]> Pileus Git - ~andy/linux/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: fix Haswell FDI link training code
[~andy/linux] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                         int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84         struct drm_i915_private *dev_priv = dev->dev_private;
85
86         WARN_ON(!HAS_PCH_SPLIT(dev));
87
88         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93                     int target, int refclk, intel_clock_t *match_clock,
94                     intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                         int target, int refclk, intel_clock_t *match_clock,
98                         intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102                       int target, int refclk, intel_clock_t *match_clock,
103                       intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106                            int target, int refclk, intel_clock_t *match_clock,
107                            intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111                         int target, int refclk, intel_clock_t *match_clock,
112                         intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117         if (IS_GEN5(dev)) {
118                 struct drm_i915_private *dev_priv = dev->dev_private;
119                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120         } else
121                 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125         .dot = { .min = 25000, .max = 350000 },
126         .vco = { .min = 930000, .max = 1400000 },
127         .n = { .min = 3, .max = 16 },
128         .m = { .min = 96, .max = 140 },
129         .m1 = { .min = 18, .max = 26 },
130         .m2 = { .min = 6, .max = 16 },
131         .p = { .min = 4, .max = 128 },
132         .p1 = { .min = 2, .max = 33 },
133         .p2 = { .dot_limit = 165000,
134                 .p2_slow = 4, .p2_fast = 2 },
135         .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139         .dot = { .min = 25000, .max = 350000 },
140         .vco = { .min = 930000, .max = 1400000 },
141         .n = { .min = 3, .max = 16 },
142         .m = { .min = 96, .max = 140 },
143         .m1 = { .min = 18, .max = 26 },
144         .m2 = { .min = 6, .max = 16 },
145         .p = { .min = 4, .max = 128 },
146         .p1 = { .min = 1, .max = 6 },
147         .p2 = { .dot_limit = 165000,
148                 .p2_slow = 14, .p2_fast = 7 },
149         .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153         .dot = { .min = 20000, .max = 400000 },
154         .vco = { .min = 1400000, .max = 2800000 },
155         .n = { .min = 1, .max = 6 },
156         .m = { .min = 70, .max = 120 },
157         .m1 = { .min = 10, .max = 22 },
158         .m2 = { .min = 5, .max = 9 },
159         .p = { .min = 5, .max = 80 },
160         .p1 = { .min = 1, .max = 8 },
161         .p2 = { .dot_limit = 200000,
162                 .p2_slow = 10, .p2_fast = 5 },
163         .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167         .dot = { .min = 20000, .max = 400000 },
168         .vco = { .min = 1400000, .max = 2800000 },
169         .n = { .min = 1, .max = 6 },
170         .m = { .min = 70, .max = 120 },
171         .m1 = { .min = 10, .max = 22 },
172         .m2 = { .min = 5, .max = 9 },
173         .p = { .min = 7, .max = 98 },
174         .p1 = { .min = 1, .max = 8 },
175         .p2 = { .dot_limit = 112000,
176                 .p2_slow = 14, .p2_fast = 7 },
177         .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182         .dot = { .min = 25000, .max = 270000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 17, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 10, .max = 30 },
189         .p1 = { .min = 1, .max = 3},
190         .p2 = { .dot_limit = 270000,
191                 .p2_slow = 10,
192                 .p2_fast = 10
193         },
194         .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198         .dot = { .min = 22000, .max = 400000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 16, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 5, .max = 80 },
205         .p1 = { .min = 1, .max = 8},
206         .p2 = { .dot_limit = 165000,
207                 .p2_slow = 10, .p2_fast = 5 },
208         .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212         .dot = { .min = 20000, .max = 115000 },
213         .vco = { .min = 1750000, .max = 3500000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 28, .max = 112 },
219         .p1 = { .min = 2, .max = 8 },
220         .p2 = { .dot_limit = 0,
221                 .p2_slow = 14, .p2_fast = 14
222         },
223         .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227         .dot = { .min = 80000, .max = 224000 },
228         .vco = { .min = 1750000, .max = 3500000 },
229         .n = { .min = 1, .max = 3 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 17, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 14, .max = 42 },
234         .p1 = { .min = 2, .max = 6 },
235         .p2 = { .dot_limit = 0,
236                 .p2_slow = 7, .p2_fast = 7
237         },
238         .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242         .dot = { .min = 161670, .max = 227000 },
243         .vco = { .min = 1750000, .max = 3500000},
244         .n = { .min = 1, .max = 2 },
245         .m = { .min = 97, .max = 108 },
246         .m1 = { .min = 0x10, .max = 0x12 },
247         .m2 = { .min = 0x05, .max = 0x06 },
248         .p = { .min = 10, .max = 20 },
249         .p1 = { .min = 1, .max = 2},
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 10, .p2_fast = 10 },
252         .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256         .dot = { .min = 20000, .max = 400000},
257         .vco = { .min = 1700000, .max = 3500000 },
258         /* Pineview's Ncounter is a ring counter */
259         .n = { .min = 3, .max = 6 },
260         .m = { .min = 2, .max = 256 },
261         /* Pineview only has one combined m divider, which we treat as m2. */
262         .m1 = { .min = 0, .max = 0 },
263         .m2 = { .min = 0, .max = 254 },
264         .p = { .min = 5, .max = 80 },
265         .p1 = { .min = 1, .max = 8 },
266         .p2 = { .dot_limit = 200000,
267                 .p2_slow = 10, .p2_fast = 5 },
268         .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272         .dot = { .min = 20000, .max = 400000 },
273         .vco = { .min = 1700000, .max = 3500000 },
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 7, .max = 112 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 112000,
281                 .p2_slow = 14, .p2_fast = 14 },
282         .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286  *
287  * We calculate clock using (register_value + 2) for N/M1/M2, so here
288  * the range value for them is (actual_value - 2).
289  */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 5 },
294         .m = { .min = 79, .max = 127 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 5, .max = 80 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 10, .p2_fast = 5 },
301         .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305         .dot = { .min = 25000, .max = 350000 },
306         .vco = { .min = 1760000, .max = 3510000 },
307         .n = { .min = 1, .max = 3 },
308         .m = { .min = 79, .max = 118 },
309         .m1 = { .min = 12, .max = 22 },
310         .m2 = { .min = 5, .max = 9 },
311         .p = { .min = 28, .max = 112 },
312         .p1 = { .min = 2, .max = 8 },
313         .p2 = { .dot_limit = 225000,
314                 .p2_slow = 14, .p2_fast = 14 },
315         .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 3 },
322         .m = { .min = 79, .max = 127 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 14, .max = 56 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 7, .p2_fast = 7 },
329         .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334         .dot = { .min = 25000, .max = 350000 },
335         .vco = { .min = 1760000, .max = 3510000 },
336         .n = { .min = 1, .max = 2 },
337         .m = { .min = 79, .max = 126 },
338         .m1 = { .min = 12, .max = 22 },
339         .m2 = { .min = 5, .max = 9 },
340         .p = { .min = 28, .max = 112 },
341         .p1 = { .min = 2, .max = 8 },
342         .p2 = { .dot_limit = 225000,
343                 .p2_slow = 14, .p2_fast = 14 },
344         .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348         .dot = { .min = 25000, .max = 350000 },
349         .vco = { .min = 1760000, .max = 3510000 },
350         .n = { .min = 1, .max = 3 },
351         .m = { .min = 79, .max = 126 },
352         .m1 = { .min = 12, .max = 22 },
353         .m2 = { .min = 5, .max = 9 },
354         .p = { .min = 14, .max = 42 },
355         .p1 = { .min = 2, .max = 6 },
356         .p2 = { .dot_limit = 225000,
357                 .p2_slow = 7, .p2_fast = 7 },
358         .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362         .dot = { .min = 25000, .max = 350000 },
363         .vco = { .min = 1760000, .max = 3510000},
364         .n = { .min = 1, .max = 2 },
365         .m = { .min = 81, .max = 90 },
366         .m1 = { .min = 12, .max = 22 },
367         .m2 = { .min = 5, .max = 9 },
368         .p = { .min = 10, .max = 20 },
369         .p1 = { .min = 1, .max = 2},
370         .p2 = { .dot_limit = 0,
371                 .p2_slow = 10, .p2_fast = 10 },
372         .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376         .dot = { .min = 25000, .max = 270000 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m = { .min = 22, .max = 450 }, /* guess */
380         .m1 = { .min = 2, .max = 3 },
381         .m2 = { .min = 11, .max = 156 },
382         .p = { .min = 10, .max = 30 },
383         .p1 = { .min = 2, .max = 3 },
384         .p2 = { .dot_limit = 270000,
385                 .p2_slow = 2, .p2_fast = 20 },
386         .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390         .dot = { .min = 20000, .max = 165000 },
391         .vco = { .min = 4000000, .max = 5994000},
392         .n = { .min = 1, .max = 7 },
393         .m = { .min = 60, .max = 300 }, /* guess */
394         .m1 = { .min = 2, .max = 3 },
395         .m2 = { .min = 11, .max = 156 },
396         .p = { .min = 10, .max = 30 },
397         .p1 = { .min = 2, .max = 3 },
398         .p2 = { .dot_limit = 270000,
399                 .p2_slow = 2, .p2_fast = 20 },
400         .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404         .dot = { .min = 25000, .max = 270000 },
405         .vco = { .min = 4000000, .max = 6000000 },
406         .n = { .min = 1, .max = 7 },
407         .m = { .min = 22, .max = 450 },
408         .m1 = { .min = 2, .max = 3 },
409         .m2 = { .min = 11, .max = 156 },
410         .p = { .min = 10, .max = 30 },
411         .p1 = { .min = 2, .max = 3 },
412         .p2 = { .dot_limit = 270000,
413                 .p2_slow = 2, .p2_fast = 20 },
414         .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419         unsigned long flags;
420         u32 val = 0;
421
422         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO idle wait timed out\n");
425                 goto out_unlock;
426         }
427
428         I915_WRITE(DPIO_REG, reg);
429         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430                    DPIO_BYTE);
431         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432                 DRM_ERROR("DPIO read wait timed out\n");
433                 goto out_unlock;
434         }
435         val = I915_READ(DPIO_DATA);
436
437 out_unlock:
438         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439         return val;
440 }
441
442 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443                              u32 val)
444 {
445         unsigned long flags;
446
447         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449                 DRM_ERROR("DPIO idle wait timed out\n");
450                 goto out_unlock;
451         }
452
453         I915_WRITE(DPIO_DATA, val);
454         I915_WRITE(DPIO_REG, reg);
455         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456                    DPIO_BYTE);
457         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458                 DRM_ERROR("DPIO write wait timed out\n");
459
460 out_unlock:
461        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462 }
463
464 static void vlv_init_dpio(struct drm_device *dev)
465 {
466         struct drm_i915_private *dev_priv = dev->dev_private;
467
468         /* Reset the DPIO config */
469         I915_WRITE(DPIO_CTL, 0);
470         POSTING_READ(DPIO_CTL);
471         I915_WRITE(DPIO_CTL, 1);
472         POSTING_READ(DPIO_CTL);
473 }
474
475 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
476 {
477         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
478         return 1;
479 }
480
481 static const struct dmi_system_id intel_dual_link_lvds[] = {
482         {
483                 .callback = intel_dual_link_lvds_callback,
484                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
485                 .matches = {
486                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
487                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
488                 },
489         },
490         { }     /* terminating entry */
491 };
492
493 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
494                               unsigned int reg)
495 {
496         unsigned int val;
497
498         /* use the module option value if specified */
499         if (i915_lvds_channel_mode > 0)
500                 return i915_lvds_channel_mode == 2;
501
502         if (dmi_check_system(intel_dual_link_lvds))
503                 return true;
504
505         if (dev_priv->lvds_val)
506                 val = dev_priv->lvds_val;
507         else {
508                 /* BIOS should set the proper LVDS register value at boot, but
509                  * in reality, it doesn't set the value when the lid is closed;
510                  * we need to check "the value to be set" in VBT when LVDS
511                  * register is uninitialized.
512                  */
513                 val = I915_READ(reg);
514                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
515                         val = dev_priv->bios_lvds_val;
516                 dev_priv->lvds_val = val;
517         }
518         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
519 }
520
521 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
522                                                 int refclk)
523 {
524         struct drm_device *dev = crtc->dev;
525         struct drm_i915_private *dev_priv = dev->dev_private;
526         const intel_limit_t *limit;
527
528         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
529                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
530                         /* LVDS dual channel */
531                         if (refclk == 100000)
532                                 limit = &intel_limits_ironlake_dual_lvds_100m;
533                         else
534                                 limit = &intel_limits_ironlake_dual_lvds;
535                 } else {
536                         if (refclk == 100000)
537                                 limit = &intel_limits_ironlake_single_lvds_100m;
538                         else
539                                 limit = &intel_limits_ironlake_single_lvds;
540                 }
541         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
542                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
543                 limit = &intel_limits_ironlake_display_port;
544         else
545                 limit = &intel_limits_ironlake_dac;
546
547         return limit;
548 }
549
550 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
551 {
552         struct drm_device *dev = crtc->dev;
553         struct drm_i915_private *dev_priv = dev->dev_private;
554         const intel_limit_t *limit;
555
556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557                 if (is_dual_link_lvds(dev_priv, LVDS))
558                         /* LVDS with dual channel */
559                         limit = &intel_limits_g4x_dual_channel_lvds;
560                 else
561                         /* LVDS with dual channel */
562                         limit = &intel_limits_g4x_single_channel_lvds;
563         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
564                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
565                 limit = &intel_limits_g4x_hdmi;
566         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
567                 limit = &intel_limits_g4x_sdvo;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
569                 limit = &intel_limits_g4x_display_port;
570         } else /* The option is for other outputs */
571                 limit = &intel_limits_i9xx_sdvo;
572
573         return limit;
574 }
575
576 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
577 {
578         struct drm_device *dev = crtc->dev;
579         const intel_limit_t *limit;
580
581         if (HAS_PCH_SPLIT(dev))
582                 limit = intel_ironlake_limit(crtc, refclk);
583         else if (IS_G4X(dev)) {
584                 limit = intel_g4x_limit(crtc);
585         } else if (IS_PINEVIEW(dev)) {
586                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
587                         limit = &intel_limits_pineview_lvds;
588                 else
589                         limit = &intel_limits_pineview_sdvo;
590         } else if (IS_VALLEYVIEW(dev)) {
591                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
592                         limit = &intel_limits_vlv_dac;
593                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
594                         limit = &intel_limits_vlv_hdmi;
595                 else
596                         limit = &intel_limits_vlv_dp;
597         } else if (!IS_GEN2(dev)) {
598                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
599                         limit = &intel_limits_i9xx_lvds;
600                 else
601                         limit = &intel_limits_i9xx_sdvo;
602         } else {
603                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
604                         limit = &intel_limits_i8xx_lvds;
605                 else
606                         limit = &intel_limits_i8xx_dvo;
607         }
608         return limit;
609 }
610
611 /* m1 is reserved as 0 in Pineview, n is a ring counter */
612 static void pineview_clock(int refclk, intel_clock_t *clock)
613 {
614         clock->m = clock->m2 + 2;
615         clock->p = clock->p1 * clock->p2;
616         clock->vco = refclk * clock->m / clock->n;
617         clock->dot = clock->vco / clock->p;
618 }
619
620 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
621 {
622         if (IS_PINEVIEW(dev)) {
623                 pineview_clock(refclk, clock);
624                 return;
625         }
626         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
627         clock->p = clock->p1 * clock->p2;
628         clock->vco = refclk * clock->m / (clock->n + 2);
629         clock->dot = clock->vco / clock->p;
630 }
631
632 /**
633  * Returns whether any output on the specified pipe is of the specified type
634  */
635 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
636 {
637         struct drm_device *dev = crtc->dev;
638         struct intel_encoder *encoder;
639
640         for_each_encoder_on_crtc(dev, crtc, encoder)
641                 if (encoder->type == type)
642                         return true;
643
644         return false;
645 }
646
647 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
648 /**
649  * Returns whether the given set of divisors are valid for a given refclk with
650  * the given connectors.
651  */
652
653 static bool intel_PLL_is_valid(struct drm_device *dev,
654                                const intel_limit_t *limit,
655                                const intel_clock_t *clock)
656 {
657         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
658                 INTELPllInvalid("p1 out of range\n");
659         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
660                 INTELPllInvalid("p out of range\n");
661         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
662                 INTELPllInvalid("m2 out of range\n");
663         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
664                 INTELPllInvalid("m1 out of range\n");
665         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
666                 INTELPllInvalid("m1 <= m2\n");
667         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
668                 INTELPllInvalid("m out of range\n");
669         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
670                 INTELPllInvalid("n out of range\n");
671         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
672                 INTELPllInvalid("vco out of range\n");
673         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
674          * connector, etc., rather than just a single range.
675          */
676         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
677                 INTELPllInvalid("dot out of range\n");
678
679         return true;
680 }
681
682 static bool
683 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
684                     int target, int refclk, intel_clock_t *match_clock,
685                     intel_clock_t *best_clock)
686
687 {
688         struct drm_device *dev = crtc->dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         intel_clock_t clock;
691         int err = target;
692
693         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
694             (I915_READ(LVDS)) != 0) {
695                 /*
696                  * For LVDS, if the panel is on, just rely on its current
697                  * settings for dual-channel.  We haven't figured out how to
698                  * reliably set up different single/dual channel state, if we
699                  * even can.
700                  */
701                 if (is_dual_link_lvds(dev_priv, LVDS))
702                         clock.p2 = limit->p2.p2_fast;
703                 else
704                         clock.p2 = limit->p2.p2_slow;
705         } else {
706                 if (target < limit->p2.dot_limit)
707                         clock.p2 = limit->p2.p2_slow;
708                 else
709                         clock.p2 = limit->p2.p2_fast;
710         }
711
712         memset(best_clock, 0, sizeof(*best_clock));
713
714         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715              clock.m1++) {
716                 for (clock.m2 = limit->m2.min;
717                      clock.m2 <= limit->m2.max; clock.m2++) {
718                         /* m1 is always 0 in Pineview */
719                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
720                                 break;
721                         for (clock.n = limit->n.min;
722                              clock.n <= limit->n.max; clock.n++) {
723                                 for (clock.p1 = limit->p1.min;
724                                         clock.p1 <= limit->p1.max; clock.p1++) {
725                                         int this_err;
726
727                                         intel_clock(dev, refclk, &clock);
728                                         if (!intel_PLL_is_valid(dev, limit,
729                                                                 &clock))
730                                                 continue;
731                                         if (match_clock &&
732                                             clock.p != match_clock->p)
733                                                 continue;
734
735                                         this_err = abs(clock.dot - target);
736                                         if (this_err < err) {
737                                                 *best_clock = clock;
738                                                 err = this_err;
739                                         }
740                                 }
741                         }
742                 }
743         }
744
745         return (err != target);
746 }
747
748 static bool
749 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
750                         int target, int refclk, intel_clock_t *match_clock,
751                         intel_clock_t *best_clock)
752 {
753         struct drm_device *dev = crtc->dev;
754         struct drm_i915_private *dev_priv = dev->dev_private;
755         intel_clock_t clock;
756         int max_n;
757         bool found;
758         /* approximately equals target * 0.00585 */
759         int err_most = (target >> 8) + (target >> 9);
760         found = false;
761
762         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
763                 int lvds_reg;
764
765                 if (HAS_PCH_SPLIT(dev))
766                         lvds_reg = PCH_LVDS;
767                 else
768                         lvds_reg = LVDS;
769                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
770                     LVDS_CLKB_POWER_UP)
771                         clock.p2 = limit->p2.p2_fast;
772                 else
773                         clock.p2 = limit->p2.p2_slow;
774         } else {
775                 if (target < limit->p2.dot_limit)
776                         clock.p2 = limit->p2.p2_slow;
777                 else
778                         clock.p2 = limit->p2.p2_fast;
779         }
780
781         memset(best_clock, 0, sizeof(*best_clock));
782         max_n = limit->n.max;
783         /* based on hardware requirement, prefer smaller n to precision */
784         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
785                 /* based on hardware requirement, prefere larger m1,m2 */
786                 for (clock.m1 = limit->m1.max;
787                      clock.m1 >= limit->m1.min; clock.m1--) {
788                         for (clock.m2 = limit->m2.max;
789                              clock.m2 >= limit->m2.min; clock.m2--) {
790                                 for (clock.p1 = limit->p1.max;
791                                      clock.p1 >= limit->p1.min; clock.p1--) {
792                                         int this_err;
793
794                                         intel_clock(dev, refclk, &clock);
795                                         if (!intel_PLL_is_valid(dev, limit,
796                                                                 &clock))
797                                                 continue;
798                                         if (match_clock &&
799                                             clock.p != match_clock->p)
800                                                 continue;
801
802                                         this_err = abs(clock.dot - target);
803                                         if (this_err < err_most) {
804                                                 *best_clock = clock;
805                                                 err_most = this_err;
806                                                 max_n = clock.n;
807                                                 found = true;
808                                         }
809                                 }
810                         }
811                 }
812         }
813         return found;
814 }
815
816 static bool
817 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
818                            int target, int refclk, intel_clock_t *match_clock,
819                            intel_clock_t *best_clock)
820 {
821         struct drm_device *dev = crtc->dev;
822         intel_clock_t clock;
823
824         if (target < 200000) {
825                 clock.n = 1;
826                 clock.p1 = 2;
827                 clock.p2 = 10;
828                 clock.m1 = 12;
829                 clock.m2 = 9;
830         } else {
831                 clock.n = 2;
832                 clock.p1 = 1;
833                 clock.p2 = 10;
834                 clock.m1 = 14;
835                 clock.m2 = 8;
836         }
837         intel_clock(dev, refclk, &clock);
838         memcpy(best_clock, &clock, sizeof(intel_clock_t));
839         return true;
840 }
841
842 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
843 static bool
844 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
845                       int target, int refclk, intel_clock_t *match_clock,
846                       intel_clock_t *best_clock)
847 {
848         intel_clock_t clock;
849         if (target < 200000) {
850                 clock.p1 = 2;
851                 clock.p2 = 10;
852                 clock.n = 2;
853                 clock.m1 = 23;
854                 clock.m2 = 8;
855         } else {
856                 clock.p1 = 1;
857                 clock.p2 = 10;
858                 clock.n = 1;
859                 clock.m1 = 14;
860                 clock.m2 = 2;
861         }
862         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
863         clock.p = (clock.p1 * clock.p2);
864         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
865         clock.vco = 0;
866         memcpy(best_clock, &clock, sizeof(intel_clock_t));
867         return true;
868 }
869 static bool
870 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
871                         int target, int refclk, intel_clock_t *match_clock,
872                         intel_clock_t *best_clock)
873 {
874         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
875         u32 m, n, fastclk;
876         u32 updrate, minupdate, fracbits, p;
877         unsigned long bestppm, ppm, absppm;
878         int dotclk, flag;
879
880         flag = 0;
881         dotclk = target * 1000;
882         bestppm = 1000000;
883         ppm = absppm = 0;
884         fastclk = dotclk / (2*100);
885         updrate = 0;
886         minupdate = 19200;
887         fracbits = 1;
888         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
889         bestm1 = bestm2 = bestp1 = bestp2 = 0;
890
891         /* based on hardware requirement, prefer smaller n to precision */
892         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
893                 updrate = refclk / n;
894                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
895                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
896                                 if (p2 > 10)
897                                         p2 = p2 - 1;
898                                 p = p1 * p2;
899                                 /* based on hardware requirement, prefer bigger m1,m2 values */
900                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
901                                         m2 = (((2*(fastclk * p * n / m1 )) +
902                                                refclk) / (2*refclk));
903                                         m = m1 * m2;
904                                         vco = updrate * m;
905                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
906                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
907                                                 absppm = (ppm > 0) ? ppm : (-ppm);
908                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
909                                                         bestppm = 0;
910                                                         flag = 1;
911                                                 }
912                                                 if (absppm < bestppm - 10) {
913                                                         bestppm = absppm;
914                                                         flag = 1;
915                                                 }
916                                                 if (flag) {
917                                                         bestn = n;
918                                                         bestm1 = m1;
919                                                         bestm2 = m2;
920                                                         bestp1 = p1;
921                                                         bestp2 = p2;
922                                                         flag = 0;
923                                                 }
924                                         }
925                                 }
926                         }
927                 }
928         }
929         best_clock->n = bestn;
930         best_clock->m1 = bestm1;
931         best_clock->m2 = bestm2;
932         best_clock->p1 = bestp1;
933         best_clock->p2 = bestp2;
934
935         return true;
936 }
937
938 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
939                                              enum pipe pipe)
940 {
941         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
943
944         return intel_crtc->cpu_transcoder;
945 }
946
947 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
948 {
949         struct drm_i915_private *dev_priv = dev->dev_private;
950         u32 frame, frame_reg = PIPEFRAME(pipe);
951
952         frame = I915_READ(frame_reg);
953
954         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
955                 DRM_DEBUG_KMS("vblank wait timed out\n");
956 }
957
958 /**
959  * intel_wait_for_vblank - wait for vblank on a given pipe
960  * @dev: drm device
961  * @pipe: pipe to wait for
962  *
963  * Wait for vblank to occur on a given pipe.  Needed for various bits of
964  * mode setting code.
965  */
966 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
967 {
968         struct drm_i915_private *dev_priv = dev->dev_private;
969         int pipestat_reg = PIPESTAT(pipe);
970
971         if (INTEL_INFO(dev)->gen >= 5) {
972                 ironlake_wait_for_vblank(dev, pipe);
973                 return;
974         }
975
976         /* Clear existing vblank status. Note this will clear any other
977          * sticky status fields as well.
978          *
979          * This races with i915_driver_irq_handler() with the result
980          * that either function could miss a vblank event.  Here it is not
981          * fatal, as we will either wait upon the next vblank interrupt or
982          * timeout.  Generally speaking intel_wait_for_vblank() is only
983          * called during modeset at which time the GPU should be idle and
984          * should *not* be performing page flips and thus not waiting on
985          * vblanks...
986          * Currently, the result of us stealing a vblank from the irq
987          * handler is that a single frame will be skipped during swapbuffers.
988          */
989         I915_WRITE(pipestat_reg,
990                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
991
992         /* Wait for vblank interrupt bit to set */
993         if (wait_for(I915_READ(pipestat_reg) &
994                      PIPE_VBLANK_INTERRUPT_STATUS,
995                      50))
996                 DRM_DEBUG_KMS("vblank wait timed out\n");
997 }
998
999 /*
1000  * intel_wait_for_pipe_off - wait for pipe to turn off
1001  * @dev: drm device
1002  * @pipe: pipe to wait for
1003  *
1004  * After disabling a pipe, we can't wait for vblank in the usual way,
1005  * spinning on the vblank interrupt status bit, since we won't actually
1006  * see an interrupt when the pipe is disabled.
1007  *
1008  * On Gen4 and above:
1009  *   wait for the pipe register state bit to turn off
1010  *
1011  * Otherwise:
1012  *   wait for the display line value to settle (it usually
1013  *   ends up stopping at the start of the next frame).
1014  *
1015  */
1016 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1020                                                                       pipe);
1021
1022         if (INTEL_INFO(dev)->gen >= 4) {
1023                 int reg = PIPECONF(cpu_transcoder);
1024
1025                 /* Wait for the Pipe State to go off */
1026                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1027                              100))
1028                         WARN(1, "pipe_off wait timed out\n");
1029         } else {
1030                 u32 last_line, line_mask;
1031                 int reg = PIPEDSL(pipe);
1032                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033
1034                 if (IS_GEN2(dev))
1035                         line_mask = DSL_LINEMASK_GEN2;
1036                 else
1037                         line_mask = DSL_LINEMASK_GEN3;
1038
1039                 /* Wait for the display line to settle */
1040                 do {
1041                         last_line = I915_READ(reg) & line_mask;
1042                         mdelay(5);
1043                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1044                          time_after(timeout, jiffies));
1045                 if (time_after(jiffies, timeout))
1046                         WARN(1, "pipe_off wait timed out\n");
1047         }
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052         return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 static void assert_pll(struct drm_i915_private *dev_priv,
1057                        enum pipe pipe, bool state)
1058 {
1059         int reg;
1060         u32 val;
1061         bool cur_state;
1062
1063         reg = DPLL(pipe);
1064         val = I915_READ(reg);
1065         cur_state = !!(val & DPLL_VCO_ENABLE);
1066         WARN(cur_state != state,
1067              "PLL state assertion failure (expected %s, current %s)\n",
1068              state_string(state), state_string(cur_state));
1069 }
1070 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1071 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1072
1073 /* For ILK+ */
1074 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1075                            struct intel_pch_pll *pll,
1076                            struct intel_crtc *crtc,
1077                            bool state)
1078 {
1079         u32 val;
1080         bool cur_state;
1081
1082         if (HAS_PCH_LPT(dev_priv->dev)) {
1083                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1084                 return;
1085         }
1086
1087         if (WARN (!pll,
1088                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1089                 return;
1090
1091         val = I915_READ(pll->pll_reg);
1092         cur_state = !!(val & DPLL_VCO_ENABLE);
1093         WARN(cur_state != state,
1094              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1095              pll->pll_reg, state_string(state), state_string(cur_state), val);
1096
1097         /* Make sure the selected PLL is correctly attached to the transcoder */
1098         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1099                 u32 pch_dpll;
1100
1101                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1102                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1103                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1104                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1105                           cur_state, crtc->pipe, pch_dpll)) {
1106                         cur_state = !!(val >> (4*crtc->pipe + 3));
1107                         WARN(cur_state != state,
1108                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1109                              pll->pll_reg == _PCH_DPLL_B,
1110                              state_string(state),
1111                              crtc->pipe,
1112                              val);
1113                 }
1114         }
1115 }
1116 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1117 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1118
1119 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1120                           enum pipe pipe, bool state)
1121 {
1122         int reg;
1123         u32 val;
1124         bool cur_state;
1125         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1126                                                                       pipe);
1127
1128         if (IS_HASWELL(dev_priv->dev)) {
1129                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1130                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133         } else {
1134                 reg = FDI_TX_CTL(pipe);
1135                 val = I915_READ(reg);
1136                 cur_state = !!(val & FDI_TX_ENABLE);
1137         }
1138         WARN(cur_state != state,
1139              "FDI TX state assertion failure (expected %s, current %s)\n",
1140              state_string(state), state_string(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146                           enum pipe pipe, bool state)
1147 {
1148         int reg;
1149         u32 val;
1150         bool cur_state;
1151
1152         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1153                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1154                         return;
1155         } else {
1156                 reg = FDI_RX_CTL(pipe);
1157                 val = I915_READ(reg);
1158                 cur_state = !!(val & FDI_RX_ENABLE);
1159         }
1160         WARN(cur_state != state,
1161              "FDI RX state assertion failure (expected %s, current %s)\n",
1162              state_string(state), state_string(cur_state));
1163 }
1164 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1165 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1166
1167 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1168                                       enum pipe pipe)
1169 {
1170         int reg;
1171         u32 val;
1172
1173         /* ILK FDI PLL is always enabled */
1174         if (dev_priv->info->gen == 5)
1175                 return;
1176
1177         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1178         if (IS_HASWELL(dev_priv->dev))
1179                 return;
1180
1181         reg = FDI_TX_CTL(pipe);
1182         val = I915_READ(reg);
1183         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1184 }
1185
1186 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1187                                       enum pipe pipe)
1188 {
1189         int reg;
1190         u32 val;
1191
1192         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1193                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1194                 return;
1195         }
1196         reg = FDI_RX_CTL(pipe);
1197         val = I915_READ(reg);
1198         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1199 }
1200
1201 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1202                                   enum pipe pipe)
1203 {
1204         int pp_reg, lvds_reg;
1205         u32 val;
1206         enum pipe panel_pipe = PIPE_A;
1207         bool locked = true;
1208
1209         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1210                 pp_reg = PCH_PP_CONTROL;
1211                 lvds_reg = PCH_LVDS;
1212         } else {
1213                 pp_reg = PP_CONTROL;
1214                 lvds_reg = LVDS;
1215         }
1216
1217         val = I915_READ(pp_reg);
1218         if (!(val & PANEL_POWER_ON) ||
1219             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1220                 locked = false;
1221
1222         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1223                 panel_pipe = PIPE_B;
1224
1225         WARN(panel_pipe == pipe && locked,
1226              "panel assertion failure, pipe %c regs locked\n",
1227              pipe_name(pipe));
1228 }
1229
1230 void assert_pipe(struct drm_i915_private *dev_priv,
1231                  enum pipe pipe, bool state)
1232 {
1233         int reg;
1234         u32 val;
1235         bool cur_state;
1236         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1237                                                                       pipe);
1238
1239         /* if we need the pipe A quirk it must be always on */
1240         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1241                 state = true;
1242
1243         reg = PIPECONF(cpu_transcoder);
1244         val = I915_READ(reg);
1245         cur_state = !!(val & PIPECONF_ENABLE);
1246         WARN(cur_state != state,
1247              "pipe %c assertion failure (expected %s, current %s)\n",
1248              pipe_name(pipe), state_string(state), state_string(cur_state));
1249 }
1250
1251 static void assert_plane(struct drm_i915_private *dev_priv,
1252                          enum plane plane, bool state)
1253 {
1254         int reg;
1255         u32 val;
1256         bool cur_state;
1257
1258         reg = DSPCNTR(plane);
1259         val = I915_READ(reg);
1260         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1261         WARN(cur_state != state,
1262              "plane %c assertion failure (expected %s, current %s)\n",
1263              plane_name(plane), state_string(state), state_string(cur_state));
1264 }
1265
1266 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1267 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1268
1269 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1270                                    enum pipe pipe)
1271 {
1272         int reg, i;
1273         u32 val;
1274         int cur_pipe;
1275
1276         /* Planes are fixed to pipes on ILK+ */
1277         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1278                 reg = DSPCNTR(pipe);
1279                 val = I915_READ(reg);
1280                 WARN((val & DISPLAY_PLANE_ENABLE),
1281                      "plane %c assertion failure, should be disabled but not\n",
1282                      plane_name(pipe));
1283                 return;
1284         }
1285
1286         /* Need to check both planes against the pipe */
1287         for (i = 0; i < 2; i++) {
1288                 reg = DSPCNTR(i);
1289                 val = I915_READ(reg);
1290                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1291                         DISPPLANE_SEL_PIPE_SHIFT;
1292                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1293                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1294                      plane_name(i), pipe_name(pipe));
1295         }
1296 }
1297
1298 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1299 {
1300         u32 val;
1301         bool enabled;
1302
1303         if (HAS_PCH_LPT(dev_priv->dev)) {
1304                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1305                 return;
1306         }
1307
1308         val = I915_READ(PCH_DREF_CONTROL);
1309         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1310                             DREF_SUPERSPREAD_SOURCE_MASK));
1311         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1312 }
1313
1314 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1315                                        enum pipe pipe)
1316 {
1317         int reg;
1318         u32 val;
1319         bool enabled;
1320
1321         reg = TRANSCONF(pipe);
1322         val = I915_READ(reg);
1323         enabled = !!(val & TRANS_ENABLE);
1324         WARN(enabled,
1325              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1326              pipe_name(pipe));
1327 }
1328
1329 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1330                             enum pipe pipe, u32 port_sel, u32 val)
1331 {
1332         if ((val & DP_PORT_EN) == 0)
1333                 return false;
1334
1335         if (HAS_PCH_CPT(dev_priv->dev)) {
1336                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1337                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1338                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1339                         return false;
1340         } else {
1341                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1342                         return false;
1343         }
1344         return true;
1345 }
1346
1347 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1348                               enum pipe pipe, u32 val)
1349 {
1350         if ((val & PORT_ENABLE) == 0)
1351                 return false;
1352
1353         if (HAS_PCH_CPT(dev_priv->dev)) {
1354                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1355                         return false;
1356         } else {
1357                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1358                         return false;
1359         }
1360         return true;
1361 }
1362
1363 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1364                               enum pipe pipe, u32 val)
1365 {
1366         if ((val & LVDS_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1371                         return false;
1372         } else {
1373                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1374                         return false;
1375         }
1376         return true;
1377 }
1378
1379 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1380                               enum pipe pipe, u32 val)
1381 {
1382         if ((val & ADPA_DAC_ENABLE) == 0)
1383                 return false;
1384         if (HAS_PCH_CPT(dev_priv->dev)) {
1385                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1386                         return false;
1387         } else {
1388                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1389                         return false;
1390         }
1391         return true;
1392 }
1393
1394 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1395                                    enum pipe pipe, int reg, u32 port_sel)
1396 {
1397         u32 val = I915_READ(reg);
1398         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1399              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1400              reg, pipe_name(pipe));
1401
1402         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1403              && (val & DP_PIPEB_SELECT),
1404              "IBX PCH dp port still using transcoder B\n");
1405 }
1406
1407 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1408                                      enum pipe pipe, int reg)
1409 {
1410         u32 val = I915_READ(reg);
1411         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1412              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1413              reg, pipe_name(pipe));
1414
1415         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1416              && (val & SDVO_PIPE_B_SELECT),
1417              "IBX PCH hdmi port still using transcoder B\n");
1418 }
1419
1420 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1421                                       enum pipe pipe)
1422 {
1423         int reg;
1424         u32 val;
1425
1426         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1427         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1429
1430         reg = PCH_ADPA;
1431         val = I915_READ(reg);
1432         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1433              "PCH VGA enabled on transcoder %c, should be disabled\n",
1434              pipe_name(pipe));
1435
1436         reg = PCH_LVDS;
1437         val = I915_READ(reg);
1438         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1439              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1440              pipe_name(pipe));
1441
1442         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1443         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1445 }
1446
1447 /**
1448  * intel_enable_pll - enable a PLL
1449  * @dev_priv: i915 private structure
1450  * @pipe: pipe PLL to enable
1451  *
1452  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1453  * make sure the PLL reg is writable first though, since the panel write
1454  * protect mechanism may be enabled.
1455  *
1456  * Note!  This is for pre-ILK only.
1457  *
1458  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1459  */
1460 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1461 {
1462         int reg;
1463         u32 val;
1464
1465         /* No really, not for ILK+ */
1466         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1467
1468         /* PLL is protected by panel, make sure we can write it */
1469         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1470                 assert_panel_unlocked(dev_priv, pipe);
1471
1472         reg = DPLL(pipe);
1473         val = I915_READ(reg);
1474         val |= DPLL_VCO_ENABLE;
1475
1476         /* We do this three times for luck */
1477         I915_WRITE(reg, val);
1478         POSTING_READ(reg);
1479         udelay(150); /* wait for warmup */
1480         I915_WRITE(reg, val);
1481         POSTING_READ(reg);
1482         udelay(150); /* wait for warmup */
1483         I915_WRITE(reg, val);
1484         POSTING_READ(reg);
1485         udelay(150); /* wait for warmup */
1486 }
1487
1488 /**
1489  * intel_disable_pll - disable a PLL
1490  * @dev_priv: i915 private structure
1491  * @pipe: pipe PLL to disable
1492  *
1493  * Disable the PLL for @pipe, making sure the pipe is off first.
1494  *
1495  * Note!  This is for pre-ILK only.
1496  */
1497 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1498 {
1499         int reg;
1500         u32 val;
1501
1502         /* Don't disable pipe A or pipe A PLLs if needed */
1503         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1504                 return;
1505
1506         /* Make sure the pipe isn't still relying on us */
1507         assert_pipe_disabled(dev_priv, pipe);
1508
1509         reg = DPLL(pipe);
1510         val = I915_READ(reg);
1511         val &= ~DPLL_VCO_ENABLE;
1512         I915_WRITE(reg, val);
1513         POSTING_READ(reg);
1514 }
1515
1516 /* SBI access */
1517 static void
1518 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1519 {
1520         unsigned long flags;
1521
1522         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1523         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1524                                 100)) {
1525                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1526                 goto out_unlock;
1527         }
1528
1529         I915_WRITE(SBI_ADDR,
1530                         (reg << 16));
1531         I915_WRITE(SBI_DATA,
1532                         value);
1533         I915_WRITE(SBI_CTL_STAT,
1534                         SBI_BUSY |
1535                         SBI_CTL_OP_CRWR);
1536
1537         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1538                                 100)) {
1539                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1540                 goto out_unlock;
1541         }
1542
1543 out_unlock:
1544         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1545 }
1546
1547 static u32
1548 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1549 {
1550         unsigned long flags;
1551         u32 value = 0;
1552
1553         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1554         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1555                                 100)) {
1556                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1557                 goto out_unlock;
1558         }
1559
1560         I915_WRITE(SBI_ADDR,
1561                         (reg << 16));
1562         I915_WRITE(SBI_CTL_STAT,
1563                         SBI_BUSY |
1564                         SBI_CTL_OP_CRRD);
1565
1566         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1567                                 100)) {
1568                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1569                 goto out_unlock;
1570         }
1571
1572         value = I915_READ(SBI_DATA);
1573
1574 out_unlock:
1575         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1576         return value;
1577 }
1578
1579 /**
1580  * ironlake_enable_pch_pll - enable PCH PLL
1581  * @dev_priv: i915 private structure
1582  * @pipe: pipe PLL to enable
1583  *
1584  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1585  * drives the transcoder clock.
1586  */
1587 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1588 {
1589         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1590         struct intel_pch_pll *pll;
1591         int reg;
1592         u32 val;
1593
1594         /* PCH PLLs only available on ILK, SNB and IVB */
1595         BUG_ON(dev_priv->info->gen < 5);
1596         pll = intel_crtc->pch_pll;
1597         if (pll == NULL)
1598                 return;
1599
1600         if (WARN_ON(pll->refcount == 0))
1601                 return;
1602
1603         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1604                       pll->pll_reg, pll->active, pll->on,
1605                       intel_crtc->base.base.id);
1606
1607         /* PCH refclock must be enabled first */
1608         assert_pch_refclk_enabled(dev_priv);
1609
1610         if (pll->active++ && pll->on) {
1611                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1612                 return;
1613         }
1614
1615         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1616
1617         reg = pll->pll_reg;
1618         val = I915_READ(reg);
1619         val |= DPLL_VCO_ENABLE;
1620         I915_WRITE(reg, val);
1621         POSTING_READ(reg);
1622         udelay(200);
1623
1624         pll->on = true;
1625 }
1626
1627 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1628 {
1629         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1630         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1631         int reg;
1632         u32 val;
1633
1634         /* PCH only available on ILK+ */
1635         BUG_ON(dev_priv->info->gen < 5);
1636         if (pll == NULL)
1637                return;
1638
1639         if (WARN_ON(pll->refcount == 0))
1640                 return;
1641
1642         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1643                       pll->pll_reg, pll->active, pll->on,
1644                       intel_crtc->base.base.id);
1645
1646         if (WARN_ON(pll->active == 0)) {
1647                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1648                 return;
1649         }
1650
1651         if (--pll->active) {
1652                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1653                 return;
1654         }
1655
1656         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1657
1658         /* Make sure transcoder isn't still depending on us */
1659         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1660
1661         reg = pll->pll_reg;
1662         val = I915_READ(reg);
1663         val &= ~DPLL_VCO_ENABLE;
1664         I915_WRITE(reg, val);
1665         POSTING_READ(reg);
1666         udelay(200);
1667
1668         pll->on = false;
1669 }
1670
1671 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1672                                            enum pipe pipe)
1673 {
1674         struct drm_device *dev = dev_priv->dev;
1675         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1676         uint32_t reg, val, pipeconf_val;
1677
1678         /* PCH only available on ILK+ */
1679         BUG_ON(dev_priv->info->gen < 5);
1680
1681         /* Make sure PCH DPLL is enabled */
1682         assert_pch_pll_enabled(dev_priv,
1683                                to_intel_crtc(crtc)->pch_pll,
1684                                to_intel_crtc(crtc));
1685
1686         /* FDI must be feeding us bits for PCH ports */
1687         assert_fdi_tx_enabled(dev_priv, pipe);
1688         assert_fdi_rx_enabled(dev_priv, pipe);
1689
1690         if (HAS_PCH_CPT(dev)) {
1691                 /* Workaround: Set the timing override bit before enabling the
1692                  * pch transcoder. */
1693                 reg = TRANS_CHICKEN2(pipe);
1694                 val = I915_READ(reg);
1695                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1696                 I915_WRITE(reg, val);
1697         }
1698
1699         reg = TRANSCONF(pipe);
1700         val = I915_READ(reg);
1701         pipeconf_val = I915_READ(PIPECONF(pipe));
1702
1703         if (HAS_PCH_IBX(dev_priv->dev)) {
1704                 /*
1705                  * make the BPC in transcoder be consistent with
1706                  * that in pipeconf reg.
1707                  */
1708                 val &= ~PIPE_BPC_MASK;
1709                 val |= pipeconf_val & PIPE_BPC_MASK;
1710         }
1711
1712         val &= ~TRANS_INTERLACE_MASK;
1713         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1714                 if (HAS_PCH_IBX(dev_priv->dev) &&
1715                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1716                         val |= TRANS_LEGACY_INTERLACED_ILK;
1717                 else
1718                         val |= TRANS_INTERLACED;
1719         else
1720                 val |= TRANS_PROGRESSIVE;
1721
1722         I915_WRITE(reg, val | TRANS_ENABLE);
1723         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1724                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1725 }
1726
1727 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1728                                       enum transcoder cpu_transcoder)
1729 {
1730         u32 val, pipeconf_val;
1731
1732         /* PCH only available on ILK+ */
1733         BUG_ON(dev_priv->info->gen < 5);
1734
1735         /* FDI must be feeding us bits for PCH ports */
1736         assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1737         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1738
1739         /* Workaround: set timing override bit. */
1740         val = I915_READ(_TRANSA_CHICKEN2);
1741         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1742         I915_WRITE(_TRANSA_CHICKEN2, val);
1743
1744         val = TRANS_ENABLE;
1745         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1746
1747         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1748             PIPECONF_INTERLACED_ILK)
1749                 val |= TRANS_INTERLACED;
1750         else
1751                 val |= TRANS_PROGRESSIVE;
1752
1753         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1754         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1755                 DRM_ERROR("Failed to enable PCH transcoder\n");
1756 }
1757
1758 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1759                                             enum pipe pipe)
1760 {
1761         struct drm_device *dev = dev_priv->dev;
1762         uint32_t reg, val;
1763
1764         /* FDI relies on the transcoder */
1765         assert_fdi_tx_disabled(dev_priv, pipe);
1766         assert_fdi_rx_disabled(dev_priv, pipe);
1767
1768         /* Ports must be off as well */
1769         assert_pch_ports_disabled(dev_priv, pipe);
1770
1771         reg = TRANSCONF(pipe);
1772         val = I915_READ(reg);
1773         val &= ~TRANS_ENABLE;
1774         I915_WRITE(reg, val);
1775         /* wait for PCH transcoder off, transcoder state */
1776         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1777                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1778
1779         if (!HAS_PCH_IBX(dev)) {
1780                 /* Workaround: Clear the timing override chicken bit again. */
1781                 reg = TRANS_CHICKEN2(pipe);
1782                 val = I915_READ(reg);
1783                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1784                 I915_WRITE(reg, val);
1785         }
1786 }
1787
1788 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1789 {
1790         u32 val;
1791
1792         val = I915_READ(_TRANSACONF);
1793         val &= ~TRANS_ENABLE;
1794         I915_WRITE(_TRANSACONF, val);
1795         /* wait for PCH transcoder off, transcoder state */
1796         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1797                 DRM_ERROR("Failed to disable PCH transcoder\n");
1798
1799         /* Workaround: clear timing override bit. */
1800         val = I915_READ(_TRANSA_CHICKEN2);
1801         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1802         I915_WRITE(_TRANSA_CHICKEN2, val);
1803 }
1804
1805 /**
1806  * intel_enable_pipe - enable a pipe, asserting requirements
1807  * @dev_priv: i915 private structure
1808  * @pipe: pipe to enable
1809  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1810  *
1811  * Enable @pipe, making sure that various hardware specific requirements
1812  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1813  *
1814  * @pipe should be %PIPE_A or %PIPE_B.
1815  *
1816  * Will wait until the pipe is actually running (i.e. first vblank) before
1817  * returning.
1818  */
1819 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1820                               bool pch_port)
1821 {
1822         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1823                                                                       pipe);
1824         int reg;
1825         u32 val;
1826
1827         /*
1828          * A pipe without a PLL won't actually be able to drive bits from
1829          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1830          * need the check.
1831          */
1832         if (!HAS_PCH_SPLIT(dev_priv->dev))
1833                 assert_pll_enabled(dev_priv, pipe);
1834         else {
1835                 if (pch_port) {
1836                         /* if driving the PCH, we need FDI enabled */
1837                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1838                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1839                 }
1840                 /* FIXME: assert CPU port conditions for SNB+ */
1841         }
1842
1843         reg = PIPECONF(cpu_transcoder);
1844         val = I915_READ(reg);
1845         if (val & PIPECONF_ENABLE)
1846                 return;
1847
1848         I915_WRITE(reg, val | PIPECONF_ENABLE);
1849         intel_wait_for_vblank(dev_priv->dev, pipe);
1850 }
1851
1852 /**
1853  * intel_disable_pipe - disable a pipe, asserting requirements
1854  * @dev_priv: i915 private structure
1855  * @pipe: pipe to disable
1856  *
1857  * Disable @pipe, making sure that various hardware specific requirements
1858  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1859  *
1860  * @pipe should be %PIPE_A or %PIPE_B.
1861  *
1862  * Will wait until the pipe has shut down before returning.
1863  */
1864 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1865                                enum pipe pipe)
1866 {
1867         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1868                                                                       pipe);
1869         int reg;
1870         u32 val;
1871
1872         /*
1873          * Make sure planes won't keep trying to pump pixels to us,
1874          * or we might hang the display.
1875          */
1876         assert_planes_disabled(dev_priv, pipe);
1877
1878         /* Don't disable pipe A or pipe A PLLs if needed */
1879         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1880                 return;
1881
1882         reg = PIPECONF(cpu_transcoder);
1883         val = I915_READ(reg);
1884         if ((val & PIPECONF_ENABLE) == 0)
1885                 return;
1886
1887         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1888         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1889 }
1890
1891 /*
1892  * Plane regs are double buffered, going from enabled->disabled needs a
1893  * trigger in order to latch.  The display address reg provides this.
1894  */
1895 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1896                                       enum plane plane)
1897 {
1898         if (dev_priv->info->gen >= 4)
1899                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1900         else
1901                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1902 }
1903
1904 /**
1905  * intel_enable_plane - enable a display plane on a given pipe
1906  * @dev_priv: i915 private structure
1907  * @plane: plane to enable
1908  * @pipe: pipe being fed
1909  *
1910  * Enable @plane on @pipe, making sure that @pipe is running first.
1911  */
1912 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1913                                enum plane plane, enum pipe pipe)
1914 {
1915         int reg;
1916         u32 val;
1917
1918         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1919         assert_pipe_enabled(dev_priv, pipe);
1920
1921         reg = DSPCNTR(plane);
1922         val = I915_READ(reg);
1923         if (val & DISPLAY_PLANE_ENABLE)
1924                 return;
1925
1926         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1927         intel_flush_display_plane(dev_priv, plane);
1928         intel_wait_for_vblank(dev_priv->dev, pipe);
1929 }
1930
1931 /**
1932  * intel_disable_plane - disable a display plane
1933  * @dev_priv: i915 private structure
1934  * @plane: plane to disable
1935  * @pipe: pipe consuming the data
1936  *
1937  * Disable @plane; should be an independent operation.
1938  */
1939 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1940                                 enum plane plane, enum pipe pipe)
1941 {
1942         int reg;
1943         u32 val;
1944
1945         reg = DSPCNTR(plane);
1946         val = I915_READ(reg);
1947         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1948                 return;
1949
1950         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1951         intel_flush_display_plane(dev_priv, plane);
1952         intel_wait_for_vblank(dev_priv->dev, pipe);
1953 }
1954
1955 int
1956 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1957                            struct drm_i915_gem_object *obj,
1958                            struct intel_ring_buffer *pipelined)
1959 {
1960         struct drm_i915_private *dev_priv = dev->dev_private;
1961         u32 alignment;
1962         int ret;
1963
1964         switch (obj->tiling_mode) {
1965         case I915_TILING_NONE:
1966                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1967                         alignment = 128 * 1024;
1968                 else if (INTEL_INFO(dev)->gen >= 4)
1969                         alignment = 4 * 1024;
1970                 else
1971                         alignment = 64 * 1024;
1972                 break;
1973         case I915_TILING_X:
1974                 /* pin() will align the object as required by fence */
1975                 alignment = 0;
1976                 break;
1977         case I915_TILING_Y:
1978                 /* FIXME: Is this true? */
1979                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1980                 return -EINVAL;
1981         default:
1982                 BUG();
1983         }
1984
1985         dev_priv->mm.interruptible = false;
1986         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1987         if (ret)
1988                 goto err_interruptible;
1989
1990         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1991          * fence, whereas 965+ only requires a fence if using
1992          * framebuffer compression.  For simplicity, we always install
1993          * a fence as the cost is not that onerous.
1994          */
1995         ret = i915_gem_object_get_fence(obj);
1996         if (ret)
1997                 goto err_unpin;
1998
1999         i915_gem_object_pin_fence(obj);
2000
2001         dev_priv->mm.interruptible = true;
2002         return 0;
2003
2004 err_unpin:
2005         i915_gem_object_unpin(obj);
2006 err_interruptible:
2007         dev_priv->mm.interruptible = true;
2008         return ret;
2009 }
2010
2011 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2012 {
2013         i915_gem_object_unpin_fence(obj);
2014         i915_gem_object_unpin(obj);
2015 }
2016
2017 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2018  * is assumed to be a power-of-two. */
2019 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2020                                                unsigned int bpp,
2021                                                unsigned int pitch)
2022 {
2023         int tile_rows, tiles;
2024
2025         tile_rows = *y / 8;
2026         *y %= 8;
2027         tiles = *x / (512/bpp);
2028         *x %= 512/bpp;
2029
2030         return tile_rows * pitch * 8 + tiles * 4096;
2031 }
2032
2033 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2034                              int x, int y)
2035 {
2036         struct drm_device *dev = crtc->dev;
2037         struct drm_i915_private *dev_priv = dev->dev_private;
2038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2039         struct intel_framebuffer *intel_fb;
2040         struct drm_i915_gem_object *obj;
2041         int plane = intel_crtc->plane;
2042         unsigned long linear_offset;
2043         u32 dspcntr;
2044         u32 reg;
2045
2046         switch (plane) {
2047         case 0:
2048         case 1:
2049                 break;
2050         default:
2051                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2052                 return -EINVAL;
2053         }
2054
2055         intel_fb = to_intel_framebuffer(fb);
2056         obj = intel_fb->obj;
2057
2058         reg = DSPCNTR(plane);
2059         dspcntr = I915_READ(reg);
2060         /* Mask out pixel format bits in case we change it */
2061         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2062         switch (fb->pixel_format) {
2063         case DRM_FORMAT_C8:
2064                 dspcntr |= DISPPLANE_8BPP;
2065                 break;
2066         case DRM_FORMAT_XRGB1555:
2067         case DRM_FORMAT_ARGB1555:
2068                 dspcntr |= DISPPLANE_BGRX555;
2069                 break;
2070         case DRM_FORMAT_RGB565:
2071                 dspcntr |= DISPPLANE_BGRX565;
2072                 break;
2073         case DRM_FORMAT_XRGB8888:
2074         case DRM_FORMAT_ARGB8888:
2075                 dspcntr |= DISPPLANE_BGRX888;
2076                 break;
2077         case DRM_FORMAT_XBGR8888:
2078         case DRM_FORMAT_ABGR8888:
2079                 dspcntr |= DISPPLANE_RGBX888;
2080                 break;
2081         case DRM_FORMAT_XRGB2101010:
2082         case DRM_FORMAT_ARGB2101010:
2083                 dspcntr |= DISPPLANE_BGRX101010;
2084                 break;
2085         case DRM_FORMAT_XBGR2101010:
2086         case DRM_FORMAT_ABGR2101010:
2087                 dspcntr |= DISPPLANE_RGBX101010;
2088                 break;
2089         default:
2090                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2091                 return -EINVAL;
2092         }
2093
2094         if (INTEL_INFO(dev)->gen >= 4) {
2095                 if (obj->tiling_mode != I915_TILING_NONE)
2096                         dspcntr |= DISPPLANE_TILED;
2097                 else
2098                         dspcntr &= ~DISPPLANE_TILED;
2099         }
2100
2101         I915_WRITE(reg, dspcntr);
2102
2103         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2104
2105         if (INTEL_INFO(dev)->gen >= 4) {
2106                 intel_crtc->dspaddr_offset =
2107                         intel_gen4_compute_offset_xtiled(&x, &y,
2108                                                          fb->bits_per_pixel / 8,
2109                                                          fb->pitches[0]);
2110                 linear_offset -= intel_crtc->dspaddr_offset;
2111         } else {
2112                 intel_crtc->dspaddr_offset = linear_offset;
2113         }
2114
2115         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2116                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2117         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2118         if (INTEL_INFO(dev)->gen >= 4) {
2119                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2120                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2121                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2122                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2123         } else
2124                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2125         POSTING_READ(reg);
2126
2127         return 0;
2128 }
2129
2130 static int ironlake_update_plane(struct drm_crtc *crtc,
2131                                  struct drm_framebuffer *fb, int x, int y)
2132 {
2133         struct drm_device *dev = crtc->dev;
2134         struct drm_i915_private *dev_priv = dev->dev_private;
2135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2136         struct intel_framebuffer *intel_fb;
2137         struct drm_i915_gem_object *obj;
2138         int plane = intel_crtc->plane;
2139         unsigned long linear_offset;
2140         u32 dspcntr;
2141         u32 reg;
2142
2143         switch (plane) {
2144         case 0:
2145         case 1:
2146         case 2:
2147                 break;
2148         default:
2149                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2150                 return -EINVAL;
2151         }
2152
2153         intel_fb = to_intel_framebuffer(fb);
2154         obj = intel_fb->obj;
2155
2156         reg = DSPCNTR(plane);
2157         dspcntr = I915_READ(reg);
2158         /* Mask out pixel format bits in case we change it */
2159         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2160         switch (fb->pixel_format) {
2161         case DRM_FORMAT_C8:
2162                 dspcntr |= DISPPLANE_8BPP;
2163                 break;
2164         case DRM_FORMAT_RGB565:
2165                 dspcntr |= DISPPLANE_BGRX565;
2166                 break;
2167         case DRM_FORMAT_XRGB8888:
2168         case DRM_FORMAT_ARGB8888:
2169                 dspcntr |= DISPPLANE_BGRX888;
2170                 break;
2171         case DRM_FORMAT_XBGR8888:
2172         case DRM_FORMAT_ABGR8888:
2173                 dspcntr |= DISPPLANE_RGBX888;
2174                 break;
2175         case DRM_FORMAT_XRGB2101010:
2176         case DRM_FORMAT_ARGB2101010:
2177                 dspcntr |= DISPPLANE_BGRX101010;
2178                 break;
2179         case DRM_FORMAT_XBGR2101010:
2180         case DRM_FORMAT_ABGR2101010:
2181                 dspcntr |= DISPPLANE_RGBX101010;
2182                 break;
2183         default:
2184                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2185                 return -EINVAL;
2186         }
2187
2188         if (obj->tiling_mode != I915_TILING_NONE)
2189                 dspcntr |= DISPPLANE_TILED;
2190         else
2191                 dspcntr &= ~DISPPLANE_TILED;
2192
2193         /* must disable */
2194         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2195
2196         I915_WRITE(reg, dspcntr);
2197
2198         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2199         intel_crtc->dspaddr_offset =
2200                 intel_gen4_compute_offset_xtiled(&x, &y,
2201                                                  fb->bits_per_pixel / 8,
2202                                                  fb->pitches[0]);
2203         linear_offset -= intel_crtc->dspaddr_offset;
2204
2205         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2206                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2207         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2208         I915_MODIFY_DISPBASE(DSPSURF(plane),
2209                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2210         if (IS_HASWELL(dev)) {
2211                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2212         } else {
2213                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2214                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2215         }
2216         POSTING_READ(reg);
2217
2218         return 0;
2219 }
2220
2221 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2222 static int
2223 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2224                            int x, int y, enum mode_set_atomic state)
2225 {
2226         struct drm_device *dev = crtc->dev;
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228
2229         if (dev_priv->display.disable_fbc)
2230                 dev_priv->display.disable_fbc(dev);
2231         intel_increase_pllclock(crtc);
2232
2233         return dev_priv->display.update_plane(crtc, fb, x, y);
2234 }
2235
2236 static int
2237 intel_finish_fb(struct drm_framebuffer *old_fb)
2238 {
2239         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2240         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2241         bool was_interruptible = dev_priv->mm.interruptible;
2242         int ret;
2243
2244         wait_event(dev_priv->pending_flip_queue,
2245                    atomic_read(&dev_priv->mm.wedged) ||
2246                    atomic_read(&obj->pending_flip) == 0);
2247
2248         /* Big Hammer, we also need to ensure that any pending
2249          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2250          * current scanout is retired before unpinning the old
2251          * framebuffer.
2252          *
2253          * This should only fail upon a hung GPU, in which case we
2254          * can safely continue.
2255          */
2256         dev_priv->mm.interruptible = false;
2257         ret = i915_gem_object_finish_gpu(obj);
2258         dev_priv->mm.interruptible = was_interruptible;
2259
2260         return ret;
2261 }
2262
2263 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2264 {
2265         struct drm_device *dev = crtc->dev;
2266         struct drm_i915_master_private *master_priv;
2267         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2268
2269         if (!dev->primary->master)
2270                 return;
2271
2272         master_priv = dev->primary->master->driver_priv;
2273         if (!master_priv->sarea_priv)
2274                 return;
2275
2276         switch (intel_crtc->pipe) {
2277         case 0:
2278                 master_priv->sarea_priv->pipeA_x = x;
2279                 master_priv->sarea_priv->pipeA_y = y;
2280                 break;
2281         case 1:
2282                 master_priv->sarea_priv->pipeB_x = x;
2283                 master_priv->sarea_priv->pipeB_y = y;
2284                 break;
2285         default:
2286                 break;
2287         }
2288 }
2289
2290 static int
2291 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2292                     struct drm_framebuffer *fb)
2293 {
2294         struct drm_device *dev = crtc->dev;
2295         struct drm_i915_private *dev_priv = dev->dev_private;
2296         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2297         struct drm_framebuffer *old_fb;
2298         int ret;
2299
2300         /* no fb bound */
2301         if (!fb) {
2302                 DRM_ERROR("No FB bound\n");
2303                 return 0;
2304         }
2305
2306         if(intel_crtc->plane > dev_priv->num_pipe) {
2307                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2308                                 intel_crtc->plane,
2309                                 dev_priv->num_pipe);
2310                 return -EINVAL;
2311         }
2312
2313         mutex_lock(&dev->struct_mutex);
2314         ret = intel_pin_and_fence_fb_obj(dev,
2315                                          to_intel_framebuffer(fb)->obj,
2316                                          NULL);
2317         if (ret != 0) {
2318                 mutex_unlock(&dev->struct_mutex);
2319                 DRM_ERROR("pin & fence failed\n");
2320                 return ret;
2321         }
2322
2323         if (crtc->fb)
2324                 intel_finish_fb(crtc->fb);
2325
2326         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2327         if (ret) {
2328                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2329                 mutex_unlock(&dev->struct_mutex);
2330                 DRM_ERROR("failed to update base address\n");
2331                 return ret;
2332         }
2333
2334         old_fb = crtc->fb;
2335         crtc->fb = fb;
2336         crtc->x = x;
2337         crtc->y = y;
2338
2339         if (old_fb) {
2340                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2341                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2342         }
2343
2344         intel_update_fbc(dev);
2345         mutex_unlock(&dev->struct_mutex);
2346
2347         intel_crtc_update_sarea_pos(crtc, x, y);
2348
2349         return 0;
2350 }
2351
2352 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2353 {
2354         struct drm_device *dev = crtc->dev;
2355         struct drm_i915_private *dev_priv = dev->dev_private;
2356         u32 dpa_ctl;
2357
2358         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2359         dpa_ctl = I915_READ(DP_A);
2360         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2361
2362         if (clock < 200000) {
2363                 u32 temp;
2364                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2365                 /* workaround for 160Mhz:
2366                    1) program 0x4600c bits 15:0 = 0x8124
2367                    2) program 0x46010 bit 0 = 1
2368                    3) program 0x46034 bit 24 = 1
2369                    4) program 0x64000 bit 14 = 1
2370                    */
2371                 temp = I915_READ(0x4600c);
2372                 temp &= 0xffff0000;
2373                 I915_WRITE(0x4600c, temp | 0x8124);
2374
2375                 temp = I915_READ(0x46010);
2376                 I915_WRITE(0x46010, temp | 1);
2377
2378                 temp = I915_READ(0x46034);
2379                 I915_WRITE(0x46034, temp | (1 << 24));
2380         } else {
2381                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2382         }
2383         I915_WRITE(DP_A, dpa_ctl);
2384
2385         POSTING_READ(DP_A);
2386         udelay(500);
2387 }
2388
2389 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2390 {
2391         struct drm_device *dev = crtc->dev;
2392         struct drm_i915_private *dev_priv = dev->dev_private;
2393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2394         int pipe = intel_crtc->pipe;
2395         u32 reg, temp;
2396
2397         /* enable normal train */
2398         reg = FDI_TX_CTL(pipe);
2399         temp = I915_READ(reg);
2400         if (IS_IVYBRIDGE(dev)) {
2401                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2402                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2403         } else {
2404                 temp &= ~FDI_LINK_TRAIN_NONE;
2405                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2406         }
2407         I915_WRITE(reg, temp);
2408
2409         reg = FDI_RX_CTL(pipe);
2410         temp = I915_READ(reg);
2411         if (HAS_PCH_CPT(dev)) {
2412                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2413                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2414         } else {
2415                 temp &= ~FDI_LINK_TRAIN_NONE;
2416                 temp |= FDI_LINK_TRAIN_NONE;
2417         }
2418         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2419
2420         /* wait one idle pattern time */
2421         POSTING_READ(reg);
2422         udelay(1000);
2423
2424         /* IVB wants error correction enabled */
2425         if (IS_IVYBRIDGE(dev))
2426                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2427                            FDI_FE_ERRC_ENABLE);
2428 }
2429
2430 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         u32 flags = I915_READ(SOUTH_CHICKEN1);
2434
2435         flags |= FDI_PHASE_SYNC_OVR(pipe);
2436         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2437         flags |= FDI_PHASE_SYNC_EN(pipe);
2438         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2439         POSTING_READ(SOUTH_CHICKEN1);
2440 }
2441
2442 static void ivb_modeset_global_resources(struct drm_device *dev)
2443 {
2444         struct drm_i915_private *dev_priv = dev->dev_private;
2445         struct intel_crtc *pipe_B_crtc =
2446                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2447         struct intel_crtc *pipe_C_crtc =
2448                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2449         uint32_t temp;
2450
2451         /* When everything is off disable fdi C so that we could enable fdi B
2452          * with all lanes. XXX: This misses the case where a pipe is not using
2453          * any pch resources and so doesn't need any fdi lanes. */
2454         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2455                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2456                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2457
2458                 temp = I915_READ(SOUTH_CHICKEN1);
2459                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2460                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2461                 I915_WRITE(SOUTH_CHICKEN1, temp);
2462         }
2463 }
2464
2465 /* The FDI link training functions for ILK/Ibexpeak. */
2466 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2467 {
2468         struct drm_device *dev = crtc->dev;
2469         struct drm_i915_private *dev_priv = dev->dev_private;
2470         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2471         int pipe = intel_crtc->pipe;
2472         int plane = intel_crtc->plane;
2473         u32 reg, temp, tries;
2474
2475         /* FDI needs bits from pipe & plane first */
2476         assert_pipe_enabled(dev_priv, pipe);
2477         assert_plane_enabled(dev_priv, plane);
2478
2479         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2480            for train result */
2481         reg = FDI_RX_IMR(pipe);
2482         temp = I915_READ(reg);
2483         temp &= ~FDI_RX_SYMBOL_LOCK;
2484         temp &= ~FDI_RX_BIT_LOCK;
2485         I915_WRITE(reg, temp);
2486         I915_READ(reg);
2487         udelay(150);
2488
2489         /* enable CPU FDI TX and PCH FDI RX */
2490         reg = FDI_TX_CTL(pipe);
2491         temp = I915_READ(reg);
2492         temp &= ~(7 << 19);
2493         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2494         temp &= ~FDI_LINK_TRAIN_NONE;
2495         temp |= FDI_LINK_TRAIN_PATTERN_1;
2496         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2497
2498         reg = FDI_RX_CTL(pipe);
2499         temp = I915_READ(reg);
2500         temp &= ~FDI_LINK_TRAIN_NONE;
2501         temp |= FDI_LINK_TRAIN_PATTERN_1;
2502         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2503
2504         POSTING_READ(reg);
2505         udelay(150);
2506
2507         /* Ironlake workaround, enable clock pointer after FDI enable*/
2508         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2509         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2510                    FDI_RX_PHASE_SYNC_POINTER_EN);
2511
2512         reg = FDI_RX_IIR(pipe);
2513         for (tries = 0; tries < 5; tries++) {
2514                 temp = I915_READ(reg);
2515                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2516
2517                 if ((temp & FDI_RX_BIT_LOCK)) {
2518                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2519                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2520                         break;
2521                 }
2522         }
2523         if (tries == 5)
2524                 DRM_ERROR("FDI train 1 fail!\n");
2525
2526         /* Train 2 */
2527         reg = FDI_TX_CTL(pipe);
2528         temp = I915_READ(reg);
2529         temp &= ~FDI_LINK_TRAIN_NONE;
2530         temp |= FDI_LINK_TRAIN_PATTERN_2;
2531         I915_WRITE(reg, temp);
2532
2533         reg = FDI_RX_CTL(pipe);
2534         temp = I915_READ(reg);
2535         temp &= ~FDI_LINK_TRAIN_NONE;
2536         temp |= FDI_LINK_TRAIN_PATTERN_2;
2537         I915_WRITE(reg, temp);
2538
2539         POSTING_READ(reg);
2540         udelay(150);
2541
2542         reg = FDI_RX_IIR(pipe);
2543         for (tries = 0; tries < 5; tries++) {
2544                 temp = I915_READ(reg);
2545                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2546
2547                 if (temp & FDI_RX_SYMBOL_LOCK) {
2548                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2549                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2550                         break;
2551                 }
2552         }
2553         if (tries == 5)
2554                 DRM_ERROR("FDI train 2 fail!\n");
2555
2556         DRM_DEBUG_KMS("FDI train done\n");
2557
2558 }
2559
2560 static const int snb_b_fdi_train_param[] = {
2561         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2562         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2563         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2564         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2565 };
2566
2567 /* The FDI link training functions for SNB/Cougarpoint. */
2568 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2569 {
2570         struct drm_device *dev = crtc->dev;
2571         struct drm_i915_private *dev_priv = dev->dev_private;
2572         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2573         int pipe = intel_crtc->pipe;
2574         u32 reg, temp, i, retry;
2575
2576         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2577            for train result */
2578         reg = FDI_RX_IMR(pipe);
2579         temp = I915_READ(reg);
2580         temp &= ~FDI_RX_SYMBOL_LOCK;
2581         temp &= ~FDI_RX_BIT_LOCK;
2582         I915_WRITE(reg, temp);
2583
2584         POSTING_READ(reg);
2585         udelay(150);
2586
2587         /* enable CPU FDI TX and PCH FDI RX */
2588         reg = FDI_TX_CTL(pipe);
2589         temp = I915_READ(reg);
2590         temp &= ~(7 << 19);
2591         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2592         temp &= ~FDI_LINK_TRAIN_NONE;
2593         temp |= FDI_LINK_TRAIN_PATTERN_1;
2594         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2595         /* SNB-B */
2596         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2597         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2598
2599         I915_WRITE(FDI_RX_MISC(pipe),
2600                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2601
2602         reg = FDI_RX_CTL(pipe);
2603         temp = I915_READ(reg);
2604         if (HAS_PCH_CPT(dev)) {
2605                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2606                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2607         } else {
2608                 temp &= ~FDI_LINK_TRAIN_NONE;
2609                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2610         }
2611         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2612
2613         POSTING_READ(reg);
2614         udelay(150);
2615
2616         cpt_phase_pointer_enable(dev, pipe);
2617
2618         for (i = 0; i < 4; i++) {
2619                 reg = FDI_TX_CTL(pipe);
2620                 temp = I915_READ(reg);
2621                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622                 temp |= snb_b_fdi_train_param[i];
2623                 I915_WRITE(reg, temp);
2624
2625                 POSTING_READ(reg);
2626                 udelay(500);
2627
2628                 for (retry = 0; retry < 5; retry++) {
2629                         reg = FDI_RX_IIR(pipe);
2630                         temp = I915_READ(reg);
2631                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2632                         if (temp & FDI_RX_BIT_LOCK) {
2633                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2634                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2635                                 break;
2636                         }
2637                         udelay(50);
2638                 }
2639                 if (retry < 5)
2640                         break;
2641         }
2642         if (i == 4)
2643                 DRM_ERROR("FDI train 1 fail!\n");
2644
2645         /* Train 2 */
2646         reg = FDI_TX_CTL(pipe);
2647         temp = I915_READ(reg);
2648         temp &= ~FDI_LINK_TRAIN_NONE;
2649         temp |= FDI_LINK_TRAIN_PATTERN_2;
2650         if (IS_GEN6(dev)) {
2651                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2652                 /* SNB-B */
2653                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2654         }
2655         I915_WRITE(reg, temp);
2656
2657         reg = FDI_RX_CTL(pipe);
2658         temp = I915_READ(reg);
2659         if (HAS_PCH_CPT(dev)) {
2660                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2661                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2662         } else {
2663                 temp &= ~FDI_LINK_TRAIN_NONE;
2664                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2665         }
2666         I915_WRITE(reg, temp);
2667
2668         POSTING_READ(reg);
2669         udelay(150);
2670
2671         for (i = 0; i < 4; i++) {
2672                 reg = FDI_TX_CTL(pipe);
2673                 temp = I915_READ(reg);
2674                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675                 temp |= snb_b_fdi_train_param[i];
2676                 I915_WRITE(reg, temp);
2677
2678                 POSTING_READ(reg);
2679                 udelay(500);
2680
2681                 for (retry = 0; retry < 5; retry++) {
2682                         reg = FDI_RX_IIR(pipe);
2683                         temp = I915_READ(reg);
2684                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2685                         if (temp & FDI_RX_SYMBOL_LOCK) {
2686                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2687                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2688                                 break;
2689                         }
2690                         udelay(50);
2691                 }
2692                 if (retry < 5)
2693                         break;
2694         }
2695         if (i == 4)
2696                 DRM_ERROR("FDI train 2 fail!\n");
2697
2698         DRM_DEBUG_KMS("FDI train done.\n");
2699 }
2700
2701 /* Manual link training for Ivy Bridge A0 parts */
2702 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2703 {
2704         struct drm_device *dev = crtc->dev;
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2707         int pipe = intel_crtc->pipe;
2708         u32 reg, temp, i;
2709
2710         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2711            for train result */
2712         reg = FDI_RX_IMR(pipe);
2713         temp = I915_READ(reg);
2714         temp &= ~FDI_RX_SYMBOL_LOCK;
2715         temp &= ~FDI_RX_BIT_LOCK;
2716         I915_WRITE(reg, temp);
2717
2718         POSTING_READ(reg);
2719         udelay(150);
2720
2721         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2722                       I915_READ(FDI_RX_IIR(pipe)));
2723
2724         /* enable CPU FDI TX and PCH FDI RX */
2725         reg = FDI_TX_CTL(pipe);
2726         temp = I915_READ(reg);
2727         temp &= ~(7 << 19);
2728         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2729         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2730         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2731         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2732         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2733         temp |= FDI_COMPOSITE_SYNC;
2734         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2735
2736         I915_WRITE(FDI_RX_MISC(pipe),
2737                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2738
2739         reg = FDI_RX_CTL(pipe);
2740         temp = I915_READ(reg);
2741         temp &= ~FDI_LINK_TRAIN_AUTO;
2742         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2743         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2744         temp |= FDI_COMPOSITE_SYNC;
2745         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2746
2747         POSTING_READ(reg);
2748         udelay(150);
2749
2750         cpt_phase_pointer_enable(dev, pipe);
2751
2752         for (i = 0; i < 4; i++) {
2753                 reg = FDI_TX_CTL(pipe);
2754                 temp = I915_READ(reg);
2755                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2756                 temp |= snb_b_fdi_train_param[i];
2757                 I915_WRITE(reg, temp);
2758
2759                 POSTING_READ(reg);
2760                 udelay(500);
2761
2762                 reg = FDI_RX_IIR(pipe);
2763                 temp = I915_READ(reg);
2764                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2765
2766                 if (temp & FDI_RX_BIT_LOCK ||
2767                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2768                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2769                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2770                         break;
2771                 }
2772         }
2773         if (i == 4)
2774                 DRM_ERROR("FDI train 1 fail!\n");
2775
2776         /* Train 2 */
2777         reg = FDI_TX_CTL(pipe);
2778         temp = I915_READ(reg);
2779         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2780         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2781         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2782         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2783         I915_WRITE(reg, temp);
2784
2785         reg = FDI_RX_CTL(pipe);
2786         temp = I915_READ(reg);
2787         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2788         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2789         I915_WRITE(reg, temp);
2790
2791         POSTING_READ(reg);
2792         udelay(150);
2793
2794         for (i = 0; i < 4; i++) {
2795                 reg = FDI_TX_CTL(pipe);
2796                 temp = I915_READ(reg);
2797                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2798                 temp |= snb_b_fdi_train_param[i];
2799                 I915_WRITE(reg, temp);
2800
2801                 POSTING_READ(reg);
2802                 udelay(500);
2803
2804                 reg = FDI_RX_IIR(pipe);
2805                 temp = I915_READ(reg);
2806                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2807
2808                 if (temp & FDI_RX_SYMBOL_LOCK) {
2809                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2810                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2811                         break;
2812                 }
2813         }
2814         if (i == 4)
2815                 DRM_ERROR("FDI train 2 fail!\n");
2816
2817         DRM_DEBUG_KMS("FDI train done.\n");
2818 }
2819
2820 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2821 {
2822         struct drm_device *dev = intel_crtc->base.dev;
2823         struct drm_i915_private *dev_priv = dev->dev_private;
2824         int pipe = intel_crtc->pipe;
2825         u32 reg, temp;
2826
2827
2828         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2829         reg = FDI_RX_CTL(pipe);
2830         temp = I915_READ(reg);
2831         temp &= ~((0x7 << 19) | (0x7 << 16));
2832         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2833         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2834         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2835
2836         POSTING_READ(reg);
2837         udelay(200);
2838
2839         /* Switch from Rawclk to PCDclk */
2840         temp = I915_READ(reg);
2841         I915_WRITE(reg, temp | FDI_PCDCLK);
2842
2843         POSTING_READ(reg);
2844         udelay(200);
2845
2846         /* On Haswell, the PLL configuration for ports and pipes is handled
2847          * separately, as part of DDI setup */
2848         if (!IS_HASWELL(dev)) {
2849                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2850                 reg = FDI_TX_CTL(pipe);
2851                 temp = I915_READ(reg);
2852                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2853                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2854
2855                         POSTING_READ(reg);
2856                         udelay(100);
2857                 }
2858         }
2859 }
2860
2861 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2862 {
2863         struct drm_device *dev = intel_crtc->base.dev;
2864         struct drm_i915_private *dev_priv = dev->dev_private;
2865         int pipe = intel_crtc->pipe;
2866         u32 reg, temp;
2867
2868         /* Switch from PCDclk to Rawclk */
2869         reg = FDI_RX_CTL(pipe);
2870         temp = I915_READ(reg);
2871         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2872
2873         /* Disable CPU FDI TX PLL */
2874         reg = FDI_TX_CTL(pipe);
2875         temp = I915_READ(reg);
2876         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2877
2878         POSTING_READ(reg);
2879         udelay(100);
2880
2881         reg = FDI_RX_CTL(pipe);
2882         temp = I915_READ(reg);
2883         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2884
2885         /* Wait for the clocks to turn off. */
2886         POSTING_READ(reg);
2887         udelay(100);
2888 }
2889
2890 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2891 {
2892         struct drm_i915_private *dev_priv = dev->dev_private;
2893         u32 flags = I915_READ(SOUTH_CHICKEN1);
2894
2895         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2896         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2897         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2898         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2899         POSTING_READ(SOUTH_CHICKEN1);
2900 }
2901 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2902 {
2903         struct drm_device *dev = crtc->dev;
2904         struct drm_i915_private *dev_priv = dev->dev_private;
2905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2906         int pipe = intel_crtc->pipe;
2907         u32 reg, temp;
2908
2909         /* disable CPU FDI tx and PCH FDI rx */
2910         reg = FDI_TX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2913         POSTING_READ(reg);
2914
2915         reg = FDI_RX_CTL(pipe);
2916         temp = I915_READ(reg);
2917         temp &= ~(0x7 << 16);
2918         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2919         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2920
2921         POSTING_READ(reg);
2922         udelay(100);
2923
2924         /* Ironlake workaround, disable clock pointer after downing FDI */
2925         if (HAS_PCH_IBX(dev)) {
2926                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2927                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2928                            I915_READ(FDI_RX_CHICKEN(pipe) &
2929                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2930         } else if (HAS_PCH_CPT(dev)) {
2931                 cpt_phase_pointer_disable(dev, pipe);
2932         }
2933
2934         /* still set train pattern 1 */
2935         reg = FDI_TX_CTL(pipe);
2936         temp = I915_READ(reg);
2937         temp &= ~FDI_LINK_TRAIN_NONE;
2938         temp |= FDI_LINK_TRAIN_PATTERN_1;
2939         I915_WRITE(reg, temp);
2940
2941         reg = FDI_RX_CTL(pipe);
2942         temp = I915_READ(reg);
2943         if (HAS_PCH_CPT(dev)) {
2944                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2945                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2946         } else {
2947                 temp &= ~FDI_LINK_TRAIN_NONE;
2948                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2949         }
2950         /* BPC in FDI rx is consistent with that in PIPECONF */
2951         temp &= ~(0x07 << 16);
2952         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2953         I915_WRITE(reg, temp);
2954
2955         POSTING_READ(reg);
2956         udelay(100);
2957 }
2958
2959 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2960 {
2961         struct drm_device *dev = crtc->dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         unsigned long flags;
2964         bool pending;
2965
2966         if (atomic_read(&dev_priv->mm.wedged))
2967                 return false;
2968
2969         spin_lock_irqsave(&dev->event_lock, flags);
2970         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2971         spin_unlock_irqrestore(&dev->event_lock, flags);
2972
2973         return pending;
2974 }
2975
2976 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2977 {
2978         struct drm_device *dev = crtc->dev;
2979         struct drm_i915_private *dev_priv = dev->dev_private;
2980
2981         if (crtc->fb == NULL)
2982                 return;
2983
2984         wait_event(dev_priv->pending_flip_queue,
2985                    !intel_crtc_has_pending_flip(crtc));
2986
2987         mutex_lock(&dev->struct_mutex);
2988         intel_finish_fb(crtc->fb);
2989         mutex_unlock(&dev->struct_mutex);
2990 }
2991
2992 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2993 {
2994         struct drm_device *dev = crtc->dev;
2995         struct intel_encoder *intel_encoder;
2996
2997         /*
2998          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2999          * must be driven by its own crtc; no sharing is possible.
3000          */
3001         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3002                 switch (intel_encoder->type) {
3003                 case INTEL_OUTPUT_EDP:
3004                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
3005                                 return false;
3006                         continue;
3007                 }
3008         }
3009
3010         return true;
3011 }
3012
3013 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3014 {
3015         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3016 }
3017
3018 /* Program iCLKIP clock to the desired frequency */
3019 static void lpt_program_iclkip(struct drm_crtc *crtc)
3020 {
3021         struct drm_device *dev = crtc->dev;
3022         struct drm_i915_private *dev_priv = dev->dev_private;
3023         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3024         u32 temp;
3025
3026         /* It is necessary to ungate the pixclk gate prior to programming
3027          * the divisors, and gate it back when it is done.
3028          */
3029         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3030
3031         /* Disable SSCCTL */
3032         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3033                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3034                                         SBI_SSCCTL_DISABLE);
3035
3036         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3037         if (crtc->mode.clock == 20000) {
3038                 auxdiv = 1;
3039                 divsel = 0x41;
3040                 phaseinc = 0x20;
3041         } else {
3042                 /* The iCLK virtual clock root frequency is in MHz,
3043                  * but the crtc->mode.clock in in KHz. To get the divisors,
3044                  * it is necessary to divide one by another, so we
3045                  * convert the virtual clock precision to KHz here for higher
3046                  * precision.
3047                  */
3048                 u32 iclk_virtual_root_freq = 172800 * 1000;
3049                 u32 iclk_pi_range = 64;
3050                 u32 desired_divisor, msb_divisor_value, pi_value;
3051
3052                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3053                 msb_divisor_value = desired_divisor / iclk_pi_range;
3054                 pi_value = desired_divisor % iclk_pi_range;
3055
3056                 auxdiv = 0;
3057                 divsel = msb_divisor_value - 2;
3058                 phaseinc = pi_value;
3059         }
3060
3061         /* This should not happen with any sane values */
3062         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3063                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3064         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3065                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3066
3067         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3068                         crtc->mode.clock,
3069                         auxdiv,
3070                         divsel,
3071                         phasedir,
3072                         phaseinc);
3073
3074         /* Program SSCDIVINTPHASE6 */
3075         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3076         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3077         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3078         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3079         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3080         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3081         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3082
3083         intel_sbi_write(dev_priv,
3084                         SBI_SSCDIVINTPHASE6,
3085                         temp);
3086
3087         /* Program SSCAUXDIV */
3088         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3089         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3090         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3091         intel_sbi_write(dev_priv,
3092                         SBI_SSCAUXDIV6,
3093                         temp);
3094
3095
3096         /* Enable modulator and associated divider */
3097         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3098         temp &= ~SBI_SSCCTL_DISABLE;
3099         intel_sbi_write(dev_priv,
3100                         SBI_SSCCTL6,
3101                         temp);
3102
3103         /* Wait for initialization time */
3104         udelay(24);
3105
3106         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3107 }
3108
3109 /*
3110  * Enable PCH resources required for PCH ports:
3111  *   - PCH PLLs
3112  *   - FDI training & RX/TX
3113  *   - update transcoder timings
3114  *   - DP transcoding bits
3115  *   - transcoder
3116  */
3117 static void ironlake_pch_enable(struct drm_crtc *crtc)
3118 {
3119         struct drm_device *dev = crtc->dev;
3120         struct drm_i915_private *dev_priv = dev->dev_private;
3121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3122         int pipe = intel_crtc->pipe;
3123         u32 reg, temp;
3124
3125         assert_transcoder_disabled(dev_priv, pipe);
3126
3127         /* Write the TU size bits before fdi link training, so that error
3128          * detection works. */
3129         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3130                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3131
3132         /* For PCH output, training FDI link */
3133         dev_priv->display.fdi_link_train(crtc);
3134
3135         /* XXX: pch pll's can be enabled any time before we enable the PCH
3136          * transcoder, and we actually should do this to not upset any PCH
3137          * transcoder that already use the clock when we share it.
3138          *
3139          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3140          * unconditionally resets the pll - we need that to have the right LVDS
3141          * enable sequence. */
3142         ironlake_enable_pch_pll(intel_crtc);
3143
3144         if (HAS_PCH_CPT(dev)) {
3145                 u32 sel;
3146
3147                 temp = I915_READ(PCH_DPLL_SEL);
3148                 switch (pipe) {
3149                 default:
3150                 case 0:
3151                         temp |= TRANSA_DPLL_ENABLE;
3152                         sel = TRANSA_DPLLB_SEL;
3153                         break;
3154                 case 1:
3155                         temp |= TRANSB_DPLL_ENABLE;
3156                         sel = TRANSB_DPLLB_SEL;
3157                         break;
3158                 case 2:
3159                         temp |= TRANSC_DPLL_ENABLE;
3160                         sel = TRANSC_DPLLB_SEL;
3161                         break;
3162                 }
3163                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3164                         temp |= sel;
3165                 else
3166                         temp &= ~sel;
3167                 I915_WRITE(PCH_DPLL_SEL, temp);
3168         }
3169
3170         /* set transcoder timing, panel must allow it */
3171         assert_panel_unlocked(dev_priv, pipe);
3172         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3173         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3174         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3175
3176         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3177         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3178         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3179         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3180
3181         intel_fdi_normal_train(crtc);
3182
3183         /* For PCH DP, enable TRANS_DP_CTL */
3184         if (HAS_PCH_CPT(dev) &&
3185             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3186              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3187                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3188                 reg = TRANS_DP_CTL(pipe);
3189                 temp = I915_READ(reg);
3190                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3191                           TRANS_DP_SYNC_MASK |
3192                           TRANS_DP_BPC_MASK);
3193                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3194                          TRANS_DP_ENH_FRAMING);
3195                 temp |= bpc << 9; /* same format but at 11:9 */
3196
3197                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3198                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3199                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3200                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3201
3202                 switch (intel_trans_dp_port_sel(crtc)) {
3203                 case PCH_DP_B:
3204                         temp |= TRANS_DP_PORT_SEL_B;
3205                         break;
3206                 case PCH_DP_C:
3207                         temp |= TRANS_DP_PORT_SEL_C;
3208                         break;
3209                 case PCH_DP_D:
3210                         temp |= TRANS_DP_PORT_SEL_D;
3211                         break;
3212                 default:
3213                         BUG();
3214                 }
3215
3216                 I915_WRITE(reg, temp);
3217         }
3218
3219         ironlake_enable_pch_transcoder(dev_priv, pipe);
3220 }
3221
3222 static void lpt_pch_enable(struct drm_crtc *crtc)
3223 {
3224         struct drm_device *dev = crtc->dev;
3225         struct drm_i915_private *dev_priv = dev->dev_private;
3226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3227         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3228
3229         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3230
3231         lpt_program_iclkip(crtc);
3232
3233         /* Set transcoder timing. */
3234         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3235         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3236         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3237
3238         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3239         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3240         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3241         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3242
3243         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3244 }
3245
3246 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3247 {
3248         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3249
3250         if (pll == NULL)
3251                 return;
3252
3253         if (pll->refcount == 0) {
3254                 WARN(1, "bad PCH PLL refcount\n");
3255                 return;
3256         }
3257
3258         --pll->refcount;
3259         intel_crtc->pch_pll = NULL;
3260 }
3261
3262 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3263 {
3264         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3265         struct intel_pch_pll *pll;
3266         int i;
3267
3268         pll = intel_crtc->pch_pll;
3269         if (pll) {
3270                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3271                               intel_crtc->base.base.id, pll->pll_reg);
3272                 goto prepare;
3273         }
3274
3275         if (HAS_PCH_IBX(dev_priv->dev)) {
3276                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3277                 i = intel_crtc->pipe;
3278                 pll = &dev_priv->pch_plls[i];
3279
3280                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3281                               intel_crtc->base.base.id, pll->pll_reg);
3282
3283                 goto found;
3284         }
3285
3286         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3287                 pll = &dev_priv->pch_plls[i];
3288
3289                 /* Only want to check enabled timings first */
3290                 if (pll->refcount == 0)
3291                         continue;
3292
3293                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3294                     fp == I915_READ(pll->fp0_reg)) {
3295                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3296                                       intel_crtc->base.base.id,
3297                                       pll->pll_reg, pll->refcount, pll->active);
3298
3299                         goto found;
3300                 }
3301         }
3302
3303         /* Ok no matching timings, maybe there's a free one? */
3304         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3305                 pll = &dev_priv->pch_plls[i];
3306                 if (pll->refcount == 0) {
3307                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3308                                       intel_crtc->base.base.id, pll->pll_reg);
3309                         goto found;
3310                 }
3311         }
3312
3313         return NULL;
3314
3315 found:
3316         intel_crtc->pch_pll = pll;
3317         pll->refcount++;
3318         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3319 prepare: /* separate function? */
3320         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3321
3322         /* Wait for the clocks to stabilize before rewriting the regs */
3323         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3324         POSTING_READ(pll->pll_reg);
3325         udelay(150);
3326
3327         I915_WRITE(pll->fp0_reg, fp);
3328         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3329         pll->on = false;
3330         return pll;
3331 }
3332
3333 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3334 {
3335         struct drm_i915_private *dev_priv = dev->dev_private;
3336         int dslreg = PIPEDSL(pipe);
3337         u32 temp;
3338
3339         temp = I915_READ(dslreg);
3340         udelay(500);
3341         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3342                 if (wait_for(I915_READ(dslreg) != temp, 5))
3343                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3344         }
3345 }
3346
3347 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3348 {
3349         struct drm_device *dev = crtc->dev;
3350         struct drm_i915_private *dev_priv = dev->dev_private;
3351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3352         struct intel_encoder *encoder;
3353         int pipe = intel_crtc->pipe;
3354         int plane = intel_crtc->plane;
3355         u32 temp;
3356         bool is_pch_port;
3357
3358         WARN_ON(!crtc->enabled);
3359
3360         if (intel_crtc->active)
3361                 return;
3362
3363         intel_crtc->active = true;
3364         intel_update_watermarks(dev);
3365
3366         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3367                 temp = I915_READ(PCH_LVDS);
3368                 if ((temp & LVDS_PORT_EN) == 0)
3369                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3370         }
3371
3372         is_pch_port = ironlake_crtc_driving_pch(crtc);
3373
3374         if (is_pch_port) {
3375                 /* Note: FDI PLL enabling _must_ be done before we enable the
3376                  * cpu pipes, hence this is separate from all the other fdi/pch
3377                  * enabling. */
3378                 ironlake_fdi_pll_enable(intel_crtc);
3379         } else {
3380                 assert_fdi_tx_disabled(dev_priv, pipe);
3381                 assert_fdi_rx_disabled(dev_priv, pipe);
3382         }
3383
3384         for_each_encoder_on_crtc(dev, crtc, encoder)
3385                 if (encoder->pre_enable)
3386                         encoder->pre_enable(encoder);
3387
3388         /* Enable panel fitting for LVDS */
3389         if (dev_priv->pch_pf_size &&
3390             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3391              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3392                 /* Force use of hard-coded filter coefficients
3393                  * as some pre-programmed values are broken,
3394                  * e.g. x201.
3395                  */
3396                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3397                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3398                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3399         }
3400
3401         /*
3402          * On ILK+ LUT must be loaded before the pipe is running but with
3403          * clocks enabled
3404          */
3405         intel_crtc_load_lut(crtc);
3406
3407         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3408         intel_enable_plane(dev_priv, plane, pipe);
3409
3410         if (is_pch_port)
3411                 ironlake_pch_enable(crtc);
3412
3413         mutex_lock(&dev->struct_mutex);
3414         intel_update_fbc(dev);
3415         mutex_unlock(&dev->struct_mutex);
3416
3417         intel_crtc_update_cursor(crtc, true);
3418
3419         for_each_encoder_on_crtc(dev, crtc, encoder)
3420                 encoder->enable(encoder);
3421
3422         if (HAS_PCH_CPT(dev))
3423                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3424
3425         /*
3426          * There seems to be a race in PCH platform hw (at least on some
3427          * outputs) where an enabled pipe still completes any pageflip right
3428          * away (as if the pipe is off) instead of waiting for vblank. As soon
3429          * as the first vblank happend, everything works as expected. Hence just
3430          * wait for one vblank before returning to avoid strange things
3431          * happening.
3432          */
3433         intel_wait_for_vblank(dev, intel_crtc->pipe);
3434 }
3435
3436 static void haswell_crtc_enable(struct drm_crtc *crtc)
3437 {
3438         struct drm_device *dev = crtc->dev;
3439         struct drm_i915_private *dev_priv = dev->dev_private;
3440         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3441         struct intel_encoder *encoder;
3442         int pipe = intel_crtc->pipe;
3443         int plane = intel_crtc->plane;
3444         bool is_pch_port;
3445
3446         WARN_ON(!crtc->enabled);
3447
3448         if (intel_crtc->active)
3449                 return;
3450
3451         intel_crtc->active = true;
3452         intel_update_watermarks(dev);
3453
3454         is_pch_port = haswell_crtc_driving_pch(crtc);
3455
3456         if (is_pch_port)
3457                 dev_priv->display.fdi_link_train(crtc);
3458
3459         for_each_encoder_on_crtc(dev, crtc, encoder)
3460                 if (encoder->pre_enable)
3461                         encoder->pre_enable(encoder);
3462
3463         intel_ddi_enable_pipe_clock(intel_crtc);
3464
3465         /* Enable panel fitting for eDP */
3466         if (dev_priv->pch_pf_size &&
3467             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3468                 /* Force use of hard-coded filter coefficients
3469                  * as some pre-programmed values are broken,
3470                  * e.g. x201.
3471                  */
3472                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3473                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3474                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3475         }
3476
3477         /*
3478          * On ILK+ LUT must be loaded before the pipe is running but with
3479          * clocks enabled
3480          */
3481         intel_crtc_load_lut(crtc);
3482
3483         intel_ddi_set_pipe_settings(crtc);
3484         intel_ddi_enable_pipe_func(crtc);
3485
3486         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3487         intel_enable_plane(dev_priv, plane, pipe);
3488
3489         if (is_pch_port)
3490                 lpt_pch_enable(crtc);
3491
3492         mutex_lock(&dev->struct_mutex);
3493         intel_update_fbc(dev);
3494         mutex_unlock(&dev->struct_mutex);
3495
3496         intel_crtc_update_cursor(crtc, true);
3497
3498         for_each_encoder_on_crtc(dev, crtc, encoder)
3499                 encoder->enable(encoder);
3500
3501         /*
3502          * There seems to be a race in PCH platform hw (at least on some
3503          * outputs) where an enabled pipe still completes any pageflip right
3504          * away (as if the pipe is off) instead of waiting for vblank. As soon
3505          * as the first vblank happend, everything works as expected. Hence just
3506          * wait for one vblank before returning to avoid strange things
3507          * happening.
3508          */
3509         intel_wait_for_vblank(dev, intel_crtc->pipe);
3510 }
3511
3512 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3513 {
3514         struct drm_device *dev = crtc->dev;
3515         struct drm_i915_private *dev_priv = dev->dev_private;
3516         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517         struct intel_encoder *encoder;
3518         int pipe = intel_crtc->pipe;
3519         int plane = intel_crtc->plane;
3520         u32 reg, temp;
3521
3522
3523         if (!intel_crtc->active)
3524                 return;
3525
3526         for_each_encoder_on_crtc(dev, crtc, encoder)
3527                 encoder->disable(encoder);
3528
3529         intel_crtc_wait_for_pending_flips(crtc);
3530         drm_vblank_off(dev, pipe);
3531         intel_crtc_update_cursor(crtc, false);
3532
3533         intel_disable_plane(dev_priv, plane, pipe);
3534
3535         if (dev_priv->cfb_plane == plane)
3536                 intel_disable_fbc(dev);
3537
3538         intel_disable_pipe(dev_priv, pipe);
3539
3540         /* Disable PF */
3541         I915_WRITE(PF_CTL(pipe), 0);
3542         I915_WRITE(PF_WIN_SZ(pipe), 0);
3543
3544         for_each_encoder_on_crtc(dev, crtc, encoder)
3545                 if (encoder->post_disable)
3546                         encoder->post_disable(encoder);
3547
3548         ironlake_fdi_disable(crtc);
3549
3550         ironlake_disable_pch_transcoder(dev_priv, pipe);
3551
3552         if (HAS_PCH_CPT(dev)) {
3553                 /* disable TRANS_DP_CTL */
3554                 reg = TRANS_DP_CTL(pipe);
3555                 temp = I915_READ(reg);
3556                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3557                 temp |= TRANS_DP_PORT_SEL_NONE;
3558                 I915_WRITE(reg, temp);
3559
3560                 /* disable DPLL_SEL */
3561                 temp = I915_READ(PCH_DPLL_SEL);
3562                 switch (pipe) {
3563                 case 0:
3564                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3565                         break;
3566                 case 1:
3567                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3568                         break;
3569                 case 2:
3570                         /* C shares PLL A or B */
3571                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3572                         break;
3573                 default:
3574                         BUG(); /* wtf */
3575                 }
3576                 I915_WRITE(PCH_DPLL_SEL, temp);
3577         }
3578
3579         /* disable PCH DPLL */
3580         intel_disable_pch_pll(intel_crtc);
3581
3582         ironlake_fdi_pll_disable(intel_crtc);
3583
3584         intel_crtc->active = false;
3585         intel_update_watermarks(dev);
3586
3587         mutex_lock(&dev->struct_mutex);
3588         intel_update_fbc(dev);
3589         mutex_unlock(&dev->struct_mutex);
3590 }
3591
3592 static void haswell_crtc_disable(struct drm_crtc *crtc)
3593 {
3594         struct drm_device *dev = crtc->dev;
3595         struct drm_i915_private *dev_priv = dev->dev_private;
3596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3597         struct intel_encoder *encoder;
3598         int pipe = intel_crtc->pipe;
3599         int plane = intel_crtc->plane;
3600         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3601         bool is_pch_port;
3602
3603         if (!intel_crtc->active)
3604                 return;
3605
3606         is_pch_port = haswell_crtc_driving_pch(crtc);
3607
3608         for_each_encoder_on_crtc(dev, crtc, encoder)
3609                 encoder->disable(encoder);
3610
3611         intel_crtc_wait_for_pending_flips(crtc);
3612         drm_vblank_off(dev, pipe);
3613         intel_crtc_update_cursor(crtc, false);
3614
3615         intel_disable_plane(dev_priv, plane, pipe);
3616
3617         if (dev_priv->cfb_plane == plane)
3618                 intel_disable_fbc(dev);
3619
3620         intel_disable_pipe(dev_priv, pipe);
3621
3622         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3623
3624         /* Disable PF */
3625         I915_WRITE(PF_CTL(pipe), 0);
3626         I915_WRITE(PF_WIN_SZ(pipe), 0);
3627
3628         intel_ddi_disable_pipe_clock(intel_crtc);
3629
3630         for_each_encoder_on_crtc(dev, crtc, encoder)
3631                 if (encoder->post_disable)
3632                         encoder->post_disable(encoder);
3633
3634         if (is_pch_port) {
3635                 ironlake_fdi_disable(crtc);
3636                 lpt_disable_pch_transcoder(dev_priv);
3637                 ironlake_fdi_pll_disable(intel_crtc);
3638         }
3639
3640         intel_crtc->active = false;
3641         intel_update_watermarks(dev);
3642
3643         mutex_lock(&dev->struct_mutex);
3644         intel_update_fbc(dev);
3645         mutex_unlock(&dev->struct_mutex);
3646 }
3647
3648 static void ironlake_crtc_off(struct drm_crtc *crtc)
3649 {
3650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3651         intel_put_pch_pll(intel_crtc);
3652 }
3653
3654 static void haswell_crtc_off(struct drm_crtc *crtc)
3655 {
3656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3657
3658         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3659          * start using it. */
3660         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3661
3662         intel_ddi_put_crtc_pll(crtc);
3663 }
3664
3665 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3666 {
3667         if (!enable && intel_crtc->overlay) {
3668                 struct drm_device *dev = intel_crtc->base.dev;
3669                 struct drm_i915_private *dev_priv = dev->dev_private;
3670
3671                 mutex_lock(&dev->struct_mutex);
3672                 dev_priv->mm.interruptible = false;
3673                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3674                 dev_priv->mm.interruptible = true;
3675                 mutex_unlock(&dev->struct_mutex);
3676         }
3677
3678         /* Let userspace switch the overlay on again. In most cases userspace
3679          * has to recompute where to put it anyway.
3680          */
3681 }
3682
3683 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3684 {
3685         struct drm_device *dev = crtc->dev;
3686         struct drm_i915_private *dev_priv = dev->dev_private;
3687         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3688         struct intel_encoder *encoder;
3689         int pipe = intel_crtc->pipe;
3690         int plane = intel_crtc->plane;
3691
3692         WARN_ON(!crtc->enabled);
3693
3694         if (intel_crtc->active)
3695                 return;
3696
3697         intel_crtc->active = true;
3698         intel_update_watermarks(dev);
3699
3700         intel_enable_pll(dev_priv, pipe);
3701         intel_enable_pipe(dev_priv, pipe, false);
3702         intel_enable_plane(dev_priv, plane, pipe);
3703
3704         intel_crtc_load_lut(crtc);
3705         intel_update_fbc(dev);
3706
3707         /* Give the overlay scaler a chance to enable if it's on this pipe */
3708         intel_crtc_dpms_overlay(intel_crtc, true);
3709         intel_crtc_update_cursor(crtc, true);
3710
3711         for_each_encoder_on_crtc(dev, crtc, encoder)
3712                 encoder->enable(encoder);
3713 }
3714
3715 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3716 {
3717         struct drm_device *dev = crtc->dev;
3718         struct drm_i915_private *dev_priv = dev->dev_private;
3719         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3720         struct intel_encoder *encoder;
3721         int pipe = intel_crtc->pipe;
3722         int plane = intel_crtc->plane;
3723
3724
3725         if (!intel_crtc->active)
3726                 return;
3727
3728         for_each_encoder_on_crtc(dev, crtc, encoder)
3729                 encoder->disable(encoder);
3730
3731         /* Give the overlay scaler a chance to disable if it's on this pipe */
3732         intel_crtc_wait_for_pending_flips(crtc);
3733         drm_vblank_off(dev, pipe);
3734         intel_crtc_dpms_overlay(intel_crtc, false);
3735         intel_crtc_update_cursor(crtc, false);
3736
3737         if (dev_priv->cfb_plane == plane)
3738                 intel_disable_fbc(dev);
3739
3740         intel_disable_plane(dev_priv, plane, pipe);
3741         intel_disable_pipe(dev_priv, pipe);
3742         intel_disable_pll(dev_priv, pipe);
3743
3744         intel_crtc->active = false;
3745         intel_update_fbc(dev);
3746         intel_update_watermarks(dev);
3747 }
3748
3749 static void i9xx_crtc_off(struct drm_crtc *crtc)
3750 {
3751 }
3752
3753 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3754                                     bool enabled)
3755 {
3756         struct drm_device *dev = crtc->dev;
3757         struct drm_i915_master_private *master_priv;
3758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3759         int pipe = intel_crtc->pipe;
3760
3761         if (!dev->primary->master)
3762                 return;
3763
3764         master_priv = dev->primary->master->driver_priv;
3765         if (!master_priv->sarea_priv)
3766                 return;
3767
3768         switch (pipe) {
3769         case 0:
3770                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3771                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3772                 break;
3773         case 1:
3774                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3775                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3776                 break;
3777         default:
3778                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3779                 break;
3780         }
3781 }
3782
3783 /**
3784  * Sets the power management mode of the pipe and plane.
3785  */
3786 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3787 {
3788         struct drm_device *dev = crtc->dev;
3789         struct drm_i915_private *dev_priv = dev->dev_private;
3790         struct intel_encoder *intel_encoder;
3791         bool enable = false;
3792
3793         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3794                 enable |= intel_encoder->connectors_active;
3795
3796         if (enable)
3797                 dev_priv->display.crtc_enable(crtc);
3798         else
3799                 dev_priv->display.crtc_disable(crtc);
3800
3801         intel_crtc_update_sarea(crtc, enable);
3802 }
3803
3804 static void intel_crtc_noop(struct drm_crtc *crtc)
3805 {
3806 }
3807
3808 static void intel_crtc_disable(struct drm_crtc *crtc)
3809 {
3810         struct drm_device *dev = crtc->dev;
3811         struct drm_connector *connector;
3812         struct drm_i915_private *dev_priv = dev->dev_private;
3813
3814         /* crtc should still be enabled when we disable it. */
3815         WARN_ON(!crtc->enabled);
3816
3817         dev_priv->display.crtc_disable(crtc);
3818         intel_crtc_update_sarea(crtc, false);
3819         dev_priv->display.off(crtc);
3820
3821         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3822         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3823
3824         if (crtc->fb) {
3825                 mutex_lock(&dev->struct_mutex);
3826                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3827                 mutex_unlock(&dev->struct_mutex);
3828                 crtc->fb = NULL;
3829         }
3830
3831         /* Update computed state. */
3832         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3833                 if (!connector->encoder || !connector->encoder->crtc)
3834                         continue;
3835
3836                 if (connector->encoder->crtc != crtc)
3837                         continue;
3838
3839                 connector->dpms = DRM_MODE_DPMS_OFF;
3840                 to_intel_encoder(connector->encoder)->connectors_active = false;
3841         }
3842 }
3843
3844 void intel_modeset_disable(struct drm_device *dev)
3845 {
3846         struct drm_crtc *crtc;
3847
3848         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3849                 if (crtc->enabled)
3850                         intel_crtc_disable(crtc);
3851         }
3852 }
3853
3854 void intel_encoder_noop(struct drm_encoder *encoder)
3855 {
3856 }
3857
3858 void intel_encoder_destroy(struct drm_encoder *encoder)
3859 {
3860         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3861
3862         drm_encoder_cleanup(encoder);
3863         kfree(intel_encoder);
3864 }
3865
3866 /* Simple dpms helper for encodres with just one connector, no cloning and only
3867  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3868  * state of the entire output pipe. */
3869 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3870 {
3871         if (mode == DRM_MODE_DPMS_ON) {
3872                 encoder->connectors_active = true;
3873
3874                 intel_crtc_update_dpms(encoder->base.crtc);
3875         } else {
3876                 encoder->connectors_active = false;
3877
3878                 intel_crtc_update_dpms(encoder->base.crtc);
3879         }
3880 }
3881
3882 /* Cross check the actual hw state with our own modeset state tracking (and it's
3883  * internal consistency). */
3884 static void intel_connector_check_state(struct intel_connector *connector)
3885 {
3886         if (connector->get_hw_state(connector)) {
3887                 struct intel_encoder *encoder = connector->encoder;
3888                 struct drm_crtc *crtc;
3889                 bool encoder_enabled;
3890                 enum pipe pipe;
3891
3892                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3893                               connector->base.base.id,
3894                               drm_get_connector_name(&connector->base));
3895
3896                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3897                      "wrong connector dpms state\n");
3898                 WARN(connector->base.encoder != &encoder->base,
3899                      "active connector not linked to encoder\n");
3900                 WARN(!encoder->connectors_active,
3901                      "encoder->connectors_active not set\n");
3902
3903                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3904                 WARN(!encoder_enabled, "encoder not enabled\n");
3905                 if (WARN_ON(!encoder->base.crtc))
3906                         return;
3907
3908                 crtc = encoder->base.crtc;
3909
3910                 WARN(!crtc->enabled, "crtc not enabled\n");
3911                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3912                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3913                      "encoder active on the wrong pipe\n");
3914         }
3915 }
3916
3917 /* Even simpler default implementation, if there's really no special case to
3918  * consider. */
3919 void intel_connector_dpms(struct drm_connector *connector, int mode)
3920 {
3921         struct intel_encoder *encoder = intel_attached_encoder(connector);
3922
3923         /* All the simple cases only support two dpms states. */
3924         if (mode != DRM_MODE_DPMS_ON)
3925                 mode = DRM_MODE_DPMS_OFF;
3926
3927         if (mode == connector->dpms)
3928                 return;
3929
3930         connector->dpms = mode;
3931
3932         /* Only need to change hw state when actually enabled */
3933         if (encoder->base.crtc)
3934                 intel_encoder_dpms(encoder, mode);
3935         else
3936                 WARN_ON(encoder->connectors_active != false);
3937
3938         intel_modeset_check_state(connector->dev);
3939 }
3940
3941 /* Simple connector->get_hw_state implementation for encoders that support only
3942  * one connector and no cloning and hence the encoder state determines the state
3943  * of the connector. */
3944 bool intel_connector_get_hw_state(struct intel_connector *connector)
3945 {
3946         enum pipe pipe = 0;
3947         struct intel_encoder *encoder = connector->encoder;
3948
3949         return encoder->get_hw_state(encoder, &pipe);
3950 }
3951
3952 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3953                                   const struct drm_display_mode *mode,
3954                                   struct drm_display_mode *adjusted_mode)
3955 {
3956         struct drm_device *dev = crtc->dev;
3957
3958         if (HAS_PCH_SPLIT(dev)) {
3959                 /* FDI link clock is fixed at 2.7G */
3960                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3961                         return false;
3962         }
3963
3964         /* All interlaced capable intel hw wants timings in frames. Note though
3965          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3966          * timings, so we need to be careful not to clobber these.*/
3967         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3968                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3969
3970         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3971          * with a hsync front porch of 0.
3972          */
3973         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3974                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3975                 return false;
3976
3977         return true;
3978 }
3979
3980 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3981 {
3982         return 400000; /* FIXME */
3983 }
3984
3985 static int i945_get_display_clock_speed(struct drm_device *dev)
3986 {
3987         return 400000;
3988 }
3989
3990 static int i915_get_display_clock_speed(struct drm_device *dev)
3991 {
3992         return 333000;
3993 }
3994
3995 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3996 {
3997         return 200000;
3998 }
3999
4000 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4001 {
4002         u16 gcfgc = 0;
4003
4004         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4005
4006         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4007                 return 133000;
4008         else {
4009                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4010                 case GC_DISPLAY_CLOCK_333_MHZ:
4011                         return 333000;
4012                 default:
4013                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4014                         return 190000;
4015                 }
4016         }
4017 }
4018
4019 static int i865_get_display_clock_speed(struct drm_device *dev)
4020 {
4021         return 266000;
4022 }
4023
4024 static int i855_get_display_clock_speed(struct drm_device *dev)
4025 {
4026         u16 hpllcc = 0;
4027         /* Assume that the hardware is in the high speed state.  This
4028          * should be the default.
4029          */
4030         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4031         case GC_CLOCK_133_200:
4032         case GC_CLOCK_100_200:
4033                 return 200000;
4034         case GC_CLOCK_166_250:
4035                 return 250000;
4036         case GC_CLOCK_100_133:
4037                 return 133000;
4038         }
4039
4040         /* Shouldn't happen */
4041         return 0;
4042 }
4043
4044 static int i830_get_display_clock_speed(struct drm_device *dev)
4045 {
4046         return 133000;
4047 }
4048
4049 struct fdi_m_n {
4050         u32        tu;
4051         u32        gmch_m;
4052         u32        gmch_n;
4053         u32        link_m;
4054         u32        link_n;
4055 };
4056
4057 static void
4058 fdi_reduce_ratio(u32 *num, u32 *den)
4059 {
4060         while (*num > 0xffffff || *den > 0xffffff) {
4061                 *num >>= 1;
4062                 *den >>= 1;
4063         }
4064 }
4065
4066 static void
4067 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4068                      int link_clock, struct fdi_m_n *m_n)
4069 {
4070         m_n->tu = 64; /* default size */
4071
4072         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4073         m_n->gmch_m = bits_per_pixel * pixel_clock;
4074         m_n->gmch_n = link_clock * nlanes * 8;
4075         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4076
4077         m_n->link_m = pixel_clock;
4078         m_n->link_n = link_clock;
4079         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4080 }
4081
4082 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4083 {
4084         if (i915_panel_use_ssc >= 0)
4085                 return i915_panel_use_ssc != 0;
4086         return dev_priv->lvds_use_ssc
4087                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4088 }
4089
4090 /**
4091  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4092  * @crtc: CRTC structure
4093  * @mode: requested mode
4094  *
4095  * A pipe may be connected to one or more outputs.  Based on the depth of the
4096  * attached framebuffer, choose a good color depth to use on the pipe.
4097  *
4098  * If possible, match the pipe depth to the fb depth.  In some cases, this
4099  * isn't ideal, because the connected output supports a lesser or restricted
4100  * set of depths.  Resolve that here:
4101  *    LVDS typically supports only 6bpc, so clamp down in that case
4102  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4103  *    Displays may support a restricted set as well, check EDID and clamp as
4104  *      appropriate.
4105  *    DP may want to dither down to 6bpc to fit larger modes
4106  *
4107  * RETURNS:
4108  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4109  * true if they don't match).
4110  */
4111 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4112                                          struct drm_framebuffer *fb,
4113                                          unsigned int *pipe_bpp,
4114                                          struct drm_display_mode *mode)
4115 {
4116         struct drm_device *dev = crtc->dev;
4117         struct drm_i915_private *dev_priv = dev->dev_private;
4118         struct drm_connector *connector;
4119         struct intel_encoder *intel_encoder;
4120         unsigned int display_bpc = UINT_MAX, bpc;
4121
4122         /* Walk the encoders & connectors on this crtc, get min bpc */
4123         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4124
4125                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4126                         unsigned int lvds_bpc;
4127
4128                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4129                             LVDS_A3_POWER_UP)
4130                                 lvds_bpc = 8;
4131                         else
4132                                 lvds_bpc = 6;
4133
4134                         if (lvds_bpc < display_bpc) {
4135                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4136                                 display_bpc = lvds_bpc;
4137                         }
4138                         continue;
4139                 }
4140
4141                 /* Not one of the known troublemakers, check the EDID */
4142                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4143                                     head) {
4144                         if (connector->encoder != &intel_encoder->base)
4145                                 continue;
4146
4147                         /* Don't use an invalid EDID bpc value */
4148                         if (connector->display_info.bpc &&
4149                             connector->display_info.bpc < display_bpc) {
4150                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4151                                 display_bpc = connector->display_info.bpc;
4152                         }
4153                 }
4154
4155                 /*
4156                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4157                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4158                  */
4159                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4160                         if (display_bpc > 8 && display_bpc < 12) {
4161                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4162                                 display_bpc = 12;
4163                         } else {
4164                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4165                                 display_bpc = 8;
4166                         }
4167                 }
4168         }
4169
4170         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4171                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4172                 display_bpc = 6;
4173         }
4174
4175         /*
4176          * We could just drive the pipe at the highest bpc all the time and
4177          * enable dithering as needed, but that costs bandwidth.  So choose
4178          * the minimum value that expresses the full color range of the fb but
4179          * also stays within the max display bpc discovered above.
4180          */
4181
4182         switch (fb->depth) {
4183         case 8:
4184                 bpc = 8; /* since we go through a colormap */
4185                 break;
4186         case 15:
4187         case 16:
4188                 bpc = 6; /* min is 18bpp */
4189                 break;
4190         case 24:
4191                 bpc = 8;
4192                 break;
4193         case 30:
4194                 bpc = 10;
4195                 break;
4196         case 48:
4197                 bpc = 12;
4198                 break;
4199         default:
4200                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4201                 bpc = min((unsigned int)8, display_bpc);
4202                 break;
4203         }
4204
4205         display_bpc = min(display_bpc, bpc);
4206
4207         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4208                       bpc, display_bpc);
4209
4210         *pipe_bpp = display_bpc * 3;
4211
4212         return display_bpc != bpc;
4213 }
4214
4215 static int vlv_get_refclk(struct drm_crtc *crtc)
4216 {
4217         struct drm_device *dev = crtc->dev;
4218         struct drm_i915_private *dev_priv = dev->dev_private;
4219         int refclk = 27000; /* for DP & HDMI */
4220
4221         return 100000; /* only one validated so far */
4222
4223         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4224                 refclk = 96000;
4225         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4226                 if (intel_panel_use_ssc(dev_priv))
4227                         refclk = 100000;
4228                 else
4229                         refclk = 96000;
4230         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4231                 refclk = 100000;
4232         }
4233
4234         return refclk;
4235 }
4236
4237 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4238 {
4239         struct drm_device *dev = crtc->dev;
4240         struct drm_i915_private *dev_priv = dev->dev_private;
4241         int refclk;
4242
4243         if (IS_VALLEYVIEW(dev)) {
4244                 refclk = vlv_get_refclk(crtc);
4245         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4246             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4247                 refclk = dev_priv->lvds_ssc_freq * 1000;
4248                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4249                               refclk / 1000);
4250         } else if (!IS_GEN2(dev)) {
4251                 refclk = 96000;
4252         } else {
4253                 refclk = 48000;
4254         }
4255
4256         return refclk;
4257 }
4258
4259 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4260                                       intel_clock_t *clock)
4261 {
4262         /* SDVO TV has fixed PLL values depend on its clock range,
4263            this mirrors vbios setting. */
4264         if (adjusted_mode->clock >= 100000
4265             && adjusted_mode->clock < 140500) {
4266                 clock->p1 = 2;
4267                 clock->p2 = 10;
4268                 clock->n = 3;
4269                 clock->m1 = 16;
4270                 clock->m2 = 8;
4271         } else if (adjusted_mode->clock >= 140500
4272                    && adjusted_mode->clock <= 200000) {
4273                 clock->p1 = 1;
4274                 clock->p2 = 10;
4275                 clock->n = 6;
4276                 clock->m1 = 12;
4277                 clock->m2 = 8;
4278         }
4279 }
4280
4281 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4282                                      intel_clock_t *clock,
4283                                      intel_clock_t *reduced_clock)
4284 {
4285         struct drm_device *dev = crtc->dev;
4286         struct drm_i915_private *dev_priv = dev->dev_private;
4287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4288         int pipe = intel_crtc->pipe;
4289         u32 fp, fp2 = 0;
4290
4291         if (IS_PINEVIEW(dev)) {
4292                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4293                 if (reduced_clock)
4294                         fp2 = (1 << reduced_clock->n) << 16 |
4295                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4296         } else {
4297                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4298                 if (reduced_clock)
4299                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4300                                 reduced_clock->m2;
4301         }
4302
4303         I915_WRITE(FP0(pipe), fp);
4304
4305         intel_crtc->lowfreq_avail = false;
4306         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4307             reduced_clock && i915_powersave) {
4308                 I915_WRITE(FP1(pipe), fp2);
4309                 intel_crtc->lowfreq_avail = true;
4310         } else {
4311                 I915_WRITE(FP1(pipe), fp);
4312         }
4313 }
4314
4315 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4316                               struct drm_display_mode *adjusted_mode)
4317 {
4318         struct drm_device *dev = crtc->dev;
4319         struct drm_i915_private *dev_priv = dev->dev_private;
4320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4321         int pipe = intel_crtc->pipe;
4322         u32 temp;
4323
4324         temp = I915_READ(LVDS);
4325         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4326         if (pipe == 1) {
4327                 temp |= LVDS_PIPEB_SELECT;
4328         } else {
4329                 temp &= ~LVDS_PIPEB_SELECT;
4330         }
4331         /* set the corresponsding LVDS_BORDER bit */
4332         temp |= dev_priv->lvds_border_bits;
4333         /* Set the B0-B3 data pairs corresponding to whether we're going to
4334          * set the DPLLs for dual-channel mode or not.
4335          */
4336         if (clock->p2 == 7)
4337                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4338         else
4339                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4340
4341         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4342          * appropriately here, but we need to look more thoroughly into how
4343          * panels behave in the two modes.
4344          */
4345         /* set the dithering flag on LVDS as needed */
4346         if (INTEL_INFO(dev)->gen >= 4) {
4347                 if (dev_priv->lvds_dither)
4348                         temp |= LVDS_ENABLE_DITHER;
4349                 else
4350                         temp &= ~LVDS_ENABLE_DITHER;
4351         }
4352         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4353         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4354                 temp |= LVDS_HSYNC_POLARITY;
4355         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4356                 temp |= LVDS_VSYNC_POLARITY;
4357         I915_WRITE(LVDS, temp);
4358 }
4359
4360 static void vlv_update_pll(struct drm_crtc *crtc,
4361                            struct drm_display_mode *mode,
4362                            struct drm_display_mode *adjusted_mode,
4363                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4364                            int num_connectors)
4365 {
4366         struct drm_device *dev = crtc->dev;
4367         struct drm_i915_private *dev_priv = dev->dev_private;
4368         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4369         int pipe = intel_crtc->pipe;
4370         u32 dpll, mdiv, pdiv;
4371         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4372         bool is_sdvo;
4373         u32 temp;
4374
4375         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4376                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4377
4378         dpll = DPLL_VGA_MODE_DIS;
4379         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4380         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4381         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4382
4383         I915_WRITE(DPLL(pipe), dpll);
4384         POSTING_READ(DPLL(pipe));
4385
4386         bestn = clock->n;
4387         bestm1 = clock->m1;
4388         bestm2 = clock->m2;
4389         bestp1 = clock->p1;
4390         bestp2 = clock->p2;
4391
4392         /*
4393          * In Valleyview PLL and program lane counter registers are exposed
4394          * through DPIO interface
4395          */
4396         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4397         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4398         mdiv |= ((bestn << DPIO_N_SHIFT));
4399         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4400         mdiv |= (1 << DPIO_K_SHIFT);
4401         mdiv |= DPIO_ENABLE_CALIBRATION;
4402         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4403
4404         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4405
4406         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4407                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4408                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4409                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4410         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4411
4412         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4413
4414         dpll |= DPLL_VCO_ENABLE;
4415         I915_WRITE(DPLL(pipe), dpll);
4416         POSTING_READ(DPLL(pipe));
4417         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4418                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4419
4420         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4421
4422         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4423                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4424
4425         I915_WRITE(DPLL(pipe), dpll);
4426
4427         /* Wait for the clocks to stabilize. */
4428         POSTING_READ(DPLL(pipe));
4429         udelay(150);
4430
4431         temp = 0;
4432         if (is_sdvo) {
4433                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4434                 if (temp > 1)
4435                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4436                 else
4437                         temp = 0;
4438         }
4439         I915_WRITE(DPLL_MD(pipe), temp);
4440         POSTING_READ(DPLL_MD(pipe));
4441
4442         /* Now program lane control registers */
4443         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4444                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4445         {
4446                 temp = 0x1000C4;
4447                 if(pipe == 1)
4448                         temp |= (1 << 21);
4449                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4450         }
4451         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4452         {
4453                 temp = 0x1000C4;
4454                 if(pipe == 1)
4455                         temp |= (1 << 21);
4456                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4457         }
4458 }
4459
4460 static void i9xx_update_pll(struct drm_crtc *crtc,
4461                             struct drm_display_mode *mode,
4462                             struct drm_display_mode *adjusted_mode,
4463                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4464                             int num_connectors)
4465 {
4466         struct drm_device *dev = crtc->dev;
4467         struct drm_i915_private *dev_priv = dev->dev_private;
4468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4469         int pipe = intel_crtc->pipe;
4470         u32 dpll;
4471         bool is_sdvo;
4472
4473         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4474
4475         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4476                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4477
4478         dpll = DPLL_VGA_MODE_DIS;
4479
4480         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4481                 dpll |= DPLLB_MODE_LVDS;
4482         else
4483                 dpll |= DPLLB_MODE_DAC_SERIAL;
4484         if (is_sdvo) {
4485                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4486                 if (pixel_multiplier > 1) {
4487                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4488                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4489                 }
4490                 dpll |= DPLL_DVO_HIGH_SPEED;
4491         }
4492         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4493                 dpll |= DPLL_DVO_HIGH_SPEED;
4494
4495         /* compute bitmask from p1 value */
4496         if (IS_PINEVIEW(dev))
4497                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4498         else {
4499                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4500                 if (IS_G4X(dev) && reduced_clock)
4501                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4502         }
4503         switch (clock->p2) {
4504         case 5:
4505                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4506                 break;
4507         case 7:
4508                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4509                 break;
4510         case 10:
4511                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4512                 break;
4513         case 14:
4514                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4515                 break;
4516         }
4517         if (INTEL_INFO(dev)->gen >= 4)
4518                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4519
4520         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4521                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4522         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4523                 /* XXX: just matching BIOS for now */
4524                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4525                 dpll |= 3;
4526         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4527                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4528                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4529         else
4530                 dpll |= PLL_REF_INPUT_DREFCLK;
4531
4532         dpll |= DPLL_VCO_ENABLE;
4533         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4534         POSTING_READ(DPLL(pipe));
4535         udelay(150);
4536
4537         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4538          * This is an exception to the general rule that mode_set doesn't turn
4539          * things on.
4540          */
4541         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4542                 intel_update_lvds(crtc, clock, adjusted_mode);
4543
4544         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4545                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4546
4547         I915_WRITE(DPLL(pipe), dpll);
4548
4549         /* Wait for the clocks to stabilize. */
4550         POSTING_READ(DPLL(pipe));
4551         udelay(150);
4552
4553         if (INTEL_INFO(dev)->gen >= 4) {
4554                 u32 temp = 0;
4555                 if (is_sdvo) {
4556                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4557                         if (temp > 1)
4558                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4559                         else
4560                                 temp = 0;
4561                 }
4562                 I915_WRITE(DPLL_MD(pipe), temp);
4563         } else {
4564                 /* The pixel multiplier can only be updated once the
4565                  * DPLL is enabled and the clocks are stable.
4566                  *
4567                  * So write it again.
4568                  */
4569                 I915_WRITE(DPLL(pipe), dpll);
4570         }
4571 }
4572
4573 static void i8xx_update_pll(struct drm_crtc *crtc,
4574                             struct drm_display_mode *adjusted_mode,
4575                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4576                             int num_connectors)
4577 {
4578         struct drm_device *dev = crtc->dev;
4579         struct drm_i915_private *dev_priv = dev->dev_private;
4580         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4581         int pipe = intel_crtc->pipe;
4582         u32 dpll;
4583
4584         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4585
4586         dpll = DPLL_VGA_MODE_DIS;
4587
4588         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4589                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4590         } else {
4591                 if (clock->p1 == 2)
4592                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4593                 else
4594                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4595                 if (clock->p2 == 4)
4596                         dpll |= PLL_P2_DIVIDE_BY_4;
4597         }
4598
4599         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4600                 /* XXX: just matching BIOS for now */
4601                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4602                 dpll |= 3;
4603         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4604                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4605                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4606         else
4607                 dpll |= PLL_REF_INPUT_DREFCLK;
4608
4609         dpll |= DPLL_VCO_ENABLE;
4610         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4611         POSTING_READ(DPLL(pipe));
4612         udelay(150);
4613
4614         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4615          * This is an exception to the general rule that mode_set doesn't turn
4616          * things on.
4617          */
4618         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4619                 intel_update_lvds(crtc, clock, adjusted_mode);
4620
4621         I915_WRITE(DPLL(pipe), dpll);
4622
4623         /* Wait for the clocks to stabilize. */
4624         POSTING_READ(DPLL(pipe));
4625         udelay(150);
4626
4627         /* The pixel multiplier can only be updated once the
4628          * DPLL is enabled and the clocks are stable.
4629          *
4630          * So write it again.
4631          */
4632         I915_WRITE(DPLL(pipe), dpll);
4633 }
4634
4635 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4636                                    struct drm_display_mode *mode,
4637                                    struct drm_display_mode *adjusted_mode)
4638 {
4639         struct drm_device *dev = intel_crtc->base.dev;
4640         struct drm_i915_private *dev_priv = dev->dev_private;
4641         enum pipe pipe = intel_crtc->pipe;
4642         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4643         uint32_t vsyncshift;
4644
4645         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4646                 /* the chip adds 2 halflines automatically */
4647                 adjusted_mode->crtc_vtotal -= 1;
4648                 adjusted_mode->crtc_vblank_end -= 1;
4649                 vsyncshift = adjusted_mode->crtc_hsync_start
4650                              - adjusted_mode->crtc_htotal / 2;
4651         } else {
4652                 vsyncshift = 0;
4653         }
4654
4655         if (INTEL_INFO(dev)->gen > 3)
4656                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4657
4658         I915_WRITE(HTOTAL(cpu_transcoder),
4659                    (adjusted_mode->crtc_hdisplay - 1) |
4660                    ((adjusted_mode->crtc_htotal - 1) << 16));
4661         I915_WRITE(HBLANK(cpu_transcoder),
4662                    (adjusted_mode->crtc_hblank_start - 1) |
4663                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4664         I915_WRITE(HSYNC(cpu_transcoder),
4665                    (adjusted_mode->crtc_hsync_start - 1) |
4666                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4667
4668         I915_WRITE(VTOTAL(cpu_transcoder),
4669                    (adjusted_mode->crtc_vdisplay - 1) |
4670                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4671         I915_WRITE(VBLANK(cpu_transcoder),
4672                    (adjusted_mode->crtc_vblank_start - 1) |
4673                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4674         I915_WRITE(VSYNC(cpu_transcoder),
4675                    (adjusted_mode->crtc_vsync_start - 1) |
4676                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4677
4678         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4679          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4680          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4681          * bits. */
4682         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4683             (pipe == PIPE_B || pipe == PIPE_C))
4684                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4685
4686         /* pipesrc controls the size that is scaled from, which should
4687          * always be the user's requested size.
4688          */
4689         I915_WRITE(PIPESRC(pipe),
4690                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4691 }
4692
4693 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4694                               struct drm_display_mode *mode,
4695                               struct drm_display_mode *adjusted_mode,
4696                               int x, int y,
4697                               struct drm_framebuffer *fb)
4698 {
4699         struct drm_device *dev = crtc->dev;
4700         struct drm_i915_private *dev_priv = dev->dev_private;
4701         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4702         int pipe = intel_crtc->pipe;
4703         int plane = intel_crtc->plane;
4704         int refclk, num_connectors = 0;
4705         intel_clock_t clock, reduced_clock;
4706         u32 dspcntr, pipeconf;
4707         bool ok, has_reduced_clock = false, is_sdvo = false;
4708         bool is_lvds = false, is_tv = false, is_dp = false;
4709         struct intel_encoder *encoder;
4710         const intel_limit_t *limit;
4711         int ret;
4712
4713         for_each_encoder_on_crtc(dev, crtc, encoder) {
4714                 switch (encoder->type) {
4715                 case INTEL_OUTPUT_LVDS:
4716                         is_lvds = true;
4717                         break;
4718                 case INTEL_OUTPUT_SDVO:
4719                 case INTEL_OUTPUT_HDMI:
4720                         is_sdvo = true;
4721                         if (encoder->needs_tv_clock)
4722                                 is_tv = true;
4723                         break;
4724                 case INTEL_OUTPUT_TVOUT:
4725                         is_tv = true;
4726                         break;
4727                 case INTEL_OUTPUT_DISPLAYPORT:
4728                         is_dp = true;
4729                         break;
4730                 }
4731
4732                 num_connectors++;
4733         }
4734
4735         refclk = i9xx_get_refclk(crtc, num_connectors);
4736
4737         /*
4738          * Returns a set of divisors for the desired target clock with the given
4739          * refclk, or FALSE.  The returned values represent the clock equation:
4740          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4741          */
4742         limit = intel_limit(crtc, refclk);
4743         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4744                              &clock);
4745         if (!ok) {
4746                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4747                 return -EINVAL;
4748         }
4749
4750         /* Ensure that the cursor is valid for the new mode before changing... */
4751         intel_crtc_update_cursor(crtc, true);
4752
4753         if (is_lvds && dev_priv->lvds_downclock_avail) {
4754                 /*
4755                  * Ensure we match the reduced clock's P to the target clock.
4756                  * If the clocks don't match, we can't switch the display clock
4757                  * by using the FP0/FP1. In such case we will disable the LVDS
4758                  * downclock feature.
4759                 */
4760                 has_reduced_clock = limit->find_pll(limit, crtc,
4761                                                     dev_priv->lvds_downclock,
4762                                                     refclk,
4763                                                     &clock,
4764                                                     &reduced_clock);
4765         }
4766
4767         if (is_sdvo && is_tv)
4768                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4769
4770         if (IS_GEN2(dev))
4771                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4772                                 has_reduced_clock ? &reduced_clock : NULL,
4773                                 num_connectors);
4774         else if (IS_VALLEYVIEW(dev))
4775                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4776                                 has_reduced_clock ? &reduced_clock : NULL,
4777                                 num_connectors);
4778         else
4779                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4780                                 has_reduced_clock ? &reduced_clock : NULL,
4781                                 num_connectors);
4782
4783         /* setup pipeconf */
4784         pipeconf = I915_READ(PIPECONF(pipe));
4785
4786         /* Set up the display plane register */
4787         dspcntr = DISPPLANE_GAMMA_ENABLE;
4788
4789         if (pipe == 0)
4790                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4791         else
4792                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4793
4794         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4795                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4796                  * core speed.
4797                  *
4798                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4799                  * pipe == 0 check?
4800                  */
4801                 if (mode->clock >
4802                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4803                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4804                 else
4805                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4806         }
4807
4808         /* default to 8bpc */
4809         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4810         if (is_dp) {
4811                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4812                         pipeconf |= PIPECONF_BPP_6 |
4813                                     PIPECONF_DITHER_EN |
4814                                     PIPECONF_DITHER_TYPE_SP;
4815                 }
4816         }
4817
4818         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4819                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4820                         pipeconf |= PIPECONF_BPP_6 |
4821                                         PIPECONF_ENABLE |
4822                                         I965_PIPECONF_ACTIVE;
4823                 }
4824         }
4825
4826         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4827         drm_mode_debug_printmodeline(mode);
4828
4829         if (HAS_PIPE_CXSR(dev)) {
4830                 if (intel_crtc->lowfreq_avail) {
4831                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4832                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4833                 } else {
4834                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4835                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4836                 }
4837         }
4838
4839         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4840         if (!IS_GEN2(dev) &&
4841             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4842                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4843         else
4844                 pipeconf |= PIPECONF_PROGRESSIVE;
4845
4846         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4847
4848         /* pipesrc and dspsize control the size that is scaled from,
4849          * which should always be the user's requested size.
4850          */
4851         I915_WRITE(DSPSIZE(plane),
4852                    ((mode->vdisplay - 1) << 16) |
4853                    (mode->hdisplay - 1));
4854         I915_WRITE(DSPPOS(plane), 0);
4855
4856         I915_WRITE(PIPECONF(pipe), pipeconf);
4857         POSTING_READ(PIPECONF(pipe));
4858         intel_enable_pipe(dev_priv, pipe, false);
4859
4860         intel_wait_for_vblank(dev, pipe);
4861
4862         I915_WRITE(DSPCNTR(plane), dspcntr);
4863         POSTING_READ(DSPCNTR(plane));
4864
4865         ret = intel_pipe_set_base(crtc, x, y, fb);
4866
4867         intel_update_watermarks(dev);
4868
4869         return ret;
4870 }
4871
4872 /*
4873  * Initialize reference clocks when the driver loads
4874  */
4875 void ironlake_init_pch_refclk(struct drm_device *dev)
4876 {
4877         struct drm_i915_private *dev_priv = dev->dev_private;
4878         struct drm_mode_config *mode_config = &dev->mode_config;
4879         struct intel_encoder *encoder;
4880         u32 temp;
4881         bool has_lvds = false;
4882         bool has_cpu_edp = false;
4883         bool has_pch_edp = false;
4884         bool has_panel = false;
4885         bool has_ck505 = false;
4886         bool can_ssc = false;
4887
4888         /* We need to take the global config into account */
4889         list_for_each_entry(encoder, &mode_config->encoder_list,
4890                             base.head) {
4891                 switch (encoder->type) {
4892                 case INTEL_OUTPUT_LVDS:
4893                         has_panel = true;
4894                         has_lvds = true;
4895                         break;
4896                 case INTEL_OUTPUT_EDP:
4897                         has_panel = true;
4898                         if (intel_encoder_is_pch_edp(&encoder->base))
4899                                 has_pch_edp = true;
4900                         else
4901                                 has_cpu_edp = true;
4902                         break;
4903                 }
4904         }
4905
4906         if (HAS_PCH_IBX(dev)) {
4907                 has_ck505 = dev_priv->display_clock_mode;
4908                 can_ssc = has_ck505;
4909         } else {
4910                 has_ck505 = false;
4911                 can_ssc = true;
4912         }
4913
4914         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4915                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4916                       has_ck505);
4917
4918         /* Ironlake: try to setup display ref clock before DPLL
4919          * enabling. This is only under driver's control after
4920          * PCH B stepping, previous chipset stepping should be
4921          * ignoring this setting.
4922          */
4923         temp = I915_READ(PCH_DREF_CONTROL);
4924         /* Always enable nonspread source */
4925         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4926
4927         if (has_ck505)
4928                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4929         else
4930                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4931
4932         if (has_panel) {
4933                 temp &= ~DREF_SSC_SOURCE_MASK;
4934                 temp |= DREF_SSC_SOURCE_ENABLE;
4935
4936                 /* SSC must be turned on before enabling the CPU output  */
4937                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4938                         DRM_DEBUG_KMS("Using SSC on panel\n");
4939                         temp |= DREF_SSC1_ENABLE;
4940                 } else
4941                         temp &= ~DREF_SSC1_ENABLE;
4942
4943                 /* Get SSC going before enabling the outputs */
4944                 I915_WRITE(PCH_DREF_CONTROL, temp);
4945                 POSTING_READ(PCH_DREF_CONTROL);
4946                 udelay(200);
4947
4948                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4949
4950                 /* Enable CPU source on CPU attached eDP */
4951                 if (has_cpu_edp) {
4952                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4953                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4954                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4955                         }
4956                         else
4957                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4958                 } else
4959                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4960
4961                 I915_WRITE(PCH_DREF_CONTROL, temp);
4962                 POSTING_READ(PCH_DREF_CONTROL);
4963                 udelay(200);
4964         } else {
4965                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4966
4967                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4968
4969                 /* Turn off CPU output */
4970                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4971
4972                 I915_WRITE(PCH_DREF_CONTROL, temp);
4973                 POSTING_READ(PCH_DREF_CONTROL);
4974                 udelay(200);
4975
4976                 /* Turn off the SSC source */
4977                 temp &= ~DREF_SSC_SOURCE_MASK;
4978                 temp |= DREF_SSC_SOURCE_DISABLE;
4979
4980                 /* Turn off SSC1 */
4981                 temp &= ~ DREF_SSC1_ENABLE;
4982
4983                 I915_WRITE(PCH_DREF_CONTROL, temp);
4984                 POSTING_READ(PCH_DREF_CONTROL);
4985                 udelay(200);
4986         }
4987 }
4988
4989 static int ironlake_get_refclk(struct drm_crtc *crtc)
4990 {
4991         struct drm_device *dev = crtc->dev;
4992         struct drm_i915_private *dev_priv = dev->dev_private;
4993         struct intel_encoder *encoder;
4994         struct intel_encoder *edp_encoder = NULL;
4995         int num_connectors = 0;
4996         bool is_lvds = false;
4997
4998         for_each_encoder_on_crtc(dev, crtc, encoder) {
4999                 switch (encoder->type) {
5000                 case INTEL_OUTPUT_LVDS:
5001                         is_lvds = true;
5002                         break;
5003                 case INTEL_OUTPUT_EDP:
5004                         edp_encoder = encoder;
5005                         break;
5006                 }
5007                 num_connectors++;
5008         }
5009
5010         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5011                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5012                               dev_priv->lvds_ssc_freq);
5013                 return dev_priv->lvds_ssc_freq * 1000;
5014         }
5015
5016         return 120000;
5017 }
5018
5019 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5020                                   struct drm_display_mode *adjusted_mode,
5021                                   bool dither)
5022 {
5023         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5025         int pipe = intel_crtc->pipe;
5026         uint32_t val;
5027
5028         val = I915_READ(PIPECONF(pipe));
5029
5030         val &= ~PIPE_BPC_MASK;
5031         switch (intel_crtc->bpp) {
5032         case 18:
5033                 val |= PIPE_6BPC;
5034                 break;
5035         case 24:
5036                 val |= PIPE_8BPC;
5037                 break;
5038         case 30:
5039                 val |= PIPE_10BPC;
5040                 break;
5041         case 36:
5042                 val |= PIPE_12BPC;
5043                 break;
5044         default:
5045                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5046                 BUG();
5047         }
5048
5049         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5050         if (dither)
5051                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5052
5053         val &= ~PIPECONF_INTERLACE_MASK;
5054         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5055                 val |= PIPECONF_INTERLACED_ILK;
5056         else
5057                 val |= PIPECONF_PROGRESSIVE;
5058
5059         I915_WRITE(PIPECONF(pipe), val);
5060         POSTING_READ(PIPECONF(pipe));
5061 }
5062
5063 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5064                                  struct drm_display_mode *adjusted_mode,
5065                                  bool dither)
5066 {
5067         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5069         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5070         uint32_t val;
5071
5072         val = I915_READ(PIPECONF(cpu_transcoder));
5073
5074         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5075         if (dither)
5076                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5077
5078         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5079         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5080                 val |= PIPECONF_INTERLACED_ILK;
5081         else
5082                 val |= PIPECONF_PROGRESSIVE;
5083
5084         I915_WRITE(PIPECONF(cpu_transcoder), val);
5085         POSTING_READ(PIPECONF(cpu_transcoder));
5086 }
5087
5088 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5089                                     struct drm_display_mode *adjusted_mode,
5090                                     intel_clock_t *clock,
5091                                     bool *has_reduced_clock,
5092                                     intel_clock_t *reduced_clock)
5093 {
5094         struct drm_device *dev = crtc->dev;
5095         struct drm_i915_private *dev_priv = dev->dev_private;
5096         struct intel_encoder *intel_encoder;
5097         int refclk;
5098         const intel_limit_t *limit;
5099         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5100
5101         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5102                 switch (intel_encoder->type) {
5103                 case INTEL_OUTPUT_LVDS:
5104                         is_lvds = true;
5105                         break;
5106                 case INTEL_OUTPUT_SDVO:
5107                 case INTEL_OUTPUT_HDMI:
5108                         is_sdvo = true;
5109                         if (intel_encoder->needs_tv_clock)
5110                                 is_tv = true;
5111                         break;
5112                 case INTEL_OUTPUT_TVOUT:
5113                         is_tv = true;
5114                         break;
5115                 }
5116         }
5117
5118         refclk = ironlake_get_refclk(crtc);
5119
5120         /*
5121          * Returns a set of divisors for the desired target clock with the given
5122          * refclk, or FALSE.  The returned values represent the clock equation:
5123          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5124          */
5125         limit = intel_limit(crtc, refclk);
5126         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5127                               clock);
5128         if (!ret)
5129                 return false;
5130
5131         if (is_lvds && dev_priv->lvds_downclock_avail) {
5132                 /*
5133                  * Ensure we match the reduced clock's P to the target clock.
5134                  * If the clocks don't match, we can't switch the display clock
5135                  * by using the FP0/FP1. In such case we will disable the LVDS
5136                  * downclock feature.
5137                 */
5138                 *has_reduced_clock = limit->find_pll(limit, crtc,
5139                                                      dev_priv->lvds_downclock,
5140                                                      refclk,
5141                                                      clock,
5142                                                      reduced_clock);
5143         }
5144
5145         if (is_sdvo && is_tv)
5146                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5147
5148         return true;
5149 }
5150
5151 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5152 {
5153         struct drm_i915_private *dev_priv = dev->dev_private;
5154         uint32_t temp;
5155
5156         temp = I915_READ(SOUTH_CHICKEN1);
5157         if (temp & FDI_BC_BIFURCATION_SELECT)
5158                 return;
5159
5160         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5161         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5162
5163         temp |= FDI_BC_BIFURCATION_SELECT;
5164         DRM_DEBUG_KMS("enabling fdi C rx\n");
5165         I915_WRITE(SOUTH_CHICKEN1, temp);
5166         POSTING_READ(SOUTH_CHICKEN1);
5167 }
5168
5169 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5170 {
5171         struct drm_device *dev = intel_crtc->base.dev;
5172         struct drm_i915_private *dev_priv = dev->dev_private;
5173         struct intel_crtc *pipe_B_crtc =
5174                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5175
5176         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5177                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5178         if (intel_crtc->fdi_lanes > 4) {
5179                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5180                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5181                 /* Clamp lanes to avoid programming the hw with bogus values. */
5182                 intel_crtc->fdi_lanes = 4;
5183
5184                 return false;
5185         }
5186
5187         if (dev_priv->num_pipe == 2)
5188                 return true;
5189
5190         switch (intel_crtc->pipe) {
5191         case PIPE_A:
5192                 return true;
5193         case PIPE_B:
5194                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5195                     intel_crtc->fdi_lanes > 2) {
5196                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5197                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5198                         /* Clamp lanes to avoid programming the hw with bogus values. */
5199                         intel_crtc->fdi_lanes = 2;
5200
5201                         return false;
5202                 }
5203
5204                 if (intel_crtc->fdi_lanes > 2)
5205                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5206                 else
5207                         cpt_enable_fdi_bc_bifurcation(dev);
5208
5209                 return true;
5210         case PIPE_C:
5211                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5212                         if (intel_crtc->fdi_lanes > 2) {
5213                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5214                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5215                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5216                                 intel_crtc->fdi_lanes = 2;
5217
5218                                 return false;
5219                         }
5220                 } else {
5221                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5222                         return false;
5223                 }
5224
5225                 cpt_enable_fdi_bc_bifurcation(dev);
5226
5227                 return true;
5228         default:
5229                 BUG();
5230         }
5231 }
5232
5233 static void ironlake_set_m_n(struct drm_crtc *crtc,
5234                              struct drm_display_mode *mode,
5235                              struct drm_display_mode *adjusted_mode)
5236 {
5237         struct drm_device *dev = crtc->dev;
5238         struct drm_i915_private *dev_priv = dev->dev_private;
5239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5240         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5241         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5242         struct fdi_m_n m_n = {0};
5243         int target_clock, pixel_multiplier, lane, link_bw;
5244         bool is_dp = false, is_cpu_edp = false;
5245
5246         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5247                 switch (intel_encoder->type) {
5248                 case INTEL_OUTPUT_DISPLAYPORT:
5249                         is_dp = true;
5250                         break;
5251                 case INTEL_OUTPUT_EDP:
5252                         is_dp = true;
5253                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5254                                 is_cpu_edp = true;
5255                         edp_encoder = intel_encoder;
5256                         break;
5257                 }
5258         }
5259
5260         /* FDI link */
5261         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5262         lane = 0;
5263         /* CPU eDP doesn't require FDI link, so just set DP M/N
5264            according to current link config */
5265         if (is_cpu_edp) {
5266                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5267         } else {
5268                 /* FDI is a binary signal running at ~2.7GHz, encoding
5269                  * each output octet as 10 bits. The actual frequency
5270                  * is stored as a divider into a 100MHz clock, and the
5271                  * mode pixel clock is stored in units of 1KHz.
5272                  * Hence the bw of each lane in terms of the mode signal
5273                  * is:
5274                  */
5275                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5276         }
5277
5278         /* [e]DP over FDI requires target mode clock instead of link clock. */
5279         if (edp_encoder)
5280                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5281         else if (is_dp)
5282                 target_clock = mode->clock;
5283         else
5284                 target_clock = adjusted_mode->clock;
5285
5286         if (!lane) {
5287                 /*
5288                  * Account for spread spectrum to avoid
5289                  * oversubscribing the link. Max center spread
5290                  * is 2.5%; use 5% for safety's sake.
5291                  */
5292                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5293                 lane = bps / (link_bw * 8) + 1;
5294         }
5295
5296         intel_crtc->fdi_lanes = lane;
5297
5298         if (pixel_multiplier > 1)
5299                 link_bw *= pixel_multiplier;
5300         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5301                              &m_n);
5302
5303         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5304         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5305         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5306         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5307 }
5308
5309 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5310                                       struct drm_display_mode *adjusted_mode,
5311                                       intel_clock_t *clock, u32 fp)
5312 {
5313         struct drm_crtc *crtc = &intel_crtc->base;
5314         struct drm_device *dev = crtc->dev;
5315         struct drm_i915_private *dev_priv = dev->dev_private;
5316         struct intel_encoder *intel_encoder;
5317         uint32_t dpll;
5318         int factor, pixel_multiplier, num_connectors = 0;
5319         bool is_lvds = false, is_sdvo = false, is_tv = false;
5320         bool is_dp = false, is_cpu_edp = false;
5321
5322         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5323                 switch (intel_encoder->type) {
5324                 case INTEL_OUTPUT_LVDS:
5325                         is_lvds = true;
5326                         break;
5327                 case INTEL_OUTPUT_SDVO:
5328                 case INTEL_OUTPUT_HDMI:
5329                         is_sdvo = true;
5330                         if (intel_encoder->needs_tv_clock)
5331                                 is_tv = true;
5332                         break;
5333                 case INTEL_OUTPUT_TVOUT:
5334                         is_tv = true;
5335                         break;
5336                 case INTEL_OUTPUT_DISPLAYPORT:
5337                         is_dp = true;
5338                         break;
5339                 case INTEL_OUTPUT_EDP:
5340                         is_dp = true;
5341                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5342                                 is_cpu_edp = true;
5343                         break;
5344                 }
5345
5346                 num_connectors++;
5347         }
5348
5349         /* Enable autotuning of the PLL clock (if permissible) */
5350         factor = 21;
5351         if (is_lvds) {
5352                 if ((intel_panel_use_ssc(dev_priv) &&
5353                      dev_priv->lvds_ssc_freq == 100) ||
5354                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5355                         factor = 25;
5356         } else if (is_sdvo && is_tv)
5357                 factor = 20;
5358
5359         if (clock->m < factor * clock->n)
5360                 fp |= FP_CB_TUNE;
5361
5362         dpll = 0;
5363
5364         if (is_lvds)
5365                 dpll |= DPLLB_MODE_LVDS;
5366         else
5367                 dpll |= DPLLB_MODE_DAC_SERIAL;
5368         if (is_sdvo) {
5369                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5370                 if (pixel_multiplier > 1) {
5371                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5372                 }
5373                 dpll |= DPLL_DVO_HIGH_SPEED;
5374         }
5375         if (is_dp && !is_cpu_edp)
5376                 dpll |= DPLL_DVO_HIGH_SPEED;
5377
5378         /* compute bitmask from p1 value */
5379         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5380         /* also FPA1 */
5381         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5382
5383         switch (clock->p2) {
5384         case 5:
5385                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5386                 break;
5387         case 7:
5388                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5389                 break;
5390         case 10:
5391                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5392                 break;
5393         case 14:
5394                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5395                 break;
5396         }
5397
5398         if (is_sdvo && is_tv)
5399                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5400         else if (is_tv)
5401                 /* XXX: just matching BIOS for now */
5402                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5403                 dpll |= 3;
5404         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5405                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5406         else
5407                 dpll |= PLL_REF_INPUT_DREFCLK;
5408
5409         return dpll;
5410 }
5411
5412 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5413                                   struct drm_display_mode *mode,
5414                                   struct drm_display_mode *adjusted_mode,
5415                                   int x, int y,
5416                                   struct drm_framebuffer *fb)
5417 {
5418         struct drm_device *dev = crtc->dev;
5419         struct drm_i915_private *dev_priv = dev->dev_private;
5420         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5421         int pipe = intel_crtc->pipe;
5422         int plane = intel_crtc->plane;
5423         int num_connectors = 0;
5424         intel_clock_t clock, reduced_clock;
5425         u32 dpll, fp = 0, fp2 = 0;
5426         bool ok, has_reduced_clock = false;
5427         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5428         struct intel_encoder *encoder;
5429         u32 temp;
5430         int ret;
5431         bool dither, fdi_config_ok;
5432
5433         for_each_encoder_on_crtc(dev, crtc, encoder) {
5434                 switch (encoder->type) {
5435                 case INTEL_OUTPUT_LVDS:
5436                         is_lvds = true;
5437                         break;
5438                 case INTEL_OUTPUT_DISPLAYPORT:
5439                         is_dp = true;
5440                         break;
5441                 case INTEL_OUTPUT_EDP:
5442                         is_dp = true;
5443                         if (!intel_encoder_is_pch_edp(&encoder->base))
5444                                 is_cpu_edp = true;
5445                         break;
5446                 }
5447
5448                 num_connectors++;
5449         }
5450
5451         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5452              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5453
5454         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5455                                      &has_reduced_clock, &reduced_clock);
5456         if (!ok) {
5457                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5458                 return -EINVAL;
5459         }
5460
5461         /* Ensure that the cursor is valid for the new mode before changing... */
5462         intel_crtc_update_cursor(crtc, true);
5463
5464         /* determine panel color depth */
5465         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5466                                               adjusted_mode);
5467         if (is_lvds && dev_priv->lvds_dither)
5468                 dither = true;
5469
5470         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5471         if (has_reduced_clock)
5472                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5473                         reduced_clock.m2;
5474
5475         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5476
5477         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5478         drm_mode_debug_printmodeline(mode);
5479
5480         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5481         if (!is_cpu_edp) {
5482                 struct intel_pch_pll *pll;
5483
5484                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5485                 if (pll == NULL) {
5486                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5487                                          pipe);
5488                         return -EINVAL;
5489                 }
5490         } else
5491                 intel_put_pch_pll(intel_crtc);
5492
5493         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5494          * This is an exception to the general rule that mode_set doesn't turn
5495          * things on.
5496          */
5497         if (is_lvds) {
5498                 temp = I915_READ(PCH_LVDS);
5499                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5500                 if (HAS_PCH_CPT(dev)) {
5501                         temp &= ~PORT_TRANS_SEL_MASK;
5502                         temp |= PORT_TRANS_SEL_CPT(pipe);
5503                 } else {
5504                         if (pipe == 1)
5505                                 temp |= LVDS_PIPEB_SELECT;
5506                         else
5507                                 temp &= ~LVDS_PIPEB_SELECT;
5508                 }
5509
5510                 /* set the corresponsding LVDS_BORDER bit */
5511                 temp |= dev_priv->lvds_border_bits;
5512                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5513                  * set the DPLLs for dual-channel mode or not.
5514                  */
5515                 if (clock.p2 == 7)
5516                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5517                 else
5518                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5519
5520                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5521                  * appropriately here, but we need to look more thoroughly into how
5522                  * panels behave in the two modes.
5523                  */
5524                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5525                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5526                         temp |= LVDS_HSYNC_POLARITY;
5527                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5528                         temp |= LVDS_VSYNC_POLARITY;
5529                 I915_WRITE(PCH_LVDS, temp);
5530         }
5531
5532         if (is_dp && !is_cpu_edp) {
5533                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5534         } else {
5535                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5536                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5537                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5538                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5539                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5540         }
5541
5542         if (intel_crtc->pch_pll) {
5543                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5544
5545                 /* Wait for the clocks to stabilize. */
5546                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5547                 udelay(150);
5548
5549                 /* The pixel multiplier can only be updated once the
5550                  * DPLL is enabled and the clocks are stable.
5551                  *
5552                  * So write it again.
5553                  */
5554                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5555         }
5556
5557         intel_crtc->lowfreq_avail = false;
5558         if (intel_crtc->pch_pll) {
5559                 if (is_lvds && has_reduced_clock && i915_powersave) {
5560                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5561                         intel_crtc->lowfreq_avail = true;
5562                 } else {
5563                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5564                 }
5565         }
5566
5567         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5568
5569         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5570          * ironlake_check_fdi_lanes. */
5571         ironlake_set_m_n(crtc, mode, adjusted_mode);
5572
5573         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5574
5575         if (is_cpu_edp)
5576                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5577
5578         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5579
5580         intel_wait_for_vblank(dev, pipe);
5581
5582         /* Set up the display plane register */
5583         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5584         POSTING_READ(DSPCNTR(plane));
5585
5586         ret = intel_pipe_set_base(crtc, x, y, fb);
5587
5588         intel_update_watermarks(dev);
5589
5590         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5591
5592         return fdi_config_ok ? ret : -EINVAL;
5593 }
5594
5595 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5596                                  struct drm_display_mode *mode,
5597                                  struct drm_display_mode *adjusted_mode,
5598                                  int x, int y,
5599                                  struct drm_framebuffer *fb)
5600 {
5601         struct drm_device *dev = crtc->dev;
5602         struct drm_i915_private *dev_priv = dev->dev_private;
5603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5604         int pipe = intel_crtc->pipe;
5605         int plane = intel_crtc->plane;
5606         int num_connectors = 0;
5607         intel_clock_t clock, reduced_clock;
5608         u32 dpll = 0, fp = 0, fp2 = 0;
5609         bool ok, has_reduced_clock = false;
5610         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5611         struct intel_encoder *encoder;
5612         u32 temp;
5613         int ret;
5614         bool dither;
5615
5616         for_each_encoder_on_crtc(dev, crtc, encoder) {
5617                 switch (encoder->type) {
5618                 case INTEL_OUTPUT_LVDS:
5619                         is_lvds = true;
5620                         break;
5621                 case INTEL_OUTPUT_DISPLAYPORT:
5622                         is_dp = true;
5623                         break;
5624                 case INTEL_OUTPUT_EDP:
5625                         is_dp = true;
5626                         if (!intel_encoder_is_pch_edp(&encoder->base))
5627                                 is_cpu_edp = true;
5628                         break;
5629                 }
5630
5631                 num_connectors++;
5632         }
5633
5634         if (is_cpu_edp)
5635                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5636         else
5637                 intel_crtc->cpu_transcoder = pipe;
5638
5639         /* We are not sure yet this won't happen. */
5640         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5641              INTEL_PCH_TYPE(dev));
5642
5643         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5644              num_connectors, pipe_name(pipe));
5645
5646         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5647                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5648
5649         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5650
5651         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5652                 return -EINVAL;
5653
5654         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5655                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5656                                              &has_reduced_clock,
5657                                              &reduced_clock);
5658                 if (!ok) {
5659                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5660                         return -EINVAL;
5661                 }
5662         }
5663
5664         /* Ensure that the cursor is valid for the new mode before changing... */
5665         intel_crtc_update_cursor(crtc, true);
5666
5667         /* determine panel color depth */
5668         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5669                                               adjusted_mode);
5670         if (is_lvds && dev_priv->lvds_dither)
5671                 dither = true;
5672
5673         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5674         drm_mode_debug_printmodeline(mode);
5675
5676         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5677                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5678                 if (has_reduced_clock)
5679                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5680                               reduced_clock.m2;
5681
5682                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5683                                              fp);
5684
5685                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5686                  * own on pre-Haswell/LPT generation */
5687                 if (!is_cpu_edp) {
5688                         struct intel_pch_pll *pll;
5689
5690                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5691                         if (pll == NULL) {
5692                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5693                                                  pipe);
5694                                 return -EINVAL;
5695                         }
5696                 } else
5697                         intel_put_pch_pll(intel_crtc);
5698
5699                 /* The LVDS pin pair needs to be on before the DPLLs are
5700                  * enabled.  This is an exception to the general rule that
5701                  * mode_set doesn't turn things on.
5702                  */
5703                 if (is_lvds) {
5704                         temp = I915_READ(PCH_LVDS);
5705                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5706                         if (HAS_PCH_CPT(dev)) {
5707                                 temp &= ~PORT_TRANS_SEL_MASK;
5708                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5709                         } else {
5710                                 if (pipe == 1)
5711                                         temp |= LVDS_PIPEB_SELECT;
5712                                 else
5713                                         temp &= ~LVDS_PIPEB_SELECT;
5714                         }
5715
5716                         /* set the corresponsding LVDS_BORDER bit */
5717                         temp |= dev_priv->lvds_border_bits;
5718                         /* Set the B0-B3 data pairs corresponding to whether
5719                          * we're going to set the DPLLs for dual-channel mode or
5720                          * not.
5721                          */
5722                         if (clock.p2 == 7)
5723                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5724                         else
5725                                 temp &= ~(LVDS_B0B3_POWER_UP |
5726                                           LVDS_CLKB_POWER_UP);
5727
5728                         /* It would be nice to set 24 vs 18-bit mode
5729                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5730                          * look more thoroughly into how panels behave in the
5731                          * two modes.
5732                          */
5733                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5734                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5735                                 temp |= LVDS_HSYNC_POLARITY;
5736                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5737                                 temp |= LVDS_VSYNC_POLARITY;
5738                         I915_WRITE(PCH_LVDS, temp);
5739                 }
5740         }
5741
5742         if (is_dp && !is_cpu_edp) {
5743                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5744         } else {
5745                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5746                         /* For non-DP output, clear any trans DP clock recovery
5747                          * setting.*/
5748                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5749                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5750                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5751                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5752                 }
5753         }
5754
5755         intel_crtc->lowfreq_avail = false;
5756         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5757                 if (intel_crtc->pch_pll) {
5758                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5759
5760                         /* Wait for the clocks to stabilize. */
5761                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5762                         udelay(150);
5763
5764                         /* The pixel multiplier can only be updated once the
5765                          * DPLL is enabled and the clocks are stable.
5766                          *
5767                          * So write it again.
5768                          */
5769                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5770                 }
5771
5772                 if (intel_crtc->pch_pll) {
5773                         if (is_lvds && has_reduced_clock && i915_powersave) {
5774                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5775                                 intel_crtc->lowfreq_avail = true;
5776                         } else {
5777                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5778                         }
5779                 }
5780         }
5781
5782         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5783
5784         if (!is_dp || is_cpu_edp)
5785                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5786
5787         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5788                 if (is_cpu_edp)
5789                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5790
5791         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5792
5793         /* Set up the display plane register */
5794         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5795         POSTING_READ(DSPCNTR(plane));
5796
5797         ret = intel_pipe_set_base(crtc, x, y, fb);
5798
5799         intel_update_watermarks(dev);
5800
5801         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5802
5803         return ret;
5804 }
5805
5806 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5807                                struct drm_display_mode *mode,
5808                                struct drm_display_mode *adjusted_mode,
5809                                int x, int y,
5810                                struct drm_framebuffer *fb)
5811 {
5812         struct drm_device *dev = crtc->dev;
5813         struct drm_i915_private *dev_priv = dev->dev_private;
5814         struct drm_encoder_helper_funcs *encoder_funcs;
5815         struct intel_encoder *encoder;
5816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5817         int pipe = intel_crtc->pipe;
5818         int ret;
5819
5820         drm_vblank_pre_modeset(dev, pipe);
5821
5822         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5823                                               x, y, fb);
5824         drm_vblank_post_modeset(dev, pipe);
5825
5826         if (ret != 0)
5827                 return ret;
5828
5829         for_each_encoder_on_crtc(dev, crtc, encoder) {
5830                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5831                         encoder->base.base.id,
5832                         drm_get_encoder_name(&encoder->base),
5833                         mode->base.id, mode->name);
5834                 encoder_funcs = encoder->base.helper_private;
5835                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5836         }
5837
5838         return 0;
5839 }
5840
5841 static bool intel_eld_uptodate(struct drm_connector *connector,
5842                                int reg_eldv, uint32_t bits_eldv,
5843                                int reg_elda, uint32_t bits_elda,
5844                                int reg_edid)
5845 {
5846         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5847         uint8_t *eld = connector->eld;
5848         uint32_t i;
5849
5850         i = I915_READ(reg_eldv);
5851         i &= bits_eldv;
5852
5853         if (!eld[0])
5854                 return !i;
5855
5856         if (!i)
5857                 return false;
5858
5859         i = I915_READ(reg_elda);
5860         i &= ~bits_elda;
5861         I915_WRITE(reg_elda, i);
5862
5863         for (i = 0; i < eld[2]; i++)
5864                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5865                         return false;
5866
5867         return true;
5868 }
5869
5870 static void g4x_write_eld(struct drm_connector *connector,
5871                           struct drm_crtc *crtc)
5872 {
5873         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5874         uint8_t *eld = connector->eld;
5875         uint32_t eldv;
5876         uint32_t len;
5877         uint32_t i;
5878
5879         i = I915_READ(G4X_AUD_VID_DID);
5880
5881         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5882                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5883         else
5884                 eldv = G4X_ELDV_DEVCTG;
5885
5886         if (intel_eld_uptodate(connector,
5887                                G4X_AUD_CNTL_ST, eldv,
5888                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5889                                G4X_HDMIW_HDMIEDID))
5890                 return;
5891
5892         i = I915_READ(G4X_AUD_CNTL_ST);
5893         i &= ~(eldv | G4X_ELD_ADDR);
5894         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5895         I915_WRITE(G4X_AUD_CNTL_ST, i);
5896
5897         if (!eld[0])
5898                 return;
5899
5900         len = min_t(uint8_t, eld[2], len);
5901         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5902         for (i = 0; i < len; i++)
5903                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5904
5905         i = I915_READ(G4X_AUD_CNTL_ST);
5906         i |= eldv;
5907         I915_WRITE(G4X_AUD_CNTL_ST, i);
5908 }
5909
5910 static void haswell_write_eld(struct drm_connector *connector,
5911                                      struct drm_crtc *crtc)
5912 {
5913         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5914         uint8_t *eld = connector->eld;
5915         struct drm_device *dev = crtc->dev;
5916         uint32_t eldv;
5917         uint32_t i;
5918         int len;
5919         int pipe = to_intel_crtc(crtc)->pipe;
5920         int tmp;
5921
5922         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5923         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5924         int aud_config = HSW_AUD_CFG(pipe);
5925         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5926
5927
5928         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5929
5930         /* Audio output enable */
5931         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5932         tmp = I915_READ(aud_cntrl_st2);
5933         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5934         I915_WRITE(aud_cntrl_st2, tmp);
5935
5936         /* Wait for 1 vertical blank */
5937         intel_wait_for_vblank(dev, pipe);
5938
5939         /* Set ELD valid state */
5940         tmp = I915_READ(aud_cntrl_st2);
5941         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5942         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5943         I915_WRITE(aud_cntrl_st2, tmp);
5944         tmp = I915_READ(aud_cntrl_st2);
5945         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5946
5947         /* Enable HDMI mode */
5948         tmp = I915_READ(aud_config);
5949         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5950         /* clear N_programing_enable and N_value_index */
5951         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5952         I915_WRITE(aud_config, tmp);
5953
5954         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5955
5956         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5957
5958         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5959                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5960                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5961                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5962         } else
5963                 I915_WRITE(aud_config, 0);
5964
5965         if (intel_eld_uptodate(connector,
5966                                aud_cntrl_st2, eldv,
5967                                aud_cntl_st, IBX_ELD_ADDRESS,
5968                                hdmiw_hdmiedid))
5969                 return;
5970
5971         i = I915_READ(aud_cntrl_st2);
5972         i &= ~eldv;
5973         I915_WRITE(aud_cntrl_st2, i);
5974
5975         if (!eld[0])
5976                 return;
5977
5978         i = I915_READ(aud_cntl_st);
5979         i &= ~IBX_ELD_ADDRESS;
5980         I915_WRITE(aud_cntl_st, i);
5981         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5982         DRM_DEBUG_DRIVER("port num:%d\n", i);
5983
5984         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5985         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5986         for (i = 0; i < len; i++)
5987                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5988
5989         i = I915_READ(aud_cntrl_st2);
5990         i |= eldv;
5991         I915_WRITE(aud_cntrl_st2, i);
5992
5993 }
5994
5995 static void ironlake_write_eld(struct drm_connector *connector,
5996                                      struct drm_crtc *crtc)
5997 {
5998         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5999         uint8_t *eld = connector->eld;
6000         uint32_t eldv;
6001         uint32_t i;
6002         int len;
6003         int hdmiw_hdmiedid;
6004         int aud_config;
6005         int aud_cntl_st;
6006         int aud_cntrl_st2;
6007         int pipe = to_intel_crtc(crtc)->pipe;
6008
6009         if (HAS_PCH_IBX(connector->dev)) {
6010                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6011                 aud_config = IBX_AUD_CFG(pipe);
6012                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6013                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6014         } else {
6015                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6016                 aud_config = CPT_AUD_CFG(pipe);
6017                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6018                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6019         }
6020
6021         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6022
6023         i = I915_READ(aud_cntl_st);
6024         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6025         if (!i) {
6026                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6027                 /* operate blindly on all ports */
6028                 eldv = IBX_ELD_VALIDB;
6029                 eldv |= IBX_ELD_VALIDB << 4;
6030                 eldv |= IBX_ELD_VALIDB << 8;
6031         } else {
6032                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6033                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6034         }
6035
6036         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6037                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6038                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6039                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6040         } else
6041                 I915_WRITE(aud_config, 0);
6042
6043         if (intel_eld_uptodate(connector,
6044                                aud_cntrl_st2, eldv,
6045                                aud_cntl_st, IBX_ELD_ADDRESS,
6046                                hdmiw_hdmiedid))
6047                 return;
6048
6049         i = I915_READ(aud_cntrl_st2);
6050         i &= ~eldv;
6051         I915_WRITE(aud_cntrl_st2, i);
6052
6053         if (!eld[0])
6054                 return;
6055
6056         i = I915_READ(aud_cntl_st);
6057         i &= ~IBX_ELD_ADDRESS;
6058         I915_WRITE(aud_cntl_st, i);
6059
6060         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6061         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6062         for (i = 0; i < len; i++)
6063                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6064
6065         i = I915_READ(aud_cntrl_st2);
6066         i |= eldv;
6067         I915_WRITE(aud_cntrl_st2, i);
6068 }
6069
6070 void intel_write_eld(struct drm_encoder *encoder,
6071                      struct drm_display_mode *mode)
6072 {
6073         struct drm_crtc *crtc = encoder->crtc;
6074         struct drm_connector *connector;
6075         struct drm_device *dev = encoder->dev;
6076         struct drm_i915_private *dev_priv = dev->dev_private;
6077
6078         connector = drm_select_eld(encoder, mode);
6079         if (!connector)
6080                 return;
6081
6082         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6083                          connector->base.id,
6084                          drm_get_connector_name(connector),
6085                          connector->encoder->base.id,
6086                          drm_get_encoder_name(connector->encoder));
6087
6088         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6089
6090         if (dev_priv->display.write_eld)
6091                 dev_priv->display.write_eld(connector, crtc);
6092 }
6093
6094 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6095 void intel_crtc_load_lut(struct drm_crtc *crtc)
6096 {
6097         struct drm_device *dev = crtc->dev;
6098         struct drm_i915_private *dev_priv = dev->dev_private;
6099         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6100         int palreg = PALETTE(intel_crtc->pipe);
6101         int i;
6102
6103         /* The clocks have to be on to load the palette. */
6104         if (!crtc->enabled || !intel_crtc->active)
6105                 return;
6106
6107         /* use legacy palette for Ironlake */
6108         if (HAS_PCH_SPLIT(dev))
6109                 palreg = LGC_PALETTE(intel_crtc->pipe);
6110
6111         for (i = 0; i < 256; i++) {
6112                 I915_WRITE(palreg + 4 * i,
6113                            (intel_crtc->lut_r[i] << 16) |
6114                            (intel_crtc->lut_g[i] << 8) |
6115                            intel_crtc->lut_b[i]);
6116         }
6117 }
6118
6119 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6120 {
6121         struct drm_device *dev = crtc->dev;
6122         struct drm_i915_private *dev_priv = dev->dev_private;
6123         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6124         bool visible = base != 0;
6125         u32 cntl;
6126
6127         if (intel_crtc->cursor_visible == visible)
6128                 return;
6129
6130         cntl = I915_READ(_CURACNTR);
6131         if (visible) {
6132                 /* On these chipsets we can only modify the base whilst
6133                  * the cursor is disabled.
6134                  */
6135                 I915_WRITE(_CURABASE, base);
6136
6137                 cntl &= ~(CURSOR_FORMAT_MASK);
6138                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6139                 cntl |= CURSOR_ENABLE |
6140                         CURSOR_GAMMA_ENABLE |
6141                         CURSOR_FORMAT_ARGB;
6142         } else
6143                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6144         I915_WRITE(_CURACNTR, cntl);
6145
6146         intel_crtc->cursor_visible = visible;
6147 }
6148
6149 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6150 {
6151         struct drm_device *dev = crtc->dev;
6152         struct drm_i915_private *dev_priv = dev->dev_private;
6153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6154         int pipe = intel_crtc->pipe;
6155         bool visible = base != 0;
6156
6157         if (intel_crtc->cursor_visible != visible) {
6158                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6159                 if (base) {
6160                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6161                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6162                         cntl |= pipe << 28; /* Connect to correct pipe */
6163                 } else {
6164                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6165                         cntl |= CURSOR_MODE_DISABLE;
6166                 }
6167                 I915_WRITE(CURCNTR(pipe), cntl);
6168
6169                 intel_crtc->cursor_visible = visible;
6170         }
6171         /* and commit changes on next vblank */
6172         I915_WRITE(CURBASE(pipe), base);
6173 }
6174
6175 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6176 {
6177         struct drm_device *dev = crtc->dev;
6178         struct drm_i915_private *dev_priv = dev->dev_private;
6179         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6180         int pipe = intel_crtc->pipe;
6181         bool visible = base != 0;
6182
6183         if (intel_crtc->cursor_visible != visible) {
6184                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6185                 if (base) {
6186                         cntl &= ~CURSOR_MODE;
6187                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6188                 } else {
6189                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6190                         cntl |= CURSOR_MODE_DISABLE;
6191                 }
6192                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6193
6194                 intel_crtc->cursor_visible = visible;
6195         }
6196         /* and commit changes on next vblank */
6197         I915_WRITE(CURBASE_IVB(pipe), base);
6198 }
6199
6200 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6201 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6202                                      bool on)
6203 {
6204         struct drm_device *dev = crtc->dev;
6205         struct drm_i915_private *dev_priv = dev->dev_private;
6206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6207         int pipe = intel_crtc->pipe;
6208         int x = intel_crtc->cursor_x;
6209         int y = intel_crtc->cursor_y;
6210         u32 base, pos;
6211         bool visible;
6212
6213         pos = 0;
6214
6215         if (on && crtc->enabled && crtc->fb) {
6216                 base = intel_crtc->cursor_addr;
6217                 if (x > (int) crtc->fb->width)
6218                         base = 0;
6219
6220                 if (y > (int) crtc->fb->height)
6221                         base = 0;
6222         } else
6223                 base = 0;
6224
6225         if (x < 0) {
6226                 if (x + intel_crtc->cursor_width < 0)
6227                         base = 0;
6228
6229                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6230                 x = -x;
6231         }
6232         pos |= x << CURSOR_X_SHIFT;
6233
6234         if (y < 0) {
6235                 if (y + intel_crtc->cursor_height < 0)
6236                         base = 0;
6237
6238                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6239                 y = -y;
6240         }
6241         pos |= y << CURSOR_Y_SHIFT;
6242
6243         visible = base != 0;
6244         if (!visible && !intel_crtc->cursor_visible)
6245                 return;
6246
6247         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6248                 I915_WRITE(CURPOS_IVB(pipe), pos);
6249                 ivb_update_cursor(crtc, base);
6250         } else {
6251                 I915_WRITE(CURPOS(pipe), pos);
6252                 if (IS_845G(dev) || IS_I865G(dev))
6253                         i845_update_cursor(crtc, base);
6254                 else
6255                         i9xx_update_cursor(crtc, base);
6256         }
6257 }
6258
6259 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6260                                  struct drm_file *file,
6261                                  uint32_t handle,
6262                                  uint32_t width, uint32_t height)
6263 {
6264         struct drm_device *dev = crtc->dev;
6265         struct drm_i915_private *dev_priv = dev->dev_private;
6266         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6267         struct drm_i915_gem_object *obj;
6268         uint32_t addr;
6269         int ret;
6270
6271         /* if we want to turn off the cursor ignore width and height */
6272         if (!handle) {
6273                 DRM_DEBUG_KMS("cursor off\n");
6274                 addr = 0;
6275                 obj = NULL;
6276                 mutex_lock(&dev->struct_mutex);
6277                 goto finish;
6278         }
6279
6280         /* Currently we only support 64x64 cursors */
6281         if (width != 64 || height != 64) {
6282                 DRM_ERROR("we currently only support 64x64 cursors\n");
6283                 return -EINVAL;
6284         }
6285
6286         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6287         if (&obj->base == NULL)
6288                 return -ENOENT;
6289
6290         if (obj->base.size < width * height * 4) {
6291                 DRM_ERROR("buffer is to small\n");
6292                 ret = -ENOMEM;
6293                 goto fail;
6294         }
6295
6296         /* we only need to pin inside GTT if cursor is non-phy */
6297         mutex_lock(&dev->struct_mutex);
6298         if (!dev_priv->info->cursor_needs_physical) {
6299                 if (obj->tiling_mode) {
6300                         DRM_ERROR("cursor cannot be tiled\n");
6301                         ret = -EINVAL;
6302                         goto fail_locked;
6303                 }
6304
6305                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6306                 if (ret) {
6307                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6308                         goto fail_locked;
6309                 }
6310
6311                 ret = i915_gem_object_put_fence(obj);
6312                 if (ret) {
6313                         DRM_ERROR("failed to release fence for cursor");
6314                         goto fail_unpin;
6315                 }
6316
6317                 addr = obj->gtt_offset;
6318         } else {
6319                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6320                 ret = i915_gem_attach_phys_object(dev, obj,
6321                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6322                                                   align);
6323                 if (ret) {
6324                         DRM_ERROR("failed to attach phys object\n");
6325                         goto fail_locked;
6326                 }
6327                 addr = obj->phys_obj->handle->busaddr;
6328         }
6329
6330         if (IS_GEN2(dev))
6331                 I915_WRITE(CURSIZE, (height << 12) | width);
6332
6333  finish:
6334         if (intel_crtc->cursor_bo) {
6335                 if (dev_priv->info->cursor_needs_physical) {
6336                         if (intel_crtc->cursor_bo != obj)
6337                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6338                 } else
6339                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6340                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6341         }
6342
6343         mutex_unlock(&dev->struct_mutex);
6344
6345         intel_crtc->cursor_addr = addr;
6346         intel_crtc->cursor_bo = obj;
6347         intel_crtc->cursor_width = width;
6348         intel_crtc->cursor_height = height;
6349
6350         intel_crtc_update_cursor(crtc, true);
6351
6352         return 0;
6353 fail_unpin:
6354         i915_gem_object_unpin(obj);
6355 fail_locked:
6356         mutex_unlock(&dev->struct_mutex);
6357 fail:
6358         drm_gem_object_unreference_unlocked(&obj->base);
6359         return ret;
6360 }
6361
6362 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6363 {
6364         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6365
6366         intel_crtc->cursor_x = x;
6367         intel_crtc->cursor_y = y;
6368
6369         intel_crtc_update_cursor(crtc, true);
6370
6371         return 0;
6372 }
6373
6374 /** Sets the color ramps on behalf of RandR */
6375 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6376                                  u16 blue, int regno)
6377 {
6378         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6379
6380         intel_crtc->lut_r[regno] = red >> 8;
6381         intel_crtc->lut_g[regno] = green >> 8;
6382         intel_crtc->lut_b[regno] = blue >> 8;
6383 }
6384
6385 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6386                              u16 *blue, int regno)
6387 {
6388         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6389
6390         *red = intel_crtc->lut_r[regno] << 8;
6391         *green = intel_crtc->lut_g[regno] << 8;
6392         *blue = intel_crtc->lut_b[regno] << 8;
6393 }
6394
6395 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6396                                  u16 *blue, uint32_t start, uint32_t size)
6397 {
6398         int end = (start + size > 256) ? 256 : start + size, i;
6399         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6400
6401         for (i = start; i < end; i++) {
6402                 intel_crtc->lut_r[i] = red[i] >> 8;
6403                 intel_crtc->lut_g[i] = green[i] >> 8;
6404                 intel_crtc->lut_b[i] = blue[i] >> 8;
6405         }
6406
6407         intel_crtc_load_lut(crtc);
6408 }
6409
6410 /**
6411  * Get a pipe with a simple mode set on it for doing load-based monitor
6412  * detection.
6413  *
6414  * It will be up to the load-detect code to adjust the pipe as appropriate for
6415  * its requirements.  The pipe will be connected to no other encoders.
6416  *
6417  * Currently this code will only succeed if there is a pipe with no encoders
6418  * configured for it.  In the future, it could choose to temporarily disable
6419  * some outputs to free up a pipe for its use.
6420  *
6421  * \return crtc, or NULL if no pipes are available.
6422  */
6423
6424 /* VESA 640x480x72Hz mode to set on the pipe */
6425 static struct drm_display_mode load_detect_mode = {
6426         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6427                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6428 };
6429
6430 static struct drm_framebuffer *
6431 intel_framebuffer_create(struct drm_device *dev,
6432                          struct drm_mode_fb_cmd2 *mode_cmd,
6433                          struct drm_i915_gem_object *obj)
6434 {
6435         struct intel_framebuffer *intel_fb;
6436         int ret;
6437
6438         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6439         if (!intel_fb) {
6440                 drm_gem_object_unreference_unlocked(&obj->base);
6441                 return ERR_PTR(-ENOMEM);
6442         }
6443
6444         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6445         if (ret) {
6446                 drm_gem_object_unreference_unlocked(&obj->base);
6447                 kfree(intel_fb);
6448                 return ERR_PTR(ret);
6449         }
6450
6451         return &intel_fb->base;
6452 }
6453
6454 static u32
6455 intel_framebuffer_pitch_for_width(int width, int bpp)
6456 {
6457         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6458         return ALIGN(pitch, 64);
6459 }
6460
6461 static u32
6462 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6463 {
6464         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6465         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6466 }
6467
6468 static struct drm_framebuffer *
6469 intel_framebuffer_create_for_mode(struct drm_device *dev,
6470                                   struct drm_display_mode *mode,
6471                                   int depth, int bpp)
6472 {
6473         struct drm_i915_gem_object *obj;
6474         struct drm_mode_fb_cmd2 mode_cmd;
6475
6476         obj = i915_gem_alloc_object(dev,
6477                                     intel_framebuffer_size_for_mode(mode, bpp));
6478         if (obj == NULL)
6479                 return ERR_PTR(-ENOMEM);
6480
6481         mode_cmd.width = mode->hdisplay;
6482         mode_cmd.height = mode->vdisplay;
6483         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6484                                                                 bpp);
6485         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6486
6487         return intel_framebuffer_create(dev, &mode_cmd, obj);
6488 }
6489
6490 static struct drm_framebuffer *
6491 mode_fits_in_fbdev(struct drm_device *dev,
6492                    struct drm_display_mode *mode)
6493 {
6494         struct drm_i915_private *dev_priv = dev->dev_private;
6495         struct drm_i915_gem_object *obj;
6496         struct drm_framebuffer *fb;
6497
6498         if (dev_priv->fbdev == NULL)
6499                 return NULL;
6500
6501         obj = dev_priv->fbdev->ifb.obj;
6502         if (obj == NULL)
6503                 return NULL;
6504
6505         fb = &dev_priv->fbdev->ifb.base;
6506         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6507                                                                fb->bits_per_pixel))
6508                 return NULL;
6509
6510         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6511                 return NULL;
6512
6513         return fb;
6514 }
6515
6516 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6517                                 struct drm_display_mode *mode,
6518                                 struct intel_load_detect_pipe *old)
6519 {
6520         struct intel_crtc *intel_crtc;
6521         struct intel_encoder *intel_encoder =
6522                 intel_attached_encoder(connector);
6523         struct drm_crtc *possible_crtc;
6524         struct drm_encoder *encoder = &intel_encoder->base;
6525         struct drm_crtc *crtc = NULL;
6526         struct drm_device *dev = encoder->dev;
6527         struct drm_framebuffer *fb;
6528         int i = -1;
6529
6530         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6531                       connector->base.id, drm_get_connector_name(connector),
6532                       encoder->base.id, drm_get_encoder_name(encoder));
6533
6534         /*
6535          * Algorithm gets a little messy:
6536          *
6537          *   - if the connector already has an assigned crtc, use it (but make
6538          *     sure it's on first)
6539          *
6540          *   - try to find the first unused crtc that can drive this connector,
6541          *     and use that if we find one
6542          */
6543
6544         /* See if we already have a CRTC for this connector */
6545         if (encoder->crtc) {
6546                 crtc = encoder->crtc;
6547
6548                 old->dpms_mode = connector->dpms;
6549                 old->load_detect_temp = false;
6550
6551                 /* Make sure the crtc and connector are running */
6552                 if (connector->dpms != DRM_MODE_DPMS_ON)
6553                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6554
6555                 return true;
6556         }
6557
6558         /* Find an unused one (if possible) */
6559         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6560                 i++;
6561                 if (!(encoder->possible_crtcs & (1 << i)))
6562                         continue;
6563                 if (!possible_crtc->enabled) {
6564                         crtc = possible_crtc;
6565                         break;
6566                 }
6567         }
6568
6569         /*
6570          * If we didn't find an unused CRTC, don't use any.
6571          */
6572         if (!crtc) {
6573                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6574                 return false;
6575         }
6576
6577         intel_encoder->new_crtc = to_intel_crtc(crtc);
6578         to_intel_connector(connector)->new_encoder = intel_encoder;
6579
6580         intel_crtc = to_intel_crtc(crtc);
6581         old->dpms_mode = connector->dpms;
6582         old->load_detect_temp = true;
6583         old->release_fb = NULL;
6584
6585         if (!mode)
6586                 mode = &load_detect_mode;
6587
6588         /* We need a framebuffer large enough to accommodate all accesses
6589          * that the plane may generate whilst we perform load detection.
6590          * We can not rely on the fbcon either being present (we get called
6591          * during its initialisation to detect all boot displays, or it may
6592          * not even exist) or that it is large enough to satisfy the
6593          * requested mode.
6594          */
6595         fb = mode_fits_in_fbdev(dev, mode);
6596         if (fb == NULL) {
6597                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6598                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6599                 old->release_fb = fb;
6600         } else
6601                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6602         if (IS_ERR(fb)) {
6603                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6604                 goto fail;
6605         }
6606
6607         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6608                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6609                 if (old->release_fb)
6610                         old->release_fb->funcs->destroy(old->release_fb);
6611                 goto fail;
6612         }
6613
6614         /* let the connector get through one full cycle before testing */
6615         intel_wait_for_vblank(dev, intel_crtc->pipe);
6616
6617         return true;
6618 fail:
6619         connector->encoder = NULL;
6620         encoder->crtc = NULL;
6621         return false;
6622 }
6623
6624 void intel_release_load_detect_pipe(struct drm_connector *connector,
6625                                     struct intel_load_detect_pipe *old)
6626 {
6627         struct intel_encoder *intel_encoder =
6628                 intel_attached_encoder(connector);
6629         struct drm_encoder *encoder = &intel_encoder->base;
6630
6631         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6632                       connector->base.id, drm_get_connector_name(connector),
6633                       encoder->base.id, drm_get_encoder_name(encoder));
6634
6635         if (old->load_detect_temp) {
6636                 struct drm_crtc *crtc = encoder->crtc;
6637
6638                 to_intel_connector(connector)->new_encoder = NULL;
6639                 intel_encoder->new_crtc = NULL;
6640                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6641
6642                 if (old->release_fb)
6643                         old->release_fb->funcs->destroy(old->release_fb);
6644
6645                 return;
6646         }
6647
6648         /* Switch crtc and encoder back off if necessary */
6649         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6650                 connector->funcs->dpms(connector, old->dpms_mode);
6651 }
6652
6653 /* Returns the clock of the currently programmed mode of the given pipe. */
6654 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6655 {
6656         struct drm_i915_private *dev_priv = dev->dev_private;
6657         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6658         int pipe = intel_crtc->pipe;
6659         u32 dpll = I915_READ(DPLL(pipe));
6660         u32 fp;
6661         intel_clock_t clock;
6662
6663         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6664                 fp = I915_READ(FP0(pipe));
6665         else
6666                 fp = I915_READ(FP1(pipe));
6667
6668         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6669         if (IS_PINEVIEW(dev)) {
6670                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6671                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6672         } else {
6673                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6674                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6675         }
6676
6677         if (!IS_GEN2(dev)) {
6678                 if (IS_PINEVIEW(dev))
6679                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6680                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6681                 else
6682                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6683                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6684
6685                 switch (dpll & DPLL_MODE_MASK) {
6686                 case DPLLB_MODE_DAC_SERIAL:
6687                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6688                                 5 : 10;
6689                         break;
6690                 case DPLLB_MODE_LVDS:
6691                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6692                                 7 : 14;
6693                         break;
6694                 default:
6695                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6696                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6697                         return 0;
6698                 }
6699
6700                 /* XXX: Handle the 100Mhz refclk */
6701                 intel_clock(dev, 96000, &clock);
6702         } else {
6703                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6704
6705                 if (is_lvds) {
6706                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6707                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6708                         clock.p2 = 14;
6709
6710                         if ((dpll & PLL_REF_INPUT_MASK) ==
6711                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6712                                 /* XXX: might not be 66MHz */
6713                                 intel_clock(dev, 66000, &clock);
6714                         } else
6715                                 intel_clock(dev, 48000, &clock);
6716                 } else {
6717                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6718                                 clock.p1 = 2;
6719                         else {
6720                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6721                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6722                         }
6723                         if (dpll & PLL_P2_DIVIDE_BY_4)
6724                                 clock.p2 = 4;
6725                         else
6726                                 clock.p2 = 2;
6727
6728                         intel_clock(dev, 48000, &clock);
6729                 }
6730         }
6731
6732         /* XXX: It would be nice to validate the clocks, but we can't reuse
6733          * i830PllIsValid() because it relies on the xf86_config connector
6734          * configuration being accurate, which it isn't necessarily.
6735          */
6736
6737         return clock.dot;
6738 }
6739
6740 /** Returns the currently programmed mode of the given pipe. */
6741 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6742                                              struct drm_crtc *crtc)
6743 {
6744         struct drm_i915_private *dev_priv = dev->dev_private;
6745         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6746         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6747         struct drm_display_mode *mode;
6748         int htot = I915_READ(HTOTAL(cpu_transcoder));
6749         int hsync = I915_READ(HSYNC(cpu_transcoder));
6750         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6751         int vsync = I915_READ(VSYNC(cpu_transcoder));
6752
6753         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6754         if (!mode)
6755                 return NULL;
6756
6757         mode->clock = intel_crtc_clock_get(dev, crtc);
6758         mode->hdisplay = (htot & 0xffff) + 1;
6759         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6760         mode->hsync_start = (hsync & 0xffff) + 1;
6761         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6762         mode->vdisplay = (vtot & 0xffff) + 1;
6763         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6764         mode->vsync_start = (vsync & 0xffff) + 1;
6765         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6766
6767         drm_mode_set_name(mode);
6768
6769         return mode;
6770 }
6771
6772 static void intel_increase_pllclock(struct drm_crtc *crtc)
6773 {
6774         struct drm_device *dev = crtc->dev;
6775         drm_i915_private_t *dev_priv = dev->dev_private;
6776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6777         int pipe = intel_crtc->pipe;
6778         int dpll_reg = DPLL(pipe);
6779         int dpll;
6780
6781         if (HAS_PCH_SPLIT(dev))
6782                 return;
6783
6784         if (!dev_priv->lvds_downclock_avail)
6785                 return;
6786
6787         dpll = I915_READ(dpll_reg);
6788         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6789                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6790
6791                 assert_panel_unlocked(dev_priv, pipe);
6792
6793                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6794                 I915_WRITE(dpll_reg, dpll);
6795                 intel_wait_for_vblank(dev, pipe);
6796
6797                 dpll = I915_READ(dpll_reg);
6798                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6799                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6800         }
6801 }
6802
6803 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6804 {
6805         struct drm_device *dev = crtc->dev;
6806         drm_i915_private_t *dev_priv = dev->dev_private;
6807         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6808
6809         if (HAS_PCH_SPLIT(dev))
6810                 return;
6811
6812         if (!dev_priv->lvds_downclock_avail)
6813                 return;
6814
6815         /*
6816          * Since this is called by a timer, we should never get here in
6817          * the manual case.
6818          */
6819         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6820                 int pipe = intel_crtc->pipe;
6821                 int dpll_reg = DPLL(pipe);
6822                 int dpll;
6823
6824                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6825
6826                 assert_panel_unlocked(dev_priv, pipe);
6827
6828                 dpll = I915_READ(dpll_reg);
6829                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6830                 I915_WRITE(dpll_reg, dpll);
6831                 intel_wait_for_vblank(dev, pipe);
6832                 dpll = I915_READ(dpll_reg);
6833                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6834                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6835         }
6836
6837 }
6838
6839 void intel_mark_busy(struct drm_device *dev)
6840 {
6841         i915_update_gfx_val(dev->dev_private);
6842 }
6843
6844 void intel_mark_idle(struct drm_device *dev)
6845 {
6846 }
6847
6848 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6849 {
6850         struct drm_device *dev = obj->base.dev;
6851         struct drm_crtc *crtc;
6852
6853         if (!i915_powersave)
6854                 return;
6855
6856         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6857                 if (!crtc->fb)
6858                         continue;
6859
6860                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6861                         intel_increase_pllclock(crtc);
6862         }
6863 }
6864
6865 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6866 {
6867         struct drm_device *dev = obj->base.dev;
6868         struct drm_crtc *crtc;
6869
6870         if (!i915_powersave)
6871                 return;
6872
6873         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6874                 if (!crtc->fb)
6875                         continue;
6876
6877                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6878                         intel_decrease_pllclock(crtc);
6879         }
6880 }
6881
6882 static void intel_crtc_destroy(struct drm_crtc *crtc)
6883 {
6884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6885         struct drm_device *dev = crtc->dev;
6886         struct intel_unpin_work *work;
6887         unsigned long flags;
6888
6889         spin_lock_irqsave(&dev->event_lock, flags);
6890         work = intel_crtc->unpin_work;
6891         intel_crtc->unpin_work = NULL;
6892         spin_unlock_irqrestore(&dev->event_lock, flags);
6893
6894         if (work) {
6895                 cancel_work_sync(&work->work);
6896                 kfree(work);
6897         }
6898
6899         drm_crtc_cleanup(crtc);
6900
6901         kfree(intel_crtc);
6902 }
6903
6904 static void intel_unpin_work_fn(struct work_struct *__work)
6905 {
6906         struct intel_unpin_work *work =
6907                 container_of(__work, struct intel_unpin_work, work);
6908
6909         mutex_lock(&work->dev->struct_mutex);
6910         intel_unpin_fb_obj(work->old_fb_obj);
6911         drm_gem_object_unreference(&work->pending_flip_obj->base);
6912         drm_gem_object_unreference(&work->old_fb_obj->base);
6913
6914         intel_update_fbc(work->dev);
6915         mutex_unlock(&work->dev->struct_mutex);
6916         kfree(work);
6917 }
6918
6919 static void do_intel_finish_page_flip(struct drm_device *dev,
6920                                       struct drm_crtc *crtc)
6921 {
6922         drm_i915_private_t *dev_priv = dev->dev_private;
6923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6924         struct intel_unpin_work *work;
6925         struct drm_i915_gem_object *obj;
6926         struct drm_pending_vblank_event *e;
6927         struct timeval tvbl;
6928         unsigned long flags;
6929
6930         /* Ignore early vblank irqs */
6931         if (intel_crtc == NULL)
6932                 return;
6933
6934         spin_lock_irqsave(&dev->event_lock, flags);
6935         work = intel_crtc->unpin_work;
6936         if (work == NULL || !work->pending) {
6937                 spin_unlock_irqrestore(&dev->event_lock, flags);
6938                 return;
6939         }
6940
6941         intel_crtc->unpin_work = NULL;
6942
6943         if (work->event) {
6944                 e = work->event;
6945                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6946
6947                 e->event.tv_sec = tvbl.tv_sec;
6948                 e->event.tv_usec = tvbl.tv_usec;
6949
6950                 list_add_tail(&e->base.link,
6951                               &e->base.file_priv->event_list);
6952                 wake_up_interruptible(&e->base.file_priv->event_wait);
6953         }
6954
6955         drm_vblank_put(dev, intel_crtc->pipe);
6956
6957         spin_unlock_irqrestore(&dev->event_lock, flags);
6958
6959         obj = work->old_fb_obj;
6960
6961         atomic_clear_mask(1 << intel_crtc->plane,
6962                           &obj->pending_flip.counter);
6963
6964         wake_up(&dev_priv->pending_flip_queue);
6965         schedule_work(&work->work);
6966
6967         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6968 }
6969
6970 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6971 {
6972         drm_i915_private_t *dev_priv = dev->dev_private;
6973         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6974
6975         do_intel_finish_page_flip(dev, crtc);
6976 }
6977
6978 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6979 {
6980         drm_i915_private_t *dev_priv = dev->dev_private;
6981         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6982
6983         do_intel_finish_page_flip(dev, crtc);
6984 }
6985
6986 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6987 {
6988         drm_i915_private_t *dev_priv = dev->dev_private;
6989         struct intel_crtc *intel_crtc =
6990                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6991         unsigned long flags;
6992
6993         spin_lock_irqsave(&dev->event_lock, flags);
6994         if (intel_crtc->unpin_work) {
6995                 if ((++intel_crtc->unpin_work->pending) > 1)
6996                         DRM_ERROR("Prepared flip multiple times\n");
6997         } else {
6998                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6999         }
7000         spin_unlock_irqrestore(&dev->event_lock, flags);
7001 }
7002
7003 static int intel_gen2_queue_flip(struct drm_device *dev,
7004                                  struct drm_crtc *crtc,
7005                                  struct drm_framebuffer *fb,
7006                                  struct drm_i915_gem_object *obj)
7007 {
7008         struct drm_i915_private *dev_priv = dev->dev_private;
7009         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7010         u32 flip_mask;
7011         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7012         int ret;
7013
7014         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7015         if (ret)
7016                 goto err;
7017
7018         ret = intel_ring_begin(ring, 6);
7019         if (ret)
7020                 goto err_unpin;
7021
7022         /* Can't queue multiple flips, so wait for the previous
7023          * one to finish before executing the next.
7024          */
7025         if (intel_crtc->plane)
7026                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7027         else
7028                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7029         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7030         intel_ring_emit(ring, MI_NOOP);
7031         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7032                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7033         intel_ring_emit(ring, fb->pitches[0]);
7034         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7035         intel_ring_emit(ring, 0); /* aux display base address, unused */
7036         intel_ring_advance(ring);
7037         return 0;
7038
7039 err_unpin:
7040         intel_unpin_fb_obj(obj);
7041 err:
7042         return ret;
7043 }
7044
7045 static int intel_gen3_queue_flip(struct drm_device *dev,
7046                                  struct drm_crtc *crtc,
7047                                  struct drm_framebuffer *fb,
7048                                  struct drm_i915_gem_object *obj)
7049 {
7050         struct drm_i915_private *dev_priv = dev->dev_private;
7051         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7052         u32 flip_mask;
7053         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7054         int ret;
7055
7056         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7057         if (ret)
7058                 goto err;
7059
7060         ret = intel_ring_begin(ring, 6);
7061         if (ret)
7062                 goto err_unpin;
7063
7064         if (intel_crtc->plane)
7065                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7066         else
7067                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7068         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7069         intel_ring_emit(ring, MI_NOOP);
7070         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7071                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7072         intel_ring_emit(ring, fb->pitches[0]);
7073         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7074         intel_ring_emit(ring, MI_NOOP);
7075
7076         intel_ring_advance(ring);
7077         return 0;
7078
7079 err_unpin:
7080         intel_unpin_fb_obj(obj);
7081 err:
7082         return ret;
7083 }
7084
7085 static int intel_gen4_queue_flip(struct drm_device *dev,
7086                                  struct drm_crtc *crtc,
7087                                  struct drm_framebuffer *fb,
7088                                  struct drm_i915_gem_object *obj)
7089 {
7090         struct drm_i915_private *dev_priv = dev->dev_private;
7091         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7092         uint32_t pf, pipesrc;
7093         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7094         int ret;
7095
7096         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7097         if (ret)
7098                 goto err;
7099
7100         ret = intel_ring_begin(ring, 4);
7101         if (ret)
7102                 goto err_unpin;
7103
7104         /* i965+ uses the linear or tiled offsets from the
7105          * Display Registers (which do not change across a page-flip)
7106          * so we need only reprogram the base address.
7107          */
7108         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7109                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7110         intel_ring_emit(ring, fb->pitches[0]);
7111         intel_ring_emit(ring,
7112                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7113                         obj->tiling_mode);
7114
7115         /* XXX Enabling the panel-fitter across page-flip is so far
7116          * untested on non-native modes, so ignore it for now.
7117          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7118          */
7119         pf = 0;
7120         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7121         intel_ring_emit(ring, pf | pipesrc);
7122         intel_ring_advance(ring);
7123         return 0;
7124
7125 err_unpin:
7126         intel_unpin_fb_obj(obj);
7127 err:
7128         return ret;
7129 }
7130
7131 static int intel_gen6_queue_flip(struct drm_device *dev,
7132                                  struct drm_crtc *crtc,
7133                                  struct drm_framebuffer *fb,
7134                                  struct drm_i915_gem_object *obj)
7135 {
7136         struct drm_i915_private *dev_priv = dev->dev_private;
7137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7138         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7139         uint32_t pf, pipesrc;
7140         int ret;
7141
7142         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7143         if (ret)
7144                 goto err;
7145
7146         ret = intel_ring_begin(ring, 4);
7147         if (ret)
7148                 goto err_unpin;
7149
7150         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7151                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7152         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7153         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7154
7155         /* Contrary to the suggestions in the documentation,
7156          * "Enable Panel Fitter" does not seem to be required when page
7157          * flipping with a non-native mode, and worse causes a normal
7158          * modeset to fail.
7159          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7160          */
7161         pf = 0;
7162         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7163         intel_ring_emit(ring, pf | pipesrc);
7164         intel_ring_advance(ring);
7165         return 0;
7166
7167 err_unpin:
7168         intel_unpin_fb_obj(obj);
7169 err:
7170         return ret;
7171 }
7172
7173 /*
7174  * On gen7 we currently use the blit ring because (in early silicon at least)
7175  * the render ring doesn't give us interrpts for page flip completion, which
7176  * means clients will hang after the first flip is queued.  Fortunately the
7177  * blit ring generates interrupts properly, so use it instead.
7178  */
7179 static int intel_gen7_queue_flip(struct drm_device *dev,
7180                                  struct drm_crtc *crtc,
7181                                  struct drm_framebuffer *fb,
7182                                  struct drm_i915_gem_object *obj)
7183 {
7184         struct drm_i915_private *dev_priv = dev->dev_private;
7185         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7186         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7187         uint32_t plane_bit = 0;
7188         int ret;
7189
7190         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7191         if (ret)
7192                 goto err;
7193
7194         switch(intel_crtc->plane) {
7195         case PLANE_A:
7196                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7197                 break;
7198         case PLANE_B:
7199                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7200                 break;
7201         case PLANE_C:
7202                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7203                 break;
7204         default:
7205                 WARN_ONCE(1, "unknown plane in flip command\n");
7206                 ret = -ENODEV;
7207                 goto err_unpin;
7208         }
7209
7210         ret = intel_ring_begin(ring, 4);
7211         if (ret)
7212                 goto err_unpin;
7213
7214         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7215         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7216         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7217         intel_ring_emit(ring, (MI_NOOP));
7218         intel_ring_advance(ring);
7219         return 0;
7220
7221 err_unpin:
7222         intel_unpin_fb_obj(obj);
7223 err:
7224         return ret;
7225 }
7226
7227 static int intel_default_queue_flip(struct drm_device *dev,
7228                                     struct drm_crtc *crtc,
7229                                     struct drm_framebuffer *fb,
7230                                     struct drm_i915_gem_object *obj)
7231 {
7232         return -ENODEV;
7233 }
7234
7235 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7236                                 struct drm_framebuffer *fb,
7237                                 struct drm_pending_vblank_event *event)
7238 {
7239         struct drm_device *dev = crtc->dev;
7240         struct drm_i915_private *dev_priv = dev->dev_private;
7241         struct intel_framebuffer *intel_fb;
7242         struct drm_i915_gem_object *obj;
7243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7244         struct intel_unpin_work *work;
7245         unsigned long flags;
7246         int ret;
7247
7248         /* Can't change pixel format via MI display flips. */
7249         if (fb->pixel_format != crtc->fb->pixel_format)
7250                 return -EINVAL;
7251
7252         /*
7253          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7254          * Note that pitch changes could also affect these register.
7255          */
7256         if (INTEL_INFO(dev)->gen > 3 &&
7257             (fb->offsets[0] != crtc->fb->offsets[0] ||
7258              fb->pitches[0] != crtc->fb->pitches[0]))
7259                 return -EINVAL;
7260
7261         work = kzalloc(sizeof *work, GFP_KERNEL);
7262         if (work == NULL)
7263                 return -ENOMEM;
7264
7265         work->event = event;
7266         work->dev = crtc->dev;
7267         intel_fb = to_intel_framebuffer(crtc->fb);
7268         work->old_fb_obj = intel_fb->obj;
7269         INIT_WORK(&work->work, intel_unpin_work_fn);
7270
7271         ret = drm_vblank_get(dev, intel_crtc->pipe);
7272         if (ret)
7273                 goto free_work;
7274
7275         /* We borrow the event spin lock for protecting unpin_work */
7276         spin_lock_irqsave(&dev->event_lock, flags);
7277         if (intel_crtc->unpin_work) {
7278                 spin_unlock_irqrestore(&dev->event_lock, flags);
7279                 kfree(work);
7280                 drm_vblank_put(dev, intel_crtc->pipe);
7281
7282                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7283                 return -EBUSY;
7284         }
7285         intel_crtc->unpin_work = work;
7286         spin_unlock_irqrestore(&dev->event_lock, flags);
7287
7288         intel_fb = to_intel_framebuffer(fb);
7289         obj = intel_fb->obj;
7290
7291         ret = i915_mutex_lock_interruptible(dev);
7292         if (ret)
7293                 goto cleanup;
7294
7295         /* Reference the objects for the scheduled work. */
7296         drm_gem_object_reference(&work->old_fb_obj->base);
7297         drm_gem_object_reference(&obj->base);
7298
7299         crtc->fb = fb;
7300
7301         work->pending_flip_obj = obj;
7302
7303         work->enable_stall_check = true;
7304
7305         /* Block clients from rendering to the new back buffer until
7306          * the flip occurs and the object is no longer visible.
7307          */
7308         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7309
7310         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7311         if (ret)
7312                 goto cleanup_pending;
7313
7314         intel_disable_fbc(dev);
7315         intel_mark_fb_busy(obj);
7316         mutex_unlock(&dev->struct_mutex);
7317
7318         trace_i915_flip_request(intel_crtc->plane, obj);
7319
7320         return 0;
7321
7322 cleanup_pending:
7323         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7324         drm_gem_object_unreference(&work->old_fb_obj->base);
7325         drm_gem_object_unreference(&obj->base);
7326         mutex_unlock(&dev->struct_mutex);
7327
7328 cleanup:
7329         spin_lock_irqsave(&dev->event_lock, flags);
7330         intel_crtc->unpin_work = NULL;
7331         spin_unlock_irqrestore(&dev->event_lock, flags);
7332
7333         drm_vblank_put(dev, intel_crtc->pipe);
7334 free_work:
7335         kfree(work);
7336
7337         return ret;
7338 }
7339
7340 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7341         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7342         .load_lut = intel_crtc_load_lut,
7343         .disable = intel_crtc_noop,
7344 };
7345
7346 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7347 {
7348         struct intel_encoder *other_encoder;
7349         struct drm_crtc *crtc = &encoder->new_crtc->base;
7350
7351         if (WARN_ON(!crtc))
7352                 return false;
7353
7354         list_for_each_entry(other_encoder,
7355                             &crtc->dev->mode_config.encoder_list,
7356                             base.head) {
7357
7358                 if (&other_encoder->new_crtc->base != crtc ||
7359                     encoder == other_encoder)
7360                         continue;
7361                 else
7362                         return true;
7363         }
7364
7365         return false;
7366 }
7367
7368 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7369                                   struct drm_crtc *crtc)
7370 {
7371         struct drm_device *dev;
7372         struct drm_crtc *tmp;
7373         int crtc_mask = 1;
7374
7375         WARN(!crtc, "checking null crtc?\n");
7376
7377         dev = crtc->dev;
7378
7379         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7380                 if (tmp == crtc)
7381                         break;
7382                 crtc_mask <<= 1;
7383         }
7384
7385         if (encoder->possible_crtcs & crtc_mask)
7386                 return true;
7387         return false;
7388 }
7389
7390 /**
7391  * intel_modeset_update_staged_output_state
7392  *
7393  * Updates the staged output configuration state, e.g. after we've read out the
7394  * current hw state.
7395  */
7396 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7397 {
7398         struct intel_encoder *encoder;
7399         struct intel_connector *connector;
7400
7401         list_for_each_entry(connector, &dev->mode_config.connector_list,
7402                             base.head) {
7403                 connector->new_encoder =
7404                         to_intel_encoder(connector->base.encoder);
7405         }
7406
7407         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7408                             base.head) {
7409                 encoder->new_crtc =
7410                         to_intel_crtc(encoder->base.crtc);
7411         }
7412 }
7413
7414 /**
7415  * intel_modeset_commit_output_state
7416  *
7417  * This function copies the stage display pipe configuration to the real one.
7418  */
7419 static void intel_modeset_commit_output_state(struct drm_device *dev)
7420 {
7421         struct intel_encoder *encoder;
7422         struct intel_connector *connector;
7423
7424         list_for_each_entry(connector, &dev->mode_config.connector_list,
7425                             base.head) {
7426                 connector->base.encoder = &connector->new_encoder->base;
7427         }
7428
7429         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7430                             base.head) {
7431                 encoder->base.crtc = &encoder->new_crtc->base;
7432         }
7433 }
7434
7435 static struct drm_display_mode *
7436 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7437                             struct drm_display_mode *mode)
7438 {
7439         struct drm_device *dev = crtc->dev;
7440         struct drm_display_mode *adjusted_mode;
7441         struct drm_encoder_helper_funcs *encoder_funcs;
7442         struct intel_encoder *encoder;
7443
7444         adjusted_mode = drm_mode_duplicate(dev, mode);
7445         if (!adjusted_mode)
7446                 return ERR_PTR(-ENOMEM);
7447
7448         /* Pass our mode to the connectors and the CRTC to give them a chance to
7449          * adjust it according to limitations or connector properties, and also
7450          * a chance to reject the mode entirely.
7451          */
7452         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7453                             base.head) {
7454
7455                 if (&encoder->new_crtc->base != crtc)
7456                         continue;
7457                 encoder_funcs = encoder->base.helper_private;
7458                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7459                                                 adjusted_mode))) {
7460                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7461                         goto fail;
7462                 }
7463         }
7464
7465         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7466                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7467                 goto fail;
7468         }
7469         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7470
7471         return adjusted_mode;
7472 fail:
7473         drm_mode_destroy(dev, adjusted_mode);
7474         return ERR_PTR(-EINVAL);
7475 }
7476
7477 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7478  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7479 static void
7480 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7481                              unsigned *prepare_pipes, unsigned *disable_pipes)
7482 {
7483         struct intel_crtc *intel_crtc;
7484         struct drm_device *dev = crtc->dev;
7485         struct intel_encoder *encoder;
7486         struct intel_connector *connector;
7487         struct drm_crtc *tmp_crtc;
7488
7489         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7490
7491         /* Check which crtcs have changed outputs connected to them, these need
7492          * to be part of the prepare_pipes mask. We don't (yet) support global
7493          * modeset across multiple crtcs, so modeset_pipes will only have one
7494          * bit set at most. */
7495         list_for_each_entry(connector, &dev->mode_config.connector_list,
7496                             base.head) {
7497                 if (connector->base.encoder == &connector->new_encoder->base)
7498                         continue;
7499
7500                 if (connector->base.encoder) {
7501                         tmp_crtc = connector->base.encoder->crtc;
7502
7503                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7504                 }
7505
7506                 if (connector->new_encoder)
7507                         *prepare_pipes |=
7508                                 1 << connector->new_encoder->new_crtc->pipe;
7509         }
7510
7511         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7512                             base.head) {
7513                 if (encoder->base.crtc == &encoder->new_crtc->base)
7514                         continue;
7515
7516                 if (encoder->base.crtc) {
7517                         tmp_crtc = encoder->base.crtc;
7518
7519                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7520                 }
7521
7522                 if (encoder->new_crtc)
7523                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7524         }
7525
7526         /* Check for any pipes that will be fully disabled ... */
7527         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7528                             base.head) {
7529                 bool used = false;
7530
7531                 /* Don't try to disable disabled crtcs. */
7532                 if (!intel_crtc->base.enabled)
7533                         continue;
7534
7535                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7536                                     base.head) {
7537                         if (encoder->new_crtc == intel_crtc)
7538                                 used = true;
7539                 }
7540
7541                 if (!used)
7542                         *disable_pipes |= 1 << intel_crtc->pipe;
7543         }
7544
7545
7546         /* set_mode is also used to update properties on life display pipes. */
7547         intel_crtc = to_intel_crtc(crtc);
7548         if (crtc->enabled)
7549                 *prepare_pipes |= 1 << intel_crtc->pipe;
7550
7551         /* We only support modeset on one single crtc, hence we need to do that
7552          * only for the passed in crtc iff we change anything else than just
7553          * disable crtcs.
7554          *
7555          * This is actually not true, to be fully compatible with the old crtc
7556          * helper we automatically disable _any_ output (i.e. doesn't need to be
7557          * connected to the crtc we're modesetting on) if it's disconnected.
7558          * Which is a rather nutty api (since changed the output configuration
7559          * without userspace's explicit request can lead to confusion), but
7560          * alas. Hence we currently need to modeset on all pipes we prepare. */
7561         if (*prepare_pipes)
7562                 *modeset_pipes = *prepare_pipes;
7563
7564         /* ... and mask these out. */
7565         *modeset_pipes &= ~(*disable_pipes);
7566         *prepare_pipes &= ~(*disable_pipes);
7567 }
7568
7569 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7570 {
7571         struct drm_encoder *encoder;
7572         struct drm_device *dev = crtc->dev;
7573
7574         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7575                 if (encoder->crtc == crtc)
7576                         return true;
7577
7578         return false;
7579 }
7580
7581 static void
7582 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7583 {
7584         struct intel_encoder *intel_encoder;
7585         struct intel_crtc *intel_crtc;
7586         struct drm_connector *connector;
7587
7588         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7589                             base.head) {
7590                 if (!intel_encoder->base.crtc)
7591                         continue;
7592
7593                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7594
7595                 if (prepare_pipes & (1 << intel_crtc->pipe))
7596                         intel_encoder->connectors_active = false;
7597         }
7598
7599         intel_modeset_commit_output_state(dev);
7600
7601         /* Update computed state. */
7602         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7603                             base.head) {
7604                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7605         }
7606
7607         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7608                 if (!connector->encoder || !connector->encoder->crtc)
7609                         continue;
7610
7611                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7612
7613                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7614                         struct drm_property *dpms_property =
7615                                 dev->mode_config.dpms_property;
7616
7617                         connector->dpms = DRM_MODE_DPMS_ON;
7618                         drm_connector_property_set_value(connector,
7619                                                          dpms_property,
7620                                                          DRM_MODE_DPMS_ON);
7621
7622                         intel_encoder = to_intel_encoder(connector->encoder);
7623                         intel_encoder->connectors_active = true;
7624                 }
7625         }
7626
7627 }
7628
7629 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7630         list_for_each_entry((intel_crtc), \
7631                             &(dev)->mode_config.crtc_list, \
7632                             base.head) \
7633                 if (mask & (1 <<(intel_crtc)->pipe)) \
7634
7635 void
7636 intel_modeset_check_state(struct drm_device *dev)
7637 {
7638         struct intel_crtc *crtc;
7639         struct intel_encoder *encoder;
7640         struct intel_connector *connector;
7641
7642         list_for_each_entry(connector, &dev->mode_config.connector_list,
7643                             base.head) {
7644                 /* This also checks the encoder/connector hw state with the
7645                  * ->get_hw_state callbacks. */
7646                 intel_connector_check_state(connector);
7647
7648                 WARN(&connector->new_encoder->base != connector->base.encoder,
7649                      "connector's staged encoder doesn't match current encoder\n");
7650         }
7651
7652         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7653                             base.head) {
7654                 bool enabled = false;
7655                 bool active = false;
7656                 enum pipe pipe, tracked_pipe;
7657
7658                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7659                               encoder->base.base.id,
7660                               drm_get_encoder_name(&encoder->base));
7661
7662                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7663                      "encoder's stage crtc doesn't match current crtc\n");
7664                 WARN(encoder->connectors_active && !encoder->base.crtc,
7665                      "encoder's active_connectors set, but no crtc\n");
7666
7667                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7668                                     base.head) {
7669                         if (connector->base.encoder != &encoder->base)
7670                                 continue;
7671                         enabled = true;
7672                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7673                                 active = true;
7674                 }
7675                 WARN(!!encoder->base.crtc != enabled,
7676                      "encoder's enabled state mismatch "
7677                      "(expected %i, found %i)\n",
7678                      !!encoder->base.crtc, enabled);
7679                 WARN(active && !encoder->base.crtc,
7680                      "active encoder with no crtc\n");
7681
7682                 WARN(encoder->connectors_active != active,
7683                      "encoder's computed active state doesn't match tracked active state "
7684                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7685
7686                 active = encoder->get_hw_state(encoder, &pipe);
7687                 WARN(active != encoder->connectors_active,
7688                      "encoder's hw state doesn't match sw tracking "
7689                      "(expected %i, found %i)\n",
7690                      encoder->connectors_active, active);
7691
7692                 if (!encoder->base.crtc)
7693                         continue;
7694
7695                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7696                 WARN(active && pipe != tracked_pipe,
7697                      "active encoder's pipe doesn't match"
7698                      "(expected %i, found %i)\n",
7699                      tracked_pipe, pipe);
7700
7701         }
7702
7703         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7704                             base.head) {
7705                 bool enabled = false;
7706                 bool active = false;
7707
7708                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7709                               crtc->base.base.id);
7710
7711                 WARN(crtc->active && !crtc->base.enabled,
7712                      "active crtc, but not enabled in sw tracking\n");
7713
7714                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7715                                     base.head) {
7716                         if (encoder->base.crtc != &crtc->base)
7717                                 continue;
7718                         enabled = true;
7719                         if (encoder->connectors_active)
7720                                 active = true;
7721                 }
7722                 WARN(active != crtc->active,
7723                      "crtc's computed active state doesn't match tracked active state "
7724                      "(expected %i, found %i)\n", active, crtc->active);
7725                 WARN(enabled != crtc->base.enabled,
7726                      "crtc's computed enabled state doesn't match tracked enabled state "
7727                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7728
7729                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7730         }
7731 }
7732
7733 bool intel_set_mode(struct drm_crtc *crtc,
7734                     struct drm_display_mode *mode,
7735                     int x, int y, struct drm_framebuffer *fb)
7736 {
7737         struct drm_device *dev = crtc->dev;
7738         drm_i915_private_t *dev_priv = dev->dev_private;
7739         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7740         struct intel_crtc *intel_crtc;
7741         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7742         bool ret = true;
7743
7744         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7745                                      &prepare_pipes, &disable_pipes);
7746
7747         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7748                       modeset_pipes, prepare_pipes, disable_pipes);
7749
7750         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7751                 intel_crtc_disable(&intel_crtc->base);
7752
7753         saved_hwmode = crtc->hwmode;
7754         saved_mode = crtc->mode;
7755
7756         /* Hack: Because we don't (yet) support global modeset on multiple
7757          * crtcs, we don't keep track of the new mode for more than one crtc.
7758          * Hence simply check whether any bit is set in modeset_pipes in all the
7759          * pieces of code that are not yet converted to deal with mutliple crtcs
7760          * changing their mode at the same time. */
7761         adjusted_mode = NULL;
7762         if (modeset_pipes) {
7763                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7764                 if (IS_ERR(adjusted_mode)) {
7765                         return false;
7766                 }
7767         }
7768
7769         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7770                 if (intel_crtc->base.enabled)
7771                         dev_priv->display.crtc_disable(&intel_crtc->base);
7772         }
7773
7774         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7775          * to set it here already despite that we pass it down the callchain.
7776          */
7777         if (modeset_pipes)
7778                 crtc->mode = *mode;
7779
7780         /* Only after disabling all output pipelines that will be changed can we
7781          * update the the output configuration. */
7782         intel_modeset_update_state(dev, prepare_pipes);
7783
7784         if (dev_priv->display.modeset_global_resources)
7785                 dev_priv->display.modeset_global_resources(dev);
7786
7787         /* Set up the DPLL and any encoders state that needs to adjust or depend
7788          * on the DPLL.
7789          */
7790         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7791                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7792                                            mode, adjusted_mode,
7793                                            x, y, fb);
7794                 if (!ret)
7795                     goto done;
7796         }
7797
7798         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7799         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7800                 dev_priv->display.crtc_enable(&intel_crtc->base);
7801
7802         if (modeset_pipes) {
7803                 /* Store real post-adjustment hardware mode. */
7804                 crtc->hwmode = *adjusted_mode;
7805
7806                 /* Calculate and store various constants which
7807                  * are later needed by vblank and swap-completion
7808                  * timestamping. They are derived from true hwmode.
7809                  */
7810                 drm_calc_timestamping_constants(crtc);
7811         }
7812
7813         /* FIXME: add subpixel order */
7814 done:
7815         drm_mode_destroy(dev, adjusted_mode);
7816         if (!ret && crtc->enabled) {
7817                 crtc->hwmode = saved_hwmode;
7818                 crtc->mode = saved_mode;
7819         } else {
7820                 intel_modeset_check_state(dev);
7821         }
7822
7823         return ret;
7824 }
7825
7826 #undef for_each_intel_crtc_masked
7827
7828 static void intel_set_config_free(struct intel_set_config *config)
7829 {
7830         if (!config)
7831                 return;
7832
7833         kfree(config->save_connector_encoders);
7834         kfree(config->save_encoder_crtcs);
7835         kfree(config);
7836 }
7837
7838 static int intel_set_config_save_state(struct drm_device *dev,
7839                                        struct intel_set_config *config)
7840 {
7841         struct drm_encoder *encoder;
7842         struct drm_connector *connector;
7843         int count;
7844
7845         config->save_encoder_crtcs =
7846                 kcalloc(dev->mode_config.num_encoder,
7847                         sizeof(struct drm_crtc *), GFP_KERNEL);
7848         if (!config->save_encoder_crtcs)
7849                 return -ENOMEM;
7850
7851         config->save_connector_encoders =
7852                 kcalloc(dev->mode_config.num_connector,
7853                         sizeof(struct drm_encoder *), GFP_KERNEL);
7854         if (!config->save_connector_encoders)
7855                 return -ENOMEM;
7856
7857         /* Copy data. Note that driver private data is not affected.
7858          * Should anything bad happen only the expected state is
7859          * restored, not the drivers personal bookkeeping.
7860          */
7861         count = 0;
7862         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7863                 config->save_encoder_crtcs[count++] = encoder->crtc;
7864         }
7865
7866         count = 0;
7867         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7868                 config->save_connector_encoders[count++] = connector->encoder;
7869         }
7870
7871         return 0;
7872 }
7873
7874 static void intel_set_config_restore_state(struct drm_device *dev,
7875                                            struct intel_set_config *config)
7876 {
7877         struct intel_encoder *encoder;
7878         struct intel_connector *connector;
7879         int count;
7880
7881         count = 0;
7882         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7883                 encoder->new_crtc =
7884                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7885         }
7886
7887         count = 0;
7888         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7889                 connector->new_encoder =
7890                         to_intel_encoder(config->save_connector_encoders[count++]);
7891         }
7892 }
7893
7894 static void
7895 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7896                                       struct intel_set_config *config)
7897 {
7898
7899         /* We should be able to check here if the fb has the same properties
7900          * and then just flip_or_move it */
7901         if (set->crtc->fb != set->fb) {
7902                 /* If we have no fb then treat it as a full mode set */
7903                 if (set->crtc->fb == NULL) {
7904                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7905                         config->mode_changed = true;
7906                 } else if (set->fb == NULL) {
7907                         config->mode_changed = true;
7908                 } else if (set->fb->depth != set->crtc->fb->depth) {
7909                         config->mode_changed = true;
7910                 } else if (set->fb->bits_per_pixel !=
7911                            set->crtc->fb->bits_per_pixel) {
7912                         config->mode_changed = true;
7913                 } else
7914                         config->fb_changed = true;
7915         }
7916
7917         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7918                 config->fb_changed = true;
7919
7920         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7921                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7922                 drm_mode_debug_printmodeline(&set->crtc->mode);
7923                 drm_mode_debug_printmodeline(set->mode);
7924                 config->mode_changed = true;
7925         }
7926 }
7927
7928 static int
7929 intel_modeset_stage_output_state(struct drm_device *dev,
7930                                  struct drm_mode_set *set,
7931                                  struct intel_set_config *config)
7932 {
7933         struct drm_crtc *new_crtc;
7934         struct intel_connector *connector;
7935         struct intel_encoder *encoder;
7936         int count, ro;
7937
7938         /* The upper layers ensure that we either disabl a crtc or have a list
7939          * of connectors. For paranoia, double-check this. */
7940         WARN_ON(!set->fb && (set->num_connectors != 0));
7941         WARN_ON(set->fb && (set->num_connectors == 0));
7942
7943         count = 0;
7944         list_for_each_entry(connector, &dev->mode_config.connector_list,
7945                             base.head) {
7946                 /* Otherwise traverse passed in connector list and get encoders
7947                  * for them. */
7948                 for (ro = 0; ro < set->num_connectors; ro++) {
7949                         if (set->connectors[ro] == &connector->base) {
7950                                 connector->new_encoder = connector->encoder;
7951                                 break;
7952                         }
7953                 }
7954
7955                 /* If we disable the crtc, disable all its connectors. Also, if
7956                  * the connector is on the changing crtc but not on the new
7957                  * connector list, disable it. */
7958                 if ((!set->fb || ro == set->num_connectors) &&
7959                     connector->base.encoder &&
7960                     connector->base.encoder->crtc == set->crtc) {
7961                         connector->new_encoder = NULL;
7962
7963                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7964                                 connector->base.base.id,
7965                                 drm_get_connector_name(&connector->base));
7966                 }
7967
7968
7969                 if (&connector->new_encoder->base != connector->base.encoder) {
7970                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7971                         config->mode_changed = true;
7972                 }
7973
7974                 /* Disable all disconnected encoders. */
7975                 if (connector->base.status == connector_status_disconnected)
7976                         connector->new_encoder = NULL;
7977         }
7978         /* connector->new_encoder is now updated for all connectors. */
7979
7980         /* Update crtc of enabled connectors. */
7981         count = 0;
7982         list_for_each_entry(connector, &dev->mode_config.connector_list,
7983                             base.head) {
7984                 if (!connector->new_encoder)
7985                         continue;
7986
7987                 new_crtc = connector->new_encoder->base.crtc;
7988
7989                 for (ro = 0; ro < set->num_connectors; ro++) {
7990                         if (set->connectors[ro] == &connector->base)
7991                                 new_crtc = set->crtc;
7992                 }
7993
7994                 /* Make sure the new CRTC will work with the encoder */
7995                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7996                                            new_crtc)) {
7997                         return -EINVAL;
7998                 }
7999                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8000
8001                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8002                         connector->base.base.id,
8003                         drm_get_connector_name(&connector->base),
8004                         new_crtc->base.id);
8005         }
8006
8007         /* Check for any encoders that needs to be disabled. */
8008         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8009                             base.head) {
8010                 list_for_each_entry(connector,
8011                                     &dev->mode_config.connector_list,
8012                                     base.head) {
8013                         if (connector->new_encoder == encoder) {
8014                                 WARN_ON(!connector->new_encoder->new_crtc);
8015
8016                                 goto next_encoder;
8017                         }
8018                 }
8019                 encoder->new_crtc = NULL;
8020 next_encoder:
8021                 /* Only now check for crtc changes so we don't miss encoders
8022                  * that will be disabled. */
8023                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8024                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8025                         config->mode_changed = true;
8026                 }
8027         }
8028         /* Now we've also updated encoder->new_crtc for all encoders. */
8029
8030         return 0;
8031 }
8032
8033 static int intel_crtc_set_config(struct drm_mode_set *set)
8034 {
8035         struct drm_device *dev;
8036         struct drm_mode_set save_set;
8037         struct intel_set_config *config;
8038         int ret;
8039
8040         BUG_ON(!set);
8041         BUG_ON(!set->crtc);
8042         BUG_ON(!set->crtc->helper_private);
8043
8044         if (!set->mode)
8045                 set->fb = NULL;
8046
8047         /* The fb helper likes to play gross jokes with ->mode_set_config.
8048          * Unfortunately the crtc helper doesn't do much at all for this case,
8049          * so we have to cope with this madness until the fb helper is fixed up. */
8050         if (set->fb && set->num_connectors == 0)
8051                 return 0;
8052
8053         if (set->fb) {
8054                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8055                                 set->crtc->base.id, set->fb->base.id,
8056                                 (int)set->num_connectors, set->x, set->y);
8057         } else {
8058                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8059         }
8060
8061         dev = set->crtc->dev;
8062
8063         ret = -ENOMEM;
8064         config = kzalloc(sizeof(*config), GFP_KERNEL);
8065         if (!config)
8066                 goto out_config;
8067
8068         ret = intel_set_config_save_state(dev, config);
8069         if (ret)
8070                 goto out_config;
8071
8072         save_set.crtc = set->crtc;
8073         save_set.mode = &set->crtc->mode;
8074         save_set.x = set->crtc->x;
8075         save_set.y = set->crtc->y;
8076         save_set.fb = set->crtc->fb;
8077
8078         /* Compute whether we need a full modeset, only an fb base update or no
8079          * change at all. In the future we might also check whether only the
8080          * mode changed, e.g. for LVDS where we only change the panel fitter in
8081          * such cases. */
8082         intel_set_config_compute_mode_changes(set, config);
8083
8084         ret = intel_modeset_stage_output_state(dev, set, config);
8085         if (ret)
8086                 goto fail;
8087
8088         if (config->mode_changed) {
8089                 if (set->mode) {
8090                         DRM_DEBUG_KMS("attempting to set mode from"
8091                                         " userspace\n");
8092                         drm_mode_debug_printmodeline(set->mode);
8093                 }
8094
8095                 if (!intel_set_mode(set->crtc, set->mode,
8096                                     set->x, set->y, set->fb)) {
8097                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8098                                   set->crtc->base.id);
8099                         ret = -EINVAL;
8100                         goto fail;
8101                 }
8102         } else if (config->fb_changed) {
8103                 ret = intel_pipe_set_base(set->crtc,
8104                                           set->x, set->y, set->fb);
8105         }
8106
8107         intel_set_config_free(config);
8108
8109         return 0;
8110
8111 fail:
8112         intel_set_config_restore_state(dev, config);
8113
8114         /* Try to restore the config */
8115         if (config->mode_changed &&
8116             !intel_set_mode(save_set.crtc, save_set.mode,
8117                             save_set.x, save_set.y, save_set.fb))
8118                 DRM_ERROR("failed to restore config after modeset failure\n");
8119
8120 out_config:
8121         intel_set_config_free(config);
8122         return ret;
8123 }
8124
8125 static const struct drm_crtc_funcs intel_crtc_funcs = {
8126         .cursor_set = intel_crtc_cursor_set,
8127         .cursor_move = intel_crtc_cursor_move,
8128         .gamma_set = intel_crtc_gamma_set,
8129         .set_config = intel_crtc_set_config,
8130         .destroy = intel_crtc_destroy,
8131         .page_flip = intel_crtc_page_flip,
8132 };
8133
8134 static void intel_cpu_pll_init(struct drm_device *dev)
8135 {
8136         if (IS_HASWELL(dev))
8137                 intel_ddi_pll_init(dev);
8138 }
8139
8140 static void intel_pch_pll_init(struct drm_device *dev)
8141 {
8142         drm_i915_private_t *dev_priv = dev->dev_private;
8143         int i;
8144
8145         if (dev_priv->num_pch_pll == 0) {
8146                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8147                 return;
8148         }
8149
8150         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8151                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8152                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8153                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8154         }
8155 }
8156
8157 static void intel_crtc_init(struct drm_device *dev, int pipe)
8158 {
8159         drm_i915_private_t *dev_priv = dev->dev_private;
8160         struct intel_crtc *intel_crtc;
8161         int i;
8162
8163         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8164         if (intel_crtc == NULL)
8165                 return;
8166
8167         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8168
8169         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8170         for (i = 0; i < 256; i++) {
8171                 intel_crtc->lut_r[i] = i;
8172                 intel_crtc->lut_g[i] = i;
8173                 intel_crtc->lut_b[i] = i;
8174         }
8175
8176         /* Swap pipes & planes for FBC on pre-965 */
8177         intel_crtc->pipe = pipe;
8178         intel_crtc->plane = pipe;
8179         intel_crtc->cpu_transcoder = pipe;
8180         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8181                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8182                 intel_crtc->plane = !pipe;
8183         }
8184
8185         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8186                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8187         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8188         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8189
8190         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8191
8192         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8193 }
8194
8195 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8196                                 struct drm_file *file)
8197 {
8198         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8199         struct drm_mode_object *drmmode_obj;
8200         struct intel_crtc *crtc;
8201
8202         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8203                 return -ENODEV;
8204
8205         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8206                         DRM_MODE_OBJECT_CRTC);
8207
8208         if (!drmmode_obj) {
8209                 DRM_ERROR("no such CRTC id\n");
8210                 return -EINVAL;
8211         }
8212
8213         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8214         pipe_from_crtc_id->pipe = crtc->pipe;
8215
8216         return 0;
8217 }
8218
8219 static int intel_encoder_clones(struct intel_encoder *encoder)
8220 {
8221         struct drm_device *dev = encoder->base.dev;
8222         struct intel_encoder *source_encoder;
8223         int index_mask = 0;
8224         int entry = 0;
8225
8226         list_for_each_entry(source_encoder,
8227                             &dev->mode_config.encoder_list, base.head) {
8228
8229                 if (encoder == source_encoder)
8230                         index_mask |= (1 << entry);
8231
8232                 /* Intel hw has only one MUX where enocoders could be cloned. */
8233                 if (encoder->cloneable && source_encoder->cloneable)
8234                         index_mask |= (1 << entry);
8235
8236                 entry++;
8237         }
8238
8239         return index_mask;
8240 }
8241
8242 static bool has_edp_a(struct drm_device *dev)
8243 {
8244         struct drm_i915_private *dev_priv = dev->dev_private;
8245
8246         if (!IS_MOBILE(dev))
8247                 return false;
8248
8249         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8250                 return false;
8251
8252         if (IS_GEN5(dev) &&
8253             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8254                 return false;
8255
8256         return true;
8257 }
8258
8259 static void intel_setup_outputs(struct drm_device *dev)
8260 {
8261         struct drm_i915_private *dev_priv = dev->dev_private;
8262         struct intel_encoder *encoder;
8263         bool dpd_is_edp = false;
8264         bool has_lvds;
8265
8266         has_lvds = intel_lvds_init(dev);
8267         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8268                 /* disable the panel fitter on everything but LVDS */
8269                 I915_WRITE(PFIT_CONTROL, 0);
8270         }
8271
8272         intel_crt_init(dev);
8273
8274         if (IS_HASWELL(dev)) {
8275                 int found;
8276
8277                 /* Haswell uses DDI functions to detect digital outputs */
8278                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8279                 /* DDI A only supports eDP */
8280                 if (found)
8281                         intel_ddi_init(dev, PORT_A);
8282
8283                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8284                  * register */
8285                 found = I915_READ(SFUSE_STRAP);
8286
8287                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8288                         intel_ddi_init(dev, PORT_B);
8289                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8290                         intel_ddi_init(dev, PORT_C);
8291                 if (found & SFUSE_STRAP_DDID_DETECTED)
8292                         intel_ddi_init(dev, PORT_D);
8293         } else if (HAS_PCH_SPLIT(dev)) {
8294                 int found;
8295                 dpd_is_edp = intel_dpd_is_edp(dev);
8296
8297                 if (has_edp_a(dev))
8298                         intel_dp_init(dev, DP_A, PORT_A);
8299
8300                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8301                         /* PCH SDVOB multiplex with HDMIB */
8302                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8303                         if (!found)
8304                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8305                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8306                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8307                 }
8308
8309                 if (I915_READ(HDMIC) & PORT_DETECTED)
8310                         intel_hdmi_init(dev, HDMIC, PORT_C);
8311
8312                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8313                         intel_hdmi_init(dev, HDMID, PORT_D);
8314
8315                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8316                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8317
8318                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8319                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8320         } else if (IS_VALLEYVIEW(dev)) {
8321                 int found;
8322
8323                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8324                 if (I915_READ(DP_C) & DP_DETECTED)
8325                         intel_dp_init(dev, DP_C, PORT_C);
8326
8327                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8328                         /* SDVOB multiplex with HDMIB */
8329                         found = intel_sdvo_init(dev, SDVOB, true);
8330                         if (!found)
8331                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8332                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8333                                 intel_dp_init(dev, DP_B, PORT_B);
8334                 }
8335
8336                 if (I915_READ(SDVOC) & PORT_DETECTED)
8337                         intel_hdmi_init(dev, SDVOC, PORT_C);
8338
8339         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8340                 bool found = false;
8341
8342                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8343                         DRM_DEBUG_KMS("probing SDVOB\n");
8344                         found = intel_sdvo_init(dev, SDVOB, true);
8345                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8346                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8347                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8348                         }
8349
8350                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8351                                 DRM_DEBUG_KMS("probing DP_B\n");
8352                                 intel_dp_init(dev, DP_B, PORT_B);
8353                         }
8354                 }
8355
8356                 /* Before G4X SDVOC doesn't have its own detect register */
8357
8358                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8359                         DRM_DEBUG_KMS("probing SDVOC\n");
8360                         found = intel_sdvo_init(dev, SDVOC, false);
8361                 }
8362
8363                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8364
8365                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8366                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8367                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8368                         }
8369                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8370                                 DRM_DEBUG_KMS("probing DP_C\n");
8371                                 intel_dp_init(dev, DP_C, PORT_C);
8372                         }
8373                 }
8374
8375                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8376                     (I915_READ(DP_D) & DP_DETECTED)) {
8377                         DRM_DEBUG_KMS("probing DP_D\n");
8378                         intel_dp_init(dev, DP_D, PORT_D);
8379                 }
8380         } else if (IS_GEN2(dev))
8381                 intel_dvo_init(dev);
8382
8383         if (SUPPORTS_TV(dev))
8384                 intel_tv_init(dev);
8385
8386         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8387                 encoder->base.possible_crtcs = encoder->crtc_mask;
8388                 encoder->base.possible_clones =
8389                         intel_encoder_clones(encoder);
8390         }
8391
8392         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8393                 ironlake_init_pch_refclk(dev);
8394
8395         drm_helper_move_panel_connectors_to_head(dev);
8396 }
8397
8398 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8399 {
8400         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8401
8402         drm_framebuffer_cleanup(fb);
8403         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8404
8405         kfree(intel_fb);
8406 }
8407
8408 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8409                                                 struct drm_file *file,
8410                                                 unsigned int *handle)
8411 {
8412         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8413         struct drm_i915_gem_object *obj = intel_fb->obj;
8414
8415         return drm_gem_handle_create(file, &obj->base, handle);
8416 }
8417
8418 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8419         .destroy = intel_user_framebuffer_destroy,
8420         .create_handle = intel_user_framebuffer_create_handle,
8421 };
8422
8423 int intel_framebuffer_init(struct drm_device *dev,
8424                            struct intel_framebuffer *intel_fb,
8425                            struct drm_mode_fb_cmd2 *mode_cmd,
8426                            struct drm_i915_gem_object *obj)
8427 {
8428         int ret;
8429
8430         if (obj->tiling_mode == I915_TILING_Y)
8431                 return -EINVAL;
8432
8433         if (mode_cmd->pitches[0] & 63)
8434                 return -EINVAL;
8435
8436         /* FIXME <= Gen4 stride limits are bit unclear */
8437         if (mode_cmd->pitches[0] > 32768)
8438                 return -EINVAL;
8439
8440         if (obj->tiling_mode != I915_TILING_NONE &&
8441             mode_cmd->pitches[0] != obj->stride)
8442                 return -EINVAL;
8443
8444         /* Reject formats not supported by any plane early. */
8445         switch (mode_cmd->pixel_format) {
8446         case DRM_FORMAT_C8:
8447         case DRM_FORMAT_RGB565:
8448         case DRM_FORMAT_XRGB8888:
8449         case DRM_FORMAT_ARGB8888:
8450                 break;
8451         case DRM_FORMAT_XRGB1555:
8452         case DRM_FORMAT_ARGB1555:
8453                 if (INTEL_INFO(dev)->gen > 3)
8454                         return -EINVAL;
8455                 break;
8456         case DRM_FORMAT_XBGR8888:
8457         case DRM_FORMAT_ABGR8888:
8458         case DRM_FORMAT_XRGB2101010:
8459         case DRM_FORMAT_ARGB2101010:
8460         case DRM_FORMAT_XBGR2101010:
8461         case DRM_FORMAT_ABGR2101010:
8462                 if (INTEL_INFO(dev)->gen < 4)
8463                         return -EINVAL;
8464                 break;
8465         case DRM_FORMAT_YUYV:
8466         case DRM_FORMAT_UYVY:
8467         case DRM_FORMAT_YVYU:
8468         case DRM_FORMAT_VYUY:
8469                 if (INTEL_INFO(dev)->gen < 6)
8470                         return -EINVAL;
8471                 break;
8472         default:
8473                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8474                 return -EINVAL;
8475         }
8476
8477         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8478         if (mode_cmd->offsets[0] != 0)
8479                 return -EINVAL;
8480
8481         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8482         if (ret) {
8483                 DRM_ERROR("framebuffer init failed %d\n", ret);
8484                 return ret;
8485         }
8486
8487         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8488         intel_fb->obj = obj;
8489         return 0;
8490 }
8491
8492 static struct drm_framebuffer *
8493 intel_user_framebuffer_create(struct drm_device *dev,
8494                               struct drm_file *filp,
8495                               struct drm_mode_fb_cmd2 *mode_cmd)
8496 {
8497         struct drm_i915_gem_object *obj;
8498
8499         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8500                                                 mode_cmd->handles[0]));
8501         if (&obj->base == NULL)
8502                 return ERR_PTR(-ENOENT);
8503
8504         return intel_framebuffer_create(dev, mode_cmd, obj);
8505 }
8506
8507 static const struct drm_mode_config_funcs intel_mode_funcs = {
8508         .fb_create = intel_user_framebuffer_create,
8509         .output_poll_changed = intel_fb_output_poll_changed,
8510 };
8511
8512 /* Set up chip specific display functions */
8513 static void intel_init_display(struct drm_device *dev)
8514 {
8515         struct drm_i915_private *dev_priv = dev->dev_private;
8516
8517         /* We always want a DPMS function */
8518         if (IS_HASWELL(dev)) {
8519                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8520                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8521                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8522                 dev_priv->display.off = haswell_crtc_off;
8523                 dev_priv->display.update_plane = ironlake_update_plane;
8524         } else if (HAS_PCH_SPLIT(dev)) {
8525                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8526                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8527                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8528                 dev_priv->display.off = ironlake_crtc_off;
8529                 dev_priv->display.update_plane = ironlake_update_plane;
8530         } else {
8531                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8532                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8533                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8534                 dev_priv->display.off = i9xx_crtc_off;
8535                 dev_priv->display.update_plane = i9xx_update_plane;
8536         }
8537
8538         /* Returns the core display clock speed */
8539         if (IS_VALLEYVIEW(dev))
8540                 dev_priv->display.get_display_clock_speed =
8541                         valleyview_get_display_clock_speed;
8542         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8543                 dev_priv->display.get_display_clock_speed =
8544                         i945_get_display_clock_speed;
8545         else if (IS_I915G(dev))
8546                 dev_priv->display.get_display_clock_speed =
8547                         i915_get_display_clock_speed;
8548         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8549                 dev_priv->display.get_display_clock_speed =
8550                         i9xx_misc_get_display_clock_speed;
8551         else if (IS_I915GM(dev))
8552                 dev_priv->display.get_display_clock_speed =
8553                         i915gm_get_display_clock_speed;
8554         else if (IS_I865G(dev))
8555                 dev_priv->display.get_display_clock_speed =
8556                         i865_get_display_clock_speed;
8557         else if (IS_I85X(dev))
8558                 dev_priv->display.get_display_clock_speed =
8559                         i855_get_display_clock_speed;
8560         else /* 852, 830 */
8561                 dev_priv->display.get_display_clock_speed =
8562                         i830_get_display_clock_speed;
8563
8564         if (HAS_PCH_SPLIT(dev)) {
8565                 if (IS_GEN5(dev)) {
8566                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8567                         dev_priv->display.write_eld = ironlake_write_eld;
8568                 } else if (IS_GEN6(dev)) {
8569                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8570                         dev_priv->display.write_eld = ironlake_write_eld;
8571                 } else if (IS_IVYBRIDGE(dev)) {
8572                         /* FIXME: detect B0+ stepping and use auto training */
8573                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8574                         dev_priv->display.write_eld = ironlake_write_eld;
8575                         dev_priv->display.modeset_global_resources =
8576                                 ivb_modeset_global_resources;
8577                 } else if (IS_HASWELL(dev)) {
8578                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8579                         dev_priv->display.write_eld = haswell_write_eld;
8580                 } else
8581                         dev_priv->display.update_wm = NULL;
8582         } else if (IS_G4X(dev)) {
8583                 dev_priv->display.write_eld = g4x_write_eld;
8584         }
8585
8586         /* Default just returns -ENODEV to indicate unsupported */
8587         dev_priv->display.queue_flip = intel_default_queue_flip;
8588
8589         switch (INTEL_INFO(dev)->gen) {
8590         case 2:
8591                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8592                 break;
8593
8594         case 3:
8595                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8596                 break;
8597
8598         case 4:
8599         case 5:
8600                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8601                 break;
8602
8603         case 6:
8604                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8605                 break;
8606         case 7:
8607                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8608                 break;
8609         }
8610 }
8611
8612 /*
8613  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8614  * resume, or other times.  This quirk makes sure that's the case for
8615  * affected systems.
8616  */
8617 static void quirk_pipea_force(struct drm_device *dev)
8618 {
8619         struct drm_i915_private *dev_priv = dev->dev_private;
8620
8621         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8622         DRM_INFO("applying pipe a force quirk\n");
8623 }
8624
8625 /*
8626  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8627  */
8628 static void quirk_ssc_force_disable(struct drm_device *dev)
8629 {
8630         struct drm_i915_private *dev_priv = dev->dev_private;
8631         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8632         DRM_INFO("applying lvds SSC disable quirk\n");
8633 }
8634
8635 /*
8636  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8637  * brightness value
8638  */
8639 static void quirk_invert_brightness(struct drm_device *dev)
8640 {
8641         struct drm_i915_private *dev_priv = dev->dev_private;
8642         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8643         DRM_INFO("applying inverted panel brightness quirk\n");
8644 }
8645
8646 struct intel_quirk {
8647         int device;
8648         int subsystem_vendor;
8649         int subsystem_device;
8650         void (*hook)(struct drm_device *dev);
8651 };
8652
8653 static struct intel_quirk intel_quirks[] = {
8654         /* HP Mini needs pipe A force quirk (LP: #322104) */
8655         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8656
8657         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8658         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8659
8660         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8661         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8662
8663         /* 830/845 need to leave pipe A & dpll A up */
8664         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8665         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8666
8667         /* Lenovo U160 cannot use SSC on LVDS */
8668         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8669
8670         /* Sony Vaio Y cannot use SSC on LVDS */
8671         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8672
8673         /* Acer Aspire 5734Z must invert backlight brightness */
8674         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8675 };
8676
8677 static void intel_init_quirks(struct drm_device *dev)
8678 {
8679         struct pci_dev *d = dev->pdev;
8680         int i;
8681
8682         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8683                 struct intel_quirk *q = &intel_quirks[i];
8684
8685                 if (d->device == q->device &&
8686                     (d->subsystem_vendor == q->subsystem_vendor ||
8687                      q->subsystem_vendor == PCI_ANY_ID) &&
8688                     (d->subsystem_device == q->subsystem_device ||
8689                      q->subsystem_device == PCI_ANY_ID))
8690                         q->hook(dev);
8691         }
8692 }
8693
8694 /* Disable the VGA plane that we never use */
8695 static void i915_disable_vga(struct drm_device *dev)
8696 {
8697         struct drm_i915_private *dev_priv = dev->dev_private;
8698         u8 sr1;
8699         u32 vga_reg;
8700
8701         if (HAS_PCH_SPLIT(dev))
8702                 vga_reg = CPU_VGACNTRL;
8703         else
8704                 vga_reg = VGACNTRL;
8705
8706         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8707         outb(SR01, VGA_SR_INDEX);
8708         sr1 = inb(VGA_SR_DATA);
8709         outb(sr1 | 1<<5, VGA_SR_DATA);
8710         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8711         udelay(300);
8712
8713         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8714         POSTING_READ(vga_reg);
8715 }
8716
8717 void intel_modeset_init_hw(struct drm_device *dev)
8718 {
8719         /* We attempt to init the necessary power wells early in the initialization
8720          * time, so the subsystems that expect power to be enabled can work.
8721          */
8722         intel_init_power_wells(dev);
8723
8724         intel_prepare_ddi(dev);
8725
8726         intel_init_clock_gating(dev);
8727
8728         mutex_lock(&dev->struct_mutex);
8729         intel_enable_gt_powersave(dev);
8730         mutex_unlock(&dev->struct_mutex);
8731 }
8732
8733 void intel_modeset_init(struct drm_device *dev)
8734 {
8735         struct drm_i915_private *dev_priv = dev->dev_private;
8736         int i, ret;
8737
8738         drm_mode_config_init(dev);
8739
8740         dev->mode_config.min_width = 0;
8741         dev->mode_config.min_height = 0;
8742
8743         dev->mode_config.preferred_depth = 24;
8744         dev->mode_config.prefer_shadow = 1;
8745
8746         dev->mode_config.funcs = &intel_mode_funcs;
8747
8748         intel_init_quirks(dev);
8749
8750         intel_init_pm(dev);
8751
8752         intel_init_display(dev);
8753
8754         if (IS_GEN2(dev)) {
8755                 dev->mode_config.max_width = 2048;
8756                 dev->mode_config.max_height = 2048;
8757         } else if (IS_GEN3(dev)) {
8758                 dev->mode_config.max_width = 4096;
8759                 dev->mode_config.max_height = 4096;
8760         } else {
8761                 dev->mode_config.max_width = 8192;
8762                 dev->mode_config.max_height = 8192;
8763         }
8764         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8765
8766         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8767                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8768
8769         for (i = 0; i < dev_priv->num_pipe; i++) {
8770                 intel_crtc_init(dev, i);
8771                 ret = intel_plane_init(dev, i);
8772                 if (ret)
8773                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8774         }
8775
8776         intel_cpu_pll_init(dev);
8777         intel_pch_pll_init(dev);
8778
8779         /* Just disable it once at startup */
8780         i915_disable_vga(dev);
8781         intel_setup_outputs(dev);
8782 }
8783
8784 static void
8785 intel_connector_break_all_links(struct intel_connector *connector)
8786 {
8787         connector->base.dpms = DRM_MODE_DPMS_OFF;
8788         connector->base.encoder = NULL;
8789         connector->encoder->connectors_active = false;
8790         connector->encoder->base.crtc = NULL;
8791 }
8792
8793 static void intel_enable_pipe_a(struct drm_device *dev)
8794 {
8795         struct intel_connector *connector;
8796         struct drm_connector *crt = NULL;
8797         struct intel_load_detect_pipe load_detect_temp;
8798
8799         /* We can't just switch on the pipe A, we need to set things up with a
8800          * proper mode and output configuration. As a gross hack, enable pipe A
8801          * by enabling the load detect pipe once. */
8802         list_for_each_entry(connector,
8803                             &dev->mode_config.connector_list,
8804                             base.head) {
8805                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8806                         crt = &connector->base;
8807                         break;
8808                 }
8809         }
8810
8811         if (!crt)
8812                 return;
8813
8814         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8815                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8816
8817
8818 }
8819
8820 static bool
8821 intel_check_plane_mapping(struct intel_crtc *crtc)
8822 {
8823         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8824         u32 reg, val;
8825
8826         if (dev_priv->num_pipe == 1)
8827                 return true;
8828
8829         reg = DSPCNTR(!crtc->plane);
8830         val = I915_READ(reg);
8831
8832         if ((val & DISPLAY_PLANE_ENABLE) &&
8833             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8834                 return false;
8835
8836         return true;
8837 }
8838
8839 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8840 {
8841         struct drm_device *dev = crtc->base.dev;
8842         struct drm_i915_private *dev_priv = dev->dev_private;
8843         u32 reg;
8844
8845         /* Clear any frame start delays used for debugging left by the BIOS */
8846         reg = PIPECONF(crtc->cpu_transcoder);
8847         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8848
8849         /* We need to sanitize the plane -> pipe mapping first because this will
8850          * disable the crtc (and hence change the state) if it is wrong. Note
8851          * that gen4+ has a fixed plane -> pipe mapping.  */
8852         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8853                 struct intel_connector *connector;
8854                 bool plane;
8855
8856                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8857                               crtc->base.base.id);
8858
8859                 /* Pipe has the wrong plane attached and the plane is active.
8860                  * Temporarily change the plane mapping and disable everything
8861                  * ...  */
8862                 plane = crtc->plane;
8863                 crtc->plane = !plane;
8864                 dev_priv->display.crtc_disable(&crtc->base);
8865                 crtc->plane = plane;
8866
8867                 /* ... and break all links. */
8868                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8869                                     base.head) {
8870                         if (connector->encoder->base.crtc != &crtc->base)
8871                                 continue;
8872
8873                         intel_connector_break_all_links(connector);
8874                 }
8875
8876                 WARN_ON(crtc->active);
8877                 crtc->base.enabled = false;
8878         }
8879
8880         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8881             crtc->pipe == PIPE_A && !crtc->active) {
8882                 /* BIOS forgot to enable pipe A, this mostly happens after
8883                  * resume. Force-enable the pipe to fix this, the update_dpms
8884                  * call below we restore the pipe to the right state, but leave
8885                  * the required bits on. */
8886                 intel_enable_pipe_a(dev);
8887         }
8888
8889         /* Adjust the state of the output pipe according to whether we
8890          * have active connectors/encoders. */
8891         intel_crtc_update_dpms(&crtc->base);
8892
8893         if (crtc->active != crtc->base.enabled) {
8894                 struct intel_encoder *encoder;
8895
8896                 /* This can happen either due to bugs in the get_hw_state
8897                  * functions or because the pipe is force-enabled due to the
8898                  * pipe A quirk. */
8899                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8900                               crtc->base.base.id,
8901                               crtc->base.enabled ? "enabled" : "disabled",
8902                               crtc->active ? "enabled" : "disabled");
8903
8904                 crtc->base.enabled = crtc->active;
8905
8906                 /* Because we only establish the connector -> encoder ->
8907                  * crtc links if something is active, this means the
8908                  * crtc is now deactivated. Break the links. connector
8909                  * -> encoder links are only establish when things are
8910                  *  actually up, hence no need to break them. */
8911                 WARN_ON(crtc->active);
8912
8913                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8914                         WARN_ON(encoder->connectors_active);
8915                         encoder->base.crtc = NULL;
8916                 }
8917         }
8918 }
8919
8920 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8921 {
8922         struct intel_connector *connector;
8923         struct drm_device *dev = encoder->base.dev;
8924
8925         /* We need to check both for a crtc link (meaning that the
8926          * encoder is active and trying to read from a pipe) and the
8927          * pipe itself being active. */
8928         bool has_active_crtc = encoder->base.crtc &&
8929                 to_intel_crtc(encoder->base.crtc)->active;
8930
8931         if (encoder->connectors_active && !has_active_crtc) {
8932                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8933                               encoder->base.base.id,
8934                               drm_get_encoder_name(&encoder->base));
8935
8936                 /* Connector is active, but has no active pipe. This is
8937                  * fallout from our resume register restoring. Disable
8938                  * the encoder manually again. */
8939                 if (encoder->base.crtc) {
8940                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8941                                       encoder->base.base.id,
8942                                       drm_get_encoder_name(&encoder->base));
8943                         encoder->disable(encoder);
8944                 }
8945
8946                 /* Inconsistent output/port/pipe state happens presumably due to
8947                  * a bug in one of the get_hw_state functions. Or someplace else
8948                  * in our code, like the register restore mess on resume. Clamp
8949                  * things to off as a safer default. */
8950                 list_for_each_entry(connector,
8951                                     &dev->mode_config.connector_list,
8952                                     base.head) {
8953                         if (connector->encoder != encoder)
8954                                 continue;
8955
8956                         intel_connector_break_all_links(connector);
8957                 }
8958         }
8959         /* Enabled encoders without active connectors will be fixed in
8960          * the crtc fixup. */
8961 }
8962
8963 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8964  * and i915 state tracking structures. */
8965 void intel_modeset_setup_hw_state(struct drm_device *dev)
8966 {
8967         struct drm_i915_private *dev_priv = dev->dev_private;
8968         enum pipe pipe;
8969         u32 tmp;
8970         struct intel_crtc *crtc;
8971         struct intel_encoder *encoder;
8972         struct intel_connector *connector;
8973
8974         if (IS_HASWELL(dev)) {
8975                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8976
8977                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8978                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8979                         case TRANS_DDI_EDP_INPUT_A_ON:
8980                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8981                                 pipe = PIPE_A;
8982                                 break;
8983                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8984                                 pipe = PIPE_B;
8985                                 break;
8986                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8987                                 pipe = PIPE_C;
8988                                 break;
8989                         }
8990
8991                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8992                         crtc->cpu_transcoder = TRANSCODER_EDP;
8993
8994                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8995                                       pipe_name(pipe));
8996                 }
8997         }
8998
8999         for_each_pipe(pipe) {
9000                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9001
9002                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9003                 if (tmp & PIPECONF_ENABLE)
9004                         crtc->active = true;
9005                 else
9006                         crtc->active = false;
9007
9008                 crtc->base.enabled = crtc->active;
9009
9010                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9011                               crtc->base.base.id,
9012                               crtc->active ? "enabled" : "disabled");
9013         }
9014
9015         if (IS_HASWELL(dev))
9016                 intel_ddi_setup_hw_pll_state(dev);
9017
9018         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9019                             base.head) {
9020                 pipe = 0;
9021
9022                 if (encoder->get_hw_state(encoder, &pipe)) {
9023                         encoder->base.crtc =
9024                                 dev_priv->pipe_to_crtc_mapping[pipe];
9025                 } else {
9026                         encoder->base.crtc = NULL;
9027                 }
9028
9029                 encoder->connectors_active = false;
9030                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9031                               encoder->base.base.id,
9032                               drm_get_encoder_name(&encoder->base),
9033                               encoder->base.crtc ? "enabled" : "disabled",
9034                               pipe);
9035         }
9036
9037         list_for_each_entry(connector, &dev->mode_config.connector_list,
9038                             base.head) {
9039                 if (connector->get_hw_state(connector)) {
9040                         connector->base.dpms = DRM_MODE_DPMS_ON;
9041                         connector->encoder->connectors_active = true;
9042                         connector->base.encoder = &connector->encoder->base;
9043                 } else {
9044                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9045                         connector->base.encoder = NULL;
9046                 }
9047                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9048                               connector->base.base.id,
9049                               drm_get_connector_name(&connector->base),
9050                               connector->base.encoder ? "enabled" : "disabled");
9051         }
9052
9053         /* HW state is read out, now we need to sanitize this mess. */
9054         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9055                             base.head) {
9056                 intel_sanitize_encoder(encoder);
9057         }
9058
9059         for_each_pipe(pipe) {
9060                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9061                 intel_sanitize_crtc(crtc);
9062         }
9063
9064         intel_modeset_update_staged_output_state(dev);
9065
9066         intel_modeset_check_state(dev);
9067
9068         drm_mode_config_reset(dev);
9069 }
9070
9071 void intel_modeset_gem_init(struct drm_device *dev)
9072 {
9073         intel_modeset_init_hw(dev);
9074
9075         intel_setup_overlay(dev);
9076
9077         intel_modeset_setup_hw_state(dev);
9078 }
9079
9080 void intel_modeset_cleanup(struct drm_device *dev)
9081 {
9082         struct drm_i915_private *dev_priv = dev->dev_private;
9083         struct drm_crtc *crtc;
9084         struct intel_crtc *intel_crtc;
9085
9086         drm_kms_helper_poll_fini(dev);
9087         mutex_lock(&dev->struct_mutex);
9088
9089         intel_unregister_dsm_handler();
9090
9091
9092         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9093                 /* Skip inactive CRTCs */
9094                 if (!crtc->fb)
9095                         continue;
9096
9097                 intel_crtc = to_intel_crtc(crtc);
9098                 intel_increase_pllclock(crtc);
9099         }
9100
9101         intel_disable_fbc(dev);
9102
9103         intel_disable_gt_powersave(dev);
9104
9105         ironlake_teardown_rc6(dev);
9106
9107         if (IS_VALLEYVIEW(dev))
9108                 vlv_init_dpio(dev);
9109
9110         mutex_unlock(&dev->struct_mutex);
9111
9112         /* Disable the irq before mode object teardown, for the irq might
9113          * enqueue unpin/hotplug work. */
9114         drm_irq_uninstall(dev);
9115         cancel_work_sync(&dev_priv->hotplug_work);
9116         cancel_work_sync(&dev_priv->rps.work);
9117
9118         /* flush any delayed tasks or pending work */
9119         flush_scheduled_work();
9120
9121         drm_mode_config_cleanup(dev);
9122 }
9123
9124 /*
9125  * Return which encoder is currently attached for connector.
9126  */
9127 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9128 {
9129         return &intel_attached_encoder(connector)->base;
9130 }
9131
9132 void intel_connector_attach_encoder(struct intel_connector *connector,
9133                                     struct intel_encoder *encoder)
9134 {
9135         connector->encoder = encoder;
9136         drm_mode_connector_attach_encoder(&connector->base,
9137                                           &encoder->base);
9138 }
9139
9140 /*
9141  * set vga decode state - true == enable VGA decode
9142  */
9143 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9144 {
9145         struct drm_i915_private *dev_priv = dev->dev_private;
9146         u16 gmch_ctrl;
9147
9148         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9149         if (state)
9150                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9151         else
9152                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9153         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9154         return 0;
9155 }
9156
9157 #ifdef CONFIG_DEBUG_FS
9158 #include <linux/seq_file.h>
9159
9160 struct intel_display_error_state {
9161         struct intel_cursor_error_state {
9162                 u32 control;
9163                 u32 position;
9164                 u32 base;
9165                 u32 size;
9166         } cursor[I915_MAX_PIPES];
9167
9168         struct intel_pipe_error_state {
9169                 u32 conf;
9170                 u32 source;
9171
9172                 u32 htotal;
9173                 u32 hblank;
9174                 u32 hsync;
9175                 u32 vtotal;
9176                 u32 vblank;
9177                 u32 vsync;
9178         } pipe[I915_MAX_PIPES];
9179
9180         struct intel_plane_error_state {
9181                 u32 control;
9182                 u32 stride;
9183                 u32 size;
9184                 u32 pos;
9185                 u32 addr;
9186                 u32 surface;
9187                 u32 tile_offset;
9188         } plane[I915_MAX_PIPES];
9189 };
9190
9191 struct intel_display_error_state *
9192 intel_display_capture_error_state(struct drm_device *dev)
9193 {
9194         drm_i915_private_t *dev_priv = dev->dev_private;
9195         struct intel_display_error_state *error;
9196         enum transcoder cpu_transcoder;
9197         int i;
9198
9199         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9200         if (error == NULL)
9201                 return NULL;
9202
9203         for_each_pipe(i) {
9204                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9205
9206                 error->cursor[i].control = I915_READ(CURCNTR(i));
9207                 error->cursor[i].position = I915_READ(CURPOS(i));
9208                 error->cursor[i].base = I915_READ(CURBASE(i));
9209
9210                 error->plane[i].control = I915_READ(DSPCNTR(i));
9211                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9212                 error->plane[i].size = I915_READ(DSPSIZE(i));
9213                 error->plane[i].pos = I915_READ(DSPPOS(i));
9214                 error->plane[i].addr = I915_READ(DSPADDR(i));
9215                 if (INTEL_INFO(dev)->gen >= 4) {
9216                         error->plane[i].surface = I915_READ(DSPSURF(i));
9217                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9218                 }
9219
9220                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9221                 error->pipe[i].source = I915_READ(PIPESRC(i));
9222                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9223                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9224                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9225                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9226                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9227                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9228         }
9229
9230         return error;
9231 }
9232
9233 void
9234 intel_display_print_error_state(struct seq_file *m,
9235                                 struct drm_device *dev,
9236                                 struct intel_display_error_state *error)
9237 {
9238         drm_i915_private_t *dev_priv = dev->dev_private;
9239         int i;
9240
9241         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9242         for_each_pipe(i) {
9243                 seq_printf(m, "Pipe [%d]:\n", i);
9244                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9245                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9246                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9247                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9248                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9249                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9250                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9251                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9252
9253                 seq_printf(m, "Plane [%d]:\n", i);
9254                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9255                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9256                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9257                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9258                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9259                 if (INTEL_INFO(dev)->gen >= 4) {
9260                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9261                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9262                 }
9263
9264                 seq_printf(m, "Cursor [%d]:\n", i);
9265                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9266                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9267                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9268         }
9269 }
9270 #endif