700         dev->mode_config.min_width = 0;
8701         dev->mode_config.min_height = 0;
8702
8703         dev->mode_config.preferred_depth = 24;
8704         dev->mode_config.prefer_shadow = 1;
8705
8706         dev->mode_config.funcs = &intel_mode_funcs;
8707
8708         intel_init_quirks(dev);
8709
8710         intel_init_pm(dev);
8711
8712         intel_init_display(dev);
8713
8714         if (IS_GEN2(dev)) {
8715                 dev->mode_config.max_width = 2048;
8716                 dev->mode_config.max_height = 2048;
8717         } else if (IS_GEN3(dev)) {
8718                 dev->mode_config.max_width = 4096;
8719                 dev->mode_config.max_height = 4096;
8720         } else {
8721                 dev->mode_config.max_width = 8192;
8722                 dev->mode_config.max_height = 8192;
8723         }
8724         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8725
8726         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8727                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8728
8729         for (i = 0; i < dev_priv->num_pipe; i++) {
8730                 intel_crtc_init(dev, i);
8731                 ret = intel_plane_init(dev, i);
8732                 if (ret)
8733                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8734         }
8735
8736         intel_cpu_pll_init(dev);
8737         intel_pch_pll_init(dev);
8738
8739         /* Just disable it once at startup */
8740         i915_disable_vga(dev);
8741         intel_setup_outputs(dev);
8742 }
8743
8744 static void
8745 intel_connector_break_all_links(struct intel_connector *connector)
8746 {
8747         connector->base.dpms = DRM_MODE_DPMS_OFF;
8748         connector->base.encoder = NULL;
8749         connector->encoder->connectors_active = false;
8750         connector->encoder->base.crtc = NULL;
8751 }
8752
8753 static void intel_enable_pipe_a(struct drm_device *dev)
8754 {
8755         struct intel_connector *connector;
8756         struct drm_connector *crt = NULL;
8757         struct intel_load_detect_pipe load_detect_temp;
8758
8759         /* We can't just switch on the pipe A, we need to set things up with a
8760          * proper mode and output configuration. As a gross hack, enable pipe A
8761          * by enabling the load detect pipe once. */
8762         list_for_each_entry(connector,
8763                             &dev->mode_config.connector_list,
8764                             base.head) {
8765                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8766                         crt = &connector->base;
8767                         break;
8768                 }
8769         }
8770
8771         if (!crt)
8772                 return;
8773
8774         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8775                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8776
8777
8778 }
8779
8780 static bool
8781 intel_check_plane_mapping(struct intel_crtc *crtc)
8782 {
8783         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8784         u32 reg, val;
8785
8786         if (dev_priv->num_pipe == 1)
8787                 return true;
8788
8789         reg = DSPCNTR(!crtc->plane);
8790         val = I915_READ(reg);
8791
8792         if ((val & DISPLAY_PLANE_ENABLE) &&
8793             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8794                 return false;
8795
8796         return true;
8797 }
8798
8799 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8800 {
8801         struct drm_device *dev = crtc->base.dev;
8802         struct drm_i915_private *dev_priv = dev->dev_private;
8803         u32 reg;
8804
8805         /* Clear any frame start delays used for debugging left by the BIOS */
8806         reg = PIPECONF(crtc->cpu_transcoder);
8807         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8808
8809         /* We need to sanitize the plane -> pipe mapping first because this will
8810          * disable the crtc (and hence change the state) if it is wrong. Note
8811          * that gen4+ has a fixed plane -> pipe mapping.  */
8812         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8813                 struct intel_connector *connector;
8814                 bool plane;
8815
8816                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8817                               crtc->base.base.id);
8818
8819                 /* Pipe has the wrong plane attached and the plane is active.
8820                  * Temporarily change the plane mapping and disable everything
8821                  * ...  */
8822                 plane = crtc->plane;
8823                 crtc->plane = !plane;
8824                 dev_priv->display.crtc_disable(&crtc->base);
8825                 crtc->plane = plane;
8826
8827                 /* ... and break all links. */
8828                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8829                                     base.head) {
8830                         if (connector->encoder->base.crtc != &crtc->base)
8831                                 continue;
8832
8833                         intel_connector_break_all_links(connector);
8834                 }
8835
8836                 WARN_ON(crtc->active);
8837                 crtc->base.enabled = false;
8838         }
8839
8840         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8841             crtc->pipe == PIPE_A && !crtc->active) {
8842                 /* BIOS forgot to enable pipe A, this mostly happens after
8843                  * resume. Force-enable the pipe to fix this, the update_dpms
8844                  * call below we restore the pipe to the right state, but leave
8845                  * the required bits on. */
8846                 intel_enable_pipe_a(dev);
8847         }
8848
8849         /* Adjust the state of the output pipe according to whether we
8850          * have active connectors/encoders. */
8851         intel_crtc_update_dpms(&crtc->base);
8852
8853         if (crtc->active != crtc->base.enabled) {
8854                 struct intel_encoder *encoder;
8855
8856                 /* This can happen either due to bugs in the get_hw_state
8857                  * functions or because the pipe is force-enabled due to the
8858                  * pipe A quirk. */
8859                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8860                               crtc->base.base.id,
8861                               crtc->base.enabled ? "enabled" : "disabled",
8862                               crtc->active ? "enabled" : "disabled");
8863
8864                 crtc->base.enabled = crtc->active;
8865
8866                 /* Because we only establish the connector -> encoder ->
8867                  * crtc links if something is active, this means the
8868                  * crtc is now deactivated. Break the links. connector
8869                  * -> encoder links are only establish when things are
8870                  *  actually up, hence no need to break them. */
8871                 WARN_ON(crtc->active);
8872
8873                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8874                         WARN_ON(encoder->connectors_active);
8875                         encoder->base.crtc = NULL;
8876                 }
8877         }
8878 }
8879
8880 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8881 {
8882         struct intel_connector *connector;
8883         struct drm_device *dev = encoder->base.dev;
8884
8885         /* We need to check both for a crtc link (meaning that the
8886          * encoder is active and trying to read from a pipe) and the
8887          * pipe itself being active. */
8888         bool has_active_crtc = encoder->base.crtc &&
8889                 to_intel_crtc(encoder->base.crtc)->active;
8890
8891         if (encoder->connectors_active && !has_active_crtc) {
8892                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8893                               encoder->base.base.id,
8894                               drm_get_encoder_name(&encoder->base));
8895
8896                 /* Connector is active, but has no active pipe. This is
8897                  * fallout from our resume register restoring. Disable
8898                  * the encoder manually again. */
8899                 if (encoder->base.crtc) {
8900                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8901                                       encoder->base.base.id,
8902                                       drm_get_encoder_name(&encoder->base));
8903                         encoder->disable(encoder);
8904                 }
8905
8906                 /* Inconsistent output/port/pipe state happens presumably due to
8907                  * a bug in one of the get_hw_state functions. Or someplace else
8908                  * in our code, like the register restore mess on resume. Clamp
8909                  * things to off as a safer default. */
8910                 list_for_each_entry(connector,
8911                                     &dev->mode_config.connector_list,
8912                                     base.head) {
8913                         if (connector->encoder != encoder)
8914                                 continue;
8915
8916                         intel_connector_break_all_links(connector);
8917                 }
8918         }
8919         /* Enabled encoders without active connectors will be fixed in
8920          * the crtc fixup. */
8921 }
8922
8923 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8924  * and i915 state tracking structures. */
8925 void intel_modeset_setup_hw_state(struct drm_device *dev)
8926 {
8927         struct drm_i915_private *dev_priv = dev->dev_private;
8928         enum pipe pipe;
8929         u32 tmp;
8930         struct intel_crtc *crtc;
8931         struct intel_encoder *encoder;
8932         struct intel_connector *connector;
8933
8934         if (IS_HASWELL(dev)) {
8935                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8936
8937                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8938                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8939                         case TRANS_DDI_EDP_INPUT_A_ON:
8940                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8941                                 pipe = PIPE_A;
8942                                 break;
8943                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8944                                 pipe = PIPE_B;
8945                                 break;
8946                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8947                                 pipe = PIPE_C;
8948                                 break;
8949                         }
8950
8951                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8952                         crtc->cpu_transcoder = TRANSCODER_EDP;
8953
8954                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8955                                       pipe_name(pipe));
8956                 }
8957         }
8958
8959         for_each_pipe(pipe) {
8960                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8961
8962                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8963                 if (tmp & PIPECONF_ENABLE)
8964                         crtc->active = true;
8965                 else
8966                         crtc->active = false;
8967
8968                 crtc->base.enabled = crtc->active;
8969
8970                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8971                               crtc->base.base.id,
8972                               crtc->active ? "enabled" : "disabled");
8973         }
8974
8975         if (IS_HASWELL(dev))
8976                 intel_ddi_setup_hw_pll_state(dev);
8977
8978         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8979                             base.head) {
8980                 pipe = 0;
8981
8982                 if (encoder->get_hw_state(encoder, &pipe)) {
8983                         encoder->base.crtc =
8984                                 dev_priv->pipe_to_crtc_mapping[pipe];
8985                 } else {
8986                         encoder->base.crtc = NULL;
8987                 }
8988
8989                 encoder->connectors_active = false;
8990                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8991                               encoder->base.base.id,
8992                               drm_get_encoder_name(&encoder->base),
8993                               encoder->base.crtc ? "enabled" : "disabled",
8994                               pipe);
8995         }
8996
8997         list_for_each_entry(connector, &dev->mode_config.connector_list,
8998                             base.head) {
8999                 if (connector->get_hw_state(connector)) {
9000                         connector->base.dpms = DRM_MODE_DPMS_ON;
9001                         connector->encoder->connectors_active = true;
9002                         connector->base.encoder = &connector->encoder->base;
9003                 } else {
9004                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9005                         connector->base.encoder = NULL;
9006                 }
9007                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9008                               connector->base.base.id,
9009                               drm_get_connector_name(&connector->base),
9010                               connector->base.encoder ? "enabled" : "disabled");
9011         }
9012
9013         /* HW state is read out, now we need to sanitize this mess. */
9014         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9015                             base.head) {
9016                 intel_sanitize_encoder(encoder);
9017         }
9018
9019         for_each_pipe(pipe) {
9020                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9021                 intel_sanitize_crtc(crtc);
9022         }
9023
9024         intel_modeset_update_staged_output_state(dev);
9025
9026         intel_modeset_check_state(dev);
9027
9028         drm_mode_config_reset(dev);
9029 }
9030
9031 void intel_modeset_gem_init(struct drm_device *dev)
9032 {
9033         intel_modeset_init_hw(dev);
9034
9035         intel_setup_overlay(dev);
9036
9037         intel_modeset_setup_hw_state(dev);
9038 }
9039
9040 void intel_modeset_cleanup(struct drm_device *dev)
9041 {
9042         struct drm_i915_private *dev_priv = dev->dev_private;
9043         struct drm_crtc *crtc;
9044         struct intel_crtc *intel_crtc;
9045
9046         drm_kms_helper_poll_fini(dev);
9047         mutex_lock(&dev->struct_mutex);
9048
9049         intel_unregister_dsm_handler();
9050
9051
9052         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9053                 /* Skip inactive CRTCs */
9054                 if (!crtc->fb)
9055                         continue;
9056
9057                 intel_crtc = to_intel_crtc(crtc);
9058                 intel_increase_pllclock(crtc);
9059         }
9060
9061         intel_disable_fbc(dev);
9062
9063         intel_disable_gt_powersave(dev);
9064
9065         ironlake_teardown_rc6(dev);
9066
9067         if (IS_VALLEYVIEW(dev))
9068                 vlv_init_dpio(dev);
9069
9070         mutex_unlock(&dev->struct_mutex);
9071
9072         /* Disable the irq before mode object teardown, for the irq might
9073          * enqueue unpin/hotplug work. */
9074         drm_irq_uninstall(dev);
9075         cancel_work_sync(&dev_priv->hotplug_work);
9076         cancel_work_sync(&dev_priv->rps.work);
9077
9078         /* flush any delayed tasks or pending work */
9079         flush_scheduled_work();
9080
9081         drm_mode_config_cleanup(dev);
9082 }
9083
9084 /*
9085  * Return which encoder is currently attached for connector.
9086  */
9087 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9088 {
9089         return &intel_attached_encoder(connector)->base;
9090 }
9091
9092 void intel_connector_attach_encoder(struct intel_connector *connector,
9093                                     struct intel_encoder *encoder)
9094 {
9095         connector->encoder = encoder;
9096         drm_mode_connector_attach_encoder(&connector->base,
9097                                           &encoder->base);
9098 }
9099
9100 /*
9101  * set vga decode state - true == enable VGA decode
9102  */
9103 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9104 {
9105         struct drm_i915_private *dev_priv = dev->dev_private;
9106         u16 gmch_ctrl;
9107
9108         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9109         if (state)
9110                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9111         else
9112                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9113         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9114         return 0;
9115 }
9116
9117 #ifdef CONFIG_DEBUG_FS
9118 #include <linux/seq_file.h>
9119
9120 struct intel_display_error_state {
9121         struct intel_cursor_error_state {
9122                 u32 control;
9123                 u32 position;
9124                 u32 base;
9125                 u32 size;
9126         } cursor[I915_MAX_PIPES];
9127
9128         struct intel_pipe_error_state {
9129                 u32 conf;
9130                 u32 source;
9131
9132                 u32 htotal;
9133                 u32 hblank;
9134                 u32 hsync;
9135                 u32 vtotal;
9136                 u32 vblank;
9137                 u32 vsync;
9138         } pipe[I915_MAX_PIPES];
9139
9140         struct intel_plane_error_state {
9141                 u32 control;
9142                 u32 stride;
9143                 u32 size;
9144                 u32 pos;
9145                 u32 addr;
9146                 u32 surface;
9147                 u32 tile_offset;
9148         } plane[I915_MAX_PIPES];
9149 };
9150
9151 struct intel_display_error_state *
9152 intel_display_capture_error_state(struct drm_device *dev)
9153 {
9154         drm_i915_private_t *dev_priv = dev->dev_private;
9155         struct intel_display_error_state *error;
9156         enum transcoder cpu_transcoder;
9157         int i;
9158
9159         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9160         if (error == NULL)
9161                 return NULL;
9162
9163         for_each_pipe(i) {
9164                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9165
9166                 error->cursor[i].control = I915_READ(CURCNTR(i));
9167                 error->cursor[i].position = I915_READ(CURPOS(i));
9168                 error->cursor[i].base = I915_READ(CURBASE(i));
9169
9170                 error->plane[i].control = I915_READ(DSPCNTR(i));
9171                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9172                 error->plane[i].size = I915_READ(DSPSIZE(i));
9173                 error->plane[i].pos = I915_READ(DSPPOS(i));
9174                 error->plane[i].addr = I915_READ(DSPADDR(i));
9175                 if (INTEL_INFO(dev)->gen >= 4) {
9176                         error->plane[i].surface = I915_READ(DSPSURF(i));
9177                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9178                 }
9179
9180                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9181                 error->pipe[i].source = I915_READ(PIPESRC(i));
9182                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9183                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9184                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9185                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9186                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9187                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9188         }
9189
9190         return error;
9191 }
9192
9193 void
9194 intel_display_print_error_state(struct seq_file *m,
9195                                 struct drm_device *dev,
9196                                 struct intel_display_error_state *error)
9197 {
9198         drm_i915_private_t *dev_priv = dev->dev_private;
9199         int i;
9200
9201         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9202         for_each_pipe(i) {
9203                 seq_printf(m, "Pipe [%d]:\n", i);
9204                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9205                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9206                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9207                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9208                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9209                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9210                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9211                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9212
9213                 seq_printf(m, "Plane [%d]:\n", i);
9214                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9215                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9216                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9217                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9218                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9219                 if (INTEL_INFO(dev)->gen >= 4) {
9220                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9221                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9222                 }
9223
9224                 seq_printf(m, "Cursor [%d]:\n", i);
9225                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9226                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9227                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9228         }
9229 }
9230 #endif